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Abstract

Finite element approximations of eddy current problems that are entirely based
on the magnetic field H are haunted by the need to enforce the algebraic constraint
curlH = 0 in non-conducting regions. As an alternative to techniques employing
combinatorial Seifert (cutting) surfaces in order to introduce a scalar magnetic po-
tential, we propose mixed multi-field formulations, which enforce the constraint in
the variational formulation. In light of the fact that the computation of cutting sur-
faces is expensive, the mixed finite element approximation is a viable option despite
the increased number of unknowns.

1 Introduction

The governing equations of electromagnetic fields and currents £, H, B, D, J are Maxwell’s
equations completed by constitutive laws in order to model the field-matter interaction.
In what follows we shall restrict ourselves to the “Maxwell model of memoryless linear
materials with Ohm’s law” (see [9]):

-0 D+curlH = J=J.+0c&, D = €&, (1)
oB+curlé = 0, B = uH.

Here p is the magnetic permeability, € the dielectric tensor, and o stands for conductivity.
p and € are assumed to be uniformly positive definite symmetric 3 x 3-matrices, whereas o
is supposed to be symmetric and uniformly positive definite inside the conducting region
QC, but vanishes in the “air region” Qf. All the material parameters are functions of the
spatial variable x only. Under these circumstances, if the source current 7, is of the form
Je(t,x) = Re[J.(x) exp(iwt)], where J. is a complex-valued vector field and w # 0 is a

*Dipartimento di Matematica, Universita di Milano, via Saldini 50, I-20133 Milano, alonso@mat.unimi.it
tSeminar for Applied Mathematics, ETH Ziirich, CH-8092 Ziirich, hiptmair@sam.math.ethz.ch
!Dipartimento di Matematica, Universita di Trento, I-38050 Povo(Trento), valli@science.unitn.it



fixed angular frequency, also the fields £, H, B, D have this harmonic dependence on time.
Maxwell model with Ohm’s law then assumes the following strong form.

—twD +curlH = J.+0E, D = €E, 2)
iwB+curlE = 0, B = uH.

The unknows now are the complex amplitudes E, H, B, D independent of time.

In many situations it is possible to consider simpler quasi-static models that still offer a
sufficiently accurate description of electromagnetic phenomena. The most popular among
these simplified models is the so-called “eddy current model”, which consists in neglecting
the term —iwD in (2) [5,12].

Then compliance with Ampere’s law entails

divJ.; =0 inQ' | /Je,l-ndszo, j=1,....pr, (3)
I
where IV, j = 1,...,pr, are the connected components of the boundary of Q¢. The latter
is denoted by I' := 0QC. Here and in the sequel we denote by v;, the restriction of a vector
field v to QL L =1,C.

We introduce an artificial computational domain Q C R3, which is a box containing
the conductors and its immediate neighborhood, big enough so that one can assume a
zero field beyond. As before we write Q¢ for the conductor region and Qf := Q\ Q€. On
0f) homogeneous boundary conditions for either H or E are imposed: throughout we will
demand

HXxn=0ono.
This implies another compatibility condition for J. ;, namely
Je,]'n:() on 0f) . (4)

Obviously, we cannot expect a solution for E to be unique, because it can be altered
by any gradient supported in Q! and will still satisfy the equations. However, imposing the
constraints

div(eE;) = 0 in Q7 /GE['ndSZO,jzl,...,pr—]., eE;-n=00n09, (5)

TJ

(that are implied by (2)) will restore uniqueness of the solution for E.
The complete eddy current model we consider in the sequel is of the form:

curlH=J,+cE, iwpH+curlE=0 in Q,
div(eE;) =0 in Q| /eEl-ndSZO, j=1,...,pr—1, (6)
IJ
eE-n=0, Hxn=0 onof.



The existence and uniqueness of a solution of problem (6) has been proven in [4].

Dropping the displacement current converts Ampere’s law into the purely algebraic con-
straint curl H = J,; in Q. This raises problems not encountered with the full Maxwell’s
equations. This paper will be devoted to how to deal with these problems in the context
of a variational formulation based on the magnetic field H. We will focus on approaches
that forgo the “direct option” to incorporate the constraint into the trial space. Instead it
is enforced by means of augmented variational equations.

Adding extra equations may seem wasteful and, indeed, it is, because the resulting
formulations will, after a finite element Galerkin discretization, feature many additional
degrees of freedom. However, this is the price to pay for avoiding the cumbersome “topo-
logical preprocessing”, that is the construction of cuts [15], that is indispensable in the
case of the “direct option”. Hence, these augmented formulations can become relevant for
practical computations. Here we are going to present a couple of possibilities to take into
account the seemingly simple constraint curl H = J, ; in Q. Each variant will come with
its own issues of stability and uniqueness.

A brief outline of the paper is as follows: in the next section we introduce notations and
function spaces needed for the remainder of the article. Then we review the well-known
H-based variational formulation of the eddy current problem. From these basic equations
we derive augmented mixed formulations in the fourth section. In the fifth section their
finite element Galerkin discretization will be discussed. Finally, in Sect. 6 we give a-priori
error estimates.

2 Basic concepts

As usual, we indicate by H*(Q2) or H*(0S2), s € R, the Sobolev space of order s of real
or complex measurable functions defined on €2 or 0€2, respectively. If ¥ C 02 we indicate
with Hj () the subspace of H'(Q) constituted by those functions ¢ satisfying ¢z = 0.
As usual Hy(Q) := H 50().

The space H(curl; Q) (respectively, H(div;(2)) indicates the set of the real or com-
plex vector valued functions v € (L*(Q2))® such that curlv € (L*(Q))® (respectively,
divv € L?(Q)). If ¥ C 99, by Hyx(curl;Q2) we designate the subspace of H(curl;(2)
of those functions v satisfying (v x n)yx = 0. We set Hy(curl;Q) = Hgsq(curl; ).
H'(curl; Q) denotes the subspace of curl-free functions of H(curl; Q) and Hp y(curl; Q) =
Hy s (curl; Q)N HO(curl; Q). Analogously Hy x(div; ) stands for the subspace of H(div; ()
containing functions v satisfying (v-n);x = 0. As above, we set Hy(div; Q) := Hg go(div; €2).
Moreover, H°(div;2) denotes the subspace of -divergence-free functions of H(div;) and
HY5,(div; Q) = Hox(div; Q) N HO(div; Q). Finally, H*(curl;2) designates the space of
vector functions v € (H*(2))? such that curlv € (H*(Q2))3.

Topology enters our considerations through the space of harmonic vector fields

H := H{ po(curl; Q") N Hy 1 (div; Q1) . (7)



Moreover, for the sake of brevity, we introduce the space of admissible electric fields
W= {N; € (L*(Q"))?| N; satisfies (5)} , (8)
and the “space of unique vector potentials”
V! = Hypo(curl; Q') N Hy p(div; QT) NH* . (9)

They owe their name to following result, which will be usefull in the sequel. It is essentially
contained in [1,13]. For a constructive proof see [3].

Theorem 2.1 For each v; € W! there is a unique q; € Y such that curlq; = ev; and

lasll2ry < Crllevillzqry -

3 The H-based variational formulation

Basically, two different variational formulations of (6) exist, either based on the electric
field E or the magnetic field H [8]. They correspond to the primal and dual formulation
of second order elliptic prohlem. Yet, the algebraic constraint on curl H manifests itself
in a entirely different way in the two formulations. Therefore we restrict ourselves to the
H-based approach.

The generic form of the H-based variational formulation involves the Hilbert space of
complex-valued vector functions

VY :={v € Hy(curl; Q) | curlv; = 0 in Q'} ,

endowed with the natural norm

[v[3o == /Q \v|2+/nc |curlvg|® .

We will also need the affine space
Vel .= {v € Hy(curl; Q)| curlv; = J.;in Q'} = H* + V"

where H* is a function in Hy(curl; Q) such that curlH; = J, ; in Q. The magnetic field
we are looking for belongs to VJ¢7. Moreover for each v € V°

Oz/(iwp,H—!-curlE)-sz’w/p,H-V+/ Ec¢ - curlve.
Q Q Qc

Using the strong form of Ampere’s law in the conductor, namely Ec = o~ (curl He—-J.0),
we arrive at

0= iw/ puH - V—i—/ o (curlH¢ — J,.¢) - curlve.
Q Qc
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So, the magnetic field H solves the following problem:

Find H € VJer :
(10)
w [pH -V + [co curlHe - curlve = [jc 07 J ¢ curlve VveVO

The existence and uniqueness of a solution of (10) follows from the Lax-Milgram lemma,
since, under our assumptions on the material coefficients, the bilinear form is trivially
coercive on V°. Next, we have to recover the electric field in €. In Q¢, from Ampere’s law
we have

EC = O'_l(ClII'l HC - Je,C’) y (11)

while in Q! there exists a unique E; € H(curl; Q!) such that

curlE; = —iwpH; div(eE;) =0 in Q' (12)

€eE; - n=0 on 0, /eEI-ndS:O j=1,...,pr—1, (13)
T

E[ Xny= _EC’ X ng on r. (14)

Here, nj, denotes the unit outward normal vector on 0Qr, L = I,C. We refer to [4] for
more details.
Then (H, E) with H solution of (10) and E defined as

_ EC iIlQC
E_{E[ iIlQI

is the unique solution of (6).

Remark 3.1. We note that a finite element method based on (10) would have to deal
with the constrained space VJe!. The direct way to deal with the constraint in V° makes
use of scalar magnetic potentials by representing

V0o = grad Hyo(Q) @ H

(see [3,7]). It would be a perfect solution, unless we had to construct a basis of H in order
to continue with discretization. Such a basis is readily available, once we have “cuts” at our
disposal, i.e. a collection of surface in ! that cut any non-bounding cycle [9,18]. Finding
these cuts for arbitrary shape of 2 seems to be a challenging problem [15]. A

4 Mixed formulations

The main idea is to reformulate (10) as a saddle point problem in non-constrained vector
spaces by introducing Lagrange multipliers.



Let us define the bilinear form in Hy(curl; )
a(w,v) = iw/ uw - v+ / o~ lcurlwe - curl ¥ .
Q ac

We can introduce a Lagrange multiplier A; € (L*(Q2!))® and consider the saddle point
problem

Find (H, A;) € Hy(curl; Q) x (L*(Q7))3:
a(H,v)+ [curlv;-A; = [,c o7 T, c-curlve Vv e Hy(curl; Q) (15)

fQI curl H[ . N[ = fQI Je,l . NI i N[ < (LZ(QI))?’ .

This problem does not have a unique solution as it is possible to add any function
of Hyp(curl; Q") to A;. However if (H,A;) is a solution of (15) then H is the so-
lution of (10), and A; satisfies curlA; = —iwpH; = curlE; and A; x n; =
o0 '(J.c — curl He) x ng = —E¢ X ng = E; x n; on I'. Thus, in order to restore
uniqueness of solution it is natural to look for A; in the constrained space W' defined in
(8). Then it is obvious that A; = E;. From Theorem 2.1 it is easily verified that W/ is
equal to the range space €' curl Hy go(curl; Q7).
Thus, we consider the two-field formulation:

Find (H,A;) € Hy(curl; Q) x W :
aH,v) + [curlvi- A = [0 T c-curlve Vv e Hy(curl; Q) (16)

fQI curlHI-NI = fQI Je,I'NI VNI EWI.
Theorem 4.1 A unique solution of (16) ezists.

Proof. We can appeal to Theorem 2.1 and the general theory of variational saddle point
problems [10]. 0

Again, the space W involves some constraints. So we introduce another Lagrange
multiplier to impose these: we consider the space
HI Q) = {p e H(Q) | @rsis constant Vj =1,...,pr — 1, @rer = 0},

and it is easily verified by integration by parts that N; € W' if and only if N; € (L*('))?
and [, eNr-Vip; = 0 for all o; € H](Q"). Eventually we confront the following problem:

( Find (H, Ay, ¢;) in Hy(curl; Q) x (L*(QF))® x HY(QF) :
aH,v)+ [ycurlv;-A; = [,c 07 T c-curlve Vv e Hy(curl; Q)

< (17)
fQI curl H; - NI + fQI GNI . V¢] = fQI Je,] - NI VN; e (LQ(QI))?’

( Jor €Ar- VY, =0 Vr € Hy(Q) .



We note that if (H, Ay, ¢;) is a solution of (17) then ¢; = 0 (just taken N; = V¢ in
(17)), and (H, Aj) is solution of (16).
Introducing the bilinear forms

b(+,) : Hypa(curl; Q1) x (L*(Q1))* - C, b(vy,Np) ::/ curlv; - Ny,
ol

and
() s (P2(Q)° x HYQT) = €, e(Ny, ) == / N, -V, |

QI
and the linear operators

F(v) ::/ o 'J.c-curlvy, v € Hy(curl;Q)
(1%

and
G(N;) 1:/ Jer-Np, Npe (L*Q))
(o4
problem (17) can be rewritten as

( Find (H, A}, ¢;) in Hy(curl; Q) x (L2(Q))% x HL(QF) :

aH,v)+b(vi,Ar) = F(v) V v € Hy(curl; Q)

b(H;,N;) +¢(N;,¢;) = G(N;)  VNpe (L*(Q))°

( c(Ar,¢r) =0 Vre H(Q) .

In order to proof that (17) has a unique solution, we can use the following result, which
is Lemma 4.1 in [11] extended to complex Hilbert spaces.

Lemma 4.2 Let X, (), M be three complex Hilbert spaces and a : X x X — C, b :
XxQ —=C, c: Qx M — C be three continuous bilinear forms, i.e. there exist three
positive constants ci, cq, c3 such that |a(v, w)| < ¢1||v]|x||w]|x, [6(v, N)| < eof|v]|x||N]lo,
le(N,¢)| < c3||Ngl|¥llar for all v, w € X, N € Q and ¢ € M. Given f € X', g € @,
l € M', let us consider the saddle point problem

( Find (H,A,¢) in X x Q X M :

a(H,v)+b(v,A) = (f,v) VveX

b(H,N)+¢(N,¢) = (¢9,N) VNeQ

L c(A,Y) = (I, 1) Vi eM.



Let Q° C Q and X° C X be two subspaces as follows:
Q={NeQ[cN,y)=0 V¢eM}
X0={veX|bv,N)=0 VNeQ}.
Assume that a(-,-) is X°-coercive, i.e.,
la(v,v)| > allv[} VveX, (19)
and that the following inf-sup conditions hold
[b(v, N)|

inf su > B, 20

e AT ST (20)
N

inf sup M > (21)

wer neq [NJgllvllu =
for some positive constants a, B, vy. Then problem (18) has a unique solution.
Now we are in a position to prove the following result:
Theorem 4.3 Problem (17) has a unique solution.

Proof. In order to verify the assumptions of Lemma 4.2, first recall that the spaces W/ and
V0 can also be characterized as

W= {N;e (L2(Q")?| | eN; Vi, =0 Vore HA(Q)}
QI

and
VOZ{VEHO(CUI'I;Q) ‘ / CUI'IVI-NI:O VNIEWI},
(o4

(in the latter case, just take N; = €' curlvy).

Since the bilinear form a(-, ) is coercive on the space V°, we need only show that the
two inf-sup conditions are satisfied, more precisely, that there exist two positive constants
B and +y such that

| fQI CUI‘IV] . N]‘

sup > BIIN1]l 220 (22)
vEHy(curl;Q) ||V||H(curl;Q)
for all N; € W!, and
ENI . VE
sup o ! > Y|l (23)
Nrezn?:  INillz2 )



for all ¢y € H(QF).

Poincare’s inequality gives us a constant Cy > 0 such that |97 g1 (1) < Co||Vir| 2oy
for all ¢y € H}(Q"). Moreover, since € is assumed to be uniformly positive definite, there
exist two positive constants €, and €* such that for all N; € (L*(Q))?

e IN |2 < / Ny - Ny < €[Ny [aga-
QI

Hence, given ¢; € H}(Q!) and choosing N; = V17 we have

sup ‘ IQI Ny VJ[‘ > fQI eV - Vi,
Nre(L2(Q))3 ||NI||L2(QI) - ||V¢I||L2(QI)

€,
> 6*”V?/’I”L?(QI) > C—”T/JI”HI(QI)-
2

Concerning (22), by Theorem 2.1 for all N; € W' there exists q; € Y’ such that
N; = e lcurlq;. Let g € H(curl;Q) be a continuous extension of q; into 2¢; hence,
lall #(curt;) < Csl|az|m(curiior)- By the stability estimate of Theorem 2.1 we can infer that

Al eurn) < Ol eurtony < C5(1 + CF)|l curlar[72 g1

Thus,
sup |fQ, curlvy - N1| > |fQI curlqy - N[‘
vEH(curl Q) ||V||H(curl;Q) ||q||H(curl;Q)
S 1 ‘ Jor curlq; - NI‘ B 1 Jor €N; - Ny
~ (1+CP)Y2Cs leurlarllpery (14 CF)Y2Cs ||eNy|p2ry
> e I
= (1L+ C2)1 e IO

5 Finite element discretization

We are aiming for Galerkin finite element discretization of both the two-field problem (16)
and the three-field formulation (17). In both cases we want to verify the assumptions of
the theory of discrete saddle point problem [10, Chap. 2].

We assume that Q, Q¢ Q! are Lipschitz polyhedra and consider a family of regular
tetrahedral meshes {7}, of Q2 such that each element K € 7y, is contained either in QC or
in Q7. We denote T¢,5, Tr.s the restriction of 7, to Q€ and !, respectively. The parameter
h will also provide the meshwidth of 7.

We employ Nédélec curl-conforming edge elements of the lowest order to approximate
the magnetic field: let V}, be the finite elements space defined by

Vi :={vn € H(cur; Q) | vp(x)x =ag +bg xx VK € T4},



where ax and by are two constant vectors in R3. It is known that any function v;, € V}, is
uniquely determined by the following degrees of freedom [16, Sect. 3.2]

M,(v) :{/V-Tds\ e is an edge of Ty},

where 7 is the unit vector along the edge e. These edge moments make sense for any
v € (H*(Q2))? with curlv € (L*(9))? with s > 1/2 and p > 2 (see [6, Lemma 4.7] and [16,
Lemma 3.13]). Moreover the following interpolation error estimate holds (see [2,11] and
[16, Theor. 3.14]).

Lemma 5.1 Denoting by mpw € V}, the interpolant of w, for 1/2 < s <1, we have
|mw — W2y < Cu b ([|Wr|lms (k) + || curl we||gs(xy) VW € H*(curl; K),
where hy is the diameter of K € T.

The homogeneoous boundary conditions on 0f2 are incorporated by setting degrees of
freedom on 0f2 to zero. Thus we end up with the spaces

Xp, := Vi N Ho(curl; Q) and X := {vyor | v4 € X} .

For additional information about edge elements the reader is referred to [16, Chap. 3], [2],
and [14, Chap. III, Sect. 5.3].

5.1 Two-field formulation

The challenge is the approximations of the constrained space W!. However, we can take
the cue from the representation in Theorem 2.1 and lift it into the discrete setting. More
precisely, we choose

W}l = et curl X}

as trial space for WZ. Note that this is a conforming discretization in the sense that
Wl ¢ W', This results in the following discrete two-field problem.

Find (HhaAI,h) in Xh X W}{ :
(J,(Hh, Vh) + fQI Cuer[’h . A[,h = fQC O'_IJe’C . cuercyh Vv, € Xy, (24)
fQI curl H[,h . N],h = fQI Je’[ . N],h \ N[,h € Wf{ .

Theorem 5.2 Problem (24) has a unique solution.
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Proof. As in the case of the continuous problem, it is straightforward that the bilinear form
a(-,-) is continuous in X} and coercive in

X,? = {Vh € Xy, | curle,h . N[,h =0 VN[,h € W,{} , (25)

Qr

since in particular ¢! curlvy, € W), so that v, € X)) implies curl vy = 0.
To prove a uniform discrete inf-sup-condition we rely on the following lemma. It is a
variant of a discrete Poincaré-Friedrichs inequality, see [16, Theorem 4.7] for a proof.

Lemma 5.3 Let X,{’O :={vrn € X{ | curlv;, = 0} and

(X3t = {prn € X} | Pryn-Vin =0Yvi € X'}
Qr

There exists a positive constant Cs, independent of h, such that for all prp € (X,{’O)L

IPrall2n) < Cs|| curl pral| 2o, -

By the definition of W}, for each Ny, € W/ there exists @;, € X} such that Ny =
e 'curlqy,. By projecting on (X;°)%, we find a unique q;, € (X,}°)* with the same
property. Call @, some uniform discrete extension of qr; to Q° (the existence of such an
extension has been proved in [2]). Then q; € X}, and

llanll ety < Collarall aeurtan < Cs(1 + C2)?|| curl arpll L2, -

Since the constant Cg(1 + C2)'/2 is independent of h, q is a suitable candidate in the
discrete inf-sup condition:

| fﬂz curlvyy, -Npul | fﬂz curlqy, - Ny €,
sup > > NyullL2 . (26
S Nall e Il = Co1 4 C2yer N rllezan - (20)
All assumptions of [10, Chap. II, Theor. 1.1] are satisfied. O

Remark 5.1. The only way to implement the space W/ is to rely on its very definition,
that is we obtain its elements as € ! curl of edge element functions. Yet, these will no
longer be unique. The bottom line is that in a practical implementation of the two-field
method we will face a singular system of linear equations. As its kernel is well separated,
conjugate gradient type iterative solvers will perform well. A

5.2 Three-field formulation

Apart from H we have to approximate A; (namely, E;) and ¢; in (17). To discretize
A € L*(Q') we choose piecewise constant vector functions in the space

Qr, = {Nry € (L*()° | Nipk € (P)* VK € Trp} -

11



In order to approximate the Lagrangian multiplier ¢; € H}(Q') it would be natural to
rely on piecewise linear Lagrangian finite elements. However, it turns out that this space is
too small to guarantee uniform stability of the discretized mixed formulation. We have to
switch to a larger space for the approximation of the Lagrangian multiplier; it will be the
nonconforming Crouzeix-Raviart elements, defined as follows: let P, denote the standard
space of polynomials of total degree less than or equal to £ and

Uy = {Yrn € L*(Q) | Yrpk € Pi, VK € Trpp and 97, is continuous at the
centroid of any face f common to two elements in Tp}.

Then the discrete ¢; will belong to

Ml = {¢rn € Ul | Yru(p) is equal for all midpoints p of faces of IV,
j=1,...,pr — 1, and ¢;4(p) = 0 for all midpoints p of faces of I'’r} .

Note that, since functions in U} are no longer continuous, they are no longer in H(Qf).
Therefore we must define a modified bilinear form ¢y, : (L*(Q1))3 x (HX(Q) + M}) — C
and a norm on H!(Q') + M!. For each ¢; € H:(Q") + M/ we denote V), the function in
(L*(Q"))? defined as

(%7/)1)\1{ = VWI\K) VK € Tip.
Note that if 1o; € H}(2!), then Vi, = Vf;. Similarly, we define the bilinear form

cn(Np, ) = Z/ €Ny - Vi = / eN; - Vi VNje (L(Q)?, v € H(Q') + M|
< JK of
and the norm in H}(Q') + M}

ol =3 /K Va2 = [ o -
K

Then, the finite elements approximation of (17) can be formulated as follows:
( Find (Hh;AI,hvd)I,h) in Xh X Q{L X M,{ :
G,(Hh, Vh) -+ b(V[,h, AI,h) = F(Vh) V Vp, € Xh

b(Hrp, Nrp) + en(Npp, érn) = G(Nrp)  VNp,€Qj

C cn(Arn, Yr,n) =0 V€ M.

To show that this problem has a unique solution we need the following lemma, (see [17]).

Lemma 5.4 We have the L?(Q7)-orthogonal decomposition Qi = curl X} & 6M,{

12



Proof. The proof has two parts. In the first part we show that for all v, € X} and
Y1 € M{ we have the orthogonality [, curlvy, - %'@bI,h = 0. In the second part we
establish that dim(Q!) = dim(curl X/) + dim(VM}).

For any v;, € X} and ¢, € M/ integration by parts yields

fQI curl VIih- %’l/)],h = ZK fK curl VIih- VwI,h
= ZK faK CllI‘lV[yh . nw[,h
= D iern ff curl vy - n[Yralr + > ser,, ff curlvy, -niyy

+20 Zfefrj ff curlvyy -ntry,

where Fiy; is the set of internal faces of the triangulation 7; 5, Faq and Fr; denote the set
of faces of 77, on 0 and T, respectively, and [¢7 5] denotes the jump of ¢, across the
face f. Note that, for all f € Fiy, (curlvyy-n); is constant and ff [¢1.n]f = 0 since [ 4]y
is a linear function and it is equal zero in the centroid of f. Moreover (curlvyy - n);y =0
for all f € 02, and, using that ¢y is a constant 9; for all j = 1,...,pr, we have

D rer, Jreurlvry, -nyr, = [, curl vy, -n =0, hence

/ curlvyy - 61/11,h =0.
ol

Let us introduce the Raviart-Thomas finite element space [10, Chap. III]
RT}, == {v;, € H(div; Q) | vih(x)k =ak +bxx VK € Trp}t,
where ayg is a constant vector and by is a real number, and the subspaces
RTy 90 := RT, N Hyga(div,Q),  RTYsq = RT) N Hy yq(div, Q7).
By arguments from discrete cohomology, it can be proven (see [9]) that
dim(curl X)) = dim(RTy 50 (")) — (pr — 1).

Let us denote by #K the number of tetrahedra of 7; 5, by #F the total number of faces
of 71 and by #Fsq, #Fr, the number of faces of 7; on 02 and by I' respectively. It is
not difficult to prove that:

dlm(RT&m) = dlm(RTO’aQ(QI)) - dlm(dlv(@/To,ag(QI))) - (#f - #fag) — #K,
dim(My) = (#F — #Fr) + (pr — 1) = dim(V(M})),
dim(Q}) = 3#K.

Since 4#K = 2#F — (#Fsq + #Fr) then

dim(curl X7 + dim(VM})
= [(#F — #Foa) — #K — (pr — V)] + [(#F — #Fr) + (pr — 1)]
= 2#F — (#Foa + #Jr) — #K
— AHK — #K
_ dim(Q})
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Since, trivially, curl X! ¢ QI and VM] c Q!, the proof is finished. O
Using Lemma 5.3, we can now prove the main result of this section.

Theorem 5.5 If we assume that € is piecewise constant in Q1 then Problem (27) has a
unique solution.

Proof.
Conditions (19) and (20) follow as in the proof ot Theorem 5.2, provided that we show
that the space
{vi € Xn | b(vin,Nip) =0 VN, € Q")

where Q1° C Q! is defined as follows
2 ={Npn € Qh | ew(Nin,torpn) =0 Vibrp € My},

coincides with the space X} defined in (25). In fact, it is enough to prove that be’o =Wl
Since € is piecewise constant, for each Ny, € be’o we have eN;;, € QI. Therefore, using
Lemma 5.4, we obtain that €Ny, € curl X}, hence Q;° C €' curl X]. The viceverse is
straightforward, proceeding as in the proof of Lemma 5.4. B
Concerning the inf-sup condition (21) note that for all ¢;, € M} one has Vir € QF,

hence from the definition of the norm || - ||,
N S -
sup LNVl o Vil Jor €V Vi g
Nyae@l [INppllr2@n [$rnlln ™ || Ve 4] rr@n [z nlln IVl %2(91)
O

Remark 5.2. Note that J.; = curl K, ; for some K. ; € Hppqo(curl; Q7). If m, K, s is
well-defined, we can define G,(Ny) := [, curl(m,K ;) - Ny. If in problem (27) we replace
G with G}, it is easily showed that the new ¢, is equal to zero. A

6 Error estimates

Given the discrete inf-sup-conditions established in Sect. 5.1, the quasi-optimality of the
discrete solution of the two-field problem is standard [10, Chap. 2]|. Here, we are only
concerned with the discrete three-field problem (27).

We denote by ¢; and ¢, the continuity constants of the bilinear forms a(-,-) and b(-, -)
respectively, by a the coercivity constant of a(-,-) in V° and by 8 and 7 two positive
constants, independent of A, such that

. b(vin Ni)l
inf  sup
N7 n€Qp° viheXy, ||Vh | | H(curl,Q) ||NI,h

> B, (29)

|z2(an)
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and

) len(N7h, Y1 n)|
inf sup
Y1.hEM] N; ,EQp ||¢I,h|

> 7. (30)

rlINLall 20

i From (26) and (28) we can take 5 = o and v = ,.

Theorem 6.1 Let (H,A;, ¢;) € Ho(curl; Q) x (L2(Q1))3 x HX Q) be the solution of
Problem (17) and (Hp, A1 p, d1.1) € Xpn x Q1 X M} the solution of Problem (27). Then the
following error estimates hold:

4] Cy .
||H - Hh“H(curl;Q) S (1 + E) (]- + E) V;I€1§(h ||H - Vh”H(curl;Q) ) (31)
C . C
IA; = Arnllzn < (1+2) inf [[A; = Nillreen + = 1H = Halluearsoy - (32)
N],hEQh’ ﬂ
C:
lor — drplln = |rnlln < ;QHH — Hi |l g(eurrsa) - (33)

Proof. The proof follows the lines of the proofs in [10, Ch. 2]. For all v}, v, € X}, and
Nix € Qp

a(Hy — v, vp) +0(vin, Arp—Npp) = F(va) —a(vy, va) —b(vip, Nig)

= a(H —vj,vp) +b(vin, Ar —Npp) -

Note that if v, € X} then curlvry, = 0 in Qf, therefore a(H, — v}, vy) = a(H—v}, vp). If
we take vi € X := {vy € X}, | b(vip, Nrp) = G(Ny) VN7, € Qp°), then Hy —vi € X2
and we find

aHy, —v;, Hy, — vy =aH — v}, H, — v}).

Since X C VY, from coerciveness we conclude

||H - HhHH(curl;Q) S ”H - V;szH(curl;Q) + ||Hh - V;:”H(curl;ﬂ)
. ) (34
< (1 + E)”H — V;“H(curl;ﬂ) A V;; € Xh .
Moreover, from the inf-sup condition (29), for all v, € X}, there exists a unique z, € (X?)*
such that b(ZI,h, NI,h) = b(H[ — VIh, N[,h) for all N],h € Q}Il’o and

C
”Zh“H(curl;Q) S EZHH - Vh“H(curl;Q)-

Setting v} := zj, + vy, for all N7, € Q° we have
b(vin Nip) = b(Hr, Nyp) = b(Hp,Nyp) + (N, é1) = G(Npp) ,
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hence v} € XZ. Furthermore,

”H - V;”H(curl;ﬂ) < ||H - vh”H(curl;Q) + ”Zh”H(curl;Q) > (1 + ||H - vh“H(curl Q)

ﬁ)
and (31) follows from (34).

To obtain (32) we use the inf-sup condition (29). For each Ny, € @, we find
b(vip, Arp— Nyl

A;. — N 2(01)
IALn = Niallza@n mexh Vil (eurre)

On the other hand

b(VI,ha AI,h—NI,h) = F(Vh)_a'(Hha Vh)_b(VI,ha NI,h) = a(H — H,, Vh)+b(vl,ha AI—NI,h),

then o c
2
||AI,h - NI,h||L2(QI E“H Hh”H curl;2) E”AI - NI,h||L2(QI)7

which yields (32).
To obtain (33) we use the inf-sup condition (30) that in particular gives

lch(Nrnh, 1)l
Y N7reQn ||NI;h||L2(QI)

On the other hand

ch(Nip, érp) = G(Npp) —b(Hypp, Npp)

= b(H;,Nzp)+ c(Npp, 1) — 0(Hpp, Npjp)

= b(H; —H;s Ny,

then

C:
S _2||H - Hh”H(curl,Q)-
Y
O

Remark 6.1. Note that Q;° = e ' curl X} and that there exists q; € Hy pq(curl; Q)
such that eA; = curlq;. Hence

||A[ — NI h||L2 o)y = inf ||e_1(cur1 qr — CllI'qu,h)HLZ(QI)
N]h Qh qI,heX
< C inf Jlar — arpllacuryor) -
ar,n€X}
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