UNIVERSITY
OF TRENTO

DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL'INFORMAZI ONE

38050 Povo — Trento (Italy), Via Sommarive 14
http://www.disi.unitn.it

REVIEW ON STOCHASTIC COMPARISON RELATIONS

Stefano Schivo

February 2008

Technical Report # DISI-08-034

*

Review on stochastic comparison relations

Stefano Schivo

Abstract

The report offers an overview of some stochastic simulation and bisimula-
tion relations based on continuous-time Markov chains and on stochastic (possibly
Markovian) process algebras.

1 Introduction

In the design of some systems (like communication protocols, embedded systems or
multimedia systems) an equally important role is played by the functional aspects and
the performance constraints. Indeed, it would be worth nothing having developed the
most elegant VoIP protocol only to find out that it has high values in delay and jitter.
In these cases, performance has to be taken into account as early as possible in the
development process. Therefore, researchers have been evolving modelling languages
which take into account both qualitative and quantitative aspects.

The most widespread languages for stochastic modelling allow for the production
of Continuous Time Markov Chains (CTMCs), on which interesting properties can be
easily verified. To have some degree of certainty that a model corresponds to what it is
meant to represent, model checking is often used. A great problem with model check-
ing is that it often requires to run across (nearly) all the states of a CTMC, thus requiring
a lot of computational resources. In order to reduce the effort required by model check-
ing, a common technique is to reduce CTMC state space by “lumping”. Lumped states
represent equivalence classes generated by the application of a partitioning relation on
the state space. Exactly lumpable partitions have the advantage to preserve the Markov
property also in the resulting aggregated state spaces, thus keeping the model simple to
be solved. Still more important, models resulting from lumping can be solved in place
of their respective larger models, obtaining exactly the same solutions.

Definition 1 y is a strongly lumpable partition of Markov process X(t) with state space
S= {S(), ey SN} iff()r any X[[],X[k] €X, S, 8j € X[k]

q(si, X)) = q(sj, Xppp)

where q(s, X) denotes the aggregated transition rate from state s to partition X.

*This work has been partially sponsored by the project SENSORIA, IST-2005-016004.

The objective of this paper is to give an overview of some important bisimulation
relations which can be applied to stochastic models in order to reduce their state space,
while retaining the Markov property.

After a brief recall on Markov chains, we will start presenting some famous results
by Hillston [9] regarding the kinds of comparison methods between LTS states. Then,
we will show the work of Baier et al. [2], in which attention is put into characteris-
ing some notions of simulation and bisimulation on DTMC and CTMC, relating these
relations with a notion of satisfiability of PCTL and CSL formulas respectively. After-
wards, we will provide an overview on what has been done on the language & [6, 7],
presenting the most interesting relations defined for it. Finally, we will give a quick
look over a stochastic barbed bisimulation for Stochastic Ambient Calculus [12].

2 Markov Chains

Markov chains can be divided into two main groups, depending whether they abstract
on the concept of time or not: discrete-time and continuous-time. The former are also
called “probabilistic”, while the latter are said “stochastic”.

2.1 Discrete-time Markov chains
Definition 2 A fully probabilistic system (FPS) is a tuple D = (S, P, L) where:
e S is a countable set of states
o P: S xS — [0, 1] is a probability matrix satisfying Y ¢cs P(s,s") € [0,1]Vs € S

o L : S — 24P is g labelling function, assigning a set of atomic propositions
{a1,as,...,a,} C AP to each state s € S. In other words, we assume that the
atomic propositions ay,ay, ... ,a, hold in s.

A state s is called stochastic if), g P(s, s’) = 1. When on the contrary). P(s, s") =
0 s is called absorbing. In all other cases, s is called sub-stochastic.

Definition 3 A labelled discrete time Markov chain (DTMC) is an FPS where each
state is either stochastic or absorbing.

2.2 Continuous-time Markov chains

DTMC s are time-abstract, so they are appropriate when duration of changes between
states is not being considered. When time is considered, we use continuous time
Markov chains:

Definition 4 A labelled continuous time Markov chain (CTMC) is a tuple C = (S, R, L)
where

e S is a countable set of states

e R:S XS — Ry suchthat 3, .5 R(s, s") converges is a rate matrix

o L:S — 247 is a labelling function as before

Taken a CTMC C = (S, R, L), the exit rate for state s € S is
E(s) = Z R(s, ") < o

s'eS
We can compute the probability to move from state s € S to a state s € S (such
that R(s, s”) > 0) before ¢ time units using the exponential distribution function:

P[s — s’ by t time units] = 1 — e~

where 4 = R(s, s').

The probability that the transition s — s’ is chosen between all transitions exiting from
s (that is, the probability that the delay for going from s to s’ “finishes before” any
other delay of going from s to another state s” # s’) is

From this kind of probabilities, the time-abstract (discrete) version of a CTMC can be
derived:

Definition 5 The embedded DTMC of CTMC C = (S,R, L) is emb(C) = (S,P, L),
where Res.5)
P(s,s') = { o SE@>0

0 otherwise

Definition 6 A CTMC C is uniformized if E(s) = E(s") Vs, s’ € S

Any CTMC can be transformed into its uniformized version simply by adding self-
loops (i.e., transitions such that R(s, s) > 0):

Definition 7 LetC = (S,R, L) be a CTMC and let e be a real such that € > maxges E(s).
Then unif (C) = (S,R’, L) is a uniformized CTMC in which

e i CE fs#s
R'(s,s") = { R(s,s) + e — E(s) otherwise

3 PEPA: isomorphism, strong bisimilarity and strong
equivalence

The PEPA language [9] has been developed with the intention to add the power and
user-friendliness of compositional modelling (typical of process algebra) to the widely
known tools for performance evaluation: (unlabelled) continuous time Markov chains
(CTMC). From PEPA models CTMCs can be generated, and on these all classical
methods for performance evaluation can be applied.

Any non-trivial model has tends to generate a large number of states in the Markov
chain: for this reason, PEPA has been provided with some lumping relations. We will
analyze all four relations introduced in [9], dwelling more on the most important two,
strong bisimilarity and strong equivalence.

3.1 Strong and weak isomorphism

Definition 8 Given two PEPA processes P and Q, a function F : ds(P) — ds(Q) is
a component isomorphism between P and Q if ¥ is an injective function, and for any
component P, Act(P") = Act(F (P")), and for all a € Act, the set of a-derivatives of
F(P') is the same as the set of F -images the a-derivatives of P’, i.e.

Q1 FP)S QY ={FP") PSP

where Act(P) represents the activities enabled in P and ds(P) is the derivative set (i.e.
all one-step successors) of P.

Definition 9 Tivo PEPA processes P and Q are isomorphic, denoted P = Q, if there
exists a component isomorphism F between them such that D(F (P)) = D(Q), where
D(P) is the full derivation graph of P (all n-step successors of P, with n € N).

Isomorphism can be seen as a rather “strong” relation because it only groups pro-
cesses showing exactly the same behaviour, and which differ only in the naming of
derivatives. Still, it can be applied directly on the syntax of the language, thanks to
some equational laws, providing a tool for model transformation. Moreover, two iso-
morphic PEPA processes generate equivalent Markov processes. It is also argued that
strong isomorphism implies all other relations.

Weak isomorphism, while still allowing us to join equally behaving processes, pro-
vides also a more useful model simplification tool. This is achieved by considering
only “visible” actions, while ignoring internal actions (as any classical weak version
of a relation does). Unfortunately, being not preserved by the choice operator, weak
isomorphism is not a congruence, so not all processes can be reduced via weak isomor-
phism.

The precise definition of weak isomorphism is a bit more complex of the one for its
strong counterpart, and out of the scope of this document.

3.2 Strong bisimilarity

Strong bisimilarity is defined on the labelled transition system obtained from PEPA
processes (or components) as a classical CCS-strong bisimulation taking into account
also rates of actions.

Definition 10 A binary relation R € C X C over components is a strong bisimulation
if (P, Q) € Rimplies, for all action types a € A,

1. ro(P) = ro(Q);
and for all a € Act,
2. whenever P -5 P’ then, for some Q’, O 5 Q' and (P',Q) eR;

3. whenever Q 5 Q' then, for some P’, P 5 P and (P',Q)eR

where r,(P) is the rate at which action « is performed in process P.

Definition 11 Components P and Q are strong bisimilar, written P ~ Q, if there exists
a strong bisimulation R such that (P, Q) € R.

It is interesting to note that strong bisimilarity is a congruence for PEPA, as it preserves
all contexts, and so, thanks to an axiomatisation, it can be directly applied on the syn-
tactic level. However, strong bisimilarity shows some flaws in the stochastic field: it
does not guarantee that processes will behave in the same way from the probabilistic
point of view. Consider the processes

P = aP+aP+aP QO = aQ+aQ +aQ
P = b.P o b.Q

where a = (a, r;) and b = (B, rp).
We can see that, even if P ~ Q (the strong bisimulation is R = {(P, Q), (P’, Q’)}), their
transition rates are different:

q(P,P) = 2r, q(P, P") g q(P', P) rp
q0,0) = 2, qQ,0) = 2r, Q.0 = n

Thus, at steady-state the two systems will not show the same action frequencies. For
this reason, strong bisimilar components do not always generate equivalent Markov
processes’. A relation weaker than equivalence between Markov processes is lumpable
equivalence:

Definition 12 Tivo Markov processes {X;} and {Y;} are lumpably equivalent if there is
a lumpable partition {X(;)} of {X;} and a lumpable partition {Y;;1} of {Y;} such that there
is an injective function f satisfying

9 X Xin) = ¢(Y s Y)

Strong bisimilar processes do not always produce equivalent nor lumpably equiva-
lent Markov processes; thus strong bisimilarity comes out only partly useful. We will
now see that this problem can be overcome with strong equivalence.

3.3 Strong equivalence

Strong equivalence uses a different approach towards the stochastic rates of actions by
taking inspiration from probabilistic bisimulation [10].

Definition 13 An equivalence relation R C C X C is a strong equivalence if whenever
(P, Q) € Rthen forall @ € Aand forall S € C/R,

qlP, S, a] = q10.S, a]
where A is the set of all action types.

Definition 14 Components P and Q are strong equivalent, written P = Q, if there
exists a strong equivalence R such that (P, Q) € R.

ITwo Markov processes are equivalent if they have the same number of states and the same transition
rates between these states

Differently from strong bisimilarity, strong equivalence allows for the distinction of
long-run behaviour: in fact, the two processes P and Q shown before cannot be strong
equivalent, as g[P, {P’'}, a] = r, while g[Q, {Q’},] = 2r,. Moreover, the Markov pro-
cesses underlying two strong equivalent processes are lumpably equivalent: this allows
us to effectively reduce state spaces for model solution. Model reduction is greatly
helped by the strong equivalence being a congruence (and thus applicable directly at
syntactical level, thanks to the axiomatisation of the relation).

4 Simulations and bisimulations for CTMCs

The work in [2] presents a number of comparative semantics for both time-abstract
(discrete-time) and time-aware (continuous-time) models. Here we focus only on the
relations defined on continuous-time setting, presenting simulations and bisimulations
(both in weak and strong form) defined on CTMC:s.

4.1 Strong bisimulation

Definition 15 Let C = (S, R, L) be a CTMC and R an equivalence relation on S. R is
a strong bisimulation on C if for s1Rs;

L(sy) = L(sp) and R(s1,C) = R(s,,C)YC € S/R

Two states s; and s, are strongly bisimilar (denoted s; ~ s,) if there exists a strong
bisimulation R on C such that s{Rs,.

As we can see, this is the “classical” probabilistic bisimulation to which an identi-
fication on state labelling has been added (in order to get logical characterisations on
formula satisfiability: see later on).

4.2 Strong simulation

As transitions between states in probabilistic transition systems connect states with
probability distributions, strong simulation is based on asymmetric “mappings” be-
tween distribution functions.

Definition 16 A distribution on set S is a function u : S — [0, 1] with Y, s u(s) < 1.

Let Distr(S) denote the set of all distributions on S and S, = § U {L}, where L can be
regarded to as a deadlock “non-state”.

Definition 17 Let S be a set, RC S X S, and u, ' € Distr(S). A weight function for u
and ' with respect to R is a function A : S | XS | — [0, 1] such that:

1. A(s,s") > 0 implies sRs’ or s = 1,
2. u(s) = Yyes, Als,s") forany s € S ,.
3. W () = Yes, A(s, s") forany 5" € S |.

We write u Cg W' iff there exists a weight function for u and p’ with respect to R.

Definition 18 Let C = (S,R,L) be a CTMC and R € S X S. R is a strong simulation
on Cifforall s\Rsy:

L(sy) = L(s2), P(s1,") Cg P(s2,-), and E(s1) < E(s2)
where P is such that (S, P, L) = emb(C).

Definition 19 State s, strongly simulates state sy in C, written s1 = sy, iff there exists
a strong simulation R on C such that siRs,.

Note that when s; = 57, 57 can also be “faster” than s; (E(s2) > E(s1)), as long as its

~

transition probabilities can be mapped on those of s;.

4.3 Weak bisimulation

Weak bisimulation is inspired by branching bisimulation [11], which considers as
stutter-steps all transitions ending in the same equivalence class as they start. Two
states are equivalent if they have the same labels, and they reach the same equivalence
classes (except their own) with the same rates:

Definition 20 Ler C = (S, R, L) be a CTMC and R and equivalence relation on S. R is
a weak bisimulation on C if for all s1Rs;:

L(s1) = L(s2) and R(s1,C) = R(s,,C) forall C € S/R with C # [s1]g.

Definition 21 s; and s, in C are weakly bisimilar, denoted s, ~ s, iff there exists a
weak bisimulation R on C such that siRs;.

4.4 Weak simulation

Weak simulation is based on more complex concepts. Successors of state s are splitted
into two sets: V and U. The former representing a sort of “stutter-equivalence class”
of s (so that all stutter steps will end into this set) and the latter containing all other
successors (in which all “real steps” end). A scheme representing the idea underlying
weak simulation is shown in Figure 1, where s, weakly simulates s, V; are the stutter-
step successors of s; and U; are the visible-step successors of s;. Notice the simulation
relations that must hold between V; and s;, while we use the weight relation from strong
simulation to relate U; and s;.

Definition 22 Let C = (S,R,L) be a CTMC and R C S X S. R is a weak simulation on
C iff for siRsy:

o L(s1) = L(s2);

e there exist 6; : S — [0,1] and U;,V; € § (i = 1,2) satisfying the following
conditions:

1. (a) viRs; forallvy € V| and
(b) s1Rv, for all v, € Vy;
2. there exists a function A : S X S — [0, 1] such that:

(a) A(uyi,uy) > 0 implies uy € Uy, up € U, and uyRuy,
(b) if K; > 0 and K, > O then for all statesw € S :

Ki- D\ Aw,u) = 610)-P(s1,), Ko+) Alur,w) = 55(w)P(s2, w),

€U, u1€U;
where K; = 3, ey, 0i(uw;) - P(s;,u;) for i=1,2.
3. Yuev, 01(u) - R(s,up) < Xg,ev, 0u2) - R(sz, un).

Definition 23 s, weakly simulates sy, denoted s1 < sa, iff there exists a weak simula-
tion R on C such that s\Rs;.

Here 6§ is a function which divides the successors of s; and s, into their subsets U; and
Vi: note that a state can partially belong to both sets.

Figure 1: A schema of the relations occurring among sy, s, and their successors when

S1 ;,j S52.

4.5 Remarkable properties of the relations

The main relations holding between the above presented simulations and bisimulations
are resumed in Figure 2. The meaning of the arrows is shown below:
R — R RisfinerthanR" (RC R’)
R --» R* Ris finer than R’ if the CTMC is uniformized
R -+ R’ Risnot finer than R’

Figure 2: The relations between the bisimulation and simulation relations presented in
this section.

4.6 Logical characterisations

The relations previously defined are now enriched with some interesting properties
regarding the temporal logic CSL (continuous stochastic logic). An important result
is that the previously defined bisimulations coincide with (a fragment of) CSL, thus
allowing for the application of verification techniques directly on reduced models.

4.6.1 CSL

CSL is defined as a variant of the logic introduced in [1], to which steady-state and
next-state operators are added together with weak variants of next and until operators.
Its syntax is defined below:

state formulae : @::=tt | a | —a | PAD | DV D | Sqp(D) | Pap(e)
path formulae : ¢ := XS'0 | XS | dUS'D | SUS'P.

where p € [0,1], J e {<,<,>, >}and r € R U {o0}.
The intuitive meaning of the non-trivial operators is presented below:

s E Sqp(®) iff the probability that, at steady state, a state satisfying @ is reached
starting from s is Ip;

s | P«plep) iff the probability of all paths satisfying ¢ and starting in s is <p;

o | XS'@ iff the second state of path o satisfies @ and is reached before ¢ time units
have elapsed (the sojourn time in the first state of the path is < 7);

X' is the weak variant of X</, and allows for the path to contain only one state,
or the sojourn time on the first state to be > 1;

o PUS'Y iff a state satisfying ¥ is reached in o before ¢ time units have elapsed
and all states along path o satisfy @;

DUS'Y is the weak variant of @US'Y, and permits to never reach a state satisfying
¥ before ¢ time units have elapsed, provided that all states along the path satisfy
.

4.6.2 Characterising bisimulations

Definition 24 Given a CTMC C = (S, R, L), two states sy, s, € S are CSL-equivalent,
written 1 =csi, $2, if they satisfy exactly the same set of CSL formulae, i.e.:

for each CSL state-formula @ s1E® & s, = @

Strong bisimulation is shown to coincide with =¢g;. As for weak bisimulation, the
coincidence cannot hold for the complete CSL, as the next (and weak next) operator
would generate a conflict with the stutter-step abstraction made by the weak bisim-
ulation, as next operators are not stutter-invariant; thus, ~ is shown to coincide with
=CSL\X -

As one would expect from what we have shown so far, in an uniformized CTMC
=cs 1 coincides with =CSL\X-

4.6.3 Characterising simulations

For the characterisation of simulation relations, a distinction is made between safety
(“‘something bad never happens”) and liveness (“something good will eventually hap-
pen”) properties. Here we show the CSL-safety formulae:

Du=tt|a|-a| DAD | DVD | Ps,(XSD) | Ps, (PUS'D)
CSL-liveness formulae are obtained from the following grammar:
Pu=tt|al-al PAD | OV | Po,(XSD) | Ps,(PUS D)

Notice as the weak version of next and until operator is present only in the safety
fragment of CSL, as next step could seen as “dangerous” for the safety (as in “he who
leaves the old path for the new one, knows what he is leaving, but not what he is
going to find”), so if the system does not move from a safe position, it remains safe.
Notice also that, since the objective is the creation of a preorder relation based on the
safety/liveliness of a process, the steady-state operator S<,(®) is not present: this is
because CTMCs cannot be ordered according to their steady state performance [4].

Definition 25 Given a CTMC C = (S,R, L) and two states s,s' € S, we say that s’ is
safer than s, written s jg’gz ', iff for each CSL-safe formula ®: s’ = @ implies s = ®.
The other relations 3%¢ | égz\x and g, are defined in a similar way.

It is shown that < coincides with jgz and 3¢ . Unfortunately, the same type of
coincidence does not apply in the weak case, where only one inclusion can be demon-

L <C=safe < <live : : :
strated (i.e., SCZ g x A0d SEZ g7, x)» While the other is only conjectured.

10

5 Congruences for generally-distributed process alge-
bra ¢.

Although the formalisms presented in [6, 7] are not based on CTMCs, the approach
used by the authors could come out interesting for the general topic of stochastic equiv-
alence relations. The concepts around & are rather large, so here we will only deal with
what is necessary to have an understanding of the main equivalences defined for the
language.

5.1 Probabilistic transition systems

Probabilistic transition systems are a more general type of transition systems, where
states are divided in two disjoint subsets: probabilistic states, each of which make ex-
actly one probabilistic step, and non-deterministic states, which may have any number
of outgoing non-deterministic transitions.

This kind of transition system is particularly useful, as it can handle general distri-
butions: this way, a representation of non deterministically distributed time constraints
is possible.

To each arc exiting from a probabilistic state is associated a probability, and the sum
of such probabilities is 1. Arcs exiting from non-deterministic states are also labelled;
each of these labels is composed by an element of the set A X R, where A is the set
of all possible actions. A label in the form a, d (also written as a(d)) should be intended
as “action a happens right after the system has been idle for d time units”.

5.1.1 Definition

Definition 26 A probabilistic transition system is a tuple PTS = (£,X, L, T,—),
where:

1. X is the set of probabilistic states
2. ¥/ is the set of non-deterministic states such that X N%' = ()

3. L is the set of labels for the transitions exiting from non-deterministic states; as
we already stated, L = A X Rxq

4. T is a function that connects each probabilistic state with a set of non-deterministic
states with a probabilistic transition®

5. —C ¥ X L XX is the labelled (or non-deterministic) transition relation.

A rooted PTS is a pair (PTS, o), where o0 is the initial probabilistic state. The writing

o - o stands for P(o’) = p, where T(0) = (Q,F, P); and O"LO' abbreviates
(0, L, 0) € —. For some examples of probabilistic transition systems, we refer to [6].

~More formally, let Prob(H) be the set of probability spaces (Q, ", P) such that Q@ C H. We have that
T : £ — Prob(Y’) (cf. [6], Appendix A).

11

5.1.2 Probabilistic bisimulation

Basically, this is the classical probabilistic bisimulation adapted to the case of proba-
bilistic transition systems.

Definition 27 Let (X,X, L, T,—) be a PTS and u : T X Ps(X') — [0, 1] be defined
by
df [PSNQ) ifSNQeF
W, S) = { 0 otherwise

provided that T(o) = (Q,F, P). Let R C (XXX)U (X' XX') be an equivalence, and X' |R
be the set of equivalence classes in X' induced by R. R is a probabilistic bisimulation if
for any (o,07) € R:

1. forall S C¥/R,u(o,US) = u(o,,US), whenever oy, 0, € X; and

¢ R ¢
2. forall ¢ € L,01—0" implies 02— 07, and {d|, o) € R, for some o, whenever
01,0, €Y.

The notation o ~, 0 is read “states oy and o, are probabilistically bisimilar”,
and means that there exists a probabilistic bisimulation R such that {oj,0,) € R. The
same notation can be extended to (rooted) PTS the obvious way.

5.2 Stochastic automata

Probabilistic transition systems can be useful in modelling various stochastic settings,
but they are always infinite (both in the number of states and transitions) when using
random setting for timing (either by relying on infinite-sample space discrete proba-
bilistic spaces, or by using any continuous probabilistic space). Thus, a proper tractabil-
ity of PTS can become troublesome. A solution to this problem is the use of stochastic
automata, which allow to represent random timing in a finite way.

In order to represent random timing, stochastic automata rely on the so-called ran-
dom clock variables. A clock can be set in accord with its distribution function, and
from that point on it will be counting backwards at the same pace as the other clocks.
When the value of a clock is no more positive, the clock has expired: in that case, all
actions associated with that clock can be enabled.

To obtain the value of a clock, we rely on a valuation function v : C — R, where C
is the set of all clocks. The function v — d(x) gives the valuation of clock x obtained d

time units after v was observed, and is defined as (v — d)(x) & v(x) —d. We call V the
set of all valuations.

5.2.1 Definition
Definition 28 A stochastic automaton is a tuple SA = (S, A, C, —, k), where:
1. Sis a set of locations;

2. Ais a set of actions;

12

3. Cis a set of clocks (each clock x € C has associated its own distribution function
Fy);

4. 2 C S X (AXPu(C)) X S is the set of edges;
5. k: 8 = Psn(C) is the clock setting function.

When an initial location oy € S is associated to SA, we call (SA, o) a rooted
a,C . .
stochastic automaton. When writing s — s” we intend that (s, a, C, s") € —; C is called

the trigger set of the edge.

The clock setting function specifies which clocks are to be set when the execution
enters a particular state: upon entering state s, for all x € «(s) the valuation of x is
set according with distribution function F,. This done, all clocks start decreasing their

value. If s 5 s’ then, when all clocks in C are expired, action a can be performed:
the transition is thus called enabled. When the transition is performed, the execution
advances to state s’. In case more than one transition is enabled at the same time, one
is chosen non-deterministically.

5.2.2 Semantics

The semantics of stochastic automata is defined in terms of probabilistic transition
systems, and particularly two semantics are adopted: closed and open system. The for-
mer allows the property of maximal progress to apply: whenever a transition becomes
enabled it immediately takes place. This approach models the eventuality that the sys-
tem has no external influences, hence no other transition could be executed before the
“rightful” one. With open semantics the system is expected to interact with external
components, so maximal progress property does not hold.

Closed system behaviour Given a stochastic automaton SA = (S, A,C, k), the
closed system behaviour of SA is defined by the probabilistic transition system

def

PTS:(SA) = ((SXV),[SXV[,AXR>, T,—)

which is composed as follows.

The states are obtained by associating to each location of the stochastic automa-
ton all the possible valuations for all timers. In order to distinguish between
probabilistic and non-deterministic states in the PTS, we write (s, v) to intend
the probabilistic state associated to location s and valuation v, and [s, v] to in-
dicate the corresponding non-deterministic state. Non-deterministic transitions
are labelled as one would expect to, and functions 7' and — are defined by the
following rules:

13

@=(x1,..-7xn)

Prob
T(s,v) = Z)i(R(FXl oo Fy))
S5 expynC) (5,7)
s— s exp,v, mpr (s, v
Closed Pa Pra

(5,12 (o', (v — d)

Intuitively, probabilistic states are exploited to reset timers. In Prob rule, we can
read DJ(R(Fy,, ..., Fy)) as “Foreachi € {1, ...,n}, use the distribution function
F,, to calculate a starting value for timer x; and update accordingly the valuation
v. The resulting non-deterministic state is [s, v].”.

As for rule Closed, non-deterministic states are used to “let time pass”. In par-
ticular, as system observes maximal progress property, the predicates exp and
mpr are used to express this property: exp,(v, C) means that all timers in C have
expired d time units after v was osserved, and mpr,(s,v) says that there is no
possibility to leave s before d time units have elapsed.

Open system behaviour The open system behaviour of a stochastic automaton SA is
defined by
PTS,(SA) £ (S x V), [S x V], A x R0, T, —)
The only remarkable difference with the closed system behaviour is that function
— is obtained from the following rule Open, which replaces rule Closed:

a,C ,
s = s exp,(v,C)

Open y
[S, V]ﬂ> (S” (V - d))

Notice that the rule does not request for the mpr predicate to be true.

5.2.3 Equivalences on stochastic automata

Now we show a set of equivalences for stochastic automata, briefly describing the main
features of each one.

Open and closed p-similarity Given two rooted stochastic automata (SA;, s;) and (SA,, s7),
they are:

o closed p-similar (written (SA1, s1) ~ (SAz, 7)) if
(PTS:(SA1), (s1,v0)) ~p (PTS:(SA2), (s2,v0)) foreveryvp € V
e open p-similar (written (SAy, 51) ~, (SAz, 52)) if

(PTS,(SA1), (s1,Vv0)) ~p (PTS,(SA2), (52,v0)) forevery vp € V

14

Being directly based on the (open/closed) PTS semantics of stochastic automata,
the two relations ~, and ~, deal with infinite state spaces. In order to have a more
tractable model, we bring forth some weaker relations which allow for symbolic
reasoning.

Structural bisimulation Structural bisimulation preserves both actions and sets of
clocks. Given a stochastic automaton SA = (S, A,C,—,k), R C Sx Sisa
structural bisimulation if R is symmetric and, for all a € A, C € C, whenever
{s1, $2) € R the following properties hold:

a,C . . a,C
1. sy = 5] implies s, = 57 and (s}, s3) € R for some s, € S and
2. k(s1) = k(s2)
Two locations sy, s; € S are structurally bisimilar (written s; ~; s5) if there is a

structural bisimulation R such that (s, s,) € R. The definition trivially extends
to stochastic automata.

Symbolic bisimulation Although structural bisimulation is more tractable than prob-
abilistic bisimulations, it does not properly handle stochastic information. In
particular, trivial syntactical changes in the expression of clocks which leave
unaltered their use result in non structurally bisimilar processes. In order to con-
sider probabilistic information while still maintaining tractability, we resort on a
symbolic bisimulation on stochastic automata.

The first step is clearly identifying which clocks should be labelled as “relevant”,
and then should be considered in the definition of the symbolic bisimulation.

Given a stochastic automaton SA = (S, C, A, —, k),

e the free clock variables of location s € S (written Fv(s)) is the smallest set
satisfying

Fu(s) = {x s ¢ axecu Fv(s')} — k(s)

o the relevant clock variables of s is the smallest set satisfying
a,C
Rel(s) = {x |s > s AxeCuU Fv(s’)}

The symbolic bisimulation relates relevant clocks when they are set in the same
instant and with the same distribution. This kind of clock correlation is obtained
resorting on synchronisation relations.

Let C be a set of clocks, and Cy, C, C7, C) C C. A relation SR C P(C) X P(C) is
a synchronisation relation if

(Cy,C2),(C1,C5) € SR = (C1,C2) <(C1,CY)

where the relation <, which can be read as “is compatible with”, is defined as
follows:

(C,C2) (C},Ch)y = (C1NC})U(C2NCy) =0V (C SC) ACyCCh)

15

Note that the compatibility relation should hold between all couples in SR. So,
for each (Cy, (),{C},C}) € SR we have either (C; N C}) U (C2NC)) = 0 or
(C1,Cr) =(C1, CY)

Definition 29 Given a stochastic automaton SA = (S,C, A, —,«), a symbolic
bisimulation is a relation R € SXSXP(P(C)XP(C)) that, for each (s, s2, SR) €
R, satisfies the following properties:

1. SR is a synchronisation relation such that:

(a) fori=1,2, |J{C; | (Cy,C1) € SR} = Rel(s;);

(b) {C1,Ca) € SR implies (Cy, C2) I {k(s1),k(s52));

(c) if (C,Cr) € SRand C; C k(s;),i = 1,2, then, forallt € R,

[ec, Fx(®) = [1ec, F3(0)
a,Cl* * a,cz*

2. s1 = 5|, then there are s, and CJ' such that s, — , and

(a) (Ci,Cs) € SR implies (Cy, C) <(CX,CX); and

(b) (s},5%,SR’) € R for some SR" which is forward compatible with SR,

ie.:

{(C1.Ca) € SRT(C1 N FV(s)) U (C2 N FU(sy)) # 0)—(P(CT) x PCT)) =
{(cr.C5) € SR 1(C] N FV(s)) U (Ch N FV(s))) # 0)—(PCF) x PICT))

* *
a,C, * a,C|
3. 5o — s, thenthere are 5| and C| such that sy — s}, and

(a) (C1,Cy) € SR implies (Cy,Ca) I(CK,CF); and
(b) (s,s%,SR") € R for some SR’ which is forward compatible with SR.

Two locations s, s € S are symbolically bisimilar (written s; ~g s;) if there
exists a symbolic bisimulation R such that (s, 55, SR) € R for some SR satisfying

if (C1,Cy) € SR and x € (Cy N Fv(sy)) U (Cy, N Fv(sy)) then C = Cp = {x}

The rooted stochastic automata (SA, s1) and (SA,, s,) are symbolically bisimilar
if 51 ~& $; in the (disjoint) union of SA; and SA,.

It can be proved that ~¢ is an equivalence over stochastic automata locations,
but it is not a congruence.

Finally, we show the relations subsisting between all equivalence relations intro-
duced so far:
~sCg CpCre

Note that symbolic bisimulation is coarser than structural bisimulation but finer
than open p-bisimulation.

16

5.3 & - Stochastic process algebra for discrete event systems

The language & is born with the purpose to deal with discrete and continuous general
probability distributions. However, this strong assumption has a drawback: indeed,
the use of non-memoryless distributions implies that the expansion law does no longer
hold in general. This can be easily seen in the following example:

ar;pllo besqg # ar;(pllp be; @) + be; (ar; p llo @)

where general distributions F and G are exploited to get delays for actions a and b,
respectively. When e.g. action a of the left-hand process is performed, the computation
for the remaining time before firing action b has to take into account the time which
has already elapsed. The same cannot be straightforwardly obtained in the right-hand
process.

The idea which allows to overcome such problem is to syntactically separate the
three fundamental concepts encased in ap:

o start of delay
e end of delay
e instant action

In order to keep track of delays, the language resorts on clocks. At the start of a delay,
the corresponding clock is initialised according to the associated distribution function,
and starts counting backwards. When a clock is no more positive, the delay is finished
and the corresponding (instant) action can be performed. Let C be a set of clocks, a an
action, and p a process. The symbols representing the aforementioned concepts are the
following:

e clock setting: {|C'}
e wait for clock expiration: {C }+—
e instant action a; p

This allows to express the previous example in the following way:

{xbp lolytd = Axyb(xt—apllod)+{y}=b;@ lloq)

where p’ = {x} > a;p and ¢ = {y}— b;q. This time, in both left-hand and right-
hand processes, after the expiration of the first clock (e.g. x) and the execution of the
corresponding action (a), the second clock is still counting with the remaining time:
thus, the other action can happen after a correct amount of time. The schema shown
here can be applied in a general way to obtain a general expansion law.

The most common type of synchronisation, known as patient communication [8],
can be represented directly as follows:

{xHxt—ap ll, AyMHyl—aqe = {xyHxyiea@l, 9

As can be seen, the time for the whole communication to take place is equal to the time
required by the “slowest” process.

17

5.3.1 Syntax

The syntax of & is defined according to the grammar in Table 1, where a € A is an
action name, C € Py,(C) is a trigger/clock-setting set of random clocks, A € A is
a synchronisation set, f : A — A is a renaming function, and X € V is a process
variable. Process variables are defined by recursive equations of the form X = p,
where p € . A set E of recursive equations defines a recursive specification.

0 Nilor stop plla p Parallel composition
a,p Action prefix pll Nz Left merge
C v p Triggering condition plap Communication merge
{ICyp Clock setting plf] Renaming
p+p Choice X Process instantiation

Table 1: Syntax of &.

Intuitively, clock variables are bound in a process p whenever they are set. For
instance, free variables in p = ({{x} {x,y}+—>a;0) + { x} — b; 0 are fv(p) = {x,y}, and
bound variables are bv(p) = {x}.

5.3.2 Intuition of semantics

The semantics of & is defined in terms of stochastic automata. As the definition of
the semantics is rather complicated and goes beyond the scope of this paper, we only
state that the mapping from & to stochastic automata can be meaningfully done for a
particular “well formed” subset of the whole language.

It is important to notice that ~ (structural bisimulation) and ~, (open p-bisimulation)
are congruences for ¢, and an equational theory for the language can be derived from
this fact.

5.3.3 Equational theory

Structural bisimulation Restricting ¢ to its basic version ¢” (by removing the oper-
ators for parallel composition, renaming, and process definition), an equational
theory is created for the language and proved to be sound and complete with
respect to ~;.

Open p-bisimulation Extending the previous set of axioms for the equational the-
ory in &%, we obtain a sound (but not complete) equational theory for open p-
bisimulation (~,).

Static operators In order to include static operators (renaming and parallel compo-
sitions) in the equational theory, can be conveniently extended. The resulting
set of equational laws is proven to be sound and complete and to allow for the
expression of an expansion law for &.

18

6 Barbed bisimulation for Stochastic Ambient Calcu-
lus

The authors of [12] have created a stochastic extension of Mobile Ambients process
algebra [5], adding rates to actions, as usual. What distinguishes this work among the
others is the strong Markovian bisimulation defined therein, which is presented as a
stochastic barbed bisimulation. The authors claim that it is the first barbed stochas-
tic bisimulation to be applied to a process algebra, and it comes useful in their case
because a more “classical” stochastic bisimulation (as the ones shown in the sections
before) could have shown difficult to deal with, as the semantics for Stochastic Ambi-
ent Calculus produces second order labelled transition systems (i.e., labelled transition
systems which contain also processes in the labels).

6.1 Stochastic Ambient Calculus

The syntax of the language is shown in Table 2.

P Q= process
0 nil
| Xier Mi. P; local sum M,N = capability
| n[P) stochastic ambient in(n, 1) enter
| P|Q composition | out(n,1) exit
| (vm)P restriction | open(n, 1) open
| (fix,y. P) recursion
| A identifier

Table 2: Syntax of the Stochastic Ambient Calculus.

The language uses a particular box structure called stochastic ambient, in which
processes are contained. Each ambient n[P]/ is equipped with its own rate calculation
function f : R — R, which allows the ambient to influence the rates at which processes
interact within it.

In order to obtain the effect of ambients moving into or out from other ambients, the
semantics for Stochastic Ambient Calculus needs to generate a second order labelled
transition system, that is a labelled transition system in which processes are put on
transition labels. An example of what we intend is the rule OUT, which allows us to
deal with a process willing to exit from an ambient:

exitn
pP—r
r
out n(m[P'])
m[P)
r

19

6.2 Barbed Stochastic Bisimulation

In order to have a bisimulation relation allowing us to deal with the problems arising
from having both a second order labelled transition system and restriction operator, the
authors of the calculus have created a barbed Markovian bisimulation. This kind of
relation is based on the concept of barb, intended in this case as capability to exhibit a
certain ambient name n: P | n (see Table 3).

n[PV | n
Pln Pln
PlOln O|Pln
Pln m#n Pln
(yvm)P | n (fix,.P) L n

Table 3: The conditions for which P | n.

Definition 30 An equivalence binary relation S on Stochastic Mobile Ambients pro-
cesses is a strong Markovian bisimulation if for all P, Q € P, PSQ implies that for all
equivalence classes E € P s and names n € N:

i) if Plnthen Q| n;

ii) the sum of all rates of actions going from C[P] to R is equal to the same sum for
C[Q] for all contexts C and all processes R € E.

Definition 31 Two processes P and Q are called strongly Markovian bisimilar, written
P~y Q, if there is a strong Markovian bisimulation S such that PSQ.

Being preserved by all context by definition, the relation is automatically a congru-
ence over Stochastic Mobile Ambients processes.

7 Related work

A work similar in purposes to the present one has been recently carried out by Bernardo
in [3].

20

References

[1]

(2]

(3]

(4]

(5]

[6]

[7]

(8]

[9]

(10]

(11]

[12]

Adnan Aziz, Kumud Sanwal, Vigyan Singhal, and Robert Brayton. Model-
checking continuous-time markov chains. ACM Trans. Comput. Logic, 1(1):162—
170, 2000.

Christel Baier, Joost-Pieter Katoen, Holger Hermanns, and Verena Wolf. Compar-
ative branching-time semantics for markov chains. Inf. Comput., 200(2):149-214,
2005.

Marco Bernardo. A survey of markovian behavioral equivalences. In M. Bernardo
and J. Hillston, editors, Formal Methods for the Design of Computer, Communica-
tion and Software Systems: Performance Evaluation (SFM’07), pages 180-219,
2007.

Marco Bernardo and Rance Cleaveland. A theory of testing for Markovian pro-
cesses. Lecture Notes in Computer Science, 1877:305-319, 2000.

Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Foundations of

Software Science and Computation Structures: First International Conference,
FOSSACS ’"98. Springer-Verlag, Berlin Germany, 1998.

Pedro R. D’ Argenio and Joost-Pieter Katoen. A theory of stochastic systems. Part
I: Stochastic automata. Inf. Comput., 203(1):1-38, 2005.

Pedro R. D’ Argenio and Joost-Pieter Katoen. A theory of stochastic systems. Part
II: process algebra. Inf. Comput., 203(1):39-74, 2005.

J. Hillston. The nature of synchronisation. In PAPM’94, Process Algebra and
Performance Modelling.

Jane Hillston. A compositional approach to performance modelling. Cambridge
University Press, New York, NY, USA, 1996. ISBN 0-521-57189-8.

Kim G. Larsen and Arne Skou. Bisimulation through probabilistic testing. Inf.
Comput., 94(1):1-28, 1991.

Rob J. van Glabbeek and W. Peter Weijland. Branching time and abstraction in
bisimulation semantics. J. ACM, 43(3):555-600, 1996.

Maria Grazia Vigliotti and Peter G. Harrison. Stochastic ambient calculus. Electr.
Notes Theor. Comput. Sci., 164(3):169-186, 2006.

21

	Stoch
	Bisimulazioni

