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Local and Long-Range Collaborative Learning for
Remote Sensing Scene Classification

Maofan Zhao, Qingyan Meng, Linlin Zhang, Xinli Hu, and Lorenzo Bruzzone, Fellow, IEEE

Abstract—With the development of high-resolution satellites,
more and more attention has been paid to remote sensing (RS)
scene classification. Convolutional neural networks (CNNs),
which replace the traditional handcrafted features with a
learning-based feature extraction mechanism, are widely
used in scene classification. But CNNs are less effective in
deriving long-range contextual relations, which limits the
further improvement. Visual transformer (VT), an emerging
image processing method, provides a new perspective for RS
scene classification by directly acquiring long-range features.
Although there have been limited works combining CNN and
VT through simple concatenation, the collaborations between
them are insufficient. To address these issues, we propose a
local and long-range collaborative framework (L2RCF). First,
we design a dual-stream structure to extract the local and
long-range features. Second, a cross-feature calibration (CFC)
module is designed for them to improve representation of the
fusion features. Then, combining deep supervision (DS) and
deep mutual learning (DML), a novel joint loss is proposed
to enhance the dual-stream feature extractor and further
improve the fused features. Finally, a two-stage semi-supervised
training strategy is designed to improve performance with
unlabeled samples. To demonstrate the effectiveness of L2RCF,
we conducted experiments on three widely used RS scene
classification data sets: RSSCN7, AID, and NWPU. The results
show that L2RCF performs significantly better compared with
some state-of-the-art scene classification methods.

Index Terms—Scene classification, convolutional neural net-
work, visual transformer, cross-feature calibration, deep super-
vision, deep mutual learning, semi-supervised, remote sensing.

I. INTRODUCTION

LAND-use/land-cover information interpretation is a cru-
cial research area in remote sensing (RS). However, most

of the previous studies focused on land-cover and only few
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of them on land-use representation. In recent years, with
the development of high-resolution satellite sensors, the RS
interpretation mode has gradually developed from pixel level
and object level to scene level, with the goal to obtain higher-
level semantic information. Therefore, RS scene classification
has gained more attention, as it can be used in land-use
classification [1], urban functional zone identification [2], and
other related fields [3]. However, due to the complexity and
large-scale variance of geographic objects in high-resolution
RS scenes, how to extract more discriminative features in the
scene remains an important and challenging task.

Commonly used features can be summarized into two main
types: handcrafted features and deep features. Handcrafted
features include low-level features, such as spectra and tex-
tures, and mid-level features that are encoded based on low-
level features, such as bags of visual words (BoVW) [4].
Compared with handcrafted features, deep features are more
abstract but contain richer semantic information. In particular,
convolutional neural networks (CNNs), which are commonly
used in image processing, have achieved a dominant role and
state-of-the-art performance in the field of scene classification.

Since CNNs rely on local convolution kernels, they have
very good local feature representation, but suffer in represent-
ing long-range information in the images. Some methods have
been gradually proposed to overcome this problem, such as
feature pyramids [5], and multiscale strategy [6]. However,
they still have limitations in solving this problem. Recently,
transformer [7], a structure widely used in natural language
processing, has been gradually used in image processing [8],
[9]. It can directly obtain the long-range information in the
images and provide a new perspective for RS image scene
classification.

Visual Transformers (VTs) can capture the long-range
features, that are difficult to model with CNNs. However, due
to their origin in natural language processing, there are still
some shortcomings to use them in image processing. First of
all, VTs directly expand the image into a one-dimensional
vector, which is not effective to model the local structure
information of the images. Second, the redundant attention
module brings a computational burden.

The class activation maps of VTs and CNNs for local and
long-range ground-objects are shown in Fig.1, where river,
freeway are long-range ground-objects, and airplane, overpass
are local objects. VTs successfully capture the non-local
contextual information of long-range ground-objects. CNNs
make the model focus on local ground-objects through the con-
volution kernel. To sum up, CNNs have good representation of
local structural features, but it is difficult to capture long-range
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Fig. 1. Class attention maps produced by CNN and VT. CNNs and VTs are
good at extracting local features and long-range features, respectively.

information, whereas VTs are good at extracting long-range
information and easily ignore local features. Therefore, it is
promising to study how combining CNNs and VTs effectively.

Currently, there are limited works combining CNNs and
VTs for RS scene classification. Deng et al. [10] combine
CNN and VT via concatenation for RS scene classification.
But there are the following problems: i) The features are
simply concated, and there is no interaction to form more
discriminative fused features; ii) CNNs and VTs do not
cooperate with each other to enhance their respective feature
extraction capabilities.

On the basis of the above mentioned limitations, we enhance
collaborative learning between them in three ways: i) Local
and long-range features interact with each other to calibrate
and fuse features; ii) Local and long-range feature extractors
learn from each other to compensate for their shortcomings;
iii) Local, long-range and fused features collaborate to exploit
unlabeled samples to further improve performance. Accord-
ingly, the main contributions of this paper can be summarized
as follows:

1) We introduce a local and long-range collaborative frame-
work (L2RCF) for RS scene classification that can fully
collaborates CNNs and VTs.

2) To effectively improve representation of the fused fea-
tures, we design a cross-feature calibration (CFC) module for
feature fusion.

3) We propose a novel joint loss based on deep supervision
(DS) and deep mutual learning (DML), which can not only
further improve the fused features, but also effectively enhance
the dual-stream feature extractor.

4) To further exploit potential of unlabeled data, we design
a two-stage semi-supervised training strategy.

The rest of this paper is organized as follows. Related
works such as CNNs, VTs and deep learning-based RS scene
classification are reviewed in Section II. Section III describes
the steps in detail and theory of proposed L2RCF. Section IV
presents the data sets, the evaluation metrics, the experimental
settings used to evaluate the performance of L2RCF. Moreover,

it analyzes the experimental results in detail through ablation
experiments and visualization methods. Section V not only
summarizes paper, but also prospects the possible future
research directions.

II. RELATED WORK

A. CNN

CNNs are generally composed of convolution layers, pool-
ing layers, activation functions, and fully connected layers
[11]. And features are extracted repeatedly through continuous
convolution - pooling operation to form a series of feature
maps. Shallow feature maps contain a large number of low-
level and mid-level features, such as structure and texture
information, while deep features contain high-level semantic
features. CNNs are widely used in many visual tasks, such
as image classification [12], image fusion [13] and change
detection [14], due to their good robustness to translation and
scaling.

Since AlexNet [15] was proposed in 2012, CNNs have
become more and more important in computer vision. Then,
models such as VGGNet [16] and ResNet [17] have been
proposed and widely used.

B. Visual Transformer

Transformers [7] gradually replace recurrent neural net-
works (RNNs) and are widely used in natural language
processing. The multi-head self-attention (MSA) structure in
it greatly improves the computational efficiency, allowing the
transformer to achieve fast parallelism. VTs have gradually
migrated to many tasks, such as image classification [18],
semantic segmentation [19], object detection [20], etc.

DERT [20] is the early architecture that applies transformer
to computer vision tasks. It effectively combines CNNs and
VTs. More specifically, it first uses CNNs to extract features
and then uses them as input to the transformer. Although
DERT successfully combines CNNs and VTs into an end-
to-end structure, it has relevant shortcomings such as high
computational cost and tendency to ignore small objects. In
order to avoid the attention computation for all pixels in the
image, vision transformer (ViT) [8] splits the image into fixed-
size patches and feeds them into the transformer encoder using
patch embedding to compute the self-attention (SA) between
the patches. ViT has demonstrated great performance, but
it is still far behind the most advanced CNNs. In addition,
it has large model parameters and relies on pre-training on
very large data sets. Due to the excessive parameters and
long training time of ViT, DeiT [21], which is based on
ViT, introduces the teacher-student strategy to greatly improve
the performance of VTs. Unlike previous transformers that
compute global attention, swin-transformer [9] first computes
the local attention within patches, and then extends the
computation of attention to the global scale by gradually
merging patches. This improves the ability of the transformer
to extract local features.
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Fig. 2. Illustration of L2RCF. (a) Architecture overview: a dual-stream structure is designed to extract local and long-range features, and then the CFC
enhances the representation of the fused feature. (b) Joint loss: DS and DML are combined to form joint loss for further improving the fused features and
enhancing the dual-stream feature extractor. (c) Semi-supervised two-stage training: the first training stage is based on labeled samples, and enlarged labeled
samples are obtained by self-labeling; the second training stage is based on labeled samples and enlarged labeled samples; finally, the inference model is
obtained by pruning local classifier and long-range classifier. Note that DML is not used in the first training stage.

C. Deep Learning-based Remote Sensing Scene Classification

Before the rise of deep learning, handcrafted features
were widely used for RS scene classification by considering
global and local feature descriptors. Global features such as
color histograms and texture descriptors directly generate a
feature representation of images. Sande et al. [22] builds
color histograms based on the HSV color space for the
representation of the scene. Local feature descriptors such as
histogram of oriented gradients (HOG) [23] and scale-invariant
feature transform (SIFT) [24] are often used for feature
encoding to generate mid-level features of the scene. Common
feature coding methods include latent dirichlet allocation
(LDA) [25] and BoVW. Zhu et al. [4] explore RS scene

tasks based on BoVW. In contrast to handcrafted features,
deep learning methods have been recently used for RS scene
classification.

Autoencoders play an important role in RS scene classifi-
cation in the early stage of deep learning. Othman et al. [26]
combine convolutional features and sparse autoencoders for
RS scene classification tasks. CNNs are the most widely used
deep learning method in RS image processing (including scene
classification). Hu et al. [27] use transfer learning to directly
obtain the feature representation of the scene. Liu et al. [28]
propose a multi-scale CNN combined with fixed-scale net and
varied-scale net for modeling the scale variation of the objects
in RS images. Lu et al. [29] construct a feature aggregation
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network to generate an accurate representation of RS scenes.
In addition, various attention mechanisms are continuously
combined with CNNs for RS scene classification tasks [30]–
[33].

Emerging deep learning methods such as graph convo-
lutional networks (GCNs) [34], neural architecture search
(NAS) [35], generative adversarial networks (GANs) [36],
local-global learning [37] [38] and others [39]–[41] have also
been used in scene classification. Xu et al. [42] design a
deep feature aggregation framework based on GCN. Wang et
al. [43] propose a RS neural network framework using an
automatic search strategy, which can be effectively used for
scene classification and semantic segmentation tasks. Ma et al.
[44] develop a RS scene classification NAS framework based
on multi-objective neural evolution. Yu et al. [45] propose an
attention GAN in combination with the attention mechanism,
which improves the performance in RS scene classification
by improving the representation of the discriminator. Cheng
et al. [46] propose an effective defense framework named
PSGANs for RS scene classification. In order to improve
global representation of CNNs, Lv et al. [37] propose the
local-global-fusion feature extraction network, which lever-
ages RNNs to capture contextual information. And Chen et al.
[38] propose the local–global mutual learning (LML) method
to obtain different features and learn from each other through
KL. However, they are still difficult to improve the extraction
of CNN for long-range features. To support the inference
recognition of unseen RS image scenes, the remote sensing
knowledge graph (RSKG) [40] and asymmetric collaborative
network (SCN) for lifelong RS image classification [39] are
designed. And Li et al. [41] propose the error tolerance deep
learning method for the negative impact of error labels in the
data set.

In Addition, there have been limited works utilizing VTs for
RS scene classification. Bazi et al. [47] and Kaselimi et al. [48]
use the VT to classify RS scenes using transfer learning. The
spatial-channel feature preserving ViT (SCViT) model is pro-
posed to consider the contribution of different channels [49].
Tang et al. [50] the propose efficient multiscale transformer
and cross-level attention learning (EMTCAL) model. Ma
et al. [51] propose homo–heterogenous transformer learning
(HHTL) to more effectively distinguish intra-class/inter-class
samples. Yu et al. [52] design a cross-context and cross-scale
capsule vision transformer which combines combining capsule
networks and VTs.

III. METHODOLOGY

The objects in RS scenes are complex, including overpasses,
stadiums and other objects with specific local structural fea-
tures, as well as long-range objects such as rivers and high-
ways. Therefore, a classification model needs to be sensitive
to the properties of different types of objects. But CNNs or
VTs can not be sensitive to both local objects and long-range
objects. Although limited work has combined CNNs and VTs,
the collaboration between them is inadequate. To address these
issues, the L2RCF for RS scene classification is proposed,
as shown in Fig.2. L2RCF includes four main parts: i) a

dual-stream structure based on CNNs and VTs designed to
extract local features and long-range features; ii) the CFC for
calibration of local features and long-range features to obtain
more discriminative fusion features; iii) a joint loss based on
DS and DML to enhance the dual-stream feature extractor
and further improve the fused features; iv) a two-stage semi-
supervised training strategy for improving the performance by
exploiting potential of unlabeled samples.

A. CNN

The Convolutional blocks are the basic structure of CNNs,
which contain convolutional layers, pooling layers, activation
functions. The input of the convolutional block is the original
image or the feature map I ∈ RCi×Hi×Wi from the previous
convolutional block, and the output is the feature map O ∈
RC×H×W , which is computed as follows:

O = ConvBlocks(I). (1)

Then, the global average pooling (GAP) computes an
average value for each channel of O. After GAP, the feature
vector GP ∈ RC is obtained which can be written as follows:

GPc = Fgp (Oc) =
1

H ×W

H∑
i=1

W∑
j=1

Oc(i, j), (2)

where GPc and Oc denote the c-th channel of GP and O,
respectively. And Fgp represents the GAP function.

B. Visual Transformer

As shown in the long-range stream in Fig. 2, VTs mainly
include embedding and encoder, which are briefly described
below.

The image Im ∈ RC′×H′×W ′
is divided into patches with

dimension of C ′ × P × P . Then each patch is mapped
into the dimension D through a linear transformation. In
order to preserve the position information between patches,
learnable 1-D positional embedding is used. Patch embeddings
and positional embedding are directly added as the input of
transformer encoder. Unlike CNNs, which usually use GAP
to obtain features for image classification, VTs add a special
class token as input. And the related output T0

L represents
classification head, which are generally connected to a linear
classifier. In summary, the vector T0 after linear embedding
is specifically expressed as follows:

T0 =
[
xclass;x

1
pE;x2

pE; . . . ;xN
p E

]
+Epos, (3)

where E ∈ R(P
2×C′)×D, Epos ∈ R(N+1)×D, xclass is

the initial value of the class token (T0
0 = xclass), x1

p, x2
p,

xN
p represent different patches, N represents the number of

patches (N = H ′ ×W ′/P 2) , E is the linear transformation
matrix of the patch and Epos is the learnable position matrix.

The transformer encoder is the core of VTs, which is stacked
by a unified structure composed of MSA and multi-layer
perception (MLP). The MSA uses multiple attention heads in
parallel, which allows the model to learn correlation weights
in different representation subspaces. And the MLP consists
of two linear layers with a GELU [53] activation. In addition,
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both MSA and MLP use residual connections, and have a
normalization layer (LN) in front of them, as follows:

T′
l = MSA(LN (Tl−1)) +Tl−1, l = 1 . . . L, (4)

Tl = MLP (LN (T′
l)) +T′

l, l = 1 . . . L, (5)

where Tl−1 and Tl are the output of the l − 1 layer and the
l layer transformer encoder, respectively.

C. Feature Fusion via CFC

Previous feature fusion methods in related work usually
adopt direct concatenation. But it is not effective due to lack
of interaction with each other and limits the representation of
fusion features. The ”Squeeze-Excitation-Reweight” paradigm
in SENet [54] has been shown to be effective for feature
recalibration. For local feature and long-range feature fusion,
it is crucial to fully consider the correlation between them
to achieve more effective information interaction. Therefore,
we design the CFC module for modeling the calibration and
fusion between local and long-range features, as shown in Fig.
3.

Fig. 3. Structure of CFC. It can effectively enhance the representation of
fusion features.

First we concat local feature and long-range feature as
follows:

zconcat = Concat(zlc, zlr), (6)

where zlc and zlr represent local features and long-range
features, respectively.

Then the calibration weight w is obtained through
a nonlinear unit, which contains two fully connected
layers, namely dimensionality-reduction layer fc1 and
dimensionality-increasing layer fc2. w can be expressed as:

w = σ (w2δ (w1zconcat)) , (7)

where w1 ∈ Rd′×d and w2 ∈ Rd×d′
represent the weight

parameters of fc1 and fc2, respectively, d is the dimension
of zconcat, δ and σ represent the ReLu and Sigmod activation
functions, respectively. A dimensionality reduction ratio r is
used to control the value of d′:

d′ = max(d/r, Ldn), (8)

where Ldn represents the minimum value of d′. zfs is obtained
by multiplying w and zconcat. By controlling calibration
weights, the features with great representation are further
enhanced and some redundant features are diminished.

D. Joint Loss

We designed a novel joint loss for boosting the dual-stream
feature extractor and further improving the fused feature in
L2RCF. It consists of three losses: the DS loss LDS , the
proposed DML loss LDML within the network, the common
prediction loss LPL based on the final feature (i.e. fusion
feature). The diagram of DS loss and prediction loss are shown
in Fig. 4. The diagram of DML loss is shown in Fig. 5 (c).
Joint loss enhances the representation of the L2RCF in three
ways: i) DS helps the dual-stream feature extractor to drive
more discriminative features; ii) DML helps local stream and
long-range stream to compensate for their shortcomings and
refine the fused features; iii) DS and DML are complementary.
On the one hand, DML can provide some auxiliary DS
information in the form of ‘soft label’. On the other hand,
DS can help to correct mis-knowledge that may be introduced
by DML. The DS loss, DML loss, and joint loss functions are
described as follows.

1) DS loss
The deep models are usually used to extract features from

images to obtain a discriminative representation of RS scene.
However, when the gradients are passed from the deep layers
to the shallow layers during training, they become very small
or disappear, which makes it difficult to converge. In addition,
we use CFC when fusing the features, which further increases
the length of the gradient back-propagation.

So we use the DS strategy to help learn more discriminative
representation, as shown in Fig. 4. More specifically, two
auxiliary classifiers are added based on the local features and
long-range features. DS loss is computed from the prediction
results of the auxiliary classifier with the labels.

Fig. 4. Diagram of DS loss and prediction loss in L2RCF.

Let us consider the sample set X = {xk}Kk=1 with K
samples and M classes, and the corresponding label set
Y = {yk}Kk=1, yk ∈ {1, 2, . . . ,M}. The probability of the
sample xk belongs to class m is computed as:

p(m | xk;wmd) =
exp(vm)∑M

m=1 exp(vm)
, (9)

where wmd is the model parameter and v is the output of the
model.
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We use the cross-entropy loss to represent the error between
the prediction and the label. It is defined as follows:

LCE = −
K∑

k=1

M∑
m=1

I{•}log (p(m | xk;wmd)) , (10)

where I{•} is an indicator function, defined as:

I{•}=
{

1 yk = m
0 yk ̸= m,

(11)

and yk is the label of the sample xk.
Therefore, the DS loss based on the two auxiliary classifiers

is computed as follows:

Llc(X ;wlc, ŵlc)=−
K∑

k=1

M∑
m=1

I{•}log(p(m |xk;wlc, ŵlc)) ,

(12)

Llr(X ;wlr, ŵlr)=−
K∑

k=1

M∑
m=1

I{•}log(p(m |xk;wlr, ŵlr)) ,

(13)
where Llc and Llr represent the DS losses for local and long-
range streams respectively, wlc and wlr represent the local
stream and long-range stream parameters respectively, ŵlr

and ŵlr represent the parameters which bridge the features
to predictions. And the DS loss LDS can be represented as:

LDS=(Llc+Llr)/2. (14)

2) DML loss
DML comes from knowledge distillation [55], which distills

the knowledge contained in the teacher network into the stu-
dent network. In knowledge distillation, the teacher network is
pre-trained and tends to be larger than the student network. The
gradient generated by the mimicry loss between the teacher
network and the student network is only back-propagated to
the student network, as shown in Fig. 5 (a). In other words,
the teacher network has fixed weights.

In DML, two or more networks learn from each other
without teacher network. The gradient from mimicry loss
between them is back-propagated to all networks, as shown
Fig. 5 (b). We extended DML into a single network, as shown
in Fig. 5 (c). Local, long-range, fusion streams are viewed as
sub-networks learning from each other.

(a) (b) (c)

Fig. 5. Diagram of knowledge distillation and DML. (a) Knowledge
distillation. (b) DML proposed in [56]. (c) DML proposed in L2RCF. ‘w/
Gradient’ means ‘with gradient’, and ‘w/o Gradient’ means ‘without gradient’.

To compute the mimicry loss of the features generated by

the three ‘networks’, we use the L2 loss:

L2 = ∥z1 − z2∥2 , (15)

where z1 and z2 are the features generated by the different
‘networks’.

Thus the DML loss of local stream and long-range stream
with fusion stream can be represented as:

Llc−fs(X ;wlc,W) = ∥zlc − zfs∥2 , (16)

Llr−fs(X ;wlr,W) = ∥zlr − zfs∥2 , (17)

where zfs represents the fusion features, W represent the
parameters of the dual-stream and CFC modules. Similarly,
DML loss between the local stream and long-range stream
can be represented as:

Llc−lr(X ;wlc,wlr) = ∥zlc − zlr∥2 . (18)

In this way, the three features can learn from each other to
mitigate their shortcomings and improve the representation of
the framework. And the DML loss LDML can be represented
as:

LDML=(Llc−fs+Llr−fs+Llc−lr)/3. (19)

3) Loss Function
In summary, there are three types of loss functions in our

network (DS loss, DML loss, and prediction loss). Among
them, the DS loss and prediction loss employ the cross entropy
loss. DML loss employs the L2 loss. So the prediction loss
LPL can be represented as:

LPL

(
X ;W,Ŵ

)
=−

K∑
k=1

M∑
m=1

I{•}log
(
p(m |xk;W,Ŵ)

)
,

(20)
where Ŵ represent the parameters of the fusion feature-based
classifier. The joint loss L is the average value of them and is
represented as follows:

L= (LPL+LDS +LDML)/3, (21)

that is, LPL, LDS and LDML are set to equal weight.

E. Two-stage Semi-supervised Training

As described in previous subsections, local features, long-
range features, and fusion features are obtained. And three
predictions are derived based on them. This enables the use
of semi-supervised strategy that can exploit the large quantity
of unlabeled. The semi-supervised paradigm can effectively
extract the knowledge hidden in a large number of unlabeled
samples.

In semi-supervised learning, it is crucial to obtain pseudo-
labels of unlabeled samples. We design a simple self-labeling
strategy based on three classifiers for assigning pseudo-labels
to unlabeled samples that may be added to the enlarged sample
set Sel with high confidence.

Mathematically, given an unlabeled sample xu ∈ U ,
its predicted labels and class scores are first obtained using
different classifiers:

yn, pn = fn(xu), (22)
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where yn and pn are the predicted labels and class scores, and
n ∈ {local, long − range, fusion}.

Then need to determine whether predcitions meet the
criteria for a high confidence. We check it the different
classifiers are consistent, i.e. they provide the same predicted
labels based on local features, long-range features, and fusion
features.

In addition, we set that the three class scores need to satisfy
the following criterion:

min(plocal, plong−range, pfusion) ≥ λ, (23)

where λ is a constant, plocal, plong−range, and pfusion
represent the class scores based on local features, long-
range features, and fusion features, respectively. Samples in
U satisfying are added to the enlarged sample set Sel.

We design a two-stage semi-supervised training strategy, as
shown in Fig. 2. In the first training stage, the joint loss L is
set to contain DS loss and prediction loss. The labeled sample
set Slb is fed into the model for training, and three initial
classifiers are obtained. Further, the enlarged sample set Sel

is obtained based on the designed self-labeling strategy. In the
second training stage, the joint loss L is set to contain DS
loss, DML loss and prediction loss. The Slb and Sel are given
as input to the model training. In addition, local and long-
range classifiers are pruned to reduce the size of the inference
model.

IV. EXPERIMENTAL RESULTS

A. Data Sets Description

we analyzed the experiment of the proposed L2RCF on the
three data sets described below.

1) RSSCN7 data set: It contains 2800 images from 7
categories, with the size of 400 × 400 pixels. Each category
contains four different scales (1:700, 1:1300, 1:2600, and
1:5200) and 100 images. And images were collected at a
variety of times, weather and scales [57].

2) AID data set: It contains 10,000 images from 30
categories, with the size of 600 × 600 pixels. The number
of samples for each category is different, ranging between
220 and 400. Images are all obtained from Google Images
with defferent sensors and in many countries under different
imaging conditions. And the resolutions are between 0.5 and
8 m [58].

3) NWPU data set: It contains 31,500 images from 45
categories with the image size of 256 × 256 pixels. The number
of images for each category is 700. The acquisition area is
widely distributed and also has variable imaging conditions
with a resolution range between 0.2 and 30 m. Compared to
the first two data sets, it has more categories and samples, and
is more challenging [59].

B. Evaluation Metrics

The quantitative measures of accuracy used in the exper-
iment are: i) overall accuracy (OA), which is an indicator
that reflects the overall performance of the model and ii)
the confusion matrix (CM), which is used to assess the
accuracy of different categories and the degree of confusion

between them. Floating point operations (FLOPs) and model
size are also used to measure computational complexity and
model complexity. In addition, GradCAM [60] and T-SNE are
considered to visualize and analyze the experimental results.

TABLE I
COMPARSION OF OAS (%) PROVIDED BY THE PROPOSED AND

SOME STATE-OF-THE-ART METHODS (RSSCN7 DATA SET)

Type Method RSSCN7

20% 50%

△ BoVW(SIFT) [58] 76.33±0.88 81.34±0.55
BoVW(LBP) [58] 76.98±0.90 81.69±1.11

◦
Tex-Net-LF [61] 92.45±0.45 94.00±0.57

SE-MDPMNet [62] 92.65±0.13 94.71±0.15
Contourlet CNN [63] - 95.54±0.71

Proposed

L2RCF-18-T 94.22±0.72 95.56±0.30
L2RCF-18-S 94.50±0.71 95.70±0.38
L2RCF-34-T 94.34±0.45 95.64±0.38
L2RCF-34-S 94.47±0.62 95.93±0.44
L2RCF-50-T 94.42±0.45 95.94±0.50
L2RCF-50-S 94.70±0.55 96.00±0.12

C. Implementation Details

We chose ResNet (ResNet18, ResNet34, ResNet50) and
DeiT (DeiT-T, DeiT-S) as the backbones for the local stream
and the long-range stream, respectively. So L2RCF-18-T,
L2RCF-18-S, L2RCF-34-T, L2RCF-34-S, L2RCF-50-T,
L2RCF-50-S are formed. The image of all three data sets
were resized to 224 × 224 pixels. Two data enhancement
strategies, random vertical flipping and horizontal flipping,
were used to prevent overfitting. Both r and Ldn in Equation
(12) were set to 32. The value of λ in the semi-supervised
strategy is set to 0.6. The training ratios (Trs) for RSSCN7
and AID were set to 20% and 50%, and for NWPU to
10% and 20%. In addition, to enhance the confidence of
the results, all experiments were repeated five times and the
training samples were randomly selected.

SDG was used as the model optimizer. The total number of
training epochs was 60 with a learning rate of 0.01 for the first
30 epochs and 0.001 for the last 30 epochs. The batch size
was set to 32. Backbones were initialized using ImageNet-
based pre-trained parameters. In addition, the experiments
were implemented by Pytorch in the computing environment
of Intel i9-10980XE CPU, NVIDIA RTX 3090 Graphics Card,
and 64-GB memory.

D. Comparison With State-of-the-Art Approaches

To effectively evaluate the performance of L2RCF, some
state-of-the-art methods are used for comparison on three
considered data sets. The handcrafted feature-based methods
(△), CNN-based methods (◦), VT-based methods (∗) and
CNN-VT-based methods (⊛) are shown separately in Table
I and Table II. Due to the limited application of VTs in RS,
CNN-based methods present more in the comparison.
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TABLE II
COMPARSION OF OAS (%) PROVIDED BY THE PROPOSED AND SOME STATE-OF-THE-ART METHODS (AID AND NWPU DATA SETS)

Type Method AID NWPU

20% 50% 10% 20%

△ GIST [58], [59] 30.61±0.63 35.07±0.41 15.90±0.23 17.88±0.22
BoVW(SIFT) [58], [59] 62.49±0.53 68.37±0.40 41.72±0.21 44.97±0.28

◦

SCCoV [64] 93.12±0.25 96.10±0.16 89.30±0.35 92.10±0.25
MG-CAP [65] 93.34±0.18 96.12±0.12 90.83±0.12 92.95±0.11

ResNet101+CBAM [66] 93.51±0.22 96.56±0.21 91.63±0.15 93.86±0.13
ResNet50+EAM [66] 93.64±0.25 96.62±0.13 90.87±0.15 93.51±0.12

ResNet18local+global [67] 94.38±0.10 96.76±0.20 90.04±0.15 92.79±0.11
ResNet50-FSoI-Net2 [68] 95.49±0.31 97.16±0.07 92.49±0.31 94.40±0.21

MBLANet [69] 95.60±0.17 97.14±0.03 92.32±0.15 94.66±0.11
GCSANet [70] 95.96±0.38 97.53±0.32 93.39±0.39 94.95±0.36

∗

V16 21k [224 × 224] [47] 94.97±0.01 - 92.60±0.10 -
SCViT [49] 95.56±0.17 96.98±0.16 92.72±0.04 94.66±0.10
HHTL [51] 95.62±0.13 96.88±0.21 92.07±0.44 94.21±0.09

V16 21k [384 × 384] [47] 95.86±0.28 - 93.83±0.46 -
C2-CapsViT [52] 96.05±0.11 97.57±0.15 93.32±0.05 95.28±0.08

⊛
EMTCAL [50] 94.69±0.14 96.41±0.23 91.63±0.19 93.65±0.12

CTNet(MobileNet v2-ViT B) [10] 96.25±0.10 97.70±0.11 93.90±0.14 95.40±0.15
CTNet(ResNet34-ViT B) [10] 96.35±0.13 97.56±0.20 93.86±0.22 95.49±0.12

Proposed

L2RCF-18-T 96.14±0.22 97.13±0.10 93.14±0.24 94.61±0.08
L2RCF-18-S 96.43±0.10 97.33±0.13 93.62±0.12 94.97±0.12
L2RCF-34-T 96.35±0.12 97.32±0.29 93.74±0.17 95.05±0.09
L2RCF-34-S 96.73±0.11 97.41±0.16 94.13±0.15 95.36±0.23
L2RCF-50-T 96.73±0.15 97.44±0.13 94.19±0.13 95.41±0.14
L2RCF-50-S 97.00±0.17 97.80±0.22 94.58±0.16 95.60±0.12

1) RSSCN7 data set: For the RSSCN7 data set, Table
I shows the comparisons between L2RCF and some state-
of-the-art methods under 20% and 50% Trs. To our best
knowledge, VT-based methods and CNN-VT-based methods
have not been used for this data set, so the results of
the comparisons of handcrafted feature-based methods and
CNN-based methods are presented in Table I. The accu-
racies of CNN-based methods are much better than those
of handcrafted feature-based methods. CNN-based methods
achieve 92.65% and 95.54% OAs under 20% and 50% Trs,
respectively. While the best OAs of handcrafted feature-based
methods are only 76.98% and 81.69%. Note that Tex-Net-
LF [61] encodes CNN features, and SE-MDPMNet [62] uses
atrous convolution and channel attention mechanism based
on MobileNet-V2. Contourlet CNN [63] incorporates spectral
features and statistical information on the basis of spatial
features. However, their accuracies are far lower than those of
L2RCF. Under different backbone settings, L2RCF achieves
94.22%-94.70% and 95.56%-96.00% OAs under 20% and
50% Trs, respectively.

2) AID data set: Table II shows the results of the com-
parisons with some state-of-the-art methods on the AID
data set. The handcrafted feature-based methods include the
direct use of low-level features (GIST) and the encoding

low-level features to form mid-level features (BoVW). We
can find that the mid-level feature methods perform much
better than the low-level feature methods. CNN-based meth-
ods achieve OAs of 95.96% and 97.53% under 20% and
50% Trs, respectively. SCCoV [64] exploits second-order
information in multi-resolution feature maps based on co-
variance pooling, and MG-CAP [65] mines latent ontolo-
gies of RS images based on multi-granularity canonical ap-
pearance pooling. ResNet50-FSoI-Net2 [68] exploits self-
attention-based second-order pooling to obtain second-order
information. ResNet18local+global [67] constructs a dual-stream
network to extract local and global features of images re-
spectively. ResNet101+CBAM [66], ResNet50+EAM [66],
MBLANet [69], GCSANet [70] all use the attention mech-
anism, which can effectively improve the performance of
CNNs. Therefore, these selected CNN-based methods are
very representative. The V16 21k [47] achieves high accuracy
based on ViT using transfer learning for RS scene classi-
fication. SCViT [49], HHTL [51] and C2-CapsViT [52] are
improved on the basis of ViT [8] for RS scene classification
tasks. CTNet [10] builds a dual-stream network of CNN
and VT through concatenation fusion. EMTCAL [50] uses
transformer to obtain context information based on multi-
level convolution features. It is more lightweight than the

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2023.3265346

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



9

VT-based method mentioned above, but the computational
complexity is still higher than that of L2RCF-18-T (4.23G
vs 2.89G). L2RCF achieves 96.14%-97.00% and 97.56%-
97.80% OAs under 20% and 50% Trs, respectively. Under
20% Tr, L2RCF significantly outperforms these state-of-the-
art methods. Under 50% Tr, L2RCF performs significantly
better than handcrafted feature-based methods, CNN-based
methods, VT-based methods, and slightly better than the CNN-
VT-based method (CTNet). And, the model and computational
complexity of the VT backbone (ViT B [8]) used in CTNet,
SCViT, HHTL and C2-CapsViT is much higher than that of
L2RCF-50-S.

3) NWPU data set: The results of the comparisons between
L2RCF and some state-of-the-art methods on the NWPU data
set are shown in Table II. The NWPU data set is one of the
most complex RS scene classification task data set that is
widely used, with large-scale and variety of categories. Under
10% and 20% Trs, the OAs of the proposed L2RCF reached
93.14%-94.58% and 94.61%-95.60%, respectively. It is worth
nothing that the proposed L2RCF improves more the OAs
of existing methods at lower Trs, so L2RCF performs better
in the case of fewer samples. In order to fully explore the
performance of L2RCF in the case of fewer labeled samples,
we conduct more experiments (see Section IV-F for details).

E. Ablation Experiment

The proposed L2RCF in this paper mainly includes
three strategies, namely CFC, joint loss and two-stage
semi-supervised training strategy. In order to illustrate the
role of each strategy, we conducted very complete ablation
experiments.

1) Effect of CFC: In this ablation experiment, we tested
the performance on RSSCN7 and NWPU data sets at 20%
and 10% Trs, respectively, based on all backbones (ResNet18,
ResNet34, ResNet50, DeiT-T and DeiT-S). We take direct
concatenation of local features and long-range features as
the baseline for this study, since concatenation is the most
common method for dual-stream network fusion. Therefore
the model performance based on concatenation and CFC is
tested, as shown in Table III. Note that the joint loss and
the semi-supervised strategy are not used for all experimental
settings. First of all, DeiT-T and ResNet50 in the backbone
show the worst and best performance, respectively, which is in
line with their own model and computational complexity. Con-
catenation can improve accuracy compared to the backbone
with better performance in the dual stream. Furthermore, CFC
outperforms concatenation in all experimental settings. These
results show that concatenation can improve the classification
accuracy compared to the backbones, and CFC can further sig-
nificantly improve the accuracy on the basis of concatenation,
proving the effectiveness of CFC.

2) Effect of Joint Loss: Besides the effectiveness of the joint
loss, the effectiveness of DS and DML is also fully explored
in this ablation experiment. Therefore, the performance of
different combinations of DS and DML is fully tested based on
two data sets (AID, NWPU) and four backbones (ResNet18,
ResNet50, DieT-T, DieT-S), as shown in Table IV. Note that

(a) (b)

(c) (d)

Fig. 6. Comparison results with the two-stage semi-supervised training on
different data sets. (a) AID under Tr=20%. (b) AID under Tr=50%. (c) NWPU
under Tr=10%. (d) NWPU under Tr=20%

CFC is used for all experimental settings. In all experiments,
models using only DS or DML also show significant im-
provement. This illustrates the effectiveness of DS and DML,
respectively. In addition, although using both DS and DML
performs better than using alone, the improvement is not
significant. On the one hand, DML can also provide DS
information. Different from DS, DML uses the supervision
information of fusion features, which can play a role similar
to ‘soft labels’. However, using only DML introduce some
misinformation from fusion features. On the other hand,
although the supervision information of DS is completely
correct, it uses hard labels and does not perform as well as
soft labels. Therefore, they can provide some complementary
information to each other. In other words, this ablation
experiment not only fully demonstrates the effectiveness of the
joint loss, but also illustrates the complementarity between DS
and DML.

3) Effect of Two-Stage Semi-supervised Training: We fur-
ther exploit the two-stage semi-supervised training strategy.
The performance comparisons of L2RCF w/o SF (without
semi-supervised strategy) and L2RCF w/ SF (with semi-
supervised strategy) on the AID and NWPU data sets are
shown in Fig. 6. L2RCF w/ SF performs better in all
experiments. Furthermore, the improvement tends to be more
significant at lower Trs. For example, in the experiment on
the AID data set, the improvement can reach a maximum of
0.83% under 20% Tr, while it can only reach a maximum
of 0.2% under 50% Tr. When using the NWPU data set, the
improvement can reach up to 1.28% under 10% Tr, which is
much higher than other experimental settings. When the Tr
is higher, the number of enlarged samples brought by self-
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(a) (b)

Fig. 7. CM obtained by different models on the AID data set under Tr=20%. (a) Concat-18-T. (b) L2RCF-18-T.

Fig. 8. Visualization of the class attention maps. Four images were randomly selected from the NWPU data set. From top to bottom, the original image,
class attention map obtained without DS and DML, class attention map obtained with DS, class attention map obtained with DML, and class attention map
obtained with DS and DML are represented, respectively.
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TABLE III
OAS(%) OF ABLATION COMPARSION EXPERIMENTS WITH CFC (RSSCN7 AND NWPU DATA SETS)

Backbone
Data sets Local

backbone
Long-range
backbone

w/
Concat w/ CFC

CNN VT

ResNet18 DieT-T RSSCN7 90.21±0.98 89.79±0.61 91.30±0.86 91.88±1.10 (0.58↑)

NWPU 89.11±0.13 86.29±0.22 89.41±0.23 89.93±0.31 (0.50↑)

ResNet18 DieT-S RSSCN7 90.21±0.98 91.45±0.94 91.53±0.67 92.26±0.54 (0.73↑)

NWPU 89.11±0.13 90.02±0.34 90.36±0.27 90.90±0.23 (0.54↑)

ResNet34 DieT-T RSSCN7 90.33±0.49 89.79±0.61 91.51±0.53 92.02±0.56 (0.51↑)

NWPU 88.97±0.24 86.29±0.22 89.44±0.29 90.01±0.17 (0.57↑)

ResNet34 DieT-S RSSCN7 90.33±0.49 91.45±0.94 91.88±0.97 92.44±0.47 (0.56↑)

NWPU 88.97±0.24 90.02±0.34 90.43±0.21 90.95±0.25 (0.52↑)

ResNet50 DieT-T RSSCN7 91.79±0.82 89.79±0.61 91.84±0.73 92.36±0.55 (0.52↑)

NWPU 90.82±0.29 86.29±0.22 90.62±0.25 91.11±0.13 (0.49↑)

ResNet50 DieT-S RSSCN7 91.79±0.82 91.45±0.94 92.19±0.65 92.99±0.68 (0.80↑)

NWPU 90.82±0.29 90.02±0.34 91.31±0.15 91.82±0.14 (0.51↑)

TABLE IV
OAS(%) OF ABLATION COMPARSION EXPERIMENTS WITH JOINT LOSS (AID AND NWPU DATA SETS)

Backbone
DS DML

AID NWPU

CNN VT 20% 50% 10% 20%

ResNet18 Deit-T

94.13±0.39 96.15±0.14 89.93±0.31 92.69±0.18
✓ 95.18±0.21 (1.05↑) 96.81±0.24 (0.66↑) 91.44±0.37 (1.51↑) 93.80±0.19 (1.11↑)

✓ 95.08±0.25 (0.95↑) 96.75±0.21 (0.60↑) 91.77±0.32 (1.84↑) 93.86±0.09 (1.17↑)
✓ ✓ 95.37±0.22 (1.24↑) 96.93±0.24 (0.78↑) 91.86±0.28 (1.93↑) 94.12±0.11 (1.43↑)

ResNet18 Deit-S

94.97±0.23 96.48±0.30 90.90±0.23 93.29±0.17
✓ 95.55±0.11 (0.58↑) 97.03±0.26 (0.55↑) 92.25±0.17 (1.35↑) 94.37±0.15 (1.08↑)

✓ 95.48±0.19 (0.51↑) 96.99±0.16 (0.51↑) 92.26±0.21 (1.36↑) 94.38±0.13 (1.09↑)
✓ ✓ 95.61±0.11 (0.64↑) 97.18±0.18 (0.70↑) 92.67±0.33 (1.77↑) 94.60±0.14 (1.31↑)

ResNet50 Deit-T

94.96±0.31 96.68±0.20 91.11±0.13 93.57±0.08
✓ 95.78±0.15 (0.82↑) 97.18±0.22 (0.50↑) 92.53±0.25 (1.42↑) 94.73±0.10 (1.16↑)

✓ 95.76±0.20 (0.80↑) 97.29±0.24 (0.61↑) 93.03±0.19 (1.92↑) 94.94±0.21 (1.37↑)
✓ ✓ 95.90±0.29 (0.94↑) 97.32±0.10 (0.64↑) 93.14±0.26 (2.03↑) 95.06±0.16 (1.49↑)

ResNet50 Deit-S

95.46±0.19 96.96±0.24 91.82±0.14 93.90±0.10
✓ 96.23±0.12 (0.77↑) 97.44±0.24 (0.48↑) 93.08±0.25 (1.26↑) 95.03±0.15 (1.13↑)

✓ 96.01±0.13 (0.55↑) 97.41±0.17 (0.45↑) 93.41±0.25 (1.59↑) 95.17±0.13 (1.27↑)
✓ ✓ 96.30±0.20 (0.84↑) 97.50±0.17 (0.54↑) 93.50±0.29 (1.68↑) 95.24±0.15 (1.34↑)

labeling tends to be lower. And RS data can often be obtained
in large quantities, but their labeling is often manual and
time-consuming. Therefore, labeled samples are often lacking
in various RS tasks. This ablation experiment demonstrates
the effectiveness of the proposed two-stage semi-supervised
training strategy, especially in the few labeled sample case.

F. Visualization and Analysis

1) CM Analysis: In order to show the accuracy of each
category and the confusion between categories, we compare
the CMs of the baseline (Concat-18-T) and the proposed
L2RCF-18-T, as shown in Fig. 7. Experiments are performed
on the AID data set under 20% Tr. The CM of Concat-
18-T shows 8 categories with accuracy below 90%, while
the CM of L2RCF-18-T shows only two categories with
accuracy below 90%. Compared with Concat-18-T, L2RCF-
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TABLE V
ANALYSIS OF THE OAS (%) AND PARAMETER SIZE (MB) ON THE AID

DATA SET WITH DIFFERENT REDUCTION RATIO r

r
AID

Params
20% 50%

8 95.23 96.74 46.65
16 95.28 96.85 45.91
32 95.46 96.96 45.54
64 95.34 96.81 45.36

(a) (b)

Fig. 9. Analysis of the OAs and the samples in Sel on the AID data set with
λ ranging from 0.3 to 0.9. (a) Tr=20%. (b) Tr=50%.

18-T improves the accuracy of ‘resort’ from 84% to 92%,
the accuracy of ‘school’ from 84% to 91%, and the accuracy
of ‘park’ from 84% to 90%. Furthermore, we can find that
the proportion of L2RCF-18-T misclassifying ‘school’ into
‘church’, ‘commercial’, ‘industrial’, ‘park’ and ‘square’ is
reduced by 1%-2%. To sum up, L2RCF can effectively
reduce the confusion between categories, which proves the
effectiveness of the proposed method.

2) Hyperparameter Analysis: In this study, we conduct
experiments to investigate the impact of hyperparameters r
and λ. r represents the reduction ratio in the CFC and is used
to regulate capacity and model complexity. λ represents the
confidence constant in the two-step semi-supervised training.
We evaluate the performance of a range of r based on
L2RCF-50-S and AID data set. The results of our experiments,
including accuracy and parameter size, are presented in Table
V. And we can find that the performance of the model is
robust across a range of r. The optimal results are achieved
when r is set to 32, which only adds limited parameters
compared to r=64. And we conduct comparative experiments
on the L2RCF-18-T and AID data set with varying values of
λ between 0.3-0.9, with stride of 0.1. The Fig. 9 shows the
change of the number of samples in Sel and accuracy with
λ. The composition of clean and noisy samples in is also
presented. As λ increases, both the number of samples in Sel

and the proportion of noise samples decrease. The performance
of L2RCF-18-T remains robust when λ is between 0.3-0.7,
but drops significantly when λ greater than 0.7. And the
best performance is achieved by setting λ to 0.6. These
demonstrate that the proportion of noise samples and the
number of samples in Sel both affect the performance.

(a) (b)

(c) (d)

Fig. 10. Feature visualization by T-NSE of different methods on the AID data
set under Tr=20%. (a) DeiT-T. (b) ResNet18. (c) Concat-18-T. (d) L2RCF-
18-T.

3) Joint Loss Analysis using Grad-CAM Visualization: In
order to better demonstrate the role of DS and DML for
enhancing dual-stream feature extractors, we use Grad-CAM
to visualize class attention maps based on local stream and
long-range stream respectively, as shown in Fig. 8. Grad-CAM
provides the spatial response related to a specific category
according to the gradient, which helps to understand the area
of concern of the model. We can find from Fig. 8 that DS and
DML can effectively help local stream and long-range stream
to identity key regions for airplanes and airports, combining
the special feature extraction strengths of local stream and
long-range stream. For ground-objects with obvious local
features or long-range features, such as ‘basketball court’ and
‘river’, DS and DML can help local stream and long-range
stream to obtain long-range and local features, respectively.
In summary, Fig. 8 combined with the ablation study fully
demonstrates the effectiveness of DS and DML.

4) Feature Visualization Analysis With T-SNE: We use t-
SNE, a linear dimensionality reduction method, to visualize
feature separability. Experiments are based on the AID data set
under 20% Tr. Fig. 10 shows the feature distribution based on
DeiT-T, ResNet18, Concat-18-T, L2RCF-18-T. DeiT-T has the
worst feature separability, and many categories are seriously
confused together. This is caused by the fact that its model
and computational complexity are much lower than those of
the other three networks. The feature separability of ResNet18
and Concat-18-T are similar, both are better than that of
Deit-T. However, some categories are still confused together.
Compared with the other three types of networks, the feature
separability of L2RCF-18-T is generally better than the back-
bone network (Deit-T, ResNet18) and the baseline (Concat-
18-T). However, some samples are sporadically clustered into
other categories and are close to the center of the wrong
categories, which may be caused by the inevitable generation
of wrongly self-labeled samples when using semi-supervised
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strategies.

Fig. 11. Analysis of the OAs on the AID data set with Trs ranging from 1%
to 10%.

5) Few Labeled Samples Analysis: As described in Section
IV-D, L2RCF improves more significantly under fewer labeled
samples. Because of the massive amount of RS data and the
difficulty in obtaining labels, few labeled samples is suitable
for practical situations. To further explore the performance of
L2RCF under fewer labeled samples, we set the Trs to 1%-
10% and the stride to 1% on the AID data set. The results of
L2RCF-18-T, the corresponding backbones and baseline are
shown in Fig. 11. When Trs are less than 4%, the accuracy of
all models improved significantly by increasing Trs. However,
when the Tr is 4%, the accuracy growth rate of DeiT-T is
significantly weakened, and the accuracy of ResNet18 and
Concat-18-T is even reduced. This may be due to that the Tr is
too low, resulting in greater randomness and unrepresentative
training samples. The performance of L2RCF-18-T is the
best because the semi-supervised strategy introduces more
training samples and enhances the robustness. When the Trs
are lower, the improvement of L2RCF is more significant.
For example, under Trs of 1% and 10%, compared with the
baseline, the improvement is 10.01% and 4.41%, respectively.
Furthermore, L2RCF with 4% training samples outperforms
the baseline with 10% training samples. Therefore, L2RCF
can be effectively applied to the situation of insufficient labeled
samples for RS tasks.

6) Computational Complexity and Model Complexity Anal-
ysis: The ball chart shown in Fig. 12 shows the relationship
between the accuracy and the complexity of L2RCF, local
network (ResNet), and long-range network (DeiT) on the AID
data set under 20% Tr. The horizontal axis represents computa-
tional complexity, the vertical axis represents accuracy, and the
size of the sphere represents model complexity. And L2RCF-
50-S achieves the highest accuracy, but its computational
complexity and model complexity are in the middle level.
The highest accuracy among local networks and long-range
networks is obtained by ResNet152 and DeiT-B, which is
consistent with their computational complexity and model
complexity performance. L2RCF-18-T achieved the lowest
accuracy in L2RCF, but it is still far better than ResNet151
and DeiT-B. However, the computational complexity and

Fig. 12. Accuracy vs computational complexity and model complexity.

model complexity of L2RCF-18-T are much lower than
those of ResNet152 and DeiT-B. Overall, L2RCF is far
superior to local networks and long-range networks in terms
of accuracy, computational complexity and model complexity.
In addition, within each series of L2RCF, local network, and
long-range network, the accuracy has a strong correlation with
computational complexity and model complexity.

V. CONCLUSION

In this paper, we designed the L2RCF for the RS scene
classification task to address the issue that CNNs and VTs
are difficult to be sensitive to both local and long-range geo-
objects. First, local and long-range streams are used to extract
local and long-range features, respectively; then, they are
efficiently fused by the designed CFC. Second, a joint loss
combining DS and DML is proposed to enhance the dual-
stream feature extractor and further improve the fused features.
Finally, to fully expand the potential of unlabeled samples,
we proposed a two-stage semi-supervised training strategy.
Experiments on three widely used data sets show that our
method is comparable to state-of-the-art methods. Extensive
ablation experiments and visualization analysis demonstrate
the effectiveness of each proposed strategy. L2RCF can per-
form better than CNNs and VTs with less computation
and model complexity. Furthermore, compared with other
methods, L2RCF is more suitable for the lack of labeled
samples, which is very common in RS tasks. In the future, it is
necessary to explore the interaction between CNNs and VTs
in the middle layers, which may further effectively combine
the advantages of the two approaches.
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