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Abstract

Current hierarchical text categorization (HTC) methods mainly fall into three direc-

tions: (1) Flat one-vs.-all approach, which flattens the hierarchy into independent nodes

and trains a binary one-vs.-all classifier for each node. (2) Top-down method, which

uses the hierarchical structure to decompose the entire problem into a set of smaller sub-

problems, and deals with such sub-problems in top-down fashion along the hierarchy. (3)

Big-bang approach, which learns a single (but generally complex) global model for the

class hierarchy as a whole with a single run of the learning algorithm. These methods

were shown to provide relatively high performance in previous evaluations. However, they

still suffer from two main drawbacks: (1) relatively low accuracy as they disregard category

dependencies, or (2) low computational efficiency when considering such dependencies.

In order to build an accurate and efficient model we adopted the following strategy: first,

we design advanced global reranking models (GR) that exploit structural dependencies in

hierarchical multi-label text classification (TC). They are based on two algorithms: (1) to

generate the k-best classification of hypotheses based on decision probabilities of the flat

one-vs.-all and top-down methods; and (2) to encode dependencies in the reranker by: (i)

modeling hypotheses as trees derived by the hierarchy itself and (ii) applying tree kernels

(TK) to them. Such TK-based reranker selects the best hierarchical test hypothesis, which

is naturally represented as a labeled tree. Additionally, to better investigate the role of

category relationships, we consider two interesting cases: (i) traditional schemes in which

node-fathers include all the documents of their child-categories; and (ii) more general

schemes, in which children can include documents not belonging to their fathers.

Second, we propose an efficient local incremental reranking model (LIR), which com-

bines a top-down method with a local reranking model for each sub-problem. These lo-

cal rerankers improve the accuracy by absorbing the local category dependencies of sub-

problems, which alleviate the errors of top-down method in the higher levels of the hi-

erarchy. The application of LIR recursively deals with the sub-problems by applying the

corresponding local rerankers in top-down fashion, resulting in high efficiency.

In addition, we further optimize LIR by (i) improving the top-down method by creating

local dictionaries for each sub-problem; (ii) using LIBLINEAR instead of LIBSVM; and

(iii) adopting the compact representation of hypotheses for learning the local reranking

model. This makes LIR applicable for large-scale hierarchical text categorization.

The experimentation on different hierarchical datasets has shown promising enhance-

ments by exploiting the structural dependencies in large-scale hierarchical text categoriza-

tion.
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Chapter 1

Introduction

1.1 Hierarchical Organization of Data

As the number of categories grows, it becomes increasingly difficult for people to manage

the related classification scheme, e.g., browsing or searching the desired information. To

solve this problem, one effective and prevalently adopted way is to organize categories in

category hierarchies. This has been proposed by G. W. Leibniz since 1704:

The art of ranking things in gender and species is of no small importance and very

much assists our judgment as well as our memory. You know how much it matters in

botany, not to mention animals and other substances, or again moral and notional entities

as some call them. Order largely depends on it, and many good authors write in such a way

that their whole account could be divided and subdivided according to a procedure related

to genera and species. This helps one not merely to retain things, but also to find them.

And those who have laid out all sorts of notions under certain headings or categories have

done something very useful.

Gottfried Wilhelm Leibniz, New Essays on Human Understanding (1704).

As Leibniz pointed out, a hierarchical organization of entities or notions is very helpful

for humans to organize their knowledge about the world. Therefore, it is not surprising

that the large-scale datasets are stored in hierarchical classifications. Well-known hierar-

chical classifications include, e.g., Reuters Corpus Volume 1 (RCV1)1, Enron email corpus

(A New Dataset for Email Classification)2, Directory-style Yahoo!3 and Dmoz catalogue4.

Such classifications allow us to focus on a smaller and smaller subpart of the information

1http://jmlr.csail.mit.edu/papers/volume5/lewis04a/lyrl2004 rcv1v2 README.htm
2http://www.cs.cmu.edu/ enron/
3http://dir.yahoo.com/
4http://www.dmoz.org/
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in the whole hierarchy by ignoring their generalization. This is actually the nature and

effective way for humans to manage their knowledge.

My goal in this dissertation is to contribute to research on the automatic categorization

of documents to conceptual categories that are organized in a hierarchical classification.

In particular I explore automatic categorization by using category dependencies in the

hierarchical structure.

In the next, I will further introduce the hierarchical data from IR and semantic web

perspectives by placing emphasis on the automatic classification.

1.1.1 Information Retrieval Perspective

In this section, we look at hierarchical classification from an information retrieval point

of view. More specifically, we consider a scenario in which a user classifies a document

into a topic hierarchy. This scenario gives rise to the problem of predicting one or more

topics (multi-class or multi-label problems), that is, search for relevant pieces of topic

information. The degrees of relevancy can be computed by most IR systems as a numeric

score on how well each topic in the hierarchy matches the document. The categories then

will be ranked according to this value and the top ranking categories are then shown to

the user.

To get the categories ranking, one method is to compute the similarity (or relevancy)

between each category and the document, such as vector space model. According to

similarity ranking, we select the top k as the results. This method assumes that all

categories are independent from each other, and it tends to suffer from low accuracy

when the data (number of categories or documents) becomes huge.

On the other side, hierarchical structures can be used to efficiently search the needed

documents starting from the root node in a top-down manner, i.e., they search in different

branches of the hierarchy, level by level for finding a few most specific subcategories, in

which the interesting documents are located.

It should be noted that the categorization schemes in IR usually assume that node-

fathers include all the documents of their child-categories. Additionally, another scheme

assumes that children can include documents not-belonging to their fathers.

In summary, text classification in IR is a tool for converting unstructured text collec-

tions into structured ones, in which storage and search get easier.

1.1.2 Semantic Web Perspective

Hierarchical taxonomy in semantic web refers to the study of the nature and relation

between nodes. It defines an information structure for communicating knowledge. Com-
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pared to the taxonomy in IR, it does not only organize categories in a hierarchy, but also

provides exact semantics for these categories. The semantics is represented as specializa-

tion or generalization between categories by defining is-a or part-of relations. Semantics

in text can be extracted under different forms, ranging from metadata to shallower infor-

mation such as named entities, relationships between them, events and so on.

Since nodes may represent properties a father node may not contain objects, i.e., satisfy

properties of some of its children. We call this kind of nodes child-free. The left hierarchy

of Figure 1.1 is a standard IR hierarchy composed by child-full nodes. This hierarchy can

be converted in child-free hierarchy on the right by adding two more nodes, A′ and C ′,

where A′ = (A ∩B) ∪ (A ∩ C) and C ′ = (C ∩D) ∪ (C ∩ E).

'A

'C

C D E

A BC

D E

B

A

Figure 1.1: Semantics of child-free and child-full

Indeed, hierarchies not only can be used to organize information but at the same time

provides semantic dependencies among their nodes. Although, the above fact is well

known, there is a substantial lack of practical approaches for exploiting such information

in automatic text categorization (TC). The major problem concerns with defining an

effective semantic representation for learning algorithm with the exponential number of

category relationships.

1.2 Machine Learning for Automated TC

Text categorization is the task of assigning a set of documents into a fixed number of

predefined categories, and each document can be associated with multiple (multi-label

case), exactly one (multi-class case), or no category at all.

Original classification methodologies relate to manually organizing objects into classi-

fication categories following a predefined system of rules. Instead of manually classifying

documents or predefined automatic classification rules, statistical text categorization uses

machine learning methods to learn such rules based on human-labeled training documents.

Next we will formalize the text categorization problem and describe some basic methods
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that are commonly used for text categorization, including the hierarchical text catego-

rization.

1.2.1 A Definition of Text Categorization

The classification problem can be modeled as follows. Given:

• X = {x1,x2, ...,x|X |} denote the domain of instances, where ∀i,xi ∈ Rn, is the

n-dimensional vector for the ith example.

• C = {c1, c2, ..., c|C|} be the finite set of predefined class labels,

• A set of training data based on X and C: (x1, C1), (x2, C2), ..., (x|X |, C|X |), where

∀i, Ci ⊆ C, is the class set manually assigned to the ith example.

Our goal is to learn a model a classification hypothesis H such that H(xi) = {Ci}, 1 ≤
i ≤ |X | for new unseen examples.

Some extensions of real-world text classification include:

• Binary classification: the task of classifying the instances into two classes (i.e., |C| =
2), and one or the other is assigned for them (i.e., |Ci| = 1).

• Multi-class classification: the problem of classifying instances into more than two

classes (i.e., |C| > 2), and only the best one for each instance is returned as positive

class (i.e., |Ci| = 1).

• Multi-label classification: the problem of classifying instances into more than two

classes (i.e., |C| > 2), and a set of classes for each instance are returned as positive

classes (i.e., Ci ⊆ C).

1.2.2 Methods of Text Categorization

In this section we described four well-known text categorization methods: Rocchio, k-

Nearest Neighbor, Decision Trees, Näıve Bayes and support vector machine. All of these

methods were published with relatively strong performance in previous evaluations.

• Rocchio, is based on a method of relevance feedback defined in IR systems. It can be

divided into three steps: (i) use tf*idf weighted vectors to represent text documents;

(ii) compute a centroid vector for each category by summing the vectors of the

training documents in this category and; (iii) assign test documents to the category

with the closest centroid vector based on cosine similarity.
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• Decision Trees. Given a set of instances, each of them consists of a set of attributes

and corresponding class label. The purpose is to build an accurate model for each

class based on the set of attributes and then use the model to classify new unseen

instances.

• Näıve Bayes: is a simple probabilistic classifier based on applying Bayes’ theorem5

with strong (Näıve) independence assumptions. Such assumption makes the compu-

tation of Näıve Bayes classifier far more efficient than the exponential complexity of

the pure Bayes approach (i.e. the former does not use word combinations).

• k-Nearest Neighbor: k-NN classifies instances by (i) measuring their similarity to

instances in the training data; and (ii) selecting the class(es) which the nearest

documents belong to.

• Support vector machines (SVMs): refer to Chapter 2 for details.

1.2.3 Methods of Hierarchical Text Categorization

There are generally two directions of hierarchical classification approaches: the big-bang

and the top-down methods. We will illustrate both of them in the following.

• Big-bang approaches : a single global (relatively complex) classification model is built

from the training set, taking into account the class hierarchy as a whole during a

single run of the classification algorithm. In the test phase, each test example is

classified by the induced model: this assigns classes at any level of the hierarchy to

the text example.

One advantage of the big-bang approaches is that the size of the global model is

typically considerably smaller than the total size of all the local models learned

by the top-down approaches. In addition, semantic dependencies between different

classes with respect to class membership (e.g. any example belonging to some nodes

automatically belongs to the parent nodes) can be taken into account in a natural,

straightforward way.

Advantages sometimes can be also disadvantages for the big-bang methods for a

large-scale real-world dataset:

(i) They suffer from large computational complexity in the training phase, e.g., [71]

and [133] have proved that it is infeasible to directly build a classifier for a large-scale

hierarchy.

(ii) The constructed classifiers may not be flexible enough to account for changes

5http://en.wikipedia.org/wiki/Bayes%27 theorem
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of the category structure. The classifiers need to be retrained once the category

structure is changed, which cost a lot of time.

In general, global classifiers in big-bang methods have two related broad character-

istics. They consider the entire class hierarchy at once (as mentioned earlier) and

they lack the kind of modularity for local training of the classifiers that is a core

characteristic of the top-down approaches.

• Top-down approaches constitute another direction of hierarchical classification. They

use the hierarchical structure to decompose the entire problem into a set of smaller

sub-problems, which are constituted by one internal category and all its direct child

nodes. This allows for high efficiency in both learning and prediction since each time

a much smaller problem with corresponding feature set is addressed.

The so-called pachinko-machine model [4] defines a subtree classifier for each node

of the hierarchy, and one more local classifier built for each internal node suggested

by [109]. If a document is assigned to the internal nodes, the multi-classifiers of their

children are recursively activated. This way, the decisions are made from the root

until the leaf nodes.

It is worth noting that subtree classifier of a node decides whether an instance belongs

to the subtree rooted at this node, once it is, the local classifier of this node decides

if an instance belongs to this node itself rather than its descendants. Only if the

instance were accepted by the subtree classifier, the local classifier will have the

chance to further classify this instance.

A typical problem of the top-down approaches in hierarchical classification is error

propagation: if an upper classifier made a wrong decision for the document, then it

would choose a wrong path to traverse the taxonomy and would no longer have a

chance to find the correct category. The errors are unrecovered.

1.3 Accurate and Efficient Models for HTC

Besides the two hierarchical methods applied in HTC, the flat models (i.e., flatten the

hierarchy into independent categories, each associated with a binary classifier) are also

commonly used in HTC. They face the same problem as big-bang approaches: large

computational complexity. Moreover, they do not consider the category dependencies

existing in the hierarchy. In a word, the typical methods in HTC including flat models,

top-down and big-bang approaches suffer either from low accuracy or low efficiency. In

this section, we simply describe our reranking systems for improving both.
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1.3.1 Reranking to Boost Accuracy

We design global rerankers (RR) to exploit structural dependencies in hierarchical multi-

label text classification (TC). They are based on two algorithms:

• The first generates the k-best classification hypotheses according to (i) the classi-

fication probabilities of the flat binary classifiers associated with each node of the

hierarchy and (ii) the classification probabilities of binary classifiers working in top-

down way exploring the node structure of the hierarchy.

• The second encodes dependencies in the reranker by (i) modeling hypotheses as trees

derived by the hierarchy itself and (ii) applying tree kernels to them.

We refer to the global reranker based on the former algorithm as flat reranker (FRR)

and the latter as hierarchical reranker (HRR), as the probabilities for generating the

hypotheses are from the flat models and the top-down methods.

Our extensive comparison with previous work on Reuters Corpus Volume 1 shows that

our rerankers constantly and significantly outperform the state of the art in TC and can

inject much more effective structural dependencies in multi-classifiers.

1.3.2 LIR to Boost Efficiency

The top-down methods are efficient since they decompose the entire problem into many

sub-problems and deal with them in top-down way. Their main drawback is the error

propagation from the higher to the lower nodes. To address this issue we propose an

efficient incremental reranking model to improve classifier decisions of high-level nodes.

We build a reranking model for each of such sub-problems (we call it local reranker) as

described in Section 1.3.1, which is used to rerank the generated classification hypotheses

based on such sub-problem to select the best one. Our local rerankers exploit category

dependencies of the sub-problems, which allow them to recover from the multi-classifier

errors whereas their application in top-down fashion results in high efficiency.

The experimentation on Reuters Corpus Volume 1(RCV1) shows that our incremental

reranking is as accurate as global rerankers but at least one order of magnitude faster.

1.3.3 Fast LIR for Large-scale HTC

LIR in Section 1.3.2 based on the top-down methods improve the accuracy of basic models

while preserving the efficiency of the reranker. The reranker is based on the top-down

methods, in which one or two basic multi-classifiers are built for each category. This

suffers from low efficiency problem when the number and size of categories in the hierarchy

become huge. To solve this problem, we suggested some optimizations of basic models
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such as the use of LIBLINEAR model instead of LIBSVM, local dictionaries construction.

In addition, we adopt a compact representation of the hypotheses used in learning RR and

LIR to further improve the efficiency of LIR. We called this optimization of LIR fastLIR.

The experimentation of fastLIR on DMOZ is shown its advantages in large-scale hier-

archical text categorization.

1.4 Thesis Outline

This thesis aims to study the dependencies between categories in the hierarchy for text

categorization. The main contributions can be analyzed by measuring: (a) the improve-

ment in accuracy that global reranker over the basic models in HTC by considering the

dependencies and (b) the efficiency of our rerankers on large-scale hierarchical datasets.

The thesis is organized as follows:

• Chapter 2 describes support vector machines in details including the optimal separat-

ing hyperplane, soft margin hyperplane, and kernel methods for solving the nonlinear

separable problems, finally we enumerate several specific structural kernels and sev-

eral popular pieces of SVM software.

• Chapter 3 first introduces the corpora the basic document pre-processing techniques.

Then it explains the commonly used flat models and top-down models in HTC, ap-

plying such models on an Italian dataset and RCV1 reports the evaluations of the

basic SVM models. Most importantly, we develop a piece of software: proLIBLIN-

EAR based on LIBLINEAR and the Platt’s sigmoid function, which matches the

state-of-the-art one-vs.-all SVMs on RCV1 while preserving high efficiency.

• Chapter 4 designs advanced global reranking model to exploit structural depen-

dencies in hierarchical multi-label text classification (TC). They are based on two

algorithms: (1) generates the k-best classification hypotheses; and (2) encodes depen-

dencies in the reranker by: (i) modeling hypotheses as trees derived by the hierarchy

itself and (ii) applying tree kernels to them.

• Chapter 5 proposes an efficient local incremental reranking model: the combination of

top-down methods with a reranking algorithm based on SVMs. The use of structural

hierarchy features from tree kernel spaces in the latter allowed us to outperform state-

of-the-art accuracy on the entire RCV1 while the use of the former ensured efficiency.

Furthermore, we optimize the top-down methods to further improve the efficiency so

that it can be applied in large-scale hierarchical text categorization.

Finally, the conclusions can be found in Chapter 6.
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Chapter 2

Support Vector Machines

In this chapter we described support vector machines from the following perspectives:

• Principle: support vector machines (SVMs) are training algorithms for learning clas-

sification and regression ranking models from data. The model is the optimal decision

boundary of two set of training examples in a vector space. This algorithm is moti-

vated by statistical learning theory [85]. Its fundamental idea is very simple: locating

the boundary to make the nearest datapoints from two sets have the largest margin.

• History: the original SVM algorithm (hard margin) was invented by Vladimir N.

Vapnik and the current standard incarnation (soft margin) was proposed by Vapnik

and Corinna Cortes in 1995 [26]. The simple idea is to find the optimal separating

hyperplane which linearly divides one set from the other, which is commonly applied

to a number of applications, ranging from face identification [25], particle identifica-

tion [4, 21], and text categorization to engine knock detection [96], biological data

processing for medical diagnosis [119], and database marketing [7].

• Extension of kernel methods: SVMs have attracted more and more attention because

of the introduction of kernel methods, which transform the original vector space into

much higher dimensional vector space so that locate a nonlinear boundary for the

two sets. The transformation of vector spaces is dependent on the kernel function,

which determines the relationships between the original vector space and transformed

space.

Section 2.1 decribes the simple linear SVM based on the optimal separating hyperplane

(i.e., Section 2.1.1) and its extension with soft margin that can tolerate some errors but

pays penalties for them (i.e., Section 2.1.2). We introduce kernel methods for solving

the nonlinear separatable problems in Section 2.2, and explain several specific stuctural

kernels in Section 2.2.2. Section 2.3 lists several popular pieces of SVM software.
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Figure 2.1: Optimal separating hyperplane

2.1 Optimal Separating Hyperplane in Linear SVM

Consider the example in Figure 2.1, it is a binary classification task with two sets of

datapoints: triangles and circles. We can easily know from the figure that there are many

possible linear classifiers that can completely separate one from the other, but there is

only one which maximizes the distance (or margin) of the nearest data points from the

two classes. This linear classifier is called the optimal separating hyperplane as specified

in bold.

2.1.1 Hard Margin SVM

Suppose we are given a set of training points:

{(x1, y1), ..., (xl, yl)}, x ∈ Rn, y ∈ {+1,−1}
where xi denotes the n−dimensional real vector instance, and y its +1 or −1 label. As

shown from Figure 2.1, there are many boundary hyperplanes that can separate the two

classes and one of them can be expressed as:

H0 : wT · x + b = 0 (2.1)

where:

• w is the normal vector to the hyperplane,

• b is a bias term,

• · is the doc product of the two vectors w and x,
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• b
‖w‖ determines the offset of the hyperplane from the origin along the normal vector

w.

The distance for a training vector xi to this boundary, called margin, is expressed as

follows:

margin =
|wT · xi + b|
‖w‖

(2.2)

since wT in Equation 2.1 is multiplied by training vectors (known as common constants)

and b is also a constant term, we can impose a restriction on equation (2.1) as follows:

|wT · xi + b| ≥ 1,∀xi (2.3)

From equation (2.3) we can select two hyperplanes satisfying either:

H1 : wT · x + b ≥ 1, yi = +1 (2.4)

or

H−1 : wT · x + b ≤ −1, yi = −1 (2.5)

in a way that they separate the data and there are no points between them. According

to Equation 2.2, the minimal distance between these two hyperplanes is:

2

‖w‖
(2.6)

Thus, we can maximize this distance. To maximize the equation (2.6), it is preferable to

minimize:
1

2
‖w‖2 (2.7)

Consequently, the optimization problem finding the optimal separating hyperplane is

formalized as:

minimize
1

2
‖w‖2

subject to yi(w
T · xi + b) ≥ 1, (i = 1, ..., l) (2.8)

where yi equals 1 if xi belongs to the positive example set, and -1 if xi belongs to the

negative set.

Equation 2.8 is a typical optimization problem subject to Karush-Kuhn-Tucker (KTT)

conditions [62]. The Lagrange’s method is based on the Lagrangian function:

L(w, b, αi) =
1

2
‖w‖2 −

l∑
i=1

αi[yi(w
T · xi + b)− 1]

=
1

2
w ·wT −

l∑
i=1

αi[yi(w
T · xi + b)− 1] (2.9)

11



where αi are KKT multipliers or Lagrange Multipliers and αi ≥ 0.

To solve the Wolfe’s problem [108] we compute the derivatives with respect to w and

b, and we impose them to 0 to find minimal points.

∂L

∂w
= w −

l∑
i=1

αiyixi

∂L

∂b
= −

l∑
i=1

αiyi (2.10)

must be zero, which means that from Equation 2.10 we have:

w =
l∑

i=1

αiyixi

l∑
i=1

αiyi = 0 (2.11)

Substituting Equation 3.5 to Equation 2.9, we get

L(w, b, αi) =
1

2
(

l∑
i=1

αiyi)(
l∑

j=1

αjyj)
T −

l∑
i=1

αi[yi((
l∑

j=1

αjyjxj)
T · xi + b)− 1]

= −1

2

l∑
i=1

l∑
j=1

αiαjyiyj(xi)
T · xj +

l∑
i=1

αi (2.12)

and we define the Lagrange dual function

w(α) = −1

2

l∑
i=1

l∑
j=1

αiαjyiyj(xi)
T · xj +

l∑
i=1

αi (2.13)

w(α) can be regarded as the minimal value of L(w, b, αi) based on optimal w. Ob-

taining this minimal value is equivalent to maximize w(α) based on α, which is reduced

to a quadratic programming problem as follows:

maximize − 1

2

l∑
i=1

l∑
j=1

αiαjyiyj(xi)
T · xj +

l∑
i=1

αi

subject to
l∑

i=1

αiyi = 0, αi ≥ 0 (2.14)

Many algorithms for solving this quadratic programming problem are available: such as

augmented Lagrangian [36], active set [83], interior point [82], Quasi-Newton methods

[101]. Particularly, the Sequential minimal optimization (SMO) [86] suggested by John

C. Platt for support vector machines is regarded as the fastest quadratic programming

method.
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2.1.2 Soft Margin SVM

The above discussion on hard margin linear SVMs is applicable to the case of two com-

pletely separatable sets only. If there is a small number of noisy data making the two

sets nonlinearly separatable, a linear boundary that separates them will not be existing

as explained in Section 2.1.1. Consider Figure 2.2, the triangles (in positive class +) and

cirles (in negative class -). The red points violate the rule defined in Equation 2.4 and

Equation 2.5.

0 bxwT

1 bxwT

1 bxwT

Optimal boundary 



j



i



k

Figure 2.2: Slack margin for SVM

In order to extend the hard-margin SVM to handle data that is not fully linearly

separable, we relax the constraints for Equation 2.4 and Equation 2.5 to indicate tolerances

of those misclassified datapoints. This is done by introducing positive slack variable ξi:

H1 : wT · xi + b ≥ 1− ξi, yi = +1 (2.15)

or

H−1 : wT · xi + b ≤ −1 + ξi, yi = −1 (2.16)

where i = 1,...,l, l is the number of training datapoints, which can be integrated into:

yi(w
T · xi + b) ≥ 1− ξi(i = 1, ..., l) (2.17)

Thus, some training vectors are allowed to be located in a limited region in the wrong

sides w.r.t. the hyperplane, as shown in Figure 2.2. One positive triangle point and one

negative circle point are on the incorrect side of the margin boundary, and we assign the
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slack variables ξ+
i and ξ−k , respectively. Several optimization boundaries are proposed for

this case, for instance

minimize
1

2
‖w‖2 + C

l∑
i=1

ξi

subject to yi(w
T · xi + b) ≥ 1− ξi, (i = 1, ..., l)

∀i, ξi ≥ 0 (2.18)

We can see that the second term in Equation 2.18 is a penalty term for the misclassified

datapoints, and the constant C is the weight of misclassifications.

It should be noted that we can use a simpler approach followed in Section 2.1.1 to

obtain the optimal value of Equation 2.18.

2.2 Kernel Methods

The soft margin method is an extension of linear hard-margin SVM, which allows for

including some misclassifications. Kernel methods are another approach for finding non-

linear boundaries that fully separate the two sets of datapoints.

The fundamental idea of kernel methods is to transform the original vector space into

a higher dimensional space. We consider the linearly non-separable examples shown on

the left of Figure 2.3, which becomes fully linearly separatable on the right after space

transformation by a mapping

Φ : xi → Φ(xj).

so the Lagrange dual function in Equation 2.13 becomes:

w(α) = −1

2

l∑
i=1

l∑
j=1

αiαjyiyj(Φ(xi))
T · Φ(xj) +

l∑
i=1

αi (2.19)

The inner product of Φ(xi)
T ·Φ(xj) in such high dimensional feature spaces solves the

problem of expressing complex nonlinear functions, but it also results in the computa-

tional complexity problem because of the implicit computation of w. However given a

mapping Φ and two datapoints xi and xj, the inner product of the transformed points in

higher feature space can be evaluated by using the kernel function without even explicitly

knowing the mapping, e.g.,

Φ(xi) · Φ(xi) ≡ K(xi,xj) (2.20)

With a suitable choice of kernel K as above the data can become separable in feature

space despite being non-separable in the original input space. The kernel trick here lies

in working in a high dimensional space, without even explicitly transforming the original
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Figure 2.3: Vector space transformation

data points into that space. Instead we rely on algorithms that only need to compute

inner products within that space, which are identical to K(xi,xj) and can thus be cheaply

computed in the original space using only multiplications. This means that the inner

product in the richer feature space will not cause the computational problem.

Based on Equation 2.20 and Equation 2.19, the learning task for the binary classifica-

tion problem with a given choice of kernel therefore involves maximization of the Lagrange

dual function:

w(α) = −1

2

l∑
i=1

l∑
j=1

αiαjyiyjK(xi,xj) +
l∑

i=1

αi (2.21)

A sufficient condition for satisfying the Equation 2.20 is that the kernel K is semi-

positive definite. Several examples of such kernel functions are commonly used as follows:

• RBF kernels : K(xi,xj) = e−(xi−xj)2/2σ

• Gaussian kernels : K(xi,xj) = exp(−‖xi−xj‖2
σ2 )

• polynomial kernels : K(xi,xj) = (xi · xj + 1)p

• tanh kernel : K(xi,xj) = tanh(βxi · xj + b).

Suitable kernels must satisfy a mathematical condition called Mercers theorem [74],

for example, the tanh kernel above only satisfies Mercers’ conditions for certain values of

β and b.
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2.2.1 String Kernels

The String Kernels (SK) that we consider count the number of subsequences shared by

two strings of symbols, s1 and s2. Some symbols during the matching process can be

skipped. This modifies the weight associated with the target substrings as shown by the

following SK equation:

SK(s1, s2) =
∑
u∈Σ∗

φu(s1) · φu(s2)

=
∑
u∈Σ∗

∑
~I1:u=s1[~I1]

∑
~I2:u=s2[~I2]

λd(~I1)+d(~I2) (2.22)

where, Σ∗ =
⋃∞
n=0 Σn is the set of all strings, ~I1 and ~I2 are two sequences of indexes

~I = (i1, ..., i|u|), with 1 ≤ i1 < ... < i|u| ≤ |s|, such that u = si1 ..si|u| , d(~I) = i|u| − i1 + 1

(distance between the first and last character) and λ ∈ [0, 1] is a decay factor.

It is worth noting that: (a) longer subsequences receive lower weights; (b) some char-

acters can be omitted, i.e. gaps; (c) gaps determine a weight since the exponent of λ

is the number of characters and gaps between the first and last character; and (c) the

complexity of the SK computation is O(mnp) [105], where m and n are the lengths of

the two strings, respectively and p is the length of the largest subsequence we want to

consider.

In our case, given a hypothesis represented as a tree like in Figure 4.15, we can visit it

and derive a linearization of the tree. SK applied to such a node sequence can derive useful

dependencies between category nodes. For example, using the Breadth First Search on

the compact representation, we get the sequence [MCAT, M11, M13, M14, M143], which

generates the subsequences, [MCAT, M11], [MCAT, M11, M13, M14], [M11, M13, M143],

[M11, M13, M143] and so on.

2.2.2 Structural Kernels

In kernel-based machines, both learning and classification algorithms only depend on the

inner product between instances. In several cases, this can be efficiently and implicitly

computed by kernel functions by exploiting the following dual formulation:∑
i=1..l

yiαiφ(oi)φ(o) + b = 0 (2.23)

where oi and o are two objects, φ is a mapping from the objects to feature vectors xi and

φ(oi)φ(o) = K(oi,o) (2.24)
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is a kernel function implicitly defining such a mapping. In case of structural kernels, K
determines the shape of the substructures describing the objects above. The most general

kind of kernels used in NLP are string kernels, e.g. [105], the Syntactic Tree Kernels [24]

and the Partial Tree Kernels [78].

The vast majority of tasks in natural language processing involve the processing of

structured objects. Building classifiers for these objects is traditionally carried out by

implementing rule-based extractors of features. However, the complexity of the structure

prevents an exhaustive approach to feature generation since the use of all possible sub-

structures produces an exponential number of features, and consequently the development

of such systems is typically guided by heuristics rather than a systematic approach. For

instance, [20] commented on the development of features for a parse tree reranker: “It is

worth noting that developing feature schemata is much more an art than a science.”

As a way to avoid the feature selection problem, learning methods that work directly

with objects instead of feature vectors have been proposed. The generalization from

linear classifiers (that apply to vectors) to kernel-based classifiers (that apply to objects)

is straightforward. To derive the kernel-based decision function, we start from the decision

function of a linear classifier:

f(x) = w · x + b =
n∑
i=1

αiyixi · x + b (2.25)

where x is a classifying example and w and b are the separating hyperplane’s gradient

and its bias, respectively. The gradient is a linear combination of the training points xi,

their labels yi and their weights αi. Applying the so-called kernel trick it is possible to

replace the scalar product with a kernel function defined over pairs of objects :

f(o) =
n∑
i=1

αiyiK(oi,o) + b (2.26)

with the advantage that we do not need to provide an explicit mapping φ(·) of our

examples in a vector space; instead, the scalar product can be computed implicitly, which

may be much more efficient. It is also easy to show that for kernels K1 and K2, we may

form new kernels K1 + K2 and K1 · K2, allowing for a modular decomposition. Kernel

functions have proven very effective for natural language applications as suggested by the

large body of related work, e.g. [24, 60, 30, 15, 29, 32, 113, 61, 111, 81, 37].

In the case where the objects we want to classify are trees, there exist efficient algo-

rithms based on dynamic programming that compute kernel functions based on counting

the shared substructures of the trees, i.e., tree kernels. These computations are efficient

since they do not have to enumerate the whole fragment space explicitly.
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Let F = {f1, f2, . . . , f|F|} be the set of tree fragments and χi(n) is an indicator function,

which equals 1 if the target fi is rooted at node n and equals 0 otherwise. A tree kernel

function over T1 and T2 is defined as

TK(T1, T2) =
∑

n1∈NT1

∑
n2∈NT2

∆(n1, n2) (2.27)

where NT1 and NT2 are the sets of nodes in T1 and T2, respectively, and

∆(n1, n2) =

|F|∑
i=1

χi(n1)χi(n2) (2.28)

The ∆ function is equal to the number of common fragments rooted in nodes n1 and

n2 and thus depends on the fragment type. Below, we report the algorithm to compute

∆ for the syntactic tree kernels (STK) [24] and partial tree kernel (PTK) [78].

Syntactic Tree Kernel

A syntactic tree fragment (STF) is a set of nodes and edges from the original tree such that

the fragment is still a tree, with the further constraint that any node must be expanded

with either all or none of its children1.

To compute the number of common STFs rooted in n1 and n2, the Syntactic Tree

Kernel (STK) uses the following ∆ function [24]:

1. if n1 and n2 or their children are different then

∆(n1, n2) = 0 (2.29)

2. if n1 and n2 and their children are the same, and n1 and n2 have only leaf children

(i.e. they are pre-terminal symbols) then

∆(n1, n2) = λ (2.30)

3. if n1 and n2 or their children are the same, and n1 and n2 are not pre-terminals

then

∆(n1, n2) = λ

l(n1)∏
j=1

(1 + ∆(cn1(j), cn2(j))) (2.31)

where l(n1) is the number of children of n1, cn(j) is the j-th child of node n and λ is a

decay factor penalizing larger structures.

Figure 2.5 shows the five fragments of the hypothesis in Figure 2.4. Such fragments

satisfy the constraint that each of their nodes includes all or none of its children. For
1STK has been originally defined in the context of parse-tree reranking. Accordingly, the property above is equivalent

to state that the grammar production rules associated with an STF cannot be a partial rule.
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Figure 2.4: A tree representing a category assignment hypothesis for the subhierarchy MCAT of RCV1
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  M14 

 M143 -M142 -M141 
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 M143 -M142 -M141 
  M13 

Figure 2.5: The tree fragments of the hypothesis in Figure 2.4 generated by STK

example, [M13 [-M131 -M132]] is an STF, which has two non-terminal symbols, -M131

and -M132, as leaves while [M13 [-M131]] is not an STF. The computational complexity

of STK is O(|NT1||NT2|), although it is shown in [78] that the average running time is

linear in the number of tree nodes.

Partial Tree Kernel

The ∆ function for PTK is as follows. Given two nodes n1 and n2, STK is applied to

all possible child subsequences of the two nodes. For this purpose a string kernel [104]

is used to asparaenum all child-subsequences whereas a tree kernel is applied to each

subsequence. More formally:

1. if the node labels of n1 and n2 are different then

∆(n1, n2) = 0 (2.32)

2. else

∆(n1, n2) = 1 +
∑

~I1,~I2,l(~I1)=l(~I2)

l(~I1)∏
j=1

∆(cn1(~I1j), cn2(~I2j)) (2.33)

where ~I1 = 〈h1, h2, h3, ..〉 and ~I2 = 〈k1, k2, k3, ..〉 are index sequences associated with the

ordered child sequences cn1 of n1 and cn2 of n2, respectively, ~I1j and ~I2j point to the j-th

child in the corresponding sequence, and l(·) returns the sequence length, i.e. the number

of children. Additionally, we add two decay factors: µ for the depth of the tree and λ for
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the length of the child subsequences with respect to the original sequence, i.e. we account

for gaps. It follows that:

∆(n1, n2) =µ
(
λ2+

∑
~I1,~I2,l(~I1)=l(~I2)

λd(~I1)+d(~I2)

l(~I1)∏
j=1

∆(cn1(~I1j), cn2(~I2j))
)
, (2.34)

where d(~I1) = ~I1l(~I1) − ~I11+1 and d(~I2) = ~I2l(~I2) − ~I21+1. This way, we penalize both

larger trees and child subsequences with gaps. An efficient algorithm for the computation

of PTK is given in [78], whose worse-case complexity is O(ρ3|NT1||NT2|), where ρ is the

largest branching factor. Again, the authors showed that the average running time for

natural language trees is linear (more precisely O(n1.2).

Given a target T , PTK can generate any subset of connected nodes of T , whose

edges are in T . For example, Fig. 2.6 shows the tree fragments from the hypothesis

of Fig. 2.4. Note that each fragment captures dependencies between different categories.

M14 

-M143 -M142 -M141 -M132 

M13 

-M131 

M11 -M12   M13 M14 

MCAT 

M11 

  MCAT 

-M132 

 M13 

-M131 

M13 

MCAT 

-M131 

-M132 

  M13 M14 

-M142 -M141 
M11 -M12 M13 

MCAT 
MCAT 

MCAT 

Figure 2.6: Some tree fragments of the hypothesis in Figure 2.4 generated by PTK

2.3 SVM Software

In this section, we introduced the four pieces of SVM software used in this thesis.

2.3.1 LIBSVM

LIBSVM2 is a library for SVM, and currently becomes one of the most widely used SVM

software. It has been downloaded more than 250,000 times since 2000, and successfully ap-

plied in many areas such as computer vision, natural language processing, Neuroimaging,

and Bioinformatics [19]. Its main features include:

2http://www.csie.ntu.edu.tw/ cjlin/libsvm/
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1) Integrations of support vector classification (C-SVC, nu-SVC), support vector re-

gression (epsilon-SVR, nu-SVR) and distribution estimation (one-class SVM);

2) Cross validation for model selection;

3) Efficient multi-class classification: one-vs.-one;

4) Probability estimates;

5) Various kernels (including precomputed kernel matrix);

6) Weighted SVM for unbalanced data.

One more advantage for LIBSVM is that it extends SVM to give probability estimates,

by implementing the Platt’s sigmoid functions [87] into SVM. The sigmoid function takes

the decision value as parameter as follows:

pi =
1

1 + eAfi+B
(2.35)

where fi is the decision (or target) value of example xi, pi is the class probability estimated

for multi-class classification, and A and B are estimated by minimizing the negative log

likelihood of training data (using their labels and decision values).

The fact that SVM+sigmoid yields probabilities provides one more criterion for pre-

dicting xi, using the probability to compare with a threshold of 0.5. This sometimes

improves the decision-making as we do not need to directly judge the difference between

decision value and 0 [87]. This mainly depends on the different datasets. For simplicity,

we call this fact Platt’s theory, which would be used many times in the experimental parts

of this thesis.

2.3.2 LIBLINEAR

LIBLINEAR3 is a linear classifier for data with millions of instances and features. Solv-

ing such large-scale classification problems is crucial in many applications such as text

classification. Linear classification, comparing to classifications based on other kernels

listed in Section 2.2, has become one of the most promising learning techniques for large

sparse data with a huge number of instances and features. LIBLINEAR is a software

that proved to be efficient and effective [41]. It supports L2-regularized logistic regression

(LR), L2-loss and L1-loss linear support vector machines (LSVMs)

Given a set of instance-label pairs (xi, yi), i = 1, ..., l, xi ∈ Rn, yi ∈ {−1,+1}, both LR

and LSVMs solve the following unconstrained optimization with different loss functions

L(w; xi, yi) :

minw
1

2
wTw + C

l∑
i=1

L(w; xi, yi) (2.36)

3http://www.csie.ntu.edu.tw/ cjlin/liblinear/

21



where w and C are the same as defined in Section 2.1. For LSVMs, the two commonly

used loss functions L are:

• L1-SVM:

L(w; xi, yi) = max(1− yiwTxi, 0) (2.37)

• L2-SVM:

L(w; xi, yi) = max(1− yiwTxi, 0)2 (2.38)

In some cases, a bias term b is attached at the end of instance xi, which is a constant

specified by the users, usually we specify it for 0 or 1. The approach for LSVM is a

coordinate descent method [46], and for L2-SVM, LIBLINEAR implements the trust

region of the Newton method [51].

Its main features include (2), (3), (6) of LIBSVM in Section 2.3.1 and the following

distinctive features:

1) Integrations of L2-regularized classifiers (L2-loss linear SVM, L1-loss linear SVM,

and logistic regression), L1-regularized classifiers (L2-loss linear SVM and logistic regres-

sion) and L2-regularized support vector regression (L2-loss linear SVR and L1-loss linear

SVR);

2) Efficient multi-class classification;

3) Multi-class classification: (1) one-vs.-rest, (2) Crammer & Singer;

4) Probability estimates (logistic regression only).

2.3.3 proLIBLINEAR

Modeling a classifier to produce a posterior probability is very useful for building joint

models, where the decomposed small parts of an overall decision, and their probabilities

can be combined for the overall decision. One typical example is the use of a Viterbi search

or HMM to combine recognition results from phoneme into word recognition [10]. Another

example of this combination in this thesis is the local incremental reranking system in

Chapter 5, in which each local reranker is built for each decomposed sub-problem based

on hierarchical probabilistic hypothesis generation.

We have pointed out that LIBLINEAR does not produce the posterior probability. It

just produces the probability using logistic regression. Meanwhile, LIBSVM cannot be

properly applied in large-scale dataset as LIBLINEAR, as it is much slower. In particular,

LIBLINEAR stores w in the model, but LIBSVM stores all support vectors. So LIBLIN-

EAR does not need to compute the kernel value as LIBSVM. Combining the advantages

of LIBSVM and LIBLINEAR is surely necessary for processing big data.

In order to extend LIBLINEAR for producing probability in classification, we developed

proLIBLINEAR by implementing the probability output mechanism (i.e., the sigmoid
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function taking decision value as parameter) of LIBSVM into LIBLINEAR. We observed

that the probabilities output by proLIBLINEAR are almost the same as LIBSVM in a

5-fold cross validation.

2.3.4 SVM-LIGHT-TK

SVM-LIGHT-TK4, created by Alessandro Moschitti, is an extension of SVMlight5, which

encodes tree kernels for processing syntactic parse trees in NLP tasks. Syntactic tree

features improve the learning models, for example, they encode hierarchical dependencies

in the learning algorithms designed in this thesis for text categorization.

In the NLP area, convolution kernels (see Kernel philosophy6) are alternatives to the

explicit feature design. They measure similarity between two syntactic trees in terms of

their sub-structures [24] by applying the tree kernels described in Section 2.2.2. These

approaches have given optimal results [77] when introducing syntactic information in the

task of predicate argument classification (PAC), or injecting semantic dependencies among

the hierarchy in hierarchical text categorization (HTC).

Their main features include:

1) Fast kernel computation for similarity of syntactic trees [79].

2) Vector sets, multiple feature vectors over multiple feature spaces can be specified

in the input. This allows us to use different kernels with different feature subsets.

3) Tree forests, a set of trees over multiple feature spaces can be specified in the input.

This allows us to use a set of different structured features, thus limiting the sparseness of

the kernels applied to the whole tree.

4) Four types of tree kernels: SubSet Tree kernel (SST) [24, 79], Subtree kernel (ST)

[120, 79], string kernel (SK) [72], and partial tree kernel (PTK) [78].

5) Embedded combinations of trees and vectors: (a) sequential summation, the kernels

between corresponding pairs of trees and/or vectors in the input sequence are summed

together; and (b) all vs. all summation, each tree and vector of the first object are

evaluated against each tree and vector of the second object.

In this thesis, we applied structural kernels such as PTK and STK to labeled trees. This

way, all possible dependency features are generated, and used by the preference reranking

techniques to choose the best category hypothesis.

4http://disi.unitn.it/moschitti/Tree-Kernel.htm
5http://svmlight.joachims.org/
6http://disi.unitn.it/moschitti/Kernel Group.htm
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Chapter 3

Automated Text Categorization

This chapter describes the phases of automated text classification illustrated in Figure 3.1,

which includes:

1) Document pre-processing. This takes the training, validation, and test documents

as input, and outputs internal representations (e.g., binary real vectors) for them. These

techniques are mainly from traditional IR, such as tokenization, stopword removal, stem-

ming, inverted indexing, feature selection and word weighting.

2) Classifier learning. The internal representations of the training and validation sets

are the input of learning algorithms. The fundamental classifiers for text categorization

(TC) include Näıve Bayes, SVM, k-NN, Rocchio and Decision Trees, which are applied

in flat or top-down manner in the classification phase.

3) Classification evaluation. This takes the results of the classification of the test set

and output different accuracy measures.

The major contributions of this chapter are:

• A study on Point (2), which explores proLIBSVM and proLIBLINEAR parameteriza-

tion to achieve the state of the art method on RCV1, measured by precision, recall,

Micro- and Macro-Average F1 measures.

• ProLIBLINEAR shows its high efficiency while preserving high accuracy.

• Both of the pieces of software above generate accurate category probabilities, which are

further utilized in reranking model construction (see Chapter 4).

Section 3.1 lists the corpora used in this chapter. Section 3.2 describes the document

pre-processing steps in details. The construction of flat multi-class and multi-label clas-

sifiers is given in Section 3.3. Section 3.4 shows the two typical methods for hierarchical

text classification. Section 3.5 defines some traditional evaluation measures and distance-

based multi-label graph-induced error (MGIE). The experimental results are reported in

Section 3.6. Finally, Section 3.7 derives the conclusions on applying the basic models for
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Figure 3.1: Architecture of a text classification system

TC.

3.1 Corpora

In this thesis 3 different collections have been considered and will be described in the

following sections.

3.1.1 Reuters Corpus Volume I

Reuters Corpus Volume I (RCV1) is an archive containing 35 times (over 800,000 newswire

stories) larger data than the popular Reuters-21578 collections and its variants [68, 33].

Such massive document set has been manually categorized with respect to three do-

mains: Topics, Industries and Regions, which are recently made available by Reuters,

Ltd. for research purpose. The first two category sets (i.e., Topics and Industries) are

tree-structured hierarchies with 103 and 365 classes respectively, and the Regions contains

366 flatten classes.

Our goal is to improve the accuracy of classifying text on structural hierarchies, so in

this thesis we will focus on the Topics and Industries hierarchical category sets. According

to its generation process, RCV1 has two versions: the original raw data (we call it RCV1-

v1) and the corrected version of RCV1-v1 (we called it RCV1-v2).

• RCV1-v1: the raw RCV1 data contains 806,791 documents that are split chrono-

logically into 23,307 training documents (news published from August 20 to August

31, 1996) and 783,484 test documents set (news released from September 1, 1996 to

August 19, 1997). The feature vector representing a document is from the concate-

nation of text in 〈headline〉 and 〈text〉 XML elements. The complete feature space

of RCV1-v1 is 47,236 in the training set.

• RCV1-v2 is converted from RCV1-v1 by the following modifications:
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1) Remove from RCV1-v1 the 13 documents that violate the minimum code policy

(i.e., each story was required to have at least one topic code) due to missing all

Region codes, and the 2,364 documents missing Topics codes.

2) Add all missing ancestors of the code for each Topic present in a document. This

increases 25,402 Topic code assignments.

Then the RCV1-v2 data includes 804,414 documents, which are split chronologically

into 23149 training documents (unique document IDs ranging from 2286 to 26150,

news published from August 20 to August 31, 1996) and 781,265 test documents

(unique document IDs from 26151 to 810596, news released from September 1, 1996

to August 19, 1997). This split is called by Lewis LYRL2004 split. 47,219 features

(unique stemmed words) of 47,236 occurring in RCV1-v2 training and/or test set.

So 47,219 is the size of the complete feature set for RCV1-v2. Of these 47,219 terms,

only 47,152 have one or more occurences in the RCV1-v2 training set, and so were

used for training the models.

RCV1-v2 collection is the version of RCV1 used in his experiments by Lewis [67],

and he provides the results of different models such as k-NN, Rocchio and SVM for

RCV1-v2.

Although Lewis released all processed RCV1-v2 data including the stemmed tokens,

binary vectors for each documents and so on, he still encourages to process the CD-

ROMs files for different research purpose. From this point of view, we did the same

as Lewis by extracting the 〈headline〉 and 〈text〉 parts of the original XML news

files, and finally obtained another version of RCV1, which we called RCV1-v3.

• RCV1-v3 conforms to the LYRL2004 split, but it has 22,424 unique documents and

51,095 features in 23,037 training documents of RCV1-v1. Of these, 51,002 features

are available in RCV1-v3 for training classifiers.

The difference in the number of training documents can be explained by the du-

plicated documents obtained by the concatenation of text in 〈headline〉 and 〈text〉
XML elements in CD-ROMs:

1) Duplicates in consecutive document IDs in RCV1-v2, such as the pairs of 2288

and 2289, 2334 and 2335, 2339 and 2440, and so on. These pairs of documents have

exactly the same textual content and the number of duplicated pairs is 59.

2) Duplicates in non-consecutive document IDs, for example, 2336 and 2338, 2299

and 2495, 2492 and 2506, and so on. 666 duplicates of such type are detected in

RCV1-v2 training documents.
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We have also a small difference in the number of tokens, i.e., 51,002 vs. 47,219, which

is dues to slightly different preprocessing, e.g., the use different steamers or stop list.

It is worth noting that the Topics hierarchy contains the entire documents because

of the minimum code policy, and business-related Industries hierarchy just share a

part of them. In the Industries hierarchy, 352,361 of 804,414 news are assigned to

six-layer, tree-shaped hierarchy, and they are divided into 9,644 news for training

and 342,117 for testing by the LYRL2004 split.

3.1.2 Italian Dataset

This dataset is from the collaboration with Erickson Research Centre under Italian Project

e-Value, whose aims are the reorganization or combination of educational materials in

different pedagogical contexts. This refers to the selection and definition of educational

programs tailored on specific needs of pupils, who sometime require particular attention

and actions to solve their learning problems. Text categorization (TC) in this context

is exploited to automatically extract several aspects and properties from learning ob-

jects, i.e., didactic material, in terms of semantic labels. These can be used to organized

the different pieces of material in specific didactic program, which can address specific

deficiencies of pupils.

In the case of e-Vaule, we studied different hierarchical taxonomies to capture the most

information of educational text, i.e., the system we design must contain the characteristics

of the educational texts. For this purpose, we did the following steps:

1) Designed a new taxonomy that meets the organization needs of e-Value (see Ap-

pendix B);

2) Defined an annotation procedure and produced an initial datasets;

3) Implemented a multi-class classifier (MCC) and performed accurate hierarchical

categorization.

Regarding 1), we have defined a new taxonomy as well as the annotation procedure

and initial datasets to meet the need of the e-Value project. Our partial hierarchical

categorization scheme is shown in Figure 3.2, whose more descriptive labels are reported

in Appendix B. The materials have to be classified according to four macro-categories,

and then divided into a structure of sub-categories of 4 levels. Each category is meaningful

for a correct description of the materials, from both administrative perspective (e.g., in

which educational context should be applied) and subject/cognitive process viewpoint

(e.g. Mathematics Number, Lexical and semantic processes instead of Mathematics Basic

processes of calculus, Numerical facts). The Macro-categories are:

• C1 – School and class (referring to the ages 5 – 14);
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Figure 3.2: Partial hierarchical categorization scheme of e-Value

• C2 – Subject/cognitive process (referring to the subjects of mathematics, linguistics,

phonetics, reading-writing abilities);

• C3 – Pupils situation (for the cases of special needs or particular situations); and

• C4 – Type of material (or the normal didactic usage in the class, or for pupils with

special situation or greater difficulties in the subject).

Regarding step (2) we manually annotate 122 documents (the documents are repeated

in the hierarchy), organized in a 112-category hierarchy (categories without symbol “-”

ahead of label description in Appendix B) with 28120 unique features. A new updated

version of category hierarchy contains 50 categories (symbolized by “*” after the label

description of Appendix B) and 126 unique documents with 29103 features.

Concerning step (3), We carried out the TC experiments with state-of-the-art algo-

rithms on this Italian educational dataset and the updated version in Section 3.6.5. Such

automatic classification could improve the manual categorization costs, in terms of both

time and human resource. Each piece of educational material, being part of a book, article

or best practice, needs to be read and evaluated by experts, before being assigned to the

proper categories, and this process takes a huge amount of time. Therefore, the use of

an automatic classifier could significantly reduce the time required to read and evaluate

the materials. Of course, experts will need to read part of the material in any case to

refine and validate the output of the classifier. However, the materials pertaining to a

certain subject can be directly routed to the experts of such field, thus improving the

categorization accuracy.
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3.1.3 Large-scale DMOZ Datasets

The DMOZ dataset is from the challenge on large scale hierarchical text classification

(LSHTC) 1, which has been constructed by crawling Web pages that are found in the

Open Directory Project (ODP) 2. The information was translated into feature vectors

(content vectors) and split into 300,000 training and 94,756 test documents.

DMOZ consists of 35,448 categories in a five-layer structural hierarchy, and 27,875 of

35,448 are leaf categories. For each level of DMOZ hierarchy, we compute the numbers of

categories for each level, and they are 11, 343, 3,670, 13,255 and 18,169 for levels from 1

to 5.

A document of DMOZ may belong to more than one category but this phenomenon is

rare, and the average leaf category per document is 1.0239. The hierarchy of this dataset

is a tree, i.e. each node has only one parent.

3.2 Document Preprocessing

Real world textual dataset consists of large volume of documents, which are collected from

heterogeneous sources. Due to this heterogeneity, such documents tend to be inconsistent

and noisy. If they are inconsistent, it will be likely to lead to confusions for the mining

process and then result in inaccurate performances. In order to extract correct and

consistent data, document pre-processing is necessary to be applied, and the objective is

to enhance the text quality by mining the key features or key terms from online news text

documents so that they can be used properly in many applications, such as text clustering

and text categorization.

The goal behind document pre-processing is to represent each document as a feature

vector, i.e., to separate the text into a list of significant keywords that carry the meaning.

The activity of choosing the most important words is known as feature selection. This is a

fundamental preprocessing step necessary before weight word computation and document

indexing.

The importance of pre-processing becomes more and more critical as the quantity of

training data in supervised learning grows exponentially with the dimension of the input

space. It has already been shown that the time spent on pre-processing can take from

50% up to 80% of the entire classification process [76] in text categorization. This clearly

shows that the preprocessing in text classification is necessary and significant.

This section discusses the various preprocessing techniques used in the present research

work to convert a raw textual document into an indexed weighted feature vector. The

1http://lshtc.iit.demokritos.gr/
2http://www.dmoz.org/
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document processing workflow includes: Section 3.2.1, which describes the processes of

parsing, tokenization, stopword removal and stemming to get the meaningful words. Sec-

tion 3.2.2, which explains how to create inverted indexes for the words in Section 3.2.1

and Section 3.2.4, which introduces the most well known weighting scheme for the indexed

words.

3.2.1 Parsing, Tokenization, Stopwords removal and Stemming

The first thing for document pre-processing is to parse the information stored in diverse

formats, such as HyperText Markup Language (HTML), Adobe Portable Document for-

mat (PDF), Extensible Markup Language (XML),Microsoft Word (DOC) and so on, into

a canonical format, i.e., plain text and then tokenize the text. Typical implementations

first build a Tokenizer, which breaks the stream of characters from the document into raw

Tokens. One or more token filters may then be applied to the output of the Tokenizer,

such as lowercase filter converting all words into lowercase and split filter recognizing

word boundaries. The main use of tokenization is to explore the meaningful keywords in

a sentence. This process is language-specific, which means that it is non-trivial for some

language like Chinese, Japanese.

Once we have tokenized our document, we could discover if there is a certain number

of most frequently used words in English, actually many of them are useless in Infor-

mation Retrieval (IR) and text mining. These words are called stop words, which are

language-specific functional words, carrying no information, i.e., prepositions, pronouns,

conjunctions and articles. In English language, there are about 400–500 stop words. Ex-

amples of such words include “a”, “to”, “of”, “and”. Three drawbacks of stop words

are:

• Increase the indexing file size since the stop words account for 20-30% of total word

counts;

• Decrease the efficiency and effectiveness since they are not useful for practical appli-

cation;

• Confuse the retrieval system.

To delete these stop words, we can apply the appropriate filter to remove the tokens

from the token stream containing a stop word and get the results. Most work uses the

SMART stop word list [98], which has shown to be very important [130].

As a supplement step, it is to erase infrequent words, for instance, to erase words with

a frequency less than or equals 2 in a massive volume of dataset, to avoid very big feature

space resulting in low efficiency in vector similarity computation.
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Figure 3.3: Simple illustration of an inverted index

After removing the stop words from tokenized words, the remaining one are reduced

to their base form or root, e.g., user, users, used, and using belong to use. Stemming

or lemmatization is a technique for deriving the root/stem of a word. Basic stemming

methods use a set of rules, e.g., Porter Stemmer [89]. The English (Porter2) stemming

algorithm3 is an improved version of its predecessor Porter Algorithm4 and is subject to

continuous improvements. This algorithm uses rules which are divided into five different

stages and these rules are applied to all the words one by one.

The advantages of stemming lie in:

• Improving effectiveness of TC, IR and text mining by matching similar words.

• Reducing indexing size by combing words with same root, this may reduce indexing

size as much as 40-50% [117].

3.2.2 Inverted Indexing

Inverted index is a word-oriented mechanism for indexing a text collection to compute the

word weight as TF × IDF , and to speed up the searching task in IR. The inverted index

structure is basically composed of two elements: the vocabulary and the occurrences.

The former is the set of all different terms in the text and the latter are postings lists,

one associated with each term appearing in the vocabulary. The structure of an inverted

index is illustrated in Figure 3.3, a posting list is a set of linked postings, each of which

is composed of three parts:

3http://snowball.tartarus.org/algorithms/english/stemmer.html
4http://snowball.tartarus.org/algorithms/porter/stemmer.html
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1) Document ID, records the document ID that contains the corresponding term. Gen-

erally, postings of one term are sorted by document ID, although other orders are possible

as well. Note that the document IDs have no inherent semantic meanings as they are as-

signments of numeric ids to documents.

2) Term information, keeps the information about occurrences of the term in the

document specified by document ID. This information can be nothing for simple boolean

retrieval. The most common information, however, is term frequency tf , or the number

of occurrences the term appears in the document. Also it can be the positions of every

occurrence of the term in the document, properties of the term or even anchor text

information in web pages associated with hyperlinks.

3) posting link, a link is used to connect the documents that include the term.

In the example shown in Figure 3.3, we see that term1 occurs in document set D1 =

{d1, d3, d6, d7, ...}, and there are different information for d1, d3, d6, d7, such as i11, i13, i16, i17.

This is the same as the posting lists of term2 and term3 by defining imn as the information

of termm occurs in document dn.

3.2.3 Feature Selection

After pre-processing and indexing steps, the feature set dimensions of text articles still

can be in the order of tens of thousands. The computational complexity with such size

prevents the applicability and efficiency of many learning algorithms if we simply take it as

dimensionality of the feature space [131], so feature selection methods, besides stopword

removal and stemming, are often necessary to further reduce the size of the feature space

(as long as they do not significantly impact the classification performance). This can be

guaranteed by choosing a high quality subset of features, i.e., keeping more relevant words

while eliminating irrelevant ones from the original feature set. This improves efficiencies in

model construction and may produce higher classification accuracy in text classification.

Simplest approach for getting such subset is an exhaustive search: first select a crite-

rion, and then evaluate all possible subsets. This, however, is computationally prohibitive,

so automatic feature selection models are developed for the removal of non-informative

terms according to corpus statistics and the construction of new (extracted) feature space.

Each of these methods uses a term-goodness criterion threshold to filter the terms from

the vocabulary of a document corpus. Commonly used five criterions include information

gain (IG) [69], a χ2 statistics (CHI) [102, 127], mutual information (MI) [127, 102], term

strength (TS) [122, 132], and document frequency (DF) [131]. As pointed out in [131],

DF, IG and χ2 work best as selectors to reduce the feature set dimensionality and produce

an increase in text classifier performances.

Recently, the previous techniques have been introduced even for selecting the relevant
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n-grams [16] to add informative features. It was proved that such extended features bring

extra information and often they help to increase the performance of simple features.

The problem is that n-grams impact on the ranking of other features. This will cause

information loss when selection is applied in only a limited number of (i.e. top ranked)

features.

3.2.4 Document Weighting

After the application of feature reduction algorithms one can expect to bring the size

of a typical feature vector down from hundreds of thousands of dimensions to a few

thousands of dimensions [75]. The classification problem becomes much less complex

than before. Documents now can be treated as a bag of words or terms. Then, we need to

model our documents as vectors by weighting schemes. Given a vocabulary set of terms

T = {t1, t2, ..., t|T |} extracted from training set D = {d1, d2, ..., d|D|}, where |T | is the size

of vocabulary T and |D| indicates the number of documents in D, the most well known

weighting scheme is TF× IDF used in SMART [97], where:

• TF: term frequency, is the weight of a term ti in document dj represented as the

number of times that ti appears in dj, denoted by fij. Normalization with maximum

is commonly applied for each document and the normalized TF denoted by tfij:

tfij =
fij

max{f1j, f2j, ..., f|Tj |j}
(3.1)

where |Tj| is the number of terms in dj, and j = 1, ..., |D|

• IDF: inverse document frequency, if the document frequency of a document dj in the

corpus D is dfi, the inverse document frequency denoted by idfi can be expressed as:

idfi = loge
|D|
dfi

(3.2)

Based on Equation 3.1 and Equation 3.2 the term weight wij of term ti in document dj
is:

wij = tfij ∗ idfi = tfij ∗ loge
|D|
dfi

(3.3)

A second weighting scheme used in [50, 67] is loge(TF )× IDF , It uses the logarithm

of tfij as follow:

tf ′ij =

{
0 if tfij = 0; (3.4a)

loge(tfij) + 1 otherwise. (3.4b)
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Accordingly, the document weights wij is:

wij = tf ′ij ∗ idfi = tf ′ij ∗ loge
|D|
dfi

(3.5)

The third weighting scheme is referred to as TF× IWF [5] (Inverse Word Frequency)

is defined as:

iwfi = loge
|T |
tfi

(3.6)

where iwfi is the inverse word frequency of term ti. Consequently, the document weights

wij is:

wij = tfij ∗ iwfi = tfij ∗ loge
|T |
tfi

(3.7)

In order to balance the IWF’s biased contribution, its square is thus preferred in [5].

We use the second weighting scheme for the basic model construction in this thesis,

same as in [67].

3.3 Multi-class and Multi-label Classification

3.3.1 From Binary to Multi-class Classification

Supervised multi-class classification algorithms aim at assigning a class label for each

input example. The difference with the binary classification problem is that the former

selects from a label subset of a size larger than 2, whereas the latter chooses the class

label from a subset of exactly two elements.

Let X = {x1,x2, ...,xl} denote the domain of instances, Y = {y1, y2, ..., yp} be the

finite set of class labels, and a set of training data:

{(x1, Y1), (x2, Y2), ..., (xl, Ym)}, xi ∈ Rn, Yi ⊆ Y
where xi denotes the n-dimensional real vector for the ith example, yi is the class label

and Yj the class set of xj. In multi-class classification, p > 2 is the size of class labels,

and ∀i, |Yi| = 1. Our goal is to learn a model H such that H(xi) = yi for new unseen

examples.

Several algorithms have been proposed to solve this problem in the two class case, which

means |C| = 2, some of which can be naturally extended to the multi-class case (|C| > 2),

which considers all classes at once, such as k-Nearest Neighbor [6], näıve Bayes classifiers

[93], decision trees [13, 91], neural networks [118] and extended SVMs [12, 28, 66, 126]. [27]

is another multi-class classification method, which encodes the class label as output. All

these methods construct one multi-class classifier on the training data, which inevitably

brings computational complexity problems. In particular, methods solving multi-class
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Figure 3.4: The decision DAG for three classes

SVM in one step requires a much larger optimization problem. So up to now experiments

of building one multi-class classifier are limited to small datasets.

Another typical direction of multi-class classification algorithms focuses on decomposi-

tion implementations. They decompose the multi-class classification problem into binary

classification tasks that can be solved efficiently using binary classifiers. Several meth-

ods have been proposed for such decomposition and have been investigated for extending

SVMs for handing multi-class problem, e.g.:

• All-vs.-All (AVA) or One-vs.-One (OVO): this approach constructs N(N−1)/2 clas-

sifiers, each of them discriminate between pair of classes. In the test phase, it adopts

max-win strategy and finally the class with the maximum number of votes wins.

This method was first introduced in [57], and the first use of this strategy on SVM

was in [59].

• One-vs.-All (OVA) or One-vs.-Rest (OVR): n classifiers can be constructed, one for

each class, the ith classifier differentiates class i from the remaining m-1 other classes.

A voting mechanism like AVA across the n classifiers or some other measures can be

applied to categorize the new unseen examples. This method is also implemented in

LIBSVMs and commonly used until now [67].

• Directed acyclic graph SVM (DAGSVM): it is proposed by [88]. In the training

phase, it builds N(N−1)/2 binary classifiers as all-vs.-all method. In the test phase,

it uses a rooted binary directed acyclic graph composed of the N(N −1)/2 classifiers

as internal nodes and N classes as leaves. For example, Figure 3.4 is a DAG built

by three binary classifiers (expressed by cycles). When they test an example, they

start from the root nodes, and N − 1 decision nodes will be evaluated in top-down

way to derive a final class as the answer.
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Figure 3.5: A codebook

• Hierarchical SVM (HSVM): this method suggested in [22] solves a series of max-cut

problems: an undirected class graph with nonnegative edge weights is cut into two

subgroups, and the cuts between these two subgroups receive the maximum weight.

Then a binary SVM will be applied for solving the two-group problem. This approach

is recursively applied to the two decomposed subgroups, until pure leaf nodes that

have only one class label, are obtained. It has been shown that HSVM uses distance

measures to weigh and exploit the natural class groupings. The hierarchical graph

structure results in a fast and intuitive SVM training process that requires little

running time and gives high classification accuracy and good generalization [22].

• Error correcting output codes (ECOC): it was proposed by [38]. It works by training

N binary classifiers to distinguish between the K different classes. Each class receives

a codeword of length L (L = 10logK is suggested by [2]) according to a codebook

M , randomly generated or by BCH codes method [9]. Each row of M corresponds

to a certain class. Figure 3.5 shows an example for N = 5 classes and L = 7 bit

codewords. Each class is given a row of the codebook and each column is used to

train a discriminative binary classifier. If L=4, the first four columns in Figure 3.5

correspond to the OVA method. We could still construct the codebook by bringing

code ”0” to reach the OVO method. When testing an unseen example, the output

codeword from the N classifiers is compared to the given L codewords, and the one

with the minimum hamming distance is considered to be the class label for that

example. Results in[2] show that this approach is in general better than the OVA

and OVO approaches.

Other work includes binary hierarchical classifier (BHS) [63] and Divide-By-2 (DB2) [121]

and so on. Different methods provide accuracy on different datasets and parameters thus

it is difficult to rank them. Those using SVMs and OVA or OVO are the most successful
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Ex. M11 M12 M13 M14
1 X X
2 X X
3 X
4 X X X

Table 3.1: Example of a multi-label data set.

Ex. M12 M11 ∧M13 M11 ∧M14 M12 ∧M13 ∧M14
1 X
2 X
3 X
4 X

Table 3.2: Transformed data by using TR1.

and widely used whereas the most well-known benchmark of classification problems is

provided [67].

3.3.2 Multi-label Classification

Multi-label classification algorithms like multi-class classification are applied for problems

with class labels larger than 2, but the difference is that it can return more than one labels

instead of only one in the latter for an unseen example, i.e., the number of learning model

H applied in an example xi : |H(xi)| > 2.

The existing methods for multi-label classification mainly fall into two categories [116]:

• Problem transformation methods: those methods that transform the multi-label clas-

sification problem either into one or more single-label classification problems. To

exemplify these typical methods we will use the data set of Table 3.1. It consists of

four subcategories of the Markets (MCAT) category: Equity Markets (M11), Bond

Markets (M12), Money Markets (M13) and Commodity Markets (M14). In order to

avoid loss of the data information, there are two kinds of transformations commonly

used in previous work.

One transformation in Table 3.2 considers each different set of labels that exist in the

multi-label data set as a single label, and constructs one binary classifier (i.e., OVA

for SVM) for each of such classes [11, 39]. The other in Table 3.3 transforms the

original data set into |Y| single-label data sets. Each of which contains all examples

in the original data set, labeled as yi if the labels of the original example contained yi
and as ¬yi otherwise. A binary classifier is also learned for the single-label dataset.

The second is the most popular transformation in current research [65, 43, 11] and

we use it in this thesis as well.

• Algorithm adaptation methods: they are adaptations of a specific learning approach,

or directly extend some specific algorithms to solve the multi-label classification.

Representative work includes adaptation of C4.5 algorithm in [23], two extensions of

AdaBoost (Adaboost.MH and Adaboost.MR) in [100], an adaptation of the k-NN

lazy learning algorithm (ML-k-NN) in [70] and so on.
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Ex. M11 ¬M11
1 X
2 X
3 X
4 X

Ex. M12 ¬M12
1 X
2 X
3 X
4 X

Ex. M13 ¬M13
1 X
2 X
3 X
4 X

Ex. M14 ¬M14
1 X
2 X
3 X
4 X

Table 3.3: Transformed single-label data for M11, M12, M13, M14.

3.4 Hierarchical Text Classification

Hierarchical text categorization shows the feasibility and efficiency in real-world appli-

cations, e.g., Yahoo! Categories and Dmoz. These involve a large number of categories

and documents, making the conventional multi-label classification methods such as SVM,

k-NN and Rocchio in hierarchical categorization like [67] inadequate. To produce a suf-

ficient hierarchical model under the scalability condition, the structure of the hierarchy

must be exploited. There are basically two existing hierarchical methods, namely the big

bang approach and the top-down approach, taking the hierarchy into account. In the

following sections we described these two approaches and introduced some related work.

3.4.1 Big-bang Method

Big-bang approach implicitly uses the class hierarchy to learn a single (but generally com-

plex) hierarchical classification model during training, and assigns classes of the hierarchy

to test examples by this model.

At present, there exist a line of the big-bang algorithms (see [99, 124, 125, 123, 64]

for example). A good survey of the big-bang approaches in the hierarchical classification

up to year 2001 was provided in [73]. In this survey, the author applied a statistical

technique called shrinkage, a particular form of smoothing to derive improved estimates of

parameters for the class conditional distributions. The hierarchy is thus used to overcome

sparseness problems in parameter estimation and not in a divide-and-conquer manner.

By employing a simple form of shrinkage, the author created new parameter estimates

in a child by a linear interpolation of all hierarchy categories and finally improved the

accuracy using the naive Bayes text classifier.

[112] extended the work in [73] by presenting a hierarchical mixture model and develop-

ing an improved Expectation Maximization algorithm. The hierarchy of topics was used

to provide estimates for class conditional term probabilities and to obtain a differentiation

of words in the hierarchy according to their level of generality/specificity. The inner nodes

of the hierarchy represent abstraction levels with their corresponding specific vocabulary.

Each word in a document is assumed to be generated from abstraction level on the path
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from the document class node to the root. They evaluated their model on two virtual

trees constructed from 20 Newsgroups and Reuters-21578 respectively. Compared to the

Hierarchical Shrinkage model proposed by [73], the hierarchical mixture model achieved

better results on Newsgroups when limited number of training documents are given.

The more recent work [14] proposed a novel hierarchical classification approach to gen-

eralize support vector machine learning. This method considers the relationships among

categories in different layers and designs discriminative functions structured according

to the hierarchy. All parameters were learned jointly by optimizing a common objective

function corresponding to a regularized upper bound on the empirical loss. Finally the au-

thor adopted the more competitive classifier SVMs on the WIPO-alpha patent collection

to show the performances and confirmed the advantages and competitiveness. According

to [67], it was possible to minimize upper bounds on arbitrary loss functions, in partic-

ular ones that quantifies the seriousness of incorrect classification based on the category

hierarchy.

From the previous works we can see the big-bang methods only have a single classifier

trained on the whole hierarchy, which has at least two drawbacks:

• Time complexity in the training phase for large-scale real-world dataset: [71, 133]

have proved that it is infeasible to directly build a classifier for a large-scale hierarchy.

• The classifiers in the big-bang approaches constructed may not be flexible enough to

dynamically account for changes to the category structure. The classifiers need to

be retrained once the category structure is changed.

3.4.2 Top-down Method

The most commonly used top-down approach explores the hierarchical structure to de-

compose the entire problem into a set of smaller sub-problems and deals with such sub-

problems in top-down way along the hierarchy. This allows for high efficiency in both

learning and prediction since each time a much smaller problem with corresponding fea-

ture set is addressed.

Each sub-problem is constituted by one internal category and all its direct child nodes,

for example, we can divide the sub-hierarchy of MCAT from RCV1 in Figure 3.6 into

three sub-problems. Let’s name them by the labels of each root category, i.e., MCAT,

M13, M14. In the classification phase, we apply the multi-classifiers in top-down way to

choose sub-problems for the next task. Look back to the Figure 3.6, the multi-classifiers

of the first sub-problem of MCAT decides the category M11 and M14 as the candidates

for a given instance. Since M14 is non-leaf node, we need to further deal with the sub-

problem of M14. On the contrary, the sub-problem of M13 is disregarded since M13 is
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not predicted as candidate. Furthermore, we will never consider the subtree rooted at

M13. This ensures the efficiency in classification phase.

MCAT 

M12 M13 

M131 M132 

M14 

M143 M142 M141 

M11 
subtree classifier 
local classifier 

subtree classifier 

MCAT 

M12 M13 

M131 M132 

M14 

M143 M142 M141 

M11 

Figure 3.6: Classification in top-down manner

One case of the document distribution in the hierarchy is that only the leaf nodes

have the documents (i.e., the non-leaf nodes are unassignable). This refers to an early

top-down method commonly known as the pachinko-machine search [71], which greedily

makes decisions from root node until the leaf nodes by applying the subtree classifier of

each node. A more usual case is that the internal categories can also have some documents.

[109] introduced one more local classifier for each non-leaf node to stop the greedy decision

process and make internal nodes assignable.

It is worth noting that subtree classifier of a node decides whether an instance belongs

to the subtree rooted at this node, once it is, the local classifier of this node decides if

an instance belongs to this node itself rather than its descendants. Only if the instance

were accepted by the subtree classifier, the local classifier will have the chance to further

classify this instance.

In this top-down method, both subtree classifier and local classifier are usually learned

with one-vs.-all strategy in SVMs. To build such classifiers, special consideration to the

dependencies of categories in the hierarchy should be given by the feature selection of

the training documents for each classifier. Before introducing the positive and negative

training set for each category in the induced classifier, we define two concepts:

• child-free: if the category Ci is child-free in a hierarchy, denoted by CFree(Ci), it

will only contain the documents belong to Ci itself.

• child-full : if the category Ci is child-full, denoted by CFull(Ci), it will include all
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the documents of the subtree rooted at Ci.

Then the positive and negative examples for constructing the subtree classifier and

local classifier of node Ci can be represented as:

• subtree classifier : positive examples: CFull(Ci) and negative examples: ∀d ∈ D

such that d ∈ CFull(Cparent) and d /∈ CFull(Ci), where Cparent is the father node of

Ci.

• local classifier : positive examples: CFree(Ci) and negative examples: ∀d ∈ D such

that d ∈ CFull(Cparent) and d /∈ CFree(Ci), where Cparent is the father node of Ci.

Algorithm 1 Hierarchical classification in top-down manner.

S ← ∅ // Returns S: the positive category set of prediction
function predict(Root,x)

// Root is the root node in the hierarchy, and x is the test instance
v ← local predict(Root,x)
if v = 1

S ← S ∪ {Root}
return S

for each subcategory Ci of Root

v ← subtree predict(Ci, x)
if v = 1

S ← S ∪ {Ci}
predict(Ci, x)

return S

Once we have the two kinds of classifiers, in the classification phase, we apply them in

top-down way as described in Algorithm 1, where:

• predict(Root,x): classifies the instance x on the hierarchy rooted at node Root.

• subtree predict(Ci,x): applies the subtree classifier of node Ci for x,

• local predict(Ci,x): applies the local classifier of node Ci for x.

A large number of researches, such as [109, 58, 95, 31], adopted this top-down strategy

in hierarchical classification but such methods still suffer some potential problems as

follows:

1) Ineffective learning. The problems of data sparseness and skewed distribution in-

duce ineffective learning. [22] has pointed out that when working with imbalanced data,

SVMs will produce a less effective classification boundary.
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2) Error propagation. Error propagation is a typical problem in hierarchical classifica-

tion. If an upper classifier made a wrong decision for the document, then it would choose

a wrong path to traverse the taxonomy and would no longer have a chance to find the

correct category.

Other top-down methods include:

• Instead of introducing a local classifier to avoid the severe disadvantage of the greedy

decision process from the root to bottom, Dumais and Chen [40, 45] proposed a

scoring rule that further took advantage of the hierarchy by considering only second-

level categories that exceeded a threshold at the top level . The author explored two

general ways: a) the logic and relationship between the probabilities from first layer

and the second layer (P (L1)&&P (L2)); b) a product of probabilities from the two

layers (P (L1) ∗ P (L2)). The author further defined the threshold to be exceeded

to pass a test document down to descendant categories. The binary SVM classifiers

were used on the top-two levels of the LookSmart categories with 163 categories

in total, and found small advantages in accuracy for hierarchical models over flat

models.

• More recent work [71] extended the work in [40, 45] by taking into account the

scalability of the hierarchical classification. The author developed a scalable system

for large-scale text categorization, and theoretically analyzed and experimentally

evaluated the SVMs in hierarchical and non-hierarchical settings of classification

over the full taxonomy of the Yahoo! directory. This was the first work using SVMs

for such large-scale Yahoo! directory in hierarchical classification. Like [40, 45], an

investigation of threshold tuning algorithms with respect to time complexity and

their effect on the classification accuracy of hierarchical SVMs in one-vs.-all mode

was conducted.

• To better utilize the hierarchical structures, [8] adopted a cross-validation strategy to

take the output of the top-level classifiers as features for the second-level classifiers.

A bayesian aggregation on the result of the individual binary classifiers was proposed

in [34]. [129] proposed a pruning technique for the large-scale hierarchy based on the

test instance and re-training on the smaller hierarchy.

• Large-margin discriminative methods proposed by [115] and [14]. The former pro-

posed to appropriately generalize the well-known notion of a separation margin and

derive a corresponding maximum-margin formulation for dealing with more complex

output, and the latter used discriminative functions structured in a way that mirrors

the class hierarchy, and the parameters are jointly learned to minimize a global loss
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over the hierarchy. Similar online variants of such methods have been proposed in

[35, 18].

• In [128], the authors enforced each node of the hierarchy to be orthogonal to its

ancestors as much as possible in additional to minimizing the loss at individual nodes.

Hierarchical shrinkage approaches such as isotonic smoothing in [90], smoothing the

estimated parameters in Naive Bayes classifiers along the path from root to the leaf

node in [73] have also been tried. [103] proposed Multinomial logistic models that

take sum of contributions along the path with bayesian priors on the variances. For

a more thorough survey and comparison of hierarchical classification methods please

refer to [107].

3.5 Categorization Measurements

3.5.1 Precision, Recall and F1

To measure the accuracy of the classifier traditional and widely used methods have been

used. These refer to Precision and Recall, whose definition is reported below:

• Given a set of document T

• Precision = #Correct Retrieved Document/#Retrieved Documents

• Recall = #Correct Retrieved Document/#Correct Documents

Precision and Recall are usually combined in a single measure to have a more compact

parameter, which is called F1-measure. It is the harmonic mean between Precision and

Recall, i.e.:

F1 =
2 ∗ Precision ∗Recall
Precision+Recall

(3.8)

Since we measure the performance of a set of classifiers, i.e., one for each node of the

hierarchy, we need to combine the Precision, Recall and F1 for all classifiers. This is

usually done as follows. Given the following quantities calculated for each classifier i:

• ai, number of corrects (i.e., documents in the intersection of the correct documents

set and retrieved documents set);

• bi, number of mistakes (i.e., documents in the correct documents set, but not in the

intersection of the correct documents set and retrieved documents set);

• ci, number of not retrieved (i.e., documents in the retrieved documents set, and not

in the intersection of the correct documents set and retrieved documents set).
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The Precison and Recall are defined by the above counts:

Precisioni =
ai

ai + bi
(3.9)

Recalli =
ai

ai + ci
(3.10)

and F1 measure is:

F i
1 =

2 ∗ Precisioni ∗Recalli
Precisioni +Recalli

(3.11)

The global performance of a set of classifiers is measure with

• the Micro-average (defined below) and

• the Macro-average (average over all individual classifiers)

The Micro-Average is less intuitive than the arithmetic average (i.e., the Macro-average).

The formula is:

Micro Precision =

∑n
i=1 ai∑n

i=1(ai + bi)
(3.12)

Micro Recall =

∑n
i=1 ai∑n

i=1(ai + ci)
(3.13)

Micro F1 =
2 ∗Micro Precision ∗Micro Recall

Micro Precision+Micro Recall
(3.14)

and the Macro-F1 is:

Macro Precision =

∑n
i=1 Precisioni

n
(3.15)

Macro Recall =

∑n
i=1Recalli

n
(3.16)

Macro F1 =

∑n
i=1 F

i
1

n
(3.17)

3.5.2 Multi-label Graph-induced Error

We also aim at demonstrating that our approach is effective for optimizing hierarchical

classification. For this purpose, a hierarchical measure is needed, i.e., a measure that

takes into account the different degrees of mistakes. For example, assigning a category

to a document, which is sibling of the correct one is less critical than assigning a much

farer node of the hierarchy. The Multi-label Graph-induced Error (MGIE) (suggested by

ECML/PKDD 2012 Discovery Challenge) takes the distances between true positives and

false positives by also over-penalizing the false negatives. It is computed as follows:

i) Find the smaller set between the true and the predicted classes of each document;
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ii) Compute the minimum graph distance between each class of the smaller set and

the closest class of the other set, in such a way that minimizes the sum of distances;

iii) Set all classes in excess equal to the maximum distance; and

iv) Add all the distances and divide them by the number of the classification tasks,

where such number is equal to the sum of the true categories of each document.

In our experiments in Section 4.5.6 we define the maximum distance as five (and seven),

so all distances above five (and seven) are treated the same.

3.6 Experiments and Evaluations

To implement the baseline model, we applied the state-of-the-art method used by [67]

for RCV1, i.e.,: SVMs with the default parameters (trade-off and cost factor = 1), linear

kernel, normalized vectors, stemmed bag-of-words representation, log(TF + 1) × IDF

weighting scheme and stop list5. We used the LIBSVM6 implementation, which provides

a probabilistic outcome for the classification function. We also used the LIBLINEAR7 by

implementing the Platt’s sigmoid function inside LIBLINEAR to generate a probabilistic

output for the classification. Moreover, we compared the efficiencies of such two kinds of

software in flat and top-down modes for both learning and classification phases.

Topics hierarchy of RCV1 covers all documents, and is mostly used dataset in litera-

tures of machine learning area. In this thesis RCV1-v2 (or RCV1-v3) in the experiments

represents the Topics hierarchy unless we give a specification for the other category hier-

archy, i.e., Industries.

Additionally, we train an MCC based on SVMs for an Italian corpus, annotated ac-

cording to a hierarchical taxonomy in the context of the educational framework. The

classification performance obtained by applying such SVMs is promising for improving

the production cycle of educational systems.

3.6.1 LIBSVM on RCV1

Lewis [67] released the benchmarks of different basic models such Rocchio, k-NN and

SVM on RCV1, among which the SVM performed best using the software of SVMlight 8.

Additionally he also released the binary training/test vectors of RCV1, namely RCV1-v2

in Section 3.1.1. Since our reranking system in Chapter 4 is based on the basic SVM

probability output, in this thesis we used another version of SVM software, i.e., LIBSVM,

5We have just a small difference in the number of tokens, i.e., 51,002 vs. 47,219 but this is both not critical and rarely

achievable because of the diverse stop lists or tokenizers.
6http://www.csie.ntu.edu.tw/~cjlin/libsvm/
7http://www.csie.ntu.edu.tw/ cjlin/liblinear/
8http://svmlight.joachims.org/
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which can generate the classification probability by implementing the sigmoid function

(let’s call it proLIBSVM). For more details please refer to Section 2.3. In order to make

the comparison between our reranking system and the state-of-the-art one-vs.-rest SVM

meaningful, we first have to prove that our basic proLIBSVM matches SVMlight accuracy

as Lewis did, by means of Micro- and Macro-Average F1 on the same data, i.e., RCV1-

v2. Note that we used the exact same parameters (e.g., the penalty factor C=1) for

proLIBSVM and SVMlight in learning the models.

For the purpose of comparison, we apply LIBSVM (without probability output) on

RCV1-v2, and derived the corresponding performances in the fourth column of Table 3.4.

These are much lower than those obtained by proLIBSVM in the third column. The

reason is that Platt probabilities [87] with threshold 0.5 can make the decision simpler

than just considering the decision value.

F1 Lewis’ SVMlight proLIBSVM LIBSVM
Micro-F1 0.816 0.815 0.798
Macro-F1 0.567 0.565 0.517

Table 3.4: Classification performances of basic SVM models on RCV1-v2.

From Table 3.4, we could conclude that our proLIBSVM is completely equivalent to

SVMlight on RCV1-v2. Note that the Macro-F1 in Lewis’ SVMlight is 0.567 rather than

0.607 [67], since Lewis optimized the Micro-F1 and we followed his setting.

proLIBSVM on RCV1-v3, gets the same performances in Table 3.5. This explains that

the difference (i.e., numbers of features and documents) between RCV1-v2 and RCV1-v3

does not really matter, and RCV1-v3 is reliable for the subsequent experiments. For

comparison, we also try LIBSVM on RCV1-v3, and we verified again Platt’s model [87].

F1 proLIBSVM LIBSVM
Micro-F1 0.815 0.801
Macro-F1 0.565 0.515

Table 3.5: Classification performances of basic SVM models on RCV1-v3.

We also applied proLIBSVM on the Industries category hierarchy and reported the

accuracy in Table 3.6.

We can clearly see from Table 3.6 that the baseline of proLIBSVM is 5 points and 2.6

points higher than Lewis’ in Micro- and Macro-F1, respectively. This could be explained

by the fact that the learning ability of the former is better than the latter on a smaller

training set of RCV1 (9,644 vs 23,307 for Industries and Topics). In particular, under

the fact that SVMlight equals to proLIBSVM on the whole Topics datasets (RCV1-v2 or
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F1 Lewis’ SVMlight proLIBSVM
Micro-F1 0.512 0.562
Macro-F1 0.263 0.289

Table 3.6: Classification performances of basic SVM models on Industries of RCV1.

RCV1-v3).

3.6.2 LIBLINEAR on RCV1

LIBSVM (or proLIBSVM) on RCV1 in Section 3.6.1 costs much time for learning the 104

models and classifying over 800,000 instances. To make it more efficient, we explored the

software of LIBLINEAR, which has been developed for large datasets. In order to make

LIBLINEAR generate decision probability like proLIBSVM for our post processing, we

implemented Platt’s sigmoid function into LIBLINEAR as described in Section 2.3.4. We

called this model proLIBLINEAR. Based on LIBLINEAR package, there are four main

parameter settings under the recommendation of bias item b=1: L2-Regulation L1-Loss

Dual, L2-Regulation L2-Loss Dual (default in LIBLINEAR), L2-Regulation L2-Loss Pri-

mal, and L1-Regulation L2-Loss Primal. To find the best parameters for proLIBLINEAR,

we applied proLIBLINEAR on RCV1-v3 from both efficiency and accuracy aspects. The

results are reported in Table 3.7.

L2R L1Loss Dual L2R L2Loss Dual L2R L2Loss Primal L1R L2Loss Primal
Train Time(s) 265.69 273.34 494.58 761.84
Test Time(s) 726.68 752.88 746.45 780.17

Micro-F1 0.815 0.811 0.812 0.806
Macro-F1 0.564 0.560 0.561 0.553

Table 3.7: Classification performances of LIBLINEAR on RCV1-v3.

We can see from Table 3.7 that proLIBLINEAR with L2-Regulation L1-Loss Dual

works best among others. Most importantly, proLIBLINEAR matches the proLIBSVM

on RCV1-v3 in Micro- and Macro-Average F1, which means the former can generate the

same accuracy while consuming far less time than the latter. We will present the detailed

efficiency computations in Section 3.6.4.

To check again Platt’s theory, we applied LIBLINEAR on RCV1-v3, and found con-

sistent results, i.e., lower Micro- and Macro-F1 than those of using proLIBLINEAR.
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3.6.3 Top-down Models on RCV1

Section 3.6.1 and Section 3.6.2 described the two flat classification systems (one-vs.-rest

probabilistic model for each category) that match the state-of-the-art method in [67] on

RCV1, but it completely ignores the tree-shaped hierarchy. Another commonly used top-

down method proposed by [109] is described in Section 3.4.2. Since the probabilistic mod-

els (learned by proLIBSVM or proLIBLINEAR) perform better than the non-probabilistic

models in flat case, we applied the probabilistic models in an efficient way from root to

low-level nodes of hierarchy in top-down manner.

In the experiment, we applied the models from proLIBSVM and proLIBLINEAR soft-

ware in top-down manner (let’s call them hier proLIBSVM and hier proLIBLIENAR,

respectively) on the RCV1-v3: the results are showed in Table 3.8.

F1 hier proLIBSVM hier proLIBLINEAR hier LIBLINEAR
Micro-F1 0.819 0.819 0.807
Macro-F1 0.578 0.575 0.525

Table 3.8: Classification performances of top-down basic models on RCV1-v3.

We can clearly see the following points from Table 3.8:

1) hier proLIBLINEAR performs equivalently with hier proLIBSVM, the same as they

are in the flat mode;

2) the top-down method with probabilistic models works slightly better than the flat

probabilistic models (i.e., 0.05 and 1.0 points for Micro- and Macro-F1, respectively. More

details on F1s of MCC are presented in Appendix D).

3) based on 1) and 2), using of hier proLIBLINEAR instead of hier proLIBSVM not

only has the same accuracy, but also further improves the efficiency of learning and

classification. We reported the efficiencies in Section 3.6.4.

Additionally, the comparison of hier proLIBLINEAR and hier LIBLINEAR in top-down

way is consistent with results in flat mode.

3.6.4 Running Times

In previous sections we implemented several probabilistic baseline models that matched

the state-of-the-art method used by [67] for RCV1. These models are based on the two

pieces of SVM software: LIBSVM and LIBLINEAR, each of them is associate with two

models according to the classification strategy (i.e., flat mode or top-down manner). The

difference of such models in learning and classification impacts efficiency. In this section,

we reported a detailed comparison in Table 3.9 for the four baseline models: proLIBSVM,
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proLIBLINEAR, hier proLIBSVM, and hier proLIBLINEAR. The first two in the flat

mode, and the other two in top-down way. We can see from Table 3.9 that:

flat top-down
proLIBSVM proLIBLINEAR hier proLIBSVM hier proLIBLINEAR

Training 150.38 2.11 79.58 1.45
Test 2604.00 18.75 1393.78 3.29

Table 3.9: time cost (minutes) of basic models on RCV1-v3 with nr fold=5.

1) proLIBLINEAR is remarkably fast compared to proLIBSVM (i.e., 2min vs 80min

in model training and 19min vs 1300min in classification), independently of whether

proLIBSVM works in flat or top-down mode.

2) hier proLIBLINEAR is the most efficient model, since it is based on proLIBLINEAR

and explores the category hierarchy to work in top-down manner.

3.6.5 Experiments on Italian Dataset

The aim of our evaluation is to demonstrate that state-of-the-art TC methods can be

applied to learn hierarchical classifiers for our e-Value taxonomy. This task is made

complex by two different aspects:

i) in addition to topic labels such as, Euclidean Geometry, Problem Solving or Geomet-

ric Transformation, the taxonomy also contains semantic characterization such as Story

Development or Story Understanding, whose characterization using simple terms seems

harder;

ii) given the novelty of the taxonomy, we could only produce a small dataset, which

makes the learning of classification functions more difficult.

To deal with and analyze such problems, we experimented with hierarchy subsets, defined

according to the levels if hierarchy, ranging from 1 to 4 (the maximum depth of our

hierarchy). The deeper the level, the more difficult TC is.

One major drawback of machine learning and thus of TC based on it is the need of

training data, i.e., a set of documents manually classified into the referring taxonomy.

This data is difficult to find and/or to produce, as it requires human labor. Given the

novelty of our taxonomy defined in Appendix B, no previous data was available. Thus, we

set an annotation procedure (with only one annotator) of the didactic material available

in the Ericksons database. We randomly selected 60 documents and we classified each

of them according to all the 112 nodes of the taxonomy. This led to a dataset of 122

documents (repetitions are considered). As for the updated version of dataset, we select

91 of 126 unique documents as training set for the 50-category hierarchy.
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We randomly divided the above data in training and test set by taking care that for

each document all its repetitions were all put either in the training or in the test set. The

training data was used to learn the set of 112 (and 50 for the updated data) binary classi-

fiers, one for each category, following the one-vs.-all schema. The output of the multi-class

classifier is the merged set of the individual binary classifier decisions. Although simple,

this is considered a state-of-the-art approach [92, 67]. We used default SVM parameters

as the small training data prevented to apply any reasonable parameterization approach.

We used a bag-of-term representation (string separated by space and punctuation) with-

out applying any feature selection, stop list or lemmatization. Although, we are confident

that the latter may relevantly improves our models. We used the classical log(TF)*IDF

weighting scheme and normalized vectors.

The performance is provided by means of Micro- and Macro-Average Precision, Recall,

and F1, evaluated from our test data over all categories, additionally, the F1s of all the

binary classifiers. For measuring the performance of different hierarchical levels, only the

nodes up to the target level are considered, e.g., for the first level, we only measure the

Micro/Macro F1 of C1, C2, C3 and C4 (without C4 in the updated dataset).

Table 3.10 reports the performances on different category levels (more details on F1s

of MCC are presented in Appendix C).

In the first level, we note that for each category there are a few documents for training.

These seem to be enough as the accuracy of the individual categories as well as the

overall Micro/Macro F1 is exceptionally high. This is not completely surprising as most

documents are repeated in the above four/three categories.

We note that in the second level when the training documents are more than half in

the first level, very good results can be achieved. Low performance is shown for C11 and

C13, which are trained with less than 7 documents. Additionally, they have only one

test document, this means that their accuracy cannot really be estimated. The situation

of C31 is even worse as it has no test documents. In this case, we do not report any

accuracy in the related row. It should also be noted that, since we use one-vs.-all schema,

the accuracy of C1,..,C4 is the same as before. Thus, from now on, we will not report the

accuracy of previously reported binary classifiers.

On levels 3 and 4, again the few training documents available for the classifiers prevent

to achieve a reasonable F1. There are some good cases such as C124 and C322 but also

bad cases such as C122 and C123. The latter two refer to Primaria Classe II and Primaria

Classe III, respectively, which have large overlap with the other classes, i.e., I, IV and V.

For separating such categories, the simple bag-of-words may not be enough.
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Level 1 Level 2 Level 3 Level 4
Micro-Precision 0.920 0.916 0.855 0.843
Macro-Precision 0.924 0.641 0.288 0.139

Micro-Recall 0.958 0.916 0.725 0.640
Macro-Recall 0.955 0.637 0.269 0.129

Micro-F1 0.939 0.916 0.785 0.727
Macro-F1 0.938 0.633 0.263 0.115

Table 3.10: Performance for the Italian dataset (112 categories)

Level 1 Level 2 Level 3
Micro-Precision 0.887 0.825 0.761
Macro-Precision 0.885 0.531 0.330

Micro-Recall 0.909 0.862 0.665
Macro-Recall 0.990 0.558 0.403

Micro-F1 0.935 0.843 0.709
Macro-F1 0.933 0.535 0.390

Table 3.11: Performance for the updated version of Italian dataset (50 categories)

3.7 Conclusions

3.7.1 Discussion on RCV1

In this chapter we have presented the use of LIBSVM and LIBLINEAR in flat and top-

down methods for text categorization on RCV1, which match the state-of-the-art method

used in [67].

First, we applied probabilistic LIBSVM (proLIBSVM) with the default parameters

(trade-off and cost factor = 1), linear kernel, normalized vectors, stemmed bag-of-words

representation, log(TF+1)×IDF weighting scheme and stop list to match Lewis’ SVMlight

model on RCV1 9.

Second, we have developed the proLIBLINEAR based on LIBLINEAR10 by implement-

ing the Platt’s sigmoid function inside it to generate a probablisitic output, which is used

for making the classification decision (instead of simply using the decision value from LIB-

LINEAR). The results show that proLIBLINEAR reaches the the state-of-the-art method

for RCV1, most importantly, it has very high efficiency.

Third, we applied proLIBSVM and proLIBLINEAR in top-down manner on RCV1,

and found that they perform a little bit better than when they work in flat case. This can

9We have just a small difference in the number of tokens in two versions of RCV1, but this is both not critical and rarely

achievable because of the diverse stop lists or tokenizers.
10http://www.csie.ntu.edu.tw/ cjlin/liblinear/
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be explained by the fact that the top-down method explores the hierarchical father-child

dependencies. This top-down classification way of course further improves the efficiencies

of the flat case. In particular, the proLIBLINEAR in top-down manner works very fast.

It is worth noticing that the probabilistic models (i.e., proLIBSVM and proLIBLIN-

EAR) outperform the default non-probabilistic models such as LIBSVM and LIBLINEAR

for RCV1. What we care more about is the output of probabilities, which we can use for

learning the reranking of global classification hypotheses.

3.7.2 Discussion on e-Value

We have described an interesting and new semantic classification problem in the context

of the educational framework of the e-Value project. We have defined a new hierarchical

taxonomy, which is promising for improving the production cycle of educational systems.

To test the feasibility of the approach, we have also built a corpus annotated according

to the above taxonomy. Such data was used for training an MCC based on SVMs. The

results show that when there is a reasonable amount of training documents the classifiers

can deploy remarkably high accuracy. On the other hand, the F1 of lower level categories is

highly affected by data scarceness. Some categories would probably require the definition

of more expressive features to better model their separation.
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Chapter 4

Structural Reranking for

Hierarchical Text Classification

Chapter 3 described our reimplementations of two baseline models:

(a) Lewis’ flat MCC, i.e., a one-vs.-all multi-classifier for each category, and the classi-

fiers learned from two pieces of software: proLIBSVM in Section 3.6.1 and proLIBLINEAR

in Section 3.6.2. Application of such models in the flat way constitutes the state-of-the-art

method on RCV1 in [67], which is also argued in [92].

(b) Sun’s hierarchical model [109] goes beyond the flat model as it is a top down algo-

rithm so already exploiting the classification hierarchy by applying the hier proLIBSVM

and hier proLIBLIENAR models (see Section 3.6.3).

However, both the flat and hierarchical models for hierarchical text categorization

(HTC) lose the inherited semantic relations existing in the hierarchical taxonomy. Thus,

efficiently deriving the interdependencies of categories in the hierarchy, is difficult but

necessary for improving hierarchical text classification.

In this chapter advanced reranking systems were designed to exploit structural de-

pendencies in hierarchical multi-label text classification (TC). They are based on two

algorithms:

1) Generate the k-best classification hypotheses according to: (i) the classification

probability of the flat MCC state-of-the-art model (i.e., (a) above); (ii) the more compli-

cated probability of top-down method exploiting the node structure in the hierarchy (i.e.,

(b) above).

2) Encode dependencies in the reranker by: (i) modeling hypotheses as trees derived

by the hierarchy itself and (ii) applying tree kernels to them.

Section 4.1 describes two algorithms of the k-best classification hypothesis generation,

i.e., the flat hypothesis generation in Section 4.1.1 and hierarchical hypothesis genera-

tion in Section 4.1.2. Section 4.2 shows two ways of representing the hypotheses with
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the hierarchy itself. Section 4.3 introduces the structural reranking method based on

reranker learning in Section 4.3.2 and reranking system for classification in Section 4.3.3.

Section 4.4 reports on experiments for the flat rerankers and Section 4.5 reports on the ex-

periments for the hierarchical rerankers. Related work is analyzed in Section 4.6. Finally,

Section 4.7 derives the conclusions on using the rerankers for HTC.

4.1 Hypothesis Generation

As claimed in Chapter 3, the conventional flat and top-down models used in hierarchical

text classification ignore the correlations and dependencies existing inside the category

hierarchy. The big-bang approaches take them into account but result in a high computa-

tional complexity in learning and prediction. Developing efficient models for hierarchical

classification using global dependencies becomes necessary. For this purpose, we use

reranking models to rank a set of initial hypotheses, which are typically generated by

local classifiers, encoding the underlying pre-defined structural information. Meanwhile,

the different kinds of compact representations of these hypotheses ensure the reranking

efficiency.

In the following sections, we show two different frameworks for hypothesis generation:

flat, i.e., we ignore the structural organization of the categories; and hierarchical in which

the structure imposes constrains on the feasibility of the hypotheses.

4.1.1 Flat Hypothesis Generation

The flat hypotheses generation process is based on categories output and corresponding

probabilities of the flat one-vs.-all models. Given a category hierarchy with n categories,

C1, . . . , Cn, we can define:

• p1
Ci

(d), i.e., the probability that the classifier i (associated with category Ci) assigns

the document d to Ci, and

• p0
Ci

(d), i.e., the probability that the classifier i does not assign the document d to Ci.

p1
Ci

(d) can be computed by taking the SVM classification output (i.e., the decision

value) as input of Platt’s sigmoid function as described in Section 2.3.1. According to

such function, the positive decision value corresponds to

p1
Ci

(d) > 0.5 (4.1)

which means d belongs to Ci with the probability of p1
Ci

(d). The latter increases propor-

tionally to the increment of the decision score. On the contrary, the decision value less
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than 0 corresponds to

p1
Ci

(d) < 0.5 (4.2)

which means d does not belong to Ci with the probability of p0
Ci

(d).

Since the multi-classifiers we used in flat case are independent, for any mapping of

< d,Ci > we have:

p0
Ci

(d) + p1
Ci

(d) = 1.0 (4.3)

From Equation 4.2 and Equation 4.3 we can derive:

p0
Ci

(d) > 0.5 (4.4)

if Ci is not assigned to document d.

After determining the p1
Ci

(d) and p0
Ci

(d) for each of the mappings such as < d,Ci >, we

define the joint probability P as the scalar product of all individual decision probability

to represent the probability of a complete assignment of a label set to a document:

P(h) =
n∏
i=1

(
phi
Ci

(d)
)
, hi ∈ {0, 1} (4.5)

where hi = 0, if d /∈ Ci and hi = 1, if d ∈ Ci.
Let us indicate with h = {h1, .., hn} ∈ {0, 1}n a classification hypothesis, i.e., the set

of n binary decisions for the document d. If we assume independence between the SVM

scores, the most probable classification hypothesis on d is:

P(h̃) = argmax
h∈{0,1}n

n∏
i=1

phi
Ci

(d) =
(

argmax
h∈{0,1}

(phi (d))
)n
i=1
, (4.6)

where the last equality works because we assume a flat hierarchy. From Equation 4.6 we

can derive the most probable hypothesis, which is the one with the largest joint probability.

Let h̃1 be the hypothesis associated with the max joint probability, the second best

hypothesis h̃2 can be obtained by changing some category decision as well as corresponding

probability, for example, p0
Ci

(d) = 0.501 represents d /∈ Ci with probability equal to 0.501,

if we change it for d ∈ Ci, the probability is p1
Ci

(d) = 1- p0
Ci

(d) = 0.499. Note that we

have marked Ci as positive for d instead of negative after changing the decision of d on

Ci.

This change generates a second best joint probability. Thus in general, a second best

hypothesis h̃2 must satisfy:

P(h̃2) = argmax
h∈{0,1}n−h̃1

n∏
i=1

phi
Ci

(d) and P(h̃2) < P(h̃1) (4.7)
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By storing the joint probabilities of the previous k − 1 most probable configurations,

the k-th best hypothesis h̃k can be efficiently generated with the following conditions:

P(h̃k) = argmax
h∈{0,1}n−{h̃1,..,h̃k−1}

n∏
i=1

phi
Ci

(d) and P(h̃k) = argmin
i=1,..,k

P(h̃i) (4.8)

To implement Equation 4.8 for getting the k best hypotheses, we first compute the

top hypothesis as in Algorithm 1, then developed the Algorithm 2 for generating the next

k − 1 hypotheses.

Algorithm 2 Generation of the top flat hypothesis.

function Top1(Root)
// Returns the top hypothesis and its probability
// p(Ci) is the probability of (Ci) assigns to test instance
// S is the positive category set of hypothesis
// P is the joint probability of hypothesis
S ← ∅, P ← 1
for each subcategory Ci of Root

if p(Ci) > 0.5
P ← P · p(Ci)
S ← S ∪ {Ci}

else
P ← P · (1− p(Ci))

return 〈S, P 〉

To make the flat hypothesis generation clearer, we illustrate the process by Figure 4.1–

4.4 for the example xi on MCAT subhierarchy, whose annotated labels are M131, M132,

(no links between categories indicate that the flat generation algorithm does not consider

the dependencies among categories). We set k = 4 in order to limit the exhaustive search.

• h̃1: Figure 4.1 is the basic SVM output with only M13 predicted as positive for

xi, the probability marked Prob represents the probability that xi belongs to that

category. According to Equation 4.6, it has the biggest joint probability:

P(h̃1) = (1− 0.003)∗ (1− 0.006)∗ (1− 0.453)∗ (1− 0.006)∗ (1− 0.009)∗ (1− 0.023)∗
0.779 ∗ (1− 0.001) ∗ (1− 0.004) ∗ (1− 0.001) = 0.40397.

• h̃2: Among all possible changes on h̃1 in Figure 4.1, Figure 4.2 changes the M12

decision, which has the least confidence among all decisions of basic SVM category

outputs. This makes the second hypothesis h̃2 with the second largest joint proba-

bility:
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Algorithm 3 Generation of the top k hypotheses.

function TopK(Root, k)
// Returns the top k hypotheses
// and their probabilities
H ← ∅
q ← empty priority queue
Enqueue(q,Top1(Root))
while |H| < k and q is nonempty

repeat
〈S, P 〉 ← Dequeue(q)

until 〈S, P 〉 /∈ H

H ← H ∪ {〈S, P 〉}
if |H| < k

for each h ∈ Succs(Root, P, S)
Enqueue(q, h)

return H

function Succs(Root, P, S)
// Returns the set of modifications
// of the hypothesis S

H ← ∅
for each subcategory Ci of Root

if Ci ∈ S

S′ ← S \ {Ci}
P ′ ← P · (1− p(Ci))/p(Ci)

else
S′ ← S ∪ {Ci}
P ′ ← P · p(Ci)/(1− p(Ci))

H ← H ∪ {〈S′, P ′〉}
return H

Prob=0.003 

Prob=0.006 Prob =0.009 Prob =0.006 Prob =0.453 

Prob =0.023 Prob =0.779 Prob =0.001 Prob =0.004 Prob =0.001 

MCAT 

M12 M13 

M131 M132 

M14 

M143 M142 M141 

M11 

Figure 4.1: Flat hypothesis h̃1

P(h̃2) = (1 − 0.003) ∗ (1 − 0.006) ∗ 0.453 ∗ (1 − 0.006) ∗ (1 − 0.009) ∗ (1 − 0.023) ∗
0.779 ∗ (1− 0.001) ∗ (1− 0.004) ∗ (1− 0.001) = 0.33455.

• h̃3: Based on h̃1 and h̃2, we get the hypothesis h̃3 by selecting M12 as the only

positive category, who has the third largest joint probability:

P(h̃3) = (1 − 0.003) ∗ (1 − 0.006) ∗ 0.453 ∗ (1 − 0.006) ∗ (1 − 0.009) ∗ (1 − 0.023) ∗
(1− 0.779) ∗ (1− 0.001) ∗ (1− 0.004) ∗ (1− 0.001) = 0.0949.

• h̃4: In the same way, we obtain the fourth hypothesis h̃4 in Figure 4.4 based on the

previous three hypotheses. Of course, h̃4 has the fourth largest probability among

all changed hypotheses:
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Prob=0.003 

Prob=0.006 Prob =0.009 Prob =0.006 Prob =0.453 

Prob =0.023 Prob =0.779 Prob =0.001 Prob =0.004 Prob =0.001 
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M11 

Figure 4.2: Flat hypothesis h̃2

Prob=0.003 

Prob=0.006 Prob =0.009 Prob =0.006 Prob =0.453 

Prob =0.023 Prob =0.779 Prob =0.001 Prob =0.004 Prob =0.001 

MCAT 

M12 M13 

M131 M132 

M14 

M143 M142 M141 
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Figure 4.3: Flat hypothesis h̃3

P(h̃4) = (1 − 0.003) ∗ (1 − 0.006) ∗ (1 − 0.453) ∗ (1 − 0.006) ∗ (1 − 0.009) ∗ 0.023 ∗
0.779 ∗ (1− 0.001) ∗ (1− 0.004) ∗ (1− 0.001) = 0.00951.

Prob=0.003 

Prob=0.006 Prob =0.009 Prob =0.006 Prob =0.453 

Prob =0.023 Prob =0.779 Prob =0.001 Prob =0.004 Prob =0.001 

MCAT 

M12 M13 

M131 M132 

M14 

M143 M142 M141 

M11 

Figure 4.4: Flat hypothesis h̃4

It is worth noting that the fourth hypothesis h̃4 is actually the gold standard annotation

of the example xi. This further shows that the basic SVM output is not always correct,

and our flat hypothesis generation algorithm can produce better classification outputs

(actually how to choose the best one as the final output is the key point of our thesis).
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Figure 4.5: Example of a hierarchy.

The flat hypotheses generation algorithm ignores the correlations of categories, result-

ing in the violation of hierarchical constraint : once an example belongs to some categories,

it should belong to all its ancestor categories. This is why in Figure 4.4 for h̃4, M131,

M132 are marked as positive while M13 and MCAT are marked as negative, since in

the flat case, we just explore the local information for each independent category. This

will be solved by representing these hypotheses with a hierarchy, encoding the global

dependencies (see Section 4.2).

4.1.2 Hierarchical Hypothesis Generation

Flat hypothesis generation is based on the flat one-vs.-all binary models by ignoring the

correlations and interdependencies provided by the hierarchy. It lacks the inherit infor-

mation inside the hierarchical structure. To make up this defect, we show a hierarchical

algorithm in which the structure imposes constrains during the generation of the hypothe-

ses.

The generation process becomes more complex when taking into account the hier-

archical constraint: if d belongs to a category C, then it also implicitly belongs to all

supercategories of C, including the top category T . We consider tree-shaped hierarchies

and leave the extension to general DAG-shaped category systems to future work.

To take into consideration a tree structure, we ultilize the conventional top-down

method [109] on hierarchical text classification. Besides a local classifier for each cat-

egory, there is one more subtree classifier for the non-leaf categories. The former decides

whether the classification showed a “stop” at current category while the latter chooses

which sub-hierarchy to go through. Based on these two kinds of classifiers, we make the

computation of two types of probabilities. Firstly, for a given document d, and a cate-

gory C with subcategories C1, . . . , Cn, we define the stop probability as the probability of

“stopping” at C, i.e., that d does not belong to any of the subcategories of C:

ps(C) = P (d /∈ C1 . . . d /∈ Cn|d ∈ C) (4.9)
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Secondly, in the case where we know that at least one subcategory has been selected,

we can compute the sub-probabilities of selecting a particular subcategory:

pCi
(C) = P (d ∈ Ci|d ∈ C(d ∈ C1 ∨ . . . ∨ d ∈ Cn)), i ∈ {1, . . . , n} (4.10)

At this stage, we assume conditional independence between the subcategories, so the

probability will depend only on the document and the supercategory. These probabilities

can be used to compute the probability of a complete assignment of categories to a docu-

ment. To exemplify, consider the hierarchy in Figure 4.5. To compute the probability of

a document d belonging to the categories AB and C (and then also implicitly to T and A)

but not to AA, B, CA, or CB, we decompose the probability using the above-mentioned

conditional probabilities:

(1− ps(T )) · pA(T ) · (1− pB(T )) · pC(T ) · (1− ps(A)) · (1− pAA(A)) · pAB(A) · ps(C) (4.11)

.

The next section details our algorithm for hypothesis generation, which exploits this

decomposition.

The number of category assignments is exponential in the number of categories, so for

any nontrivial hierarchy a brute-force search to find the best hypothesis is not applicable.

However, the independence assumptions ensure that the search space is decomposable so

that the best assignment – and the k best assignments – can be found quickly. Similar to

the fastest k-best algorithm for natural language parsing presented in [49], our algorithm

proceeds in two steps: We first find the best assignment, and then we construct the k-best

list by incremental modifications.

We first describe the function Top1 that finds the category assignment having the

highest probability. The algorithm works top-down, and due to the conditional indepen-

dence assumptions, we can find optimal assignments in subtrees independently of each

other. At each node, we check whether the stop probability is higher than the probability

of enabling at least one subcategory; the probability of each subcategory is computed

recursively.

To cut the search space, the algorithm exploits the fact that if the stop probability ps
is greater than 0.5, the probability of entering any subcategory, (1−ps) ·pCi

, is guaranteed

to be less than 0.5.1

Algorithm 4 shows the pseudocode. Here, the function Sub returns the subclasses of a

given class C. While the algorithm is straightforward; note that the optimal assignment

1The algorithm can be rewritten without this trick to generalize to non probabilistic scores.
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Algorithm 4 Generation of the top hierarchical hypothesis.

function Top1(C)
// Returns the top hypothesis
// and its probability
if ps(C) ≥ 0.5

return 〈{C}, ps(C)〉
〈S, P 〉 ←MaxSubcats(C)
if S = ∅
〈S, P 〉 ←MaxOneSubcat(C, P )

if ps(C) ≥ P

return 〈{C}, ps(C)〉
else

return 〈{C} ∪ S, P 〉

function MaxOneSubcat(C, P )
qmin ←∞
for each subcategory Ci ∈ Sub(C)
〈Si, Pi〉 ← Top1(Ci)
qi ← (1− pCi

(C))/(Pi · pCi
(C))

if qi < qmin

qmin ← qi, Smin ← Si

return 〈Smin, P/qmin〉

function MaxSubcats(C)
S ← ∅, P ← 1− ps(C)
for each subcategory Ci ∈ Sub(C)

if pCi(C) ≤ 0.5
P ← P · (1− pCi(C))

else
〈Si, Pi〉 ← Top1(Ci)
if pCi

(C) · Pi > (1− pCi
(C))

P ← P · pCi
(C) · Pi

S ← S ∪ Si

else
P ← P · (1− pCi

(C))
return 〈S, P 〉

is not necessarily what we would get by a greedy algorithm selecting the highest prob-

ability assignment at each choice point. In practice, the implementation will cache the

probabilities and maximal assignments to avoid redundant recomputations. For brevity,

we omit the caching from the pseudocode.

The algorithm TopK to generate the k top hypotheses (Algorithm 5) relies on the fact

that conditional independence between siblings ensure that the search space is monotonic.

The hypothesis at position i in the list of hypotheses is then a one-step modification of

one of the first i− 1 hypotheses. To generate k hypotheses, we thus start with the most

probable one and put it into a priority queue ordered by probability. Until we have found

k hypotheses, we pop the front item and put it into the output list. We then apply the

function Succs to find all one-step modifications of the item, and we add them all back

to the queue.

The Succs function applies the following one-step modification operations:

• SubcatSuccs, which recursively computes a one-step modification of every enabled

subcategory;
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Algorithm 5 Generation of the top k hierarchical hypotheses.

function TopK(C, k)
// Returns the top k hypotheses
// and their probabilities
H ← ∅
q ← empty priority queue
Enqueue(q,Top1(C))
while |H| < k and q is nonempty
〈S, P 〉 ← Dequeue(q)
H ← H ∪ {〈S, P 〉}
if |H| < k

for each h ∈ Succs(C, P, S)
Enqueue(q, h)

return H

function Succs(C, P, S)
// Returns the set of modifications
// of the hypothesis S

if C has no subcategory
return ∅

H ← ∅
if S 6= {C}

Stop(C, P, S, H)
EnableEachSubcat(C, P, S, H)
DisableEachSubcat(C, P, S, H)
SubcatSuccs(C, P, S, H)

else
Unstop(C, P, S, H)

return H

• Stop, which changes an assignment with subcategories to a stop;

• Unstop, which enables at least one subcategory of an assignment without subcate-

gories;

• EnableEachSubcat, which generates multiple hypotheses by enabling every dis-

abled subcategory; and finally

• DisableEachSubcat, which conversely disables every enabled subcategory.

The pseudocode for the modification operations is shown in Algorithm 6. The pseudocode

uses two auxiliary functions:

• Subtree(C), which returns the set of categories that are subcategories of C, and

• ProbSubcats, which returns the (previously computed) probability of an assign-

ment of a set of subcategories.

Again, the pseudocode omits possible optimizations, such as ignoring assignments that

have already been processed.

The complexity of the algorithm is O(ks log(ks)) where s is the maximal number of

modified items generated by the Succs function, since the complexity of the Enqueue

operation is logarithmic in a standard priority queue. A non-tight upper bound on s is 2N ,

where N is the number of nodes in the hierarchy, but this is of limited interest: in practice,

the number of modified items will be much smaller, and depends on parameters such as

the shape of the hierarchy and the number of enabled subcategories in an assignment.
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Algorithm 6 One-step modifications of a hypothesis.

procedure SubcatSuccs(C, P, S, H)
for each subcategory Ci ∈ Sub(C)
if Ci ∈ S

Pi ← ProbSubcats(S, Ci)
Si ← S ∩ Subtree(Ci)
for each 〈Ss, Ps〉 ∈ Succs(Ci, Pi, Si)
H ← H ∪ {〈(S \ Si) ∪ Ss, P/Pi · Ps〉}

procedure Stop(C, P, S, H)
P ′ ← P · ps(C)/(1− ps(C))
for each subcategory Ci ∈ Sub(C)
if Ci ∈ S

P ′ ← P ′/pCi
(C)

P ′ ← P ′/ProbSubcats(S, Ci)
else
P ′ ← P ′/(1− pCi(C))

H ← H ∪ {〈{C}, P ′〉}

procedure Unstop(C, P, S, H)
〈Ss, Ps〉 ←MaxSubcats(C)
if Ss = ∅
〈Ss, Ps〉 ←MaxOneSubcat(C, P )

P ′ ← P · (1− ps(C)) · Ps/ps(C)
H ← H ∪ {〈S ∪ Ss, P

′〉}

procedure EnableEachSubcat(C, P, S, H)
for each subcategory Ci ∈ Sub(C)
if Ci /∈ S

〈Si, Pi〉 ← Top1(Ci)
P ′ ← P · pCi(C) · Pi/(1− pCi(C))
H ← H ∪ {〈S ∪ Si, P

′〉}

procedure DisableEachSubcat(C, P, S, H)
for each subcategory Ci ∈ Sub(C)
if Ci ∈ S

P ′ ← P · (1− pCi(C))
P ′ ← P ′/pCi

(C)/ProbSubcats(S, Ci)
S′ ← S \ Subtree(Ci)
if S′ 6= {C}
H ← H ∪ {〈S′, P ′〉}

else if P ′ ≥ P

EnableEachSubcat(C, P ′, S′, H)

However, it is clear that the algorithm is able to handle very large hierarchies even in the

worst case.

The bottleneck in practice will typically be the call to the probability estimation pro-

cedure, and we note that the worst case–for 1-best as well as k-best generation – occurs

when we have to estimate all probabilities in the hierarchy. The number of estimations in

a hierarchy of N nodes is at most N − 1 stop probabilities and N − 1 subcategory proba-

bilities; note that these two worst-case numbers do not occur at the same time. However,

since we generate the probabilities only when we need them, the number of estimations

will typically be much smaller in practice. How much of the hierarchy we actually need

to explore will of course depend on the particular probabilities.

The hierarchical hypothesis generation algorithm is indeed a little bit more compli-

cated. It considers the category interdependencies in the hierarchy. To make it clear how

it works, we use some figures, which illustrate the generation process. For the example

we use as an example, xi, which has the manual label annotation of MCAT and M14 on
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MCAT subhierarchy. We describe the hypothesis generations with k = 8 as follows:

• h̃1: Figure 4.6 is the basic SVM output with MCAT, M14, and M143 predicted

positive for xi , the Sub Pro for a category means probability that xi belongs to the

tree rooted by this category and Stop Pro is the probability that xi belongs to the

current category. According to algorithm 4 and Equation 4.11, h1 has the largest

joint probability:

P(h̃1) = 1.0∗(1−0.011)
MCAT

∗ (1−0.0036)
M11

∗ (1−0.0037)
M12

∗ (1−0.0)
M13

∗ 0.999∗(1−0.015)
M14

∗ 0.995
M141

∗ (1−0.0)
M142

∗
(1−0.012)
M143

= 0.9497, where the upper part for each fraction element represent the

decision probability of the category labeled by the lower part.

Sub_Pro =1.0 
Stop_Pro=0.011 

Sub_Pro =0.0 
Stop_Pro=0.048 Sub_Pro =0.999 

Stop_Pro=0.015 Sub_Pro =0.0036 Sub_Pro =0.0037 

Sub_Pro =0.343 Sub_Pro =0.526 

Sub_Pro =0.995 

Sub_Pro =0.0 Sub_Pro =0.012 

MCAT 

M12 M13 

M131 M132 

M14 

M143 M142 M141 

M11 

Figure 4.6: Hierarchical hypothesis h̃1

• h̃2: following one-step modification operations Stop to stop at subcategory M14,

and get the second hierarchical hypothesis h̃2 in Figure 4.7 with the second joint

probability:

P(h̃2) = 1.0∗(1−0.011)
MCAT

∗ (1−0.0036)
M11

∗ (1−0.0037)
M12

∗ (1−0.0)
M13

∗ 0.999∗0.015
M14

= 0.0147.

Sub_Pro =1.0 
Stop_Pro=0.011 

Sub_Pro =0.0 
Stop_Pro=0.048 Sub_Pro =0.999 

Stop_Pro=0.015 Sub_Pro =0.0036 Sub_Pro =0.0037 

Sub_Pro =0.343 Sub_Pro =0.526 

Sub_Pro =0.995 

Sub_Pro =0.0 Sub_Pro =0.012 

MCAT 

M12 M13 

M131 M132 

M14 

M143 M142 M141 

M11 

Figure 4.7: Hierarchical hypothesis h̃2

• h̃3: following one-step modification operations EnableEachSubcat to change the

assignment with subcategory M143 based on the first hypothesis h̃1, and get the
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third hierarchical hypothesis h̃3 in Figure 4.8 with the second joint probability:

P(h̃3) = 1.0∗(1−0.011)
MCAT

∗ (1−0.0036)
M11

∗ (1−0.0037)
M12

∗ (1−0.0)
M13

∗ 0.999∗(1−0.015)
M14

∗ 0.995
M141

∗ (1−0.0)
M142

∗ 0.012
M143

=

0.0111.

Sub_Pro =1.0 
Stop_Pro=0.011 

Sub_Pro =0.0 
Stop_Pro=0.048 Sub_Pro =0.999 

Stop_Pro=0.015 Sub_Pro =0.0036 Sub_Pro =0.0037 

Sub_Pro =0.343 Sub_Pro =0.526 

Sub_Pro =0.995 

Sub_Pro =0.0 Sub_Pro =0.012 
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M12 M13 

M131 M132 

M14 

M143 M142 M141 

M11 

Figure 4.8: Hierarchical hypothesis h̃3

• h̃4: following one-step modification operations Stop to change the assignment with

subcategory M14 based on the second hypothesis h̃2, and get the fourth hierarchical

hypothesis h̃4 in Figure 4.9 with the second joint probability:

P(h̃4) = 1.0∗0.011
MCAT

= 0.011.

Sub_Pro =1.0 
Stop_Pro=0.011 

Sub_Pro =0.0 
Stop_Pro=0.048 Sub_Pro =0.999 

Stop_Pro=0.015 Sub_Pro =0.0036 Sub_Pro =0.0037 

Sub_Pro =0.343 Sub_Pro =0.526 

Sub_Pro =0.995 

Sub_Pro =0.0 Sub_Pro =0.012 

MCAT 

M12 M13 

M131 M132 

M14 

M143 M142 M141 

M11 

Figure 4.9: Hierarchical hypothesis h̃4

• h̃5: following one-step modification operations EnableEachSubcat to change the

assignment with subcategory M12 based on the first hypothesis h̃1, and get the fifth

hierarchical hypothesis h̃5 in Figure 4.10 with the second joint probability:

P(h̃5) = 1.0∗(1−0.011)
MCAT

∗ (1−0.0036)
M11

∗ 0.0037
M12
∗ (1−0.0)

M13
∗ 0.999∗(1−0.015)

M14
∗ 0.995
M141

∗ (1−0.0)
M142

∗ (1−0.012)
M143

=

0.00353.

• h̃6: following one-step modification operations EnableEachSubcat to change the

assignment with subcategory M11 based on the first hypothesis h̃1, and get the sixth
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Figure 4.10: Hierarchical hypothesis h̃5

hierarchical hypothesis h̃6 in Figure 4.11 with the second joint probability:

P(h̃6) = 1.0∗(1−0.011)
MCAT

∗ 0.0036
M11
∗ (1−0.0037)

M12
∗ (1−0.0)

M13
∗ 0.999∗(1−0.015)

M14
∗ 0.995
M141

∗ (1−0.0)
M142

∗ (1−0.012)
M143

=

0.00343.

Sub_Pro =1.0 
Stop_Pro=0.011 

Sub_Pro =0.0 
Stop_Pro=0.048 Sub_Pro =0.999 

Stop_Pro=0.015 Sub_Pro =0.0036 Sub_Pro =0.0037 

Sub_Pro =0.343 Sub_Pro =0.526 

Sub_Pro =0.995 

Sub_Pro =0.0 Sub_Pro =0.012 
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M143 M142 M141 
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Figure 4.11: Hierarchical hypothesis h̃6

• h̃7: following one-step modification operations SubcatSuccs to change the assign-

ment with subcategory M143 based on the second hypothesis h̃2, and get the seventh

hierarchical hypothesis h̃7 in Figure 4.12 with the second joint probability:

P(h̃7) = 1.0∗(1−0.011)
MCAT

∗ (1−0.0036)
M11

∗ (1−0.0037)
M12

∗ (1−0.0)
M13

∗0.999∗(1−0.015)
M14

∗ (1−0.995)
M141

∗ (1−0.0)
M142

∗ 0.012
M143

=

0.000058.

• h̃8: following one-step modification operations Stop to change the assignment with

subcategory M14 based on the fifth hypothesis h̃5, and get the eighth hierarchical

hypothesis h̃8 in Figure 4.13 with the eighth joint probability:

P(h̃8) = 1.0∗(1−0.011)
MCAT

∗ (1−0.0036)
M11

∗ 0.0037
M12

∗ (1−0.0)
M13

∗ 0.999∗0.015
M14

= 0.00005469.

We can clearly see from the generated hypotheses that some of them have better results

than the original classifier output, e.g., h̃2 is exactly the manual annotation for xi.
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Figure 4.12: Hierarchical hypothesis h̃7
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Figure 4.13: Hierarchical hypothesis h̃8

4.2 Encoding Hypotheses in a Tree

4.2.1 Hypotheses in Global Tree

Once hypotheses are generated, we need a representation from which the dependencies

between the different nodes of the hierarchy can be learned. Since we do not know in

advance which are the important dependencies and not even the scope of the interaction

between the different structure subparts, we rely on automatic feature engineering via

structural kernels. For this paper, we consider tree-shaped hierarchies so that tree kernels,

e.g. [24], can be applied. As an example let us consider the Reuters categorization scheme.

Figure 4.14 shows a subhierarchy of the Markets (MCAT) category and its subcategories:

Equity Markets (M11), Bond Markets (M12), Money Markets (M13) and Commodity

Markets (M14). These also have subcategories: Interbank Markets (M131), Forex Markets

(M132), Soft Commodities (M141), Metals Trading (M142) and Energy Markets (M143).

Representing such a hierarchy and the dependencies between its nodes in a learning

algorithm is not a trivial matter. Possible features are node subsets of the hierarchy

but: (i) their exhaustive generation produces an exponential number of features, which

69



M132 

M11 M12 M13 M14 

M143 M142 M141 

MCAT 

M131 

Figure 4.14: A subhierarchy of Reuters.
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Figure 4.15: A tree representing a category assignment hypothesis for the subhierarchy in Figure 4.14.

is computationally infeasible; and (ii) the node order, as well as ancestor and sibling

relations are lost. Since, to our knowledge, no previous work has already addressed the

TC hierarchy reranking, we may only start exploring some reasonable features provided

for other structured output tasks. For example, the path between nodes in semantic role

labeling [17, 110] or trigrams and bigrams in parse-tree reranking [20].

However, even in such cases, we have too many options to explore. For example, which

node pairs should the path be extracted from? Which nodes should be part of the n-

grams? We found much simpler to employ tree kernels for automatically generating all

possible features (hierarchy fragments). Indeed, tree kernels have been successfully used

in many other NLP tasks, e.g., [60, 30, 15, 29, 32, 113, 61, 111, 81, 37], although no

previous work has used them to address hierarchy reranking (parse tree reranking is a

rather different task [24]).

In addition to a tree representation, the input of tree kernels must also take into

consideration the categories assigned to a given document. For this purpose, we mark the

negative assignments of the current hypothesis in the node labels with “-”, e.g., -M142

means that the document was not classified in Metals Trading. For example, Figure 4.15

shows the representation of a classification hypothesis consisting in assigning the target

document to the categories MCAT, M11, M13, M14 and M143.

4.2.2 Hypotheses in Compact Tree

Another more compact representation is the hierarchy tree from which all the nodes

associated with a negative classification decision are removed. As only a small subset

of nodes of the full hierarchy will be positively classified, the tree will be much smaller.
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Figure 4.16: A compact representation of the hypothesis in Figure 4.15.
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Figure 4.17: Some tree fragments of the hypothesis in Figure 4.15

Figure 4.16 shows the compact representation of the hypothesis in Fig. 4.15. By applying

the partial tree kernel (PTK) [78] to such labeled tree all possible dependency features are

generated. For example, Fig. 4.17 shows some of the tree fragments from the hypothesis

of Fig. 4.15.

4.3 Structural Reranking

4.3.1 Preference Reranker

Up to now the k-best hierarchical hypotheses encode the global dependencies by the hi-

erarchy itself as well as local features of the basic binary model. This poses the problem

of how to use such information in a discriminative machine learning algorithm for rerank-

ing the k hypotheses. The reranking machine learning problem in this thesis consists in

learning to select the best candidate hypothesis from a given candidate set generated from

basic SVM models.

In order to be able to apply machine learning methods for binary classifiers such as

support vector learning, we applied the reduction known as the Preference Kernel method

[106]. The development of reduction methods from ranking tasks to binary classification

is an active research area; see for instance [3] and [1].

In the Preference Kernel approach, the reranking problem – learning to pick the best

candidate h̃1 with the highest Micro-F1 (e.g., h̃4 in flat hypotheses generation example

and h̃2 in hierarchical hypotheses generation example) from a candidate set {h̃1, . . . , h̃k} –

is reduced to a binary classification problem by creating pairs : positive training instances

〈h̃1, h̃2〉, . . . , 〈h̃1, h̃k〉 and negative instances 〈h̃2, h̃1〉, . . . , 〈h̃k, h̃1〉. This training set can

then be used to train a binary classifier. At classification time, pairs are not formed (since
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the correct candidate is not known); instead, the standard one-versus-all binarization

method is still applied.

The kernels are then engineered to implicitly represent the differences between the

objects in the pairs. If we have a valid kernel K over the candidate space T , we can

construct a function DK over the space of pairs T × T as follows:

DK(x,y) = DK(〈x1,x2〉, 〈y1,y2〉)
= K(x1,y1) +K(x2,y2)

− K(x1,y2)−K(x2,y1).

It is easy to show [106] that DK is also a valid Mercer kernel. This makes it possible to

use kernel methods to train the reranker.

In this thesis, each candidate h̃i can be described by a structural hypothesis and a

vector of linear feature vector vi representing information that cannot be capture by

h̃i, e.g., the joint probability of hypothesis, or the individual category probability for

each category in the hypothesis. As a whole, each classifier example ei is expressed by

a combination of structural hypothesis pairs 〈h̃i
1
, h̃i

2〉 and feature vector pairs 〈x1
i ,x

2
i 〉

associated with the hypotheses. Then we can define the following kernels:

Ktr(ei, ej) = Kt(h̃i
1
, h̃j

1
) +Kt(h̃i

2
, h̃j

2
)−Kt(h̃i

1
, h̃j

2
)−Kt(h̃i

2
, h̃j

1
) (4.12)

Kpr(ei, ej) = Kp(x1
i ,x

1
j) +Kp(x2

i ,x
2
j)−Kp(x1

i ,x
2
j)−Kp(x2

i ,x
1
j) (4.13)

where Ktr and Kpr are kernels like DK, and Kt is a tree kernel function such as ST, SST,

and PTK kernels described in Section 2.2.2, and Kp is a polynomial kernel applied to the

feature vectors. The final kernel that we use for re-ranking is the following:

K(ei, ej) = Ktr(ei, ej) +Kpr(ei, ej) (4.14)

We explore innovative kernels K to be used in Equation 4.14:

KJ = S + p(xi)× p(xj) (4.15)

where p(·) is the global joint probability of a target hypothesis and S is a structural kernel,

i.e., SK, STK and PTK.

KP = S + pi · pj (4.16)

where pli and plj are the classification probabilities of the node (category) l in the trees

(hypotheses) h̃i and h̃j, respectively and S is again a structural kernel, i.e., SK, STK and

PTK.
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4.3.2 Reranking Models

We implemented the following five rerankers:

• Flat Reranker (FRR): generates the hypotheses with the flat hypothesis generation

algorithm explained in Section 4.1.1, and uses the representation of hypotheses with

the global tree described in Section 4.2.1.

• Fast Flat Reranker (FFRR): generates the hypotheses with the flat hypothesis gener-

ation algorithm explained in Section 4.1.1, and uses the representation of hypotheses

with the compact tree described in Section 4.2.2.

• Hierarchical Reranker (HRR): generates the hypotheses with the hierarchical hy-

pothesis generation algorithm explained in Section 4.1.2, and uses the representation

of hypotheses with the compact tree described in Section 4.2.2.

• Fast Hierarchical Reranker (FHRR): generates the hypotheses with the hierarchical

hypothesis generation algorithm explained in Section 4.1.2, and uses the representa-

tion of hypotheses with the compact tree described in Section 4.2.2.

• Sequence Reranker (SeqRR): generates the hypotheses with the flat hypotheses gen-

eration algorithm explained in Section 4.1.1, and uses the representation of hypothe-

ses that all categories are put in one line according to breadth-first strategy on the

hierarchy.

For comparative purposes, we also use for S a linear kernel over the bag-of-label2

(BOL). This is supposed to capture non-structural dependencies between the category

labels.

4.3.3 Reranking System

Figure 4.18 illustrates the whole reranking system, which comprises two parts: reranker

learning and hypothesis reranking. In the learning phase, we divided the training set in

two chunks of data: Train1 and Train2. The binary SVM classifiers are trained on Train1

and tested on Train2 (and vice versa) to generate the hypotheses on Train2 (Train1). The

union of the two sets constitutes the training data for the reranker.

In the classification phase, the binary classifiers are built on the training set to generate

the hypotheses on test set. These hypotheses then will be taken as the test set of the

reranker, and finally output the reranker performance. By making the comparison with

the baseline, we can derive the improvement produced by the structural dependencies of

the hierarchy.
2It simply uses the categorized labels as features. It is used in the KJ or KP schemes.
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Figure 4.18: Framework of Reranking Model

4.4 Experiments on Flat Reranker

The aim of the experiments is to demonstrate that our reranking approach can intro-

duce semantic dependencies in the hierarchical classification model, which can improve

accuracy. For this purpose, we show that several reranking models based on tree kernels

improve the classification based on the flat one-vs.-all approach. Then, we analyze the

efficiency of our models, demonstrating their applicability.

4.4.1 Setup

We used two full hierarchies, Topics and Industries of Reuters Corpus Volume 1 (RCV1)3

TC corpus and carried out some experiments on them with the entire documents from

RCV1.

For most experiments, we randomly selected two subsets of 10k and 5k of documents

for training and testing from the total 804,414 Reuters news from Topics by still using

all the 103 categories organized in 5 levels (hereafter SAM). The distribution of the data

instances of some of the different categories in such samples can be observed in Table 4.1.

Note that the most populated categories are at the top, the medium sized ones follow and

the smallest ones are at the bottom. There are some differences between the child-free

and child-full setting since for the former, from each node, we removed all the documents

from its children. The training set is used for learning the binary classifiers needed to

build the multi-class classifier (MCC). We used the datasets with two different settings:

3trec.nist.gov/data/reuters/reuters.html
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we removed from the node-fathers all the documents belonging to their children. We call

child-free this modality to contrast the normal setting that we call child-full.

Category
Child-free Child-full

Train Train1 Train2 TEST Train Train1 Train2 TEST

C152 837 370 467 438 837 370 467 438
GPOL 723 357 366 380 723 357 366 380
M11 604 309 205 311 604 309 205 311

.. .. .. .. .. .. .. .. ..
C31 313 163 150 179 531 274 257 284
E41 191 89 95 102 223 121 102 118

GCAT 345 177 168 173 3293 1687 1506 1600
.. .. .. .. .. .. .. .. ..

E31 11 4 7 6 32 21 11 19
M14 96 49 47 58 1175 594 581 604
G15 5 4 1 0 290 137 153 146

Total: 103 10,000 5,000 5,000 5,000 10,000 5,000 5,000 5,000

Table 4.1: Instance distributions of RCV1.

We implemented the baseline model in Chapter 3, and the classifiers are combined

using the one-vs.-all approach, which is also state-of-the-art as argued in [92]. Since the

task requires to assign multiple labels, we simply collect the decisions of the n classifiers:

this constitutes our MCC baseline.

Regarding the reranker, we implemented two rerankers: FRR and FFRR described in

Section 4.3.2.

The rerankers are based on SVMs (proLIBSVM) and the Preference Kernel (PK) de-

scribed in Section 4.3.1 built on top of SK, STK or PTK (see Section 2.2.2). These are

applied to the tree-structured hypotheses. We trained the rerankers using SVM-light-TK4,

a tree-kernel-enabled version of SVM-light [52], which allows for using structural kernel

on pairs of trees and combining them with vector-based kernels. Again we use default

parameters to facilitate replicability and preserve generality. The rerankers always use 8

best hypotheses.

All the performances are provided by means of Micro- and Macro-Average F1, evalu-

ated on test data over all categories (103 or 363). Additionally, the F1 of some binary

classifiers is reported.

Finally, we assessed the statistical significance of our results by using the model de-

scribed in [134] and implemented in [84].

4disi.unitn.it/moschitti/Tree-Kernel.htm
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4.4.2 Classification Accuracy

To definitely assess the benefit of our rerankers we first tested them on the Lewis’ split

of two different datasets of RCV1, i.e., Topics and Industries. Table 4.2 shows the com-

parison between flat rerankers (FRR) using STK or BOL (when indicated) with KJ and

KP schema, and 32,000 examples are used for training the rerankers. BL (Lewis) and

BL (Ours) in Table 4.2 mean the baseline of Lewis’ model on RCV1-v2 and our baseline

on RCV1-v3. Table 4.2 gives impressive results, e.g., for Topic, there is 3.3 percent points

more than the state-of-the-art flat TC models, and for Industry, the improvement is

up to 5.2 percent points. We carried out statistical significance tests, which certified the

significance at 99%. This was expected as the size of Lewis’ test sets in the order of

several hundred thousands.

F1
Topics Industries

BL (Lewis) BL (Ours) KJ KP BL (Lewis) BL (Ours) KJ KP

Micro-F1 0.816 0.816 0.827 0.849 0.512 0.562 0.576 0.628
Macro-F1 0.567 0.566 0.590 0.615 0.263 0.289 0.314 0.341

Table 4.2: Comparison between flat rerankers using STK.

Next we compared the different kernels using the KJ combination (which exploits the

joint hypothesis probability, see Section 4.1.1 and Section 4.1.2) on SAM. Table 4.3 shows

that the baseline (state-of-the-art flat model) is largely improved by all rerankers trained

by only 8k training examples. However, the reranker based on BOL (it cannot capture

the same dependencies as the structural kernels) seems to provide the same performance

as the baseline. In contrast, when we remove the dependencies generated by shared

documents between a node and its descendants (child-free setting), Table 4.4 shows tree

kernels (STK and PTK) significantly improve on BOL only with 8k training examples.

SK delivers an improvement similar to BOL, suggesting that sequential features are not

enough.

F1 BL BOL SK STK PTK

Micro-F1 0.769 0.787 0.786 0.790 0.790
Macro-F1 0.539 0.541 0.546 0.547 0.560

Table 4.3: Comparison of rerankers using different kernels with child-full setting.

F1 BL BOL SK STK PTK

Micro-F1 0.640 0.657 0.653 0.677 0.682
Macro-F1 0.408 0.436 0.431 0.447 0.447

Table 4.4: Comparison of rerankers using different kernels with child-free setting.
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To study how much data is needed for the reranker, Figures 4.19 and 4.20 report the

Micro-and Macro-Average F1 of our rerankers over 103 categories, according to different

sets of increasing training data under the child-free setting. This time, KJ is applied to

only STK. We note that (i) few thousands of training examples are enough to deliver

most of the RR improvement; and (ii) the FFRR produces similar results to standard

FRR. This is very interesting since, as it will be shown in the next section, the compact

representation produces much faster models.
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Figure 4.19: Learning curves of the reranking models using STK in terms of MicroAverage-F1.

Table 4.5 reports the F1 of some individual categories as well as global performance

over all 103 categories of RCV1, 8 hypotheses and 32k of training data for rerankers

using STK. In these experiments we used STK in KJ and KP . We note that KP highly

improves on the baseline on child-free setting by about 7.1 and 9.9 absolute percent points

in Micro-and Macro-F1, respectively. Also the improvement on child-full is meaningful,

i.e., 4.6 percent points. This is rather interesting as BOL (not reported in the table)

achieved a Micro-average of 80.4% and a Macro-average of 57.2% when used in KP , i.e.,

up to 2 points below STK. This means that the use of probability vectors, in combination

with structural kernels, is a very promising direction for reranker design.

To better understand the potential of reranking, Table 4.6 shows the oracle performance

with respect to the increasing number of hypotheses. The outcome clearly demonstrates

that there is large margin of improvement for the rerankers.

Finally, our approach has high potential as: (i) it is very efficient since the reranker is

constituted by only one binary classifier using efficient tree kernels. For lack of space we
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Figure 4.20: Learning curves of the reranking models using STK in terms of MacroAverage-F1.

do not report our running time study, which shows that thousands of hypotheses can be

classified in few seconds. (ii) There is a large margin of improvement for our rerankers

as shown in Table 4.6. It reports the oracle performance with respect to the increasing

number of hypotheses (using a RCV1 subset). Oracle accuracy corresponds to the result

we would get if we were able to always select the best hypothesis with our reranker. The

results also show that the quality of the hierarchically generated hypotheses is better than

those generated by the flat method.

4.4.3 Running Time

To study the applicability of our rerankers, we have analyzed both the training and

classification time. Figure 4.21 shows the minutes required to train the different models

as well as to classify the test set according to data of increasing size.

It can be noted that the models using the compact hypothesis representation are much

faster than those using the complete hierarchy as representation, i.e., up to five times in

training and eight times in testing. This is not surprising as, in the latter case, each kernel

evaluation requires to perform tree kernel evaluation on trees of 103 nodes. When using the

compact representation the number of nodes is upper-bounded by the maximum number

of labels per documents, i.e., 6, times the depth of the hierarchy, i.e., 5 (the positive

classification on the leaves is the worst case). Thus, the largest tree would contain 30

nodes. However, we only have 1.82 labels per document on average, therefore the trees

have an average size of only about 9 nodes.
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Cat.
Child-free Child-full

BL KJ KP BL KJ KP

C152 0.671 0.700 0.771 0.671 0.729 0.745
GPOL 0.660 0.695 0.743 0.660 0.680 0.734
M11 0.851 0.891 0.901 0.851 0.886 0.898

.. .. .. .. .. .. ..
C31 0.225 0.311 0.446 0.356 0.421 0.526
E41 0.643 0.714 0.719 0.776 0.791 0.806

GCAT 0.896 0.908 0.917 0.908 0.916 0.926
.. .. .. .. .. .. ..

E31 0.444 0.600 0.600 0.667 0.765 0.688
M14 0.591 0.600 0.575 0.887 0.897 0.904
G15 0.250 0.222 0.250 0.823 0.806 0.826

103 cat.
Mi-F1 0.640 0.677 0.731 0.769 0.794 0.815
Ma-F1 0.408 0.447 0.507 0.539 0.567 0.590

Table 4.5: F1 of some binary classifiers along with the Micro and Macro-Average F1.

k Micro-F1 Macro-F1

1 0.640 0.408
2 0.758 0.504
4 0.821 0.566
8 0.858 0.610
16 0.898 0.658

Table 4.6: Oracle performance according to the number of hypotheses (child-free setting).

4.5 Experiments on Hierarchical Reranker

In these experiments, we show that several hierarchical reranking models based on tree

kernels can improve the state-of-the-art in TC. Then, we analyze the efficiency of our mod-

els, demonstrating their applicability. For this purpose, we used three different datasets:

(1) the entire RCV1 (same Lewis’ split [67]), which provides a concrete assessment with

respect to the state-of-the-art in TC; (2) the same subset of RCV1 of 15k examples as

in Section 4.4.1 for carrying out extensive performance analysis, e.g., deriving learning

curves; and (3) the same setting of Zhou et al. [135] to compare with state-of-the-art

reranking in machine learning.

Finally, we optimized our reranker for MGIE (in Section 3.5.2) and measure the accu-

racy of different models according to it on the Lewis’ split.
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Figure 4.21: Training and test time of the rerankers trained on data of increasing size.

4.5.1 Setup

We also used the full hierarchy of Reuters Volume 1 (RCV1)5 TC corpus to assess our

developed hieararchical rerankers (HRR).

To compare with previous work we considered the Lewis’ split [67], which includes

23,149 news for training and 781,265 for testing. We also used the same subsets of 10k

training documents and 5k test documents as in Section 4.4.1, and the distribution of the

data instances of some of the different categories in the 15k samples can be observed in

Table 4.1.

We implemented the top-down model described in Chapter 3, and the subtree classifiers

and local classifiers are combined using the one-vs.-all approach, which is also state-of-

the-art as argued in [92]. Since the task requires to assign multiple labels, we simply

collect the decisions of the n classifiers: this constitutes our MCC baseline.

Regarding the reranker, we implemented two rerankers: HRR and FHRR described in

Section 4.3.2.

The training sets are used for learning the binary local classifiers for the internal cate-

gories in the hierarchy and subtree classifiers for all categories. We used the proLIBSVM

to build the classifiers with the one-vs.-all strategy. In the classification phase, the classi-

fiers are applied in top-down manner as described in Section 3.4.2, which constitutes our

top-down baseline.

5trec.nist.gov/data/reuters/reuters.html
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The rerankers are based on proLIBSVM and the Preference Kernel (PK) described

in Section 4.3.1 built on top of PTK [78]. The latter is applied to the tree-structured

hypotheses. We also add a linear kernel to PK , which is applied to unidimensional vectors

containing the probability of the hypothesis (computed as explained in Section 4.1). We

trained the rerankers using SVM-light-TK6, a structural kernel toolkit based on SVM-light

[52], which allows for using PTK on pairs of trees and combining them with kernel-based

vectors. Again we use default parameters to facilitate replicability and preserve generality.

In all experiments, if not mentioned, always 8 hypotheses are used.

All the performance figures are provided by means of Micro- and Macro-Average F1,

evaluated from our test data over all 103 categories. Additionally, the F1 of some binary

classifiers is reported.

Finally, we assessed the statistical significance of our results by using the model de-

scribed in [134] and implemented in [84].

4.5.2 Classification Accuracy on Whole Reuters

In the first experiments, we used the Lewis’ split. The results are reported in Table 4.7,

whose columns have the following meaning: (i) Lewis’ flat refers to the result achieved

in Lewis et al. paper; (ii) Ours, flat is our reimplementation of the Lewis et al. MCC,

i.e., a one-vs.-all multi-classifier; (iii) Hier goes beyond the flat model as it is a top down

algorithm so already exploiting the classification hierarchy; and (vi) FRR and HRR are our

kernel-based reranking models applied to hypotheses generated with a flat or structural

algorithm.

F1
baseline our Rerankers

Lewis, flat Ours, flat Ours, hier SeqRR FRR HRR
Micro-F1 0.816 0.815 0.819 0.828 0.849 0.855
Macro-F1 0.567 0.566 0.578 0.590 0.615 0.634

Table 4.7: Comparison between our rankers on the entire Topic hierarchy of RCV1 exactly using Lewis’
split and data.

Our flat MCC achieved a Micro-F1 of 81.5, which basically matches the 81.6 reported

in [67]. The top down model slightly improves the flat models, i.e., 81.9-81.5=0.4. This is

significant with p=10−5 (please consider that the test set contains about 800k examples).

When FRR is used on top of the baseline, we improved it by 3.4 absolute percent points

(significant at p=10−5), i.e., 84.9-81.5=3.4. The hierarchical generation of hypotheses

6disi.unitn.it/moschitti/Tree-Kernel.htm
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seems to be beneficial as we obtain another statistical significant delta of 0.6 (significant

at p=10−5). The improvement on the Macro-average follows a similar pattern.

The SeqRR model is basically a reranker that only uses label subset features, i.e.,

dependencies between hierarchy nodes without using their structure. It is interesting to

note that it improves the baselines, i.e., flat and top down models, but it is outperformed

by FRR, which exploits hierarchical structural dependencies.

Very interestingly, HRR generates better hypotheses than the reranker using the same

features of FRR, achieving slightly better accuracy (e.g., 0.855 - 0.849 = +0.6%, statisti-

cally significant result).

4.5.3 Classification Accuracy on the Reuters Subset

We used our sampled dataset to more easily compute learning and running time curves.

To make such experiments more interesting, we removed the documents of children from

their fathers (child-free). This enables a better assessment of our results concerning the

encoding of dependencies with RRs. Indeed, such setting at least removes the hierarchical

dependencies between a father and its children induced by their shared documents (i.e.,

their shared semantics).

Figures 4.22 and 4.23 report on the Micro-and Macro-Average F1 of our rerankers over

103 categories, according to different sets of training data, whereas Table 4.8 reports the

F1 of some individual categories with different rerankers over all 103 categories, using the

small subset of Reuters described in Table 4.1. The data uses the child-free setting.

We note that: first, the child-free setting is much harder than before (e.g., the baseline

Micro-F1 for child-free is 0.640 whereas in an experiment using the same data and the

standard child-full setting we obtained 0.769). As a consequence, the rerankers highly

improve on the baseline by almost 5 absolute percent points in both Micro and Macro

measures. Very interestingly, they only need a few thousands of training data for releasing

most of their benefit.

Second, the models using the compact representation, i.e., FFRR and FHRR, produce

the same accuracy as their respective counterpart, i.e., FRR and HRR. This is very

interesting since, as shown in the next section, the compact representation produces much

faster models. The differences between FFRR and FHRR, in this case, is statistically

insignificant as the smaller test set does not allow to statistically assess close results. The

only statistical significant differences are between the baseline and the reranking models

(p=10−3).

Third, the results on individual categories prevent to establish a clear winner between

the rerankers, although, they always outperform the baseline.

Finally, to better understand the potential of hierarchical generation, Table 4.9 reports

82



63.5

64.0

64.5

65.0

65.5

66.0

66.5

67.0

67.5

68.0

68.5

1 6 11 16 21 26 31 36 41 46 51 56 61

M
ic

ro
-F

1

Training Data Size (thousands of instances)

baseline

FRR

FFRR

HRR

FHRR

Figure 4.22: Learning curve of reranking models in terms of MicroAverage-F1 and reranking data.

the oracle performance with respect to the increasing number of hypotheses. This is the

accuracy we would get if we were able to always select the best hypothesis with our

reranker. The results clearly show that there is large margin of improvement for the

rerankers and that the quality of the hierarchically generated hypotheses is better than

the one of flat generated hypotheses.

4.5.4 Running Time on Reuter Subset

To study the applicability of our rerankers, we have analyzed both the training and

classification time. Figure 4.24 shows the minutes required to train the different models

on data of increasing size. Figure 4.25 reports the testing time required to classify 5k

documents using rerankers learned on training sets of increasing size. It can be noted

that the models using the compact hypothesis representation are much faster than those

using the complete hierarchy as representation, i.e., up to five times in training and

eight time in testing. This is not surprising as, in the latter case, each kernel evaluation

requires to perform tree kernel evaluation on trees of 103 nodes. When using the compact

representation the number of nodes is much lower.
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Figure 4.23: Learning curve of reranking models in terms of MacroAverage-F1 and reranking data.

4.5.5 Comparison with Zhou et al. (2011)

In addition, we compared to the work by Zhou et al. [128], which proposes a number of

SVM models that improve over traditional flat and hierarchical classifiers. In order to

ensure experimental compatibility, we prepared the data in a similar fashion and removed

documents belonging to multiple siblings from the training and test sets. However, we

obtained some differences in our dataset as shown in Table 4.10.

We experimented with three subhierarchies of the RCV collection: MCAT, CCAT, and

ECAT, as in [128]. Table 4.11 shows our results obtained by our FRR and HRR rerankers

and compare them with those reported in [128]. Additionally, considering that the Zhou

et al. setting reduces our structural reranking to sequences we designed a reranker based

on sequence kernels (seq column). The results show that: first, our baseline MCC already

achieves higher accuracy than all the Zhou et al.’s models. This is probably due to the

fact that (i) our baseline is very accurate as it exactly replicates the Lewis et al.’s MCC

and (ii) we have some differences in the document set.

Second, our rerankers FRR and HRR highly improve on both our baselines as well

as the best results obtained by Zhou et al. using their reranking approach (based on

orthogonal transfer) for all three subhierarchies.

Third, FRR and HRR show similar accuracy in this setting (their difference is again

statistical significant): this is reasonable as removing the sibling dependencies basically
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Category BL SeqRR FRR FFRR HRR FHRR

C152 0.677 0.683 0.700 0.701 0.749 0.740
GPOL 0.660 0.588 0.695 0.706 0.674 0.684
M11 0.851 0.885 0.891 0.891 0.884 0.853

.. .. .. .. .. .. ..
C183 0.507 0.546 0.588 0.612 0.588 0.575
G154 0.784 0.871 0.800 0.785 0.810 0.838
M142 0.678 0.618 0.721 0.706 0.722 0.718

.. .. .. .. .. .. ..
C16 0.400 0.567 0.600 0.632 0.533 0.429
E121 0.316 0.433 0.546 0.546 0.563 0.483
G153 0.313 0.417 0.353 0.303 0.541 0.571

103 cat.
Micro-F1 0.640 0.653 0.677 0.680 0.682 0.684
Macro-F1 0.408 0.431 0.447 0.451 0.443 0.457

Table 4.8: F1 of some different rerankers along with the Micro and Macro-Average F1 with child-free
setting.

k
Flat Generation Hierarchical Generation

Micro-F1 Macro-F1 Micro-F1 Macro-F1

1 0.640 0.408 0.640 0.408
2 0.758 0.504 0.771 0.538
4 0.821 0.566 0.835 0.603
8 0.858 0.610 0.869 0.620
16 0.898 0.658 0.917 0.710

Table 4.9: Oracle performance according to the number of hypotheses.

degenerates our structural hypothesis generation algorithm to an almost flat one.

Finally, to confirm the above claim, we experimented with a reranker based on a

sequence kernel. This is applied to the path from the root to the only leaf derived

from tree representation used in the tree kernels-based rerankers. Again, in the Zhou et

al. setting, this is a tree with a single path. The accuracy of the model, seq column,

equivalent to FRR and HRR, confirms that little structural information can be captured

in this setting.

4.5.6 Multi-label Graph-induced Error

We also demonstrate that our approach is really effective for optimizing hierarchical classi-

fication. For this purpose, a hierarchical measure is needed, i.e., a measure that takes into
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Figure 4.24: Training time of the rerankers trained on data of increasing size.

|Y | |L| TOTAL TRAIN TEST
Zhou Ours Zhou Ours Zhou Ours Zhou Ours Zhou Ours

CCAT 31 30 26 26 209,133 261,262 5,810 7,570 203,323 253,692
MCAT 9 9 7 7 189,211 180,438 5,438 5,205 183,773 175,233
ECAT 23 23 18 18 71,356 84,303 2,196 2,592 69,160 81,711

Table 4.10: Zhou et al.’s setting and differences with the achieved one. Y is the set of categories whereas
L is the set of leaf categories.

account the different degrees of mistakes. For example, assigning a category to a docu-

ment, which is sibling of the correct one is less critical than assigning a much farer node of

the hierarchy. The Multi-label Graph-induced Error (MGIE, suggested by ECML/PKDD

2012 Discovery Challenge) takes the distances between true positives and false positives

by also over-penalizing the false negatives. It is computed as follows: (i) find the smaller

set between the true and the predicted classes of each document; (ii) compute the min-

imum graph distance between each class of the smaller set and the closest class of the

other set, in such a way that minimizes the sum of distances; (iii) set all classes in excess

equal to the maximum distance; and (iv) add all the distances and divide them by the

number of the classification tasks, where such number is equal to the sum of the true

categories of each document.

In our experiments we set the maximum distance to five (and seven), thus all distances

above five (seven) are treated the same. The results are shown in Table 4.12. The baseline

is computed by assigning categories according to their occurrence probability. We note

that flatSVM (one-vs.-all) is slightly improved by using a top-down approach. The flat

86



0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

1 6 11 16 21 26 31 36 41 46 51 56 61

T
e
s
t 

T
im

e
 (

m
in

)

Training Data Size (thousands of instances)

FRR

FFRR

HRR

FHRR

Figure 4.25: Testing time of the rerankers trained on data of increasing size.

Micro F1
baseline improved

Zhou, flat Ours, flat Zhou, hier Ours, hier Zhou, ortho FRR HRR Seq
MCAT 0.930 0.946 0.926 0.942 0.934 0.970 0.967 0.970
CCAT 0.731 0.787 0.738 0.760 0.764 0.825 0.821 0.829
ECAT 0.836 0.857 0.840 0.846 0.838 0.884 0.881 0.883

Table 4.11: Comparison with Zhou et al. [128].

reranker, FRR, improves on the previous models and the HRR model exploiting better

initial structural hypotheses improves on FRR, suggesting that our rerankers can be tuned

up on any measure, especially the hierarchical ones.

F1
RCV1-v2

baseline flatSVM HierSVM FRR HRR
max = 5 4.462 1.343 1.322 1.036 0.974
max = 7 5.538 1.824 1.794 1.360 1.234

Table 4.12: Multi-label Graph-induced Error.

4.6 Related Work

Ideally a comparison with other hierarchical models would be needed to better assess the

benefit of our approach. This is not always simple as not all previous work follows the

standard training/test split of RCV1. Moreover, previous models tend to be inefficient and
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this leads to experimentation with only Reuters subparts. For example, the work in [94]

is very close to ours. They directly encoded global dependencies in a gradient descendent

learning approach. Their approach is less efficient than ours so they could experiment

with only CCAT subhierarchy of RCV1, which only contains 34 nodes, achieving lower

accuracy than ours. Other relevant work such as [73] and [40] used a rather different

dataset and a different idea of dependencies based on feature distributions over the linked

categories.

Heuristics for reducing error propagation and methods for dealing with large-scale

problems were also proposed in [8, 129]: although they may be interesting from an ap-

plication viewpoint, they do not help to compare against our model. In particular, early

work on automated hierarchical text categorization, e.g., [40, 71, 58], simply approached

the problem in a top down fashion by recursively creating multi-classifiers for each in-

dividual node. This approach is one of the baselines we compare with. [8] defined an

algorithm called Refined Experts, which propagates the lower-level category classification

up through the hierarchy before applying top-down classification, which thus refines the

first classification decisions. This model is obviously generalized by our reranker, which

indeed refines the first pass classification of local classifiers, exploiting the classification

of the entire structure. [34] used a Bayesian aggregator on the result of the individual

binary classifiers, thus also this is generalized by our approach. [129] used a search engine

to refine the set of category candidates. This approach works well for a huge number of

categories but of course the pre-selection it applies introduces some noise. [115] propose

large-margin discriminative methods for generating complex output such as category label

subsets. Our approach allow to generate hierarchies of labels thus improving it. However,

we can only rely on a few hypotheses, which limits the search space but at the same time

makes our approach scalable to larger categorization schemes.

The work on SVM-struct [114, 42] and meta-classifier [44] does not exploit hierarchical

dependencies but it can be interesting for a comparison. For this purpose, we implemented

the sequence kernel model (SeqRR), which completely subsumes the model in [44] since

it generates a superset of the meta-features used in such work. It also approximates [114]

as it uses the same subset features of SVM-struct but of course the search space of the

latter is far larger than the best hypotheses we generate. Anyhow, according to Table 4.7,

SeqRR improves on the baseline but it is also outperformed by our hierarchal rerankers.

[14] used discriminative functions to encode dependencies and to jointly learn a global

loss over the hierarchy. Similar online methods were proposed in [35, 18]. Again, our

reranker approach produces better features and it is in general more efficient.

On a different research line, hierarchical shrinkage in [90, 73] estimates parameters in

Näıve Bayes classifiers considering the path from the root to the leaf node. A similar idea
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is presented in [103], where the path above is encoded in multinomial logistic models ac-

counting for Bayesian priors. These methods are generalized by all possible substructures

generated by our approach. In [135], the authors enforced each node of the hierarchy to

be orthogonal to its ancestors as much as possible in additional to minimizing the loss at

individual nodes. [107] presents a survey of hierarchical classification methods.

4.7 Conclusions

After the extensive experimentation carried out in this chapter some almost definitive

conclusions can be derived about the use of reranking model for improving HTC accuracy.

We have divided our conclusions in two parts: (a) The use of FRR, i.e. the model

based on the simple flat hypothesis generation and (b) the uses of more complicated

hierarchical rerankers based on the hierarchical hypothesis generation by exploiting the

category hierarchy.

4.7.1 Flat Reranker in Hierarchical Text Categorization

In this chapter an extensive evaluation of two flat reranking models (i.e., FRR and FFRR)

has been reported. Real data (Reuter Corpus Volume I), as well as known benchmarking

corpora have been used for comparative analysis. The results of such experiments allowed

to systematically examine the following design choices for HTC:

1) the flat hypothesis generation algorithm gives a set of classification results, some of

which are better than the local models: this has been measured with the oracle perfor-

mance.

2) two kinds of representation of the classification results encoding the interdependen-

cies of categories in hierarchy.

3) use of preference kernel based on structural kernels helps to learn the dependencies

for ranking the hypotheses and output the best one as a final output.

Additionally, to better investigate the role of topical relationships, we consider two

interesting cases:

• traditional categorization schemes in which node fathers include all the documents

of their child categories; and

• more general schemes, in which children can include documents not-belonging to

their fathers.

Data analysis has shown that all rerankers based on different kernels using the KJ (or

KP ) combination (which exploits the joint hypothesis probability, or individual category

probability) on SAM largely improved the baseline (state-of-the-art flat model).
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In order to demonstrate that this is due to structural dependencies, we used:

1) the reranker based on BOL (it cannot capture the same dependencies as the struc-

tural kernels), which seems to provide the same performance as the baseline.

2) the reranker based on SK, which delivers an improvement similar to BOL, suggesting

that sequential features are not enough.

3) the preference kernel based on tree kernels (STK and PTK), which significantly

improve on BOL and SK.

More interestingly, tree kernels (STK and PTK) based on reranker significantly im-

prove on BOL and SK when we remove the dependencies generated by shared documents

between a node and its descendants (child-free setting). This further shows that structural

dependencies rather than the documents dependencies play an important role in HTC.

Regarding the applicability of our rerankers, we have analyzed both training and clas-

sification time. It can be easily concluded that the models using the compact hypothesis

representation are much faster than those using the complete hierarchy as representation,

since in the latter case, each kernel evaluation requires to perform tree kernel evaluation

on the entire hierarchy.

4.7.2 Hierarchical Reranker in Hierarchical Text Categorization

The study of the impact of hierarchical reranking on HTC allows to derive these main

conclusions:

1) a more complicated hypothesis generation algorithm considers the hierarchy con-

straint and produces better hypotheses than the flat simple algorithm;

2) based on the high-quality hypotheses in 1), the HRR remarkably improves the

baseline, and more importantly slightly improves the performance of FRR;

3) compact hypothesis representation based on FHRR is efficient while almost keeping

the accuracy as HRR;

4) a hierarchical distance measure confirms that HRR and FHRR reduce errors com-

puted as the graph distances between target label set and predicted label set.
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Chapter 5

Local Incremental Reranking for

Hierarchical Text Classification

Chapter 4 introduces two kinds of global reranking model to improve the state-of-the-art

by learning the interdependencies among categories in the hierarchy. However, when the

number of categories becomes huge (such as thousands of categories in DMOZ or wikipedia

datasets), the global rerankers suffer from the inefficiency of the big bang approach.

In this chapter we propose:

1) an efficient local incremental reranking model (LIR) based on a top-down approach

to improve the accuracy by absorbing the local category dependencies. The LIR consists

of a set of local rerankers, and each is for one sub-problem decomposed from the entire

hierarchy in Section 3.4.2. According to the top-down method, LIR recursively deals

with the sub-problems instantiated by the hierarchy by applying the corresponding local

rerankers.

2) fast LIR model combining the optimization of basic generative models and 1) for

large-scale hierarchical text classification.

Section 5.1 simply reviews the top-down method in HTC and the global reranker to

provide the preliminaries for LIR, which is described in details in Section 5.2. We make

a comparative complexity analysis for GR and LIR in Section 5.2.3. Section 5.4 shows

the experimentation, i.e., a comparison of GR and LIR on RCV1 in Section 5.4.1, and

performances of fast LIR on the large-scale DMOZ dataset presented in Section 5.4.2.

Finally, we derive the conclusions in Section 5.5.

5.1 Preliminaries

In this secton, we simply review the hierarchical models in HTC and the global reranking

model proposed in Chapter 4 to provide background knowledge for the local incremental

91



reranker in the next section.

5.1.1 Hierarchcial Models in Hierarchical Text Categorization

Chapter 3 describes two very well-known methods for the design of hierarchical text

classifiers (HTC): the big bang and the top-down approaches. The former learns a single

(but generally complex) hierarchical classification model, which is inadequate for large

hierarchies, e.g., Yahoo! Categories and Dmoz as it is too slow. The latter uses the

hierarchical structure to decompose the entire problem into a set of smaller sub-problems.

Then it proceeds in top-down fashion along the hierarchy, achieving high efficiency in both

learning and prediction phase, since each time a much smaller problem with corresponding

feature set is addressed. However, it suffers from the unrecovered errors from the higher

to the lower nodes.

5.1.2 Global Structural Reranker

The approach of the global reranker proposed in [80] mainly consists of three different

steps:

1) the application of the one-vs.-all approach to build a multi-classifier over all hier-

archy categories;

2) the use of the classification probability of the binary node classifiers to generate k

global classification hypotheses, i.e., the set of categories the target document belong to;

and

3) reranking them by means of an SVM using tree kernels applied to the hierarchy

tree, i.e., each hypothesis is represented by the tree associated with the hierarchy1, where

the classification decisions are marked in the node themselves.

It should be noted that: in Step (i) no information about the hierarchy is used. Step (ii)

generates global classification hypotheses by also deriving their joint probability, which

is used for preliminary ranking them. Step (iii) uses a reranker that exploits structural

features. This includes co-occurrences, e.g., given three categories, C1, C2 and C3, it

encodes their subsets {C1, C2, C3}, {C1, C3}, {C1, C2, C3} as features. Additionally, it

also encodes their structures, e.g., C1 is father of C2 which is father of C3 as features.

More details about hypothesis representation and their use for training the rerankers are

given in [80].

1The approach can also be extended to hierarchies having a DAG shape.
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5.2 Local Incremental Reranker

5.2.1 LIR Learning

We could see from Section 5.1 that the top-down approach provides high efficiency for

HTC but suffers from the error propagation, which is caused by wrong predictions in the

upper levels of hierarchy. Meanwhile, the global reranker could improve the prediction

by learning the category dependencies, as one of the big bang approaches, it is subject

to the low efficiency in learning and classification phases. An intuition is whether we

could find some model that overcomes the drawbacks above by combining the efficient

top-down manner and GR’s accurate prediction, particularly for the nodes in upper levels.

The answer is positive and the local incremental reranking model in this section is such

a model.

The local incremental reranking model consists of a set of local rerankers, each cor-

responds to one sub-problem in top-down method. To build the local reranker we need

to:

1) Obtain the individual decision probabilities output by the top-down one-vs.-all clas-

sifiers, e.g., the local probability of each local classifier and subtree probability of each

subtree classifier;

2) Generate the top k hypotheses based on the joint probabilities above for each sup-

problem;

3) Represent the hypotheses with the hierarchy and organize the top k hypotheses

into two kinds of pairs: positive with the Micro-F1 of the first hypothesis better than the

second, and negative with the first hypothesis worse than the second.

4) Learn a local reranker by using the tree kernels (e.g., PTK in the perference kernel

KP in [80]) applied to the hypothesis representation. The latter is just a tree constituted

by a node and its children (obviously such classifier also labels internal nodes).

5.2.2 LIR Reranking

In the classification phase, we apply the node multi-classifiers (i.e., local and subtree

classifiers) in top-down way and we rerank their decisions with the local rerankers. Of

course, we progress to the children of a node only after the reranking step of the multi-

classifier associated with its father is terminated. This way, LIR exploits the efficient

top-down algorithm but at the same time allows for capturing dependencies between

father and its children. These dependencies are then propagated in a top-down fashion.
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5.2.3 Computational Complexity Analysis

The focus of our paper is to improve the efficiency of the global reranker. Thus, we will

analyze the computational complexity of GR vs. the one of LIR. There are two sources of

complexity in SVM using tree kernels: (i) the learning algorithm working in dual space;

and (ii) the computation of the tree kernel function. Let us define:

• m the number of hierarchy nodes,

• µ the number of the internal nodes and

• n the size of training data.

The worst case complexity of global reranker is given by the SVM learning, i.e., O(nc),

where 2 < c < 3, multiplied by the tree kernel times, which is quadratic in the number of

tree nodes, i.e., O(m2). Thus global reranker runs in tGR and:

tGR = O(nc) ∗O(m2) = O(ncm2) (5.1)

The worst case complexity of local incremental reranking happens when the hierarchy

is flat (m = 1) but this is not an interesting case. Thus, let us consider, a non trivial

hierarchy with m >> 1. We also consider the average case in which the training data is

distributed uniformly between the categories2. With these assumptions, we have µ multi-

classifiers, each with n/µ training examples. It follows that their learning complexity

is O(µ(n/µ)c) multiplied by the tree kernel complexity. This, considering that the local

classifiers have on average m/µ + 1 nodes, is (m/µ + 1)2. As a result, LIR shows a

complexity:

tLIR = O(µ(n/µ)c ∗ (m/µ)2) = O((n/µ)cm2/µ) (5.2)

under the condition 2 < c < 3, we can get:

tLIR < O(ncm2/µ3) (5.3)

which is lower than the tGR of global reranker.

Furthermore, if we used the fact that O(µ3) > O(m2), we could see:

tLIR < O(nc) (5.4)

The classification analysis is similar as there is (i) a quadratic term O(n2) wrt the number

of support vectors (lower but proportional to n) and (ii) the usual O(m2) term for the

tree kernel evaluation.
2The usual case of the node father containing all the documents of the children, clearly violates such assumption. More

complex equations taking into account this assumption can be defined but this is beyond the purpose of this paper.
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5.3 Fast Local Incremental Reranker for Large-scale Hierarchi-

cal Text Categorization

The reranking system in this thesis actually can be divided into two parts: the basic

generative model and the reranking model. The former we used in chapter 3 is the flat or

top-down one-vs.-all proLIBSVM classifiers. The latter is based on the former, which is

the RR and efficient fast RR based on the compact hypotheses representation. In order

to overcome the low efficiency of RR, we further concentrated on improving the latter

by proposing LIR in Section 5.2. This has made the reranking model efficient enough.

However, when the number of categories becomes huge (thousands of categories) in a huge

hierarchy tree such as the DMOZ, Yahoo! directories3, the former (i.e., flat or top-down

one-vs.-all proLIBSVM classifiers) become inadequate in both learning and classification.

In order to improving the efficiency of basic generative model on large-scale hierarchical

dataset, we suggested:

• using proLIBLINEAR instead of proLIBSVM model. The experimentation in Sec-

tion 3.6.2 has proven that the former is equivalent with the latter in accuracy but

far more efficient, particularly for the learning on a large amount of training set in

one-vs.-rest strategy.

• applying the proLIBLINEAR models in top-down manner as described in Section 3.4.2.

• creating the local dictionary for each sub-problem. Generally we establish one global

dictionary (or vocabulary of features) when pre-processing the training documents,

this results in the sparse coding of w value stored in proLIBLINEAR models (i.e.,

contains too many zeros in the w), which makes two negative effects: (i) each pro-

LIBLINEAR takes a big memory size and a large number of them consume too

much memory of PC during classification phase; (2) it decreases the computational

efficiency.

In order to solve the sparse coding of w, we create the a set of local dictionaries, each

associating with a sub-problem in top-down method, thus w of models within such

sub-problem are based on the corresponding local dictionary, which is low-dimension

and non-sparse as the w based on the global dictionary.

It is worth noting that the introduction of local dictionary does not affect the clas-

sification results since in top-down method because: (a) the multi-classifiers (i.e.,

local classifiers and subtree classifiers) are locally learned, which we can see from the

construction of positive and negative examples for each classifier in Section 3.4.2; (b)

3http://www.dmoz.org/,http://dir.yahoo.com/
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in classification phase, once we choose the sub-problem as the further step, the clas-

sification based on such sub-problem is also local, i.e., independent from its sibling

sub-problems.

In a word, the optimizaition of basic generative models and the fast local rerankers

applied in LIR form the software (let’s call it fastLIR) for large-scale hierarchical text

categorization. The experimentation of fastLIR on DMOZ is shown in Section 5.4.2.

5.4 Experiments and Evaluations

To our knowledge the only approach using the entire RCV1 hierarchy structure with

the same setting as [67], and significantly outperforms the benchmark is the structural

reranking model (RR) proposed in Chapter 4. This method, however, is computation-

ally expensive. The aim of the experiments is to demonstrate that our LIR remarkably

improves the efficiency with little loss of accuracy comparing to RR in [80].

In order to extend our LIR to the large-scale dataset, we suggested the fast LIR. The

experiments on DMOZ show the efficiency of the fast LIR model on large-scale hierarchical

text categorization.

5.4.1 GR and LIR comparison on the Whole RCV1

We compare GR against LIR with respect to accuracy and running time. We used Reuters

Volume 1 (RCV1) with Lewis’ split [67], which includes 23,149 news for training and

781,265 news for testing. We implement the top-down classifiers with SVMs using the

default parameters (trade-off and cost factor = 1), linear kernel, normalized vectors (using

the Euclidean norm), stemmed bag-of-words representation, log(TF+1)×IDF weighting

scheme and a common stop list. All the performance figures are provided by means of

Micro/Macro-Average F1, evaluated from our test data over all 103 categories.

Table 5.1 reports the accuracy whereas Table 5.2 illustrates the learning and classifi-

cation time. The table columns have the following meanings:

• flat refers to the results achieved in [67] and [80], respectively;

• top-down is our reimplementation of the conventional top-down method;

• GR represents the best accuracy of kernel-based reranking models applied to the

hypotheses made on all hierarchy classification; and

• LIR refers to our local incremental reranking model.
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F1
baseline

GR LIR
flat top down

Micro-F1 0.816 0.819 0.849 0.841
Macro-F1 0.567 0.578 0.615 0.611

Table 5.1: Micro/Macro-F1 of different models on RCV1.

time cost GR LIR
Training (s) 9023.24 508.75

Test (h) 43.40 4.31

Table 5.2: Classification and training time of GR and LIR on RCV1.

We can clearly see from Table 5.1 that the top-down model slightly improves the flat

models reported in [67], i.e., by 81.9 − 81.6 = 0.3. This is significant with p = 10−5,

according to our significance test using approximate randomization (please consider that

the test set contains about 800k examples). When LIR is applied to the top-down baseline,

the latter improves by 2.2 absolute percent points (significant at p = 10−5) in Micro-F1;

similarly the baseline of flat model improves by 2.5 points (in Micro-average).

Most importantly, LIR remarkably outperforms the reranking model proposed in [80]

in efficiency, i.e., 9023.24/508.75= 17.8 times in learning and 43.40/4.31= 10 times in

testing. In contrast, it loses 0.8 points in Micro-F1 (more details on F1s of categories are

presented in Appendix E).

5.4.2 Fast LIR on DMOZ

The DMOZ dataset is provided by LSHTC workshop4 as document vectors in the following

format:

label, label, label ... feat:value ... feat:value

label is an integer and corresponds to a category in which the vector belongs. Each vector

may belong to more than one category. The pair feat:value corresponds to a non-zero

feature with index feat and value, feat is an integer and value is a double that corresponds

to the term’s count.

We processed the document vector by computing the log(TF + 1) × IDF weighting

scheme, and implemented the top-down classifiers with proLIBLINEAR using the default

parameters (trade-off and cost factor = 1), linear kernel, normalized vectors (using the

Euclidean norm). We used 4 cores of CPU for computing the training and test time.

The performance figures are provided by means of Micro/Macro-Average F1, evaluated

4http://lshtc.iit.demokritos.gr/LSHTC2 datasets
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from our test data over all 35,448 categories. Additionally, we give some computations

of efficiencies in both learning and classification phases. Table 5.3 below reports all the

figures.

training time (min) test time (min) Micro-F1 Macro-F1
topDown proLIBLINEAR 60.180 19.747 0.629 0.202

fast LIR 81.262 39.831 0.693 0.336

Table 5.3: Performances and efficiency of fast LIR on DMOZ.

We can clearly see from Table 5.3 that (1) proLIBLINEAR in top-down method makes

the basic generative model on large-scale text categorization possible, i.e., only 60.18

minutes (four cores) for 35,448-category hierarchy with 300,000 training documents in

learning phase, and 19.75 minutes cost for classifying 94,756 documents; (2) the training

and test time of fast LIR is not much more than that of proLIBLINEAR, since the

average leaf category per document is 1.0239, which makes the compact representation of

hypotheses very small, and the learning of local rerankers fast; (3) fast LIR remarkably

improves the top-down proLIBLINEAR models, i.e., by 69.3−62.9 = 6.4 points in Micro-

F1 and 33.6−20.2 = 13.4 points in Macro-F1. This is significant with p = 10−5, according

to our significance test using approximate randomization (please consider that the test

set contains about 90k examples).

Additionally, we roughly compared the memory occupied for top-down proLIBLIENAR

models on the global dictionary and local dictionaries, and they are 90.56 vs 4.80 gigabytes.

Obviously the former is hard to achieve with the general experimentation and use of a

PC with 4.8 gigabytes is more practical.

5.5 Conclusion

In this chapter, we have described the local incremental reranking model based on the

conventional top-down approach. This model not only helps to improve the top-down

baseline by using local rerankers, which consider the category dependencies to solve the

unrecovered errors in internal node categorization, but also ensures the efficiency in the

top-down working way. We have seen a consistent improvement over state-of-the-art flat

and top-down models. Most importantly, our LIR (i) is very efficient while keeping high

accuracy (ii) can be applied to several other problems or domains.

We also suggested the fast LIR model based on LIR by improving the efficiency of basic

generative models to make it applicable in large-scale hierarchical text categorization.

This fast LIR model significantly improves the state-of-the-art top-down models.
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Chapter 6

Conclusions and Future Work

In this thesis the complex interdependencies between categories in the hierarchy has been

studied to develop an accurate and efficient model for HTC. This can be divided into the

following phases.

First, a study on improving the efficiency of the basic multi-classifiers (e.g., SVM)

has been carried out. We reimplemented (i) the flat one-vs.-all probabilistic models with

LIBSVM, which not only matched the state-of-the-art method (i.e., flat SVMlight models)

on RCV1 in [67], but also output the useful decision probability for each node. (ii) the

top-down baseline model in [109] on RCV1, which reached almost the same performances

as (i) with much higher efficiency because of the top-down classification manner. These

two conventional methods both suffer from the low efficiency when there is a large number

of categories or instances. In order to solve this problem, we developed the probabilistic

one-vs.-all and top-down models with LIBLINEAR by implementing the Platt’s algorithm

[87] in original LIBLINEAR, which does not produce the decision probabilities. To match

(i) and (ii), we used parameterization techniques. The results on RCV1 have shown that

the probabilistic LIBLINEAR remarkably improves the efficiency of LIBSVM in both flat

and top-down methods, while preserving the equivalent accuracy.

Second, the impact of category dependencies on HTC accuracy has been studied. We

have described several models (GR) for reranking the output of an MCC based on SVMs

and structural kernels, i.e., SK, STK and PTK. We have proposed two algorithms for

hypothesis generation and their kernel-based representations. The latter are exploited

by SVMs using preference kernels to automatically derive features from the hypotheses.

When using tree kernels such features are tree fragments, which can encode complex se-

mantic dependencies between categories. It should be noted that this algorithm is based

on a simple binary classifier that can efficiently select the best hypothesis. We have

seen a consistent improvement over the state-of-the-art TC models. Most importantly,

our approach (i) is rather general, (ii) can be applied to several other problems or do-
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mains and (iii) can be optimized according to several measures, e.g., MGIE. We tested

our rerankers on two hierarchical schemes of the well-known RCV1. The results show

impressive improvement on the state-of-the-art of flat TC models.

Finally, a efficient model (LIR) based on GR has been proposed. This model is based

on the conventional top-down approach and allows for efficiently using structural depen-

dencies provided by tree kernels in HTC. Additionally, we extend LIR (fastLIR) for the

large-scale HTC by two steps: (1) adopting the compact representation of hypothesis for

building the local rerankers and (2) optimizing the MCC by (a) using probabilistic LIB-

LINEAR instead of LIBSVM; (b) establishing local dictionary for each of sub-problems.

The comparative experiments with the state-of-the-art model, GR, show that LIR is much

more efficient while showing almost the same accuracy. The results of fastLIR on DMOZ

proves that iis applicable in large-scale HTC.

Future research includes:

• Extending our reranking models that exploit the more complicated node dependen-

cies in hierarchical structures, e.g., graph. It should be noted that the DAG tree

structure can be dealt with by LIR or fastLIR;

• Constructing other approximate innoference strategies for generating k-best hypothe-

ses, For instance, the k-best search algorithm for natural language parsing presented

in [47] was later used as the main building block in the forest reranking method for

approximate inference in complex discriminative parsing models [48];

• Studying how to fully exploit the set of best hypotheses as the oracle accuracy reveals

that there is still a large room of improvement;

• Applying our methods to other hierarchical natural language classification tasks, e.g.,

ontology population.
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[43] T. Gonçalves and P. Quaresma. A Preliminary Approach to the Multilabel Classi-

fication Problem of Portuguese Juridical Documents, volume 2902/2003 of Lecture

Notes in Computer Science. Springer, 2003.

[44] Siddharth Gopal and Yiming Yang. Multilabel classification with meta-level fea-

tures. In SIGIR, 2010.

[45] Chen H. and Dumais S. Bringing order to the web: Automatically categorizing

search results. In In Proc. of CHI, pages 145–152. ACM Press, 2000.

[46] Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S. Sathiya Keerthi, and S. Sundarara-

jan. A dual coordinate descent method for large-scale linear svm. In Proceedings of

the 25th international conference on Machine learning, ICML ’08, pages 408–415,

New York, NY, USA, 2008. ACM.

[47] Liang Huang. Better k-best parsing. In Proceedings of the 9th Interna- tional

Workshop on Parsing Technologies (IWPT 2005), pages 53–64, Vancouver, Canada,

2005.

[48] Liang Huang. Forest reranking: Discriminative parsing with non-local features. In

Proceedings of ACL-08: HLT, pages 586–594, Columbus, United States, 2008.

[49] Liang Huang and David Chiang. Better k-best parsing. In Proceedings of the 9th

International Workshop on Parsing Technologies (IWPT 2005), pages 53–64, Van-

couver, Canada, 2005.

[50] David J. Ittner, David D. Lewis Y, and David D. Ahn Z. Text categorization of

low quality images. In In Proceedings of SDAIR-95, 4th Annual Symposium on

Document Analysis and Information Retrieval, pages 301–315, 1995.

[51] Chih jen Lin, Ruby C. Weng, and S. Sathiya Keerthi. Trust region newton method

for large-scale logistic regression. In In Proceedings of the 24th International Con-

ference on Machine Learning (ICML, 2007.

[52] Thorsten Joachims. Making large-scale SVM learning practical. Advances in Kernel

Methods – Support Vector Learning, 13, 1999.

[53] Qi Ju, Richard Johansson, and Alessandro Moschitti. Towards using reranking

in hierarchical classification. In Proceedings of the Joint ECML/PKDD–PASCAL

Workshop on Large-Scale Hierarchical Classification, Athens, Greece, 2011.

105



[54] Qi Ju and Alessandro Moschitti. Incremental reranking for hierarchical text classi-

fication. In Proceedings of the 34th European Conference on Information Retrieval

(ECIR’13), Moscow, Russia, 2013.

[55] Qi Ju, Alessandro Moschitti, and Richard Johansson. Learning to rank from struc-

tures in hierarchical text classification. In Proceedings of the 34th European Con-

ference on Information Retrieval (ECIR’13), Moscow, Russia, 2013.

[56] Qi Ju, Chiara Ravagni, Alessandro Moschitti, and Giampiero Vaschetto. Hierarchi-

cal text classification for supporting educational programs. In IIR’12, pages 18–25,

2012.

[57] S. Knerr, L. Personnaz, and G. Dreyfuss. Single-layer learning revisited: a stepwise

procedure for building and training a neural network. 1990.

[58] Daphne Koller and Mehran Sahami. Hierarchically classifying documents using very

few words. In Proceedings of ICML-97, 14th International Conference on Machine

Learning, pages 170–178, Nashville, US, Nov. 1997.

[59] Ulrich H. G. Kressel. Pairwise classification and support vector machines. pages

255–268, 1999.

[60] Taku Kudo and Yuji Matsumoto. Fast methods for kernel-based text analysis. In

Proceedings of ACL’03, 2003.

[61] Taku Kudo, Jun Suzuki, and Hideki Isozaki. Boosting-based parse reranking with

subtree features. In Proceedings of ACL’05, 2005.

[62] H. W. Kuhn and A. W. Tucker. Nonlinear programming. In Jerzy Neyman, editor,

Proceedings of the 2nd Berkeley Symposium on Mathematical Statistics and Proba-

bility, pages 481–492. University of California Press, Berkeley, CA, USA, 1950.

[63] Shailesh Kumar, Joydeep Ghosh, and Melba M. Crawford. Hierarchical fusion of

multiple classifiers for hyperspectral data analysis. Pattern Anal. Appl., 5(2):210–

220, 2002.

[64] Yannis Labrou and Tim Finin. Yahoo! as an ontology: using yahoo! categories

to describe documents. In Proceedings of the eighth international conference on

Information and knowledge management, CIKM ’99, pages 180–187, New York,

NY, USA, 1999. ACM.

[65] Boris Lauser and Andreas Hotho. Automatic multi-label subject indexing in a

multilingual environment. In Traugott Koch and IngeborgTorvik Slvberg, editors,

106



Research and Advanced Technology for Digital Libraries, volume 2769 of Lecture

Notes in Computer Science, pages 140–151. Springer Berlin Heidelberg, 2003.

[66] Yoonkyung Lee, Yi Lin, and Grace Wahba. Multicategory support vector machines,

theory, and application to the classification of microarray data and satellite radiance

data. Journal of the American Statistical Association, 99:67–81, 2004.

[67] D. D. Lewis, Y. Yang, T. Rose, and F. Li. Rcv1: A new benchmark collection for

text categorization research. JMLR, 2004.

[68] David D. Lewis. An evaluation of phrasal and clustered representations on a text

categorization task. In Proceedings of the 15th annual international ACM SIGIR

conference on Research and development in information retrieval, SIGIR ’92, pages

37–50, New York, NY, USA, 1992. ACM.

[69] David D. Lewis and Marc Ringuette. A comparison of two learning algorithms for

text categorization. In In Third Annual Symposium on Document Analysis and

Information Retrieval, pages 81–93, 1994.

[70] Min ling Zhang and Zhi hua Zhou. Ml-knn: A lazy learning approach to multi-label

learning. PATTERN RECOGNITION, 40:2007, 2007.

[71] Tie-Yan Liu, Yiming Yang, Hao Wan, Hua-Jun Zeng, Zheng Chen, and Wei-

Ying Ma. Support vector machines classification with a very large-scale taxonomy.

SIGKDD Explorations, 7(1):36–43, 2005.

[72] Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cristianini, and Chris

Watkins. Text classification using string kernels. J. Mach. Learn. Res., 2:419–444,

March 2002.

[73] Andrew McCallum, Ronald Rosenfeld, Tom M. Mitchell, and Andrew Y. Ng. Im-

proving text classification by shrinkage in a hierarchy of classes. In ICML, 1998.

[74] J. Mercer. Functions of positive and negative type, and their connection with the

theory of integral equations. Philosophical Transactions of the Royal Society of

London. Series A, Containing Papers of a Mathematical or Physical Character,

209:pp. 415–446, 1909.

[75] Hahn ming Lee, Chih ming Chen, and Cheng wei Hwang. A hierarchical neural

network document classifier with linguistic feature selection. Applied Intelligence,

23:277–294, 2005.

107



[76] Katharina Morik and Martin Scholz. The miningmart approach to knowledge discov-

ery in databases. In In Ning Zhong and Jiming Liu, editors, Intelligent Technologies

for Information Analysis, pages 47–65. Springer, 2003.

[77] Alessandro Moschitti. A study on convolution kernels for shallow semantic pars-

ing. In Proceedings of the 42nd Annual Meeting on Association for Computational

Linguistics, ACL ’04, Stroudsburg, PA, USA, 2004. Association for Computational

Linguistics.

[78] Alessandro Moschitti. Efficient convolution kernels for dependency and constituent

syntactic trees. In Proceedings of ECML’06, 2006.

[79] Alessandro Moschitti. Making tree kernels practical for natural language learning.

In Proccedings of the 11th Conference of the European Chapter of the Association

for Computational Linguistics, pages 113–120, Trento, Italy, 2006.

[80] Alessandro Moschitti, Qi Ju, and Richard Johansson. Modeling topic dependencies

in hierarchical text categorization. In Proceedings of the 50th Annual Meeting of

the Association for Computational Linguistics (ACL 2012), pages 759–767, Jeju,

Republic of Korea, 2012.

[81] Alessandro Moschitti, Daniele Pighin, and Roberto Basili. Tree kernels for semantic

role labeling. Computational Linguistics, 34(2):193–224, 2008.

[82] Katta G. Murty. A new practically efficient interior point method for lp. Algorithmic

Operations Research, pages 1–3, 2006.

[83] K.G. Murty. Linear complementarity, linear and nonlinear programming. Sigma

series in applied mathematics. Heldermann, 1988.
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Appendix A

Notations

Below is the notation used in this dissertation.

d a document

ni the node i in a hierarchy

cni
the ordered child sequences of node i

cn(j) the jth child of node cn
xi the ith instance (example)

X domain of instances (examples)

yi class label for the ith instance (example)

Yi class label set for the ith instance (example)

Y finite set of class labels

K kernel function

C the finite set of predefined class labels

|C| the size of predefined class set

Ci the positive class set of the instance xi

|Ci| the size of positive class set of the instance xi
ci the ith category

T training set

H learning model (classifier)

H boundary hyperplane in SVMs

w normal vector to the hyperplane

‖w‖ the offset of the hyperplane from the origin along the w

ξi positive slack variable

Φ a mapping for space transformation in SVMs

oi structural object

fi the ith tree fragment
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F set of tree fragments

h̃i the ith generated hypothesis

P(h̃i)joint probability of the ith hypothesis

∆ function of computing the number of common fragments rooted in two nodes

TK a tree kernel function
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Appendix B

e-Value Taxonomy

parent child child-description

None Root No Description

Root C1 Categorizzazione Contesto Didattico∗

C1 C11 Scuola Dell’infanzia∗

C1 C12 Scuola Primaria∗

C12 C121 Primaria Classe I∗

C12 C122 Primaria Classe II∗

C12 C123 Primaria Classe III∗

C12 C124 Primaria Classe IV∗

C12 C125 Primaria Classe V∗

C1 C13 Scuola Secondaria di 1 Grado∗

C1 C14 − Scuola Secondaria di 2 Grado∗

Root C2 Categorizzazione Materia∗

C2 C21 Letto Scrittura∗

C21 C211 Prerequisiti∗

C21 C212 Decodifica∗

C212 C2121 Lettere

C212 C2122 Sillable

C212 C2123 Parole

C212 C2124 Non parole

C212 C2125 Frasi-Brano

C21 C213 Comprensione∗

C213 C2131 Parole

C213 C2132 Frasi

C213 C2133 Brano
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C21 C214 Compitazione∗

C214 C2141 Clettere

C214 C2142 Sillabe non Ortografiche

C214 C2143 Parole non Ortografiche

C214 C2144 Non Parole

C21 C215 Ortografia∗

C215 C2151 Oparole

C215 C2152 Ofrasi

C215 C2153 Obrano

C21 C216 Stesura Testo∗

C216 C2161 Pianificazione

C216 C2162 Trascrizione

C216 C2163 Revisione

C2 C22 Metafonologia∗

C22 C221 Globale∗

C221 C2211 Rima

C221 C2212 Sillaba

C22 C222 Profonda∗

C222 C2221 Fonema

C2 C23 Abilità Linguistiche∗

C23 C231 Lessico∗

C231 C2311 Denominazione

C231 C2312 Categorizzazione

C231 C2313 Identificazione

C231 C2314 Definizione

C231 C2315 Polisemia

C231 C2316 Arricchimento Lessicale

C23 C232 Morfo Sintassi∗

C232 C2321 Concordanze

C232 C2322 Struttura Della Frase

C232 C2323 Analisi Grammaticale

C232 C2324 Analisi Logica

C23 C233 Narrazione∗

C233 C2331 Comprensione Racconto

C233 C2332 Produzione Racconto

C2 C24 Matematica∗

C24 C241 Numero∗
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C241 C2411 Processi Semantici

C241 C2412 Conteggio

C241 C2413 Processi Pre-sintattici

C241 C2414 Processi Lessicali e Sintattici

C24 C242 Calcolo Processi di Base∗

C242 C2421 Segni delle Operazioni

C242 C2422 Fatti Numerici

C242 C2423 Tabelline

C242 C2424 Calcolo a Mente

C24 C243 Calcolo Numeri Naturali∗

C243 C2431 Algoritmi di Calcolo Scritto

C243 C2432 Calcolo Incolonnamento di Numeri

C243 C2433 Multipli e Divisori

C243 C2434 Minimo Comun Multiplo e Massimo Comun Denominatore

C243 C2435 Espressioni

C243 C2436 Potenze

C243 C2437 Radici Quadrate

C24 C244 Calcolo-Numeri Razionali

C24 C244 −Calcolo-Numeri Razionali Q∗

C24 C245 −Calcolo-Numeri Relativi Z∗

C24 C245 Calcolo-Numeri Relativi

C24 C246 Calcolo-Rapporti e Proporzioni∗

C24 C247 Calcolo-Calcolo Letterale∗

C24 C248 Problem Solving∗

C24 C249 Capacità di Orientarsi Nello Spazio∗

C24 C24 10 Costruire Sistemi di Riferimento Convenzionali∗

C24 C24 11 Geometria Euclidea (Piana)∗

C24 C24 12 −Misura di Grandezze∗

C24 C24 12 Misura di Grandezze Geometriche

C24 C24 13 Misura di Grandezze Fisiche

C24 C24 13 −Calcolo-Misura∗

C24 C24 14 Le Trasformazioni Geometriche∗

C2 C25 Altro

Root C3 Categorizzazione Situazione Alunni∗

C3 C31 BES∗

C31 C311 Autismo

C31 C312 Udito
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C31 C313 Vista

C31 C314 Psicomotricità

C31 C315 Sindrome di Down

C31 C316 Altro

C3 C32 DSA∗

C32 C321 Iperattività∗

C32 C322 Dislessia∗

C32 C323 Disgrafia∗

C32 C324 Discalculia∗

C32 C325 Combinazione di DSA Diversi-Altro∗

C32 C326 Nessun DSA

C3 C33 −Assenza di DSA e BES∗

Root C4 Categorizzazione Dipo di Intervento

C4 C41 Potenziamento

C4 C42 Recupero

C4 C43 Didattica Insegnamento

C4 C44 Intervento Logopedico

C4 C45 Intervento Psicologico
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Appendix C

Performances of Italian dataset

Train No Test No Precision Recall F1

C1∗ 38/69 16/27 0.842/0.794 1.000/1.000 0.914/0.885

C2∗ 40/70 20/34 0.905/0.917 0.950/0.971 0.927/0.943

C3∗ 41/76 19/34 0.950/0.944 1.000/1.000 0.974/0.971

C4 39 17 1.000 0.882 0.938

Micro 0.920/0.887 0.958/0.909 0.939/0.935

Macro 0.924/0.885 0.955/0.990 0.938/0.933

C11∗ 5/10 1/1 0.000 0.000

C12∗ 36/62 25/24 0.933/0.706 0.933/1.000 0.933/0.828

C13∗ 7/14 1/6 0.000 0.000 0.000
−C14∗ 2 0

C21∗ 12/23 5/12 1.000/0.857 0.800/0.500 0.889/0.632

C22∗ 10/14 3/3 0.400/0.250 0.667/0.333 0.500/0.286

C23∗ 4/7 1/7 0.941/ 0.941/ 0.941/

C24∗ 20/37 11/20 1.000/0.864 1.000/0.950 1.000/0.905

C25 0 1 0.000 0.000 0.000

C31∗ 2/64 0/28 /0.824 /1.000 /0.903

C32∗ 39/3 19/1 0.950/ 1.000/ 0.974/
−C33∗ 13 6 0.750 0.500 0.600

C41 23 11 1.000 0.909 0.952

C42 31 12 0.857 1.000 0.923

C43 25 8 0.889 1.000 0.941

C44 10 6 1.000 0.667 0.800

C45 0 1

Micro 0.916/0.825 0.916/0.862 0.916/0.843
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Macro 0.641/0.531 0.637/0.558 0.633/0.535

C121∗ 23/35 10/10 0.667/0.545 0.600/0.600 0.632/0.571

C122∗ 20/32 8/10 /0.750 /0.600 /0.667

C123∗ 10/21 8/11

C124∗ 10/21 5/11 1.000/ 0.600/ 0.750/

C125∗ 9/20 3/10 0.333/0.500 0.333/0.100 0.333/0.167

C211∗ /3 /0

C212∗ 5/5 1/6 /0.667 /0.333 /0.444

C213∗ /10 /5 /1.000 /0.200 /0.333

C214∗ 0/2 1/4

C215∗ 0/4 2/2

C216∗ 2/3 1/4

C221∗ 9/10 2/3 0.400/ 1.000/ 0.571/

C222∗ 9/13 3/1 0.667/ 0.667/ 0.667/

C231∗ /4 /5 /1.000 /0.200 /0.333

C232∗ 2/2 1/3

C233∗ /3 /0

C241∗ 1/6 2/2

C242∗ 12/20 10/9 1.000/0.667 0.400/0.889 0.571/0.762

C243∗ 1/3 4/5

C244
−C244∗ 2 0
−C245∗ 3 3 1.000 0.667 0.800

C245

C246∗ /2 /0

C247∗ /4 /0

C248∗ /12 /2

C249∗ /1 /2

C24 10∗ /4 /1 /0.333 /1.000 /0.500

C24 11∗ /3 /0
−C24 12∗ 6 1

C24 12

C24 13
−C24 13∗ 4 1

C24 14∗ /2 /1 /1.000 /1.000 1.000

C311∗ /3 /1 1.000 1.000 1.000

C312∗ /31 /16 /0.875 /0.875 /0.875
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C313∗ /10 /1 /0.500 /1.000 /0.667

C314∗ /23 /11 /0.833 /0.909 /0.870

C315∗ /15 /5 /0.500 /0.400 /0.444

C316

C321 0 3

C322 20 9 0.700 0.778 0.737

C323 1 6

C324 16 4 1.000 1.000 1.000

C325 5 1

C326

Micro 0.855/0.761 0.725/0.665 0.785/0.709

Macro 0.288/0.330 0.269/0.403 0.263/0.390

C2121 2 1

C2122 3 1

C2123 3 1

C2124

C2125

C2141

C2142 0 1

C2143

C2144

C2151 0 2

C2152 0 1

C2153 0 1

C2161 2 1

C2162

C2163

C2211 4 1 1.000 1.000 1.000

C2212 9 2 0.400 1.000 0.571

C2221

C2311

C2312

C2313

C2314

C2315

C2316

C2321
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C2322 0 1

C2323 2 1

C2324 1 1

C2331

C2332

C2411 1 2

C2412

C2413

C2414

C2421 5 3

C2422 4 5

C2423 1 2

C2424 3 6 1.000 0.167 0.286

C2431 1 4

C2432 1 1

C2433 0 2

C2434

C2435

C2436

C2437

Micro 0.843/0.761 0.640/0.665 0.727/0.709

Macro 0.139/0.330 0.129/0.403 0.115/0.390

This appendix provides all F1s of MCC on both Italian dataset. Each item in the table is

split by ”/”, and the first is the value of 112-category dataset and the latter is for updated

50-category dataset. For simplicity, we ignore the items with value ”0”.
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Appendix D

Performances of proLIBLINEAR on

RCV1-v3 in top-down manner

Topic #Total #Correct #Wrong Precision Recall F1

CCAT 370541 342270 23962 0.934 0.923 0.929

C11 23651 6718 4797 0.583 0.284 0.382

C12 11563 6429 1372 0.824 0.555 0.664

C13 36463 14879 9306 0.615 0.408 0.490

C14 7250 3510 1983 0.638 0.484 0.550

C15 147606 130299 9205 0.934 0.882 0.907

C151 79524 68933 6216 0.917 0.866 0.891

C1511 22812 10642 3228 0.767 0.466 0.580

C152 71162 55053 12195 0.818 0.773 0.795

C16 1871 488 104 0.824 0.260 0.396

C17 40983 28872 6818 0.808 0.704 0.753

C171 17876 11799 3416 0.775 0.660 0.713

C172 11202 8513 1945 0.814 0.759 0.786

C173 2560 1272 559 0.694 0.496 0.579

C174 5625 4815 576 0.893 0.856 0.874

C18 51355 38447 7218 0.841 0.748 0.792

C181 42169 31601 8972 0.778 0.749 0.763

C182 4529 1088 657 0.623 0.240 0.346

C183 7204 3798 1125 0.771 0.527 0.626

C21 24610 9279 3531 0.724 0.377 0.495

C22 5929 1521 1175 0.564 0.256 0.352

C23 2563 866 699 0.553 0.337 0.419
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C24 31231 14500 5605 0.721 0.464 0.564

C31 39451 17733 8305 0.681 0.449 0.541

C311 4133 2059 1666 0.552 0.498 0.524

C312 6452 2564 2558 0.500 0.397 0.443

C313 1074 7 14 0.333 0.006 0.012

C32 2041 222 61 0.784 0.108 0.191

C33 14889 7089 3118 0.694 0.476 0.564

C331 1179 619 383 0.617 0.525 0.567

C34 4715 1237 300 0.804 0.262 0.395

C41 11043 7953 981 0.890 0.720 0.796

C411 9986 7800 1108 0.875 0.781 0.825

C42 11535 7345 1822 0.801 0.636 0.709

ECAT 116471 86750 13576 0.864 0.744 0.800

E11 8289 3925 1530 0.719 0.473 0.571

E12 26421 13555 6780 0.666 0.513 0.579

E121 2088 1397 403 0.776 0.669 0.718

E13 6416 4687 980 0.827 0.730 0.775

E131 5492 3906 1060 0.786 0.711 0.746

E132 922 518 98 0.840 0.561 0.673

E14 2112 970 361 0.728 0.459 0.563

E141 364 72 21 0.774 0.197 0.315

E142 192 38 33 0.535 0.197 0.288

E143 1172 706 253 0.736 0.602 0.662

E21 41875 30221 5095 0.855 0.721 0.783

E211 15361 9333 3366 0.734 0.607 0.665

E212 26552 20025 2809 0.876 0.754 0.810

E31 2349 1172 158 0.881 0.498 0.637

E311 1658 950 164 0.852 0.572 0.685

E312 52 0 0 0.0 0.0 0.0

E313 108 2 11 0.153 0.018 0.033

E41 16586 10245 2287 0.817 0.617 0.703

E411 2096 752 330 0.695 0.358 0.473

E51 20639 10515 4455 0.702 0.509 0.590

E511 2831 1147 749 0.604 0.405 0.485

E512 12234 6567 3010 0.685 0.536 0.602

E513 2236 1232 165 0.881 0.550 0.678

E61 376 92 96 0.489 0.244 0.326
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E71 5102 4715 73 0.984 0.924 0.953

GCAT 232297 212977 13843 0.938 0.916 0.927

G15 20309 16124 2195 0.880 0.793 0.834

G151 3258 4 2 0.666 0.001 0.002

G152 2072 0 0 0.0 0.0 0.0

G153 2301 1446 684 0.678 0.628 0.652

G154 8266 6076 1168 0.838 0.735 0.783

G155 2086 7 118 0.056 0.003 0.006

G156 258 0 0 0.0 0.0 0.0

G157 1991 212 23 0.902 0.106 0.190

G158 4248 2417 1060 0.695 0.568 0.625

G159 38 0 0 0.0 0.0 0.0

GCRIM 31086 22335 4262 0.839 0.718 0.774

GDEF 8609 3536 993 0.780 0.410 0.538

GDIP 36735 23245 5560 0.806 0.632 0.709

GDIS 8364 5533 999 0.847 0.661 0.742

GENT 3695 1575 371 0.809 0.426 0.558

GENV 6089 2308 688 0.770 0.379 0.508

GFAS 307 2 1 0.666 0.006 0.012

GHEA 5833 3331 1500 0.689 0.571 0.624

GJOB 16770 11326 2038 0.847 0.675 0.751

GMIL 5 0 0 0.0 0.0 0.0

GOBIT 831 8 18 0.307 0.009 0.018

GODD 2712 126 101 0.555 0.046 0.085

GPOL 55231 37641 11676 0.763 0.681 0.720

GPRO 5332 681 228 0.749 0.127 0.218

GREL 2757 651 38 0.944 0.236 0.377

GSCI 2373 1436 340 0.808 0.605 0.692

GSPO 34404 33301 600 0.982 0.967 0.975

GTOUR 657 281 107 0.724 0.427 0.537

GVIO 31500 19661 3719 0.840 0.624 0.716

GVOTE 11186 5111 1192 0.810 0.456 0.584

GWEA 3743 1762 247 0.877 0.470 0.612

GWELF 1818 369 102 0.783 0.202 0.322

MCAT 198938 179045 11076 0.941 0.900 0.920

M11 47402 41844 4219 0.908 0.882 0.895

M12 25304 19822 3123 0.863 0.783 0.821
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M13 52038 43634 4242 0.911 0.838 0.873

M131 27242 22852 3289 0.874 0.838 0.856

M132 26053 20121 3080 0.867 0.772 0.817

M14 82899 74278 4525 0.942 0.896 0.918

M141 46200 43104 3346 0.927 0.932 0.930

M142 11819 9342 899 0.912 0.790 0.846

M143 21351 18294 963 0.949 0.856 0.901

Micro 0.876 0.770 0.819

Macro 0.722 0.512 0.575

126



Appendix E

Performances for LIR on RCV1-v3

Topic #Total #Correct #Wrong Precision Recall F1

CCAT 370541 339780 18601 0.948 0.916 0.932

C11 23651 7745 5200 0.598 0.327 0.423

C12 11563 6494 820 0.887 0.561 0.688

C13 36463 15396 6538 0.701 0.422 0.527

C14 7250 3571 1686 0.679 0.492 0.571

C15 147606 130802 6950 0.949 0.886 0.916

C151 79524 68495 2991 0.958 0.861 0.907

C1511 22812 11799 3793 0.756 0.517 0.614

C152 71162 54543 4823 0.918 0.766 0.835

C16 1871 624 250 0.713 0.333 0.454

C17 40983 29286 3956 0.880 0.714 0.789

C171 17876 11757 476 0.961 0.657 0.780

C172 11202 8928 353 0.961 0.797 0.871

C173 2560 1438 301 0.826 0.561 0.668

C174 5625 4880 164 0.967 0.867 0.914

C18 51355 40019 7312 0.845 0.779 0.811

C181 42169 32314 2318 0.933 0.766 0.841

C182 4529 1190 411 0.743 0.262 0.388

C183 7204 3831 436 0.897 0.531 0.667

C21 24610 9288 2636 0.778 0.377 0.508

C22 5929 2006 1702 0.540 0.338 0.416

C23 2563 845 345 0.710 0.329 0.450

C24 31231 16407 5786 0.739 0.525 0.614

C31 39451 19326 6005 0.762 0.489 0.596
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C311 4133 2023 733 0.734 0.489 0.587

C312 6452 2388 701 0.773 0.370 0.500

C313 1074 30 48 0.384 0.027 0.052

C32 2041 320 69 0.822 0.156 0.263

C33 14889 7447 2764 0.729 0.500 0.593

C331 1179 670 309 0.684 0.568 0.620

C34 4715 1248 296 0.808 0.264 0.398

C41 11043 8280 972 0.894 0.749 0.815

C411 9986 8071 199 0.975 0.808 0.884

C42 11535 7567 1000 0.883 0.656 0.752

ECAT 116471 87230 11635 0.882 0.748 0.810

E11 8289 3842 997 0.793 0.463 0.585

E12 26421 13294 2915 0.820 0.503 0.623

E121 2088 1471 89 0.942 0.704 0.806

E13 6416 4600 533 0.896 0.716 0.796

E131 5492 3766 194 0.951 0.685 0.796

E132 922 570 63 0.900 0.618 0.733

E14 2112 1017 238 0.810 0.481 0.604

E141 364 85 16 0.841 0.233 0.365

E142 192 48 13 0.786 0.25 0.379

E143 1172 767 22 0.972 0.654 0.782

E21 41875 30195 1635 0.948 0.721 0.819

E211 15361 9269 695 0.930 0.603 0.732

E212 26552 19880 385 0.981 0.748 0.849

E31 2349 1286 132 0.906 0.547 0.682

E311 1658 1017 91 0.917 0.613 0.735

E312 52 0 0 0.0 0.0 0.0

E313 108 0 2 0.0 0.0 0.0

E41 16586 10565 912 0.920 0.636 0.752

E411 2096 551 241 0.695 0.262 0.381

E51 20639 10533 1421 0.881 0.510 0.646

E511 2831 1179 222 0.841 0.416 0.557

E512 12234 6614 521 0.926 0.540 0.682

E513 2236 1307 18 0.986 0.584 0.734

E61 376 112 29 0.794 0.297 0.433

E71 5102 4746 66 0.986 0.930 0.957

GCAT 232297 212185 12507 0.944 0.913 0.928
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G15 20309 16059 936 0.944 0.790 0.860

G151 3258 32 46 0.410 0.009 0.019

G152 2072 120 120 0.5 0.057 0.103

G153 2301 1435 246 0.853 0.623 0.720

G154 8266 6241 385 0.941 0.755 0.838

G155 2086 179 138 0.564 0.085 0.148

G156 258 0 0 0.0 0.0 0.0

G157 1991 815 178 0.820 0.409 0.546

G158 4248 2727 1924 0.586 0.641 0.612

G159 38 0 0 0.0 0.0 0.0

GCRIM 31086 21977 3447 0.864 0.706 0.777

GDEF 8609 3321 692 0.827 0.385 0.526

GDIP 36735 24082 4705 0.836 0.655 0.735

GDIS 8364 5919 1067 0.847 0.707 0.771

GENT 3695 1808 501 0.783 0.489 0.602

GENV 6089 2462 682 0.783 0.404 0.533

GFAS 307 1 0 1.0 0.003 0.006

GHEA 5833 3033 563 0.843 0.519 0.643

GJOB 16770 11132 817 0.931 0.663 0.775

GMIL 5 0 0 0.0 0.0 0.0

GOBIT 831 7 12 0.368 0.008 0.016

GODD 2712 302 283 0.516 0.111 0.183

GPOL 55231 38108 8590 0.816 0.689 0.747

GPRO 5332 1235 633 0.661 0.231 0.343

GREL 2757 733 59 0.925 0.265 0.413

GSCI 2373 1325 169 0.886 0.558 0.685

GSPO 34404 33547 577 0.983 0.975 0.979

GTOUR 657 303 81 0.789 0.461 0.582

GVIO 31500 20639 4324 0.826 0.655 0.731

GVOTE 11186 5670 1608 0.779 0.506 0.614

GWEA 3743 2278 216 0.913 0.608 0.730

GWELF 1818 304 41 0.881 0.167 0.281

MCAT 198938 179725 10422 0.945 0.903 0.923

M11 47402 42052 649 0.984 0.887 0.933

M12 25304 20147 1380 0.935 0.796 0.860

M13 52038 43797 1493 0.967 0.841 0.899

M131 27242 22671 825 0.964 0.832 0.893
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M132 26053 19924 652 0.968 0.764 0.854

M14 82899 74910 598 0.992 0.903 0.945

M141 46200 43211 631 0.985 0.935 0.959

M142 11819 9681 91 0.990 0.819 0.896

M143 21351 18353 150 0.991 0.859 0.921

Micro 0.918 0.776 0.841

Macro 0.796 0.532 0.616
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