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Abstract
In this paper we study the foundations of the algebraic treatment of classical and
quantum field theories for Dirac fermions under external backgrounds following the
initial contributions already present in various places in the literature. The treatment
is restricted to contractible spacetimes of globally hyperbolic nature in dimensions
d ≥ 4 and to external fields modelled with trivial principal bundles. In particular, we
construct the classical Møller maps intertwining the configuration spaces of charged
and uncharged fermions, and we show some of its properties in the case of a U (1)
gauge charge. In the last part, as a first step towards a quantization of the theory, we
explore the combination of the classical Møller maps with Hadamard bidistributions
and prove that they are involutive isomorphisms (algebraically and topologically)
between suitable (formal) algebras of functionals (observables) over the configuration
spaces of charged and uncharged Dirac fields.
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1 Introduction

The main aim of this paper is to contribute to a by now well established framework for
the algebraic treatment of quantum systemsmade of fermions in arbitrary backgrounds
(metrics, external fields etc.) which aims at the rigorous determination of physical
effects (see, e.g., [1–13]). It is a known fact that especially for strong space-time
dependent external fields the mostly used theoretical frameworks suffer from several
deficits. In general, the lack of space-time symmetries implies amissing preferred state
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(vacuum)with the related impossibility to use familiar tools as Fourier transformations
and Fock spaces. All these limit terribly the ability of physicists to deduce observable
effects in these quantum situations without making further drastic and simplifying
assumptions. Indeed, there exists a very large literature on the subject which is full of
interesting ideas, techniques and results (see, e.g., [14, 15]). Tipically, however, the
proposals are made without referring to general and deep basic concepts and hence
with a lot of ad hoc assumptions. A possible way out of these difficulties is to refer to
recent structural advances in quantum field theories using the algebraic approach. The
new perspective refers to deep conceptual advancements, for instance local covariance
[16], and technically, instead of Fourier transformations, uses its modern improvement
named micro-local analysis [17], in particular wave front sets [18, 19]. There have
been several recent interesting results that point towards the validity of this claim. For
instance, Fröb and Zahn [10] have shown how to rigorously derive the trace anomaly
for chiral fermions using in particular the rigorous method of Hadamard subtraction.
At variance w.r.t. the literature in physics, this was done in Lorentzian spacetime,
and invoking physical principles as invariance of the stress-energy tensor to show the
cancellation of unwanted terms on which physicists debated for long.

Our main concern is to build up at first the classical tools that can be used later
to develop the formalism towards the quantum aspects. In the present paper we
concentrate basically only in the former aspects but make an initial step into the
latter. We demonstrate that the classical Møller maps are involutive isomorphisms for
the various classes of mathematical objects of pertinence for us. Indeed, at first we
introduce various spinorial configurations spaces as sections of several bundles over
semi-Riemannian spaces, and prove that the Møller maps are isomorphisms between
the charged and uncharged spinor bundles. Then, we extend the structure to (nonlinear)
functionals over such bundles forming (involutive) algebras. One should look at them
as the (abelian) algebras of observables of the theory. A first step forward is done here
by the construction of a Poisson algebra. This entails at first the selection of a “good”
subset of functionals. The term good refers to the fact that in order to rigorously define
a Poisson structure for such field theories one can make a covariant choice which is
determined by the use of the Peierls’ backets (see, e.g., [20]). This implies the use
of causal Green operators (propagators) whose kernels, seen as distributions, do not
directly allow multiplications by generic functionals. It is here that microlocal anal-
ysis appears as the right tool. The good selection is indeed made out of the desire to
define the product of functionals, and their derivatives, with the propagators. A suffi-
cient criterion for those products to exist is the Hörmander’s one based on wave front
sets. Hence, the so calledmicrocausal functionalsmake their crucial appearance here.
These are functionals with prescribed singularities whose wave front sets combine
well with the wave front set of the propagators as to satisfy Hörmander’s criterion.

We then develop the formalism doing a first step into the quantum realm by extend-
ing the algebras to the formal algebras of deformation quantization, by changing the
classical product with the use of the Hadamard prescription.

In the course of the paper we develop geometric and analytic descriptions by adopt-
ing a practical and precise view which has the merit of being rather explicit. The
resulting formalism has advantages which we do hope compensate the heaviness of
notations.
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2 Geometric and Analytic Preliminaries

2.1 Basic Notions in Spin Geometry on Pseudo-riemannianManifolds

We begin the exposition by recalling some definitions and results in order to fix the
notation used throughout the paper. We refer the reader to [21], [22], [23] and [24] for
more details.

We shall work on n-dimensional spacetimes, that is, couples (M, g) consisting of
a connected, paracompact, orientable, time-orientable Hausdorff smooth manifold M
and a non-degenerate, pseudo-riemannian metric g. We shall further suppose that two
additional conditions hold:

(i) we assume (M, g) is globally hyperbolic: this entails that given a normally hyper-
bolic operator, this admits retarded and advanced Green operators (see, e.g., [25,
26]);

(i i) we also assume that dim(M) ≥ 4: this entails that there exists a universal covering
homomorphism ξ0 : Spin0r ,1 → SO0

r ,1 between the identity component of the Spin
group Spinr ,1 and the identity component of the signature (r , 1) of the special
orthogonal group [24, Proposition 12.1.41].

On the manifold M modelling our spacetime, we shall consider fiber bundles, i.e.,
quadruples (B,M, π, F) where π : B → M is a smooth, surjective map and such
that there exists an open cover {Uα}α∈A of the base manifold M and an associated
collection {φα : π−1(Uα) → Uα × F}α∈A of diffeomorphisms, called trivialization
of the bundle, such that

π1 ◦ φα = π |π−1(Uα)
for every α ∈ A . (2.1)

Notice that given a point p ∈ M , the fiber Bp
·= π−1(p) is diffeomorphic to F ; this

is the reason why F is called typical fiber. We can consider the transition functions of
the bundle, that is, the maps

φαβ : (Uα ∩Uβ) × F → (Uα ∩Uβ) × F

(p, f ) �→ φα

(
φ−1
β (p, f )

)
.

By the condition (2.1), we have that φαβ(p, f ) = (p, gαβ(p)( f )) for some gαβ : Uα ∩
Uβ → Aut(F); the collection {gαβ}α,β∈A is called cocycle.

In the context of quantum field theory, one usually deals with two kinds of fiber
bundles:

(i) vector bundles, that is, fiber bundles whose typical fiber is a vector space and
whose cocycle is such that gαβ(p) ∈ GL(F) for every α, β ∈ A, p ∈ Uα ∩Uβ ;

(i i) principal G-bundles, that is, fiber bundles whose typical fiber is the group G,
whose total space PG is a right G-manifold with right action rg : PG → PG and
whose trivialization {φα : π−1(Uα) → Uα × G} consists of right G-equivariant
maps. This entails that the cocycle {gαβ : Uα ∩ Uβ → Aut(G)} consists of left-
translations [21, Lemma 27.7].
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Given a principal G-bundle π : PG → M and a representation ρ : G → GL(V ) of the
group on a finite-dimensional vector space V , we can construct the associated vector
bundle π : PG ×ρ V → M with typical fiber V . [21, Theorem 31.9] shows that there
exist linear isomorphisms

·� : 	q
ρ(PG , V ) → 


(∧qT ∗M ⊗ PG ×ρ V
)

·� : 
 (∧qT ∗M ⊗ PG ×ρ V
)→ 	q

ρ(PG , V )
(2.2)

between the spaces 	
q
ρ(PG , V ) of V -valued, tensorial q-forms of type ρ on PG and

the space of q-forms on M with values in PG ×ρ V .
It is a well-known fact that gauge fields are represented by Ehresmann connec-

tions ω ∈ 	1(P, g) on a suitable principal G-bundle [27, 28]. These connection
1-forms can be used to induce an exterior covariant differentiation D : 	q

ρ(PG , V ) →
	

q+1
ρ (PG , V ),

Dϕ
·= dϕ + ω ·ρ ϕ (2.3)

where

(ω ·ρ ϕ)p(v1, . . . , vq+1) = 1

q!
∑

σ∈Sq+1

sgn(σ )ρ∗(ωp(vσ(1)))ϕp(vσ(2), . . . , vσ(q+1)) .

We can then use the exterior covariant derivative to endow the associated vector bundle
PG ×ρ V with a connection ∇ : X(M) × 
(PG ×ρ V ) → 
(PG ×ρ V ),

∇vs
·= (D(s�))�(v) .

This section of the associated vector bundle can be expressed locally as

(∇vs)(p) =
[
σ(p), v(p)

(
s� ◦ σ

)+ ρ∗
(
ωσ(p)

(
σ∗ p(vp)

))
s�(σ (p))

]
(2.4)

where σ : U → PGU is a local section of the principal G-bundle PG , usually deemed
local gauge choice. The pullback σ ∗ω ∈ 	1(U , g) is called local gauge potential.

An important construction which can be carried out in the case of complex vector
bundles is that of the conjugate bundle. Let us recall that given a complex vector
space V , the conjugate vector space V is a vector space which is real-isomorphic to
V and whose complex structure is the conjugate complex structure. The antilinear
isomorphism bewteen V and V shall be denoted with C : V → V , and it can be used
to induce, starting from a linear map L : V → V , a linear map L : V → V by defining

L
·= C−1 ◦ L ◦ C .
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Given a basis {ei }i∈I of V , the components {Li
j }i, j∈I of L are the complex conjugates

of the components of L in the basis {Cei }i∈I , i.e.

L
i
j = Li

j .

If V is endowed with a sesquilinear form, then one can show that V � V ∗. These
facts can be extended to the case of complex vector bundles in the following way:
first of all, consider a vector bundle E

π→ M with typical fiber V , whose cocycle is
given by {gαβ}α,β∈A; then one can construct another vector bundle with typical fiber V
and whose cocycle is given by {gαβ}α,β∈A; this vector bundle is the conjugate vector

bundle E
π→ M . The conjugation map C : V → V can be extended to a vector bundle

anti-isomorphism C : E → E , and if E is endowed with a hermitian metric h, then

(i) h, which assigns to every point p ∈ M a sesquilinear form h p on Ep, can be
understood as a map assigning to each p ∈ M a bilinear map h p : Ep × E p → C;

(ii) we have an isomorphism E � E∗.

Let us now consider the tangent bundle π : T M → M on our spacetime; by the
assumptions on (M, g) this is an oriented vector bundle endowed with a Lorentzian
structure, and we can thus consider its oriented, time-oriented, pseudo-orthonormal
frame bundle, that is, a principal SO0

r ,1-bundle πP : PSO0
r ,1

(M) → M naturally asso-

ciated to it. If we further assume that the second Stiefel–Whitney class w2(T M)

vanishes, we can consider a spin structure on T M , that is, a principal Spin0r ,1-bundle
πP ′ : PSpin0r ,1(M) → M coupled with a 2-sheeted covering

ξ : PSpin0r ,1 → PSO0
r ,1

(2.5)

such that ξ
(
rg(p)

) = rξ0(g) (ξ(p)) for every p ∈ PSpin0r ,1
, g ∈ Spin0r ,1, with

ξ0 : Spin0r ,1 → SO0
r ,1 being the universal covering map. This entails in particular

that the cocycle {gαβ : Uα ∩Uβ → Aut(SO0
r ,1)} of the principal SO0

r ,1-bundle is given

by {ξ0(sαβ)}, where {sαβ : Uα ∩ Uβ → Aut(Spin0r ,1)} is a cocycle for the principal

Spin0r ,1-bundle.
By the fundamental theorem of Riemannian geometry, there exists a unique torsion-
free, metric-compatible connection ω ∈ 	1(PSO0

r ,1
, so0r ,1), the Levi–Civita connec-

tion; using the covering map (2.5), this connection can be pulled back to a connection
1-form ωs ∈ 	1(PSpin0r ,1

, spin0r ,1), usually called spin connection.

We can then consider the following: depending on the dimension r+1 of our space-
time M , there exists a complex representation of the Spin group �C

r ,1 : Spin0r ,1 →
GL(V ,C) which is irreducible in the odd dimensional case and reducible in the even
dimensional one [22, §I, Proposition 5.15]. In both cases, the representation descends
from a complex representation ρ : C�r ,1 → End(V ,C) of the Clifford algebra C�r ,1.
In [22, §I, Theorem 5.7] it is proved that there exists a unique Clifford algebra repre-
sentation if r + 1 is even, while there exist two inequivalent representations if r + 1 is
odd; the induced Spin representation in the latter case doesn’t depend on the chosen
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representation. These representations can be used to carry out the following construc-
tion:

(i) given a complex Spin representation �C
r ,1 : Spin0r ,1 → GL(V ,C), we can con-

sider the complex spinor bundle

S(M)
·= PSpin0r ,1

×�C
r ,1

V (2.6)

(i i) we can also consider the Clifford algebra bundle

C�(M)
·= PSO0

r ,1
×c� C�r ,1 (2.7)

where c� : SO0
r ,1 → Aut(C�r ,1) denotes the unique extension to the Clifford

algebraC�r ,1 of the action of SO0
r ,1 on (Rr+1, qr ,1). It can be shown that the fiber

of C�(M) at p ∈ M is isomorphic to C�(T ∗
p M, gp).

These two bundles are related by means of the Clifford module multiplication

μ : C�(M) ⊗ S(M) → S(M)

which explicitly uses the fact that �C
r ,1 descends from an algebra representation of

C�r ,1.
Thanks to the spin structure, this map can then be extended to yield a Clifford module
multiplication

·
 : X(M) ⊗ 
(S(M)) → 
(S(M)) (2.8)

between vector fields and sections of the spinor bundle.
We shall denote with

∇s : X(M) ⊗ 
(S(M)) → 
(S(M)) (2.9)

the covariant derivative induced as of (2.4) on the spinor bundle by the spin connection
ωs . This connection behaveswellwith respect to theCliffordmultiplcation, in the sense
that it is a module derivation: given s ∈ 
(S(M)) and v, u ∈ X(M) we have

∇s
u(v ·
 s) = (∇uv) ·
 s + v ·
 ∇s

us . (2.10)

The Clifford multiplication can be combined with the covariant derivative∇s and with
the musical isomorphism induced by the metric to yield a partial differential operator
acting on sections of the spinor bundle, the Dirac operator

D : 
(S(M)) → 
(S(M))

s �→ D(s)
·= i
(·
(∇s(s))

)
.

(2.11)
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Given a local orthonormal frame {ei } ⊂ 
(T M) and its dual {ei } ⊂ 
(T ∗M) and
considering the local section σ : Uα → PSpin0r ,1

(M), (2.11) can be written locally as

D(s)(p) = ie j (p) ·

[
σ(p), e j (p)

(
s� ◦ σ

)+ �C
r ,1∗
(
ωs

σ(p)(σ∗p e j (p))
)
s�(σ (p))

]

(2.12)

where we use Einstein’s convention.

Remark 2.1 The local expression above can be written even more explicitly as

D(s)(p) = ie j (p) ·

⎡
⎣σ(p), e j (p)

(
s� ◦ σ

)+ 1

4

∑
k,l


l
k j e

k(p) ·V el(p) ·V s�(σ (p))

⎤
⎦

where
l
jk denote theChristoffel symbols of theLevi–Civita connection onM inducing

the spin connection ωs via pullback. In the following, we present the derivation of the
explicit form of the Dirac operator in three different spacetimes.

(a) Let us consider (flat) Minkowski spacetime (M, g) = (R4, η) and the embed-
ding of X(R4) into 
(C�(R4)) given by e j �→ γ j ,γ j (p) ≡ γ j where {γ j }1≤ j≤4
are the usual Gamma matrices in the Dirac representation. By choosing the
global pseudo-orthonormal frame {∂i }1≤i≤4 one can write, for a function s ∈

(S(R4)) � C∞(R4,C

4)

D(s) = iγ j∂ j s

which is the usual expression of the (massless) Dirac operator.
(b) Amore interesting example is that of the Dirac operator in Schwarzschild space-

time,

M = R × (rg,+∞) × S
1

g = −
(
1 − rg

r

)
dt ⊗ dt +

(
1 − rg

r

)−1
dr ⊗ dr + r2gS2

To carry out the computations, one considers a (in this case global) pseudo-
orthonormal frame {e j }1≤ j≤4,

e1 =
(
1 − rg

r

)−1/2
∂t e2 =

(
1 − rg

r

)1/2
∂r e3 = 1

r
∂θ e4 = 1

r sin(θ)
∂ϕ

and the associated embedding e j �→ γ j where, as before, {γ j }1≤ j≤4 are the
Gamma matrices in the Dirac representation. In this non-holonomic, pseudo-
orthornormal frame the Christoffel symbols are given by


i
jk = 1

2
ηim
(
cmjk + cmk j − c jkm

)
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where η is the flat metric and

[ei , e j ] = cmjkem, c jkp = ηpmc
m
jk

One can also exploit the properties of Christoffel symbols and of the Clifford
module multiplication to write

1

4

∑
k,l


mkj e
k(p) ·V e j (p) = 1

8

∑
k,l


mkj [γ k, γ j ]

A lengthy but straightforward computation then leads to

D(s) = iγ 1
(
1−rg

r

)−1/2
∂t s+iγ 2

(
1−rg

r

)1/2 (
∂r s− rg

4r2

(
1−rg

r

)−1
s−1

r
s

)

+ iγ 3
(
1

r
∂θ s − 1

2

cot(θ)

r
s

)
+ iγ 4 1

r sin(θ)
∂ϕs .

(c) Another interesting example is that of Friedman–Lemaitre–Robertson–Walker
spacetime,

M = I × J × S
2 g = S(t)2

(
−dt ⊗ dt + dr ⊗ dr + f (r)2gS2

)
.

Proceeding in the same way as in the Schwarzschild case, a simple computation
leads to

D(s) = iγ 1
(

1

S(t)
∂t s − 3

2

Ṡ(t)

S(t)2
s

)
+ iγ 2

(
1

S(t)
∂r s − f ′(r)

S(t) f (r)
s

)

+ iγ 3
(

1

S(t) f (r)
∂θ s − cot(θ)

S(t) f (r)
s

)
+ iγ 4 1

S(t) f (r) sin(θ)
∂ϕs .

As one can see from (2.12), the Dirac operator is a first-order partial differential
operator whose principal symbol σ(D) is given pointwise by

σ(D)
(
p, ξp
)
(sp) = μ|p(ξp, sp) .

Owing to the properties of Clifford multiplication and of the principal symbol, it is
then evident thatD2 is a normally hyperbolic, second-order partial differential operator.
Therefore, D admits unique advanced and retarded Green operators

�S± : 
c(S(M)) → 
(S(M)) (2.13)

i.e.D◦�S± = id
(S(M)), �S±◦D|
c(S(M)) = id
c(S(M)) and supp(�S±(s)) ⊆ J∓(supp(s))
[26], where J±(R) is, respectively, the causal future/past of the region R ⊂ M . These
operators can be extended to continuous linear maps

�S± : 
fc/pc(S(M)) → 
fc/pc(S(M))
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where the subscripts fc and pc denote sections with future-compact and past-compact
support respectively; we recall here that a subset S ⊆ M is past-compact if S∩ J−(p)
is compact for every p ∈ M (future-compact are defined in an analogous way). We
remind, for later purposes, that we can also define the so-called causal Green operator
(or, more simply, propagator) by posing �S

.= �S− − �S+.

Remark 2.2 In the example case of Minkowski spacetime (R4, η) previously exam-
ined, the advanced and retarded Green operators for the (massive) Dirac operator can
be written explicitly by using the fact that

�S± = (iγ j∂ j + m)�±

where�± denote the advanced and retarded propagators of theKlein-Gordon operator,
whose integral kernel can be written, in the sense of distributions, as

�±(x − y) = 1

(2π)4
lim
ε→0

∫

R4

eik0(x
0−y0)+i(k,x−y)

−(k0 ∓ iε)2 + ‖k‖2 + m2
dk0dk .

Then

�S±(x − y) = 1

(2π)4
lim
ε→0

∫

R4

(−γ i ki + m)eik0(x
0−y0)+i(k,x−y)

−(k0 ∓ iε)2 + ‖k‖2 + m2
dk0dk .

Explicit expressions for the advanced and retarded propagators in the more interesting
case of de Sitter spacetime can be found in [29].

By [24, Proposition 12.1.65], we know that S(M) admits a Hermitian metric such that
the Clifford multiplication by α ∈ 
(T ∗M) is an Hermitian automorphism of S(M).
We shall denote the Hermitian metric by (·, ·), and the associated two form by h.

2.2 The Geometric Description of Charged Spinors

Following [8], the coupling of a Dirac field with an external gauge field exploits the
notion of direct product bundle, which we recall here:

Definition 2.3 LetπP : P → M andπQ : Q → M be twoprincipalG- and H -bundles
respectively. The product space P × Q is a principal G × H -bundle over M × M ;
by considering the diagonal � = {(x, x) ∈ M × M, x ∈ M} and the inclusion map
given by i : �↪→M × M , we can then consider the pullback bundle

P + Q
·= i∗(P × Q) = {(x, p, q) ∈ � × (P × Q) s.t. (x, x) = (πP (p), πQ(q))

}
.

As � is diffeomorphic to M , we have that P + Q is a principal G × H -bundle over
M , called the direct product bundle.
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Notice that P + Q can be naturally viewed as a subset of P × Q; we can consider the
restriction of the natural projections

fP : P × Q → P fQ : P × Q → Q

to P + Q. These are principal bundle homomorphisms, meaning that

fP
(
r(g,h)(p, q)

) = rg p fQ
(
r(g,h)(p, q)

) = rhq .

If the two principal bundles in Definition 2.3 are endowed with the connections ωP ∈
	1(P, g) and ωQ ∈ 	1(Q, h) respectively, then by [30, Proposition 6.3] we have that
the 1-form

ω
·= f ∗

Pω
P ⊕ f ∗

QωQ (2.14)

is an Ehresmann connection on P + Q.
Let us now consider two representations

ρ1 : G → GL(V ) ρ2 : H → GL(V )

such that ρ1(g)ρ2(h) = ρ2(h)ρ1(g) for every g ∈ G, h ∈ H . Then one can construct
the representation

ρ : G × H → GL(V )

(g, h) �→ ρ (g, h)
·= ρ1(g)ρ2(h)

(2.15)

whose adjoint representation is given by

ρ∗ : g ⊕ h → End(V )

(g,h) �→ ρ1∗(g) + ρ2∗(h)

and consider the associated bundle

(P + Q) ×ρ V

which will then be endowed with a covariant derivative.
In our case of interestwewill dealwith a principal Spin0r ,1-bundleπs : PSpin0r ,1 → M

coupled with a principal G-bundle πg : PG → M , where G is a compact Lie group
which admits a representation ρG : G → GL(V ) such that

�C

r ,1(s)ρG(g) = ρG(g)�C

r ,1(s) for every s ∈ Spin0r ,1, g ∈ G .

By considering the direct product bundle PSpin0r ,1
+ PG endowed with the connection

given by (2.14) as well as the representation given by (2.15) we then can construct the
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associated vector bundle

SG(M)
·= (PSpin0r ,1

+ PG) ×ρ V

which we shall call charged spinor bundle. This can be endowed with the covariant
derivative

∇s,G : X(M) ⊗ 
(SG(M)) → 
(SG(M)))

locally given by

(∇s,G
v s)(p) =

[
σ(p), v(p)

(
s�G ◦ σ

)+ ρ∗
(
ωσ(p)(σ∗ pv(p))

)
s�G (σ (p))

]

=
[
σ(p), v(p)

(
s�G ◦ σ

)+
(
�C

r ,1∗
(
( fSpin0r ,1

◦ σ)∗ωs
p(v(p))

)

+ ρG∗
(
( fG ◦ σ)∗ωG

p (v(p))
))

s�G (σ (p))

]

(2.16)

where σ : U → PSpin0r ,1
+ PG is a local section of the direct product bundle and

·�G : 
(∧qT ∗M ⊗ SG(M)) → 	q
ρ(PSpin0r ,1

+ PG , V )

denotes the isomorphism as of (2.2). Notice that as V is a C�r ,1-module, even in this
case we have a Clifford module multiplication

·
,G : X(M) ⊗ 
(SG(M)) → 
(SG(M))

which we can use to construct a Dirac operator DG as in (2.11). Notice that the
highest-order term is analogous to that of D, therefore the principal symbols of these
two operators coincide: it follows thatDG admits unique advanced and retarded Green
operators

�S
G± : 
c(SG(M)) → 
(SG(M)) , (2.17)

with the analogous properties of the uncharged operators as after (2.13). Again, we
can define the causal Green operator by posing �SG

.= �SG− − �SG+.

Remark 2.4 Notice that the main difference between the local expressions (2.16) and
(2.4) of the covariant derivatives, apart from the different spaces of section they are
acting on, is given by the presence of the term

[
σ(p), ρG∗

(
( fG ◦ σ)∗ωG

p (v(p))
)
s�G (σ (p))

]
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which, when considering the Dirac operators DG and D, amounts to

ie j (p) ·
,G
[
σ(p), ρG∗

(
( fG ◦ σ)∗ωG

p (e j (p))
)
s�G (σ (p))

]
.

In the spirit of Remark 2.1, let us now exhibit an explicit expression in the simple case
of Minkowski spacetime (R4, η). First of all, let us define the quantities

A j (p)
·= ρG∗

(
( fG ◦ σ)∗ωG

p (e j (p))
)

which are maps A j : R
4 → gl(C4). Then in the same way as before it follows that

DG(s)(p) = iγ j (∂ j s + A j s) .

��

3 The Classical Møller Map on Field Configurations

3.1 The EntwiningMaps Between Sections

In order to compare the uncharged theory and the charged one, we need a way to
relate two different spaces of functions: on one hand we have the smooth sections of
the spinor bundle 
(S(M)), while on the other we have the sections of the charged
spinor bundle 
(SG(M)). Notice that these spaces are isomorphic, thanks to the linear
isomorphisms in (2.2), to the spaces

F
·=
{
f : PSpin0r ,1 → V , f right − Spin0r ,1 equivariant

}

FG
·=
{
f : PSpin0r ,1 + PG → V , f right − Spin0r ,1 × G equivariant

}

respectively. We recall that owing to [31, Sect. II] principal Spin0r ,1-bundles over non-
compact spin spacetimes admit a global section σ : M → PSpin0r ,1

, and are thus always

trivial. To simplify the computations and the definition in this first case, we then make
the following assumptions:

(i) we assume that the principal G-bundle PG is trivial; this holds, for instance, if
we consider a contractible spacetime, or if we consider principal bundles PU (1)
whose first characteristic class c1(P) vanishes. On PG , we assume that a fixed
Ehresmann connection ωG ∈ 	1(P, g) is given.
As PG is trivial, there exists a global section σG : M → PG ; we can use it to
define the global section

M � p
σ̃�→ (p, σ (p), σG(p))
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of the direct product bundle PSpin0r ,1
+ PG . It follows easily that fSpin0r ,1

◦ σ̃ = σ ,

fG ◦σ̃ = σG . Moreover, notice that as the principal bundles PSpin0r ,1
and PSpin0r ,1

+
PG are trivial, the associated fiber bundles are also trivial, with diffeomorphisms
given respectively by

ϕs : (M × Spin0r ,1) ×�C
r ,1

V → M × V

[(p, s), v] �→ (p,�C

r ,1(s)v)

and

ϕs,G : (M × (Spin0r ,1 × G)) ×ρ V → M × V

[(p, s, g), v] �→ (p, ρ(s, g)v)
.

As the vector bundles are trivial, the Hermitian metrics (·, ·) on S(M) and (·, ·)G
on SG(M) can be induced by a Hermitian metric (·, ·)V on V ; notice that thanks
to [24, Proposition 12.1.27] the Hermitian metric can be chosen to be such that
Clifford multiplication satisfies

ρ(φ)∗ = −ρ(φ†), φ† = α̃(φt )

where ·t : C�r ,1 → C�r ,1 denotes the transpose and α̃ is the extension of R
r ,1 �

v → −v to C�r ,1. We shall denote the Hermitian matrix associated with (·, ·)V
by (hi j ).

(ii) As a second core assumption, we shall assume that the global gauge potential
computed using the section σ̃ : M → PSpin0r ,1

+ PG ,

( fG ◦ σ̃ )∗ωG ∈ 	1(M, g)

has past-compact support. Clearly, this requirement depends on the gauge choice
and is not gauge invariant; we shall expand on this in Remark 3.3.

(iii) We will assume that the representation ρG : G → GL(V ) commutes with the
Clifford algebra representation inducing �C

r ,1 : Spin0r ,1 → GL(V ). Notice that
this greatly reduces the freedom in the group G: indeed, it can be shown [22,
Theorem 4.3] that

C�r+1 � M(2�(r+1)/2�,C) if r + 1 = 0 mod 2

C�r+1 � M(2�(r+1)/2�,C) ⊕ M(2�(r+1)/2�,C) if r + 1 = 1 mod 2

and that an irreducible C-module for C�r ,1 (which descends from an irreducible
module for C�r+1) has complex dimension 2�(r+1)/2�. We are therefore assuming
that the image of ρG lies in the centre of the algebra M(2�(r+1)/2�,C), that is,
ρG(G) ⊆ CidV . Although it may seem rather restrictive, this case encompasses
the interesting case of G = U (1), that is, the case of electrically charged spinors.
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The global section σG : M → PG allows us to construct the following maps:

Definition 3.1 Let us define the maps p : FG → F ,

FG � fg �→ (p fg)(p, s)
·= fg(p, s, σG(p)) (3.1)

and i : F → FG ,

F � f �→ (i f )(p, s, g)
·= ρG(g̃−1) f (p, s) (3.2)

where g̃ ∈ G is the unique group element such that rg̃σG(p) = (p, g), which exists
as the action of G on PG is free and transitive.

Notice that Definition 3.1 is well-posed, in the sense that given fg ∈ FG , p fg is
right − Spin0r ,1 equivariant, and given f ∈ F , i f is right − Spin0r ,1 × G equivariant:
indeed,

(
r∗
s (p fg)

)
(p, s) = (p fg)(p, rss) = fg(p, rss, σG(p)) = (r∗

(s,idG ) fg)(p, s, σG(p))

= ρ(s−1, idG) fg(p, s, σG(p)) = �C

r ,1(s
−1)(p fg)(p, s)

and
(
r∗
(s,g)(i f )

)
(p, s, g) = (i f )(p, rss, rgg) = ρG(g−1)ρG(g̃−1) f (p, rss)

= ρG(g−1)ρG(g̃−1)r∗
s f (p, s)

= ρG(g−1)ρG(g̃−1)�C
r ,1(s

−1) f (p, s)

= �C

r ,1(s
−1)ρG(g−1)ρG(g̃−1) f (p, s)

= ρ(s−1, g−1)(i f )(p, s, g) .

We can combine the maps i and p defined in Definition 3.1 with the linear maps in
(2.2) to yield maps

i : 
(S(M)) → 
(SG(M)) p : 
(SG(M)) → 
(S(M))

s �→ (is�)�G s �→ (ps�G )�
(3.3)

which are denoted with the same symbol for the sake of notational simplicity. Let us
now endow the spaces 
(S(M)) and 
(SG(M)) with the Fréchet topology induced
by the families of seminorms

‖s‖K ,n
·= max

0≤i≤n
sup
p∈K

∥∥∥
(
∇s i s
)
(p)
∥∥∥
S(M)⊗T ∗M⊗i

‖s‖GK ,n
·= max

0≤i≤n
sup
p∈K

∥∥∥
(
∇s,Gi

s
)
(p)
∥∥∥
SG (M)⊗T ∗M⊗i

.
(3.4)

We shall indicate these topological spaces as E(S(M)) and E(SG(M)) respectively.
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Lemma 3.2 The maps i and p defined in (3.3) are continuous with respect to the
Fréchet topologies on E(S(M)) and E(SG(M)).

Proof We need to exhibit, for each K ⊂⊂ M and for each n ∈ N, constants
kK ,n, kGK ,n ∈ R

+ and families {(Kl , nl)}1≤l≤m, {(KG
l , nGl )}1≤l≤mG such that

‖is‖GK ,n ≤ kK ,n max
1≤l≤m

‖s‖Kl ,nl ‖ps‖K ,n ≤ kGK ,n max
1≤l≤mG

‖s‖G
KG
l ,nGl

.

The case n = 0 is easy: indeed,

‖is‖GK ,0 = sup
p∈K

‖(is)(p)‖SG (M)

= sup
p∈K
∥∥ρ(π2(σ̃ (p)))(is)�G (σ̃ (p))

∥∥
V

= sup
p∈K

∥∥∥ρG(π2 ◦ σG(p))�C

r ,1(π2 ◦ σ(p))s�(σ (p))
∥∥∥
V

≤ sup
p∈K

‖ρG (π2 ◦ σG(p))‖End(V ) sup
p∈K

∥∥∥�C

r ,1(π2 ◦ σ(p))s�(σ (p))
∥∥∥
V

= kK ,0 ‖s‖K ,0

where we use that K ⊂⊂ M and that ρG is a smooth representations onto a matrix
algebra on V finite-dimensional vector space.
Consider now n = 1; in this case we compute ∇s,G

ei (is)(p), where {ei }1≤i≤dim(M)

is a local pesudo-orthonormal basis for T M . In particular, using a section σ̂ : M →
PSpin0r ,1

+ PG with σ̂ = rgσ̃ ,

∇s,G
ei (is)(p) =

[
σ̂ (p), ei (p)

(
ρG (πG ◦ g(p))−1 s�( fP ◦ σ̂ (p))

)

+
(
�C

r ,1∗
((

( fP ◦ σ̂ )∗ωs)
p (ei (p))

)

+ρG∗
((

( fG ◦ σ̂ )∗ωG
)
p
(ei (p))

)
(is)�G (̂σ (p))

]

=
[
σ̂ (p), ρG (πG ◦ g(p))−1

(
ei (p)

(
s� ◦ fP ◦ σ̂

)

+�C

r ,1∗
((

( fP ◦ σ̂ )∗ωs)
p (ei (p))

)
s�(σ (p))

)]

+
[
σ̂ (p), ei (p)

(
ρG (πG ◦ g(p))−1

)
s�( fP ◦ σ̂ (p))

+ρG∗
((

( fG ◦ σ̂ )∗ωG
)
p
(ei (p))

)
(is)�G (̂σ (p))

]
.

Notice that the first term is equal to i ◦ ∇s
ei s, while the second one can be written as

[
σ̂ (p), ρG∗

((
−(πG ◦ g)∗θG + ( fG ◦ σ̂ )∗ωG

)
p
(ei (p))

)
(is)�G (̂σ (p))

]
(3.5)
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where θG denots the Maurer–Cartan form of G. Using the notation εi = g(ei , ei ) we
have

∥∥∥∇s,G(is)(p)
∥∥∥
2

SG (M)⊗T ∗M
=

dim M∑
i=1

εi

∥∥∥∇s,G
ei (is)(p)

∥∥∥
2

SG (M)

≤ k
dim M∑
i=1

εi
∥∥i ◦ ∇s

ei s(p)
∥∥2
SG (M)

+ k
dim M∑
i=1

εi

∥∥∥ρ (π2 ◦ σ̂ (p)) ρG∗
( (−(πG ◦ g)∗θG

∥∥

+ ( fG ◦ σ̂ )∗ωG
)
p
(ei (p))

)
(is)�G (σ (p))2V .

Given a compact set K ⊂⊂ M , the first term can be bounded from above by

k1 sup
p∈K
∥∥∇ss
∥∥2
S(M)⊗T ∗M ≤ k1 ‖s‖2K ,1

while for the second term we have the upper bound

k2 sup
p∈K

‖s‖2S(M) = k2 ‖s‖2K ,0 ≤ k2 ‖s‖2K ,1 .

Therefore we can give the estimate

‖is‖GK ,1 ≤ kK ,1 ‖s‖K ,1 .

We proceed by induction: suppose we have an inequality of the form ‖is‖GK ,i ≤
kK ,i ‖s‖K ,i for i up ton−1 ∈ N. Thenby the abovediscussion∇s,Gn

(is) canbewritten
as i∇sns, which can be bounded by kn ‖s‖K ,n , plus lower order terms in the covariant

derivative of s and of themapρG∗
((−(πG ◦ g)∗θG + ( fG ◦ σ̂ )∗ωG

)
p (ei (p))

)
which

are bounded in every compact set K ⊂⊂ M by the inductive hypothesis and the
smoothness of the involved maps respectively.

An analogous proof holds for the map p : 
(SG(M)) → 
(S(M)): indeed,

‖ps‖K ,0 = sup
p∈K

‖(ps)(p)‖S(M)

= sup
p∈K

∥∥∥�C

r ,1(π2 ◦ σ(p))(ps)� (σ (p))
∥∥∥
V

= sup
p∈K

∥∥∥�C

r ,1(π2 ◦ σ(p))s�G (σ̃ (p))
∥∥∥
V

≤ sup
p∈K

∥∥∥ρG(π2 ◦ σG(p))−1
∥∥∥
End(V )
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sup
p∈K

∥∥∥ρG(π2 ◦ σG(p))�C

r ,1(π2 ◦ σ(p))s�G (σ̃ (p))
∥∥∥
V

= kGK ,0 sup
p∈K

‖s‖SG (M)

while for the case n = 1 we have

∇s
ei (ps)(p) =

[
σ(p), ei (p)

(
s�G (σ̃ (p))

)+ �C
r ,1∗
(
(σ ∗ωs)p(ei (p))

)
s�G (σ̃ (p))

]

=
[
σ(p), ei (p)

(
s�G (σ̃ (p))

)+ �C

r ,1∗
(
(σ ∗ωs)p(ei (p))

)
s�G (σ̃ (p))

+ρG∗
(
(σ ∗

GωG)p(ei (p))
)
s�G (σ̃ (p))

−ρG∗
(
(σ ∗

GωG)p(ei (p))
)
s�G (σ̃ (p))

]
.

Notice that

[
σ(p), ei (p)(s

�G ◦ σ̃ ) +
(
�C

r ,1∗
(
(σ ∗ωs)p(ei (p))

)

+ ρG∗
(
(σ ∗

GωG)p(ei (p))
))

s�G (σ̃ (p))
]

= p
(
∇s,G
ei s
)
(p) .

Then

∥∥∇s(ps)(p)
∥∥2
S(M)⊗T ∗M =

dim M∑
i=1

εi
∥∥∇s

ei (ps)(p)
∥∥2
S(M)

≤ k
dim M∑
i=1

εi

∥∥∥p
(
∇s,G
ei s
)
(p)
∥∥∥
2

S(M)

+ k
dim M∑
i=1

εi

∥∥∥�C
r ,1 (π2 ◦ σ(p))

∥∥∥

ρG∗
(
(σ ∗

GωG)p(ei (p)))
)
s�G (σ̃ (p))

2

V
.

As before, given a compact K ⊂⊂ M the first term can be bounded from above by

k1 sup
p∈K

∥∥∥∇s,Gs
∥∥∥
SG (M)⊗T ∗M

≤ k1
(
‖s‖GK ,1

)2

and the second term can be bounded from above by

k2 sup
p∈K

‖s‖2SG (M) ≤ k2
(
‖s‖GK ,0

)2
.

By reasoning as above by induction we have the desired result. ��
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Remark 3.3 Notice how a key object in the proof of Lemma 3.2 is given by (3.5),
which we recall here for a section s ∈ 
(SG(M)):

[
σ̂ (p), ρG∗

((
−(πG ◦ g)∗θG + ( fG ◦ σ̂ )∗ωG

)
p
(ei (p))

)
s�G (̂σ (p))

]
.

In the above expression, σ̂ : M → PSpin0r ,1
+ PG is a section which can be written

as σ̂ = rgσ̃ in terms of the the global reference section and of a smooth function
g : M → Spin0r ,1 × G. The above expression is gauge independent: indeed, given
another section σ : M → PSpin0r ,1

+ PG we have that σ = rg′ ◦ σ̂ where g′ : M →
Spin0r ,1 × G and

fP (rg′ ◦ σ̂ ) = rπSpin(g′) fP (̂σ ) fG(rg′ ◦ σ̂ ) = rπG (g′) fG (̂σ ) .

The following relations holds between the different pullbacks of the connection form
ωG and of the Maurer–Cartan form θG :

( fG ◦ σ)∗ωG = (rπG (g′) ◦ fG ◦ σ̂ )∗ωG = AdπG (g′)−1 ◦ ( fG ◦ σ̂ )∗ωG + (πG(g′))∗θG ,

(πG(gg′))∗θG = (rπG (g′) ◦ πG(g))∗θG = AdπG (g′)−1 ◦ (πG(g))∗θG + (πG(g′))∗θG .

Therefore,

[
σ(p), ρG∗

( (
−(πG(gg′))∗θG + ( fG ◦ σ)∗ωG

)
p
(ei (p))

)
s�G (σ (p))

]

=
[
σ̂ (p), ρ(g′(p)) × ρG∗

(
AdπG (g′)−1 ◦

(
( fG ◦ σ̂ )∗ωG

−(πG(g))∗θG
) )

p
(ei (p))ρ(g

′−1
(p))s�G (̂σ (p))

]

=
[
σ̂ (p), ρG∗

( (
−(πG(g))∗θG + ( fG ◦ σ̂ )∗ωG

)
p
(ei (p))

)
s�G (̂σ (p))

]
.

Noticemoreover that if the section σ̂ is such that σ̂ = σ̃ the above expression simplifies
to

[
σ̃ (p), ρG∗

( (
σ ∗
GωG
)
p
(ei (p))

)
s�G (σ̃ (p))

]

as the map g : M → Spin0r ,1×G is constantly the identity. Clearly, whereas the above
expression is past-compactly supported by the assumption (ii), the same doesn’t hold
in general for

[
σ̂ (p), ρG∗

((
−(πG ◦ g)∗θG + ( fG ◦ σ̂ )∗ωG

)
p
(ei (p))

)
(is)�G (̂σ (p))

]
.

The compactness property holds for instance if πG ◦g : M → G is constant outside of
a past-compact region of M . As this property is fundamental in the construction of the
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(retarded) Møller map, we restrict ourselves to considering gauge potentials induced
by sections σ̂ : M → PSpin0r ,1

+ PG which are such that πG ◦ g is constant outside of

a past-compact set, where g : M → Spin0r ,1 × G is such that σ̂ = rgσ̃ . Having made
this choice, we define the map A : E(SG(M)) → E(SG(M)) to act pointwise as

(As)(p)
·= ie j (p) ·
,G

[
σ̂ (p), ρG∗

((−(πG ◦ g)∗θG

+( fG ◦ σ̂ )∗ωG
)
p
(ei (p))

)
s�G (̂σ (p))

]
. (3.6)

We define

supp(A , g)
·= supp

(
−(πG ◦ g)∗θG + ( fG ◦ σ̂ )∗ωG

)
.

Notice that under the restriction on the possible gauge transformations, supp(A , g)
is always past-comapct. We now exhibit an important property of the map A defined
in (3.6): to do so, we first show that i : E(S(M)) → E(SG(M)) commutes with the
Clifford multiplication by sections of the cotangent bundle, that is, we show that

ei ·
,G i(u) = i
(
ei ·
 u

)
.

Consider the section σ̂ : M → PSpin0r ,1
+PG inducing a section fP ◦σ̂ : M → PSpin0r ,1

;

locally i(u(p)) = [̂σ(p), ρG((π2◦h)(p))−1u�( fP ◦σ̂ (p))]where h : M → Spin0r ,1×
G is such that σ̂ = rh σ̃ . Then

ei (p) ·
,G i(u)(p) =
[
σ̂ (p),

(
gi j (p)e j (p)

)
·V ρG ((π2 ◦ h)(p))−1 u�( fP ◦ σ̂ (p))

]

=
[
σ̂ (p), ρG ((π2 ◦ h)(p))−1

((
gi j (p)e j (p)

)
·V u�( fP ◦ σ̂ (p))

)]

= i(ei ·
 u)(p) .

Notice that assumption (iii) was used in the second equality.
Thus, as shown in the proof of Lemma 3.2 we know that

DG ◦ i = i ◦ D + A ◦ i . (3.7)

��

3.2 The Explicit Construction of the Classical Møller Map

We now use these maps, in particular i : E(S(M)) → E(SG(M)) to give an explicit
formula for the retarded classical Møller operator, whose definition in the examined
case we recall:
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Definition 3.4 Let us consider an admissible gauge potential (as of Remark 3.3), i.e. an
admissible section σ̂ : M → PSpin0r ,1

× PG such that σ̂ = rgσ̃ . The retarded classical

Møller map on field configurations is a map R−
A : E(S(M)) → E(SG(M)) such that

(i) DG ◦ R−
A = i ◦ D ,

(ii) R−
A (s)|M\J+(supp(A ,g)) = (is)|M\J+(supp(A ,g)) .

Remark 3.5 A similar construction can be made for the advanced Møller map
R+
A : E(S(M)) → E(SG(M)), which is defined analogously to Definition 3.4 except

that requirement (ii) now reads

R+
A (s)|M\J−(supp(A ,g)) = (is)|M\J−(supp(A ,g))

In the following, we shall focus on the retarded classical Møller map which shall be
denote simply with RA : E(S(M)) → E(SG(M)). The reader may refer to [32] for
furhter details.

In this case, as anticipated, the classical Møller operator has an explicit form:

Theorem 3.6 The unique solution to the requirements in Definition 3.4 is given by

RA = i − �S
G− ◦ A ◦ i (3.8)

where A : E(SG(M)) → E(SG(M)) is given by Eq. 3.6.

Proof First of all, notice that the composition �SG− ◦ A ◦ i is well-defined thanks to the
fact that supp(A , g) is past-compact: indeed, we know that

�S
G− : Epc(SG(M)) → Epc(SG(M))

and as As vanishes outside of supp(A , g) for every s ∈ E(SG(M)) we have that
(A ◦ i)(s) ∈ Epc(SG(M)) for every s ∈ E(S(M)).
Thanks to the properties of the retarded propagator �SG−, we thus have that

supp
(
(�S

G− ◦ A ◦ i)(s)
)

⊆ J+ (supp(A ◦ i)(s)) ⊆ J+ (supp(A , g))

and therefore the requirement (ii) in Definition 3.4 is fulfilled.
Using the property DG ◦ �SG− = idEpc(SG (M)) of the retarded propagator associated

to DG we have DG ◦ (�SG− ◦ A ◦ i) = A ◦ i; therefore, by (3.7),

DG ◦ (i − �S
G− ◦ A ◦ i) = i ◦ D .

Therefore, also the requirement (i) in Definition 3.4 is fulfilled. Thus we can say that

RA = i − �S
G− ◦ A ◦ i .
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As far as the uniqueness statement is concerned, we proceed as done in [33] and [34]:
given s ∈ E(S(M)), let us define RAs

·= ψ ∈ E(SG(M)); thenwe have thatψ satisfies
the following:

DGψ = (i ◦ D)s , ψ |M\J+(supp(A ,g)) = (is)|M\J+(supp(A ,g)) .

As M is globally hyperbolic, it is isometric to R × �, with {a} × � Cauchy surface
for every a ∈ R. In particular, we can assume that {0} × � ⊆ M \ J+(supp(A , g)).
Let {Kn}n∈N be an invading sequence of compact sets for {0} × �, and define

K̂n
·= D(Kn) ∩ [−n, n] × �

where D(Kn) denotes the Cauchy development of Kn . We then consider the family
{χn}n∈N ⊆ D(M), with χn ≡ 1 on K̂n . Using these family, we consider

⎧⎪⎨
⎪⎩

(DG ◦ DG)φn = (i ◦ D)(χns) on M

φn = (�SG− ◦ i)(χns) on {0} × �

∇s,G
ν φn = ∇s,G

ν

(
(�SG− ◦ i)(χns)

)
on {0} × � .

Notice thatDG ◦DG is normally hyperbolic, and thus the above system admits a unique
solution which depends continuously on the initial data [25]. Notice in particular that
on M \ J+(supp(A , g)) the map

(�S
G− ◦ i)(χns)

is a solution of the above problem, as there the part due to the gauge potential vanishes.
Therefore by the uniqueness of the solution we have

φn|M\J+(supp(A ,g)) = (�S
G− ◦ i)(χns)|M\J+(supp(A ,g)) .

By the properties of {K̂n}n∈N and {χn}n∈N and an analogous reasoning, we have that
if m > n then φm = φn on K̂n ; therefore by defining

φ(p)
·= φn(p) with n such that p ∈ K̂n

and ψ
·= DGφ we have that DGψ = (DG ◦ DG)φ = (i ◦ D)s and

ψ |M\J+(supp(A ,g)) = (DG ◦ φ)|M\J+(supp(A ,g)) = (is)|M\J+(supp(A ,g)) .

By the uniqueness, the ψ above is unique for every s, and therefore RA is as well. ��
Remark 3.7 Notice that RA : E(S(M)) → E(SG(M)) admits both a right and left
inverse. Let us consider the map

R̂A
·= p + �S− ◦ p ◦ A (3.9)
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and consider

RA ◦ R̂A = i ◦ p + i ◦ �S− ◦ p ◦ A − �S
G− ◦ A ◦ i ◦ p − �S

G− ◦ A ◦ i ◦ �S− ◦ p ◦ A .

It is easy to see that i ◦p = id and p◦ i = id on E(SG(M)) and E(S(M)) respectively,
while by the previous proof we know that A ◦ i = DG ◦ i − i ◦ D; combining these
observations we conclude that

RA ◦ R̂A = id + i ◦ �S− ◦ p ◦ A − �S
G− ◦ A − �S

G− ◦
(
DG ◦ i − i ◦ D

)
◦ �S− ◦ p ◦ A .

Due to the properties of the propagators and of the support of A, using the fact that M
is globally hyperbolic and the fact that �SG− ◦ DG = idEpc(SG (M)) we then infer that

RA ◦ R̂A = idE(SG (M) + i ◦ �S− ◦ p ◦ A − �S
G− ◦ A − i ◦ �S− ◦ p ◦ A + �S

G− ◦ i ◦ p ◦ A

= idE(SG (M)) .

In the same way, using the fact that

(p ◦ A)(s) = ie j (p) ·
,G
[
σ(p), ρG∗

( (
σ ∗
GωG
)
p
(e j (p))

)
s�G (σ̃ (p))

]

= p ◦ DG − D ◦ p

one can show that

R̂A ◦ RA = idE(S(M)) .

We shall thus write R̂A as R−1
A .

4 The Behaviour of the Classical Møller Map in the Case of a U(1)
Gauge Charge

4.1 The Classical Møller Map and Green Operators

If the gauge group G is U (1) the entwining maps i and p defined in Sect. 3.1 and the
classical Møller map on field configurations RA, whose explicit expression is given
in Theorem 3.6, enjoy some further properties which we now explore.

123



Møller Maps for Dirac Fields... Page 23 of 44    13 

First of all, notice that if we consider the hermitian inner products on S(M) and
SG(M), then i and p are the adjoint of one another: indeed,

((it), s)G (p) = (ρ(π2 ◦ σ̂ (p))(it)�G (̂σ (p)), ρ(π2 ◦ σ̂ (p))s�G (̂σ (p))
)
V

=
(
�C

r ,1 ( fP ◦ σ̂ (p)) ρG ( fG ◦ σ̂ (p)) (it)�G (̂σ (p)),

× �C
r ,1 ( fP ◦ σ̂ (p)) ρG( fG ◦ σ̂ (p))s�G (̂σ (p))

)
V

=
(
�C

r ,1 ( fP ◦ σ̂ (p)) ρG(g(p))−1t�(σ (p)),

× �C

r ,1 ( fP ◦ σ̂ (p)) ρG(g(p))−1s�G (σ̃ (p))
)
V

=
(
�C

r ,1 (π2 ◦ σ(p)) t�(σ (p)),�C

r ,1 (π2 ◦ σ(p)) s�G (σ̃ (p))
)
V

=
(
�C

r ,1 (π2 ◦ σ(p)) t�(σ (p)),�C

r ,1 (π2 ◦ σ(p)) (ps)� (σ (p))
)
V

= (t, (ps), ) (p)

where we have used the fact that G = U (1) and the G-equivariance of the sections.
We nowmove on to the behaviour of the map A : E(SG(M)) → E(SG(M)) defined

in (3.6). First of all, recall that u(n) consists of skew-hermitian matrices, and thus u(1)
consists of purely imaginary complex numbers; therefore, if we define the quantity

Ak(p)
·= ρG∗

((
(−πG ◦ g)∗θG + ( fG ◦ σ̂ )∗ωG

p

)
(ek(p))

)

we have

((At), s)G (p) = ((At)(p), s(p))G

=
(
i(gkj (p)e j (p)) ·V Ak(p)t

�G (̂σ (p)), s�G (̂σ (p))
)
V

= −
(
Ak(p)t

�G (̂σ (p)), i(gkj (p)e j (p)) ·V s�G (̂σ (p))
)
V

=
(
t�G (̂σ (p)), i Ak(p)

(
(gkj (p)e j (p)) ·V s�G (̂σ (p))

))
V

=
(
t�G (̂σ ), i(gkj (p)e j (p)) ·V

(
Ak(p)s

�G (̂σ )
))

V

= (t(p), (As)(p))G = ((As), t)G (p) .

Let us then consider the formal adjoint RA
∗ : E(SG(M)) → E(S(M)) of the classical

Møller map on field configurations, which has the following behaviour:

∫

M
((RAt), s)G (p) dμg =

∫

M

(
t, (RA

∗s)
)
dμg

for every t ∈ D(S(M)), s ∈ D(SG(M)) .
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Notice that as RA : E(S(M)) → E(SG(M)) is linear, using the antilinear isomor-
phisms between a vector bundle and its conjugate bundle

C : S(M) → S(M) CG : SG(M) → SG(M)

we can naturally induce a linear map RA : E(S(M)) → E(SG(M)), RA
·= C−1

G ◦RA ◦
C , whose formal adjoint is given by RA

∗ : E(SG(M)) → E(S(M)). In particular, it
holds that RA

∗ = R∗
A. In light of the previous equalities, we can write

RA
∗ = p − p ◦ A ◦ �S

G+ R∗
A = C−1 ◦ RA

∗ ◦ CG .

Notice that the antilinear isomorphisms can be used to define

i : E(S(M)) → E(SG(M)) p : E(SG(M)) → E(S(M)) .

These maps, as well as the map RA : E(S(M)) → E(SG(M)) satisfy the same results
as the ones previously proven.

Proposition 4.1 The advanced and retarded propagators of DG and D are related by

�S
G− = RA ◦ �S− ◦ p �S

G+ = i ◦ �S+ ◦ RA
∗
. (4.1)

where the composition of maps appearing on the right-hand sides are restricted to
D(SG(M)).

Proof Let us denote with �̂S
G
± the operators on the right-hand sides of the equalities in

(4.1). It is easy to see that on D(SG(M)) it holds that

DG ◦ �̂S
G
− = DG ◦ RA ◦ �S− ◦ p

Def. 3.4= i ◦ D ◦ �S− ◦ p = i ◦ p = id

and

�̂S
G
− ◦ DG = RA ◦ �S− ◦ p ◦ DG = RA ◦ �S− ◦ D ◦ R−1

A = RA ◦ R−1
A

= id .

The same relations for �̂S
G
+ can be obtained in the following way: we know thatDG∗ =

C−1
G ◦DG ◦CG and that �̂S

G∗
− = C−1

G ◦ �̂S
G
+ ◦CG ; therefore given any u ∈ D(SG(M)),

v ∈ D(SG(M))

∫

M
(u, v)G dμg =

∫

M

(
DG

�̂S
G
−u, v

)
G
dμg =

∫

M

(
�̂S
G
−u,C−1

G ◦ DG ◦ CGv
)
G
dμg

=
∫

M

(
u,C−1

G ◦ �̂S
G
+ ◦ DG ◦ CGv

)
dμg .
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As the above equality holds for any functions u ∈ D(SG(M)), v ∈ D(SG(M)), we

infer that �̂S
G
+ ◦ DG = idD(SG (M)). The other equality can be obtained in a similar

fashion.
To conclude the proof, it suffices to show that

supp(̂�S
G
±(u)) ⊆ J∓(supp(u)) for every u ∈ D(SG(M)) .

Weproceed for the retarded propagator �̂S
G
−, as the proof for the advanced one is entirely

analogous. In particular, we shall prove that

M \ J+(supp(u)) ⊆ M \ supp(̂�SG−(u)) .

To this end, it suffices to show that M \ supp(�SG−(u)) ⊆ M \ supp(̂�SG−(u)); therefore,
let p /∈ supp(�SG−(u)), and let us consider two Cauchy surfaces �1, �2 ⊆ M such that

(i) �2 ⊆ J+(�1);
(ii) �1 ∩ �2 = ∅;
(iii) (supp(A ) ∪ {p} ∪ supp(u)) ∩ J+(�1) = ∅.

We then consider a smooth function ϕ ∈ E(M) such that

ϕ ≡ 1 on J−(�1), ϕ ≡ 0 on J+(�2)

which we use to define the maps

ϕ : E(S(M)) → E(S(M)) ϕG : E(SG(M)) → E(SG(M))

s �→ (ϕs)(p)
·= ϕ(p)s(p) t �→ (ϕGt)(p)

·= ϕ(p)t(p)

as well as the analogous maps 1 − ϕ and 1 − ϕG . Notice that i ◦ ϕ = ϕG ◦ i and
p ◦ ϕG = ϕ ◦ p and that supp(ϕ ◦ �S− ◦ p(u)) is compact. Then

(̂�S
G
−u) = (RA ◦ S− ◦ p) (u) = (RA ◦ (1 − ϕ + ϕ) ◦ �S− ◦ p

)
(u)

= (RA ◦ ϕ ◦ �S− ◦ p
)
(u) + (RA ◦ (1 − ϕ) ◦ �S− ◦ p

)
(u)

= (i − �S
G− ◦ A ◦ i) ◦ (ϕ ◦ �S− ◦ p)(u) + (RA ◦ (1 − ϕ) ◦ �S− ◦ p

)
(u)

=
(
�S
G− ◦ DG ◦ i ◦ ϕ ◦ �S− ◦ p

)
(u) −

(
�S
G− ◦ A ◦ i ◦ ϕ ◦ �S− ◦ p

)
(u)

+ (RA ◦ (1 − ϕ) ◦ �S− ◦ p
)
(u)

=
(
�S
G− ◦ i ◦ D ◦ ϕ ◦ �S− ◦ p

)
(u) + (RA ◦ (1 − ϕ) ◦ �S− ◦ p

)
(u)

=
(
�S
G− ◦ i ◦ D(ϕ) ◦ �S− ◦ p

)
(u) +

(
�S
G− ◦ i ◦ ϕ ◦ D ◦ �S− ◦ p

)
(u)

+ (RA ◦ (1 − ϕ) ◦ �S− ◦ p
)
(u)

=
(
�S
G− ◦ i ◦ D(ϕ) ◦ �S− ◦ p

)
(u) + �S

G−(u) + (RA ◦ (1 − ϕ) ◦ �S− ◦ p
)
(u) .

123



   13 Page 26 of 44 V. Abram, R. Brunetti

Now, notice that when evaluated at p, the above expression is zero: indeed, we know
that p /∈ supp(�SG−(u)), and due to the properties of ϕ ∈ E(M) we also know that
D(ϕ) ≡ 0 on J−(�1) and J+(�2), and therefore (i ◦D(ϕ) ◦ S− ◦ p)(u) is supported
in J+(�1) ∩ J−(�2). But then �SG−((i ◦ D(ϕ) ◦ �S− ◦ p)u) is supported in the causal
future of that set; as p ∈ J−(�1) we then have that the first term vanishes at p. Let
us then consider the last term: we have

(
i ◦ (1 − ϕ) ◦ �S− ◦ p

)
(u) = ((1 − ϕG) ◦ i ◦ �S− ◦ p

)
(u)

which is equal to zero when evaluated at p, and

−
(
�S
G− ◦ A ◦ i ◦ (1 − ϕ) ◦ �S− ◦ p

)
(u) = −

(
�S
G− ◦ A ◦ (1 − ϕG) ◦ i ◦ �S− ◦ p

)
(u)

which vanishes as supp(A ) ∩ supp(1 − ϕ) = ∅. Thus p /∈ supp(̂�S
G
−(u)), and we

conclude. ��
Corollary 4.2 The causal propagators of DG and D are related by

�S
G = RA ◦ �S ◦ RA

∗∣∣∣D(SG (M))
. (4.2)

Proof Let us define o
·= −�S− ◦ p ◦ A; then

RA − i = RA − RA ◦ R−1
A ◦ i = RA ◦

(
id − R−1

A ◦ i
)

= RA ◦ (p ◦ i − (p + �S− ◦ p ◦ A
) ◦ i
)

= RA ◦ (−�S− ◦ p ◦ A ◦ i) = RA ◦ o ◦ i .

Analogously, RA−i = i◦o◦RA;moreover,we also have the same relations concerning
the formal adjoints:

RA
∗ − p = RA

∗ ◦ o† ◦ p RA
∗ − p = p ◦ o† ◦ RA

∗

where o†
·= −A ◦ i ◦ �S+. Now, using these equalities we have on D(SG(M))

RA ◦ (�S− − �S+) ◦ RA
∗ =
(
RA ◦ �S− ◦ (p + p ◦ o† ◦ RA

∗
)

−(i + RA ◦ o ◦ i) ◦ �S+ ◦ RA
∗)

.

Proposition 4.1 then entails that on D(SG(M)) we have that

RA ◦ �S ◦ RA
∗ = �S

G− + RA ◦ �S− ◦ p ◦ (−A ◦ i ◦ �S+) ◦ RA
∗ − �S

G+
− RA ◦ o ◦ i ◦ �S+ ◦ RA

∗

= �S
G + RA ◦ o ◦ i ◦ �S+ ◦ RA

∗ − RA ◦ o ◦ i ◦ �S+ ◦ RA
∗ = �S

G .

��
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4.2 The Classical Møller Map and Hadamard Bidistributions

Having assessed the properties of the classical Møller map on field configurations
when coupled with the Green operators associated to the free and uncharged Dirac
operators D and DG , we now examine the behaviour of Hadamard bidistributions
when coupled with the Møller maps. This is of particular signficance because of the
twofold importance ofHadamard bidistribution in the context of perturbative algebraic
quantum field theory: indeed, on one hand these are the 2-point functions of the
analogous of vacuum states in curved spacetimes, and on the other (as shall be shown
in Sect. 5.2) Hadamard bidistributions are the right tools to construct topological
∗-algebras of observables containing meaningful interactions and to construct Wick
powers (see for instance [35, 36])

First of all, let us recall that the algebras associated to theDirac field need to account
for both the spinor and cospinor field, that is, sections of both the vector bundle S(M)

and its conjugate bundle S(M). In order to do so, one considers theWhitney sum of the
two vector bundles S(M)⊕ S(M) and SG(M)⊕ SG(M), which we shall denote with
S⊕(M) and S⊕

G (M) respectively. A section u of S⊕(M) can be then understood as a
couple (u1, u2) with u1 ∈ E(S(M)) and u2 ∈ E(S(M)); the same holds for sections
of S⊕

G (M).
The hermitian metric on S(M), which can be understood as a bilinear map

E(S(M)) × E(S(M)) � u, v �→ (u, v) ∈ E(M)

can be used to induce a symmetric and bilinear map (denoted with the same symbol)

E(S⊕(M)) × E(S⊕(M)) � u, v �→ (u, v)
·= (v1, u2) + (u1, v2) ∈ E(M) .

One can also define an involution on the space of sections E(S⊕(M)) by using the
conjugation maps C : S(M) → S(M) and C−1 : S(M) → S(M):

E(S⊕(M)) � u = (u1, u2) �→ u∗ ·= (Cu2,C
−1u1) ∈ E(S⊕(M)) .

Using the Dirac operatorD : E(S(M)) → E(S(M)) and its adjointD∗ = C−1 ◦D◦C
as well as the causal propagators �S : D(S(M)) → E(S(M)) and �S∗ we construct the
operators

D⊕ ·= D ⊕ −D∗
�S
⊕ ·= �S ⊕ −�S

∗ .
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Notice that �S⊕, which is the causal propagator forD⊕, is formally self-adjoint: indeed,
given u, v ∈ D(S⊕(M)) we have

∫

M
(�S

⊕u, v) dμg =
∫

M
(�Su1, v2) − (v1, �S

∗u2) dμg

=
∫

M
−(u1, �S

∗v2) + (�Sv1, u2) dμg

=
∫

M
(u, �S

⊕v) dμg .

Therefore, the distribution �S⊕ ∈ D′(S⊕(M)� S⊕(M)) given by the Schwartz kernel
theorem,

�S
⊕(u, v)

·=
∫

M
(�S

⊕u, v) dμg

is symmetric. Analogous extensions can be made in the case of the charged spinor
bundle SG(M).

TheMøllermap RA : E(S(M)) → E(SG(M)) aswell as its conjugate RA : E(S(M))

→ E(SG(M)), which satisfy Definition 3.4 and Theorem 3.6 (with suitable modifica-
tions), can be combined into one Møller map RA : E(S⊕(M)) → E(S⊕

G (M)),

RA
·= RA ⊕ RA = i⊕ − �S

G−
⊕ ◦ A⊕ ◦ i⊕ .

The same can be done with the formal adjoints of the Møller maps, yielding

RA
∗ = R

∗
A ⊕ R∗

A .

We now recall the definition of Hadamard bidistribution for spinor fields.

Definition 4.3 A distribution ζ ∈ D′(S⊕(M) � S⊕(M)) satisfies the Hadamard two-
point condition if given any two sections u, v ∈ D(S⊕(M)) we have:

(i) ζ((D⊕u), v) = 0;
(ii) ζ(u, v) + ζ(v, u) = i�S⊕(u, v);
(iii) we require that

WF(ζ ) =
{
(x, y, ξx ,−ξy) ∈ T ∗M2 \ z(M2) | (x, ξx ) ∼ (y, ξy)

or x = y, ξx = ξy, ξx � 0
}

where ξx � 0 means that ξx is future-directed and lightlike, and (x, ξx ) ∼ (y, ξy)
means that x canbe connected to y bymeans of a future-directed lightlike geodesic
γ such that ξx is the cotangent vector of γ at x and ξy is the cotangent vector of
γ at y.

Notice that such distributions do exist; see for instance [8] and [12].
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Proposition 4.4 If ζ ∈ D′(S⊕(M)�S⊕(M)) is a distribution satisfying theHadamard
two-point condition, then

ζG(·, ·) ·= ζ(RA
∗·,RA

∗·) (4.3)

is a distribution inD′(S⊕
G (M)�S⊕

G (M)) satisfying theHadamard two-point condition.

Proof First of all, notice that ζG defined as in (4.3) is well-defined: indeed, R
∗
A and

RA
∗ are continuous with respect to the inductive limit topology of D(SG(M)) and

D(SG(M)), being linear maps which are sequentially continuous. Moreover, they
map compactly supported smooth functions to compactly supported smooth functions:
indeed, if we consider the expression of R

∗
A when acting on u ∈ D(SG(M)) we have

R
∗
Au = pu − (p ◦ A ◦ �S

G+)(u)

Recall supp(�SG+(u)) ⊆ J−(supp(u)); therefore we have that

supp((A ◦ �S
G+)(u)) ⊆ J−(supp(u)) ∩ J+(�)

where � is a Cauchy surface such that supp(A , g) ⊆ J+(�), the support being
past-compact. But it holds [26, Corollary A.5.4] that

J−(supp(u)) ∩ J+(�) ⊂⊂ M

and so supp((A ◦ �SG+)(u)) is compact. This result directly translates to the map RA
∗.

Let us now prove that the three requirements are satisfied:

(i) it is easy to see that ζG(DG⊕
u, v) = 0; indeed, by Definition 3.4 and Theorem

3.6 we have

R∗
A ◦ DG∗ = (DG ◦ RA)

∗ = (i ◦ D)∗ = D∗ ◦ i∗

and therefore RA
∗ ◦ DG⊕ = (D ◦ p) ⊕ (−D∗ ◦ i∗); this entails that

ζG(DG⊕
u, v) = ζ

(
RA

∗(DG⊕
u),RA

∗v
)

= ζ(D⊕((p ⊕ i∗)u),RA
∗v) = 0 .
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(i i) We know that ζG(u, v) = ζ(RA
∗u,RA

∗v), and by using Corollary 4.2 we have

ζG(u, v) + ζG(v, u) = ζ(RA
∗u,RA

∗v) + ζ(RA
∗v,RA

∗u)
= i�S

⊕(RA
∗u,RA

∗v)

= i
∫

M

(
�S
⊕(RA

∗u),RA
∗v
)
dμg

= i
∫

M

(
�S ◦ R

∗
Au1, R

∗
Av2

)
−
(
R

∗
Av1, �S

∗ ◦ R∗
Au2
)
dμg

= i
∫

M

(
(RA ◦ �S ◦ R

∗
A)u1, v2

)

− (v1, (RA ◦ �S
∗ ◦ R∗

A)u2
)
dμg

= i
∫

M

(
�S
G⊕

u, v
)
G
dμg = i�S

G⊕
(u, v) .

(i i i) We know that ζG is a bisolution of DG⊕
, and that the principal symbol of DG⊕

coincides with that of D⊕; therefore by [37, Theorem 6.1.1] we know that the
wavefront set of ζG coincideswith that of ζ , being determined by theHamiltonian
flow associated to the principal symbol of DG⊕

.

��

5 The Classical Møller Map on the Observable Algebras

5.1 The Poisson ∗-Algebras of Observables

Our goal is to pass the classical Møller map on field configurations RA, presented
in Definition 3.4 and Theorem 3.6, to the algebras of observables of the charged and
uncharged Dirac field. We briefly recall the construction of said topological algebras,
as presented in [7, 8, 38] and in Sect. 2 of [13].
Let E

π→ M be a vector bundle with typical fiber V , be it either S(M) ⊕ S(M) or
SG(M) ⊕ SG(M), endowed with a symmetric bilinear metric h, and let us consider
the exterior algebra of E(E), that is, the graded algebra

∧•E(E) =
⊕
p∈N

∧pE(E) .

We can consider the spaces of homogeneous elements ∧pE(E) as embedded into

(Mp, E�p) � 
(M, E)⊗p; then using the usual Fréchet topology (uniform con-
vergence of all derivatives on compact sets) on 
(Mp, E�p) we define the spaces of
p-antisymmetric sections

Ea(Mp, E�p)
·= ∧pE(E)
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as well as the configuration space

C(E)
·=
⊕̂

p∈N
Ea(Mp, E�p)

where
⊕̂

denotes the algebraic direct sum. Notice that the involution defined in Sect.
4.2 can be extended to an involution ·∗ : C(E) → C(E) by requiring the behaviour

(u1 ∧ · · · ∧ u p)
∗ ·= u∗

p ∧ · · · ∧ u∗
1

on homogeneous elements in ∧pE(E), by extending the above by continuity to
Ea(Mp, E�p) and by linearity to C(E).

We are interested in antisymmetric functionals on the space of sections E(E); these
can be interpreted as a sequence {Fp}p∈N of linear and continuous functionals on
{∧pE(E)}p∈N, that is, a sequence of elements such that

Fp ∈ Fp(E)
·= Ea ′

(Mp, E�p) for all p ∈ N ,

where the (·)′ means the strong topological dual.
Thus we define the space of fermionic functionals as

F(E)
·=
∏
p∈N

Fp(E) .

There exists a duality pairing between F(E) and C(E) given by

〈F, u〉 ·=
∑
p∈N

〈Fp, u p〉 for all F ∈ F(E), u ∈ C(E) .

Notice that the sum is finite and thus always well-defined, C(E) being an algebraic
direct sum. We can endow F(E) with the weak topology τσ , that is, the topology
given by the family of seminorms {pu}u∈C(E), pu(F) = |F(u)|, thus making it a
locally convex topological vector space which happens to be nuclear and sequentially
complete.
F(E) can be endowed with an antisymmetric, pointwise product initially defined on
homogeneous elements in ∧pE(E) by

(F ∧ G)p(u1 ∧ · · · ∧ u p)
·=
∑
σ∈Sp

sgn(σ )

p∑
k=0

1

k!(p − k)! Fk(uσ(1) ∧ · · · ∧ uσ(k))

Gp−k(uσ(k+1) ∧ · · · ∧ uσ(p)) .

The object above is then extended by linearity and continuity to elements in
Ea(Mp, E�p), thus yielding a well-defined object in F(E). Moreover, said product
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is continuous with respect to the topology on F(E). F(E) is also naturally endowed
with an involution ·∗ : F(E) → F(E),

{Fp}p∈N �→
{
F∗
p

}
p∈N

, (F∗
p )(u p)

·= Fp(u∗
p) . (5.1)

One can then consider derivatives of fermionic functionals in the following way:
given Fp ∈ Fp(E), p ≥ 1, the left derivative of Fp in the direction h ∈ E(E) is
defined on ∧p−1E(E) as

dh Fp(u)
·= Fp(h ∧ u)

and is then extended by continuity to Ea(Mp−1, E�p−1), thus yielding a linear and
continuous map dh Fp : Ea(Mp−1, E�p−1) → C, i.e. dh Fp ∈ Fp−1(E). One can
then extend the map dh : Fp(E) → Fp−1(E) to the whole algebra F(E) by consid-
ering

dh : F = {Fp}p∈N �→ dh F
·= {dh Fp}p∈N .

It is easy to see that for any h ∈ E(E), dh is a graded derivation. One can also consider
higher order derivatives by iterating the left derivative: given Fp ∈ Fp(E), k ≤ p and
h1, . . . , hk ∈ E(E), we define for u ∈ ∧p−kE(E)

dkh1,...,hk Fp(u) = Fp(hk ∧ · · · ∧ h1 ∧ u)

and then proceed by continuity as before, obtaining for each F ∈ F(E) a jointly
continuous map

dk F : E(E)k × C(E) → C

which is easily seen to be multilinear and alternating in the first k entries, that is,
equivalently, a continuous map

F (k) : Ea(Mk, E�k) × C(E) → C

which is linear in the first entry. In particular, notice that these can be considered as an
F(E)-valued (compactly supported) distributional section of E∗�k → Mk , that is,
an object of D′(Mk, E�k)⊗̂πF(E), where ⊗̂π denotes the completion of the tensor
product in the projective topology1.

In order to proceed with the quantization, one needs to restrict the ∗-algebra of
fermionic functionals in order to endow it with a suitable �-product. To do so, one
needs to be able to control the wavefront set of derivatives of the relevant functionals;

1 Asboth spaces are nuclear, the completion is independent on the chosen topology;we choose the projective
topology just to fix one.
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in particular, we consider the set ofmicrocausal fermionic functionalsA(E) ⊆ F(E)

consisting of those functionals F ∈ F(E) such that

WF(F (n)
u ) ⊆ �n

·= T ∗ ·
Mn \

⋃
(p1,...,pn)∈Mn

(
V+
p1 × · · · × V+

pn

)
∪
(
V−
p1 × · · · × V−

pn

)

for every u ∈ C(E), where with V±
p we denote the closure of the future/past causal

cone in T ∗
p M . We endow this space with the initial locally convex topology induced

by the family of linear maps {�k,u},

F
�k,u�−→
{
〈F, u〉 ∈ C k = 0

F (k)
u ∈ Ea

�k

′(Mk, E�k) k ≥ 1

indexed by an integer k ∈ N and a function in the configuration space u ∈ C(E), and
where Ea

�k

′(Mk, E�k) denotes the inductive limit

lim−→ Ea

k,n

′
(Mk, E�k)

with {
k,n}n∈N a sequence of closed cones in T ∗Mk such that 
k,n ⊂ ◦

k,n+1 and

∪n
k,n = �k , and where Ea

k,n

′(Mk, E�k) is endowed with the usual Hörmander

topology. Using the causal propagator �S ∈ D′(E�2,M2) one is then able to endow
A(E) with a Peierls’ bracket. First of all, given any homogeneous functional F ∈
A p(E), we define the object (�S ∗ F (1)),

(�S ∗ F (1))(u)
·=
∫

M
(�S(x, y), F

(1)
u (y))G dμg(y) (5.2)

which is well-defined thanks to the wavefront set properties of both the causal propa-
gator �S and of F (1)

u , as

WF(�S) =
{
(x, y, ξx ,−ξy) ∈ T ∗M2 \ z(M2) | (x, ξx ) ∼ (y, ξy)

}
.

Moreover, notice that this object is actually a smooth function: indeed, using [17,
Theorem 8.2.13] one obtains that

WF((�S ∗ F (1)
u )) ⊆ WFM (�S) ∪ WF′(�S) ◦ WF(F (1)

u ) = ∅ for all u ∈ Ea(Mp, E�p) .

Therefore, we can consider it as an object in E(E∗)� E(E), where the isomorphism
is due to the existence of the symmetric bilinear metric h. We can then compute, for
any other homogeneous functional G ∈ Aq(E), the object

G(1) ∧ (�S ∗ F (1)) ∈ A p+q−2(E)
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which is defined on an element u1 ∧ · · · ∧ u p+q−2

G(1) ∧ (�S ∗ F (1))(u1 ∧ · · · ∧ u p+q−2)

·= (−1)q+1
∑

σ∈Sp+q−2

sgn(σ )G
(
(�S ∗ F (1)

uσ(q)∧···∧uσ(q+p−2)
) ∧ uσ(1) ∧ · · · ∧ uσ(q−1)

)

and then extended to the whole of Ea(Mp+q−2, E�p+q−2) by continuity. This pro-
cedure is then extended to non-homogeneous functionals by considering G(1) ∧ (�S ∗
F (1)) =

{(
G(1) ∧ (�S ∗ F (1))

)
p

}
p∈N

,

(
G(1) ∧ (�S ∗ F (1))

)
p
(u)

·=
p∑

k=0

1

k!(p − k)!
(
(G(1))k ∧

(
�S ∗ (F (1))p−k

))
(u)

(5.3)

for u ∈ Ea(Mp, E�p). Then the Peierls’ bracket is given by {F,G}
�S

·= G(1) ∧ (�S ∗
F (1)); notice that on homogeneous elements F ∈ A p(E), G ∈ Aq(E) we have the
desired graded anticommutativity

{G, F}
�S

= −(−1)qp {F,G}
�S

as well as the graded Jacobi identity.

5.2 Deformation Quantization and the Classical Møller Maps

Starting from the Poisson algebra (A(E), {·, ·}
�S
), the quantization proceeds in the

following way: we consider the ∗-algebraA(E)[[�]] of formal power series in � with
coefficients inA(E), endowedwith the product topology; clearlyA(E) ⊆ A(E)[[�]].
One is then able to introduce a �-product on A(E)[[�]], that is, a product such that
given F ∈ A p(E), G ∈ Aq(E)

F�G = F ∧ G + o(�) F�G − (−1)pqG�F = i� {F,G}
�S

+ o(�2) .

Given a Hadamard bidistribution ζ ∈ D′(M2, E�2) (see Definition 4.3) and two
functionals F,G ∈ A(E), we consider the fermionic functional


n
ζ (G, F)

·=
(
i

2

)n
G(n) ∧

(
ζ�n ∗ F (n)

)
∀ n ∈ N .

where the quantity on the right is defined component-wise as in (5.3) and ζ�n ∗ F (n)

is defined as in (5.2). Notice that due to the wavefront set properties of both F (n) and
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ζ�n the object above is well-defined. Then we define

G�F
·=
∑
n∈N

�
n
n

ζ (G, F) ∈ A(E)[[�]] . (5.4)

This product can then be easily extended to the whole topological ∗-algebra of for-
mal power series. Now, letA(S)[[�]] andA(SG)[[�]] be the topological ∗-algebras of
microcausal fermionic functionals associated to the free and charged Dirac fields.
Suppose that the �G -product on A(SG)[[�]] is constructed using the Hadamard
bidistribution induced by the one used to define �-product on A(S)[[�]], as illus-
trated in Proposition 4.4. We define the classical Møller map RA : A(SG)[[�]] →
A(S)[[�]] by considering the pullbacks induced by R

∧p
A : Ea(Mp, S⊕(M)�p) →

Ea(Mp, S⊕
G (M)�p), where R∧p

A is the continuous extension of the map

R
∧p
A (u1 ∧ · · · ∧ u p)

·= RA(u1) ∧ · · · ∧ RA(u p)

to Ea(Mp, S⊕(M)�p). Now,

Theorem 5.1 RA is a well-defined ∗-isomorphism, algebraically and topologically.

Proof First of all, we need to show that given a functional F ∈ A(SG) ⊆ A(SG)[[�]],
RA(F) is a well-defined functional inA(S)[[�]]; that is, we need to show that

WF
(
(RA(F))(n)u

)
⊆ �n for all u ∈ C(S⊕(M)) and n ∈ N. (5.5)

To do so, we need to compute the wavefront set of the classical Møller map on field
configurations RA, restricted to a continuous map RA : D(S⊕(M)) → D′(S⊕

G (M)).
This is defined as the wavefront set of the distribution rA, where rA ∈ D′(S⊕(M) �
S⊕
G (M)) is obtained thanks to Schwartz’s kernel theorem and satisfies

∫

M
(RAu, v)G dμg = rA(u, v) for every u ∈ D(S⊕(M)), v ∈ D(S⊕

G (M)) .

To compute its wavefront set, we proceed locally, as presented in [17]. Namely, let
{ei }1≤i≤rank(SG (M)) be a local2 frame for SG(M) and { f j }1≤ j≤rank(S(M)) a local frame
for S(M); a local frame for S⊕(M) and S⊕

G (M) is then given by

{ f1, . . . , frank(S(M)), f 1, . . . , f rank(S(M))} {e1, . . . , erank(SG (M)), e1, . . . , erank(SG (M))}
(5.6)

respectively. Using these, we can write locally

rA = rA ji f
j � ei

2 Notice that as we are supposing that the principal bundle PG is trivial, there exist global frames for both
S(M) and SG (M).
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with rAi j ∈ D′(M2) and where {ei }i and { f j } j denote the dual frames of S⊕
G (M)∗ �

SG(M)⊕ SG(M) and S⊕(M)∗ � S(M)⊕ S(M) with respect to those in (5.6). Then

WF(RA)
.= WF(rA) =

⋃
1≤i≤2rank(SG (M))
1≤ j≤2rank(S(M))

WF
(
rA ji
)

where WF(rA ji ) is given locally by

φ̂−1
α (WF(φ∗

αrA ji ))

with φ̂α : T ∗M2
Uα

→ U 2
α ×R

dim(M2). Moreover, due to the properties of the wavefront

set, we can studyWF(RA) by studying separately the two terms i⊕ and �S
⊕− ◦ A⊕ ◦ i⊕ .

Let us thus first consider the map i⊕ : D(S⊕(M)) → D′(S⊕
G (M)); then we have that

∫

M

(
i⊕u, v

)
G dμg =

∫

M
(iu1, v2)G + (v1, iu2

)
G dμg

=
∫

M

(
u�
1(σ (p)), v�G

2 (σ̃ (p))
)
V
dμg

+
∫

M

(
v
�G
1 (σ̃ (p)), u�

2(σ (p))
)
V
dμg

=
∫

M
u�
1
j
(σ (p))h jiv

�G
2

i
(σ̃ (p)) dμg

+
∫

M
v
�G
1

i
(σ̃ (p))hi j u

�
2
j
(σ (p)) dμg

that is,

i j i =
{
δ�h ji j ≤ rank(S(M)), i ≤ rank(SG(M))

δ�h( j−rank(S(M)))(i−rank(SG (M)) j > rank(S(M)), i > rank(SG(M))
.

Therefore,

WF(i⊕) =
{
(x, x, k,−k) ∈ T ∗M2 \ z(M2)

}
.

As far as the map �S
⊕− ◦ A⊕ ◦ i⊕ is concerned, we just need to compute the wavefront

set of A⊕. In particular, by considering a gauge choice σ̂ : M → PSpinr ,1+PG and
defining

Ak(p)
·= ρG∗

((
(−πG ◦ g)∗θG + ( fG ◦ σ̂ )∗ωG

p

)
(ek(p))

)
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we can proceed as done in the case of i⊕:
∫

M
(A⊕u, v)G dμg =

∫

M

(
i(gkj (p)e j (p)) ·V Ak(p)u

�G
1 (̂σ (p)), v�G

2 (̂σ (p))
)
V
dμg

+
∫

M

(
v
�G
1 (̂σ (p)), i(gkj (p)e j (p)) ·V

(
Ak(p)u

�G
2 (̂σ (p))

))
V
dμg

=
∫

M

(
i(gkj (p)e j (p)) ·V Ak(p)

)l
j
u�
1
j
(̂σ (p))hliv

�G
2

i
(̂σ (p)) dμg

+
∫

M

(
i(gkj (p)e j (p)) ·V Ak(p)

)l
i
v
�G
1

i
(̂σ (p))u�G

2
j
(̂σ (p))hl j .

Thus A ji = δ� f j i , f j i given by

f j i =
⎧⎨
⎩

(
i(gkj (p)e j (p)) ·V Ak(p)

)l
j hli j, i ≤ d(

i(gi j (p)e j (p)) ·V Ak(p)
)l
i−d

h( j−d)l j, i > d ,

with d = rank(SG(M)). Using the fact that ( fG ◦ σ̂ )∗ωG is assumed to be supported
in supp(A , g), we then have that

WF(A⊕)⊆
(
π−1
T ∗M2(supp(A , g)×M) \ z(M2)

)
∩
{
(x, x, k,−k) ∈ T ∗M2 \ z(M2)

}

=
{
(x, x, k,−k) ∈ T ∗M2 \ z(M2) | x ∈ supp(A , g)

}
.

We are now in a position to computeWF(RA). First of all, notice that the composition
A⊕ ◦ i⊕ is, as we expected, well-defined: indeed, as supp(i⊕) ⊆ �, we have that
supp(i⊕) � (x, y) �→ y is proper, and moreover

WF′(i⊕)M = {(y, ξy) | (x, y, 0,−ξy) ∈ WF(i⊕)
} = ∅

WF(A⊕)M = {(x, ξx ) | (x, y, ξx , 0) ∈ WF(A⊕)
} = ∅ .

Thus WF′(i⊕)M ∩ WF(A⊕)M = ∅, and [17, Theorem 8.2.14] gives us the well-
posedness of A⊕ ◦ i⊕ as well as

WF(A⊕ ◦ i⊕) ⊆
{
(x, x, k,−k) ∈ T ∗M2 \ z(M2) | x ∈ supp(A , g)

}
.

Let us now consider �SG−
⊕ ◦ A⊕ ◦ i⊕; thanks to [39] we know that

WF(�S
G−

⊕
) =
{
(x, y, ξx ,−ξy) ∈ T ∗M2 \ z(M2) | x ∈ J+(y), (x, ξx ) ∼ (y, ξy)

or x = y, ξx = ξy

}
.

As evidently WF′(A⊕ ◦ i⊕)M = ∅ and supp(A⊕ ◦ i⊕) � (x, y) �→ y is proper, we
can then apply again [17, Theorem 8.2.14] and we have that WF′(�SG−

⊕ ◦ A⊕ ◦ i⊕) is
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contained in

WF′(�SG−
⊕
) ◦ WF′(A⊕ ◦ i⊕) ∪

(
WF(�SG−

⊕
)M × M × {0}

)
∪ (M × {0} × WF′(A⊕ ◦ i⊕)M

)
.

The first set is given by

{
(x, z, ξx , ξz) | ∃(y, ξy) s.t. (x, y, ξx ,−ξy) ∈ WF(�SG−

⊕
), (y, z, ξy ,−ξz) ∈ WF(A⊕ ◦ i⊕)

}
.

Using the properties of WF(A⊕ ◦ i⊕) we conclude that the previous set is given by

{
(x, z, ξx , ξz) | (x, z, ξx ,−ξz) ∈ WF(�S

G−), z ∈ supp(A , g)
}

.

The second one and the third one are easily seen to be empty; therefore

WF(�S
G−

⊕ ◦ A⊕ ◦ i⊕) ⊆ {(x, z, ξx ,−ξz) | (x, z, ξx ,−ξz)

∈ WF(�S
G−

⊕
), z ∈ supp(A , g)

}
.

Therefore

WF(RA) ⊆
{
(x, z, ξx ,−ξz) | (x, z, ξx ,−ξz) ∈ WF(�S

G−
⊕
), z ∈ supp(A , g)

}

∪
{
(x, x, k,−k) ∈ T ∗M2 \ z(M2)

}
.

As the map (RA(F))
(n)
u involves the composition of F (n)

RAu
with the map RA

∧n , the
last step consists in computing WF(R∧n

A ). This, according to [17, Theorem 8.2.9], is
a subset of

{
(x1, y1, x2, y2, . . . , xn, yn, ξ1, η1, ξ2, η2, . . . , ξn, ηn) | ∃I ⊆ {1, . . . , n}, I %= ∅ s.t.

(xi , yi , ξi , ηi ) ∈ WF(RA) ∀i ∈ I and (x j , y j , ξ j , η j ) = (x j , y j , 0, 0)

with (x j , y j ) ∈ supp(rA) ∀ j ∈ {1, . . . , n} \ I
}
.

Finally, we are able to check whether RA(F) is well-defined. First of all, notice that
(RA(F))

(n)
u = F (n)

RAu
◦RA

∧n is well-defined: indeed, thanks to [17, Theorem 8.2.13]

we know that the composition is well-defined if WF(F (n)
RAu

) ∩ WF′(RA
∧n)Mn = ∅;

but

{
(x1, . . . , xn, ξ1, . . . , ξn) | (x1, y1, . . . , xn, yn,−ξ1, 0, . . . ,−ξn, 0)∈WF(RA

∧n)
}=∅ .

We also infer that

WF
(
(RA(F))(n)u

)
⊆ WF(RA

∧n)Mn ∪ WF′(RA
∧n) ◦ WF(F (n)

RAu
)
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i.e.

WF
(
(RA(F))(n)u

)
⊆
{
(x1, . . . , xn, ξ1, . . . , ξn) |
(x1, y1, . . . , xn, yn, ξ1,−η1, . . . , ξn,−ηn) ∈ WF(R∧n

A )

for some (y1, . . . , yn, η1, . . . , ηn) ∈ WF(F (n)
RAu

)
}
.

Using this,we shall prove (5.5) by contradiction.Assume then that (x1, . . . , xn, ξ1, . . . ,

ξn) ∈ V+
x1 × · · · × V+

xn ; then there exists (y1, . . . , yn, η1, . . . , ηn) ∈ WF(F (n)
RAu

) such
that

(x1, y1, . . . , xn, yn, ξ1,−η1, . . . , ξn,−ηn) ∈ WF(RA
∧n) .

If i ∈ I , then (xi , yi , ξi ,−ηi ) ∈ WF(RA), that is, either

(xi , yi , ξi ,−ηi ) ∈ WF(�S
G−

⊕
) with yi ∈ supp(A , g)

or

xi = yi ηi = ξi .

In the first case, we would then need to have ηi ∈ V+
yi , as ηi is the cotangent vector to

a future-directed lightlike geodesic, while in the second one the same result follows
from the equality ηi = ξi . If i /∈ I , then

(xi , yi , ξi , ηi ) = (xi , yi , 0, 0)

i.e. ηi = 0 ∈ V+
yi . Thus, we conclude that (y1, . . . , yn, η1, . . . , ηn) ∈ V+

y1 × · · · V+
yn ;

but we reached a contradiction, as this is not possible by the definition of F . The case

(x1, . . . , xn, ξ1, . . . , ξn) ∈ V−
x1 × · · · × V−

xn leads to a similar conclusion: indeed, if
i ∈ I then (xi , yi , ξi ,−ηi ) ∈ WF(RA), which as before entails that either

(xi , yi , ξi ,−ηi ) ∈ WF(�S
G−

⊕
) with yi ∈ supp(A , g)

or

xi = yi ξi = ηi .

The first case is not possible, as we require (xi , ξi ) ∼ (yi , ηi ) which is not possible if
ξi is past-directed; thus from the second case we infer that (y1, . . . , yn, η1, . . . , ηn) ∈
V−
y1 × · · · V−

yn , which is again a contradiction.
We thus have the well-posedness of the mapRA : A(SG)[[�]] → A(S)[[�]]. Recall

that RA admits an inverse which is explicitly given by (3.9); it can be shown that by
defining an analogous R̂A : A(S)[[�]] → A(SG)[[�]] we reach the same conclusion,
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and thatRA ◦R̂A = idA(S)[[�]] and R̂A ◦RA = idA(SG )[[�]]. Therefore,RA is a vector
space isomorphism.

The fact thatRA is an algebra homomorphism is due to the following fact: we know
that the �-product inA(S)[[�]] is given by (5.4); given two homogeneous functionals
F ∈ A p(S) andG ∈ Aq(S), the functional
n

ζ (G, F) appearing in the sumcan be for-

mally written, on an homogeneous element u1∧· · ·∧u p+q−2n ∈ ∧p+q−2nE(S⊕(M))

as


n
ζ (G, F)(u1 ∧ · · · ∧ u p+q−2n) =

(
i

2

)n ∑
σ∈Sp+q−2n

sgn(σ )

×
∫

M2n
dμg(x1)dμg(y1) · · · dμg(xn)dμg(yn)

(
F (n)
uσ(q−n+1)∧···∧uσ(p+q−2n)

)
f1··· fn

(y1, . . . , yn)
(
G(n)

uσ(1)∧···∧Uσ(q−n)

)
g1···gn

(x1, . . . , xn)

ζs1t1(x1, y1) · · · ζsn tn (xn, yn)h f1s1ht1g1 · · · h fnsn htngn .

We are interested in computing 
n
ζ (RA(G),RA(F)) with F ∈ A p(SG) and G ∈

Aq(SG); this amounts to substituting the formal integral above with

∫

M2n
dμg(ξ1)dμg(η1) · · · dμg(ξn)dμg(ηn)dμg(x1)dμg(y1) · · · dμg(xn)dμg(yn)
(
F (n)
RA

∧p−n(uσ(q−n+1)∧···∧uσ(p+q−2n))

)
l1···ln

(ξ1, . . . , ξn)

(
G(n)

RA
∧q−n(uσ(1)∧···∧uσ(q−n))

)
k1···kn

(η1, . . . , ηn)

rA f1u1(x1, ξ1)rAg1v1(y1, η1) · · · rA fnun (xn, ξn)rAgnvn (yn, ηn)h
l1u1hv1k1 · · ·

hlnun hvnknζs1t1(x1, y1) · · · ζsn tn (xn, yn)h f1s1ht1g1 · · · h fnsn htngn .

By performing a simple computation one can notice that

∫

M2
dμg(xi )dμg(yi )rA fi ui (xi , ξi )rAgivi (yi , ηi )ζsi ti (xi , yi )h

fi si hti gi

=
∫

M2
dμg(xi )dμg(yi )rA

∗
ui fi (ξi , xi )rA

∗
vi gi (ηi , yi )ζsi ti (xi , yi )h

fi si hti gi

= ζGuivi (ξi , ηi )
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and therefore we arrive at

∫

M2n
dμg(ξ1)dμg(η1) · · · dμg(ξn)dμg(ηn)

(
F (n)
RA

∧p−n(uσ(q−n+1)∧···∧uσ(p+q−2n))

)
l1···ln

(ξ1, . . . , ξn)

(
G(n)

RA
∧q−n(uσ(1)∧···∧uσ(q−n))

)
k1···kn

(η1, . . . , ηn)

ζGu1v1(ξ1, η1) · · · ζGunvn (ξn, ηn)h
l1u1hv1k1 · · · hlnun hvnkn

which entails that


n
ζ (RA(G),RA(F))(u1 ∧ · · · ∧ u p+q−2n) = RA(


n
ζG

(G, F))(u1 ∧ · · · ∧ u p+q−2n) .

The result can be extended to thewholeEa(Mp+q−2n, S⊕(M)�p+q−2n) by continuity,
as well as to the whole algebraA(SG) and thus to the whole algebra of formal power
series A(SG)[[�]]. Therefore,

RA(F)�RA(H) = RA(F�GH)

and RA is an algebra homomorphism as required.
As far as the behaviour of the classical Møller map with respect to conjugation is

concerned, let us recall that onA(S)[[�]] andA(SG)[[�]] the conjugation map is given
by the natural extension of (5.1) (with the appropriate conjugation map, that is, with
either C : E(S(M)) → E(S(M)) or CG : E(SG(M)) → E(SG(M))) to formal power
series.

Given F ∈ A(SG) ⊆ A(SG)[[�]] and u ∈ C(S⊕(M)) we thus have that

(RA(F))∗(u) = (RA(F))(u∗) =
∑
p∈N

〈Fp,RA
∧pu∗

p〉 .

Now, if u p = ui1 ∧ · · · ∧ uip , ui j ∈ E(S⊕(M)) we have that

RA
∧p(u∗

p) = RAu
∗
i p ∧ · · · ∧ RAu

∗
i1 = (RAuip )

∗ ∧ · · · ∧ (RAui1)
∗

= (RA
∧p(u1 ∧ · · · ∧ u p)

)∗
.

By continuity then it holds that

∑
p∈N

〈Fp,RA
∧p

u∗
p〉 =

∑
p∈N

〈Fp, (RA
∧pu p)∗〉 = (RA(F

∗))(u) .

Therefore, RA : A(SG(M))[[�]] → A(S(M))[[�]] is a well-defined algebraic ∗-
isomorphism. For what concerns the topological part, it is simple to understand that
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the sequential completeness of Hörmander topology is satisfied, since pointwise con-
vergence holds term by term for the formal power series and that the wave front set
condition is as well satisfied by the construction seen before. ��

6 Conclusions and Outlook

Our classic treatment of fermions in external backgrounds has proceeded with the aim
at establishing the most general framework possible for the passage to the quantum
case, having inmind perturbation theory, hence in the language of formal power series.
In doing so we have, however, taken shortcuts that is worth mentioning again. Two
of them are particularly important: the first is that we have dealt with contractible
spacetimes, which rules out topological effects (i.e. inequivalent spinor structures
[40] and Aharonov–Bohm like effects, for which see, e.g., [41, 42]), the second is our
assumption about the past-compactness of the support of the gauge potentials, which
rules out Coulomb potentials. Both assumptions can be relaxed, but to keep this paper
into a reasonable length we postpone any further discussion. However, notice that for
the first problem, the passage to Fredenhagen’s universal algebra [43] may help to
solve the issue and that, as far as the second is concerned, it is exactly due to the
compactness of the spatial support of the potentials that one rules out secular effects
in perturbation theory [44].

In this paper we have privileged the pointwise treatment of the geometric structures
(sections, potentials etc.) to guarantee a detailed and unambiguous discussion of their
features. In particular, our most interesting result has been to show how the classical
Møllermaps are algebraic and topological isomorphisms of the charged and uncharged
microcausal fermionic algebras, as formal power series. Here, the use of wave front
sets was essential. As for a possible next step, once the appropriate interactions are
introduced, one would construct the respective quantum Møller maps (see, e.g., [33])
and proceed to the explicit computation of physical effects. One of the most ambitious
aims would be, for instance, to compute the Lamb Shift for hydrogenoid atoms [14]
from first principles, avoiding ad hoc assumptions and rigorously controlling eventual
approximations.
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