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Abstract

Mental health is essential for overall well-being, focusing emotional, psychological,

and social aspects. Assessing and managing mental health requires understand-

ing mental state parameters, including cognitive load, cognitive impairment, and

emotional state. Advanced technologies like eye tracking provide valuable insights

into these parameters, transformed mental health evaluation and enabled more

targeted interventions and better outcomes.

Thesis focused towards developing intelligent system to monitor mental health,

focusing on cognitive load, cognitive impairment, and emotional state. The re-

search has three main objectives, including creating four eye-tracking-based uni-

modal datasets and a multimodal dataset to address the lack of publicly available

mental health assessment datasets. Each dataset is designed to study cognitive

load, cognitive impairment, and emotional state classification using varied stimuli.

In addition to dataset creation, the thesis excels in feature extraction, intro-

ducing novel features to detect mental state parameters and enhancing assessment

precision. High-level features such as error rate, scanpath comparison score, and

inattentional blindness are incorporated, contributing to find cognitive impairment

scores.

Five models are developed to detect mental states by separately monitoring

the mental state parameters, cognitive load, cognitive impairment, and emotional

state. The models employ statistical analysis, machine learning algorithms, fuzzy

inference systems, and deep learning techniques to provide detailed insights into

an individual’s mental state.

The first two models, Eye-Tracking Cognitive Load models (ECL-1 and ECL-

2) focus on cognitive load assessment during mathematical assessments and Trail

Making Test tasks. ECL-1 model utilizes statistical analysis to understand the

correlation between eye tracking features like pupil diameter and blink frequency

with the cognitive load while performing mathematical assessments. With the

identification of relevant features while performing Trail Making Test (TMT), the

ECL-2 model effectively classifies low and high cognitive load states with a notable

94% accuracy, utilizing eye-tracking data and machine learning algorithms.

The third model, the ETMT (Eye tracking based Trail Making Test) model,
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uses a fuzzy inference system and adaptive neuro-fuzzy inference system to detect

mental states associated with cognitive impairment. It provides detailed scores in

visual search speed and focused attention, important for understanding the exact

cognitive deficits of a patient. This greatly aids in understanding the cognitive

states of an individual and addresses deficits in executive functioning, memory,

motor function, attentional disengagement, neuropsychological function, process-

ing speed, and visual attention.

The fourth model, PredictEYE, utilizes a deep learning time-series univariate

regression model based on Long Short-Term Memory (LSTM) to predict future

sequences of each feature. Machine learning-based Random Forest algorithm is

applied on the predicted features for mental state prediction and identifying the

mental state as calm or stressful based on a person’s emotional state. The per-

sonalized time series methodology makes use of the power of time series analysis,

identifying patterns and changes in data over time to enable more precise and

individualized mental health assessments and monitoring. Notably, PredictEYE

outperforms ARIMA with an accuracy of 86.4%.

The fifth model introduced in this study is based on a multimodal dataset,

incorporating physiological measures such as ECG, GSR, PPG, and respiratory

signals, along with eye tracking data. Two separate models, one based on eye

tracking data and the other based on all other physiological measures developed

for understanding the emotional state of a person. These models demonstrate

comparable performance, with notable proficiency in binary classification based

on arousal and valence. Particularly, the Binary-Valence model achieves slightly

higher accuracy when utilizing eye tracking data, while other physiological mea-

sures exhibit stronger classification performance for the Binary-Arousal model.

The thesis makes substantial progress in mental health monitoring by provid-

ing accurate, non-intrusive evaluations of an individual’s mental state. It empha-

sizes mental state parameters such as cognitive load, impairment, and emotional

state, with AI-based methods incorporated to improve the precision in detection

of mental state.
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Chapter 1

Introduction

1.1 Mental Health - State of Well-being

Mental health is a person’s emotional, psychological, and social well-being [1–

3]. It encompasses a person’s ability to handle stress, make choices, maintain

fulfilling relationships, and cope with life’s challenges. Good mental health doesn’t

mean the absence of difficulties but rather the ability to manage them positively

and effectively [4]. It’s about achieving balance in one’s emotions, thoughts, and

behaviors, contributing to an overall sense of contentment and fulfillment.

However, when the delicate balance of mental health is disrupted, individuals

may experience medical conditions known as mental disorders. It can affect a per-

son’s normal cognitive, emotional, and behavioral functioning. These conditions

can range from mild to severe and may encompass disorders such as depression,

anxiety, schizophrenia, bipolar disorder, and more. Mental disorders can signifi-

cantly impact a person’s thoughts, feelings, and actions, often leading to distress

and impairment in daily life [5]. Proper diagnosis, treatment, and support are

crucial for managing mental disorders effectively.

Mental health, when reaching its optimal stage, is defined as mental wellness,

where an individual experiences a positive sense of self, effective coping mecha-

nisms, and the ability to function well in various aspects of life [6]. It involves

a balance between cognitive, behavioral, and emotional dimensions. Mental well-

ness is characterized by self-awareness, resilience, positive relationships, a sense of

purpose, and the ability to adapt to change [7]. Conversely, when mental health

falls below a specific threshold, it may indicate the presence of a mental disorder.

This distinction underscores the spectrum within mental health, ranging from the

flourishing state of mental wellness to potential challenges that warrant clinical

attention.

The growth and development of society are intrinsically linked to the health
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of its members, making health a fundamental cornerstone for happiness and well-

being worldwide. In this context, mental health stands out as an integral and

crucial component of overall health, impacting individuals of all ages and genders.

With the rising prevalence of brain and mind-related health conditions, regular

monitoring of mental health has become imperative for everyone in society [8, 9].

There is a complex relationship between mental and physical health. Mental

illnesses like anxiety and depression can make it difficult for people to practice

healthy habits, which emphasizes their critical role in preserving general well-

being [10, 11]. Mental health care faces more obstacles than physical health care,

including lack of mental health professionals that prevent people from accessing

the treatment they need [12].

Many countries worldwide rely on primary healthcare systems like community

health centers, primary health clinics, regional hospitals, and specialized institu-

tions. Integrating mental health care into these primary care programs is a bene-

ficial approach in addressing mental health conditions. This could allow patients

to receive personalized care [13].

Mental health professionals shortage and unavailability of necessary care are

significant challenges to comprehensive mental health services [3]. Implementing

an assistive model can streamline operations, provide more time for patients with

serious conditions, and ensure mental health services are more accessible and ef-

fective in primary care settings [14,15]. This holistic approach addresses systemic

challenges hindering timely and adequate mental health services.

Mental health assessment is crucial for effective treatment and support. Tradi-

tional methods, such as self-reporting through questionnaires and interviews, have

limitations due to biases and inaccuracies [16–19]. To address these, objective

measures like behavioral and physiological data have been introduced. Behavioral

data, including observable actions like facial expressions and eye movements [20],

provides real-time insights into an individual’s mental state [21–26].

Physiological data collected through various sensing technologies, including

accelerometers, gyroscopes, pupil corneal reflection, Electroencephalogram (EEG)

[16, 27], Electrocardiogram (ECG), photoplethysmography (PPG), Galvanic Skin

Response (GSR) [28], pressure-sensitive touch screen [29], heart rate, sound, tem-

perature, oxygen saturation, and salivary cortisol levels [30], provide continuous

monitoring. Among these physiological measures, eye tracking presents a unique

opportunity to objectively assess mental health by observing subtle changes in eye

movements and gaze patterns, which can serve as biomarkers for various mental

health conditions.

Eye tracking is a sensor technology that detects gaze, providing insights into

visual attention and subconscious processing. It has become a promising tool for
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monitoring human behavior and cognition [31]. It allows precise measurement and

analysis of eye gaze movements, providing valuable insights into visual attention

and cognitive processes. Its potential is particularly significant in mental health

monitoring, as it can help understand cognitive processes [32].

Research indicates that individuals with mental health disorders often display

unique eye movement patterns and gaze behaviors, such as reduced eye contact

and altered visual attention [33]. This can be attributed to depression and anxiety

disorders, where individuals may have a greater attentional bias towards threat-

related stimuli. Eye tracking technology can help assess, diagnose, and monitor

these conditions [34, 35].

Furthermore, eye tracking has the potential to overcome some of the limita-

tions associated with traditional assessment methods. It collects data objectively

and non-intrusively, eliminating the cognitive biases in self-reporting. Eye track-

ing can provide real-time and continuous monitoring, capturing minute changes

in eye movements that may indicate the presence or progression of mental health

conditions. It also enables early identification that facilitates early intervention,

enabling healthcare professionals to provide timely support and prevent the wors-

ening of symptoms [36].

The unique insights from eye movements and gaze patterns provide a new di-

mension to understanding mental health [37]. Through objective assessment and

continuous monitoring, eye tracking contributes to accurate diagnoses, personal-

ized treatment plans, and improved overall mental well-being [38]. Early detection

through gaze behavior analysis enables timely interventions, revolutionizing men-

tal health assessment with cutting-edge technologies and advancing us toward a

future where mental health can be effectively monitored and managed.

Eye tracking provides various benefits; however, there are some drawbacks

that need to be addressed. One significant drawback is the expensive cost of

hardware, which can be replaced with cheaper webcam-based technology. The

data obtained from an eye tracker is always raw and requires further processing

to yield relevant information [39]. Developing supporting tools will be beneficial

for data exploration. The difficulty in interpreting eye-tracking data, can be over-

come by developing efficient software that provides clear insights. Additionally,

eye-tracking data is idiosyncratic, varying from one participant to another, neces-

sitating a clear and detailed study for accurate interpretation. The accuracy of

eye-tracking systems can be affected by lighting conditions, user movement, and

the need for calibration. Advancements in algorithms and user-friendly calibra-

tion processes can address these issues. Privacy and ethical concerns regarding

the sensitive information revealed by eye-tracking data can be managed through

robust data protection protocols and obtaining informed consent.
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Mental state parameters encompass observable aspects that provide insights

into an individual’s cognitive and emotional well-being. These parameters, includ-

ing attention, engagement, fatigue, stress, cognitive processes, social interaction,

behavior, anticipation, and performance, collectively contribute to the intricate

fabric of mental states [10, 11]. However, this thesis predominantly focuses on

three pivotal mental state indicators: cognitive load, cognitive impairment, and

emotional state. These collectively provide valuable insights into an individual’s

mental state and overall well-being. These specific dimensions serve as a support-

ive tool for healthcare professionals, offering in-depth insights into an individual’s

mental health. By observing and classifying these parameters, the goal is to assess

and understand mental states, thereby facilitating the monitoring of individuals’

mental health [10,11].

Building upon the exploration of mental state parameters, this thesis delves

into the technical intricacies of eye tracking, with a specific emphasis on classify-

ing mental states. The study highlights the profound impact of these parameters

on mental health. The overarching goal is to contribute to a comprehensive un-

derstanding of individuals’ mental states by emphasizing the pivotal role of eye

tracking technology in effectively detecting and understanding mental state indi-

cators.

The following sections will delve into mental state parameters, specifically fo-

cusing on cognitive load, cognitive impairment, and emotional state.

1.1.1 Cognitive Load

Cognitive load refers to the amount of information that working memory can hold

and process effectively. When the cognitive load increases, it can lead to mental

fatigue and decreased cognitive performance, affecting tasks requiring concentra-

tion, decision-making, and memory [40, 41]. Eye tracking can effectively monitor

cognitive load by tracking gaze patterns and fixation duration. Longer fixations

on specific areas of a screen or frequent eye movements between multiple points

may indicate high cognitive load [42]. By identifying the patterns indicating cogni-

tive load, eye tracking can help individuals and healthcare professionals recognize

when mental fatigue occurs, allowing prompt interventions like taking breaks or

work adjustments. [43]. This monitoring can contribute to improved cognitive

performance and overall well-being [44].

1.1.2 Cognitive Impairment

Cognitive impairment encompasses difficulties in memory, learning, concentration,

and decision-making. It can affect mental flexibility, visual attention, and motor
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control. Eye tracking can assist in the early diagnosis of cognitive impairment by

detecting changes in gaze behavior and visual attention patterns [45, 46]. Indi-

viduals with cognitive impairment may exhibit irregular or unfocused gaze pat-

terns when performing tasks that require attention and memory. Early detection

through eye tracking allows for timely intervention and personalized treatment

plans, potentially slowing down the progression of cognitive decline and improv-

ing the quality of life for affected individuals [46].

1.1.3 Emotional State

Emotions are mental states brought about by neurophysiological changes, influ-

encing thoughts, feelings, and behavioral responses. Negative emotions, such as

stress and anxiety, can harm hormonal balance and weaken the immune system,

impacting overall mental and physical health [47]. Eye tracking can play a crucial

role in understanding and managing emotions. Tracking gaze patterns and pupil

dilation can detect emotional states in response to visual stimuli or tasks [48]. For

example, increased pupil size and shifts in gaze towards emotionally charged im-

ages or scenarios can indicate emotional reactions. Individuals and therapists can

discover emotional triggers and build stress management and emotional regulation

strategies with this data.

Cognitive load and cognitive impairment can reveal a person’s mental condition

and capacity to handle daily tasks and stress. Higher cognitive load or impairment

may indicate mental health disorders like depression or anxiety [49]. Additionally,

emotional state can indicate mental well-being, with heightened emotional arousal

potentially suggesting distress or difficulties in emotional regulation.

The cognitive load, cognitive impairment, and emotional state are influenced

by a variety of factors, including medical conditions, medication usage, lifestyle

choices, and more. Therefore, seeking guidance from a healthcare professional

is recommended for a precise evaluation of mental health. They can conduct a

thorough assessment to comprehend and address these complex issues.

Acknowledging the shortage of mental health professionals and the need for

timely mental illness detection, this thesis centers on predicting an individual’s

mental state through the analysis of cognitive load, cognitive impairment, and

emotional state using eye gaze data. This focus aims to provide a support in

healthcare professionals for detecting mental states and facilitating diagnoses within

the individual’s comfort zone. It supports the healthcare experts by providing

them with valuable indicators of an individual’s mental state through the compre-

hensive analysis of eye gaze data.
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1.2 Motivation

Figure 1.1: The survey on experience of anxiety or depression by Wellcome Global
Monitor in 2020 [1]

The motivation behind mental health monitoring is deeply rooted in addressing

the pressing mental health challenges faced by India and many other countries.

Several key factors have highlighted the urgency for such a model.

Mental health disorders have emerged as the leading cause of non-fatal dis-

ease burden worldwide, emphasizing the critical need for effective mental health

solutions [1], [50]. Figure 1.1 illustrates this trend. Unfortunately, societal stigma

often leads to the concealment of mental health disorders, as individuals fear judg-

ment or societal pressures, hindering their willingness to seek help. Based on the

’Mental Health in India’ statistics provided by IPSOS Global Health Monitor 2019,

Figure 1.2 illustrates the frequency of visiting or consulting with mental health

professionals in India [2].

Compounding this issue is the significant concern of unavailability and inacces-

sibility of timely mental health care, particularly in regions like India where many

individuals struggle to access the necessary services [51]. The National Mental

Health Survey in 2016 revealed alarmingly low treatment rates, with a substantial

percentage of individuals with mental illness in India receiving no treatment [51].

Further exacerbating the situation is the shortage of mental health professionals,

as highlighted by a 2021 study by the Observer Research Foundation [52]. Figure

1.3 based on ’Major Healthcare Challenges’ statistics provided by IPSOS Global

Health Monitor 2021, 41% of people in India reported not having access to treat-

ment or facing long waiting queues, while 39% mentioned insufficient staff as a

significant issue [3]. Recognizing the importance of early intervention, it becomes

imperative to address these challenges, emphasizing the need for timely diagnosis

and intervention to reduce the burden of mental illness.
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Figure 1.2: “Mental Health in India” statistic provided by IPSOS Global Health
Monitor 2019. [2]

Figure 1.3: Major healthcare challenges, statistic provided by IPSOS Global
Health Monitor 2021. [3]

1.3 Challenges

The development of a model for mental health assessment using eye gaze data faces

several challenges. The lack of publicly available eye tracking datasets is a major

obstacle, making it difficult to train and test machine learning (ML) and deep

learning (DL) models. Obtaining labeled data for mental health indicators like

cognitive load, cognitive impairment, and emotional state is also a challenge. This

requires the expertise of mental health professionals and may be resource-intensive.

Collaboration between researchers, mental health experts, and data annotators is

needed to create datasets that can drive advancements in this critical domain.
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1.4 Scope

The scope of the thesis encompasses several critical areas within the mental health

assessment and intervention field.

1. Dataset Creation and Expansion: Since there is lack of multimodal

datasets, the creation of multimodal datasets enables the exploration mul-

tiple physiological signals and that leads to the exploration of multiple in-

sightful features and technological advancements.

2. Mental Health Screening and Monitoring: The scope of this research

involves establishing a supportive tool that provides more insightful features

to the mental health professionals. It offers clear analysis and providing in

depth features and that can help the health professionals to save their time

in monitoring each person.

3. Advanced Cognitive Assessment: This research presents the new ap-

proach to the enhanced cognitive test, focusing on eye tracking of individuals’

abilities in the TMT. In addition to typical completion time measurements,

the model analyzes a wide variety of gaze features in order to assess the

subject’s cognitive abilities as informative as possible.

4. Adaptability and Integration: The model has the adaptability of includ-

ing various physiological data and can be incorporated in various domains

like healthcare and education.

5. Reallocation of Healthcare Resources: It ability to provide more in-

sightful features enables optimized reallocation of healthcare professionals

to patients who need immediate care.

1.5 Thesis Objectives

The objective of the thesis is to develop an Intelligent system that can monitor

the mental health of a person by assessing key mental state parameters, such as

cognitive load, cognitive impairment, and emotional state. The system analyzes

various physiological measures, offering valuable insights to support healthcare

professionals.

The main objective of the study is divided into three sub-objectives, each

focusing on specific aspects to achieve the overall research goal.

1. Generate Eye Gaze Dataset and develop Meaningful Eye Gaze Features:
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(a) Identify various tests or stimuli used in the study of mental health

monitoring.

The study reviews existing literature to identify established mental

health assessment tests and stimuli. Consulting with mental health

professionals helps select appropriate assessments, encompassing sub-

jective measures like self-report questionnaires and objective measures,

including physiological and behavioral indicators.

(b) Establish an environment for data collection and identify appropriate

stimuli.

Establish a controlled environment for optimal data collection, encom-

passing quiet rooms and proper lighting. Ensuring participant privacy

and confidentiality is a priority. Data collection accuracy and reliabil-

ity are maintained by calibrating and validating measurement tools like

physiological sensors and questionnaires.

(c) Extraction of features and creation of datasets.

Develop algorithms that extract relevant features from eye gaze data,

such as fixations, saccades, and blinks. The dataset creation includes

administering selected mental health tests and stimuli to participants,

followed by collecting responses and physiological data to construct

comprehensive datasets.

2. Design an AI system to make Intelligent decisions to identify various mental

health indicators.

(a) Identify the eye gaze biomarkers, indicating a person’s mental state

parameters like cognitive load, cognitive impairment, and emotional

state.

Perform an extensive literature survey to pinpoint distinctive eye gaze

patterns and biomarkers associated with cognitive load, cognitive im-

pairment, and emotional state. This involves an in-depth exploration of

existing research to discern specific ocular behaviors and physiological

indicators that serve as reliable markers for these mental states.

(b) Apply Computational Intelligence, Machine Learning and Deep Learn-

ing technologies that help the system to make Intelligent decisions

on the classification of those identified mental state parameters and

monitor the user’s mental health. Implement decision-making algo-

rithms that consider the mental state parameters, incorporating eye

gaze biomarkers.
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Figure 1.4: Major contributions

3. Create a multimodal dataset and implement emotional state detection mod-

els based on various physiological measures, such as ECG, GSR, PPG, Res-

piratory signals, and eye tracking data. The impact of integrating physiolog-

ical signals as an additional component to the eye tracking-based emotional

state detection model is evaluated, revealing potential enhancements or al-

terations in the system’s performance.

1.6 Major Contributions

The significant contribution of the thesis, as shown in Figure 1.4, encompasses

various aspects of mental health monitoring. Foremost, based on the first objec-

tive, it addresses the notable challenge of the scarcity of publicly available eye

tracking datasets for mental health assessment. By creating four eye tracking-

based datasets, this model bridges a critical gap in the field, offering researchers

a valuable resource for further exploration and development in mental health as-

sessment.

Four distinct unimodal datasets have been created for various research pur-

poses, where unimodal refers to data collected solely through eye tracking, specifi-

cally eye gaze data. The dataset naming convention follows a systematic structure,

starting with the data collection mode, followed by the stimulus used, and end-

ing with the targeted mental health parameter. The first dataset, ET MT CL, is

intended for investigating cognitive load based on eye tracking data and utilizes

mathematical questions as stimuli [49]. The second, ET TMT CL, is utilized for
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studying cognitive load but employs the TMT as the stimulus. The third dataset,

ET TMT CI, focuses on exploring cognitive impairment, utilizing the TMT as

the experimental stimulus [14], [15]. Lastly, the fourth dataset, ET Video ES,

has been curated for the examination of emotional states, utilizing videos as the

stimuli [36].

In addition to dataset creation, the thesis focuses on the extraction of novel

features, improving the dataset with distinctive markers for a comprehensive un-

derstanding of underlying patterns. These features are designed to detect mental

state parameters, cognitive load, cognitive disability, and emotion. Their unique-

ness and relevance make them powerful for enhancing the precision and efficacy

of mental health assessment, providing a deeper understanding of an individual’s

mental state. The thesis highlights the significance of incorporating high-level fea-

tures such as error rate, scanpath comparison score, total time, and inattentional

blindness for generating comprehensive cognitive impairment scores

In addition to the creation of the new dataset, the thesis focuses on the dis-

covery of new features, enhancement of the dataset with unique identifiers for

the essential pattern recognition. These features are aimed to identify parameters

of a subject’s mental state, his or her cognitive load, cognitive impairment, and

emotional state. Their uniqueness and relevance make them effective in advanc-

ing evaluation of mental disorders’ precision and effectiveness, as well as offering

deeper insight into the subject’s psychological state. The thesis highlights the

significance of high-level features including error rate, scanpath comparison score,

and inattentional blindness for deriving cognitive impairment scores [15].

Based on the second objective, the thesis has contributed to developing four

models for detecting mental state by monitoring cognitive load, cognitive impair-

ment, and emotional state of a person. The first two models, ECL-1 and ECL-2

(Eye-Tracking Cognitive Load), employ statistical analysis and machine learning

algorithms to discern a person’s mental state by focusing on cognitive load. It in-

corporates key features such as pupil diameter and blink frequency to understand

variations in cognitive load during mathematical assessments [49] and TMT tasks.

The third model, the ETMT (Eye tracking based Trail Making Test) model,

make use of a fuzzy inference system and adaptive neuro-fuzzy inference system,

plays a major role in the detection of mental states associated with cognitive im-

pairment by providing detailed scores in visual search speed and focused attention,

for understanding the exact cognitive deficits of a patient [15]. This application

introduces an eye tracking version of the TMT, enabling the observation of specific

features through the integration of fuzzy logic technologies [14]. The eye tracking

version of this test significantly contributes to the understanding of a person’s

cognitive states, offering a non-invasive tool for mental health monitoring. The
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ETMT model serves as a screening tool for cognitive impairments, allowing effi-

cient allocation of healthcare resources to individuals with severe ailments.

The fourth model, PredictEYE, employs an approach by utilizing a deep learn-

ing time-series univariate regression model based on Long Short-Term Memory

(LSTM) to predict future sequences of each feature, complemented by a machine

learning-based Random Forest algorithm for mental state prediction [38]. This

model predicts the mental state as calm or stressful based on a person’s emotional

state, introducing a personalized time series methodology that utilizes the benefit

of time series analysis. PredictEYE’s time series analysis plays a major role in

identifying patterns and changes in data over time, enhancing predictive analytics

and forecasting. By capturing the variations and interdependence in fluctuating

data, this customized time series technique improves mental health assessments

and monitoring.

Based on the third objective, a multimodal dataset labeled EmoRPhyE has

been developed in addition to the unimodal datasets. This dataset is designed

explicitly to research emotional states and incorporates pleasant and unpleasant

images as stimuli. The multimodal data collected, including ECG, GSR, PPG,

respiratory signal, and eye-tracking data, are utilized to assess emotional valence

and arousal through physiological and eye-tracking-based approaches.

The thesis advances the field by underscoring the importance of individually

analyzing cognitive load, cognitive impairment, and emotional state. While many

previous studies have not explored the assessment of these critical factors, the

developed models focus on monitoring mental states based on cognitive load, cog-

nitive impairment, and emotional state separately.

Together, these contributions have shaped mental health monitoring by en-

abling more accurate, non-invasive examinations of mental health, cognitive per-

formance, and emotional state. All the major contributions are summarized in

the Table 1.1.

Table 1.1: Major contributions

Dataset
Type of
dataset

Model Estimation Publication

ET MT CL Unimodal ECL-1 Cognitive Load [49]
ET TMT CL Unimodal ECL-2 Cognitive Load -
ET TMT CI Unimodal ETMT Cognitive Impairment [14,15]
ET Video ES Unimodal PredictEYE Emotional State [36,38]

EmoRPhyE Multimodal
Model to
detect
emotional state

Emotional State -

12



1.7 Thesis Organization

In Chapter 2, an extensive review of existing literature in the field of mental health

monitoring is provided, focusing on the analysis of physiological data and exploring

various computational techniques suitable for the proposed model. The chapter

discusses both unimodal and multimodal approaches employed in mental health

assessment, with a particular emphasis on understanding mental state parameters

such as cognitive load, impairment, and emotional state. Chapter 3 delves into

the creation of an eye gaze dataset, outlining protocols and rules for collecting

eye tracking data and emphasizing its necessity for understanding an individual’s

mental health. Various datasets generated for mental health assessment purposes

are elaborated upon. Chapter 4 concentrates on detecting cognitive load using

eye gaze measures, detailing the selection of cognitive load-inducing tasks as stim-

uli and observing changes in eye gaze parameters for precise detection. Chapter

5 expands on understanding cognitive state, exploring how specific physiologi-

cal data can provide insights into cognitive functioning. Chapter 6 introduces a

personalized unimodal time series approach for predicting emotional states, de-

tailing methodology, data processing techniques, and modeling approaches using

eye gaze time series data. In Chapter 7, a multimodal dataset is created, incorpo-

rating physiological measures alongside eye tracking data to understand emotional

states. The chapter focuses on assessing emotional valence and arousal through

various physiological measures and eye-tracking-based models. Lastly, Chapter

8 serves as the conclusion, summarizing key findings, contributions, and impli-

cations, discussing study limitations, and suggesting areas for future research in

mental health monitoring.
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Chapter 2

Related Works

2.1 Introduction

Mental health monitoring involves assessing cognitive and emotional function-

ing. Eye tracking is significant in this area, providing reliable information for re-

searchers, clinicians, and patients. Eye tracking technology is effective in capturing

eye movement impairments which is effective in detecting age-related conditions

and neurological disorders. This chapter explores eye tracking research in mental

health monitoring and the role of mental state parameters. This chapter explains

the role of eye tracking in mental health monitoring in section 2.2, traditional

methods for evaluating mental states in section 2.3, and AI-based approaches for

quantifying mental health indicators in section 2.4. Section 2.5 explains the role of

mental state parameters in monitoring mental health. Section 2.6 to 2.8 explains

each mental state parameter, cognitive load, cognitive impairment, and emotional

arousal. Section 2.9 explains the need for other physiological measures.

2.2 Role of Eye Tracking in Mental Health Mon-

itoring

Eye tracking technology is crucial for mental health monitoring, providing ac-

curate and quantitative data to researchers, physicians, and patients to better

understand and manage various illnesses [53]. The adaptability and effectiveness

of this technology make it ideal for aging and age-related neurological and mental

health disorders. It extends its capabilities in enabling early detection, providing

objective biomarkers, prognosis, and real-time monitoring while delving into the

intricate relationship between eye movements and cognitive function. The promise

of its integration into healthcare and telehealth systems holds the potential to en-

hance the quality of life for the elderly population and alleviate the burden of
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age-related conditions on healthcare systems.

Eye tracking technology has offered a versatile and non-invasive approach to

understand various neurological and psychological conditions [54]. Given its close

connection to the central nervous system, it emerged as a sensitive tool in detect-

ing disorders and diseases affecting critical regions such as the cerebral cortex,

brainstem, and cerebellum. In the quest to better understand compromised areas

of the brain, eye movement dysfunction, often detectable through eye tracking,

provides vital insights.

Notably, research endeavors have extensively explored the impact of mental

disorders on eye movements, resulting in a diverse spectrum of applications for

analyzing eye movements in patients. These applications encompass a wide range

of conditions, positioning eye tracking as a dependable marker for various brain-

related diseases, including dementia [54].

In different domains of mental health monitoring, eye tracking has demon-

strated its versatility and efficacy [55]. Detecting eye movement abnormalities

including smooth pursuit dysfunction and inhibitory saccade deficiencies can help

diagnose and assess Alzheimer’s disease severity [56,57]. In schizophrenia, smooth

pursuit deficiencies and higher saccade frequencies provide crucial insights into the

illness and its genetic markers. Eye tracking can detect multiple sclerosis early

by assessing saccade peak velocity changes between both eyes, providing reliable

disease progression monitoring. [57].

Eye tracking has become effective in monitoring mental health conditions and

neurological disorders. Its non-invasiveness, early detection, and continuous moni-

toring make it useful for studying, diagnosing, and managing many illnesses. This

technology contributes to advancing mental health research and developing more

effective monitoring and intervention strategies.

Eye tracking research was conducted in various disciplines, including psychol-

ogy, neuroscience, marketing, and education [49]. Researchers tried to understand

how eye movements are related to visual attention, behavior, and cognition [15]. It

has also been used to evaluate information-processing and decision-making skills

and measure emotional and cognitive responses. Eye tracking has also been used

to study cognitive development, plasticity, and visual processing.

Eye tracking is widely used in mental health research since it provides a window

into cognitive processes that may be difficult to assess with traditional methods

[15]. Eye tracking can determine emotional responses to stimuli, attentional focus,

and signs of cognitive decline. It is also used to evaluate the efficacy of mental

health treatments, such as psychotherapy and pharmacological interventions, and

to develop more targeted interventions [14].

Cognitive load, cognitive impairment, and emotional state are very key features
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to mental health metrics. The monitoring of such measures significantly aids in the

assessment of an individual’s mental well-being. The eye tracking data analysis

is the main aspect that the proposed model focuses on, as it gives a thorough

outlook on such key metrics. Eye tracking technology has become a sensitive yet

valid way to determine cognitive load, cognitive ability, and emotional state.

Cognitive load is a very important element in monitoring mental health. It

can be easily measured by analyzing information obtained from eye tracking data.

When experiencing high cognitive loads, eye movements include long fixation dura-

tion, increasing saccadic activity, and focusing on the relevant area for a task [43].

This becomes important in designing interfaces for users, educational systems,

and work environments to optimize cognitive performance in a way that elimi-

nates overload and maximizes productivity.

The changes in oculomotor movement patterns can assist in the early detec-

tion of cognitive impairment, particularly for conditions such as dementia and

Alzheimer’s disease. Inhibitory saccade dysfunctions and smooth pursuit impair-

ments are the early markers of such diseases [58]. Regular eye-tracking to monitor

disease progression and effectiveness of interventions will add up to deliver better

patient care [45, 46].

With eye tracking technology, even the emotional state of the respondent can

be analyzed. Gaze patterns during the reaction to emotionally provocative stim-

uli present important insights [59, 60]. People tend to focus their attention on

emotionally salient places while having an elevated emotional state [47]. This in-

formation may be used to evaluate the emotional impact of different stimuli and

material; it proves helpful for user experience design, marketing, and psychological

research.

Eye tracking technology, combined with advanced computational techniques,

can predict mental states by analyzing eye movement features related to cogni-

tive load and emotional state. This capability has applications in personalized

mental health interventions, human-computer interaction, and assistive technolo-

gies [38,49]. Eye tracking provides a non-invasive, objective, and real-time means

to assess cognitive load, impairment, and emotional state, offering significant in-

sights for improving mental health research, monitoring, and intervention strate-

gies. The following sections discuss the workings of an eye tracker, applications of

eye tracking technology, and different types of eye trackers [48, 61,62].

2.2.1 Working of an Eye Tracker

Eye tracking technology offers deep insights into how individuals control their

gaze and perceive the world. The pupil center corneal reflection method is effective
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Figure 2.1: Insights into eye tracking functionality

among the various available techniques [63,64]. The pupil center corneal reflection

method provides real-time accuracy and stability, addressing common issues of low

accuracy and restricted head movement in existing systems [65]. Enhancements

in the method, such as those focusing on multiple corneal reflections and the

use of visible light, further improve its accuracy and robustness [63, 64]. These

advancements make this method a promising approach for gaze tracking in various

applications.

An eye tracker is a comprehensive hardware device designed to capture and an-

alyze eye movements, determining a user’s precise gaze point. It includes cameras,

illuminators, and software that work together seamlessly [66]. Illuminators project

near-infrared light onto the eyes, while high-resolution cameras capture detailed

images of the eyes and reflected patterns. These images are then analyzed using

complex algorithms to identify the pupil’s boundaries and accurately determine

its center, essential for pinpointing the gaze location [67].

The eye tracker pinpoints the reflections of infrared illuminators on the corneal

surface, appearing as bright spots near the pupil’s center, as shown in Figure 2.1

. With this precise knowledge, the system uses geometric computations and ad-

vanced algorithms to determine the user’s gaze direction in real-time [55]. This

generates a continuous stream of gaze data for studying visual behaviors, cognitive

processes, and human-computer interaction. The Pupil Center Corneal Reflection

method involves illuminating the eye, capturing and analyzing images, and iden-

tifying the pupil center and corneal reflections. This technology is crucial for

cognitive research and user interface design.

2.2.2 Applications of Eye Tracking Technology

Eye tracking technology plays a crucial role across various fields, offering diverse

applications. Human-Computer Interaction (HCI) facilitates hands-free control

for individuals with physical disabilities [68]. Usability testing benefits from eye
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tracking in optimizing digital interfaces and enhancing user experience [69]. Mar-

ket research and advertising leverage eye tracking to analyze consumer behavior

and improve marketing strategies [70]. In medical and psychological research, eye

trackers aid in diagnosing conditions by studying eye movement patterns [38]. Ed-

ucational settings use eye tracking to understand reading and comprehension pat-

terns among students. The automotive industry employs eye tracking for driver

monitoring, enhancing road safety. Virtual and Augmented Reality (VR/AR)

applications integrate eye tracking for more immersive experiences [71]. In the

gaming industry, eye tracking enhances gameplay by responding to users’ gaze

and intentions [72]. Overall, the versatility of eye tracking technology makes it

invaluable in technology, healthcare, marketing, and research, providing insights

into human behavior and cognition.

2.2.3 Different Types of Eye Trackers

1. Remote Eye Trackers: Remote eye trackers, selected for their non-intrusive

design utilizing infrared light, monitor gaze without direct eye contact. This

ensures a natural user experience in mental state classification, enabling the

collection of genuine data on cognitive processes and emotional states with-

out interference [73].

2. Head-Mounted Eye Trackers: Head-mounted eye trackers can be worn

by users and it move with head motions, offering a first-person view of visual

attention. Particularly valuable in scenarios with dynamic head movements,

they provide a comprehensive perspective, contributing valuable data for

applications such as virtual reality. This technology enhances understanding

by capturing nuanced interactions in dynamic environments [74].

3. Wearable Eye Trackers: Portable eye trackers like glasses or wearable

offer adaptability for data collection in diverse environments. Since it is

able to capture real behaviours in daily life conditions, it is appropriate for

real-world studies, especially in mental state classification [75].

4. Mobile Eye Trackers:

Mobile eye trackers, intended for use in conditions of movement, can be

installed on a car or a bicycle. They are particularly useful in investigat-

ing visual attention in real-world scenarios and offer important information

about people’s behavior in their environment. Especially beneficial for the

mental state classification in the mobile environment, they provide a wide

view of behavior in different situations [76].
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Eye tracking is essential for classification of mental state parameters and offers

various solutions for specific tasks. In this thesis, remote eye trackers has been

used since it is non invasive in nature. Eye tracking systems that can be operated

remotely using infrared light allow for gaze observation without physical contact.

It is important to avoid interfering with the user’s action since subjects should

display real behaviors.

2.3 Traditional Methods for Evaluating Mental

States

Traditional mental state assessments include clinical interviews, psychometric

tests, and observations. Clinical interviews are direct or remote interactions

between mental health professionals and individuals to assess cognitive capac-

ity, emotional condition, and behavior. This method reveals a person’s mental

state [77].

Psychometric examinations, a well-established approach, utilize standardized

tests such as the Beck Depression Inventory and the Mini-Mental State Examina-

tion [35] to measure various elements of mental well-being. These exams provide

quantifiable data, which helps in the examination and comparison of individuals’

mental states, hence improving diagnostic abilities.

Observation, the third conventional method, records an individual’s behavior,

expressions, and social interactions. It gives behavior facts to help understand a

person’s psychological condition. It provides external validation of self-reported

data and mental health indicators.

These conventional methodologies allow mental health professionals to assess

and track many elements of a person’s mental health using personal views, mea-

surable data, and observational perspectives.

Relying completely on traditional methods may not provide a detailed under-

standing of all mental state parameters. The exploration integrates innovative

technologies, leveraging advanced algorithms to enhance the depth of insights.

These computational techniques aim to extract more refined inferences, surpass-

ing the limitations of conventional approaches.
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2.4 AI-Based Approaches for Quantifying Men-

tal Health Metrics

Eye-tracking technology provides a rich resource of data about human behavior

and mental states. This data includes eye movements, gaze points, fixations, and

saccades, collected when a person interacts with stimuli like pictures, videos, or

interfaces, resulting in large datasets.

Before implementing machine learning (ML) and deep learning (DL) tech-

niques, meaningful features must be derived from the raw eye-tracking data. These

features typically include fundamental eye movement parameters such as fixation

duration, saccade amplitude, and pupillary response, which help in understanding

the user’s visual behavior. All the extracted features may not be equally important

for characterizing the user’s mental state or behavior. Feature selection techniques

identify the relevant ones while reducing dimensionality and computational com-

plexity. Pre-processing includes steps for noise reduction, data cleaning, and nor-

malization to ensure quality and consistency. It may also involve co-registering

eye-tracking data with other relevant sources, like physiological sensors or self-

report measures of emotion.

ML and DL algorithms process the eye-tracking data. ML algorithms classify

or predict data points, such as gaze patterns corresponding to different emotional

or cognitive states. Unsupervised ML techniques, like clustering, group similar eye

movement patterns among respondents. Deep learning models, including recur-

rent neural networks (RNNs) and convolutional neural networks (CNNs), analyze

temporal sequences within eye-tracking data to track changes in mental states.

Trained models infer the user’s mental state based on eye movement patterns.

For example, increased stress or heightened attention can be detected based

on gaze behavior. These analyses yield mental health monitoring parameters like

stress levels, cognitive workload, and emotional engagement, providing insights

into the user’s psychological well-being. Intelligent systems can use these param-

eters for real-time feedback or interventions.

Combining eye-tracking technology with computational methods, mainly ML

and DL algorithms, leads to inferring patterns from eye movement data. These

patterns relate to human cognition, emotion, and mental health, resulting in intel-

ligent systems that support psychological well-being by monitoring and responding

to the user’s mental state. The next section covers statistical models, fuzzy mod-

els, ML, and DL models.
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2.4.1 Statistical Models

Correlation analyses, linear regression models, t-tests, and analysis of variance

(ANOVA) are commonly used statistical methods in mental health monitoring

research. Traditional statistical techniques imply linearity between variables and

may be biased by outliers and non-normal data. To address these issues, re-

searchers have introduced robust statistical methods like robust regression, trimmed

means, and bootstrapping [78]. These methods provide more precise and reliable

results, enhancing the validity and reliability of the analyses. Multiple regression

and correlation analysis effectively help researchers analyze complex relationships

among multiple variables [79]. Neural networks and decision trees, among machine

learning models, better handle non-linear relationships and outliers.

Time series data analysis methods also incorporate statistical methodologies.

Time series models can be linear or nonlinear; classic linear types include auto-

regressive (AR), moving average (MA), auto-regressive moving average (ARMA),

and auto-regressive integrated moving average (ARIMA) [80]. Autocorrelation

function (ACF) and partial autocorrelation function (PACF) analysis help iden-

tify appropriate models for time series data by showing how data sequences are

related. Non-linear models like autoregressive conditional heteroskedasticity, gen-

eralized ARCH, exponential GARCH, threshold autoregressive, and nonlinear au-

toregressive are also available for better analysis and prediction.

2.4.2 Fuzzy Models

Fuzzy models are crucial for assessing mental states, including cognitive load, im-

pairment, and emotional state, by addressing complexities in understanding and

monitoring these states. They handle ambiguity and uncertainty by using lin-

guistic terms and allowing gradual transitions between states, providing realistic

and nuanced assessments. These models can account for various factors affecting

mental states, enhancing accuracy. They also accommodate individual differences

in responses to cognitive tasks and emotional stimuli, adjusting membership func-

tions based on personal experiences and preferences.

The adaptability of fuzzy systems allows them to respond dynamically to

changes in mental states, making them suitable for real-time monitoring and inter-

ventions. Their transparency and interpretability are vital in clinical and human-

computer interaction contexts, aiding in trust-building and effective interventions.

Fuzzy models are effective in healthcare, driver monitoring, education, and human-

computer interaction, offering insights for improving safety, well-being, and per-

formance. They can be integrated with machine learning or neural networks to

enhance predictive accuracy and robustness, combining fuzzy logic’s interpretive

21



strengths with machine learning’s pattern recognition abilities.

In CAD interfaces, fuzzy logic models map psychophysiological signals to key

emotions, improving user interfaces and engineering decision-making [81]. This

non-invasive approach provides valuable insights into CAD tasks’ affective and

cognitive dimensions, leading to more intuitive design processes. A driver fa-

tigue detection system uses non-intrusive video analysis [82], evaluating alertness

through visual cues like eye closure duration and yawning. This system employs

a Fuzzy Expert System (FES) for real-time driver state classification, optimiz-

ing feature extraction and response time. The study also developed spatial fuzzy

c-means for mouth detection, enhancing system robustness, contributing to ad-

vanced driver vigilance and fatigue monitoring.

Fuzzy models effectively monitor mental states due to their ability to address

the complexities, uncertainties, and subjectivity inherent in human cognition and

emotion. Their adaptability, interpretability, and established applicability make

them invaluable in various domains where understanding and responding to human

mental states is crucial.

2.4.3 Machine Learning and Deep Learning Models

Artificial Intelligence(AI) based techniques and statistical analysis applied to the

physiological data make better predictions and make an efficient health monitoring

system [83]. The enormous data from the physiological sensors can be labeled and

used for training. The machine learning or deep learning model trained using phys-

iological data can detect the mental state of unseen observations. Classification

methods such as decision trees, Naive Bayes, etc., can find patterns automatically

and are widely used to detect mental conditions [84].

Machine learning and deep learning techniques applied to physiological data

have shown potential in monitoring mental health and assessing human mental

states [83]. Machine learning models can be trained on labeled eye-tracking data

to classify the user’s mental state [85,86]. However, more investigation is required

to develop the ideal eye-tracking paradigms and machine-learning algorithms for

correctly diagnosing people with Autism Spectrum Disorder (ASD) and other

neurological and neuropsychiatric illnesses.

Machine learning based on eye-tracking data could classify individuals with

ASD and typically developing (TD) individuals with an 81% pooled accuracy [87].

A study on young children indicated that with an accuracy of 85.1 %, fixation times

at the lips and body could significantly distinguish ASD from TD [88]. Video-based

eye-tracking method for measuring brain function using readily available webcams

has the potential for early detection, diagnosis, and remote/serial monitoring of
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neurological and neuropsychiatric disorders [89].

Machine learning models, including Decision Trees, Naive Bayes, Support Vec-

tor Machines, and Random Forests, can analyze vast amounts of data and detect

patterns [84] that may not be visible to human observers, providing an efficient

health monitoring system. The studies showed that machine learning algorithms

could analyze the data from these sources to accurately classify and predict psycho-

logical conditions, with classification accuracy ranging from 66% to 90% depending

on the dataset and features used.

Recent technological advancements have enabled deep learning algorithms to

automatically detect mental states, using various physiological signals such as

visual metrics, EEG, and eye-tracking [19, 83]. One study used CNN-LSTM al-

gorithms to analyze visual metrics time-series data and accurately classified indi-

viduals’ mental health metrics levels with high accuracy, highlighting the poten-

tial benefits of home-based mental health monitoring for patients after oncologic

surgery [19]. The other study proposed the EYE-CNN-DLSTM algorithm for

psychological testing based on eye movement tracking data, which uses a fusion

strategy combining CNN and DLSTM to evaluate patients with mental disor-

ders [90].

A recent method combines EEG and eye-tracking signals in deep learning to

boost emotion recognition accuracy [91]. This study highlighted the advantages

of using physiological signals and the crucial role of eye-tracking in improving

emotion recognition. The method employs a fusion model with a Gaussian mixed

model, signal filters, feature extraction techniques, and normalization methods for

precise emotion classification.

Algorithms like LSTM can be optimized through hyperparameter tuning to

better predict trends and fluctuations [92]. Deep learning models also support

multivariate forecasting by mapping inputs and outputs of linear and nonlinear

models [93]. However, these models often lack personalization, meaning they are

trained on general populations and may not account for individual differences in

behavior, preferences, and emotional responses.

Personalized time series models can address this by incorporating individual-

level data, tailoring the model to each person’s unique characteristics, and improv-

ing mental health monitoring accuracy and effectiveness, especially for psychiatric

disorders. Additionally, deep learning models require large datasets, which can be

challenging in mental health monitoring due to limited data collection. Person-

alized models can work with smaller datasets by incorporating prior knowledge

and individual characteristics, leading to more efficient and cost-effective mental

health monitoring [94].

Time series is a machine learning technique that predicts target values only
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based on a known history of target values. It is a type of regression known as

auto-regressive modeling in the literature. The main goal of time series model-

ing is to meticulously gather and analyze past information from the time series

in order to develop a model that accurately captures the series’ structure. It

forecast future values by understanding the past. There are linear and nonlinear

traditional models for time series data analysis. Two widely used linear models

are Auto-regressive (AR) and Moving Average(MA). Auto-regressive Moving Av-

erage(ARMA) and Auto-regressive Integrated Moving Average(ARIMA) models

combine AR and MA models. Autocorrelation function(ACF) and partial auto-

correlation function(PACF) analysis can determine a proper model for the time

series data. The ACF and PACF plots help forecast the time series data. These

statistical measures show how the data sequence in the time series is related.

Furthermore, nonlinear time series models are used for better analysis and predic-

tion. Some of the non-linear models are Autoregressive Conditional Heteroskedas-

ticity(ARCH), Generalized ARCH(GARCH), Exponential GARCH(EGARCH),

Threshold Autoregressive model(TAR), Non-linear Autoregressive model(NAR).

The prediction of the impact of COVID-19 using stacked LSTM, Bi-directional

LSTM, and convolution LSTM was proposed in [95]. Deep learning models can

understand trends, seasons, and fluctuations. LSTM is one of the most widely used

deep learning algorithms, which makes better predictions by hyperparameter tun-

ing [92]. In addition, deep learning models can be trained to learn and understand

the mapping between inputs and outputs of linear and nonlinear models. While

most traditional methods are linear, deep learning models can promptly learn the

linear and nonlinear relationships and support multivariate forecasting [93].

Time series analysis helps us comprehend the root causes of trends or systemic

patterns over time. When data is examined at regular intervals, time series fore-

casting calculates the likelihood of future events. Time series data can be subjected

to predictive analytics to identify anticipated data changes, such as seasonality or

cyclical behavior, which helps to forecast and provides a deeper knowledge of data

elements. According to the research on related works, the time series model will

be a more effective method for a customized model that can track a person contin-

uously. Considering the proposed personalized model, the time series model helps

to understand the changes in a person’s mental state based on the observed trend

of the eye tracking measures and helps forecast future events.
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2.5 Role of Mental State Parameters in Moni-

toring Mental Health

In mental health monitoring, multiple indicators provide an in-depth understand-

ing of an individual’s mental health. These dimensions, ranging from attention

and engagement to fatigue, stress, cognitive processes, social interaction, behavior,

anticipation, and performance, collectively contribute to the complex tapestry of

mental states. Each parameter plays a significant role in unraveling the intricacies

of an individual’s cognitive and emotional functioning.

However, cognitive load, cognitive impairment, and emotional state have spe-

cific importance among these parameters. Cognitive load reflects the mental ef-

fort expended in processing information [40], while cognitive impairment signifies

deficits in cognitive functions. Emotional state encapsulates the broader spectrum

of an individual’s overall emotional well-being. Understanding these parameters

is pivotal in comprehensively assessing mental health, guiding interventions, and

identifying potential challenges. The following section explains the mental state

parameters, cognitive load, cognitive impairment, and emotional arousal. The

conventional methods, eye tracking techniques, and computational techniques for

detecting each mental state parameter and the associated disease are also ex-

plained in each of the following sections.

2.6 Cognitive Load

Cognitive load, defined as the cumulative mental effort held within a person’s

working memory at any given moment, is a crucial factor that impacts task per-

formance [41]. It is noteworthy, however, that cognitive load is not a uniform

experience; it varies among individuals based on age and gender. Our working

memory has a finite capacity, and it becomes overloaded when handling complex

information, often resulting in problematic or confusing learning experiences [44].

High cognitive load significantly contributes to reduced performance, increased

stress, and errors, particularly in industrial settings where individuals work con-

tinuously for extended periods [42]. This elevated mental workload can lead to

mental fatigue and stress, which, in turn, can adversely affect mental health and

overall performance [96]. Timely identification of cognitive load levels can help

individuals manage and mitigate mental fatigue without compromising their well-

being.
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2.6.1 Conventional Methods for the Detection of Cogni-

tive Load

Various standard questionnaires, such as the NASA Task Load Index (NASA-

TLX) [97] and Subjective Workload Assessment Technique (SWAT) [98], are com-

monly employed to subjectively assess cognitive load. These tools capture indi-

viduals’ perceptions of mental and physical demand, effort, and workload-related

dimensions. Researchers and practitioners choose specific questionnaires based on

contextual demands, gaining valuable insights into subjective experiences. In sub-

jective measurement, users rate their mental effort using tools like the NASA-TLX

questionnaire [97]. These subjective assessments and objective measurements offer

a comprehensive understanding of cognitive experiences and workload demands in

diverse settings, informing strategies for optimizing task performance and men-

tal well-being. Performance-based approaches involve monitoring users’ achieve-

ments, such as task completion times and accuracy rates. Although both methods

are convenient, they are unsuitable for real-time cognitive load assessment, as

evaluation can only occur after task completion.

2.6.2 Eye Tracking Techniques for the Detection of Cog-

nitive Load

Eye tracking techniques have proven valuable in assessing cognitive load. A model

was presented describing the relationship between eye movements and cognitive

load [43]. This model highlights correlations between major eye movements and

cognitive load, making eye tracking an effective means of measurement. Longer fix-

ation duration and reduced fixation rate indicate increased task complexity, while

higher saccade velocity and longer saccades suggest greater cognitive load. Pupil

dilation and blink rate reduction during cognitive load increase further indicate

this relationship.

Increased cognitive activity can lead to mental fatigue, affecting behavioral

performance. A novel method was introduced for detecting mental fatigue based

on cognitive load increase [99].The study found that engaging in cognitive tasks can

induce mental fatigue by examining features like saccade amplitude, duration, rate,

inter-saccade interval, mean saccadic velocity, fixation duration, blink duration,

blink rate, inter-blink interval, pupil diameter, constriction velocity, and amplitude

of each eye before and after the tasks. Eye-tracking technology, due to its non-

intrusive nature, is pivotal in monitoring mental health. Pupillary responses and

other eye measures reliably indicate cognitive load, allowing parameter tracking

without additional devices.
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Eye-tracking for cognitive load detection involves diverse stimuli: military avi-

ation simulators [40], gaming activities [96], arithmetic problem-solving [96], cod-

ing tasks on whiteboards and paper [42], and varying levels of mental calcula-

tions [41]. These stimuli provide comprehensive scenarios to assess cognitive load

through eye-tracking measurements, offering insights into the cognitive demands

of individuals across different tasks and settings.

2.6.3 Computational Techniques for the Detection of Cog-

nitive Load

Computational techniques and machine learning methods enable the extraction

of meaningful patterns from behavioral and physiological data [100]. Various

studies employ statistical and machine learning techniques, including one-way

ANOVA [40, 96], t-test [40], ANCOVA [41], and machine learning models like

Naive Bayes, Random Forest, Multi-Layer Perceptron, Support Vector Machine

(SVM), K-Nearest Neighbour (KNN), Logistic Regression (LR), and Decision Tree

(DT) [42]. Researchers used a vision-based approach to extract parameters from a

driver’s eye movements, combining manual feature extraction with deep learning

for cognitive load detection. Results showed high classification accuracies, with

SVM at 92% and CNN at 91%. This non-contact technology promises advanced

driver-assistive systems, effectively detecting and classifying a driver’s cognitive

load [101].

2.6.4 Cognitive Load and the Associated Diseases

Cognitive load is intricately linked with various conditions, and eye tracking is

crucial for its detection. For instance, Attention Deficit Hyperactivity Disorder

(ADHD) involves challenges in sustaining attention and managing cognitive load.

Eye tracking studies reveal distinct gaze patterns and attentional focus, offering

an objective method to assess cognitive load [102].

Autism Spectrum Disorder (ASD) presents unique cognitive load challenges,

especially in social settings. Eye tracking studies of gaze patterns help deepen

our understanding of cognitive processing and cognitive load in individuals with

ASD [88].

Stroke and Traumatic Brain Injury (TBI) recovery involves eye tracking mea-

sures, including gaze patterns and visual scanning, facilitating cognitive load as-

sessments and enhancing the understanding of post-injury cognitive changes [103].

Schizophrenia disrupts cognitive load dynamics, impacting various cognitive

functions. Eye tracking studies uncover alterations in gaze behavior and visual
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processing, offering valuable insights into cognitive load during tasks [104].

As individuals age, cognitive load management becomes intricate. Eye tracking

becomes a valuable tool to study age-related changes in visual attention, working

memory, and cognitive load, enriching our comprehension of cognitive decline

in the elderly. Eye tracking is an indispensable instrument for detecting and

understanding cognitive load in various conditions.

2.7 Cognitive Impairment

Cognitive impairment, marked by challenges in memory, comprehension, atten-

tion, and judgment, significantly affects daily life [14]. While costly and incur-

able, timely diagnosis and care can slow its progression [105, 106]. The growing

prevalence, especially among the aging population, raises significant public health

concerns [107]. Risk factors include family history, injuries, substance exposure,

and education level [108]. Conditions like mild cognitive impairment (MCI) result

from various factors and range from subtle abnormalities to severe deficits, im-

pacting mental functions and independence. Early detection is crucial for optimal

outcomes.

2.7.1 Conventional Methods for the Detection of Cogni-

tive Impairment

Various approaches are employed to assess cognitive impairment, often involving

neuropsychological tests administered by trained healthcare professionals. Widely

used tests such as the Mini-Mental State Examination (MMSE) [35], the TMT

[109], Alzheimer’s Disease Assessment Scale-cognitive subscale (ADAS-Cog), and

the Frontal Assessment Battery (FAB) [106] are recognized for their validity but

may not be brief enough for routine dementia screening. Self-reporting ques-

tionnaires, while well-validated, can be susceptible to biases. These traditional

assessments, though accurate, have drawbacks. Older patients may require more

time, and the evaluator’s proficiency can impact outcomes, necessitating admin-

istration by professional neuropsychologists. Some tests involving writing and

drawing tasks may pose challenges for those with motor dysfunction, affecting

results [110,111].

The TMT is a widely-used neuropsychological tool assessing visual attention

and task-switching capabilities, offering insights into executive functioning, pro-

cessing speed, focused attention, and mental flexibility [112, 113]. Particularly

effective in detecting brain dysfunction, especially frontal lobe impairments, the

TMT was historically employed to evaluate soldiers’ brain damage during World
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War II. Administered conventionally with paper and pencil, the test considers error

rates and completion time, but limitations include a lack of detailed analysis [114].

The TMT aims for prompt and precise examinations to identify potential cogni-

tive impairment indicators, necessitating psychologist assistance. Motor-impaired

individuals may face challenges and prolonged completion times. Ongoing studies

explore various TMT variants to overcome conventional method limitations [115].

The digital TMT (dTMT) precisely monitors a variety of distinct elements

along with the overall completion time and the number of errors, such as the

number of viewing pauses, the duration of each pause, lifts, lift duration, duration

within the circle, and the amount of time across the circles [115].

The benefits of combining infrared eye tracking with the TMT task is another

significant factor [116]. Research on infrared eye tracking is becoming well-known

for its ability to diagnose cognitive impairment. Using eye tracking in conjunction

with the TMT task was relatively unexplored. This gap in exploration presents an

opportunity for further investigation into the potential benefits of employing eye

tracking technology to enhance the TMT task as a tool for cognitive assessment.

2.7.2 Eye Tracking Techniques for the Detection of Cog-

nitive Impairment

Eye tracking data is crucial for capturing involuntary physiological responses and

revealing insights into cognitive inhibitions [49]. In contrast to clinical assessments,

eye tracking measures prove effective in identifying early-stage cognitive inhibitions

[45, 46]. These measures can distinguish subtypes of mild cognitive impairment,

particularly through error rates in the antisaccade task [46]. Studies involving

participants aged 55 to 90 showed significant differences in error rates among

various mild cognitive impairment types, determined through Analysis of Variance

(ANOVA) tests.

Eye tracking scores correlate with the Mini-Mental State Examination (MMSE)

score, effectively differentiating control groups from those with Alzheimer’s disease

(AD) or Mild Cognitive Impairment (MCI) in memory tasks [35]. Gaze tracking

has gained widespread acceptance for monitoring cognitive functions and neuro-

logical disorders [117].

Eye tracking technology is beneficial for assessing conditions like amyotrophic

lateral sclerosis (ALS), Alzheimer’s disease (AD), Parkinson’s disease (PD), mul-

tiple sclerosis (MS), and epilepsy [56, 57]. Tasks such as the antisaccade, smooth

pursuit, and visual scanning tasks, observed through eye tracking, can detect early

cognitive impairments. Difficulties or errors in these tasks provide insights into

changes in inhibitory control, motor control, attention, and scanning abilities,
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enabling early detection of cognitive decline before conventional evaluations [46].

Combining infrared eye tracking with the TMT task proves significant [116].

Infrared eye tracking, known for diagnosing cognitive impairment, gathers objec-

tive, quantitative data on visual, attentional, and memory functions in ongoing

studies [118]. Alongside basic completion-time metrics, eye tracking offers insight-

ful and sensitive measurements.

In the detection of cognitive impairment using eye tracking, various tasks are

employed to assess cognitive functions. These tasks include memory tests [106],

attention assessments [106], calculation tasks, and the Trail Making Test (TMT)

[115]. Memory tasks involve presenting words or images and tracking eye move-

ments to analyze memory-related processes [119]. Attention tasks measure gaze

patterns to evaluate focus and attention. Calculation tasks assess numerical pro-

cessing, with eye tracking providing insights into visual attention allocation. The

Word Memory Test assesses recall or recognition through eye movements. The

TMT helps evaluate cognitive flexibility and executive function. Together, these

tasks measure different aspects of cognitive performance. Integrated with eye

tracking, they offer comprehensive insights into visual attention and processing,

contributing to a detailed understanding of cognitive impairment.

2.7.3 Computational Techniques for the Detection of Cog-

nitive Impairment

Statistical analyses, including ANOVA and Chi-square tests, were conducted to

assess the correlation between eye tracking-based cognitive scores and those de-

rived from neuropsychological tests [106]. The results showed a strong correlation,

validating the effectiveness of eye tracking in measuring cognitive performance.

Additionally, logistic regression was used to classify participants into groups with

and without cognitive impairment based on correlations between paper and digital

variants of the TMT [115,119]. Machine learning algorithms, such as Naive Bayes,

SVM, and logistic regression, were also used to successfully distinguish between

participants with and without cognitive impairment [120]. These findings high-

light the utility of eye tracking and advanced statistical methods in accurately

assessing cognitive function and detecting cognitive impairment.

2.7.4 Cognitive Impairment and the Associated Diseases

Amyotrophic lateral sclerosis (ALS) patients, facing both motor and cognitive

deficits, exhibit higher error rates and longer saccadic latency. Traditional paper-

pencil assessments become unsuitable as the disease progresses [57]. The Edin-
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burgh Cognitive and Behavioral ALS Screen (ECAS) offers a standardized as-

sessment, but it lacks sensitivity to early-stage cognitive changes [121, 122]. An

eye tracking version of the ECAS test could streamline evaluations for ALS pa-

tients [123,124].

In Alzheimer’s disease (AD), eye tracking provides insights into progressive

memory loss. AD patients display slower fixation, reduced fixation spans, and

less precise saccadic movements [57]. Gradual declines in attention and visual

attention impact performance in memory tasks, deductive reasoning, and working

memory assessments [35, 106,125,126].

Parkinson’s disease (PD) is marked by cognitive decline and ocular abnor-

malities. PD patients show prolonged response times during saccadic tasks and

impaired focused attention [57,127]. Standard assessments may lack sensitivity in

early PD stages, while eye tracking measures correlate with disease severity [128].

Table 2.1: Cognitive impairments and associated factors analysis.

Paper Disease
Cognitive
impairments

Stimulus

Standard
cognitive
assessment
tools

Shortcomings of
standard
assessment tools

Eye tracking
measures

Observations

[57] ALS Motor impairment
Visual paired
comparison task

ECAS
Cannot handle lower
motor neuron atropy

Anti-saccade
error rate,
saccadic latency

Higher anti-saccade,
error rate,
saccadic latency

[57]
[125]
[126]
[106]
[35]
[58]

AD
Memory impairment
impaired visual attention,
Attentional disengagement

Working memory tasks,
deductive reasoning,
memory recall task,
visual memory task

ADAS-Cog,
MMSE,
MOCA

Longer time duration,
not simple,
subjects may feel
highly stressed

Saccade,
fixation,
smooth pursuit

Longer time to
fixate the target,
shorter fixation
duration,
imprecise saccadic
movements

[57]
[129]

PD

Focused attention
impairment,
movement impairment
memory impairment

Saccadic task, TMT
SCOPA-COG
PD-CRS,
MOCA

Low sensitivity
to recognize cognitive
deficits in the early
stages of PD

Pupil diameter
Ocular abnormalities,
longer response time

[130]
[131]
[132]

MCI Memory impairment

Visual paired
comparison task,
Animal Fluency,
WLM,
Constructional Praxis,
TMT,
Digit Span subtest,
Clock Drawing Test

MMSE,
MOCA

Expensive, invasive,
can’t detect early
stages of the disease

Fixation, saccade,
re-fixation,
pupil diameter,
Total looking time,
fixation count,
percentage looking
time on novel image

Percentage time
in viewing
the novel pictures
could differentiate
control group
from MCI group.

[57] MS

Impairment of attention,
executive function
impairment,
memory impairment

Saccadic task,
ocular working
memory task

MRI
MACFIMS

A trained evaluator
needs at least 90 min
for a full evaluation

Fixation,
saccade latency

Fixation instability,
higher saccade
error rates,
impaired pursuit.

[57] Epilepsy
Neuropsychological
impairment

Vision-guided saccade,
antisaccade response
inhibition,
prosaccade,
antisaccade tasks

ET
PNS

Limited sensitivity,
unsuitability for
repeated assessment,
sole focus on one aspect
of cognition

Saccade, fixation
Increased error rate,
longer reflexive time
at the initial of saccade

MACFIMS−Minimal Assessment of Cognitive Function in Multiple Sclerosis, MoCA−Montreal Cognitive Assessment, ET− Epitrack,
PNS − Portland Neurotoxicity Scale, WLM − Word List Memory

Cognitive impairment in older individuals involves disengagement of visual

attention, particularly during saccadic tasks [58]. Visual paired comparison tasks

utilizing eye movement analysis effectively distinguish normal controls from Mild

Cognitive Impairment (MCI) individuals [130,131].

Eye tracking measures show promise in the early diagnosis of cognitive im-

pairments, including Mild Cognitive Impairment (MCI), during working memory

tasks [133]. In diseases such as multiple sclerosis (MS), stroke, and Huntington’s

disease (HD), eye tracking proves valuable for detecting abnormalities and serves

as a diagnostic tool [57, 134, 135]. Table 2.1 provides a comprehensive overview
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of various diseases linked to cognitive impairments, the standard assessment tools

used, their limitations, and the effectiveness of eye tracking measures in overcom-

ing these challenges.

For screening mild cognitive impairment, eye tracking measures offer a sen-

sitive, non-invasive, and cost-effective approach, especially when traditional as-

sessments fall short [106,109,119,136–138]. This underscores the potential of eye

tracking not only as a diagnostic tool but also as a valuable alternative in cases

where conventional methods prove inadequate.

Studies on the related works could reveal a variety of cognitive deficits, includ-

ing memory loss, lower visual interest, atypical visuospatial behavior, attentional

disengagement, motor impairment, and impaired mobility that are associated with

diseases like AD, PD, MCI, MS, ALS, HD, stroke and Epilepsy. The eye tracking

features like inattentional blindness, error rate, total completion time, scanpath

comparison score, fixation duration, saccadic latency, and smooth pursuit could

bring the inferences to understand those impairments as shown in Table 2.2. The

eye tracking version of the TMT provides those eye tracking features and can bring

out the inferences on detecting cognitive impairments.

Table 2.2: Eye tracking features for the detection of cognitive impairment.

Feature Impairments Disease
Inattentional blindness Memory PD, AD, MCI
Error rate Memory, imprecise saccadic movement AD, ALS, MCI, MS
Total completion time Memory AD, PD, MCI

Scanpath comparison score
Visual attention, diminished visual curiosity,
abnormal visuo-spatial behavior

AD

Less Fixation duration Attentional disengagement AD, MS
Higher Saccadic latency Motor impairment ALS
Fixation instability Impaired mobility and cognition MS
Impaired pursuit Impaired mobility and cognition MS
PD − Parkinson’s Disease, AD − Alzheimer’s Disease, MCI − mild cognitive impairment,
ALS − amyotrophic lateral sclerosis, MS − multiple sclerosis

2.8 Emotional State

Understanding and detecting emotional states is crucial for effective mental health

monitoring, providing valuable insights into an individual’s psychological well-

being. Emotional variations, such as depression, anxiety, and stress, are key in-

dicators of underlying mental health issues [49]. Recognizing and assessing these

changes is fundamental for providing timely support and intervention [139]. Accu-

rate detection of emotional states allows healthcare professionals to tailor interven-

tions and therapies to individual needs, improving overall mental well-being [47].

A comprehensive approach that considers various aspects of emotional expression
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and experience enhances the precision and reliability of emotional state assess-

ments, leading to more effective mental health support [60].

2.8.1 Conventional Methods for the Detection of Emo-

tional State

Conventional methods for detecting emotional states often rely on self-report mea-

sures, behavioral observations, and physiological indicators. Self-report measures

involve individuals verbally expressing their emotions through questionnaires or

interviews [140]. Behavioral observations assess visible behaviors associated with

emotions, such as facial expressions, body language, and vocal cues [141]. Phys-

iological indicators monitor changes linked to emotions, such as heart rate, skin

conductance, and hormonal levels [142].

Integrating eye tracking technology with these conventional methods provides

a more comprehensive and objective understanding of emotional responses by

capturing subtle, non-verbal cues related to gaze patterns, pupil dilation, and

other eye-related parameters.

2.8.2 Eye Tracking Techniques for the Detection of Emo-

tional State

Understanding and monitoring emotional states are crucial for mental health as-

sessment, providing insights into individuals’ psychological well-being amid factors

like depression and stress. Eye tracking technology serves as a pivotal tool, offer-

ing objective data on emotional responses through the analysis of blink frequency,

gaze patterns, and pupil diameter variations. Pupillary changes in response to

emotionally arousing stimuli signify the activation of the sympathetic nervous

system, providing valuable glimpses into emotional states [59,60].

Studies investigating the impact of emotional stimuli on eye behavior reveal

distinct patterns. Negative images prompt extensive and faster saccades, indi-

cating agitation, discomfort, and avoidance behavior [47]. In contrast, positive

images lead to a strong center bias in latitude. Various eye tracking measures,

including pupil diameter, blink frequency, saccadic angle, gaze patterns, and fix-

ation duration, directly correlate with emotional reactions, offering insights into

emotional states.

The role of eye tracking in emotional state detection is exemplified in re-

search utilizing dynamic cinematic content to evoke emotional reactions. Uti-

lizing eye-tracking variables related to fixations, saccades, and pupil diameter, a

study achieved an 80% accuracy in emotion classification with a support vector
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machine (SVM) classifier. Another study involving emotional movie snippets and

automatic categorization based on eye activity achieved a 66% accuracy rate, high-

lighting statistically significant changes in ocular activity patterns for positive and

negative emotions [48,61,62].

Various stimuli have been employed in studies investigating emotional states

using eye tracking to elicit specific emotional responses. These stimuli encompass

medical and non-medical scenarios, including images with negative and neutral

content and positive, neutral, and unpleasant images [47]. Additionally, partici-

pants are exposed to emotionally charged text comprising negative, positive, and

neutral content for reading [143]. These diverse stimuli aim to evoke genuine

emotional reactions, and eye tracking measures, such as gaze patterns and pupil

dilation, are analyzed to gain objective insights into participants’ emotional states

during the observation of different visual and textual materials.

2.8.3 Computational Techniques for the Detection of Emo-

tional State

A novel method for assessing visual information utility in emotion recognition

is introduced, employing Gaussian fixation distribution and machine learning. In

participants with autism, distinctive fixation patterns, especially in emotion recog-

nition tasks, suggest differences in early face processing stages and a potential

association with emotion recognition deficits in autism [144].

In a study on emotion recognition utilizing eye-tracking technology, dynamic

movie stimuli were presented to evoke emotions in 30 participants. Eye-tracking

signals were recorded and analyzed for 18 features related to eye movements and

pupil diameter. The study achieved a notable 80% classification accuracy using a

support vector machine (SVM) classifier with leave-one-subject-out validation [61].

The study on emotion recognition through eye tracking employed a comprehen-

sive analysis utilizing machine learning, deep learning, and statistical techniques.

Various eye tracking features, including fixations, saccades, and pupil diameter,

were subjected to analysis. The combination of these analytical approaches con-

tributed to a robust understanding of the relationship between eye movements

and emotional responses.

2.8.4 Emotional State and the Associated Diseases

Emotional states significantly influence various diseases and health conditions.

The intricate connection between mental and physical well-being is well-established,

with emotions impacting both susceptibility to and progression of diseases. Con-
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ditions such as cardiovascular diseases, immune system disorders, and chronic

inflammatory conditions can be influenced by chronic stress and negative emo-

tional states [145]. Mental health disorders, including depression and anxiety, are

recognized contributors to a range of physical ailments. Additionally, unhealthy

emotional states may exacerbate existing health conditions and hinder the re-

covery process. Understanding and addressing the interplay between emotional

states and diseases are crucial for comprehensive healthcare and effective disease

management.

2.9 Need of Other Physiological Measures

Mental health assessment is intricate, involving a blend of physiological and psy-

chological measures. While eye tracking offers valuable insights, its comprehensive

understanding is augmented by other physiological measures. Mental health, with

its diverse conditions, requires a multifaceted approach. Physiological measures,

such as neuroimaging and genetic markers, provide an objective dimension to

subjective experiences. Though various measures contribute, eye tracking stands

out for its unique benefits, offering efficient insights into emotional and cognitive

states.

Continuous monitoring of human behaviors and physiological responses, utiliz-

ing non-intrusive or intrusive sensing techniques, provides real-time insights into

cognitive states. Signals related to heart rate, eye movements, brain activity,

muscle activity, skin conductance, and speech signals contribute to this under-

standing [44,146–150].

Research efforts have successfully utilized a combination of EEG and ECG-

based metrics to detect changes in cognitive states, establishing a strong cor-

relation with cognitive conditions [148]. Techniques incorporating speech and

handwriting analysis have been proposed for detecting cognitive load, revealing

linguistic, grammatical, and handwriting features that offer insights into cognitive

processes [150].

In mental health assessment, physiological measures provide additional in-

sights, addressing potential under reporting or self-awareness limitations. While

eye tracking measures are valuable, a multifaceted approach encompassing various

measures is often useful for a thorough understanding, diagnosis, and treatment of

mental health conditions. This inclusive approach allows for a more detailed and

individualized assessment and treatment plan, with other physiological measures

complementing these tools for a comprehensive understanding of mental health.

Data can be categorized as either subjective or objective. Subjective data

relies on personal experiences and perceptions, typically gathered through ques-
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tionnaires, interviews, and checklists. These assessments have limitations, such

as the inability to collect real-time data and the influence of psychological biases.

Examples of standardized questionnaires used for subjective assessment include

the NASA Task Load Index (TLX) [16], Trier Social Stress Test [17], State-Trait

Anxiety Inventory (STAI) [18], Karolinska Sleepiness Scale (KSS) [18], Shortened

State Stress Questionnaire (SSSQ) [18], and Warwick-Edinburgh Mental Wellbe-

ing Scale (WEMWBS) [19]. Objective data, based on observable and measurable

factors, is less susceptible to biases. This type of data can be divided into two

categories: behavioral and physiological.

Behavioral data includes information such as facial expressions [21], audio sig-

nals [22], gestures [23], head movements [24], hand movements [151], leg move-

ments [25], eye movements [26], and eye contacts [152, 153]. These data can be

collected through audio-video recordings or using wearable devices. While be-

havioral data can be collected in real time, they may be influenced by voluntary

control and cultural differences, potentially leading to inaccuracies.

2.9.1 Physiological Data

It provides continuous and consistent monitoring and is less affected by cultural or

linguistic variations. This category includes signals such as eye tracking [14,20,36],

accelerometers, gyroscopes, pupil corneal reflection, EEG [16, 27], ECG, photo-

plethysmogram, GSR, pressure-sensitive touch screen [29], heart rate, sound, tem-

perature, oxygen saturation, and salivary cortisol levels [30]. These physiological

signals are collected using various sensing technologies and offer valuable insights

into an individual’s mental health status [84].

The integration of physiological data into mental health assessment has rev-

olutionized the field, providing an understanding of emotional and psychological

states. This shift acknowledges the intrinsic connection between mental health

and physiological responses, from heart rate variability to brain activity patterns.

Unimodal and multimodal physiological approaches offer valuable insights, em-

powering healthcare professionals and researchers for more precise mental health

assessments, leading to enhanced interventions and improved quality of life.

Multimodal physiological approaches integrate data from various sources, rec-

ognizing the complex nature of mental health influenced by diverse physiological

factors. In education, combining digital, physical, psychometric, physiological,

and environmental data helps monitor students’ cognitive load, attention levels,

and emotional engagement [154]. This comprehensive approach, using eye move-

ment patterns, EEG readings, and electrodermal activity, provides educators with

detailed insights into the learning experience [155].
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Research on participants’ experiences during game sessions used a multimodal

approach, incorporating eye tracking, EEG readings, video recordings, and wrist-

band data [26]. This method offered a thorough understanding of cognition, atten-

tion, and emotion. Additionally, the CareCam system, which monitors employees’

vital signs and facial expressions through a webcam, illustrates using multimodal

data to address stress and well-being [156].

These examples demonstrate the power of multimodal data collection and

analysis in various contexts, enabling tailored interventions and improving our

understanding of complex phenomena, ultimately enhancing well-being and expe-

riences [157].

2.10 Summary

Traditional mental health assessments, involving clinical interviews, psychometric

tests, and observations, provide valuable insights but can be limited. Recently,

technologies like eye tracking combined with machine learning and deep learning

algorithms have revolutionized mental health monitoring. These techniques allow

for a more detailed understanding of cognitive and emotional states by analyzing

eye movement data, enhancing the precision of mental health assessments and

enabling real-time insights for more effective interventions.

In mental health monitoring, diverse indicators such as attention, engagement,

fatigue, stress, cognitive processes, social interaction, behavior, anticipation, and

performance together contribute to understanding an individual’s mental state.

Cognitive load refers to the mental effort being put into the task, cognitive im-

pairment reflects deficits in cognitive function, and emotional state includes emo-

tional well-being [40]. These parameters are crucial for a detailed mental health

assessment, guiding interventions, and identifying potential challenges.

Eye tracking technology holds much promise in the field of mental health mon-

itoring because it provides objective and quantifiable data. It assesses mental

state parameters, cognitive load, cognitive impairment, and emotional state. Non-

intrusive effectiveness is shown by linking models of major eye movements and

cognitive load [43]. It identifies task complexity and mental fatigue through char-

acteristics like saccade features and fixation duration [99]. Additionally, it detects

early-stage cognitive impairments and helps differentiate subtypes of mild cogni-

tive impairment [45,46]. It is useful in neurological disorders like Alzheimer’s and

Parkinson’s, enabling early detection of cognitive decline [46, 56,57].

Tasks such as gaming, arithmetic problem-solving, and coding reveal cognitive

load, while memory and attention tests provide insights into cognitive impairment.

Eye tracking combined with stimuli like pleasant, unpleasant, and neutral images,

37



and emotionally charged text allows for the objective analysis of gaze patterns and

pupil dilation. This comprehensive approach enhances understanding of cognitive

load, cognitive impairment, and emotional states [47,106,115,119,143].

2.11 Research Gap

There exist research gaps that come with developing the classification system

of the mental state parameter by eye gaze tracking. The most important is the

absence of publicly available datasets for mental health eye tracking. This hampers

benchmarking, replicability, and collaboration between researchers. These deprive

the shared resources of the research community in the progress of understanding

mental states using eye gaze tracking. User-specific mental health monitoring

systems represent a challenge due to the absence of user-tailored labeled data,

which blocks the rise of effective prediction models. This requires special effort in

collecting and curating personalized datasets for model training while at the same

time encouraging open collaboration in developing publicly available datasets for

the field.

Second, the potential of the eye tracking parameters to influence indicating

mental illness is still at the development stage. Identify highly specific eye move-

ment patterns that are directly related to specific mental health issues and disor-

ders, ideally offering a good biomarker of the condition. The exact specifications

for how this eye tracking data will assist in helping to inform better markers or

states of mental health is currently vastly unexplored. Continuing to build knowl-

edge in these connections is an element that will increase the use of this technology

in mental health assessment over time.

Second, there has been little work on developing assistive tools to help health-

care professionals use eye tracking effectively in mental health assessment. Inte-

gration of eye tracking with mental health indicators and modeling holistic as-

sessments is an untouched domain but holds great promise in offering a detailed

account of a person’s mental state. Effective development of prediction systems for

mental health with eye gaze tracking technology needs to address these research

gaps.

This chapter presented a comprehensive literature survey on utilizing eye mea-

surements to detect mental state parameters such as cognitive load, impairment,

and emotional arousal. From this survey, one would gather that the most major

challenge in this area is the absence of publicly available eye-tracking datasets. To

address this gap, several datasets were created. The following chapter elaborates

on the datasets with a focus on the procedures followed during their collection

and details of datasets created.
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Chapter 3

Data Collection and Analysis:

Procedures, Datasets, and

Visualization

3.1 Introduction

In the domain of mental health assessment, the utilization of eye gaze data holds

immense promise as a powerful tool for understanding and monitoring various

mental health indicators. However, the development of effective machine learn-

ing and deep learning models in this field faces substantial challenges, primarily

attributed to the scarcity of publicly available eye tracking datasets specifically

designed for mental health assessment. This scarcity hinders the training and

validation of models that rely on diverse and labeled data to achieve robust per-

formance.

This chapter seeks to address a critical gap in the existing research by in-

troducing novel datasets specifically curated to facilitate advancements in mental

health monitoring through eye gaze data analysis. Additionally, the challenges

associated with the absence of specialized datasets and the need for labeled data

pertaining to mental health indicators, such as cognitive load, cognitive impair-

ment, and emotional state, underscore the importance of creating a resource that

can drive innovation in this vital sphere.

The primary purpose of this dataset is multifaceted. First and foremost, it

aims to overcome the challenge of limited publicly available eye tracking datasets

for mental health assessment. The first objective is fulfilled through the creation of

four distinct eye-tracking-based datasets, ET MT CL, ET TMT CL, ET TMT CI,

and ET Video ES. Collectively, these datasets offer a valuable resource to the re-

search community, providing a targeted solution to the scarcity of specialized
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datasets in the field.

ET MT CL, based on mathematical problems, captures eye gaze data to assess

the cognitive load, providing insights into mental states based on their cognitive

load during mathematical tasks. ET TMT CL, centered around the TMT, uti-

lizes eye tracking data to detect cognitive load, enhancing understanding of mental

states related to task performance. ET TMT CI, also based on the TMT, incor-

porates cognitive impairment into analysis, facilitating the detection of mental

states associated with cognitive challenges. ET Video ES integrates eye tracking

data with video stimuli to capture an emotional states, enriching the dataset for

the detection of emotional states through visual responses. These datasets col-

lectively contribute to the detection of emotional states based on cognitive load,

impairment, and emotional state, advancing the understanding of mental health

through diverse eye gaze analyses. It enables researchers to explore and refine ma-

chine learning and deep learning models for mental health assessment, providing

a foundation for robust and reliable model development.

Furthermore, an additional multimodal dataset EmoRPhyE is introduced to

provide a comprehensive understanding of emotional states. This dataset inte-

grates data from diverse physiological measures and modalities, including elec-

trocardiogram (ECG), Photoplethysmography (PPG), Galvanic Skin Response

(GSR), respiratory signal, and eye tracking data. This innovative approach aims

to capture a holistic view of individuals’ emotional health by combining informa-

tion from various sources, paving the way for more nuanced and accurate assess-

ments. The first objective of satisfying the need for dataset creation is successfully

achieved through these datasets, laying the groundwork for further exploration and

development. The subsequent section outlines the data collection procedures, eye

gaze dataset creation, details on eye gaze data analysis and feature extraction algo-

rithms, various visualization techniques applied to eye tracking data, multimodal

dataset creation and the software and hardware utilized in this study.

3.2 Data Collection Procedures

As part of the unimodal and multimodal data collection, specific procedures were

meticulously followed to ensure the proper acquisition of data. Approval for the

unimodal multimodal data collection was obtained from the ethical committee.

The exclusive involvement of human subjects characterized the data collection

process. The subsequent sections elaborate on the specific procedures employed

for participant recruitment and the execution of experiments in the context of eye-

tracking-based data collection. The dataset naming convention is systematically

structured, commencing with the mode of data collection, succeeded by the stim-
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ulus employed, and concluding with the specific mental health parameter targeted

by the dataset. This section explains the procedures for participant recruitment,

experimental setup, privacy and confidentiality maintenance, and data exclusion

criteria.

3.2.1 Participant Recruitment

The recruitment of participants for the study will adhere to strict inclusion criteria.

Participants will be thoroughly informed about the purpose and objectives of the

research study. Their informed consent, signifying their willingness to participate,

will be obtained. Additionally, demographic information and signed consent forms

will be collected from all participants before they participate in the study.

3.2.2 Experimental Setup

Participants will be instructed to sit comfortably in front of the eye tracker, en-

suring they are within the recommended operating distance of 50cm to 60cm limit

for optimal performance during the experiment. The eye camera view for each

participant will be carefully adjusted to ensure high-quality data capture. The ex-

periments were conducted in a controlled environment with constant room lighting

to ensure data accuracy and reliability. Before the commencement of each experi-

ment, participants will receive a detailed explanation of the data collection process.

In addition, their demographic information will be collected, and if necessary, any

presurvey required for the study will also be administered. To ensure the accuracy

and reliability of the data collected, calibration procedures will be meticulously

conducted for each participant before the start of every experiment. This calibra-

tion step is crucial in optimizing the performance of the eye-tracking equipment

and ensuring that the subsequent data accurately reflects the participants’ gaze

patterns and responses to stimuli. In the multimodal approach, other necessary

physiological sensors will also be connected to the participant to facilitate con-

current data collection, including gaze patterns and other relevant physiological

signals.

Participants will be presented with stimuli during the experiment, and the

corresponding data collection process will begin. Participants will be instructed

to observe the stimuli while their gaze pattern and other associated physiolog-

ical signals are recorded. It is important to note that the experimental setup

will not harm or discomfort the participants. They will be seated in stationary

chairs with limited head movements during the entire duration of the experiment,

which includes the explanation of the process, calibration, and the recording of

eye movements.
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3.2.3 Confidentiality

The privacy and confidentiality of the participants will be rigorously maintained

throughout the study. Participants will not be personally identified in any reports

or publications resulting from this research. Any personal information collected

during the study will be safeguarded and treated in accordance with legal reg-

ulations. This comprehensive data collection procedure ensures the ethical and

meticulous acquisition of the necessary data while prioritizing participant safety,

consent, and confidentiality.

3.2.4 Data Exclusion Criteria

To ensure data quality and reliability, participants who fail to successfully pass

the calibration process of the eye-tracker or have a substantial amount of missing

data in their eye-tracking records will be excluded from subsequent data analyses.

In such cases, replacements will be recruited and subjected to the same exclusion

criteria, if necessary.

3.2.5 Eligibility Criteria

1. Inclusion criteria

(a) Diagnosed case of mental illness

(b) No other ocular pathology that can affect the optic nerve or visual field

(c) No other ocular pathology that can affect eye movements

(d) No recent surgery within the last three months

(e) Normal healthy participants

(f) Typically developing participants

2. Exclusion criteria

(a) The participants with drooping eyelids, contact lenses, squint, or diffi-

cult glasses for the study.

(b) Use of alcohol and psychotropic medication is known to affect eye move-

ments.

(c) Participants with glasses with more than one power: bifocals, trifocals,

and progressives.

(d) Participants with eye surgery: corneal (e.g., LASIK), cataract, intraoc-

ular implants
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(e) Participants with eye movement or alignment abnormalities: lazy eye,

strabismus, nystagmus

3.3 Dataset Creation

As the primary objective of this thesis work, a total of five datasets were diligently

collected and generated. These datasets are systematically categorized into four

unimodal datasets derived from eye tracking data and a single multimodal dataset

that integrates eye tracking with other physiological signals. Comprehensive de-

tails of each dataset are presented in the table 3.1.

Table 3.1: Dataset details

Task Population Size Mental state Dataset
Mathematical
questions

Students
age group 20-30

20 Cognitive load ET MT CL

TMT
Students
age group 19 to 22

100 Cognitive Load ET TMT CL

TMT
Allied health
professionals
age group 20 to 54

31 Cognitive Impairment ET TMT CI

Calm and
Stress video

Allied health
professionals
age group 26 to 42

6 Calm/Stressful ET Video ES

Pleasant
& unpleasant
images

Students
age group 20- 40

30 Emotional state EmoRPhyE

Ethical considerations were of utmost importance throughout the data collec-

tion process. The research team obtained proper clearance from the institutional

ethical committee. Additionally, strict adherence to the established inclusion and

exclusion criteria for data collection was maintained to ensure the quality and

validity of the datasets.

Furthermore, prior to their participation in the experiments, all participants

were comprehensively briefed about the study’s objectives and procedures. In-

formed written consent was obtained from each participant, affirming their will-

ingness to partake in the data collection. These ethical safeguards were meticu-

lously observed to safeguard the participants’ rights and privacy and maintain the

research’s ethical integrity. The following sections explain the details of the five

datasets.
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3.3.1 Eye Gaze Datasets

The subsequent sections provide comprehensive details regarding the eye tracking

based datasets, encompassing the data collection process, the stimuli utilized, and

the creation of sample datasets derived from each. Additionally, the extraction of

features from eye gaze data is elaborated upon, including the algorithms employed

for feature extraction. Furthermore, the section delves into various visualization

techniques utilized to represent eye gaze data effectively.

ET MT CL Dataset

The ET MT CL dataset captures eye tracking data while presenting mathematical

questions (MT) stimuli specifically designed to investigate the detection of the

mental state parameter known as cognitive load (CL). The study was designed

to investigate the impact of stressors on individuals by increasing cognitive load,

utilizing a sample of 20 students aged between 20 and 30. The participants had

an average age of 25, with a standard deviation of 4, and included ten female

participants. Eye movements were recorded using the SMI RED-n Professional Eye

Tracker, operating at a 60 Hz sample rate. Calibration and validation processes

were conducted before each experiment to ensure precise and accurate eye tracking

data. A consistent viewing distance of 50 to 60 cm was maintained between the

participant’s eyes and the computer screen.

The experimental study followed the procedures outlined in section 3.2. Partic-

ipants were instructed to sit facing the machine connected to the eye tracker and

undergo calibration. Upon successful calibration, stimuli were presented to the

participants. These stimuli comprised mathematical questions, and participants

were required to solve each expression and verbally communicate their answers

within the allocated time frame.

The task involved the presentation of twenty mathematical questions catego-

rized into four difficulty levels: easy, normal, moderate, and difficult, as shown in

Figure 3.1. The difficulty levels were determined based on the number of operands

and operators employed in the questions. For example, Easy-level questions fea-

tured two operands, while Normal-level questions incorporated three operands

with left-to-right operator precedence. Moderate-level questions also used three

operands but with right-to-left operator precedence, and difficult-level questions

introduced a higher level of complexity with four operands and operators with

randomly assigned precedence. Sample stimuli are shown in Figure 3.2. During

the task, participants were given three seconds to answer the easy, normal, and

moderate questions and five seconds for the difficult questions, which aimed to

investigate how variations in cognitive load, induced by different levels of math-
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ematical complexity, could affect stress levels. Notably, the study focused exclu-

sively on physiological measures, particularly pupil diameter and the number of

blinks, with the emotional states of participants not taken into account.

Figure 3.1: Experimental setup for ET MT CL data collection

Figure 3.2: Stimuli used for ET MT CL datset creation

The collected eye tracking data comprises raw information containing the gaze

X and Y coordinates along with pupil diameter as shown in Table 3.2. These

details will be maintained for each participant. Chapter 4 provides a detailed

explanation of the subsequent feature extraction process and its specifics. Based

on the validity of the data, the data from any of the eyes will be considered for

further feature extraction.

This structured data collection procedure was designed to comprehensively

explore the relationship between cognitive load, stress, and physiological responses,

ensuring data accuracy and participant comfort.

ET TMT CL Dataset

The ET TMT CL dataset encompasses eye tracking data collected with the TMT

stimulus, designed to classify the mental state parameter cognitive load (CL). The

study participants consisted of 100 students aged between 19 and 22. The gender

distribution among the participants was 60 male students and 40 female students.

The demographic details are shown in figure 3.3.
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Table 3.2: The raw eye gaze data from SMI REDn eye tracker

Features Description
Time Timestamp
Type Indication of different trials
L Raw X [px] Left eye’s Gaze X coordinate
L Raw Y[px] Left eye’s Gaze Y coordinate
R Raw X[px] Right eye’s Gaze X coordinate
R Raw Y[px] Right eye’s Gaze Y coordinate
L Diameter [mm] Left eye’s Pupil diameter
R Diameter [mm] Right eye’s Pupil diameter
L validity Left eye data validity indicator. 1-valid, 0-not valid
R validity Right eye data validity indicator.1-valid, 0-not valid

The experimental setup for data collection is depicted in Figure 3.4. Prior to

commencing the main task, participants were briefed on the study objectives and

the tasks involved in data collection. Calibration tests were then administered,

serving as a crucial step in eye tracking to ensure precise identification and tracking

of each participant’s gaze point.

Figure 3.3: Demographic details of ET TMT CL dataset

Figure 3.4: Experimental setup for ET TMT CL data collection

The chosen cognitive task for this investigation was the TMT, a widely used
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psychological assessment that evaluates various cognitive functions, including at-

tention, visual scanning, and processing speed. Here, the eye tracking version

of TMT is used as the stimulus. The TMT consists of two parts: TMT-A and

TMT-B. TMT-A simple is a simple random number sequence from 1 to 8. TMT-A

complex is a random assortment of numbers between 1 and 25. TMT-B simple

is a random combination of alphabet letters from A to D and numbers from 1

to 4. TMT-B complex is a random combination of alphabet letters from A to L

and numbers from 1 to 12. TMT stimuli are shown in figure 3.5. The data for

this study was collected using the VT3 Mini eye tracker, a specialized device for

recording eye movements and gaze data. Data was recorded at a sampling fre-

quency of 60 Hz, allowing for capturing eye movements and gaze points at a rate

of 60 times per second, providing fine-grained insights into participants’ visual

attention.

Figure 3.5: Trail Making Test stimuli

After achieving accurate calibration, participants were presented with the eye

tracking version of the TMT. They were instructed to navigate through a series

of numbered and lettered circles displayed on the screen as part of the stimulus.

The stimulus was displayed in the order of TMT-A simple, TMT-A complex,
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TMT-B simple, and TMT-B complex. In TMT-A, they were asked to visually

connect the numbers in ascending order, while in TMT-B, they needed to visually

connect the numbers and letters in ascending order, alternating between numbers

and letters. Participants were also directed to read the numbers and letters aloud

during the test, introducing a verbal component that can offer insights into the

task performance.

In the TMT-A and TMT-B assessments, two sets of stimuli were employed

to gauge changes in cognitive load during participants’ task performance. These

variations were introduced to evaluate participants’ cognitive abilities compre-

hensively and to assess their capacity to sequence and connect characters under

differing levels of complexity. By comparing the performance in simple and com-

plex tasks, the study aimed to shed light on how the cognitive demands of the

TMT differ under varying levels of complexity, providing valuable insights into

participants’ cognitive processing capabilities.

The eye tracker captured participants’ eye movements throughout the TMT,

generating each participant’s raw gaze points and pupil diameter as shown in Table

3.3. Further feature extraction and its analysis are explained in Chapter 4.

Table 3.3: Raw eye gaze data from VT3 Mini eye tracker

Features Description
Time Timestamp
Left Pupil Pos X Left eye’s Gaze X coordinate
Left Pupil Pos Y Left eye’s Gaze Y coordinate
Right Pupil Pos X Right eye’s Gaze X coordinate
Right Pupil Pos Y Right eye’s Gaze Y coordinate
Left Pupil Diameter (mm) Left eye’s Pupil diameter
Right Pupil Diameter (mm) Right eye’s Pupil diameter
Left Found Left eye data validity indicator.
Left Found Right eye data validity indicator.

ET TMT CI Dataset

The ET TMT CI dataset captures eye tracking data during the TMT stimulus

presentation, specifically designed to assess the mental state parameter, cognitive

impairment (CI). The data was collected from 31 healthy participants aged 20 to

54 working within a hospital environment. The mean age of the participants was

30.6 years, with a standard deviation of 8.6 years. The demographic details are

shown in Figure 3.6. A total of 40 participants were recruited for the study, and we

collected data from those participants. Out of the collected data, 9 participants’

data were discarded due to technical issues and data loss, leaving a total of 31

participants’ data for analysis.
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The eye-tracking versions of the TMT-A and TMT-B, as shown in Figure 3.5

were utilized as stimuli. These tests encompassed simple and complex sequences of

numbers and letters, evaluating participants’ ability to follow ascending patterns.

The data were collected using the SMI REDn Professional eye tracker, which

operated at a sampling frequency of 60 Hz.

Figure 3.6: Demographic details of ET TMT CI dataset

The stimulus was displayed in the order of TMT-A simple, TMT-A complex,

TMT-B simple, and TMT-B complex, as shown in Figure 3.7. The participants

were instructed to look at the ascending numbers in TMT-A and the ascending

combination of numbers and alphabets in TMT-B. While watching it, the partici-

pants were instructed to speak the number or alphabet aloud. The individual was

then asked to complete the conventional TMT after the eye tracking version. It is

based on the paper-pencil method, in which participants were instructed to link

the alphabets or numerals in ascending sequence. The eye tracking and traditional

TMT followed the same order of stimulus. The raw data obtained has features

like timestamp, gaze, and pupil diameter details, as shown in Table 3.2. Since

there were 31 participants, 31 raw data files were generated to store the raw data

information. The BeGaze 3.7 has been used to extract low-level and middle-level

features. Further high-level feature extraction is explained in Chapter 5.

ET Video ES Dataset

The ET Video ES dataset records eye tracking data while presenting calm and

stressful video stimuli designed to assess a person’s emotional state. The exper-

imental study was performed on allied health professionals (n=6, 3 male, Mean

age= 33.5, SD=5.6 , age range= 26 to 42) [36]. The demographic details are shown

in Figure 3.8. Figure 3.9 shows the procedures followed in the experimental setup

of ET Video ES dataset collection. A 10-minute video including 5 minutes of calm

and 5 minutes of stressful video was utilized as a stimulus [99]. Before the actual

stimulus, an introductory segment with a short animated movie was played for
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Figure 3.7: Experimental setup for ET TMT CI data collection

Figure 3.8: Demographic details of ET Video ES dataset

Figure 3.9: Experiment procedure of ET Video ES dataset

a 2-minute and 30 seconds. The calm [158] and stressful video scenes [159] were

presented subsequently. The calm segment of the video was selected based on its

ability to induce relaxation within 5 minutes, as per the recommendation of spe-

cialists in stress and anxiety therapy. The introductory video was not included in

the analysis but served to acquaint the participants with the experimental setup.

The calm video period was considered the baseline phase, with the expectation

50



that the participants would experience a state of relaxation during this time. The

sampling frequency of 60 Hz allowed us to capture 60 samples of raw eye gaze

data per second. In total, a substantial dataset of observations was accumulated,

consisting of 10 minutes or 600 seconds. This translates to a vast raw eye gaze

data repository comprising 36,000 samples for a participant. The raw eye gaze

data includes (X, Y) gaze coordinates, pupil diameter, and timestamp, as shown

in Table 3.2.

The eye tracking data was collected using the SMI Redn Professional Eye

Tracker (Company: SensoMotoric Instruments, Germany) with a sampling fre-

quency of 60Hz and Experiment Center 3.7 software, which provides comprehen-

sive tools for stimulus presentation and precise data collection.

GSR data was also collected simultaneously using a grove-GSR sensor, with

two electrodes attached to two fingers of a hand as shown in Figure 3.10, [160].

It measures the electrical resistance of the subject’s skin, and this information is

then used to produce an output voltage, typically measured in millivolts (mV). The

participant was given the wearable band and instructed to wear it in accordance

with the guidelines. Arduino integrated development environment(IDE) software

was used to collect GSR data. Eye tracking and GSR data were collected using

the same machine, ensuring the system clock remained consistent. To synchronize

the data collection, a software trigger was set to initiate eye tracking and GSR

measurements simultaneously, resulting in timestamps that are accurately aligned

across the datasets.

Figure 3.10: GSR sensor used for ET Video ES data collection
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3.3.2 Eye Gaze Data Analysis

Four eye gaze datasets were created to study mental state parameters like cogni-

tive load, impairment, and emotional arousal. The raw eye gaze data collected

needs pre-processing and feature extraction tailored to each application for effi-

cient results. Various visualization techniques are available to help understand the

eye gaze data, which will be explained in the following section, along with feature

extraction.

The raw data extracted from each dataset, as illustrated in Tables 3.2, 3.3,

will undergo pre-processing. This process entails the removal of erroneous data,

particularly instances where participants did not look at the screen, resulting in

unacceptable data. Participants with a substantial amount of erroneous data will

have their data discarded. Subsequently, after pre-processing, a diverse range of

features will be extracted to suit the specific applications. The following section

outlines the fundamental eye gaze features and the algorithms utilized for feature

extraction.

Eye Gaze Features

Eye gaze features based on fixation, saccade, blink, and pupil diameter play a

crucial role in eye tracking and can provide insights into a person’s visual attention

and cognitive processes. Here are details on each of these features:

1. Fixation: Fixation refers to the stable and sustained gaze of the eyes on

a specific point or object in the visual field. During a fixation, the eyes remain

relatively still. The duration of a fixation typically ranges from 100 to 500 mil-

liseconds with a maximum dispersion of 100 pixels. Fixations suggest that the

individual is processing or perceiving information from the location where they

are focused. Researchers use fixations to identify what visual elements or areas

attract a person’s attention and for how long. An identified fixation event will

have an X and Y coordinate.

2. Saccade: Saccades are rapid, involuntary eye movements that quickly shift

the gaze from one point of interest to another in the visual field that lasts for 30

to 100 milliseconds. Their high velocity and short duration characterize saccades.

They allow the eyes to reposition and explore the visual scene by moving from

one fixation point to another. Saccades are instrumental in studying visual scan-

ning patterns, eye movement coordination, and how attention is directed between

different objects or points of interest. An identified saccade event will have two

gaze coordinates (x1,y1) and (x2,y2), where (x1,y1)indicates the source point and

(x2,y2) indicates the destination point.

In Figure 3.11, the scanpath depicts a combination of fixations and saccades.
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Each circle within the scanpath represents a fixation, indicating that the person’s

gaze remained at a specific location for a fixed amount of time. The diameter

of these circles reflects the fixation duration, signifying how long the individual

focused their attention on that particular location. The lines connecting these

fixations illustrate saccades, representing the rapid eye movements between fix-

ations. This scanpath provides a visual representation of how the person’s gaze

moved and fixated during a specific task or observation.

Figure 3.11: Scanpath

3. Blink: A blink is a brief eyelid closure temporarily obstructing vision. Blinks

are rapid and typically last for about 100-400 milliseconds. People blink multiple

times per minute, with an average blink rate of around 12-15 blinks per minute.

Blink occurs when the pupil diameter is zero or when horizontal and vertical gaze

positions are zero, as explained in Algorithm 3.1. When any of these conditions

are satisfied, a blink event is recorded. Given the input of gaze coordinates and

the minimum and maximum duration required to classify an event as a blink,

the algorithm aims to identify instances of eye blinks and return the start time,

end time, and duration for each detected blink. Blink data can be used to assess

aspects of cognitive load, attention, and even aspects of emotional or physiological

states.

4. Pupil Diameter: Pupil diameter refers to the size of the dark, central

aperture of the eye, known as the pupil. Pupil diameter can change in response to

different stimuli. Pupil diameter varies from 2 to 8 millimeters in adults, depending

on lighting conditions and the level of arousal or cognitive effort. Pupils constrict

to increased light and dilate in response to reduced light, arousal, or cognitive

load. Pupil diameter serves as a measure of cognitive load, emotional state, and

even changes in attention. It is valuable for understanding the psychological and

physiological responses of individuals.
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Algorithm 3.1 Blink Detection Algorithm

function DetectBlinks(GazeCoordinates,MinBlinkDuration)

Initialize an empty list Blinks

Initialize a duration timer

Initialize a blink flag

StartT ime← 0

for all Coordinate in GazeCoordinates do

if Coordinate.PupilDiameter = 0 then

if blink flag is false then

StartT ime← Coordinate.T ime

Set blink flag to true

end if

else

if blink flag is true then

EndTime← Coordinate.T ime

Duration← EndTime− StartT ime

if Duration ≥MinBlinkDuration then

Add blink with StartT ime, EndTime, and Duration to

Blinks

end if

Set blink flag to false

end if

end if

end for

return Blinks

end function

The criteria for detecting fixation coordinates, saccade coordinates, and blink

events are typically defined within specific ranges, but these conditions can be

adjusted to some extent based on the particular requirements of different appli-

cations. For instance, in some scenarios, blinks lasting less than 70 milliseconds

may be excluded from analysis, and there might not be a set maximum limit for

blink duration. Similarly, the acceptable range of values for detecting fixation

and saccade events can be customized to match the specific needs of each unique

application. This flexibility allows for fine-tuning eye tracking parameters to best

suit the demands of various contexts.

These eye gaze features are essential for analyzing visual attention, cognitive

processes, and emotional responses during tasks, making eye tracking a versatile

tool in various fields, including psychology, neuroscience, marketing, and human-
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computer interaction.

Algorithm 3.2 Fixation Detection Algorithm (I-DT) [161]

function DetectFixations(Points, Threshold,DurationThreshold)

Initialize an empty list Fixations

while Points is not empty do

Initialize an empty list Window

Initialize a duration timer

Add the first point in Points to Window

Remove the first point from Points

while dispersion of Window ≤ Threshold do

Find the dispersion of Window

if duration of Window ≥ DurationThreshold then

Note a fixation at the centroid of Window

Add the centroid to Fixations

Clear Window

end if

if Points is not empty then

Add the first point from Points to Window

Remove the first point from Points

end if

end while

end while

return Fixations

end function

Algorithm 3.3 Saccade Detection Algorithm [161]

function DetectSaccades(Points, Threshold,DurationThreshold)
Initialize an empty list Saccades
Initialize an empty list Fixations
Fixations← DetectFixations(Points, Threshold,DurationThreshold)
NumFixations← Length(Fixations)
for i← 1 to NumFixations− 1 do

Duration← GetDuration(Fixations[i], F ixations[i + 1])
if Duration ≤ 100 milliseconds then

Add saccade from Fixations[i] to Fixations[i+1] to Saccades
end if

end for
return Saccades

end function

The device, an eye tracker, typically provides raw data, including gaze x and y
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coordinates, timestamps, and pupil diameter, as shown in Tables 3.2 and 3.3. The

sampling frequency of the eye tracker determines the number of samples obtained

in one second. For event detection and to extract additional features from this

raw data, specialized algorithms such as Identification by Dispersion Threshold

(I-DT) [161] or Velocity-Threshold Identification(I-VT) can be employed. These

algorithms help identify specific events, like fixations, saccades and blinks, and

provide a structured way to process and analyze the eye tracking data.

Alternatively, eye tracking software applications associated with the eye track-

ers, such as BeGaze and Ogama, can be utilized. These software tools often include

features for event detection, data visualization, and analysis, making it easier for

researchers and practitioners to work with eye tracking data efficiently.

The I-DT algorithm, as shown in Algorithm 3.2 and Algorithm 3.3, are de-

signed for fixation and saccade event detection in eye tracking data [161]. It

works by initializing a window over a sequence of data points and gradually ex-

panding it to cover a duration threshold. The input to both the algorithms are the

X and Y gaze coordinates of any eye(left/right) and the time. If the dispersion of

data points within this window falls below a certain threshold, the points are la-

beled as a fixation, and their centroid is noted. Fixation coordinates are detected

iteratively as the window moves through the data. This algorithm helps iden-

tify periods when the eyes are relatively still and focused on a single point. The

movement from one fixation to another is considered as a saccade. The fixation

algorithm provides the start time, end time, duration, and fixation coordinates.

The saccade algorithm generates a saccade’s start time, end time, duration, and

starting and ending coordinates.

Visulization Techniques

Visualizations like scanpaths, heatmaps, and gaze plots are essential for visualizing

eye tracking data. Eye tracking data visualization allows researchers and analysts

to understand how individuals visually interact with various stimuli, such as im-

ages, websites, or scenes. It provides insights into where people look, the order

in which they focus on different areas, and the duration of their fixations. Visu-

alizations make it easier to communicate the results of eye tracking studies to a

broader audience, including stakeholders, clients, or non-experts. A well-crafted

visualization can convey complex information more effectively than raw data. Vi-

sualizations help in identifying recurring patterns in gaze behavior. Researchers

can spot trends, common areas of interest, or anomalies in the data, leading to

a better understanding of cognitive processes, user preferences, and potential us-

ability issues. In usability testing and web design, visualizations help designers
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and developers assess where users focus their attention, helping optimize user

interfaces for better user experiences.

1. Scanpath: A scanpath is a visual representation of the sequential order in

which a person’s gaze moves through a visual stimulus, as shown in Figure 3.11.

It provides an insightful depiction of the path followed by the eyes as they transi-

tion between fixations and saccades, marking the areas of visual interest and the

transitions between them. Scanpaths offer a valuable means to study and under-

stand the flow of visual attention, allowing researchers to analyze how individuals

process visual information, prioritize specific elements, and explore the intricacies

of their cognitive processes. These sequences of fixations and saccades within a

scanpath offer critical insights into the temporal dynamics of visual exploration

and are fundamental in various fields, including eye tracking research, psychology,

user experience design, and more.

During image scanning, individuals unknowingly fixate on certain locations and

move to others, collectively forming a sequence of fixations and saccades known

as a scanpath. These scanpath representations are characterized by numerical

annotations denoting the order of fixations, typically depicted using a scanpath

string. Each symbol in the scanpath string signifies either a fixation or dwell in

an AOI (Area of Interest). For instance, the scanpath illustrated in Figure 3.11

can be represented as a scanpath string: 612345678. In this representation, each

number within the circle corresponds to an AOI, and the sequence indicates the

order of fixations. This detailed scanpath string unveils the temporal dynamics

of visual exploration and finds applications in diverse fields such as eye tracking

research, psychology, and user experience design.

2. Heatmap: In the realm of mental health monitoring, heat maps de-

rived from eye tracking data offer valuable insights into the distribution of visual

attention. These visualizations, as shown in Figure 3.12 play a pivotal role in

understanding how individuals engage with various stimuli, such as therapeutic

content, mental health assessment tools, or interventions. By providing a clear

representation of where attention is concentrated, heat maps can assist mental

health professionals and researchers in gauging the effectiveness of interventions

or the impact of specific visual stimuli on patients’ mental states. These visual-

izations help identify key areas of interest or “hotspots,” shedding light on the

content or elements that captivate a patient’s attention during mental health as-

sessments or therapeutic sessions. Consequently, mental health practitioners can

tailor their approaches, optimizing the delivery of treatment and support based

on the observed visual attention patterns. Heat maps in mental health monitoring

thus serve as a powerful tool to enhance the understanding of patients’ interac-

tions with mental health resources and interventions, ultimately contributing to
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Figure 3.12: Heatmap

more effective and personalized mental health care.

3. Area of Interest(AOI): Area of Interest are predefined subsections within

a presented stimulus. These delineated regions serve as a valuable tool for mea-

suring and comparing the performance or attention allocation to distinct areas

within a video, image, website, or interface.

3.3.3 Multimodal Dataset Creation

A multimodal dataset has been created, incorporating diverse physiological mea-

sures, including ECG, GSR, PPG, respiratory signals, and eye tracking data. The

subsequent sections provide the details of the data collection procedures for the

generation of the multimodal dataset.

EmoRPhyE Dataset

EmoRPhyE (Emotion Recognition Using Physiological and Eye Tracking data)

is a multimodal dataset curated to detect the emotional state of individuals as

they view images with varying valence and arousal levels. Multimodal datasets

include data from diverse physiological measures like ECG, PPG, GSR, respiratory

signal, and eye tracking data. The data was collected from 30 students (14 males

and 16 females) with an average age of 26 ± 5 years. The study utilized stimuli

from the International Affective Picture System (IAPS) [162], a curated collection

of emotionally charged images rated for arousal and valence. The demographic

details are shown in Figure 3.13

Physiological signals were recorded using the CGX AIM physiological monitor,

a portable system capturing raw ECG, respiratory, PPG, and GSR data at 500 Hz

without filtering. The CGX AIM physiological monitor, positioned opposite the

subject’s dominant hand as shown in Figure 3.14, enables unrestricted movement
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Figure 3.13: Demographic details of EmoRPhyE dataset

during data acquisition. This setup proves particularly beneficial for capturing

signals like GSR and PPG, which necessitate electrode and sensor placement on

the non-dominant hand. Bio-impedance-based pad sensors under the collarbones

collected respiratory data and served for single-lead ECG recording. An additional

ECG derivation used two adhesive electrodes on the upper left torso.

Figure 3.14: Placement of physiological sensors

PPG signal was obtained through a plethysmograph on the index finger of the

non-dominant hand, where adhesive electrodes on the palm also recorded GSR.

A strap electrode on the left ankle served as the common ground terminal for all

sensors. Eye tracking data utilized the Tobii Pro X3-120 eye tracker, a remote

system with binocular tracking capabilities. Operating at 120Hz for gaze data and

40Hz for pupil diameter, it effectively functioned within a range of 50 cm to 90 cm

from the participant’s eyes. The stimuli were presented to the participants using

the E-prime version 3.0.3.80 software.

A total of 192 images were selected from the IAPS dataset for presentation.

These images were organized into 48 groups, with each group containing four

images sharing the same valence and arousal, as shown in Figure 3.15. After
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Figure 3.15: Experimental setup for EmoRPhyE data collection

displaying each set of four images, participants provided feedback on the valence

and arousal using the Self-Assessment Manikin method (SAM) [163], rating on a

scale of 1 to 9 as shown in Figure 3.16. Each image was presented for 8 seconds,

followed by a 10-second blank screen. To avoid the repetition of emotional content,

the presentation order of each group of images and the arrangement of images

within each group were both randomized.

Figure 3.16: Rating scale based on the Self-Assessment Manikin (a) rating scale
for valence and (b) rating scale for arousal

In the multimodal data collection process, synchronization was crucial to align

physiological data, stimulus responses, and eye tracking data accurately. Utiliz-

ing the Lab Streaming Layer (LSL) time protocol ensured consistent timestamps

between eye tracking data processed by E-prime and events managed by the E-
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prime software, such as stimulus presentation and subject responses. However,

as physiological data was controlled by a separate laptop with its internal clock,

synchronization was achieved through the LSL framework. This framework facil-

itated the exchange of synchronized data over the local network, addressing clock

discrepancies between devices and ensuring precise alignment in this comprehen-

sive, multimodal data acquisition. the synchronization scheme is shown Figure

3.17

Figure 3.17: Synchronization scheme

EmoRPhyE contains raw data specific to each physiological signal. The ECG

signal is a graphical representation of the electrical events occurring during the

cardiac cycle. It is obtained by placing electrodes on the chest showing voltage

changes reflecting heart muscle cell depolarization and repolarization. The ECG

waveform consists of the P, QRS complex, and T waves. Two types of features,

time and frequency domain, are commonly used in emotion assessment via ECG

signals. Time domain features analyze the ECG signal’s temporal patterns, while

frequency domain features reveal information about energy distribution across

frequency bands, though, in this study, only time domain features were employed

due to the signal’s short duration.

Peaks and valleys are identified from the raw respiratory signal. The breath

rate series, extracted from the respiratory signal, is derived as the time differences

between the peaks and valleys extracted for each window.

The raw EDA signal contains data on two distinct types of activity: tonic and

phasic. The EDA signal contains information about tonic activity, representing

gradual changes in skin conductivity due to factors like skin hydration and au-
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Table 3.4: Raw eye gaze data from Tobi Pro Eye Tracker

Features Description
RTTime Timestamp
CursorX Gaze X coordinate
CursorY Gaze Y coordinate
PupilDiameterLeftEye Left eye’s Pupil diameter
PupilDiameterRightEye Right eye’s Pupil diameter
PupilValidityLeftEye Left eye data validity indicator. True-1, False-0
PupilValidityRightEye Right eye data validity indicator. True-1, False-0

tonomic regulation. Phasic activity in the EDA signal exhibits short-term peaks

or fluctuations, reflecting rapid changes in skin conductivity caused by emotional

responses and arousal mediated by the sympathetic nervous system.

The eye tracking data, collected using Tobii Pro X3-120 eye tracker, comprises

two text files: one detailing the stimuli and participant feedback, and the other

containing raw eye gaze data as shown in Table 3.4. This data is used as input for

an emotion state detection model, which subsequently extracts features through

various algorithms.

3.3.4 Summary of Datasets

Four eye tracking-based datasets, including one multimodal dataset aimed at un-

derstanding mental state parameters such as cognitive load, cognitive impairment,

and emotional state, have been created. These datasets encompass raw eye gaze

data (Tables 3.2 and 3.3, 3.4), as well as raw physiological signals, including ECG,

PPG, GSR, and respiratory signals within the EmoRPhyE dataset. The subse-

quent feature extraction for each dataset is tailored to the specific application and

is explained in Chapters 4 through 7. Figure 3.18 shows the raw data and the

subsequent feature extraction from each dataset.

3.4 Software and the Hardware Used for the Study

3.4.1 Software

1. Experiment Center 3.7- stimulus presentation

2. BeGaze 3.7 - feature extraction

3. E Prime - stimulus presentation
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Figure 3.18: The raw eye tracking data and feature extraction in each dataset

3.4.2 Hardware

1. SMI REDn Eye Tracker with a sampling frequency of 60Hz.

2. VT3 Mini Eye tracker with a sampling frequency of 60Hz.

3. Tobii Pro X3 Eye tracker with a sampling frequency 120Hz for gaze and

40Hz for pupil diameter.

4. GSR sensor

5. necessary hardware and software required for collecting EEG, ECG, BVP,

respiration rate, and GSR

This chapter has explained the first objective outlined in the study by elab-

orating on the creation of datasets aimed at addressing the scarcity identified in

the literature. The following chapters will focus on the models developed as part

of the second objective.
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Chapter 4

Classification of Cognitive Load

using ECL Models

4.1 Introduction to Cognitive Load

The total mental effort in a person’s working memory is their cognitive load. The

increase in the cognitive load of a person can have a negative impact on task

completion. However, cognitive load is not the same for everyone. It varies from

person to person based on age and gender. Cognitive load refers to the total

amount of mental activity imposed on the working memory in an instant. Our

working memory is very much limited. It will get overloaded while handling com-

plex information. In addition, the problematic or confusing learning experience

can cause cognitive load [44].

The mental state of an individual is linked to their cognitive load, which per-

tains to the mental effort and resources necessary for performing specific tasks or

engaging in mental activities. Cognitive load can vary across a spectrum, influ-

encing how a person feels and functions. This load is typically categorized into

two primary states: low and high cognitive load, each associated with distinct

psychological and functional aspects.

When cognitive load is low, individuals typically experience a sense of relax-

ation and ease. They often describe feeling comfortable and minimally stressed.

Tasks requiring low cognitive load demand less mental effort and strain. People

are more open to creative thinking, brainstorming, and exploring new ideas in this

state. It’s a mental state that encourages relaxation and creativity, conducive to

problem-solving and innovative thinking.

On the other hand, high cognitive load tasks often result in increased stress

and anxiety. Individuals may feel overwhelmed when the cognitive demands exceed

their capacity to process information effectively. Creative thinking and problem-
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solving may suffer under the strain of high cognitive load as the mind becomes

preoccupied with the complexity of the task. This state is marked by mental

exhaustion and reduced decision-making capabilities, leading to decreased perfor-

mance and an increased likelihood of errors.

It’s essential to note that the impact of cognitive load on mental state can

vary significantly from one person to another. Factors such as prior experience,

expertise, and individual coping mechanisms play a crucial role in how cognitive

load affects a person’s mental state. Additionally, the duration of exposure to

different cognitive load levels is significant; while short-term high cognitive load

can be motivating, prolonged exposure to such stressors can lead to negative out-

comes. Understanding one’s cognitive load and developing strategies to manage

it effectively is key to maintaining a healthy mental state and optimizing perfor-

mance [164].

Monitoring cognitive load is of paramount importance, especially in industries

where individuals are continually engaged in tasks over extended periods. High

cognitive load can lead to performance reduction, stress, and errors, ultimately im-

pacting an individual’s mental health [44]. Machine learning (ML) techniques can

be applied to extract meaningful patterns from this data [165], providing quan-

tifiable assessments of cognitive load [44]. Eye tracking technology, offers valuable

insights by correlating eye movements, such as fixations, saccades, pupil dilation,

and blink with cognitive load [43]. These measurements are crucial for detecting

cognitive load variations and potential mental fatigue, making eye tracking an

essential tool for mental health monitoring and proactive intervention [99].

The study introduces two models, ECL-1 (Eye-Tracking Cognitive Load-1) and

ECL-2 (Eye-Tracking Cognitive Load-2), developed for the detection and classifi-

cation of cognitive load, a mental state parameter shedding light on the cognitive

demands on an individual’s mental faculties. These models offer valuable insights

into understanding mental workload and the level of cognitive effort exerted by

individuals. The following sections comprehensively explain the models, detailing

their architectures, methodologies, and proficiency in discerning cognitive load.

Section 4.2 introduces the ECL-1 model, detailing its methodologies and the sta-

tistical analysis conducted on this model. Subsequently, section 4.3 discusses the

ECL-2 model, with subsection 4.3.1 focusing on its feature extraction process,

specifically explaining the extraction of fixation, saccade, and blink-based fea-

tures. Section 4.3.2 elaborates on the machine learning model employed, while

section 4.3.3 delves into its performance evaluation. Additionally, section 4.3.4

examines data exploration and statistical analysis. Finally, section 4.4 concludes

the research.
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4.2 ECL-1 Model

An initial study was conducted with the ECL-1 model to understand the signifi-

cance of certain features in the cognitive load classification. This was a preliminary

investigation, which included a small population of 20 students. The objective was

to identify the most important features contributing to cognitive load in a learning

environment. This initial model helped to refine our methodology and identify key

areas for further exploration.

The ECL-1 model, based on the ET MT CL dataset(explained in Chapter

3), is crucial for understanding cognitive load fluctuations, especially in simple

and complex mathematical tasks. The model examined the effects of stressors on

cognitive load in student participants. The raw data obtained from the dataset

included timestamps, stimulus types, gaze details, and pupil diameter information.

BeGaze 3.7 software was used to extract the features fixation duration, blink

duration, pupil diameter from the raw data.

The experimental task entailed responding to a set of twenty mathematical

questions characterized by diverse difficulty levels, classified based on the com-

plexity of both operands and operators. Participants were allocated limited time

to answer these questions, aiming to investigate the impact of cognitive load vari-

ations on stress levels. The utilization of mathematical stimuli with varying com-

plexities served as a means to induce mental load in participants, and the subse-

quent analysis incorporated eye-tracking features to discern and understand the

corresponding changes in cognitive load. Identifiable patterns in eye movement,

pupil dilation, and blink are acknowledged as dependable signs of mental work-

load across all age groups [166,167], and this study focused on eye gaze measures,

particularly pupil diameter and blink frequency.

The study compared stress levels and cognitive load between participants, Par-

ticipant 1 and Participant 2. It was noted that Participant 2 experienced higher

stress than Participant 1. The research findings corroborated existing literature,

indicating a linear increase in pupil dilation with a higher working memory load.

The study observed how changes in cognitive load, induced by varying difficulty

levels of mathematical questions, affected participants. Participant 1 displayed a

minimal change in pupil diameter and blink frequency with simpler questions, but

as question difficulty increased, both pupil diameter and cognitive load increased,

leading to a reduction in blink frequency.

This experiment also allowed an assessment of each participant’s expertise in

solving mathematical problems. For Participant 1, the slight increase in pupil

diameter and a steady number of blinks after an initial spike suggested increased

cognitive load and active engagement in problem-solving, indicating expertise and
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interest in mathematics.

In contrast, Participant 2 exhibited a significant increase in pupil diameter

and fluctuating blink frequency as question difficulty increased. This indicated

an inability to concentrate, failure to answer within the allotted time, heightened

stress, and a lack of expertise and interest in solving mathematical problems.

Statistical analysis, which focused on the association between paired samples,

utilized a Pearson’s product-moment correlation coefficient t-test to evaluate the

significance of eye measurements across various difficulty levels of mathematical

problems. The outcomes of this statistical analysis are presented in Table 4.1.

Table 4.1: ECL-1 model statistical analysis

Eye Measures P value Correlation Remarks
Pupil Diameter 0.00001197 0.815154 Positive correlation

Blink Count 0.001385 -0.6647843 Negative Correlation

The statistical analysis showed a clear linear relationship between pupil diam-

eter and cognitive load, which, in turn, indicates an increase in stress levels as

cognitive load escalates. The positive correlation suggests that as the mathemati-

cal problems became more challenging, participants’ pupils dilated more, reflecting

their greater mental effort [49].

Conversely, there is a negative correlation between the number of blinks and

cognitive load. This signifies that individuals tend to blink less frequently as

cognitive load intensifies. It could be interpreted as an indication that higher

cognitive loads lead to lapses in spontaneous blinking. The reduction in blink

frequency, particularly when cognitive load is elevated, is an intriguing aspect

that might signify a heightened state of concentration or cognitive strain during

more complex problem-solving tasks. These findings provide valuable insights

into how the eyes’ physiological responses can shed light on the mental states of

individuals when tackling tasks of varying complexity [49].

In the ECL-1 model, no specific computational models were used to classify

cognitive load; rather, a statistical approach was taken to examine the significance

of these eye gaze differences. The model’s primary focus was to investigate the

significance of differences in eye gaze features during mathematical tests, partic-

ularly when the difficulty level of the questions changed. This study exclusively

utilized a statistical model to assess the significance of these differences. By em-

ploying t-tests, it was possible to efficiently demonstrate that there were indeed

significant differences in the eye gaze features observed while participants engaged

in mathematical problem-solving tasks.
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4.3 ECL-2 Model

Based on the insights from ECL-1 model, ECL-2 model was designed to explore

further the influence of various features on cognitive load in a larger population.

This study aimed to extend the findings from ECL-1 model, contributing to a

deeper understanding of cognitive load and its potential applications.

The second model, the ECL-2 model, is designed to classify mental states based

on the cognitive load experienced by individuals based on the eye tracking data

obtained from the ET TMT CL dataset. Utilizing eye tracking technology, this

model provides an approach to understand the impact of cognitive load on an indi-

vidual’s mental state. The model extracted 35 features from the raw data obtained

from ET TMT CL dataset and applied Random forest algorithm to classify cog-

nitive load as low and high. A feature selection process is applied to enhance the

model’s accuracy, removing features with lower significance in classification and

thereby refining the feature set used for cognitive load detection. This systematic

approach ensures the model’s effectiveness in assessing cognitive load based on

eye-tracking data.

The TMT stimuli used for this study involve tasks with both simple and com-

plex elements, and the progression from simpler to complex tasks within the TMT

can induce cognitive load in participants. Figure 4.1 shows the ECL-2 model for

cognitive detection. Participants were instructed to verbally announce visited

numbers during the task to ensure adherence to traverse all numbers in ascending

order without omissions. Failure to meet this requirement could elevate stress

levels and increase cognitive load.

The following sections elaborate on the diverse features extracted from the

ET TMT CL dataset, providing a comprehensive overview of the extraction method-

ologies employed. Furthermore, the machine learning algorithms used to imple-

ment the ECL-2 model are detailed, offering insights into the obtained results.

The concluding segment encompasses a comparative analysis, highlighting the

distinctions in performance between the ECL-2 model and existing models.

4.3.1 Feature Extraction

The model utilizes the dataset ET TMT CL and identifies the events fixation and

saccade coordinates based on the IDT algorithm [161], explained in Chapter 3. The

study was conducted on 100 participants. 35 eye gaze features were extracted for

further analysis. The IDT algorithm was employed in the cognitive load detection

application with a minimum fixation duration of 50 milliseconds and a maximum

dispersion threshold of 100 pixels for fixation detection. Blink detection utilized

a minimum duration threshold of 70 milliseconds. The model extracts derived
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Figure 4.1: ECL-2 system model

features by leveraging these events, blink, and pupil diameter measurements.

In eye movement data analysis, fixations and blinks are mutually exclusive

events. Fixation-related features at a specific time ’t’ exclude corresponding blink-

related features, and vice versa. This distinction arises because blinks involve the

temporary closure of the eyes, rendering fixations impossible during these brief

periods.

So, based on the detected events like fixation coordinates and saccade coor-

dinates and also based on the blink and pupil diameter, 35 features have been

extracted. The extracted features and their descriptions are shown in Table 4.2.

The extracted features are:

Fixation based features:

Equations of fixation-based features are provided from Equation 4.1 to Equation

4.8.

first dur indicates the first fixation duration.

first dur = End Time of First Fixation− Start Time of First Fixation (4.1)

fix freq =
Total Number of Fixations

Total Duration of Task in Seconds
(4.2)

fix count =
n∑

i=1

Number of Fixations in Task i (4.3)

time to first fix = Time at Onset of First Fixation− Start Time of Task (4.4)
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Table 4.2: Eye tracking features extracted for the classification of cognitive load

Events Feature Notations Feature Description Unit

Fixation

first dur First fixation duration [ms]
fix freq Fixation frequency [count/s]
fix count Fixation count
time to first fix Time to first fixation [ms]
min fix dur Minimum fixation duration [ms]
max fix dur Maximum fixation duration [ms]
tot fix dur Total fixation duration [ms]
avg fix dur Average fixation duration [ms]

saccade

sac freq Saccade frequency [count/s]
count sac Saccade count
min sac dur Minimum saccade duration [ms]
max sac dur Maximum saccade duration [ms]
tot sac dur Total saccade duration [ms]
avg sac dur Average saccade duration [ms]
min sac amp Minimum saccade amplitude [°]
max sac amp Maximum saccade amplitude [°]
tot sac amp Total saccade amplitude [°]
avg sac amp Average saccade amplitude [°]
min sac vel Minimum saccade velocity [°/s]
max sac vel Maximum saccade velocity [°/s]
tot sac vel Total saccade velocity [°/s]
avg sac vel Average saccade velocity [°/s]
min sac lat Minimum saccade latency [°/s]
max sac lat Maximum saccade latency [°/s]
tot sac lat Total saccade latency [°/s]
avg sac lat Average saccade latency [°/s]

Blink

blink freq Blink frequency [count/s]
blink count Blink count
time to first blink Time to first blink [ms]
min blink dur Minimum blink duration(ms) [ms]
max blink dur Maximum blink duration(ms) [ms]
tot blink dur Total blink duration(ms) [ms]
avg blink dur Average blink duration(ms) [ms]

Pupil Diameter avg pupil Average pupil diameter(mm) [ms]
Time duration tot time Time duration for entire task [ms]

min fix dur = min(Duration of Fixation1, . . . ,Duration of Fixationn) (4.5)

max fix dur = max(Duration of Fixation1, . . . ,Duration of Fixationn) (4.6)
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tot fix dur =
n∑

i=1

Duration of Fixationi (4.7)

avg fix dur =

∑n
i=1 Duration of Fixationi

Number of Fixations in the Trial
(4.8)

Saccade based features:

Equations of saccade-based features are provided from Equation 4.9 to Equation

4.26.

sac freq =
Number of Saccades

Total Duration of Task in Seconds
(4.9)

count sac =
n∑

i=1

Number of Saccades in Trial i (4.10)

min sac dur = min(Duration of Saccade1, . . . ,Duration of Saccaden) (4.11)

max sac dur = max(Duration of Saccade1, . . . ,Duration of Saccaden) (4.12)

tot sac dur =
n∑

i=1

Duration of Saccadei (4.13)

avg sac dur =

∑n
i=1 Duration of Saccadei

Number of Saccades in the Trial
(4.14)

min sac amp = min(Amplitude of Saccade1, . . . ,Amplitude of Saccaden) (4.15)

max sac amp = max(Amplitude of Saccade1, . . . ,Amplitude of Saccaden)

(4.16)

tot sac amp =
n∑

i=1

Amplitude of Saccadei (4.17)

avg sac amp =

∑n
i=1 Amplitude of Saccadei

Number of Saccades in the Trial
(4.18)
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min sac vel = min(Velocity of Saccade1,Velocity of Saccade2, . . . ,Velocity of Saccaden)

(4.19)

max sac vel = max(Velocity of Saccade1,Velocity of Saccade2, . . . ,Velocity of Saccaden)

(4.20)

tot sac vel =
n∑

i=1

Velocity of Saccadei (4.21)

avg sac vel =

∑n
i=1 Velocity of Saccadei

Number of Saccades in the Trial
(4.22)

min sac lat = min(Latency of Saccade1,Latency of Saccade2, . . . ,Latency of Saccaden)

(4.23)

max sac lat = max(Latency of Saccade1,Latency of Saccade2, . . . ,Latency of Saccaden)

(4.24)

tot sac lat =
n∑

i=1

Latency of Saccadei (4.25)

avg sac lat =

∑n
i=1 Latency of Saccadei

Number of Saccades in the Trial
(4.26)

Blink based features:

Equations of blink based features are provided from Equation 4.27 to Equation

4.33.

blink freq =
Number of Blinks in the Trial

Duration of the Trial in Seconds
(4.27)

blink count =
n∑

i=1

Number of Blinks in Triali (4.28)

time to first blink = Time at Onset of First Blink− Start Time of Trial (4.29)
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min blink dur = min(Duration of Blink1,Duration of Blink2, . . . ,Duration of Blinkn)

(4.30)

max blink dur = max(Duration of Blink1,Duration of Blink2, . . . ,Duration of Blinkn)

(4.31)

tot blink dur =
n∑

i=1

Duration of Blinki (4.32)

avg blink dur =

∑n
i=1 Duration of Blinki

Number of Blinks in the Trial
(4.33)

4. Pupil Diameter based feature: Equation of pupil diameter based fea-

ture is provided with Equation 4.34

avg pupil =

∑n
i=1 Pupil Sizei

n
(4.34)

5. Total Time Duration: Equation of Total time duration is provided with

Equation 4.35

tot time = End Time of Task− Start Time of Task (4.35)

The labeling of the dataset was carried out with the invaluable support of

domain experts. The extracted features were assigned labels corresponding to the

task’s difficulty level. Data collected during the TMT tasks, specifically TMT A

and B, were categorized into two distinct cognitive load levels: ’Low’ for TMT A

and B simple tasks and ’High’ for TMT A and B complex tasks. This labeling

was crucial for our analysis, as it allowed us to distinguish cognitive load levels in

the dataset accurately.

Outlier detection is crucial for ensuring data quality and integrity, preventing

the distortion of statistical analyses and model predictions. After feature extrac-

tion, we employed the Interquartile Range (IQR) method to identify and remove

outliers from the dataset. The IQR, calculated as the difference between the third

quartile (Q3) and the first quartile (Q1) of each feature (Equation (4.36)), served

as the criterion. Data points exceeding the upper or lower threshold were deemed

outliers and excluded from analysis. This process was executed separately for

’L’ and ’H’ classes, denoting low and high cognitive load. The resultant cleaned

dataset, free of outliers, was then utilized for subsequent analysis.
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IQR = Q3−Q1 (4.36)

Outliers were identified using the thresholds specified in the equations (4.37) and

(4.38)

Upper Threshold = Q3 + 1.5× IQR (4.37)

Lower Threshold = Q1− 1.5× IQR (4.38)

After removing outliers, Z-score normalization was applied to bring features

to a common scale, optimizing machine learning algorithms. This involves trans-

forming features with a mean of 0 and a standard deviation of 1 (Equation (4.39)).

Z-score normalization scales and centers the data around zero, making it suitable

for algorithms sensitive to feature distribution. This method retains information

about data spread and ensures the effective contribution of all features to model

training while referencing equations. (4.39).

Zscore =
Original Value−Mean

Standard Deviation
(4.39)

4.3.2 Machine Learning Model

Upon extracting pertinent features from eye-tracking data, the Random Forest

algorithm was applied to predict mental states based on cognitive load, effec-

tively distinguishing between low and high cognitive load. This ensemble learning

approach leveraged the 35 eye-tracking features, providing accurate and inter-

pretable classifications of cognitive load states.

In cognitive load detection based on 35 eye-tracking features, the Random For-

est algorithm, comprising essential components, plays a pivotal role. Initially, the

algorithm strategically selects a subset of features at each split point, mitigating

overfitting and enhancing model precision. Subsequently, it constructs multiple

decision trees from diverse data subsets, improving the model’s overall accuracy

by capturing various data features. The algorithm then integrates predictions

from these distinct decision trees to yield a final prediction. The Random Forest

algorithm is trained on the ET MT CL dataset. Once trained, it predicts indi-

vidual mental states based on unique eye tracking data, providing accurate and

interpretable classifications of low and high cognitive load states.

Feature importance analysis is crucial in machine learning, providing insights

into the relative importance of individual features, especially in complex algo-

rithms like Random Forest or Gradient Boosting, which lack inherent interpretabil-
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ity. In the mental state prediction model for cognitive load, initially considering

35 features yielded a 90% accuracy. However, feature importance analysis, illus-

trated in Figure 4.2, offered valuable insights into the relevance of these features,

enhancing the understanding of the model’s predictions. These plots serve as

indispensable tools, helping discern the contribution of features, facilitating fea-

ture selection, and improving model interpretability. This information is vital for

effectively communicating results in cognitive load assessment.

Figure 4.2: Feature importance plot based on Random Forest algorithm

4.3.3 Performance Evaluation of ECL-2 Model

The ECL-2 model, utilizing the Random Forest algorithm for classifying cogni-

tive load as low and high, underwent a comparative analysis with various machine

learning algorithms. These included Logistic Regression(LR), Support Vector Ma-

chine (SVM), Decision Tree (DT), K-Nearest Neighbors (KNN), and Naive Bayes

(NB).

Random Forest is an ensemble learning method which is used for both clas-

sification and regression problems. It is based on the concept of bagging, which
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is a type of ensemble learning technique. Random Forest builds multiple decision

trees and merges them together to get a more accurate and stable prediction.

The Logistic Regression algorithm is crucial for binary classification tasks,

where it effectively models the probability of an instance belonging to a specific

category. This is particularly advantageous in scenarios with categorical depen-

dent variables. The logistic function, integral to its inference, transforms a linear

combination of features into a range between 0 and 1, representing probabilities.

The formula for Logistic Regression is expressed as (4.40)

P (Y = 1) =
1

1 + e−(b0+b1X1+...+bnXn)
(4.40)

Support Vector Machine (SVM) proves invaluable in high-dimensional spaces,

demonstrating versatility in handling both linear and non-linear classification chal-

lenges. SVM’s inference involves seeking the hyperplane that best separates data

points into distinct classes, expressed by the formula (4.41)

f(x) = ⟨w, x⟩+ b (4.41)

Decision Trees are renowned for their intuitive interpretation and ability to

capture complex relationships in data, particularly robustness to outliers. Decision

Trees’ inference involves recursively splitting the data based on features, with

decision rules at each node determined by conditions on features.

K-Nearest Neighbors (KNN), effective in scenarios where the decision boundary

is not well-defined, relies on the similarity between instances. The class of a data

point is determined by the majority class among its k nearest neighbors.

Naive Bayes, a probabilistic classifier based on Bayes’ theorem, offers compu-

tational efficiency and efficacy across various applications. The inference for Naive

Bayes is expressed through Bayes’ theorem (4.42)

P (C|X) =
P (X|C)P (C)

P (X)
(4.42)

These algorithms play distinct roles in classifying cognitive load based on 35

eye gaze features, each leveraging its unique characteristics for effective model

performance. Each model underwent a rigorous evaluation employing a compre-

hensive set of performance metrics to assess their effectiveness in cognitive load

classification. The comparison of each model based on the performance measures

is shown in Table 4.3

The accuracy, precision, recall, F1 Score used in the performance analysis of

the ECL-2 model are calculated based on the formula (4.43) to (4.46), respectively.
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Accuracy =
TP + TN

TN + TP + FN + FP
× 100 (4.43)

Precision =
TP

TP + FP
× 100 (4.44)

Recall =
TP

TP + FN
× 100 (4.45)

F1 Score =
2× Precision× Recall

Precision + Recall
× 100 (4.46)

Table 4.3: Performance evaluation of ECL-2 model for the classification of cogni-
tive load

ML
Algorithms

Accuracy(%) Precision(%) Recall(%) F1 Score (%)

LR 90 88 91 89
RF 90 88 91 89
SVM 88 88 88 88
DT 88 90 84 87
KNN 88 88 88 88
NB 87 85 88 86

Notably, among the various models, it became evident that Random Forest

consistently outperformed the others, demonstrating superior accuracy, precision,

recall, and F1 score in distinguishing between low and high cognitive load. This

marked superiority in Random Forest’s performance underscores its effectiveness

in accurately predicting mental states based on cognitive load levels, particularly

in distinguishing between low and high cognitive load, utilizing the extracted eye-

tracking features. All models’ confusion matrices are presented in Figure 4.3,

visually representing their classification performance.

In refining the mental state prediction model for cognitive load, thoughtful

feature removal based on importance analysis significantly enhanced model per-

formance. Careful consideration was given to optimizing comprehension, reducing

overfitting risks, and enhancing training efficiency. The removal of less critical

features, such as “min sac lat”, “min sac due”, and “time to first fix” resulted in

a streamlined model with improved accuracy, achieving 94%. Notably, by utiliz-

ing feature importance, ECL-2 achieved an impressive accuracy of 94%, and the

model’s efficiency was further highlighted as it utilized only 32 features instead of

the original 35. This reduction in features underscores the significance of feature

importance analysis in streamlining the model while maintaining high accuracy,

emphasizing its pivotal role in optimizing the cognitive load classification process.
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Figure 4.3: Confusion matrix for machine learning algorithm comparison in cog-
nitive load classification

The detailed performance analysis, as presented in Table 4.4, solidifies the

efficacy of the ECL-2 model in comparison to alternative machine learning ap-

proaches. Feature importance analysis and removal were pivotal in achieving a

more accurate and interpretable model.

4.3.4 Data Exploration and Statistical Analysis

A comprehensive statistical analysis was performed to understand the disparities

between data collected during the simple and complex tasks of TMT. This analysis

included three key steps:

1. Boxplot Analysis: Boxplot analysis visually represents data distribution

for each cognitive load level, providing insights into central tendency, spread, and

potential outliers within each group. Figure 4.4 illustrates essential features that

play a crucial role in highlighting substantial differences between ’Low’ and ’High’

cognitive load conditions. These visual representations offer a clear understanding

of variations in central tendency and data spread within each condition, pivotal

for comprehending the impact of cognitive load on the investigation.

78



Table 4.4: Analysis based on feature importance using Random Forest

Number
of
Features

Features
removed

Accuracy
(%)

Precision
(%)

Recall
(%)

F1 Score
(%)

35 NIL 90 88 91 89

32
min sac lat
min sac dur

time to first fix
94 94 94 94

30

min sac lat
min sac dur

time to first fix
blink freq

avg blink dur

93 91 94 92

29

min sac lat
min sac dur

time to first fix
blink freq

avg blink dur
blink count

90 88 91 89

29

min sac lat
min sac dur

time to first fix
blink freq

avg blink dur
max blink dur

91 91 91 91

Figure 4.4: Boxplot analysis. ’L’: cognitive load low, ’H’: cognitive load high

A significant increase in cognitive load is observed during the complex TMT

task compared to the low cognitive load condition. This insight sheds light on

the dynamics of cognitive resource allocation during task execution. The demand-

ing nature of the complex TMT task, requiring cognitive functions like working

memory and sustained attention, leads to heightened cognitive engagement. In-
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dividuals allocate more mental resources to meet these demands, resulting in a

noticeable upswing in cognitive load, as evidenced by the boxplot analysis. This

increase in cognitive load is central to the research, directly influencing various

facets of task performance.

2. Welch Two-Sample t-Test: Following boxplot analysis, the Welch two-

sample t-test assessed 35 eye gaze features, chosen for comparing ’TMT’ simple

and complex tasks with potentially unequal variances or sample sizes (Table 4.5).

The primary aim was to determine whether the means of ’Low’ and ’High’ cogni-

tive load groups exhibited significant differences, testing the null hypothesis of no

substantial impact of cognitive load on these features.

The null hypothesis (H0) was established as follows: there is no significant

difference between the eye gaze features when comparing the ’Low’ and ’High’

cognitive load groups. This hypothesis suggested that cognitive load levels did

not substantially influence these features.

The obtained p-values were predominantly below 0.001, signaling significant

differences in most eye gaze features between ’Low’ and ’High’ cognitive load

groups. Rejecting the null hypothesis, the findings suggest a notable difference in

eye gaze features during TMT simple and complex tasks. These results underscore

the increasing cognitive load during the complex TMT task, emphasizing the

importance of these eye gaze features as indicators of cognitive workload in this

research.

3. one-way analysis of variance (ANOVA) Test: To validate our findings

and explore differences across groups, a one-way analysis of variance (ANOVA)

test was applied (Table 4.6). Significant results suggest differences in cognitive

load levels between ’TMT’ simple and complex tasks. Many eye gaze features

exhibited highly significant p-values below 0.001, 0.01, or 0.05, affirming statistical

significance in the ANOVA test.

The F-statistic in an ANOVA test determines if there are significant differ-

ences between group means. A high F-statistic indicates significant differences

between group means, leading to rejection of the null hypothesis; a low F-statistic

suggests insignificant differences and retention of the null hypothesis. Based on

the values obtained and displayed in Table 4.6, significant differences in features

are confirmed.

The Eye gaze features analyzed with ANOVA displayed significant differences

between ’TMT’ simple and complex tasks, affirming distinct cognitive load levels.

Variances in fixation, saccade, blink, pupil, and total time behaviors underscore

the dynamic cognitive resource allocation during these tasks, providing valuable

insights into cognitive load dynamics.

The feature importance plot as shown in Figure 4.2 indicated that certain fea-
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Table 4.5: Comparison of cognitive load classification results using Welch two
sample t-test

Feature
Cognitive Load:Low

Mean(SD)
Cognitive Load:High

Mean(SD)
P-value

first dur 1074.13 (987.2) 1077.24 (1734.21) 0.98
fix freq 1.74 (0.92) 1.58 (0.88) 0.1
fix count 13.32 (7.16) 51.92 (38.43) p<0.001
time to first fix 40.32 (102.25) 103.06 (972.33) 0.4
min fix dur 154.8 (196.67) 87.11 (111.52) p<0.001
max fix dur 2053.06 (1235.09) 3797.22 (2383.98) p<0.001
tot fix dur 7531.67 (3485.73) 30977.81 (17475.26) p<0.001
avg fix 745.09 (540.01) 844.31 (690.3) 0.14
sac freq 3.5 (1.73) 3.59 (1.58) 0.62
count sac 29.52 (18.56) 124.36 (91.73) p<0.001
min sac dur 49.42 (2.82) 49.51 (2.54) 0.74
max sac dur 96.58 (8.55) 99.71 (1.28) p<0.001
tot sac dur 1837.49 (1140.08) 7850.27 (5802.17) p<0.001
avg sac dur 62.98 (5.86) 63.09 (2.64) 0.83
min sac amp 0.73 (0.52) 0.43 (0.3) p<0.001
max sac amp 16.18 (8.63) 20.21 (8.25) p<0.001
tot sac amp 107.69 (70.89) 503.13 (400.91) p<0.001
avg sac amp 3.75 (1.22) 3.87 (0.75) 0.26
min sac vel 0.01 (0.01) 0.01 (0.01) p<0.001
max sac vel 0.19 (0.09) 0.24 (0.08) p<0.001
tot sac vel 1.57 (1.01) 7.31 (5.7) p<0.001
avg sac vel 0.05 (0.01) 0.06 (0.01) 0.05
min sac lat 16.83 (1.8) 16.64 (0.0) 0.16
max sac lat 1373.66 (950.62) 3401.42 (3534.74) p<0.001
tot sac lat 5310.2 (3275.84) 24536.6 (14679.49) p<0.001
avg sac lat 229.16 (174.52) 283.27 (243.74) p<0.05
blink freq 0.11 (0.23) 0.11 (0.18) 0.99
blink count 0.87 (1.64) 4.11 (7.01) p<0.001
time to first blink 1686.7 (2672.08) 10163.42 (12476.15) p<0.001
min blink dur 62.23 (117.94) 92.03 (132.71) p<0.05
max blink dur 92.57 (169.76) 533.21 (2426.41) p<0.05
tot blink dur 150.4 (319.33) 1060.71 (3072.21) p<0.001
avg blink dur 73.31 (127.3) 212.93 (650.6) p<0.01
avg pupil 4.09 (0.64) 4.3 (0.75) p<0.01
tot time 8290.22 (3537.59) 34390.36 (18471.89) p<0.001

tures were less significant in determining the model’s performance. Upon removing

these features and reclassifying, the model demonstrated improved accuracy, as

shown in Table 4.4. Subsequent Welch two-sample t-tests and ANOVA tests re-

vealed that many eye gaze features exhibited significant differences, with p-values

under 0.05. Interestingly, some features that initially displayed lower significance
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Table 4.6: Comparison of cognitive load classification results using one-way
ANOVA test

Feature F-statistic P-value
first dur 0 0.98
fix freq 2.75 0.1
fix count 165.7 p<0.001
time to first fix 0.7 0.4
min fix dur 15.17 p<0.001
max fix dur 71.65 p<0.001
tot fix dur 294.24 p<0.001
avg fix 2.17 0.14
sac freq 0.25 0.62
count sac 174.51 p<0.001
min sac dur 0.11 0.74
max sac dur 22.2 p<0.001
tot sac dur 175.74 p<0.001
avg sac dur 0.05 0.83
min sac amp 42.54 p<0.001
max sac amp 19.32 p<0.001
tot sac amp 160.36 p<0.001
avg sac amp 1.29 0.26
min sac vel 37.74 p<0.001
max sac vel 23.91 p<0.001
tot sac vel 167.4 p<0.001
avg sac vel 3.72 0.05
min sac lat 2 0.16
max sac lat 52.15 p<0.001
tot sac lat 277.72 p<0.001
avg sac lat 5.53 p<0.05
blink freq 0 0.99
blink count 34.32 p<0.001
time to first blink 75.02 p<0.001
min blink dur 4.78 p<0.05
max blink dur 5.58 p<0.05
tot blink dur 14.77 p<0.001
avg blink dur 7.54 p<0.01
avg pupil 7.97 p<0.01
tot time 327.33 p<0.001

in the feature importance plot and were subsequently removed for classification

did not show a significant difference in these statistical analyses. This suggests

their removal allowed other features to play a more prominent role in the model’s

classification accuracy.
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Table 4.7: Comparison with the existing CL detection models

Model Stimuli Features Algorithm Observation

[40]
Military
aviation
simulator

Pupil dilation,
fixation and
saccade count

ANOVA,
t- test

Estimating
pilot’s
cognitive load

[168]
Driving
simulator

pupil size,
blink rate
and fixation time.

Statistical
analysis

Detection of
cognitive load
of drivers

[42]
Coding
problems

Fixation,
Saccades,
blinks

NB, RF
MLP, SVM,
KNN, LR,
Decision Tree

Prediction
of stressful
technical
interview
settings

[41]

Difficult
and easy
mental
calculations

inter-trial
and intra-trial
changes in
pupil diameter

ANCOVA

Observed
significant
difference in
eye measures
during easy
and difficult
tasks.

ECL-2 TMT

35 features
based on fixation,
saccade, blink,
pupil diameter
and time

RF
Classified
into low
and high CL

4.4 Discussion

A comparison of the ECL-2 model with the existing CL detection models is shown

in Table 4.7. The ECL-2 model, designed to detect cognitive load, particularly

focused on the stimuli from the Trail Making Test (TMT) tasks, sets itself apart

from existing models that have utilized various stimuli like military aviation sim-

ulators, driving simulators, coding problems, and mental calculations. With the

capacity to extract 35 features based on fixation, saccade, blink, pupil diameter,

and time, the ECL-2 model employs the Random Forest algorithm for classifica-

tion, distinguishing it from other models that use a range of algorithms. Moreover,

while the ECL-2 model classifies subjects into low and high cognitive load cate-

gories, other models have different objectives, such as estimating a pilot’s cognitive

load, detecting the cognitive load of drivers, predicting stressful technical inter-

view settings, and observing significant differences in eye measures during easy

and difficult tasks.
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4.5 Conclusion

The ECL models offer robust frameworks for assessing the impact of cognitive load

on an individual’s mental state. ECL-1 model focuses on mathematical task com-

plexity, revealing correlations between eye gaze features like pupil diameter and

blink frequency with cognitive load. This approach enhances our comprehension

of cognitive load dynamics, shedding light on the intricate relationship between

task complexity and cognitive load variations.

The ECL-2 model successfully classifies low and high cognitive load states,

holding significant implications for psychology and cognitive science. Eye-tracking

data offers a detailed understanding of how cognitive load influences mental states,

from relaxation to heightened stress. The systematic approach to data collection

and feature extraction, combined with machine learning algorithms, enhances ac-

curacy in predicting cognitive load levels. Using the ET TMT CL dataset with

TMT tasks as stimuli, participants’ vocal feedback ensured task compliance, with

deviations leading to increased cognitive load. Applying various machine learning

algorithms, the Random Forest consistently outperformed others, accurately dis-

tinguishing between low and high cognitive load based on extracted eye-tracking

features. The Welch two-sample t-tests and ANOVA tests revealed significant dif-

ferences among eye gaze features, contributing to a better understanding of their

role in cognitive load classification.

The ECL models enhance our understanding of the dynamic relationship be-

tween cognitive load and cognitive states. Its application promises to optimize

performance and cognitive assessment in various contexts, offering valuable in-

sights into the impact of cognitive load on mental well-being and efficiency.

This chapter focused on classifying mental state parameters using eye tracking

measures, specifically addressing cognitive load using ECL-1 and ECL-2 models.

The next chapter will focus on another mental state parameter, cognitive impair-

ment.
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Chapter 5

Classification of Cognitive

Impairment using ETMT Model

5.1 Introduction to Cognitive Impairment

In the modern era, people’s lives have undergone significant transformations, lead-

ing to challenges in memory recall, comprehension of new information, retention

of details, sustained attention, and sound judgment, all of which can impact their

daily functioning [14]. These subtle alterations in cognitive functions can pro-

foundly affect an individual’s behavior. When individuals struggle with memory,

learning, and focus on their tasks, it may indicate a decline in cognitive abilities

or cognitive impairment [169].

Cognitive impairment is recognized as a highly expensive condition, factoring

in the costs associated with medications and nursing care facilities [105]. Unfor-

tunately, cognitive impairment is considered incurable [45, 170]. Nevertheless, its

progression can be slowed down through timely diagnosis and appropriate care.

There is a substantial increase in the number of people affected by this condi-

tion [107], making the rapid growth of dementia cases a significant public health

concern. Early detection and prompt intervention can effectively mitigate the

advancement of cognitive impairment [106].

While cognitive impairment is often observed in individuals over the age of

65, it is not confined to a specific age group. Other risk factors include a family

history of the condition, brain injuries, exposure to harmful substances, and brain

irradiation [108]. Additionally, education level, as well as the presence of other

medical conditions, can contribute to cognitive impairment. Some medications,

vitamin deficiencies, depression, and various health issues can also lead to mild

cognitive impairment (MCI) [171]. The spectrum of cognitive impairment ranges

from mild to severe, with the transitional stage from subtle cognitive abnormalities
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to early-stage dementia termed as MCI [172, 173]. Individuals with mild cogni-

tive impairments exhibit slight changes in their cognitive functions but can still

manage their daily activities. In contrast, severe impairment can result in an in-

ability to communicate effectively, understand the significance of things, and live

independently. Cognitive impairment can affect various aspects, including mental

flexibility, concentration, visual attention, and focused attention.

Traditional dementia detection relies on tests like MMSE, MoCA, and TMT,

known for accuracy but criticized for being time-consuming and stressful, espe-

cially for patients with writing challenges [35, 109, 111]. Eye tracking technology,

recognized for assessing cognitive and neurological conditions [174], offers a less

intrusive method for monitoring eye movements, providing a promising approach

for evaluating cognitive decline [175].

ETMT model leverages fuzzy inference systems to assess an individual’s mental

state based on their cognitive impairment. The study’s primary objective is to

extract novel high-level features from eye-tracking data, using fuzzy rules to

detect various deficits contributing to cognitive impairments. The model goes

beyond by offering detailed scores that shed light on visual search speed, focused

attention, and an overall cognitive impairment score. These scores provide

valuable insights into an individual’s mental state.

Acknowledging its significant role in identifying cognitive issues, we propose the

development of the Eye Tracking-Based Trail Making Test (ETMT) as a screening

tool to support healthcare professionals [108]. This enables extracting a broader

range of features, promising more comprehensive inferences in detecting early signs

of cognitive decline and guiding targeted interventions.

The ETMT model’s architecture is outlined in section 5.2. It further elaborates

on the feature extraction process in section 5.2.1, the visual search speed fuzzy

inference system in section 5.2.3, the focused attention fuzzy inference system in

section 5.2.4, and the adaptive neuro-fuzzy inference system (ANFIS) in section

5.2.5. The results of the model’s operation are analyzed in section 5.3, followed by

a discussion of the model’s various achievements in comparison to state-of-the-art

models in section 5.4. Finally, the conclusion is presented in section 5.5.

5.2 ETMT Model Architecture

The ETMT model’s system architecture is depicted in Figure 5.1. Eye-tracking

dataset ET TMT CI is used for the ETMT model, and the data collection proce-

dure was explained in chapter 3. The raw eye tracking data collected during the

experiments underwent comprehensive data analysis. Gaze features were meticu-

lously extracted from the eye tracking data, shedding light on participants’ gaze
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behavior, attentional focus, and visual search speed. These features provided

quantifiable insights into cognitive processes that traditional assessments could

not easily capture. The extracted features were then fed into the ETMT model

to produce three scores: visual search speed, focused attention, and overall cog-

nitive impairment. Two separate fuzzy inference systems, FIS-1 and FIS-2 were

employed to calculate visual search speed and focused attention scores, while an

Adaptive Neuro-Fuzzy Inference System (ANFIS) based on all the extracted fea-

tures determined the overall cognitive impairment score.

Figure 5.1: System architecture of ETMT model.

Figure 5.2: Detailed architecture of ETMT model.

The cognitive impairment score provides insight into a patient’s overall cogni-

tive functioning. However, the visual search speed and focused attention scores

obtained through our ETMT model can offer psychologists a clear understanding

of the patient’s cognitive processing and enable tailored treatment approaches.

These scores serve as sensitive markers, pinpointing the exact cognitive deficit

of the patient. Different cognitive impairments may manifest different types of
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deficits, and the detailed scores can facilitate early diagnosis and guide psychol-

ogists to initiate appropriate treatment that helps delay the advancement of the

disease. The detailed architecture of the ETMT model is shown in Figure 5.2.

The following section explains each module of the ETMT model.

5.2.1 Feature Extraction

Raw data in the ET TMT CI included timestamps, stimulus types, gaze details,

and pupil diameter information collected from 31 participants. The Low-level

and middle-level features were extracted using the BeGaze 3.7 software and are

listed in Table 5.1. Low-level features primarily focused on fixation-based metrics

(FL1 to FL4). Middle-level features (FM1 to FM5) were extracted based on user-

defined Areas of Interest (AOIs) corresponding to each number and alphabet in

the stimulus. AOIs are sub-regions used to extract specific metrics. A total of 13

features were extracted from the ET TMT CI dataset.

Table 5.1: Low-level, Middle-level and High-level features extracted from
ET TMT CI dataset

Type Feature Description
Low-level Fixation Count(FL1) Total number of fixation points

Low-level Fixation Time [ms](FL2)
Sum of the time duration
of each fixation point

Low-level Fixation Time [%](FL3)
Percentage of fixation time
with respect to total time

Low-level
Fixation Duration
Average[ms](FL4)

Average of all the fixation durations
concerning the trial

Middle-level Dwell time(FM1) Duration of gaze on a specific AOI

Middle-level Dwell Time [%](FM2)
Percentage of Dwell time
with respect to total time

Middle-level Glance(FM3) Count of fixation points in an AOI

Middle-level Revisits(FM4)
Count of repeated gazes
at a specific spot or AOI.

Middle-level
First Fixation
duration[ms](FM5)

Time duration of
first fixation in an AOI

High-Level Scanpath Score(FH1)

Score based on how closely
each participant’s
eye movement pattern
aligns with the expected scanpath

High-Level Total Time(FH2) Total completion time
High-Level Error Rate(FH3) Rate of mistakes during TMT task

High-Level Inattentional Blindness(FH4)
Fail to perceive unexpected
stimuli or events

The middle-level features are calculated based on the formula 5.1 to 5.5. The

88



middle-level feature dwell time(FM1) is a crucial metric in eye tracking, represent-

ing the cumulative time spent looking at a specific AOI. It encompasses the total

duration of fixations and saccades within the AOI [176]. The dwell time serves as

a reliable indicator of interest, with longer duration exceeding 500ms suggesting a

higher level of interest in the AOI, while shorter duration below 100 ms suggest lim-

ited engagement and processing. The feature FM2, dwell time percentage, is the

ratio of time spent on a specific area of interest to the total observation time, ex-

pressed as a percentage. Glance (FM3) is the total count of fixation points within

an Area of Interest (AOI), representing the number of times the eyes fixate on that

specific region. Revisits(FM4) quantify how often a participant returns their gaze

to a specific area, revealing sustained interest and highlighting significant focal

points in the observed content or environment. The first fixation duration(FM5)

represents the time spent looking at a specific Area of Interest (AOI) during the

initial gaze, providing insight into what initially captures attention in a scene.

Dwell Time =
∑

Time(Fixation Points in AOI) (5.1)

Dwell Time % =

(∑
Time(Fixation Points in AOI)

Total Time

)
× 100% (5.2)

Glance =
∑

fixation points in AOI (5.3)

Revisits =
∑

revisits to the AOI (5.4)

First fixation duration = time(first fixation in AOI) (5.5)

High-level features (FH1 to FH4) were derived from low-level and middle-

level features using specific algorithms detailed in Algorithms 5.1, 5.2, and 5.3.

The feature scanpath score (FH1) was extracted based on Algorithm 5.1, which

generates a scanpath string. A scanpath is a visualization that shows the sequence

of fixations and saccades in the order in which it is visited. The scanpath string

specifies the sequence of fixations visited in order. The Levenshtein distance was

calculated between each participant’s scanpath string, and the expected scanpath

string [14]. The expected scanpath string is the expected order of viewing the AOIs

in the stimulus. The calculated Levenshtein distance is considered the scanpath

score [177]. The overall amount of time required to complete the entire task is

the feature total time (FH2). The feature error rate (FH3) is the count of missed
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targets. While viewing the AOIs in the specified order, there can be fixations

outside the AOIs and wrong fixations. So, the total count of those errors indicates

the error rate. Inattentional blindness (FH4) occurs when a person fails to notice

something completely visible to them [178]. It indicates the attentional abilities

and working memory of a person [179]. Lower working memory is observed in

people with inattentional blindness [180].

Algorithm 5.1 Scanpath String Generation

Define the AOIs
Get the fixations
i← 1
j ← 1
N1← count fixation
N2← count AOIs
while i ̸=N1 do

while j ̸=N2 do
if Fixation falls within AOI then

Print AOI Name
end if

end while
end while

Algorithm 5.2 Error Rate

Define the AOIs
Get the fixations
error rate← 1
i← 1
j ← 1
N1← count fixation
N2← count AOIs
while i ̸=N2 do

while j ̸=N1 do
if Fixation not falls within AOI then

error rate+=1
end if

end while
end while
Print error rate

5.2.2 Visual Search Speed Fuzzy Inference System (FIS-1)

The specific score on the visual search speed of the participant can give inference

to the exact deficit of those participants. The TMT follows a visually guided

task where the participants need to visually attend each AOI in a specific order
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Algorithm 5.3 Inattentional Blindness

Require: Scanpath String
Ensure: Inattentional Blindness Score
function CalculateInattentionalBlindness(scanpath)

count← 0
i← 0
N ← length(scanpath)
while i < N do

if repetition of a pattern in the scanpath starting from index i then
count← count + 1
i← i + length(pattern) ▷ Skip the repeated pattern

else
i← i + 1

end if
end while
return count

end function

[181]. The visual search pattern of an individual may differ from each other [182].

The visual search speed score indicates the efficiency in visual search and speed

of completion. Gaze patterns of an individual are the indicators of their visual

behavior [183,184]. An individual’s cognitive state and activities can be discovered

based on their visual behavior [185].

The visual search speed fuzzy inference system(FIS) considers the high-level

features FH1 and FH2 as the inputs and generates the score based on the generated

rules [186]. The FH1 is generated based on the comparison with the scanpath,

which followed the correct path in completing the task [187]. FH2 is the time

required to complete the entire task. The completion time indicates the speed

and focuses on identifying each AOI. The Mamdani model for visual search speed

FIS is shown in Figure 5.3. The parameters of visual search speed FIS are given

in Table 5.2.

Figure 5.3: Visual Search Speed Fuzzy Inference System (FIS-1), submodule
within the ETMT Model.

By utilizing this visual search speed score, the fuzzy inference system can pro-
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Figure 5.4: Focused Attention Fuzzy Inference system (FIS-2), submodule within
the ETMT Model.

vide valuable insights into various deficits, particularly those related to visual

attention and processing speed. An individual’s visual attentional efficiency and

effectiveness may be reflected in their visual search speed score. The person with

deficits in visual attention may exhibit slower scanpath scores (FH1) compared

to the reference path [188]. This could indicate difficulties in properly attending

to and processing relevant visual stimuli within the task. Processing speed refers

to how individuals perceive, analyze, and respond to visual information. In the

fuzzy inference system context, people with processing speed deficits might ex-

hibit longer total completion times (FH2) than those without deficits. A slower

completion time indicates difficulty in processing visual information effectively and

quickly enough to make decisions. Visual Search Speed FIS provides an indication

of deficits in processing speed and visual attention impairments.

5.2.3 Focused Attention Fuzzy Inference System (FIS-2)

Focused attention, the ability to concentrate on a task without distractions, is

a critical cognitive function. On the other hand, sustained attention involves

maintaining a consistent behavioral response during an ongoing activity. The

Focused Attention Fuzzy Inference System (FIS) utilizes high-level features FH3

and FH4 as inputs to generate a score based on predefined rules. Specifically, FH3,

which represents the error rate, and FH4, indicative of inattentional blindness, play

key roles in detecting focused attention. Figure 5.4 depicts the Mamdani model

for the Focused Attention FIS, while Table 5.2 provides the parameters.

The Focused Attention FIS’s output score holds valuable information concern-

ing various deficits, including motor impairment, challenges in attentional disen-

gagement, memory deficits, neuropsychological impairments, and issues related

to executive functioning. An elevated error rate, one of the input parameters,

indirectly suggests motor impairment as it reflects difficulties in executing motor

tasks accurately.
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Table 5.2: Parameters of Visual Search Speed FIS and Focused Attention FIS.

Parameter Description
Fuzzy structure Mamdani
Membership function Trapezoidal
Number of membership functions for each input 3
Number of inputs 2
Number of outputs 1
Rules generated 9

Attentional disengagement, which pertains to the ability to shift focus from

one task or stimulus to another, can be linked to higher levels of inattentional

blindness. This may signify a deficit in attentional disengagement, where individ-

uals struggle to divert their focus from the primary task to attend to unexpected

stimuli.

Memory deficits, associated with challenges in storing and retrieving informa-

tion, can be inferred from the Focused Attention FIS. Higher error rates and in-

creased inattentional blindness might indicate difficulties in managing task-related

information, indicating potential memory deficits. Neuropsychological impair-

ment, a spectrum of cognitive deficits resulting from neurological conditions or

brain injuries, can be suggested by a lower focused attention score, reflecting per-

formance on the task in terms of error rate and inattentional blindness inputs.

Executive functioning, encompassing cognitive processes responsible for goal-

directed behaviors like planning, problem-solving, and cognitive flexibility, can

also be indirectly assessed using the Focused Attention FIS. Elevated error rates

and increased inattentional blindness may indicate challenges in effective executive

functioning. In summary, the Focused Attention FIS provides insights into mo-

tor impairment, attentional disengagement, memory deficits, neuropsychological

impairments, and executive functioning [189].

5.2.4 Adaptive Neuro-Fuzzy Inference System (ANFIS)

The overall cognitive impairment score was generated by considering all extracted

features. The combined low-level, middle-level, and high-level features underwent

clustering using the K-Means algorithm with k set to 3. This clustering process

involved using all features from the 31 participants as input, grouping the samples

into three clusters based on data similarities. Subsequently, these clusters were

assigned labels based on expert knowledge.

The next step involved inputting the labeled clustered data into the ANFIS.

ANFIS is a hybrid model that combines the strengths of an adaptive artificial neu-

ral network (ANN) and an FIS [190, 191]. This hybrid nature offers advantages

93



Figure 5.5: Architecture of ANFIS for overall cognitive impairment score, sub-
module within ETMT Model.

from both approaches. ANFIS follows the Takagi-Sugeno fuzzy model, gener-

ating fuzzy IF-THEN rules based on input-output relationships. It employs a

hybrid learning algorithm that merges the backpropagation technique with the

least squares approach.

ANFIS comprises five layers: the fuzzy layer for fuzzifying inputs, the product

layer to calculate rule firing strength through multiplication, the normalization

layer for normalizing fuzzy strengths, the de-fuzzy layer to perform defuzzification

of inputs, and the output layer, a single node that sums incoming signals.

The detection of the overall cognitive impairment score involved providing

the ANFIS model with the labeled low-level, middle-level, and high-level features

from all 31 participants as input. The ANFIS architecture for this purpose is

illustrated in Figure 5.5, and the training model’s parameters are detailed in Table

5.3. [190,191]

Table 5.3: Parameters of ANFIS for Overall Cognitive Impairment Score.

Parameter Description
Fuzzy structure Sugeno
Membership function Gaussian
Number of membership function 3
Number of inputs 13
Number of outputs 1
Optimization Method Hybrid
Training number of epoch 30
Training samples 75%
Testing samples 25%
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Figure 5.6: (a) Scanpath; (b) Visual Search Speed FIS; (c) Focused Attention FIS
of
Participant 1 with High Visual Search Speed score and Focused Attention score.

5.3 Result Analysis

ETMT serves as a screening tool for assessing an individual’s mental state, pri-

marily focusing on their cognitive impairment. The system generates scores based

on various cognitive parameters, providing valuable insights into the individual’s

cognitive well-being. In the results analysis, we first examine the ETMT’s capac-

ity to generate scores by extracting novel features from eye-tracking data, offer-

ing valuable insights into cognitive impairment. Subsequently, we compare the

ET TMT CI dataset with traditional TMT datasets, assessing its potential as an

effective screening tool for cognitive health assessment. The following subsection,

5.3.1, focuses on the analysis of the generation of scores based on the cognitive

impairment of a person, and 5.3.2 focuses on the comparison of the ET MT CI

dataset with the traditional paper-pencil TMT dataset

5.3.1 Generation of Scores

The ETMT model employs two fuzzy inference systems, FIS-1 and FIS-2, to gener-

ate individual scores for visual search speed and focused attention. Subsequently,

an overall cognitive impairment score is computed through an ANFIS model, con-
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Figure 5.7: (a) Scanpath (b) Visual Search Speed FIS (c) Focused Attention FIS
of
Participant 2 with Medium Visual Search Speed score and Focused Attention
score.

sidering all the relevant extracted features. The fuzzy inference systems are mea-

sured on a scale of 1 to 10, and the ranges were categorized as scores from 1 to

4 as low, 5 to 7 as medium, and 8 to 10 as high. Since it is fuzzy based system

there is a degree of overlap at the boundaries.

The FIS-1, with the features, scanpath score and total time, assesses visual

search speed, offering insights into processing speed and visual attention im-

pairments. Meanwhile, the FIS-2, relying on the features error rate and inten-

tional blindness, evaluates focused attention, providing a detailed understanding

of deficits in motor function, attentional disengagement, memory, neuropsycho-

logical function, and executive functioning.

Examining the results for Participant 1, it was observed that they received a

low cognitive impairment score. This score indicates strong cognitive health. Par-

ticipant 1 demonstrated quick visual search speed and excellent focused attention,

with a lower error rate and a complete absence of inattentional blindness. As

illustrated in Figure 5.6, this outcome signifies their sound cognitive state [192].

In contrast, Participant 2’s results, displayed in Figure 5.7, indicate a moderate

cognitive impairment score. Participants with such scores often exhibit average

visual search speed and reasonable, focused attention. In this case, Participant 2
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displayed a medium error rate and signs of inattentional blindness. Notably, the

participant repeatedly visited certain areas (AOIs 6 and 7) without detecting them,

a characteristic of inattentional blindness. Individuals with more pronounced cog-

nitive impairments may be particularly susceptible to inattentional blindness due

to difficulties maintaining attention and processing unexpected stimuli even within

their visual field. These impairments can stem from deficits in various cognitive

functions, including attention, working memory, and executive functions.

The overall cognitive impairment score is generated by the ANFIS model,

which considers all extracted features. A split of 25% for testing and 75% for

model training was used. The ANFIS model underwent training for a range of

epochs, from 20 to 50, with the analysis revealing that an epoch of 30 produced

a lower Root Mean Square Error (RMSE). The error statistics pertaining to the

ANFIS model can be found in Table 5.4.

Table 5.4: Error statistics of ANFIS model for cognitive impairment score.

Error Statistics Epoch = 20 Epoch = 30 Epoch = 40 Epoch = 50
RMSE 0.6702 0.3581 0.6504 0.8041

Error Mean -0.0851 0.1262 -0.0988 0.1835
Error STD 0.7107 0.3583 0.6873 0.8369

Each individual receives a comprehensive evaluation comprising a detailed vi-

sual search speed score, a focused attention score, an overall cognitive impairment

score, and specific indications of deficits. Figure 5.8 illustrates the comprehensive

score for Participant 1. The accompanying scanpath, created during the TMT

task, is represented by the string ’6 1 2 3 4 5 6 7 8,’ resulting in a scanpath score

of 1. This scanpath, characterized by a solitary task error and the absence of

inattentional blindness, signifies a high level of focused attention. Such charac-

teristics contribute to elevated visual search speed and focused attention scores,

ultimately yielding a lower cognitive impairment score. Further scrutiny of the

visual search speed score reveals that Participant 1 exhibits minimal deficits in

visual attention and processing speed. Meanwhile, the focused attention score

provides insight into potential deficits in motor skills, attentional disengagement,

memory, neuropsychological functions, and executive functioning. In Participant

1’s case, these deficits are minimal, suggesting limited impairment.

Turning to Figure 5.9, it presents the score for Participant 2. This partici-

pant demonstrates moderate cognitive impairment, reflected in their visual search

speed and focused attention scores. Participant 2’s scanpath exhibits an irregular

and disorganized pattern compared to that of Participant 1, resulting in a lower

visual search speed. Multiple task errors and potential instances of inattentional

blindness indicate a reduced level of focused attention compared to Participant 1.
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Figure 5.8: Detailed score generated by ETMT model for Participant 1 with low
cognitive impairment.

Figure 5.9: Detailed score generated by ETMT model for Participant 2 with
medium cognitive impairment.
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Participant 2 does exhibit a deficit in visual attention but, notably, possesses a

moderate deficit in processing speed. The focused attention score suggests mod-

erate impairment across various domains. In comparison to Participant 1, Partic-

ipant 2 experiences a moderate level of cognitive impairment.

(a) Visual Search Speed
Score

(b) Focused Attention
Score

(c) Overall Cognitive Im-
pairment Score

Figure 5.10: Gender-wise analysis of (a) Visual Search Speed score; (b) Focused
Attention score (c) overall cognitive impairment score.

(a) Visual Search Speed
Score

(b) Focused Attention
Score

(c) Overall Cognitive Im-
pairment Score

Figure 5.11: Age-wise analysis of (a) Visual Search Speed score; (b) Focused
Attention score (c) overall cognitive impairment score.

In the paper-pencil based TMT, scores are generated based on the time it

takes for an individual to complete the tasks. Participant 1 achieved a score of

6, indicating completion in 6 seconds, while participant 2 achieved a score of 9,

indicating completion in 9 seconds. These paper-pencil-based TMT scores are

highly correlated with their respective scores derived using the ETMT model.

The analysis considered each generated score in relation to the participant’s

age and gender, with the results displayed in Figure 5.10 and Figure 5.11. No-

tably, younger participants tended to exhibit high or medium visual search speed

scores and focused attention scores, resulting in lower or medium cognitive impair-

ment scores within the same age group. In contrast, the older age group showed
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lower visual search speed scores and predominantly low to medium-focused atten-

tion scores, which correlated with higher cognitive impairment scores in this age

category. Gender-wise, a significant number of female participants demonstrated

higher visual search speed scores than their male counterparts. Surprisingly, no

female participants were observed with lower focused attention scores, and only

one female participant received a high cognitive impairment score.

Further analysis of participant scores revealed a compelling pattern: those

with high visual search speed and focused attention scores consistently obtained

significantly lower cognitive impairment scores. In particular, participants with

high visual search speed and focused attention scores predominantly fell into the

low cognitive impairment score category and vice versa. This distribution of par-

ticipants in each score is visually represented in Figure 5.12. The figure illustrates

that eight participants with high visual search speed scores and eleven with high

focused attention scores primarily belong to the low cognitive impairment score

category.

Figure 5.12: (a) Distribution of participants in cognitive impairment and Visual
Search Speed scores (b) Distribution of participants in cognitive impairment and
Focused Attention scores.

Moving to Figure 5.13, 5.14, and 5.15, these figures provide a visual representa-

tion of the distribution of each feature relative to cognitive impairment scores. The

boxplot analysis of eye tracking features in these figures reveals distinct variations

among groups with low, medium, and high cognitive impairment scores. These

observed patterns strongly support the notion that eye tracking features can effec-

tively capture meaningful differences in eye movement behavior associated with

varying levels of cognitive impairments. This suggests the promising potential of

eye tracking measures as valuable tools for assessing and understanding cognitive

impairments.

The validation of data clustering and labeling was carried out using a range of

machine learning algorithms, including decision trees, linear discriminant analysis

(LDA), neural networks, K-Nearest Neighbor (KNN), Support Vector Machine

(SVM), and Naive Bayes. This validation process involved the allocation of 75%
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Figure 5.13: Boxplot of the low-level features based on cognitive impairment score

Figure 5.14: Boxplot of the middle level features based on cognitive impairment
score
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Figure 5.15: Boxplot of the high-level features based on cognitive impairment
score

Table 5.5: Validation of classification based on cognitive impairment score

Machine Learning Algorithm Testing accuracy
Decision Tree 100%
Linear Discriminant 75%
Neural Network 87.5%
KNN 87.5%
SVM 75%
Naive Bayes 87.5%

of the dataset for training purposes, with the remaining 25% dedicated to testing.

The analysis was conducted using the Matlab toolbox ’classification learner,’ and

the results are presented in Table 5.5.

5.3.2 Comparison of ET MT CI Dataset with Traditional

Paper-Pencil TMT Dataset

Data collection for the ETMT model included eye tracking and traditional TMT

methods. The ETMT model extracted crucial features aiding cognitive impair-

ment detection, while traditional TMT relied on completion time as a primary

feature for the same purpose. A comparison between ETMT and the traditional

TMT revealed a correlation in completion times. The minimum time taken by a

participant to complete the entire ETMT test was 67 seconds, with a maximum of

168 seconds. In contrast, the traditional TMT had a minimum completion time of

38 seconds and a maximum of 184 seconds. Table 5.6 displays the time duration
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Table 5.6: Time duration of ETMT and Traditional TMT

ETMT Traditional TMT

TMT-A simple
min time(ms) 4042 3800
max time(ms) 17402.8 10200

TMT-A complex
min time(ms) 16821.8 12000
max time(ms) 60461.3 52000

TMT-B simple
min time(ms) 3654.9 3500
max time(ms) 17202.6 19900

TMT-B complex
min time(ms) 33438 18200
max time(ms) 108670.7 102100

Entire test duration
min time(ms) 66619.1 37500
max time(ms) 167504.9 184200

Table 5.7: Correlation of eye tracking TMT with the traditional method of TMT.

Stimulus Correlation Score P value
TMT A Simple 0.727 0.003

TMT A Complex 0.769 0.001
TMT B Simple 0.734 0.002

TMT B Complex 0.725 0.003

for each task in both ETMT and traditional TMT data collection. Importantly,

participants did not experience stress during the experiment due to the simplicity

and brevity of the tests.

The correlation between completion times in the traditional and eye-tracking

versions of the TMT tasks was analyzed. The analysis revealed a notable corre-

lation between the time of completion in the eye tracking-based and traditional

versions of the TMT, as indicated by the correlation score and the p-value. The

specific correlation values and p-values are provided in Table 5.7. This statistical

analysis confirms a linear relationship between the completion times of the eye

tracking and traditional TMT versions, providing robust support for the ETMT

model’s validity.

5.4 Discussion

The ETMT model, as an eye-tracking adaptation of the TMT, is well-suited to

address impairments associated with focused attention and visual search speed by

providing precise scores for these specific deficits. In the following sections, the

benefits of the ETMT model will be projected in comparison with state-of-the-art

models. Section 5.4.1 will detail the comparison with standard tests, while Section

5.4.2 will explain the comparison with the traditional paper-pencil-based TMT.
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5.4.1 Comparison with Standard Tests

In contrast to standard tests like ECAS, MMSE, MoCA, and ADAS-CoG, which

primarily focus on identifying specific diseases by pinpointing particular impair-

ments associated with those diseases, the ETMT model offers a more compre-

hensive approach. The impairments that can be identified with standard tests

are shown in Table 5.8. ETMT has the potential to provide a more detailed un-

derstanding of various impairments than other tests. It can reveal information

about an individual’s cognitive performance, specifically their ability to quickly

search, assess, and interpret visual input without succumbing to distractions. This

assessment also offers insights into a person’s level of mental flexibility, focused

attention, and processing speed, all of which fall within the realm of executive

functioning. A significant decline in these skills could serve as an indicator of

cognitive impairment.

Table 5.8: Cognitive impairments and associated standard tests

Tests
Motor

impairment

visual

attention

Attentional

disengagement
Memory

Neuropsychological

impairment

Social

cognition

Executive

functioning

Processing

speed

ETMT [15] ✓ ✓ ✓ ✓ ✓ X ✓ ✓

ECAS [57,123,124] ✓ ✓ X ✓ X ✓ X X

MMSE [35] X ✓ ✓ ✓ X X X X

ADAS-Cog [193] X ✓ ✓ ✓ ✓ X ✓ X

SCOPA-COG [129] ✓ ✓ ✓ ✓ ✓ X ✓ X

PD-CRS [129] ✓ X ✓ ✓ ✓ X X X

MoCA [130–132] X ✓ ✓ ✓ X X ✓ X

MACFIMS [57] X ✓ ✓ ✓ X X ✓ ✓

MRI and CT scan [57] ✓ X X ✓ ✓ X X X

The significance of features such as the scanpath comparison score, the total

time required for task completion, error rate, and inattentional blindness is that

ETMT contributes to identifying cognitive impairment in individuals.

The scanpath comparison score aids in assessing the coherence and efficiency

of eye movements during visual tasks, offering valuable insights into attentional

focus and cognitive processing. The total time needed to complete a task re-

flects processing speed and efficiency, which can be compromised in individuals

with cognitive impairment. The error rate provides valuable information about

the accuracy of cognitive processing, with higher error rates suggesting potential

cognitive deficits. Lastly, inattentional blindness, which pertains to the failure

to notice salient stimuli, can indicate attentional impairments and cognitive chal-

lenges. These features play a crucial role in aiding psychologists in identifying

cognitive impairment and developing suitable intervention strategies.

Compared to standard cognitive assessments, the utilization of eye tracking

technology can offer a more accurate and precise means of assessing cognitive im-

pairment. As shown in Table 5.9, it is a low-cost alternative, making it more

accessible for researchers and patients. It does not require specialized training for
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assessment, which further contributes to its accessibility. Additionally, it becomes

possible to detect cognitive impairment in its earlier stages by applying compu-

tational techniques to the retrieved eye gaze features. This is complemented by

the shorter test duration, which does not overburden the participants. Finally,

the detailed scores generated by eye tracking technology can also address lower

motor neuron atrophy. The ETMT model, which combines eye tracking with the

TMT, has the potential to revolutionize the conventional approach to cognitive

impairment detection.

Table 5.9: Strengths of standard tests

Tests Low cost
No specialized
training to
administer

Easy to
detect in
early stages

shorter time
duration
for the tests

Address
lower motor
neuron atrophy.

Does not
stress the
participant

ETMT [15] ✓ ✓ ✓ ✓ ✓ ✓
Traditional TMT [109] ✓ X ✓ ✓ ✓ ✓
ECAS [57,123,124] ✓ X X X X ✓
MMSE [35] ✓ ✓ X ✓ ✓ ✓
ADAS-Cog [193] ✓ ✓ ✓ X ✓ X
SCOPA-COG [129] ✓ ✓ X ✓ ✓ ✓
PD-CRS [129] ✓ ✓ X ✓ ✓ ✓
MoCA [130–132] ✓ ✓ X ✓ ✓ ✓
MACFIMS [57] ✓ X ✓ X ✓ ✓
MRI and CT scan [57] X X ✓ X ✓ ✓

5.4.2 Comparison with Traditional TMT

As presented in Table 5.9, the ETMT model is compared with its traditional

paper-pencil-based TMT to assess their respective strengths. ETMT highlights

several strengths of the ETMT model, an eye-tracking version of the TMT, which

can overcome many limitations of the conventional TMT method. The primary

strength of the ETMT model is its ability to be administered without a trained

evaluator, making it more accessible and efficient. This is particularly impor-

tant in clinical and residential settings where there may be a shortage of mental

health professionals, as highlighted by a study conducted by the Observer Research

Foundation (ORF) in 2021 [52]. Notably, the ETMT model utilizes computational

techniques to automatically generate scores, eliminating the need for the manual

intervention typically required in traditional methods for score determination or

final result assessment. The ETMT model also inherits the advantages of the

traditional TMT, particularly in terms of completion time as shown in Table 5.7

Compared to the traditional TMT, an additional strength of the ETMT model

is its ability to capture a broader range of features for evaluation. While the

traditional TMT could only capture the total time to complete the task, the ETMT

model could extract 13 distinct features, clearly indicating cognitive functioning.

Specifically, the ETMT model can derive high-level features labeled as FH1 to
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FH4, which are crucial in identifying cognitive impairment. These capabilities

are invaluable in assisting healthcare professionals with more comprehensive and

accurate cognitive health assessments.

It is worth noting that the ETMT model is currently limited to features de-

rived from eye tracking during the TMT for detecting cognitive impairment. It

does not encompass additional characteristics based on facial expressions or ob-

servations of other physiological signals. In the future, the ETMT model could

be further enhanced by incorporating additional provisions to identify and assess

various types of impairments, ultimately enabling the generation of comprehensive

recommendations tailored to specific findings.

5.5 Conclusion

ETMT represents a valuable tool designed to assist healthcare professionals in

assessing an individual’s mental state by evaluating their cognitive impairment,

particularly using the TMT. The primary innovation of ETMT lies in its ability to

extract crucial high-level features to generate cognitive impairment scores. These

high-level features, which include the error rate, scanpath comparison score, total

time, and inattentional blindness score, are employed to calculate three distinct

scores for screening cognitive impairment. In addition to an overall cognitive

impairment score, ETMT provides detailed assessments of visual search speed

and focused attention, allowing for a more precise understanding of a patient’s

deficits.

This tool comprehensively evaluates an individual’s cognitive abilities, particu-

larly visual perception and attentional processes. Psychologists can gain in-depth

insights into an individual’s cognitive functioning by incorporating advanced com-

putational techniques and eye-tracking technology. This, in turn, leads to more

accurate diagnoses, personalized treatment plans, and enhanced patient care. The

integration of eye-tracking enriches practitioners’ feedback during the administra-

tion of the TMT, enabling the identification of cognitive aspects that may require

attention.

The ETMT model serves as a cost-effective screening tool for identifying cog-

nitive impairments in a comfortable setting, allowing healthcare resources to be

effectively allocated to patients with more severe conditions.

It’s important to note that the ETMT model had limitations, particularly

in the distribution of samples across different age groups. Furthermore, as the

study did not involve actual patients, the results may not be directly applicable to

clinical diagnosis. Nevertheless, the study provides a comprehensive understanding

of cognitive impairment by offering multiple scores to assess various deficits.
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In the future, there are opportunities to enhance ETMT by integrating it with

eye tracker software as a plugin for automated cognitive impairment screening.

This could include incorporating saccadic and blink features to better understand

different cognitive impairment deficits. Collecting data from actual patients, ac-

companied by additional physiological measures as reference points, will further

enhance the model’s effectiveness. Additionally, future iterations of ETMT could

encompass a broader range of impairments, providing scores and recommendations

tailored to specific cognitive deficits or conditions.

This chapter explained one of the mental state parameters, cognitive impair-

ment, and introduced the ETMT model for its classification. The next chapter

will explain the PredictEYE model, which assesses an individual’s mental state

based on their emotional state while watching calm and stressful videos.
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Chapter 6

Classification of Emotional State

using PredictEYE Model

6.1 Introduction to Emotional State

Understanding emotional state is important in monitoring mental health, as it

serves as a key indicator of an individual’s emotional well-being and can provide

valuable insights into their psychological state. Several factors, including depres-

sion, anxiety, stress, and significant life changes, can significantly impact one’s

emotional health [49]. Understanding these emotional variations is beneficial in

the mental health assessment and support.

Emotions, thoughts, and behaviors are connected to mental health, and any

change in emotional states can indicate the underlying mental health issues. Signs

and symptoms like feeling depressed, sad, upset, or reduced attention span can

indicate emotional variations. These changes are always connected with the mental

health of an individual and it is critical to understand those changes.

Eye tracking plays a major role in understanding those changes that is related

with emotional state. It can provide more quantifiable data that helps to under-

stand the mental state based on emotional state of a person. By analyzing various

eye gaze measures like pupil diameter, fixation, saccade and blink frequency, re-

searchers could gain valuable insights to emotional response of an individual [59].

There may be lot of variation while viewing pleasant, unpleasant and neutral

images or videos and that variations are helpful in understanding the emotional

state detection. When a person is emotionally upset, the sympathetic nervous

system can be activated and there can be variations in eye measures while viewing

pleasant and unpleasant images [60].

In the study of emotions’ influence on eye behavior, it has been observed that

different emotional stimuli impact visual attention [47]. For instance, negative
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images can lead to more extensive and faster saccades, indicating visual agitation,

discomfort, and avoidance behavior. Conversely, positive images have been asso-

ciated with a strong center bias in latitude and shorter Y dispersion of fixation.

These variations in eye behavior, such as pupil diameter, blink frequency, sac-

cadic angle, gaze patterns, and fixation duration, are directly related to emotional

reactions and can provide insights into a person’s emotional state.

A personalized model is important in understanding the emotional state of

a person using eye tracking technology. By tailoring emotional state detection

algorithms to individual characteristics and responses, a personalized model can

enhance the accuracy and specificity of mental health assessments. This personal-

ized approach considers unique emotional expressions, making the analysis more

refined and pertinent to each individual.

In line with this personalized approach, PredictEYE is proposed, a model

utilizing deep learning techniques to accurately predict an individual’s emotional

state based on their responses to calm and stressful videos, identifying specific

triggering scenes within a video in real time.

6.1.1 Personalized Model

Remote [194, 195] and personalized [19, 196, 197] monitoring are two approaches

to track health and wellness data that have gained significant attention recently.

Remote monitoring involves technology to monitor an individual’s health and well-

ness remotely. Remote monitoring in the healthcare sector could empower physi-

cians to deliver high-quality care by keeping patients safe and healthy [195]. With

multiple sensing systems, physicians can track patients’ health effectively, monitor

remotely, and provide immediate care [195].

Personalized monitoring involves tracking health and wellness data specific

to an individual. It includes tracking dietary intake, sleep patterns, and other

vital parameters that can impact health [197, 198]. Individuals can learn more

about their health and wellness by keeping track of this data. They can use this

information to make wise decisions about changing their lifestyles in ways that

can enhance their general welfare. On the other hand, A non-personalized model

is trained on a larger dataset that is not specific to any individual or group. A

non-personalized model aims to provide recommendations or generic predictions

that are applicable to a larger population.

Developing a personalized model involves data collection, feature engineering,

model selection, training, validation, deployment, and monitoring. Relevant fea-

tures are identified, and an appropriate model is chosen for the research question.

The model is trained, validated, deployed, and continuously monitored and up-

109



dated for optimal performance in a real-world setting.

Many researchers have built systems based on machine learning [83, 85–89],

and deep learning [19,83,90–93] approaches. The deep learning-based time series

personalized model has the advantage of capturing patterns and changes over time,

leading to more accurate and personalized predictions.

Section 6.2 introduces the personalized model, PredictEYE, and explains the

features extracted for this model in section 6.2.1, time series prediction using

LSTM in section 6.2.2, the process of emotional state prediction with the Random

Forest algorithm in section 6.2.3, and emotional state prediction with GSR data

in section 6.2.4. Section 6.3 explains the model’s comprehensive analysis of its

results, including the analysis based on data exploration and statistical analysis

in section 6.3.1 and the Performance Evaluation of PredictEYE in 6.3.2, along

with validation with GSR in section 6.3.3. PredictEYE’s comparison with other

state-of-the-art models is discussed in section 6.4 and finally concluded in section

6.5.

6.2 PredictEYE Model

Introduces the innovative PredictEYE model, showing Figure 6.1 designed to ac-

curately predict an individual’s mental state based on their emotional response to

calm and stressful videos. PredictEYE utilizes deep learning techniques, specif-

ically a univariate Long Short-Term Memory (LSTM) model and the Random

Forest algorithm, to forecast future sequences of eye gaze data and simultane-

ously identify the specific scenes within a video that trigger particular emotional

states [36, 199].

This novel approach distinguishes PredictEYE from conventional models that

rely solely on physiological measures to assess emotional states. By analyzing time-

series eye gaze data, PredictEYE can effectively predict future sequences, offering

valuable insights into how an individual’s visual attention evolves over time. To

validate the model’s effectiveness, it is assessed using GSR data as a benchmark,

demonstrating its capability to capture and predict emotional states accurately.

This integrated method is particularly powerful in understanding how emotional

states correspond with an individual’s visual engagement while watching relaxing

and anxiety-inducing videos.

6.2.1 Feature Extraction

PredictEYE utilizes the ET Video ES dataset, employing fixation and saccade

detection along with corresponding feature extraction conducted through BeGaze

110



Figure 6.1: Architecture of PredictEYE, personalized time series model for emo-
tional state prediction.

Avg Pup.Dia - average pupil diameter, Fix. Duration -fixation duration, Fix.
Disp. X - fixation dispersion X, Fix. Disp. Y - fixation dispersion Y and Blink

Dur. - blink duration.

3.7 software, which utilizes the identification by dispersion threshold (IDT) algo-

rithm for precise event detection, including fixations and blinks [161]. The IDT

algorithm identifies fixations by analyzing the dispersion and duration thresholds

of the X and Y coordinates in the eye gaze data. Fixations are clusters of gaze

points with low dispersion within a specific time frame. A minimum duration of 80

ms and a maximum dispersion of 100 pixels were set for fixation detection, while

a 70 ms duration was considered for blink detection. Features such as Fixation

Duration, Fixation Dispersion in the X and Y axes, Pupil Diameter, and Blink

Duration were extracted from these events.

Fixation duration specifies how long a person is focusing on a specific object or

any particular area in terms of milliseconds (ms). Fixation dispersion in the X and

Y axes is the spatial variation in gaze patterns during fixation and that helps to

understand attention distribution. Pupil diameter measures the size of a person’s

pupils measured in millimeters (mm) and reflects changes in cognitive functions

or arousal. Blink duration, recorded in milliseconds, indicates eye closure during

blinks and can provide insights into cognitive workload, fatigue, or attention.

This fixation, blink-based features, and pupil diameter were input for the
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LSTM model. The data obtained while participants watched calm and stress-

inducing videos were labeled and used to predict their emotional state through a

Random Forest algorithm.

A threshold approach was employed for labeling, using the calm video period

as the baseline phase. Any deviation from this baseline, determined by the thresh-

old value, was labeled as ’stressful’ or ’calm,’ assuming that deviations from the

baseline represented stress indicators.

The plot of these extracted features for Participant 1 while viewing the stress

video is illustrated in Figure 6.1 as part of the feature extraction process. Each

feature is plotted against its starting time.

6.2.2 Time series prediction using LSTM

The collected eye tracking time series data was employed in an LSTM (Long

Short-Term Memory) model to predict new time series values using a sequence-

to-sequence regression approach. The training data was initially normalized to

have a mean of zero and a variance of one, preparing the model’s predictors and

responses. The LSTM network, depicted in Figure 6.1, consisted of three LSTM

layers, each with 50 hidden units to store and manipulate temporal information.

These LSTM layers were followed by a Dense output layer with a single output

unit, responsible for predicting the subsequent time series value based on the input

sequence of window-size time steps.

The window size, which determines the number of consecutive data points

considered for calculations and predictions, was a crucial hyperparameter. Initially

set to 60 to align with the data’s sampling frequency of 60 Hz, it was later reduced

to 10, representing a 1/6th of a second interval. This adjustment allowed for

capturing finer changes in gaze behavior and improved prediction accuracy for

future eye movements and reactions [200]. A window size that is too small in time

series analysis can lead to issues like information loss and overfitting. Extensive

experimentation confirmed that a value of 10 struck a balance between information

capture and overfitting prevention.

In the LSTM model, input samples are structured sequentially, with each sam-

ple containing feature values spanning from time step 1 to 10, as illustrated in

Figure 6.2. Subsequently, the following sample encompasses values from time

steps 2 to 11, and this pattern continues. The model’s training objective is to pre-

dict the next value based on the preceding ten values within each sequence. This

approach employs a sliding window mechanism to establish input-output pairs,

fostering the development of the LSTM model’s predictive capabilities.

The activation function used in the LSTM layer was ReLU (Rectified Lin-
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Figure 6.2: Time series prediction

ear Unit), a popular choice in deep learning models. The network parameters

were optimized using the efficient Adam optimizer [201]. The mean squared error

(MSE) loss function was employed for training, and the network was trained for

100 epochs with a batch size of 16. A gradient threshold of 1 was set to prevent

gradient explosions. The initial learning rate was 0.005, with a reduction factor

of 0.2 after every 125 epochs, ensuring smooth convergence and avoiding local

minima.

During training, the model processed input sequences with a window-size of

time steps and one feature, learning to predict the subsequent value in the time

series. After training, the model was evaluated on a test set using the same window

size, and the MSE loss was computed. Subsequently, the model generated a future

sequence by iteratively predicting the next value in the time series based on the

last window-size time steps of the training data. The LSTM network’s training

enabled it to capture dependencies and patterns in the input time series data,

facilitating accurate predictions of future eye movements [200].

The input data for the task consists of time series eye tracking features such as

Fixation Duration, Fixation Dispersion in the X and Y axes, Pupil Diameter, and

Blink Duration. These features undergo preprocessing and are subsequently fed

into a univariate Long Short-Term Memory (LSTM) model. LSTM, a recurrent

neural network (RNN), is a well-regarded method for time series forecasting [202].

Within the LSTM architecture, memory cells equipped with input, forget, and

output gates play a pivotal role. The input gate regulates the flow of input ac-

tivation, the forget gate determines the duration of value retention within the

cell, and the output gate governs the flow of cell activation into other networks.

The primary function of the LSTM model is to discern patterns and dependencies

within the eye gaze input data. By processing the time series eye tracking data,

the model becomes proficient at capturing the temporal dynamics in the dataset,

leveraging this knowledge to make predictions about future values of each eye
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tracking feature.

Time series model performance is typically assessed by comparing predicted

values of eye tracking features to the actual target values of eye tracking features,

employing various metrics, including:

1. Mean Absolute Error (MAE): Calculated as the average of the absolute

differences between predicted and actual values, MAE is a positively valued

metric. A lower MAE indicates greater accuracy, signifying that the model’s

predictions closely align with the true values. MAE is widely utilized in time

series forecasting due to its interpretability.

2. Residual Sum of Squares (RSS): This metric measures the sum of squared

residuals, where a lower value suggests closer alignment between the model’s

predictions and the true values. RSS provides insights into the model’s

overall fit, making it suitable for model performance comparisons.

3. Mean Squared Error (MSE): MSE is computed as the average of squared

errors, resulting in a positively valued metric. A lower MSE indicates height-

ened accuracy, though it is less interpretable compared to MAE.

4. Root Mean Squared Error (RMSE): Derived from the square root of MSE,

RMSE is positively valued, and a lower value signifies increased accuracy.

RMSE is preferred for its interpretability and comparability across models.

5. Mean Absolute Percentage Error (MAPE): MAPE offers a relative measure

of accuracy by calculating the average percentage difference between pre-

dicted and actual values. In time series forecasting, it’s commonly used for

straightforward accuracy assessment. A lower MAPE indicates improved

accuracy, indicating closer proximity to actual values.

6. Mean Error (ME): Representing the average difference between actual and

predicted values, ME helps assess bias. A value of zero indicates an unbiased

model. While less common, ME can provide insights into error direction.

7. Mean Percentage Error (MPE): MPE computes the average percentage of

actual values differing from predictions, offering information about the di-

rection and magnitude of errors. A value of zero signifies an unbiased model.

These metrics facilitate the evaluation of the LSTM model’s performance in

time series forecasting, enabling the selection of the most suitable model for the

given task. These error statistics are calculated based on the formula (6.1) to

(6.7).
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MAE =
1

n

n∑
i=1

|yi − ŷi| (6.1)

RSS =
n∑

i=1

(yi − ŷi)
2 (6.2)

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (6.3)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (6.4)

MAPE =
1

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100 (6.5)

ME =
1

n

n∑
i=1

(yi − ŷi) (6.6)

MPE =
1

n

n∑
i=1

(
yi − ŷi
yi

)
× 100 (6.7)

In the given formulas, yi represents the actual eye gaze features, and ŷi repre-

sents the predicted values of eye gaze features.

Comparing models using these metrics provides valuable insights into their

performance, aiding researchers in identifying the most suitable models for a given

task.

6.2.3 Emotional State Prediction with Random Forest Al-

gorithm

The Random Forest algorithm is trained using labeled eye tracking data and lever-

ages predicted sequences from the LSTM model for emotional state classification.

As an ensemble learning method, Random Forest combines multiple decision trees

to formulate predictions. In our study, the Random Forest algorithm serves as

the classification tool for emotional states. Each decision tree within the Random

Forest is trained with a distinct subset of the data, and the collective forecasts

from all decision trees contribute to the final prediction.

PredictEYE, through the analysis of eye-tracking data, can also discern the

specific areas within a video that an individual was focusing on during various

video segments. These findings are then correlated with the individual’s self-

reported emotional state. This information provides valuable insights into the
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factors influencing an individual’s emotional state, offering the potential for more

targeted interventions or treatments.

The performance of the classification model is evaluated using multiple cri-

teria, encompassing accuracy, precision, recall, F1 score, and the area under the

receiver operating characteristic (ROC) curve. These metrics assess the model’s

proficiency in correctly assigning instances to their respective classes. Accuracy is

the ratio of correctly predicted instances to the total instances. Precision gauges

the proportion of true positives (correctly identified cases) among all instances

classified as positive, while recall measures the fraction of true positives correctly

identified among all positive instances. The F1 score combines precision and recall

to evaluate the model’s performance comprehensively. The ROC curve graphically

delineates the trade-off between the true positive rate (TPR) and false positive

rate (FPR) of a classifier, with a higher Area Under the Curve (AUC) signify-

ing the classifier’s effectiveness in distinguishing between positive and negative

examples.

The significance of accuracy, precision, recall, the F1 score, and the ROC

curve stems from their capacity to assess a classification model’s performance from

various angles. While accuracy offers a holistic measure of the model’s overall

performance, precision and recall focus on its capability to recognize instances

within a specific class accurately. The F1 score, as a harmonization of precision

and recall, comprehensively evaluates the model’s effectiveness.

The accuracy, precision, recall, F1 Score, TPR, and FPR used in the per-

formance analysis of the PredictEYE model are calculated based on the formula

(4.43) to (4.46) and (6.8) to (6.9) respectively.

TPR =
TP

TP + FN
(6.8)

FPR =
FP

FP + TN
(6.9)

where TP is True Positive, TN is True Negative, FP is False positive, and FN

is False Negative.

6.2.4 Emotional State Prediction with GSR Data

A non-invasive physiological measure, GSR is commonly utilized to gauge sym-

pathetic nervous system activity, making it a valuable asset in studies exploring

emotional and cognitive processing [28]. GSR stands out due to its ease of mea-

surement and applicability across diverse settings, rendering it a popular choice

for investigating emotional states. Notably, GSR exhibits an advantage over other
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physiological measures, such as heart rate or EEG, as it is less susceptible to

motion artifacts and operates with a slower response time [203]. Given these at-

tributes, GSR serves as a valuable tool for validating models designed to predict

emotional states [204].

The validation process of PredictEYE’s performance involved the collection of

GSR data from participants while they viewed videos inducing calm and stressful

states. Simultaneously, the eye movements of participants were tracked. Subse-

quently, an LSTM model was trained on this combined dataset to forecast future

sequences of GSR data. In parallel, a Random Forest model was trained to predict

participants’ emotional states based on the anticipated GSR sequences. The Ran-

dom Forest’s predictions, driven by GSR data, were instrumental in corroborating

the emotional state predictions derived from eye tracking data.

6.3 Result Analysis

PredictEYE is a personalized time series regression model meticulously crafted for

the purpose of predicting an individual’s emotional state based on their emotional

state while watching calm and stressful videos. This model also concurrently iden-

tifies the scenes responsible for eliciting that emotional state. The evaluation of

PredictEYE’s efficacy comprises a two-fold analysis encompassing data exploration

and statistical scrutiny, coupled with the assessment of its performance in emo-

tional state estimation. The initial phase of the analysis involves data exploration

and statistical assessment, focusing on the thorough examination of collected data.

During this stage, efforts are concentrated on comprehending the dataset’s distri-

bution and variability. The aim is to unveil underlying patterns, trends, and

correlations between diverse variables within the dataset, as this knowledge forms

the bedrock for developing precise and dependable predictive models.

The next section focuses on testing how well PredictEYE can predict future

eye movements to measure its accuracy. The final step is evaluating how well the

model can estimate someone’s emotions from their eye movements. This phase

trains the model to recognize different emotions and helps us understand how well

PredictEYE can predict someone’s mood.

The following section elaborates on the data exploration and statistical analysis

in Section 6.3.1. Following this, the performance evaluation of PredictEYE is

discussed in Section 6.3.2, where the effectiveness of LSTM and Random Forest

in estimating the emotional state is analyzed. Validation with GSR is further

explained in Section 6.3.3.
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6.3.1 Data Exploration and Statistical Analysis

The analysis of the mean eye-tracking measurements taken while participants

watched both relaxing and stressful videos is presented in Figure 6.3. Within this

analysis, ’P1-C’ and ’P1-S’ denote Participant 1’s data during calm and stressful

video-watching periods, respectively. The study revealed that during the stressful

video-watching sessions, there was an increase in the mean pupil diameter and

fixation dispersion in both the X and Y axes, whereas the mean fixation duration

and blink duration decreased in comparison to the calm video-watching sessions.

These findings suggest that eye-tracking features hold the potential for detecting

changes in an individual’s emotional state, particularly during tasks that induce

stress. Furthermore, it was observed that stress or emotional upset triggers the

activity of sweat glands, resulting in increased moisture secretion and decreased

resistivity, which sensors can measure. Most participants exhibited decreased GSR

values during the stress video-watching sessions, indicating physiological responses

associated with increased arousal. It is important to note that GSR provides a

more direct measurement of arousal, reflecting physiological responses, whereas

eye-tracking data indirectly captures changes in visual attention and gaze behav-

ior. Even subtle variations in eye-tracking data are valuable as they shed light on

how individuals emotionally respond to different stimuli.

Participant 3 exhibited a significant difference in the measured variables com-

pared to the other participants. Notably, there was no significant difference in

this participant’s body resistivity between stress and calm video-watching ses-

sions, indicating that they did not experience a substantial increase in stress, as

confirmed by the ground truth data. The eye-tracking measures aligned with this

observation, showing variations in specific features for this participant in contrast

to others.

To determine whether there were significant differences in eye-tracking data

between participants while watching calm and stressful videos, a Welch two-sample

t-test was conducted on all features. This statistical test is employed to compare

the means of two independent groups when the variances of these groups are

unequal. The goal was to investigate the emotional state of individuals after

watching calm and stressful videos. While each video had a duration of 5 minutes,

the analysis focused on the final minute of each video. This statistical test aimed

to assess potential disparities in eye movement patterns between the two types of

videos, providing insights into how the content influenced the emotional state of

the participants during observation.

The null hypothesis states that there was no significant difference between the

two sets of data, while the alternative hypothesis suggested a notable difference
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Table 6.1: Results of Welch two sample t-test on classification of emotional state

Participant Feature Name P-Value
Calm

(mean)

Calm

(SD)

Stressful

(mean)

Stressful

(SD)

Segment

length

APD (mm) <0.0001 2.36 1.73 3.23 1.79 169

FD (ms) 0.91 204.44 199.80 202.00 163.91 169

FDX (pixels) 0.0001 16.79 19.42 26.55 23.68 169

FDY (pixels) 0.75 33.09 31.34 34.19 27.75 169

BD (ms) 0.0009 67.96 97.60 35.33 68.16 169

P1

GSR (mV) <0.0001 484.07 7.23 419.66 13.62 60

APD (mm) <0.0001 0.65 0.93 1.38 1.42 166

FD (ms) 0.15 66.98 115.33 86.05 114.97 166

FDX (pixels) <0.0001 12.24 21.54 25.85 30.94 166

FDY(pixels) 0.01 19.72 30.19 29.25 32.49 166

BD (ms) <0.0001 297.70 544.14 90.45 193.49 166

P2

GSR (mV) <0.0001 406.19 4.36 399.33 8.20 60

APD (mm) 0.03 1.69 1.17 1.32 1.38 111

FD (ms) 0.60 289.57 320.19 265.15 397.83 111

FDX (pixels) 0.50 27.42 28.72 24.84 30.37 111

FdY (pixels) 0.04 29.54 28.58 22.03 26.91 111

BD (ms) 0.70 293.43 1535.25 356.22 805.79 111

P3

GSR (mV) 0.25 486.45 1.394538 485.35 3.950683 60

APD (mm) <0.0001 3.61 1.09 4.67 1.25 140

FD (ms) 0.44 336.99 220.02 314.94 256.04 140

FDX (pixels) <0.0001 26.56 14.78 35.35 18.96 140

FDY (pixels) 0.03 29.54 28.58 21.42 26.58 140

BD (ms) 0.41 15.10 52.24 10.51 40.26 140

P4

GSR (mV) <0.0001 407.71 14.08 389.49 12.62 60

APD (mm) <0.0001 4.09 0.85 4.59 0.79 135

FD (ms) <0.0001 519.74 532.02 310.33 262.33 135

FDX (pixels) 0.002 26.43 15.10 32.79 17.85 135

FDY (pixels) 0.22 18.39 11.03 16.83 10.30 135

BD (ms) 0.49 13.19 77.76 7.77 47.35 135

P5

GSR (mV) <0.0001 489.98 2.06 483.40 3.55 60

APD(mm) <0.0001 2.20 1.62 3.60 1.16 150

FD (ms) 0.31 388.23 542.96 324.16 279.60 150

FDX (pixels) <0.0001 20.52 22.81 48.12 31.40 150

FDY (pixels) 0.04 27.05 27.30 35.14 27.66 150

BD (ms) 0.03 124.75 314.60 40.55 190.61 150

P6

GSR (mV) <0.0001 403 14.01 386.47 7.12 60

APD − Avg Pupil Diameter, FD − Fixation Duration, FDX − Fixation Dispersion X,
FDY − Fixation Dispersion Y, BD − Blink Duration
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Figure 6.3: Boxplot of the eye tracking measures
P1-C indicates Participant 1 while watching the calm video, and P1-S indicates
Participant 1 while watching the stressful video. Likewise, other abbreviations

can be expanded.

between the calm and stress data. The test was conducted to determine whether

the observed feature differences between the two video types were likely due to

chance or were indicative of a significant distinction between the two states. The P-

values obtained from the Welch Two-sample t-test for all the features are presented

in Table 6.1.

Based on the results of the Welch Two Sample t-test, it can be concluded that

there is a significant difference between the calm and stressful video data for most

features, except for Participant 3. This implies that the null hypothesis can be

rejected in favor of the alternative hypothesis, indicating that for most analyzed

features, there were substantial differences in data after watching the stressful

video compared to the calm video, with the exception of Participant 3.

The P-values for most participants being less than 0.05 for most features sug-
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Figure 6.4: Determining PredictEYE through comparison with other models

gest that the differences between the calm and stressful video data were indeed

significant and not merely a matter of chance. However, for Participant 3, the

P-values for the features fixation duration, fixation dispersion in the X-axis, and

blink duration at the end of calm and stressful video-watching were not less than

0.05. This indicates no significant differences were observed in these features dur-

ing this participant’s calm and stressful video-watching sessions. Additionally, the

ground truth GSR values for Participant 3 at the end of calm and stressful video-

watching also had P-values that were not less than 0.05, suggesting no significant

difference in GSR between these two video-watching sessions.

6.3.2 Performance Evaluation of PredictEYE

In the data collection phase, 216,000 data samples were acquired from all the par-

ticipants within a 10-minute time frame. On average, each participant contributed

approximately 36,000 data samples under observation during calm and stressful

video sessions. These gathered data samples played a vital role in making pre-

dictions about the participants’ responses, offering a rich dataset for subsequent

analysis. Standard performance metrics such as Mean Error, Mean Absolute Er-

ror, Mean Percentage Error, Mean Absolute Percentage Error, Mean Squared

Error, and Root Mean Squared Error were employed to gauge the accuracy of the

predicted data sequences. This allowed for a comprehensive analysis of prediction

accuracy and error statistics using various performance measures.

The determination of the PredictEYE model, a strategic combination of LSTM
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Figure 6.5: Forecasting data sequence of Participant-3 after watching stressful
video using LSTM and ARIMA models in PredictEYE. Fixation Disp-X is Fixa-
tion Dispersion X and Fixation Disp-Y is Fixation Dispersion Y

and Random Forest (RF) models, was grounded in a rigorous comparison with al-

ternative model combinations, as illustrated in Figure 6.4. The evaluation process

commenced by contrasting the time series predictions of LSTM and ARIMA with
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Figure 6.6: Comparison between actual and predicted values of LSTM and ARIMA
for a short interval

the goal of discerning the unique attributes that ultimately shaped the composition

of the PredictEYE model. Following this, the emotional state predictions based

on Random Forest were examined across a range of machine learning algorithms,

including Logistic Regression (LR), Decision Tree (DT), Random Forest (RF),

Support Vector Machine (SVM), K Nearest Neighbor (KNN), and Naive Bayes

(NB). The subsequent section extensively compares the PredictEYE model with

these different models, emphasizing its performance and effectiveness in predicting

emotional states.

Performance Evaluation of LSTM with ARIMA based on Error statis-

tics

The ARIMA model is a specialized time series analysis algorithm to uncover

trends, seasonality, and cyclic patterns within the data [205]. Prior to model

fitting, an exploratory data analysis is conducted, involving the examination of

autocorrelations between current and past values across different time lags. This

analysis helps determine the appropriate ARIMA model for the dataset, with the

ACF and PACF plots assisting in understanding the model’s autoregressive, mov-

ing average, and integrated components. The selected ARIMA model can then

predict subsequent values within the eye tracking features.
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To assess the prediction accuracy, the sequences predicted by the LSTM and

ARIMA models at various intervals during the viewing of both calm and stressful

videos were compared to the actual values. Figure 6.5 illustrates the results for

the stressful video scenario, with 80% of the data used for model training and the

remaining 20% for prediction utilizing both LSTM and ARIMA methods. This

figure provides insights into the performance and predictive capabilities of these

models within the dataset.

Table 6.2: Error statistics based on the prediction while watching calm video

Model Features
Performance measures

MAE RSS MSE RMSE MAPE ME MPE

LSTM

APD 0.34 10.55 0.19 0.42 0.19 0.05 -0.01

FD 139.66 1689383.93 29638.31 172.16 71.77 29.41 51.25

FDX 14.86 17837.80 312.94 17.69 133.27 8.38 121.79

FDY 21.2 33705.17 591.31 24.31 60.84 -5.79 23.72

BD 41.81 131132.49 2731.92 52.26 34.46 22.09 26.05

GSR 1.42 21.17 4.23 2.05 0.30 0.98 0.21

ARIMA

APD 0.73 38.82 0.57 0.76 19.84 -0.73 -19.84

FD 171.86 4406649 73884.91 255.19 1.05 -51.89 0.22

FDX 15.33 23562.35 351.67 18.75 123.89 4.87 105.62

FDY 21.76 41707.75 622.50 24.95 56.42 -9.16 12.54

BD 50.25 136372.19 3588.74 59.90 42.26 36.42 36.74

GSR 5.2 386.18 43.31 5.76 0.14 -4.9 -0.01

APD − Avg Pupil Diameter, FD − Fixation Duration, FDX − Fixation Dispersion X,
FDY − Fixation Dispersion Y, BD − Blink Duration

Furthermore, Figure 6.6 offers a comparison between actual and predicted val-

ues for the ’blink duration’ and ’fixation duration’ features based on the LSTM

and ARIMA predictions, focusing on a shorter time interval. This comparison

reveals that fixations exclusively occur during the absence of blinks. Notably, the

decrease in RMSE in the LSTM model, as depicted in Figure 6.6, holds signif-

icant implications for model performance assessment. A lower RMSE signifies

that the LSTM model yields predictions closer to the actual values, indicating its

efficacy in capturing and predicting subtle variations in eye movement patterns.

This demonstrates the LSTM model’s usefulness in accurately comprehending and

analyzing rapid changes in gaze behavior.

Comparative analysis of error statistics for the LSTM and ARIMA models

is conducted based on performance metrics, encompassing mean absolute error

(MAE), residual sum of squares (RSS), mean squared error (MSE), root mean

124



Table 6.3: Error statistics based on the prediction while watching stress video

Model Features
Performance measures

MAE RSS MSE RMSE MAPE ME MPE

LSTM

PD 0.22 4.44 0.06 0.25 5.56 0.08 2.36

FD 102 883989.32 15785.52 125.64 54.21 24.21 36.6

FDX 16.49 23618.86 421.76 20.53 96.23 -0.30 67.91

FDY 16.79 24897.53 440.61 20.25 1.27 -0.78 0.37

BD 41.62 28188.9 2818.89 53.09 23.42 -2.97 6.14

GSR 3.83 250.43 28.92 4.52 0.10 -1.61 -0.01

ARIMA

PD 0.38 13.69 0.31 0.45 0.24 -0.05 -0.01

FD 171.86 4406649 73884.91 255.19 1.05 -51.89 0.22

FDX 17.38 29049.29 440.14 20.97 109.35 5.75 91.88

FDY 17.83 30656.09 559.01 22.28 0.73 -1.49 -0.23

BD 45.66 65777.52 3288.87 57.34 35.83 8.3 20.3

GSR 9.26 1168.63 106.23 10.3 2.09 -9.26 -2.09

APD − Avg Pupil Diameter, FD − Fixation Duration, FDX − Fixation Dispersion X,
FDY − Fixation Dispersion Y, BD − Blink Duration

squared error (RMSE), mean absolute percentage error (MAPE), mean error

(ME), and mean percentage error (MPE). The summarized results are presented

in Tables 6.2 and 6.3, facilitating an extensive model comparison and aiding in

the determination of the better-suited model for the given dataset.

Upon scrutinizing the compiled error statistics for each feature across various

performance metrics, it becomes evident that the LSTM model exhibits lower val-

ues than the ARIMA models. These reduced values across all evaluation measures

in the LSTM model suggest its superior ability to capture data patterns and pro-

vide more precise predictions. Consequently, based on the error statistics analysis

and diverse performance metrics, it can be deduced that the LSTM model sur-

passes the ARIMA model in terms of accuracy and predictive capabilities. The

LSTM model’s proficiency in capturing intricate patterns and long-term depen-

dencies within time series data likely accounts for its superior performance over

the ARIMA model.

In the context of the PredictEYE model, the selection of the LSTM model is

rationalized by its aptitude for handling sequential data and capturing extended

dependencies. While ARIMA serves as a robust tool for time series forecasting,

the complexity and non-linearity inherent in eye gaze sequence data may render

it less suitable for the task. Consequently, it is reasonable to infer that the LSTM

model’s adoption would result in enhanced accuracy and predictive performance,
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particularly for forecasting eye gaze sequences within the PredictEYE model [206].

(a) Accuracy (b) Precision

(c) Recall (d) F1 Score

Figure 6.7: Analysis of classification model based on prediction with LSTM
LR − Logistic Regression, DT − Decision Tree, RF − Random Forest, SVM −
Support Vector Machine, KNN − K Nearest Neighbor, NB − Naive Bayes

Performance Evaluation of PredictEYE in Estimating the Emotional

State

This study extensively evaluated six distinct machine learning algorithms, specif-

ically Logistic Regression, Decision Tree, Random Forest, SVM, KNN, and Naive

Bayes, to assess their performance in predicting participants’ emotional states.

These predictions were based on the outputs of ARIMA and LSTM models. A

notable trend emerged after conducting a thorough comparative analysis of these

machine-learning models. It was observed that the machine learning algorithms

consistently delivered superior results when utilizing the predictions generated by

the LSTM model as opposed to those from the ARIMA model.

In assessing the classification algorithms’ performance, various metrics were

employed, including accuracy, precision, recall, F1 score, and the ROC curve.
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These metrics played a pivotal role in identifying the top-performing algorithm.

Accuracy, for instance, quantifies the proportion of correctly predicted emotional

states (calm or stressful) within the dataset. On the other hand, precision delin-

eates the percentage of correctly predicted instances of a specific emotional state

out of all the instances forecasted as that emotional state. Similarly, recall repre-

sents the ratio of correctly predicted instances of a specific emotional state relative

to all actual instances of that emotional state in the dataset. Finally, the F1 score

serves as a harmonious balance between precision and recall, characterizing the

performance of the model for each emotional state.

The results, as presented in Figures 6.7 and 6.8, underscore the significance

of the time series predictions of the LSTM model. Specifically, the prediction

of emotional states relying on LSTM predictions exhibited higher levels of ac-

curacy in comparison to ARIMA-based predictions. Moreover, an examination

of the performance metrics revealed that all classification algorithms consistently

outperformed the LSTM model in contrast to ARIMA-based predictions.

(a) Accuracy (b) Precision

(c) Recall (d) F1 Score

Figure 6.8: Analysis of classification model based on prediction with ARIMA
LR − Logistic Regression, DT − Decision Tree, RF − Random Forest, SVM −
Support Vector Machine, KNN − K Nearest Neighbor, NB − Naive Bayes
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Figure 6.9: ROC curves based on classification algorithms applied after the pre-
diction with LSTM

Figure 6.10: ROC curves based on classification algorithms applied after the pre-
diction with ARIMA

Table 6.4 provides a comprehensive summary of the performance metrics ex-

tracted from diverse models compared to PredictEYE. PredictEYE, combining

LSTM and Random Forest, notably achieved an accuracy rate of 86.4% and the

highest F1 Score of 86.3% for Participant 4. While precision and recall did not
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reach similar peaks, the Random Forest model showcased superior performance

across all metrics, surpassing other models.

This outcome underscores the importance of selecting the most suitable classifi-

cation algorithm and rigorously evaluating model performance via multiple metrics

to understand its effectiveness better. The consistently high performance of Ran-

dom Forest in classifying and predicting emotional states based on LSTM time

series predictions establishes it as the optimal choice for the PredictEYE model.

Figures 6.9 and 6.10 present the ROC curves alongside the corresponding Area

Under the Curve (AUC) values derived from the application of classification algo-

rithms to LSTM and ARIMA model predictions, respectively. Notably, the ROC

AUC values from the classification algorithms applied to LSTM-based predictions

consistently exceeded those derived from ARIMA-based predictions. This un-

derscores the superior discriminative capability of the LSTM model’s predictions

across various classification thresholds.

Among the evaluated classification algorithms, Random Forest consistently

exhibited higher AUC values for most participants. The elevated AUC values,

when paired with the exceptional performance of the Random Forest model, signify

the LSTM model’s potent predictive abilities in capturing significant patterns and

features for classification tasks within this context.

In the extensive analysis of classification models across all participants, the

evaluation of confidence intervals within the Receiver Operating Characteristic

(ROC) curves, particularly emphasized in Figures 6.9 and 6.10, revealed critical

insights. These confidence intervals are valuable indicators of the precision and

confidence level associated with our model estimates. Notably, the Random Forest

algorithm consistently presented narrow confidence intervals for numerous partic-

ipants, reflecting highly precise estimations and a robust degree of confidence that

the true values fell within this range. To offer a more detailed insight, Table 6.5

furnishes the confidence interval details for participants P3 and P4.

Remarkably, Participant P4 emerged as a noteworthy standout in this analysis.

The Random Forest algorithm secured the highest classification accuracy for this

individual, backed by the narrow confidence intervals. These results convey a

high level of confidence in the model’s capacity to provide precise and accurate

predictions for Participant P4. In contrast, Participant P3, while not achieving the

highest accuracy, benefited from the narrow confidence intervals. This suggests

that even in cases of lower accuracy, the model’s predictions maintained a high

level of precision and confidence.
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Table 6.4: Performance evaluation of PredictEYE with other models

Models
Accuracy

(%)

Precision

(%)

Recall

(%)

F1 Score

(%)

PredictEYE

(LSTM+RF)
86.4 83.9 88.8 86.3

LSTM+LR 84.1 84.8 81.5 83.1

LSTM+DT 82 79.9 83.4 81.6

LSTM+SVM 58.2 59.3 40.5 48.1

LSTM+KNN 57.7 56.6 50.2 53.2

LSTM+NB 75 69.9 83.9 76.3

ARIMA+RF 80.8 84.2 74.3 78.9

ARIMA+LR 81.5 82.7 78.2 80.4

ARIMA+DT 78.9 78.2 78.2 78.2

ARIMA+SVM 60.4 59.3 58.4 58.9

ARIMA+KNN 58.5 57.3 55.9 56.6

ARIMA+NB 48.9 48.6 95 64.3

Table 6.5: Confidence Intervals associated with ROC curves

Participant
Classification

model
LSTM model

with 95% of CI
ARIMA model
with 95% of CI

P3

LR 75.96 to 83.63 57.44 to 67.45

DT 66.79 to 75.46 51.27 to 61.48

RF 78.63 to 85.92 56.44 to 66.44

SVM 55.89 to 65.23 48.57 to 58.83

KNN 55.37 to 64.72 48.38 to 58.64

NB 62.86 to 71.82 52.21 to 62.38

P4

LR 91.44 to 96.03 82.14 to 88.89

DT 78.74 to 85.97 75.58 to 83.34

RF 89.68 to 94.76 85.25 to 91.41

SVM 59.31 to 68.41 59.9 to 69.08

KNN 53.41 to 62.76 55.89 to 65.27

NB 77.61 to 85 71.25 to 79.52

6.3.3 Validation with GSR

GSR serves as a non-invasive physiological measure that effectively reflects the

activity of the sympathetic nervous system and has found widespread utility in

research focusing on emotional and cognitive processes [28]. GSR is a convenient

and versatile tool for assessing emotional states across a variety of contexts. In

comparison to alternative physiological measures, such as heart rate or EEG, GSR
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is less susceptible to motion artifacts and boasts a slower response time [203]. This

feature makes GSR particularly valuable for validating models that aim to predict

emotional states [204].

The performance of PredictEYE was validated by collecting GSR data from

participants as they watched calm and stressful videos while their eye movements

were tracked. In this study, an LSTM model was trained using this data to make

predictions regarding future sequences of GSR data. Simultaneously, a Random

Forest model was also trained to predict participants’ emotional states based on

the anticipated GSR sequences. The predictions generated by the Random Forest

model, utilizing GSR data, were subsequently employed to validate the emotional

state predictions derived from the eye tracking data.

6.4 Discussion

Figure 6.11 illustrates the classification of emotional states into ’calm’ or ’stress-

ful’ using the Random Forest algorithm. This classification is predicated on the

predicted sequences of eye tracking data collected after participants viewed both

calm and stressful videos. The visual representation utilizes green to signify calm

and red to denote stressful states. It offers a clear visualization of the states as de-

termined by the GSR and the emotional state predictions generated by the LSTM

and ARIMA models.

An interesting pattern emerges after scrutinizing the predictions of emotional

states based on eye-tracking features and comparing them with GSR data. The

Random Forest algorithm excelled in accurately predicting the emotional states

of all participants when using predicted data sequences from the LSTM model.

However, its performance was less consistent when attempting predictions based

on the ARIMA model’s forecasted sequences. Notably, the algorithm exhibited

inaccuracies in predicting the emotional states of participants 3 and 5 when relying

on ARIMA model predictions. These observations underscore the influence of the

LSTM model’s predictions on the accuracy of the Random Forest algorithm in the

context of emotional state prediction through eye-tracking features.

A deeper analysis focused on Participant 3, who consistently displayed calm

according to the ground truth GSR during both video sessions. When using the

predicted sequence from the LSTM model, the Random Forest algorithm effec-

tively predicted the participant’s emotional state at the conclusion of the stressful

video. However, based on the ARIMA model’s forecasted sequences, it yielded

less accurate predictions. The data underwent further scrutiny through a Welch

two-sample t-test, comparing data samples obtained after viewing both calm and

stressful videos. The results, documented in Table 6.1, revealed that specific fea-
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Figure 6.11: Forecasting of emotional state based on eye tracking features consid-
ering GSR as ground truth

T1, T2, ...Tn indicates the data at each time sequence used for training. P1,
P2,..Pn indicates that data at each time sequence during prediction. The figure
shows the emotional state prediction at the end of watching calm and stressful

scenes of the video.

tures did not exhibit a significant difference at the end of the stressful video, signi-

fying the participant’s sustained calm state during the observation. These findings

further emphasize the superior performance of the Random Forest algorithm in

predicting emotional states when utilizing the predicted sequences generated by

the LSTM model, as compared to ARIMA’s predictions.

Turning to the analysis of Participant 6, Random Forest achieved precise emo-

tional state predictions based on the forecasted sequences from the LSTM model

for both videos. However, when relying on the predicted sequences from ARIMA

data, the algorithm consistently classified the state as stressful for both videos,

which contradicted the predictions based on GSR data. These results underscore

the nuanced nature of the PredictEYE model’s performance, which is dependent
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on the specific features used and the algorithm applied for data forecasting.

PredictEYE demonstrates the effectiveness of predicting participants’ emo-

tional states based on their emotional state while watching a video. The Predict-

EYE model utilizes LSTM to predict the future sequences of various eye track-

ing measures, such as pupil diameter, blink rate, and fixation, while participants

watch specific content on a screen. These eye tracking measures provide insights

into the participants’ emotional states, whether they are moving towards a calm

or stressful condition based on their emotional state while watching the video. For

instance, when a participant is watching a stressful video, PredictEYE seeks to

understand how their eye tracking metrics change over time and whether these

changes lead them towards a calm or stressful state, driven by their emotional

state while watching the video. The LSTM model plays a crucial role in this

process by identifying patterns within each participant’s eye tracking time series

data and making predictions about their future eye movements and reactions. The

Random Forest algorithm is then employed to collectively interpret the predicted

future sequences of all eye tracking features, providing insights into the potential

emotional state to which participants may be headed, considering their emotional

state while watching the video. The insights gained from PredictEYE can be

utilized to dynamically reorganize or skip the content being displayed to the par-

ticipants, ensuring a more personalized and engaging experience based on their

predicted emotional states, which are derived from their emotional states while

watching the video. This approach can be applied in various domains, such as

mental health and stress management, to monitor and predict individuals’ emo-

tional states in real time based on their physiological data and emotional state

while watching a video.

Using time series analysis on eye tracking data with high sampling frequency

can provide several benefits in predicting emotional states with personalized mod-

els. Firstly, it allows for identifying unique patterns of gaze behavior associated

with different emotional states or disorders based on the emotional state while

watching the video. Secondly, using time series analysis on eye-tracking data can

help capture temporal dynamics and changes in emotional states over time. By

capturing changes in gaze behavior and emotional states over time, personalized

models can provide more accurate and timely predictions, allowing for more effec-

tive interventions and treatments.

In the PredictEYE model, eye tracking features play a significant role in pre-

dicting emotional states. The model’s utilization of LSTM-based time series anal-

ysis on eye tracking data enables it to capture unique gaze patterns, fixations, and

eye movements associated with different emotional states, such as calm or stress-

ful, based on the emotional state while watching the video. By leveraging these
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eye tracking features, the PredictEYE model can distinguish individual behavioral

patterns, making its predictions more accurate and tailored to the specific emo-

tional states of each individual, influenced by their emotional state while watching

the video.

Compared to the ground truth GSR, which predicts the emotional state, the

PredictEYE model’s eye tracking features offer additional information. While

GSR provides valuable physiological data related to emotional state, eye tracking

data goes beyond this by revealing what elements in the visual scene draw im-

mediate attention and potentially influence the emotional state. The PredictEYE

model not only detects the emotional state of an individual but also attributes the

emotional state to specific scenes using the information obtained from eye tracking

and the emotional state while watching the video. This feature allows for a more

comprehensive understanding of the factors contributing to a person’s emotional

state during video viewing. By combining eye tracking and emotional state pre-

diction, the PredictEYE model provides valuable insights into both conscious and

subconscious responses, enhancing the accuracy of its predictions. PredictEYE

model has been compared with existing recent personalized and not personalized

models [88–91, 208, 209] in terms of stimulus, type of participants on which the

study was performed, the features, algorithms used by the model, their achieved

results, its analysis based on performance metrics, and type of the model as shown

in Table 6.6. In eye tracking research, various stimuli, such as images, videos,

tasks, and games, have been utilized to observe and analyze eye tracking measures.

These measures typically include fixation, blink, saccade, and pupil diameter, em-

ployed in numerous studies to gain insights into different mental states based on

the emotional state while watching the video.

The PredictEYE model focused on using video stimuli as the input and ex-

tracted features based on fixation, blink, and pupil diameter to classify emotional

states as calm or stressful. Rather than comparing multiple users and attempt-

ing to understand the parameters responsible for emotional state prediction, our

approach aims to observe and comprehend individual patterns, considering the

idiosyncratic nature of eye tracking data.

Numerous models have adopted machine learning and deep learning algorithms

to classify emotional states, and attentional states, emotional states, and identify

mental disorders, as well as detect perceived workload. Among these models,

PredictEYE stands out with its unique approach, utilizing LSTM-based time series

data prediction and random forest algorithm to predict emotional states based on

retrieved eye tracking data. The PredictEYE model falls under the personalized

model category, intending to understand individual behavioral patterns based on

their emotional state while watching calm and stressful videos. By learning from
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Table 6.6: Comparison of PredictEYE with existing models

Model Stimulus
Type of
participant

Features Algorithm Result
Performance
metric
accuracy

Type of
model

[199]
ST,
AT,
PT

− PD, BR,
FR,SR,ITD

CNN
Classification
of attentional
states

80%

Person-
dependent
and
person-
independent

[207] SDS Drivers
PD, BR,
GD, VD,ED

CNN,
LSTM

Classified
the stress
levels as low,
medium
and high

95.5%
Real time
monitoring

[88] V
ASD and
TD children

FAA DA
classification
as ASD
and TD

85.1% NP

[89] V - PC IP, ML
Detection of
psychomotor
impairment

− NP

[19] AW with cancer
without cancer

VM CNN-LSTM
Identified
mental
health status

Hope- 93.8% ,
Anxiety-94.8%,
Mental
Wellbeing-95%

Self-
proclaimed

[90] V
with
mental
disorders

PD, FR, SR,
FD, FF

CNN,
DLSTM

Provides
objective
evaluation
index
of patients
with
mental
disorders

− NP

[91] I Normal

SSIM, E, C,
HOC, PSD
for EEG,
and
EOG-PDE,
CGF, FV,
RMSF
for ET

GMM,
DGNN

Classified
emotions
under the
eight
event stimuli

88.10% NP

[208] SEOE
Excavator
operators
from industry

BR, BD, PD,
GP

TICC, SVM
Mental fatigue
detection

85% NP

[209] RSSS
Surgical
trainees

PD, FD,
GE,
PERCLOS

NB

Detection of
perceived
workload in
robotic
surgical tasks.

84.7% NP

PEYE V Normal
PD, FD, BD
FDXY

LSTM,
RF

Classified
emotional
state as
calm and
stressful

86.4%

Personalized
model
Indication of
scene
responsible
for
mental state

ST − switch task, AT − alignment task, PT − pairs task, SDS − stressful driving situations, V − video, AW − art
works, I − images, SEOE − simulated excavator operation experiment, RSSS − robotics skill simulation session, PD −
pupillometric data, BR − blink rate, FR − fixation rate, SR − saccade rate, FD − fixation duration, BD − blink duration,
ITD −imaging time series data, GD − gaze dispersion, VD − vehicle data, ED − environmental data, FAA − fixation at
Area of Interest(eyes,mouth, body, hands, objects, background), PC − pupil centroid, VM − visual metrics, FF − fixation
frequency, SSIM − self-similarity, E − Energy, C − Complexity, HOC − High order crossing, PSD − power spectral
density, EOG-PDE − electrooculography power density estimation, CGF − center gravity frequency, FV − frequency
variance, RMSF − root mean square frequency, ET − eye tracking, GP − gaze position, GE − gaze entropy, PERCLOS
− Percentage of eyelid closure, FDXY − fixaiton dispersion on X and Y axis, DA − discriminant analysis, IP − image
processing, ML − machine learning, NB − Naive Bayes, RF − Random Forest, CNN − Convolutional Neural Network,
DLSTM − Deep LSTM, GMM − Gaussian Mixed Model, DGNN − Deep Gradient Neural Network, TICC − Toeplitz
Inverse Covariance-Based Clustering, TD − typically developing, NP − Not personalized, PEYE − PredictEYE
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these personalized patterns, the PredictEYE model predicts a person’s emotional

state based on their unique eye tracking responses. PredictEYE is unique in its

approach as it analyzes time series eye tracking data, thoroughly understands the

unique eye tracking features of that person, and predicts their emotional state and

the specific scene responsible for it.

The performance of the PredictEYE model is compared to other models in

terms of accuracy. The Random Forest model used in emotional state prediction

has shown promising results with a maximum accuracy of 86.4%. At the same

time, it could not achieve such high accuracy for all the participants, but it is

unique in its approach in detecting mental states based on the emotional state

while watching the video. Collecting more data over a longer period can help

better understand the unique patterns of an individual’s mental state, leading to

more accurate predictions and improved mental health outcomes.

A stressful emotional state for Participant 1 might be attributed to scene 4,

while for Participant 2, a different scene could be responsible for their emotional

state, as shown in Figure 6.12. The figure illustrates the emotional state predic-

tions of Participants 1, 2, and 3 while viewing a series of stressful scenes in a

video. The depicted time span ranges from T1 to T18, with each scene labeled

S1 to S18. Participant 1 experienced a state of stress, and this was attributed to

scene S4, which had a noticeable impact on their emotional state. However, the

same scene, S4, did not induce any changes in the emotional states of Participants

2 and 3. Participant 2, initially in a calm state, transitioned into a state of stress

due to scene S8. In contrast, Participant 3 remained consistently calm throughout

the entire time span, with no observed alterations in their emotional state caused

by any scenes. These findings highlight the individual variability in how differ-

ent participants respond to stressful stimuli and the unique triggers and reactions

within their emotional states, all influenced by their emotional state while watch-

ing the video. This capability to capture and differentiate individual responses is

an exceptional characteristic of PredictEYE showcasing the diverse ways in which

people perceive and react to stressful situations.

PredictEYE is a tool that focuses solely on normal individuals and aims to

understand changes in their emotional state by establishing a baseline period.

During this baseline period, eye tracking measures are observed, and the model

attempts to comprehend the trends and patterns of those measures to predict

future emotional states. This approach allows for the development of personalized,

data-driven interventions to support individuals’ mental well-being, taking into

account their emotional state while watching the video. By utilizing PredictEYE,

individuals can gain insight into their emotional state and make informed decisions

about their mental health care.
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Figure 6.12: Sample scenes and gaze responsible for the emotional state of partic-
ipants

P1- Participant 1, P2- Participant 2, P3- Participant 3, T1, T2..T18 - Time
sequences, S4, S5, ...S12 - Scene responsible for the stressful emotional state.

One of the key advantages of using time series data analysis in the PredictEYE

model was the ability to develop personalized models for each participant. By

analyzing the eye tracking data during both calm and stressful video viewing, the

model was able to identify the underlying patterns in each participant’s data and

develop a personalized model that could efficiently predict their emotional state,

considering their emotional state while watching the video.

The PredictEYE model customizes its analysis of eye tracking data by utilizing

LSTM-based time series models, which adapt to individual differences in a person-

alized manner, taking into account their emotional state while watching the video.

This personalized approach involves training the model on each person’s specific

eye tracking data, capturing their idiosyncratic patterns and responses. Instead of

comparing data across multiple participants and treating them as a homogeneous

group, this personalized approach recognizes and respects the individuality of each

person’s cognitive and emotional processes.

The results demonstrated that the PredictEYE model could accurately predict

each participant’s emotional state based on their eye tracking data. Time series

data analysis and personalized modeling in the PredictEYE model could be applied

to larger datasets in future studies to improve the accuracy and reliability of the

model for emotional state classification. PredictEYE’s continuous monitoring has

the potential to identify patterns in an individual’s emotional state over time,

revealing insights into stress and mental health conditions. These insights could
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facilitate early interventions or treatments before conditions worsen.

During the development of the PredictEYE system, the challenge was to build

a personalized model. Extensive literature surveys led to the discovery of suitable

time series analysis methods for eye tracking data, enhancing personalization, and

improving emotional state prediction. Selecting the best predictive and classifica-

tion model combination is crucial in developing accurate and efficient personalized

models like the PredictEYE model, which could predict participants’ emotional

states based on their eye tracking data while taking into account their emotional

state while watching the video. By selecting the LSTM and the Random For-

est models as the best models for predicting the emotional state, the PredictEYE

model could understand the trends in the time series data and classify participants’

emotional states into calm or stressed states with better performance.

6.5 Conclusion

The PredictEYE system predicts a person’s emotional state based on their emo-

tional state while watching videos using eye tracking data. It utilizes an LSTM-

based time series regression model for forecasting and a Random Forest algorithm-

based classification model for predicting emotional states. Comparing the LSTM

model with an ARIMA model, the LSTM outperformed. Random Forest achieved

a maximum accuracy of 86.4%, precision of 83.9%, recall of 88.8%, and an F1

score of 86.3% in emotional state prediction. Eye tracking features played a sig-

nificant role, similar to ground truth GSR. The model can incorporate various

physiological signals for improved accuracy.

PredictEYE offers promise in predicting emotional states, providing insights

into specific scenes affecting individuals’ emotional states. It has applications in

mental health screening and treatment monitoring. Its adaptability for webcam-

based eye tracking allows continuous, non-invasive monitoring, offering insights

into emotional states over time. The model’s accuracy can be enhanced by param-

eter tuning and multivariate data analysis. Incorporating reinforcement learning

can further personalize emotional state predictions, improving outcomes for men-

tal health concerns. The adaptable and non-invasive nature of PredictEYE makes

it valuable in healthcare, education, and employment settings.

This chapter explained one of the mental state parameters, emotional state,

and introduced the PredictEYE time series model for the future feature prediction

and its classification. The next chapter will explain the models that assess an

individual’s mental state based on their emotional state using eye-tracking data

and other physiological measures.
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Chapter 7

Multimodal Dataset Creation and

the Detection of Emotional state

7.1 Representation of Emotional State on a

Dual-Dimensional Space

Emotion is a complex phenomenon and it can be assessed effectively through

the dual-dimensional valence and arousal model proposed by Russell [210]. This

model, depicted in Figure 7.1, provides a detailed understanding of the subjective

experience of emotions. Valence, which defines the pleasantness or unpleasantness

of an emotional experience, includes the general emotional polarity and is divided

into positive and negative. At the same time, the concept of arousal, describing

the intensity level connected with feelings, is divided into low and high, which

indicate the level of activation. Emotional states are represented in two different

axes and that creates space for various combination of emotions. For instance,

emotions with negative valence and high arousal, such as anger, are positioned in

the upper left corner, while emotions with positive valence and low arousal, like

calmness, are in the lower right corner.

Thus representation allows a thorough understanding of emotions by capturing

the overall character and intensity of their emotions. Valence and arousal affect

the cognitive processes and behaviours through different neural mechanisms in the

brain. The inclusion of this concept into mental health assessments allows a more

enhanced and specific approach in the assessment of an individual’s emotional

health.
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Figure 7.1: Dual-dimensional model of valence and arousal

7.2 Need of Multimodal Dataset

Emotions are complex and involve physiological processes and actions. Eye track-

ing alone may only provide a partial view. A multimodal approach, combining

eye tracking data, physiological signals, and behavioral markers, supports and con-

firms results, considering individual differences and interpretations of emotional

reactions. This method enhances the accuracy and reliability of systems designed

to detect emotional states by considering multiple channels of data, such as face,

voice tone, body language, and physiological reactions [139].

Researchers developed an emotion recognition algorithm using heart rate data

from a wearable smart bracelet and 25 participants watching emotional videos

[211]. Deep neural network models like EmoRL improved accuracy and reduced

latency in categorizing emotions based on audio input [212]. Researchers also

used respiratory signals to analyze emotional information, classifying arousal and

valence into categories [142].

These studies bring out the need for a multimodal dataset in emotional state

detection. The integrating data of physiological signals including the heart rate

as well as the respiratory signal gives a better view of the emotion a person is

experiencing. The combination of different modalities allows the algorithms to

detect more types of emotion, and thus make the emotion recognition system

more reliable. Hence, to enhance the efficiency of the detection of the state of

emotions, it becomes essential to employ the datasets of the multimodal type.

In section 7.3, the process of emotional state detection based on the multimodal

dataset EmoRPhyE is explained. The features extracted from each physiological
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signal are discussed in section 7.3.1, data labeling is discussed in section 7.3.2,

the classification model is employed in section 7.3.3, and a detailed analysis of

the results is provided in section 7.3.4. Furthermore, the discussion of the model

is presented in section 7.3.5 and concludes with section 7.3.6. In section 7.4, all

the models specific to cognitive load, cognitive impairment, and emotional state

classification are compared with the state of the art.

7.3 EmoRPhyE Dataset and the Models to

Detect the Emotional State

EmoRPhyE multimodal dataset was created by incorporating heart rate, blood

flow, skin conductance, breathing, and eye tracking data while participants viewed

both pleasant and unpleasant images. Extensive literature review was conducted

on the identification of the various emotional states. The process of creating the

detailed dataset is described in Chapter 3.

Building upon the EmoRPhyE dataset, two distinct models were developed to

detect emotional states, as shown in Figure 7.2. The first model utilizes eye track-

ing data to observe emotional responses based on visual attention patterns. The

second model integrates a broader spectrum of physiological measures, including

ECG, PPG, GSR, and respiratory data. This gives a more refined possibility to

study the relationship between body reactions and visual attention to emotion-

related stimuli.

Figure 7.2: System architecture for emotional state classification
IAPS- International Affective Picture System, ECG - Electrocardiogram, PPG -
Photoplethysmography, GSR - Galvanic Skin Response, KNN - K Nearest Neigh-
bour
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The EmoRPhyE dataset is a valuable resource for emotion detection, providing

a variety of physiological signals to understand emotional states. It allows for com-

parative analysis of eye tracking data effectiveness versus multiple physiological

measures. This research contributes to multimodal approaches in emotion detec-

tion, highlighting the potential synergy between visual attention and physiological

responses.

7.3.1 Feature Extraction

The EmoRPhyE dataset, containing physiological data from 30 participants, was

used to extract features from 192 images displaying varying levels of arousal and

valence. Only time domain was considered for extracting features from the physio-

logical signals. Since the focus was on capturing temporal patterns and variations

within the signals, the frequency-specific characteristics in the process of physio-

logical feature extraction were neglected. Each stimulus image was presented to

the participant for a duration of 8 seconds, and considered as the window period

for feature extraction.

Table 7.1: Features extracted from ECG signal

Feature Description
Avg HR (F1) The mean of heart beats

Avg RRinterval (F2)
The mean time duration between
successive R-peaks in an ECG

SD RRinterval (F3) Dispersion of RR intervals.

RMSSD (F4)
Root mean square distance
between successive RR intervals

Count Rpeak 50 (F5)
Count of ECG R-peaks differing
by more than 50 ms.

Percent Rpeak 50 (F6)
Percentage of ECG R-peaks
differing by more than 50 ms.

The R peaks were detected for the ECG signal using a modified version of the

Pan-Tompkins algorithm. Subsequently, the RR interval (RRI) and the heart rate

(HR) time series were derived for each window. A total of six features (F1-F6)

were then extracted from the ECG signal, as detailed in Table 7.1. These features

encompass metrics such as average heart rate, average RR interval, standard devi-

ation of RR interval, root mean square distance between successive RR intervals,

and the count and percentage of R peaks differing by more than 50 milliseconds.

The Average Heart Rate represents the mean number of heartbeats per minute,

offering a snapshot of the heart’s overall pacing. The Average RR Interval pro-

vides an average measure of the time lapse between two consecutive heartbeats.

The Standard Deviation of RR Interval serves as a metric for the variability or
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dispersion of RR intervals, indicating the consistency of the heart rate. Higher

values denote increased variability. The RMSSD is a time-domain measure that

quantifies the variation in consecutive RR intervals. It reflects short-term heart

rate variability, with higher RMSSD values suggesting greater variability and po-

tential parasympathetic nervous system influence. The count and percentage of R

Peaks Differing by More than 50 Milliseconds are indicative of irregularities in the

ECG signal. This feature quantifies the number or proportion of R peaks exhibit-

ing a difference greater than 50 milliseconds, with a higher count and percentage

pointing to increased variability in R-peak timings.

Seventeen features(F7-F23) were extracted from each PPG signal window, fo-

cusing on the detection of critical points, including valleys, systolic, diastolic, and

dicrotic notches. Among these features, thirteen were timing-related, as shown

in Table 7.2, with additional features such as kurtosis, skewness, the standard

deviation of time between systolic peaks, and the systolic-diastolic phase ratio.

The Systolic Peak is the highest pressure point during a heartbeat, reflecting the

peak contraction of the heart. Diastolic Point is the lowest pressure point between

heartbeats, indicating the relaxation of the heart. Dicrotic Notch is a small dip in

the descending part of the pulse wave, typically following the systolic peak. Valley

is the minimum point in the pulsating waveform between the diastolic point and

the next systolic peak.

Regarding the respiratory signal, peaks, and valleys were extracted for each

window, and the breath rate series was derived as the time differences between

these peaks. The respiratory signal processing resulted in eight features (F24-

F31), as detailed in Table 7.3. These features encompass parameters such as

average breath rate, standard deviation of breath rate, root mean square distance

of successive breath intervals, standard deviation of successive breath interval

differences, average expiration time, average inspiration time, average expiration

area, and average inspiration area.

GSR data yielded 22 features (F32-F53), as inspired by studies by Daniel

Lopez-Martinez and Alberto Grego, and are shown in Table 7.4.

The study utilized the I-DT algorithm for the detection of fixation and saccade

coordinates and identifying the blink events. Fixations were determined based on

spatial and temporal proximity, with a maximum Euclidean distance of 100 pixels

and a minimum time duration of 50 ms. Saccades, rapid eye movements between

fixations, were identified by larger spatial distances and shorter temporal duration,

with a cutoff total duration not exceeding 90 milliseconds. A total of 25 eye-

tracking features (F54-F78) were extracted as shown in Table 7.5, encompassing

parameters such as blink frequency, fixation duration, saccade characteristics, and

pupil diameter metrics.
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Table 7.2: Features extracted from PPG signal

Feature Description

Pulse propagation time (F7)
duration between specific
points in the pulsatile cycle

Systolic systolic (F8)
duration between two
successive systolic peaks

Diastolic to valley (F9)
duration between the diastolic point
and the subsequent valley

Valley to diastolic (F10)
duration between subsequent valley
and the diastolic point

Diastolic to diastolic (F11)
duration between two consecutive
diastolic points

Systolic to dicrotic notch (F12)
duration between the systolic peak
and the dicrotic notch

Dicrotic notch to diastolic (F13)
duration between the
dicrotic notch and the
subsequent diastolic point.

Systolic phase (F14)
Rising curve from
valley to systolic peak

Diastolic phase (F15)
descending curve
from systolic peak to valley

Pulse wave duration (F16)
overall time duration of the
pulsatile waveform

Valley to dicrotic notch (F17)
duration between valley and the
subsequent dicrotic notch

Dicrotic notch to valley (F18)
duration between dicrotic notch
and the subsequent valley

Dicrotic notch to dicrotic notch (F19)
duration between two
consecutive dicrotic notches

Kurtosis (F20)
sharpness or flatness
of a distribution

Skewness (F21) asymmetry in a distribution

SD systolic peaks (F22)
standard deviation of duration
between successive systolic peaks

systolic diastolic phase ratio (F23)
proportion of time spent in heart
contraction versus relaxation.

The feature “percent interest” quantifies the proportion of interest within a

designated area determined by the visual saliency of the image [213]. Computed as

the percentage of fixations durations occurring within this area, derived based on

the Equation 7.1. This metric measures the relative attention or interest directed

toward the visually salient portion of the image, offering valuable insights into the

emotional response associated with the observed image. The details of all other

eye tracking features are provided in Chapter 4.
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Table 7.3: Features extracted from respiratory signal

Feature Description
Avg breath rate (F24) Mean of breaths per unit of time
Std breath rate (F25) standard deviation of breath rate

RMSE breath interval (F26)
root mean square distance of
successive breath intervals

Std breath interval (F27)
standard deviation of successive
breath interval differences

Avg exp time (F28) The average expiration time
Avg ins time (F29) average inspiration time
Avg exp area (F30) average expiration area
Avg ins area (F31) Average inspiration area

Table 7.4: Features extracted from GSR signal

Feature Description
Max gsr (F32) Maximum of the GSR signal
Range gsr (F33) Range of the GSR signal
Std gsr (F34) Standard deviation of the GSR signal
IQ gsr (F35) Interquartile range of the GSR signal
RMS gsr (F36) Root mean square of the GSR signal
Avg gsr (F37) Average of the GSR signal

Avg first gsr (F38)
Average absolute value of the
first differences of the GSR signal

Avg second gsr (F39)
Average absolute value of the second
differences of the GSR signal

Avg first norm gsr (F40)
Average absolute value
of the first differences of the
standardized GSR signal

Avg second norm gsr (F41)
Average absolute value of the
second differences of the
standardized GSR signal

Skw gsr (F42) Skewness of the GSR signal
Krt gsr (F43) Kurtosis of the GSR signal

SumPosDiff gsr (F44)
Sum of positive values of the
first derivative of the GSR signal

SumNegDiff gsr (F45)
Sum of negative values of the
first derivative of the GSR signal

Max scl (F46) Maximum of the tonic curve
Max scr (F47) Maximum of the phasic curve
AUC scl (F48) Area under the tonic curve
AUC scr (F49) Area under the phasic curve
Avg scl (F50) Average of the tonic curve
Avg scr (F51) Average of the phasic curve
Std scl (F52) Standard deviation of the tonic curve
Std scr (F53) Standard deviation of the phasic curve

145



Table 7.5: Eye tracking features extracted for the classification of emotional state

Feature Description
percent interest (F54) Percentage of interest within an area of interest.
blink freq (F55) Frequency of blinks within a time frame
avg blink dur (F56) Average of all the duration of blinks for an image
max blink dur (F57) Maximum blink duration while watching an image
min blink dur (F58) Minimum blink duration while watching an image

time to first fix (F59)
Time difference between starting time of first
fixation in an image and starting time of an image.

first fix dur (F60) First fixation duration while watching an image
avg fix dur (F61) Average fixation duration while watching an image
fix freq (F62) Frequency of fixation within a time frame
fix max dur (F63) Maximum fixation duration
fix min dur (F64) Minimum fixation duration
avg pup dia (F65) Average of all the pupil diameter values for an image
max pup dia (F66) Maximum pupil diameter
min pup dia (F67) Minimum pupil diameter
avg sac dur (F68) Average saccade duration while watching an image
min sac dur (F69) Minimum saccade duration
max sac dur (F70) Maximum saccade duration
avg sac amp (F71) Distance between starting and ending points saccade
avg sac vel (F72) Velocity of the saccade
min sac amp (F73) Minimum saccade amplitude while watching an image
max sac amp (F74) Maximum saccade amplitude while watching an image
min sac vel (F75) Minimum saccade velocity while watching an image
max sac vel (F76) Maximum saccade velocity while watching an image
min velocity (F77) Minimum saccade velocity while watching an image
sac freq (F78) Frequency of saccades within a time frame

percent interest =

(
Total duration of fixations within AOI

Overall time spent for the image

)
× 100 (7.1)

The collected data were annotated using the feedback from the users. With

the help of Self-Assessment Manikin method (SAM), participants estimated the

valence and the arousal of each picture. At the end of each four pictures, par-

ticipants had to give ratings on a scale of 1 to 9. For valence, a rating of 1 was

low and 9 was high. Likewise, 1 for arousal meant low arousal and 9 meant high

arousal. This structured approach let the participants to report their subjective

estimates, which was aimed at defining the amount of the emotional load of the

presented images.
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7.3.2 Data Labelling

Considering combinations of valence and arousal as low, medium, and high, five

classification models were established. The given classification offers a clear view of

understanding of different emotional states, providing insights into the variations

across the emotional spectrum.

1. Binary classification for low and high arousal: Data is labeled as low or high

arousal.

2. Binary classification for low and high valence: Data is labeled as low or high

valence.

3. Ternary classification for low, medium, and high arousal: Data is labeled

into low, medium, or high arousal.

4. Ternary classification for low, medium, and high valence: Data is labeled

into low, medium, or high valence.

5. Quaternary classification, where the arousal-valence plane is divided into

four quadrants, each corresponding to a different combination of valence

and arousal. Data is labeled into low Valence low arousal, low valence high

arousal, high valence low arousal, high valence high arousal

Specific threshold levels for valence and arousal were employed to categorize

these distinct groups, following the criteria detailed in Table 7.6.

Table 7.6: Labeling the data based on valence and arousal feedback

Classification Arousal Valence Threshold

Binary-Arousal
Low - arousal<5
High - arousal>=5

Binary-Valence
- Low valence<5
- High valence>=5

Ternary-Arousal
Low - arousal<4
Medium - arousal>=4 and arousal<=6
High - arousal>6

Ternary-Valence
- Low valence<4
- Medium valence>=4 and valence<=6
- High valence>6

Quaternary

Low Low arousal<5 and valence<5
Low High arousal<5 and valence>=5
High Low arousal>=5 and valence<5
High High arousal>=5 and valence>=5
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Utilizing the same framework, physiological features and eye-tracking features

underwent classification, even though the classification was conducted separately

on the two datasets.

7.3.3 Classification Model

The proposed approach involves two models for emotion classification: one relies

on the machine learning algorithm KNN applied to eye tracking data, and the

other incorporates various physiological measures, including ECG, GSR, respi-

ratory signals, and PPG. The primary objective is to assess the effectiveness of

each model in categorizing emotions based on the features extracted from their

respective datasets.

The dataset underwent division into training and testing subsets to assess the

model’s performance on distinct data. The training set, randomly comprising 80%

of the dataset, played a crucial role in establishing relationships between physio-

logical (or eye-tracking) features and emotional states categorized by various levels

of valence and arousal. This partition exposed the algorithm to diverse emotional

data, enabling it to identify meaningful correlations and enhance predictive capa-

bilities. The remaining 20% of the data constituted the testing set, ensuring the

model encountered unseen instances during evaluation. This separation guarded

against overfitting and guaranteed the model’s ability to generalize emotions ac-

curately.

7.3.4 Results

The classification models of the human emotional state with the help of physio-

logical signals and eye tracking data are developed using KNN algorithm. Five

classification models that use arousal and valence dimensions have been created,

and the performance of each of the created models is being compared. The arousal

model and the valence model are two models that reflect different possibilities of

arousal and valence; thus, each model offers a great opportunity to explore differ-

ent emotional states and get a deep understanding of the human emotions.

To compare the efficiency of the models under consideration, a comparative

analysis has been made. This entails comparing the predictions that are obtained

from the eye tracking model with those that are obtained from the physiological

measures model. The objective is to determine the accuracy of the models in

identifying an individual’s emotional state. The results are presented in Tables

7.7 and 7.8, providing insights into the performance of the eye tracking model and

the physiological measures model across different emotional categories.
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Table 7.7: Performance evaluation of emotional states based on KNN algorithm
applied on eye tracking data

Emotional state
classification models

Accuracy
(%)

Precision (%) Sensitivity (%)

Low-55 Low-56
Binary- Arousal 54

High-55 High-53
Low -57 Low-64

Binary- Valence 57
High-57 High-50
Low-45 Low-34
Medium-52 Medium-55Ternary-Arousal 49
High-49 High- 58
Low-50 Low-50
Medium-50 Medium-32Ternary-Valence 50
High-50 High-67
LALV-59 LALV-81
LAHV-44 LAHV-26
HALV-52 HALV-40

Quaternary 53

HAHV-54 HAHV-67
LALV − Low Arousal-Low Valence, LAHV − Low Arousal-High Valence,
HALV − High Arousal-Low Valence, HAHV − High Arousal-High Valence

Table 7.7 provides an analysis of the performance of the given models for the

classification of the emotional state using the eye tracking data with the help of

the KNN algorithm. Thus, when comparing binary, ternary, and quaternary mod-

els, it is seen that binary models are characterized by higher accuracy, precision,

and sensitivity in comparison with ternary and quaternary models. Particularly,

in the context of the binary classification framework, it can be stated that the

Binary-Valence model performs better than the Binary-Arousal model, based on

the higher accuracy, precision, and sensitivity values for both low and high arousal

levels. Ternary and quaternary models give finer distinction to the emotions but at

the same time they are less accurate and sensitive due to the complexity involved

in them.

Precision signifies the model’s accuracy in correctly identifying instances of a

specific emotional state among all instances it classifies as that state. The model

achieved a precision of 57% in classifying emotional states as low and high based

on valence, indicating that 57% of the instances predicted as low were genuinely

low, and similarly, 57% of the instances predicted as high were genuinely high.

Precision delineates the proportion of correct identifications within the model’s

classifications for each emotional state.

Sensitivity, or recall, measures the model’s ability to correctly identify all in-

stances of a specific emotional state among those present in the dataset. The

model could achieve a sensitivity of 64% in classifying emotional states as and low
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50% in classifying as high, indicating that the model correctly identified 64% of

low instances and 50% of high instances.

Table 7.8 presents the performance evaluation of emotional state classification

models based on physiological measures, employing KNN algorithm. The binary

classification method emerges as the superior option for emotional state classi-

fication based on physiological measures among binary, ternary, and quaternary

classifications. This preference is based on its simplicity and often higher accu-

racy than ternary and quaternary classifications. Furthermore, within the chosen

binary classification, the Binary-Arousal model achieves an accuracy of 65%. This

signifies its effectiveness in accurately discerning and categorizing emotional states,

particularly in distinguishing between low and high arousal levels. Therefore, the

binary classification, supported by physiological signals, emerges as the optimal

choice for precise emotional state detection.

The precision scores indicate that the model is more accurate in predicting

instances of low arousal (69%) compared to instances of high arousal (62%). Sim-

ilarly, the sensitivity scores suggest that the model is better at correctly identifying

instances of low arousal (60%) than instances of high arousal (54%). While the

model performs relatively well in detecting low arousal, its accuracy in identifying

high arousal instances may require improvement.

Table 7.8: Performance evaluation of emotional states based on KNN algorithm
applied on various physiological data

Emotional state
classification models

Accuracy
(%)

Precision (%) Sensitivity (%)

Low-69 Low-60
Binary- Arousal 65

High-62 High-54
Low -56 Low-64

Binary- Valence 56
High-56 High- 48
Low-47 Low-60
Medium-46 Medium-40Ternary-Arousal 48
High-52 High- 53
Low-42 Low-50
Medium-48 Medium-35Ternary-Valence 45
High-45 High-50
LALV-31 LALV-48
LAHV-43 LAHV-31
HALV-45 HALV-28

Quaternary 37

HAHV-37 HAHV-45
LALV − Low Arousal-Low Valence, LAHV − Low Arousal-High Valence,
HALV − High Arousal-Low Valence, HAHV − High Arousal-High Valence

When comparing the performance of both models for emotional state detec-

tion based on eye tracking and physiological measures, it was observed that the
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Binary-Arousal model exhibited superior classification accuracy when utilizing

physiological data. Conversely, all other models displayed enhanced performance

when utilizing eye tracking data for emotional state detection. However, the mod-

els’ overall performance could be improved by integrating both eye tracking and

physiological measures, leveraging the complementary information provided by

each modality.

7.3.5 Discussion

The study introduces EmoRPhyE, a novel multimodal dataset includes synchro-

nized physiological data and eye gaze data collected while viewing emotion-evoking

images. This dataset, uses objectively scored feedback, attempts to improve con-

sistency in emotional research across different domains. With an emphasis on

crucial elements including stimulus selection, duration, and trial design, the study

highlights the difficulty of identifying emotional states in response to stimuli with

low emotional effect.

The stimuli were divided into 48 groups, each with 4 images that have same

valence and arousal levels and are displayed randomly to ensure a dynamic experi-

ence. The study utilized an emotion assessment approach to explore the usability

of a dataset, analyzing physiological signals and eye-tracking data separately, and

extracting relevant information.

The EmoRPhyE dataset is a unique combination of subject count, stimulus

variety, and physiological signal diversity as shown in Table 7.9. It includes data

from 30 subjects, a competitive number compared to other datasets like DEAP

[214] and AMIGOS [215]. The dataset uses 192 images from the IAPS dataset, a

controlled emotional response, and various physiological signals, including ECG,

PPG, GSR, respiratory signals, and eye tracking data. It also captures valence

and arousal feedback from participants.

The emotional state detection models, utilizing the KNN algorithm and incor-

porating both eye tracking data and physiological measures such as ECG, respira-

tory signal, GSR, and PPG, demonstrated comparable performance levels. Both

models showed competence in binary classification based on arousal and valence,

outperforming ternary and quaternary models. Notably, the Binary-Valence model

achieved marginally better accuracy with eye tracking data, while other physiolog-

ical measures exhibited stronger classification performance for the Binary-Arousal

model.

Classification results indicated promise, particularly in binary and ternary clas-

sifications, but highlighted sensitivity challenges, especially for high arousal and

high valence states in physiological signals. The approach using both physiologi-
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Table 7.9: Overview of multimodal datasets

Dataset Subject Stimulus
Physiological
signals

Feedback
from
participant

Deap [214] 32 120 videos

GSR,
skin temperature
BVP,
Respiration
pattern,
EMG, EOG, EEG,
frontal video,
audio signals

Valence,
arousal,
dominance,
liking,
familiarity

MAHNOB HCI [215] 27
20
emotional
videos

GSR, EEG, ECG
respiration
amplitude,
skin temperature,
eye gaze data

valence,
arousal on
ternary
scale

SEED [216] 15
Videos of
4 min
duration

EEG signals
negative,
neutral,
positive

AMIGOS [217] 40

16 short
emotional
videos
and 4 long
videos

EEG, ECG, GSR,

valence,
arousal,
control,
familiarity,
liking

EmoRPhyE 30
192 images
from
IAPS datset

ECG, PPG, GSR,
Respiratory
signals,
Eye Tracking Data

Valence,
Arousal

cal and eye-tracking data showcased balanced performance across different emo-

tional states. However, there is room for improvement, particularly in refining and

optimizing models for better accuracy. This study presents a significant contri-

bution by demonstrating the potential benefits of combining multiple modalities

to understand emotional responses comprehensively. Limitations include focusing

on time-domain features in physiological signals, suggesting avenues for future re-

search involving more specific features and advanced classification algorithms, and

potentially utilizing deep learning techniques for enhanced model performance.

The model is a versatile framework, employing a foundational machine-learning

algorithm for classification tasks. Improvement opportunities lie in replacing the

existing classification algorithm with more advanced alternatives. Additionally,

the model’s flexibility allows for tailored training according to the specifics of avail-

able data across various applications, enabling classification into multiple classes

as per the specific requirements of each scenario.
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7.3.6 Conclusion

This study carries significant implications for advancing emotion assessment, span-

ning bioengineering and cognitive sciences. The curated database is a valuable

resource, providing a robust foundation for algorithm development in emotion

assessment through machine learning or deep learning techniques. Incorporat-

ing multimodal and synchronized physiological signals, along with subjective and

objective data collection, makes this database particularly promising for investi-

gations in cognitive science, offering insights into psychological aspects.

The database and algorithm’s potential in enhancing emotion assessment tasks

is evident through the use of physiological signals. Further exploration of the

database and AI techniques could improve objective assessment of emotions from

diverse signals. The emotional state detection model is innovative and holds

promise for understanding and evaluating human emotions objectively. Future

research could involve integrating eye tracking with other physiological measures

to further enhance accuracy and depth of emotion assessment tasks.

7.4 Comparison of the Proposed Work with the

Existing Models

The presented research addresses significant gaps in mental health assessment us-

ing eye gaze tracking. It fills the void of publicly available datasets and proposes

innovative models for predicting cognitive load, cognitive impairment, and emo-

tional state. The inclusion of multimodal data and physiological signals improves

the understanding of mental health states. This work provides valuable resources

for benchmarking, replicability, and collaboration among researchers, emphasizing

the potential of eye tracking technology in mental health assessment.

The presented research addresses significant gaps in mental health assessment.

It addresses the lack of publicly available datasets and presented new paradigms

for estimating cognitive load, cognitive decline, and mood state. The interpreta-

tion of mental health states could be enhanced with the inclusion of multimodal

physiological data. This study highlights the importance of eye tracking tech-

nology in mental health assessment, promoting collaboration among researchers

and sharing benchmarks for replication. Table 7.10 shows the comparison with

existing datasets.

Based on the research gap specified earlier, Table 7.11 presents novel features

like error rate, scanpath comparison score, and inattentional blindness score, which

differ from traditional models and significantly enhance understanding of cognitive

functions, especially visual search speed and focused attention, providing a more
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Table 7.10: Comparison with existing datasets

Dataset
Mental state
parameter

Data

COLET [218] Cognitive Load Eye tracking data

CL-Drive [219] Cognitive Load
EEG, ECG, EDA,
eye tracking data

Deap [214] Emotional State

GSR, BVP,
Respiration pattern,
skin temperature,
EMG, EOG,
EEG, frontal video,
audio signals

MAHNOB HCI [215] Emotional State
GSR, respiration amplitude,
skin temperature, EEG,
ECG, eye gaze data

SEED [216] Emotional State EEG
AMIGOS [217] Emotional State EEG, ECG, GSR

Proposed
Thesis
Work

ET MT CL [49] Cognitive Load Pupil diameter, Blink count

ET TMT CL Cognitive Load
35 features based on fixation,
saccade, blink,
pupil diameter and time

ET TMT CI [14,15]
Cognitive
Impairment

Low-level
fixation based features,
Middle -level
AOI based features,
High-level features-
Error rate,
Scanpath
comparison score,
Inattentional
Blindness Score

ET Video ES [36,38] Emotional State
Fixation, Blink and
Pupil diameter
based 5 features

EmoRPhyE
(Multimodal)

Emotional State
ECG, PPG, GSR,
Respiratory signals,
Eye Tracking Data

insightful perspective on cognitive impairment.

The research proposes the ETMT model to address the lack of assistive tools

for healthcare professionals in mental health assessments. Compared to traditional

TMT, the ETMT model is more accessible and efficient, making it particularly

useful in clinical and residential settings with a shortage of mental health pro-

fessionals. Comparisons are provided in Table 7.12. The ETMT model provides

a comprehensive view of cognitive functioning by extracting 13 distinct features,
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Table 7.11: Comparison with the features extracted

Model Stimuli Features

[120]

Reading short
paragraphs
and answering
questions
based on it

Saccade and fixation
in each AOI,
fixation duration,
saccade amplitude,
first fixation duration
in an AOI

[119] Word Memory Test
Saccade frequency,
pupil size,
dwell rate in an AOI

[106]
Memory task,
attention task
and calculation task

Fixation duration
within the AOI,
saccade frequency,
smooth pursuit

[35]
Memory and
attention tasks

Fixation duration

[220]
Digit span task,
Spatial span task

Fixation,
saccade frequency,
saccade latency

ETMT [15,36]
Eye tracking
based TMT

Fixation based features
AOI based features
High level features-
Error rate,
Scanpath comparison score,
Inattentional blindness score

unlike the traditional TMT which focuses on task completion time. This helps

healthcare professionals conduct accurate assessments, bridging the research gap

and enabling more accurate cognitive health assessments.

Table 7.12: Comparison of ETMT with Traditional TMT

Tests Low cost
No specialized
training to
administer

Easy to
detect in
early stages

shorter time
duration
for the tests

Aable to address
lower motor
neuron atrophy.

Does not
stress the
participant

ETMT [15,36] ✓ ✓ ✓ ✓ ✓ ✓
Traditional TMT [109] ✓ X ✓ ✓ ✓ ✓

The integration of eye tracking with mental health indicators and the devel-

opment of holistic assessment models is an unexplored area that has the potential

to provide a comprehensive understanding of an individual’s mental state. This

research gap can be addressed by focusing on mental state parameters such as cog-

nitive load, impairment, and emotional state simultaneously. While other models

in the field often concentrate on one parameter, this thesis takes a more com-

prehensive approach by targeting all three. This comprehensive approach can

provide a complete understanding of an individual’s mental state, thus addressing
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Table 7.13: Comparison with existing models

Model CL CI ES
[40–43,99,168] Y
[35,106,115,119,120,220] Y
[47,48,59,61,62,143] Y

Proposed
Thesis
Work

ECL-1 [49]
and ECL-2

Y

ETMT [14,15] Y
PredictEYE [36,38] Y
Emotional state
detection model

Y

the research gap identified. Table 7.13 shows a comparison with existing mod-

els, focusing on one particular assessment, whereas the thesis aims to understand

cognitive load, cognitive impairment, and emotional state.
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Chapter 8

Conclusion and Scope for further

Research

The thesis has significantly contributed to developing both unimodal and multi-

modal datasets for identifying and classifying mental state parameters. Novel fea-

tures like error rate, scanpath comparison score, and inattentional blindness have

been extracted to enhance the precision of mental state assessments. The ECL-2

model achieves a notable 94% accuracy in cognitive load assessment, employing

TMT stimuli, meticulous feature extraction, and the Random Forest algorithm

for accurate and interpretable cognitive load assessments. The Eye-Tracking Trail

Making Test (ETMT), model introduces a valuable tool for evaluating cognitive

abilities, specifically in visual perception and attentional processes. Comprehen-

sive scores, such as focused attention and visual search speed, are provided by the

ETMT model, which offers insightful information on cognitive impairment based

on task performance. This eye tracking version of the Trail Making Test serves as

an assistive tool, providing healthcare experts with valuable indicators of cognitive

impairment based on task performance.

In emotional state prediction, PredictEYE outperforms ARIMA with an accu-

racy of 86.4%. It uses LSTM for forecasting and Random Forest for classification,

focusing on eye tracking features during video viewing. The system integrates per-

sonalized univariate time series models for more precise mental health assessments.

A multimodal dataset, EmoRPhyE, is developed to research emotional states with

diverse stimuli of pleasant and unpleasant images. This thesis establishes a robust

framework for identifying and classifying mental state parameters.

In future the ETMT model can be integrated with eye-tracking software as a

plugin tool in the automated screening of cognitive impairment becomes useful for

the improvement of healthcare professionals. Applying the PredictEYE model for

the eye tracking by webcam guarantees constant and nonintrusive surveillance of
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the mental state. Applying reinforcement learning in PredictEYE can improve the

accuracy and individuality of the results in the future. The EmoRPhyE dataset

demonstrates the potential of combining eye tracking with physiological measures

to enhance understanding of mental and emotional well-being, paving the way for

advanced AI techniques.
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