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Introduction

In this thesis we de ne and study the mixed quasietale surfaces In partic-
ular we classify all the mixed quasietale surfaces whose mimal resolution
of the singularities is a regular surface withpy = 0 and K2 > 0.

It is a well known fact that each Riemann surface with py = 0 is iso-
morphic to P1. At the end of XIX century M. Noether conjectured that an
analogous statement holds for the surfaces: in modern wordse conjectured
that every smooth projective surface with py = =0 be rational.

The rst counterexample to this conjecture is due to F. Enriques (1869). He
constructed the so called Enriques surfaces (see [Enr96]).

The Enriques-Kodaira classi cation divides compact comple surfaces in
four main classes according to their Kodaira dimension : 1 , 0,1, 2. A
surface is said to be ofgeneral typeif = 2. Nowadays this class is much
less understood than the other three. The Enriques surfaceBave =0.

The rst examples of surfaces of general type withpg = 0O have been
constructed in the 30's by L. Campedelli e L. Godeaux.

The idea of Godeaux to construct surfaces was to consider thguotient of
simpler surfaces by the free action of a nite group. In this irit, Beauville
(see [Bea96, Page 118]) proposed a simple construction ofrkaces of general
type, considering the quotient of a product of two curvesC; and C, by the
free action of a nite group G. Moreover he gave an explicit example with
pg = = 0 considering the quotient of two Fermat curves of degree 5n P2,

There is no hope at the moment to achieve a classi cation of tle whole
class of the surfaces of general type. Since for a surface ihi$ class the
Euler characteristic of the structure sheaf is strictly positive, one could
hope that a classi cation of the boundary case =1 is more a ordable.

Some progresses in this direction have been done in the laségrs through
the work of many authors, but this (a priori small) case has proved to be
very challenging, and we are still very far from a classi caion of it. At
the same time, this class of surfaces, and in particular the ihclass of the
surfaces withpg = 0 contains some of the most interesting surfaces of general
type, see [BCP11] for more details.

If S is a surface of general type with =1, which means py = ¢, then
by Beauville ([Bea82]),pg = q 4, and if pg = q= 4, then S s birational to
the product of curves of genus 2. The casgg = g = 3 has been studied in
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[CCML98], [Pir02] and [HP02] and the surfaces in this class i@ completely
classied. The casespg = q 2 are still far from being classi ed.

Generalizing the Beauville example, Catanese considers ¢hquotient
(C1 Cy)=G, where the C; are Riemann surfaces of genus at least two,
and G is a nite group. Following [Cat00Q], there are two cases: themixed
case where the action of G exchanges the two factors (and thenC; = Cy);
and the unmixed casewhere G acts diagonally.

After [Cat00] many authors studied the surfaces birationalto a quotient
of a product of two curves, mainly in the case of surfaces of geral type
with = 1. We refer to [BC04], [BCGO08], [BCGPO08] and [BP10] for the ase
pg = q =0, to [CPOY], [Pol08],[Pol09] and [MP10] for the casepg = q=1
and to [Pen11] for the casepg = q= 2. In all these works the authors work
either in the unmixed case or in the mixed case under the assuption that
the group acts freely.

The main purpose of this thesis is to extend the results and tle strategies
of the above mentioned papers in the non free mixed case. LeT be a
Riemann surface of genug 2, let G be a nite group that actson C C
with a mixed action, i.e. there exists an element inG that exchanges the two
factors. Let G°/ G be the index two subgroup of the elements that do not
exchange the factors. We say thatX = (C C)=G is a mixed quasietale
surface if the quotient mapC C! (C C)=G has nite branch locus.

We present an algorithm to construct regular surfaces as theminimal
resolution of the singularities of mixed quasietale surfaces. We give a com-
plete classi cation of the regular surfaces withpy = 0 and K 2 > 0 that arise
in this way. Moreover we show a way to compute the fundamentalgroup of
these surfaces and we apply it to the surfaces we construct; evfollow the
idea in [BCGPO08] (see also [DP10]) for the unmixed case, and evadapt it
to the mixed case.

The main theorem of the thesis is the following:

Theorem. Let S be the minimal resolution of the singularities of a mixed
quasietale surface X with pg(S) = q(S) =0 and K§ > 0, then

1. S is minimal and of general type.

2. S belongs to one of the 17 families collected in Table 1.

In the rst column of Table 1 we report the value K2 of the self-
intersection of the canonical class of the surface, Sin() represents the
singularities of X (see De nition 5.1.12 for the notation we use). The col-
umn Type gives the type of the set of spherical generators dB° (see Section
2.3) in a compacted way, e.g. 2;4 = (2;2;2;4). The columnsG and G° give
the group and its index two subgroup. The groups denoted byG(a; b) are
groups of ordera, while b is the MAGMA identi er of the group. The col-
umn by(X), H1(S;Z), and 1(S) give respectively the second Betti number
of X, the rst homology group and the fundamental group of S.



| K& [ Sing(X) [ Type | GO \ G | (X) [ H1(S;2) | 1(S) | Label |

| 1 [2Cp1+2Dpa | 2254 D4 Zp | Z30Z4 | 1 Z4 Z4 | 731 |
2 6Co1 2° Z3 Z50Z,4 2 Zy Z4 Zy Z4 7.3.2
2 6Co1 4 | (Zr Za)0Zy4 G(64, 82) 2 Z3 Z3 7.3.3
2 | Cp1+2Dyy | 284 Z30Z, Z30Z,4 1 Zy Z4 7.34
2 | Cp1+2Dgpy | 22,32 Z%0Z, Z30Z,4 1 Z3 Z3 7.35
2 | 2C41+3Co1 | 2°;4 G(64, 73) G(128, 1535) 3 Z3 Z3 7.3.6
2 | 2C31+2C3p | 3%;4 G(384, 4) G(768, 1083540) | 2 Z4 Z4 7.3.7
2 | 2C31+2Csp | 3%;4 G(384, 4) G(768, 1083541) 2 Z3 Z3 7.3.8

| 3| Cgs+tCss | 2°;8] G(32,39 | G(64, 42) | 2 Z, Z4 Zo Z4 | 739 |
4 4Cy1 2° Ds 2o D2g50Z> 2 |z, Zsg Z50Zg 7.3.10
4 4Cpq 25 z3 (Z50Z4) Z 2 Z3 Z4 K-N 7.3.11
4 4Cpq 43 G(64, 23) G(128, 836) 2 Z3 Z202Z, 7.3.12
8 : 2° Dy Z3 (D2850Z2) Z> 2 Z3 Zg 1! 7 w! 1! G! 1]73.13
8 ; 43 G(128, 36) G(256, 3678) 2 z3 11 ¢ 9! 1! G! 1 |73.14
8 ; 43 G(128, 36) G(256, 3678) 2 Z3 Z4 | 11 9 9! 41 G! 1 |73.15
8 ; 43 G(128, 36) G(256, 3678) 2 Z5 z73 | 11 o ¢! 41 G! 1 |73.16
8 ; 43 G(128, 36) G(256, 3679) 2 Z5 Zz | 11 3 4! 1! G! 1 |7.3.17

Table 1: The surfaces and their fundamental group. See Secitn 7.3 for a detailed description.
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The last column gives a label, referring to a subsection of $ion 7.3,
where we give more details on each construction.

Some of our construction are more interesting than others. W& would
like to point out the surfaces 7.3.4 and 7.3.7: these are nunnigal Campedelli
surfaces K § = 2) with topological fundamental group (and therefore alge-
braic fundamental group) Z4, we discuss the role of these surfaces in the
classi cation of the numerical Campedelli surfaces in Sedbn 3.6.1. More-
over, according to [BCP11], two of our constructions realie surfaces whose
topological type was not present in the literature before. These surfaces are
tagged by 7.3.10 and 7.3.12. We also note that the surfaces3(1, 7.3.4 and
7.3.5 areQ-homology projective planes in sense of [HK11].

The thesis is divided in seven chapters. The new results areootained in
the last three chapters, whereas the rst four chapters colect known results
from the literature, which we used. More precisely we have aganized the
thesis as follows.

In Chapter 1, we recall some standard de nitions and properies about
covering spaces and lifts, in particular we recall how the fadamental
group 1(X;x) acts on the bre p (x) of a covering spacep: X! X.

We give and prove the theorem of existence of covering spaces
Finally we discuss the monodromy of a covering space.

In Chapter 2, we recall the basic properties of branched and @lois
coverings; here we give the de nition of quasietale morphsm. We
recall some classical results about Riemann surfaces as thurwitz's
formula and the Riemann existence theorem.

In Section 2.3 we explain how to associate an algebraic datuman
appropriate orbifold homomorphism to any Galois coveringc: C !
C=H. In Section 2.4 we give the inverse construction, obtaininga
Galois coveringc: C ! C=H from any appropriate orbifold homo-
morphism. Theorem 2.4.3 shifts our geometric classi catim problem
into an algebraic problem.

Finally, in Section 2.5, we consider a Riemann surfac€ (and a nite

subgroup H of Aut(C)). We extend the action of 1(C) on the uni-
versal cover ofC to the action of a bigger group, anorbifold surface
group. We will use it later for computing the fundamental group of
the surfaces that we construct.

In Chapter 3 we recall some standard de nitions and classichproper-
ties of smooth complex surfaces.

In the Sections 3.5 and 3.6 we explain the Enriques-Kodaira elssi -
cation of compact complex surfaces and we focus on the surfes of
general type. In particular, in the last part of the chapter we present



the actual knowledge about the classi cation of the surfacs of general
type with  =1.

In the fourth chapter we consider group actions on product ofcurves.
Following [Cat00] the action can be of two types: mixed or unmixed.

In Section 4.2, we give the de nition of cyclic quotient singularity (type
Ch:a) and we give their resolution graphs (in terms of the continued
fraction of ).

In Section 4.3 we give the de nition of product quotient surfaces i.e.
the surfacesS that are minimal resolution of the singularities of a
surfaceX :=(C; C,)=G where G acts with an unmixed action. We
recall the properties of these surfaces (in particular the érmulae for
their numerical invariant).

In section 4.4 we introduce themixed surfaces and the mixed quasi-
etale surfaces.

In the last section of this chapter we summarize the actual kmwledge
about the classi cation of the surfaces with =1 that are birational
to a quotient of product of curves.

Chapter 5 is dedicated to investigate the mixed quasietak surfaces,
their singularities and the numerical invariants of the minimal resolu-
tion of their singularities.

Let X = (C C)=G be a mixed surface, letG® be the index two
subgroup of the elements that do not exchange the factors. Weenote
by Y the surface € C)=GP° and by the naturalmap Y ! X.

We start translating the quasietale condition in algebraic terms, by
showing (Theorem 5.0.12) that a mixed surface is mixed quasiale if
and only if the exact sequence

1t G%r Gr! oz, 1

does not split.
We show that for a mixed g.e. surface it holds SingK) = (Sing(Y)).

Then the singular points of X are naturally divided in two subsets,

according if they are branch points of or not, and the second set
of points is a set of cyclic quotient singularities. In Secton 5.1.1 we
investigate the singular points of X that are also branch points of

introducing what we call singularities of type D5 .

Let S be the minimal resolution of the singularities of a mixed qe
surfaceX = (C C)=G. Following the ideas of the unmixed case, in
Section 5.2 we relate the numerical invariantse and K 2 of S with the

genus ofC, the order of G and Sing(X ). In Section 5.2.1 we prove some
inequalities relating the invariants of S with the possible signatures
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of the orbifold surface groups which are domain of the appropate
orbifold homomorphisms involved.

In Chapter 6 we develop an algorithm to classify all the smooh reg-
ular surfaces with xed values of the invariants K 2 and py which are
minimal resolution of the singularities of a mixed quasietale surface.
As byproduct we get the second part of the main theorem of the hesis
(see Theorem 6.1.1).

In Section 6.1 we provide the theoretical background of the kyorithm,
in particular giving explicit bounds for the algebraic data depending
on the invariants of the surface (necessary for the nitenes of the
algorithm) and explaining how to read the singularities of the mixed
quasietale surfaces from the algebraic data.

In Section 6.2 we explain the strategy of the algorithm, that we have
implemented in MAGMA. Running the script in the case py = 0 and

K 2> 0 we get the surfaces in Table 1. The algorithm needs to \skip"
few cases: in Section 6.3 we prove the second part of the maihg¢orem
excluding these cases.

Finally, in Section 6.4 we report the MAGMA script.

In the last chapter we show a method to compute the fundamenth
group of a smooth regular surface birational to a mixed g.e. srface
and we apply it to the surfaces we construct.

In Section 7.2 we determine the minimal model of the construted
surfaces, proving that they are all minimal, so completing the proof of
the main theorem.

In the last section we report a detailed description of all the regular
surfaces in Table 1.
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Chapter 1

Covering spaces

In this rst chapter, we recall some de nitions and properti es related to
covering spaces. In particular we give the basic de nitionsand the lifting
properties, for further details we refer to [Hat02, Section1.3] and [Mas02,
Chapter 5]. We will give and prove the theorem of existence oftovering
spaces. Finally we will discuss the monodromy of a coveringpsce.

If not di erent stated, we shall assume that all spaces are p&h-connected
and locally path-connected.

1.1 Generalities on covering spaces

De nition 1.1.1.  Let X be a topological space. Acovering space(oretale-
covering) of X is a pair consisting of a topological spac&” and a continuous
map p: X ! X such that the following condition holds: each pointx 2 X
has a path-connected open neighborhoodl) such that each component of
p 1(U) is mapped homeomorphically ontoU by p. Any open neighborhood
U that satis es this condition is called an elementary neighborhood

Remark 1.1.2 For every x 2 X the topology induced by the topology of X
on the ber p (x) is the discrete topology.

De nition 1.1.3. Let X be a topological space and leG be a group that
actsonX. If for all g2 G the map 4:x 7! g x is continuous then X is
called G-space

Remark 1.1.4 If X is a G-space, then 4 is an homeomorphism for each
g2 G.

Denition 1.1.5. Let X be aG-space. The action ofG on X is discontin-
uous if:

(i) the stabilizer of each point is nite;
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(i) each point x of X has a neighborhoodU such that any element of G
not in the stabilizer of x maps U outside itself.

Moreover, the action of G on X is properly discontinuous if the stabilizer of
each point is trivial.

Proposition 1.1.6. Let X be an Hausdor G-space, withG nite and that
acts freely on X, then the action of G on X is properly discontinuous.

Proof. Since the action is free, the stabilizer of each point is trival.

Vi = g Xx are all distinct since the action is free. X is an Hausdor space
and so there exist a neighborhoodJy of x and neighborhoodsV; of y; such
that Ug\ V; = ; fori=1;:::;k. Let U; = g“.l(\/i)for i=1;:::;k. The y;

are open neighborhoods ok and so alsoU = ; U; is an open neighborhood
of x. We claim that U has the required property: U\ 4 (U) = ; for each
j. SinceU U = gjl(\/j) we get g (U) Vj, while U Up. We conclude
remembering that Ug\ V; = ;. O

Proposition 1.1.7. Let X be a G-space; if the action of G is properly
discontinuous, thenp: X ! X=G is a covering space.

Proof. We start showing that the map p: X | X=G is open. LetV an open
subset of X, then

prp(V)) = fx2Xjp(x)2p(V)g=fx2Xjp(x)= p(y);y2Vg
fx2Xjx= g(y)y2Vg=1fx2Xjx2 ¢VV)g

g(V)
g2G

hencep Y(p(V)) is open in X, and by de nition of quotient topology, p(V)
is open in X=G.

Let U be an open neighborhood of a poink that satis es the condition
(ii ) of De nition 1.1.5 (the stabilizer is trivial), hence p (p(U)) = [ 4(U)
is a disjoint union of open subsets. The restriction ofp on one of these open
subsets is continuous, open and bijective and so it is an honeenorphism. [

If p: X! X is acovering space, then the cardinality of the berp (x)is
locally constant over X . Since we are assuming connected this cardinality
is constant overX , it is called the number of sheetor degreeof the covering.
If the number of sheets is nite, we say that the covering is nite .

De nition 1.1.8. Let p: X ! X be a covering space, dift of a map
f:Y! Xisamapf: Y ! X suchthat pf~=f.

We now collect some results concerning uniqueness and exasice of lifts.



1.1 Generalities on covering spaces 3

Lemma 1.1.9 (Uniqueness of the lift). Let p: X! X be a covering space
and letY be a connected space. Given any two continuous mapg; f1: Y !

X such thatpfp = pf1 the setW = fy 2 Y : f(y) = fi(y)g is either empty
or all of Y.

Proof. SinceY is connected it su ces to show that W is both open and
closed. Lety 2 Y, and let U be an elementary neighborhood ok = pfg(y) =
pfi(y). By de niton p 1(U)=t Vj, assumeVy and Vi are the components
of p 1(U) which contain f5(y) and fi(y) respectively. By continuity there
exists a neighborhoodzZ of y such that f7(Z) V;,i=0;1.

If y 62W, then Vp\ V1 = ; and Z is a neighborhood ofy in W¢ and so
W is closed. Ify 2 W, then Vg = Vq; sincepfp(y) = pfi(y) and that pis an
homeomorphism onVg, hence injective, we get thatfg = f31 on Z, and so
W is open. O

De nition 1.1.10. A path in X is a continuous mapf from | :=[0; 1] to
X.

If and are two pathsin X such that (1) = (0), we can de ne the
composition path as follows:

_ (2t) if t2[0;1=2]
CO= o 1y itr2 p=1]
Apath :I! X iscalledloopif (0)= (1).
The inverse pathof isthe path —: 1! X dened by —(t):= (1 1t).

Lemma 1.1.11 (Lifting paths) . Let p: X ! X be a covering space. Let
1 1 X be a path with starting pointxg, for any %o 2 p %(xo) there exists
a unique lift ~: 1 I X with starting point xq.

Proof. Let fUjgj>; be a open cover oK by elementary neighborhoods; then
f  1(U;)gis an open cover of the compact spack, so it is possible to nd

existsjik 2 J such that ([tk;tk+1]) Uj,.

We construct the lift by induction on [0 ; tk]. For k = 0 we set «0) = Xg.
Now suppose to have de ned ¢: [0;tk]! X with —(0) = %o and that this
lift is unique. By construction ([ty;tk+1]) Ui, andp (U, ) is the disjoint
union of some open subset®V; X homeomorphic to Uj, via p. Among
these open subsets, leWW be the one that contains % (tx); we de ne ~+1 as
follows:

ey = 1O if t 2 [0;ti]
LAY () HC@) i 2 [t

It follows immediately that ~+; is continuous, the uniqueness follows by
Lemma 1.1.9.
O
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Using the same strategy of Lemma 1.1.11 it is possible to pravthe
following statement:

Lemma 1.1.12 ([Mas02, LemmaV.3.3]) Let p: X! X be a covering space
and let o; 1:1 ! X be paths inX which have the same starting point. If
p o and p 1 are homotopic, then g and 1 are homotopic; in particular, ¢
and 1 have the same end point.

As corollary of Lemma 1.1.12, we have the following theorem:

Theorem 1.1.13. Let p: X ! X be a covering space, letsy 2 X and
Xo = p(*0). Then, the induced homomorphism

p: 1(XiXo) ! 1(X;x o)
pl[] = [p]
is @ monomorphism.

Proof. It is obvious that p is a homomorphism. Let[]2 1(X;Xg) such
that p [ ] =[c], with cthe constant path of base pointxp, sop andcare
homotopic. istheliftof p  of base pointxy and the constant path e-with
basexy is the unique lift of ¢ of base pointxy, hence they are homotopic by
Lemma 1.1.12. Hence [] = [€] and sop is injective. O

Proposition 1.1.14. Let p: X ! X be a covering space, letxg 2 X
and Xg = p(xp). The number of sheets of the covering equals the index

of p ( 1(X; xp)) in 1(X;X o).

Proof. For a loop g in X based atXxg, let g be its unique lift based at xp.
A product h gwith [h] 2 H := p 1(X; xo) lifts to (¥ g) = i g ending
at the same point asg-sinceh is a loop based atxg. Thus we may de ne a
function  from the cosetsH [g] to p 1(xo) by sendingH [g] to g(1). It is well

de ned and the path-connectedness o)X implies that is surjective, since
%o can be jointed to any point in p 1(xo) by a path g projecting to a loop g
based atxg. To see that is injective, we observe that (H[gi]) = (H[g2])

implies that g, lifts to a loop in X based atxp so [g1][g2] * 2 H an hence
H[o] = H[g] O

Theorem 1.1.15 ([Mas02, Lemma V.4.2]) Let p: X ! X be a covering
space and letxg 2 X . Then, the subgroupsp 1(X; %) for ¥ 2 p 1(xo) are
exactly a conjugacy class of subgroups of,(X; X o).

Theorem 1.1.16 (Existence of lifts, [Hat02, Proposition 1.33]).

Let Y be a connected and locally path-connected space. Lpt X ! X be
a covering space and leff : Y ! X be a continuous map. Letyy 2 Y,
xo = f(yo) and xp 2 p 1(xg). There exists a unique liftf~of f such that
f{yo) = %o if and only if

f1u(Yiyo) p 10X x%0):
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De nition 1.1.17.  An isomorphism between covering spacep;: X1! X
and p2: X2 ! X is a homeomorphism : X3! X3 suchthat p; = p; .

In particular, the isomorphisms from the covering p: X | X to itself are
said deck transformations or automorphisms of covering spaces, they form
a group that is denoted by A(X; p).

Obviously A(X; p) acts on the left on X. We have that this action has
no xed points, indeed:

Lemma 1.1.18. Let' 2 A(X;p). If ' 61 then' (q) 6 qfor eachq2 X.

Proof. By contradiction, assume that ' (q) = g for someq 2 X. Applying
Theorem 1.1.9, we have that the unique lift ofp with ' (g) = qis the identity
and so' =1. O

Using Lemma 1.1.9 and Theorem 1.1.16, we have immediately

Proposition 1.1.19. Two covering spacesp1: X3! X and py: X! X
are isomorphic via an isomorphism : X1 ! X3 taking x1 2 p; Y(xo) to
X2 2 Py 1(Xo) if and only if py ( 1(X15%1)) = p2 ( 1(X2i%2)).

A consequence of Theorem 1.1.16 is that a simply-connected w#ring
space of a spaceX is also a covering space of every other covering space
of X. A simply connected covering space oK is called auniversal cover.
By Proposition 1.1.19 it is unique up to isomorphism, so we ca call it the
universal cover.

1.1.1 The action of the group 1(X; %) on the set p (xo)

We now de ne an action of the group 1(X;x o) on the setp (xg) for any
Xo 2 X ; i.e., we make 1(X;X o) operating on the left on the setp *(xo).

Let p: X! X be a covering space and let be a path in X. By Lemma
1.1.11, there exists a unique lift ~of —, the inverse path of , starting at a
given point of p 1( (1)). In this way we get a well-de ned map

L:op '@t p*(0) (1.1)

by sending the starting point ~(0) of each lift ~ to its ending point ~(1).

Remark 1.1.2Q The reason for taking a lift of — and not of is that in this
way we have thatL =L L , otherwise we haveL =L L .
By Lemma 1.1.12,L depends only on the homotopy class of , this
means that if we restrict to loops base atxg 2 X, then the association
7' L gives a homomorphism from 1(X; X o) to the group of permutation
of p 1(xo). By Remark 1.1.20, we get a left action of 1(X;X ) on the ber

p (Xo).

Lemma 1.1.21. The action of 1(X;Xx o) on the ber p (xo) is transitive.
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Proof. Let x; and x» be points inp 1(xg), since X is path-connected, there
exists a path : 1 ! X such that (0) = %1 and (1) = X». The path
=p I ! X isaloop based atxg. Since™ is the unique lift of with
starting point %2, we have
L (%1) = X%2:

O]

Lemma 1.1.22. The stabilizer of x 2 p 1(xo) for the 1(X;xo) action is
the subgroupp ( 1(X; %)).

Proof. The stabilizer of x is the subgroup of 1(X;X ) given by the classes
[ ]such that L (%) = %, in other words, the classes whose lift is a loop
based atx: So, if [ ] belongs to the stabilizer, then it is the image of a loop
based atx-andso [ ]2 p 1(X; %).
Conversely, let [ 12 p ( 1(X; %)), then [ ] = p [~] with ~ loop of base
point %, hence
L (%) =%

hence the stabilizer ofx-is p ( 1(X; %)). O

The following statement shows the connection between the grup A(X; p)
of automorphism of a covering space and the action of 1(X;x ) on p 1(x).

Proposition 1.1.23. For any ' 2 A(X;p), any 2 1(X;x) and any
%2 p Y(x), it holds:
(L) =L ()

Proof. Let be the unique lift of — in X with base point x, then L (%) is
the end point of . Let consider the path' ( ) in X its starting point is
" (%) and its end point is ' (L (%)). We observe that

pC (N=(p)()=p()=7
thatis ' ( ) is the lift of — with base point"' (), henceL (' (%)) is the end
pointof * ( ) thatis ' (L (%)). O
1.1.2 Regular covering spaces and quotient spaces

De nition 1.1.24.  Let p: X! X be a covering space and lek2 p (x).
If p 1(X; %) is a normal subgroup of 1(X;x), the covering is calledregular.

For a regular covering spacep: X ! X, it holds the following nice
description of A(X; p):

Lemma 1.1.25 ([Hat02, Proposition 1.39]). Let p: X' ! X be a regular cov-
ering, then A(X; p) is isomorphic to the quotient group 1(X;x)=p ( 1(X; %))
for any x 2 X and anyx 2 p (x).
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By Theorem 1.1.15 and Proposition 1.1.19 we get

Lemma 1.1.26. Let p: X ! X be a covering space. The automorphism
group A(X;p) operates transitively on p 1(x), x 2 X, if and only if the
covering is regular.

As consequence we have the following:

Proposition 1.1.27 (see [Mas02, Section 5.8])Let p: X' ! X be a regular
covering space, thenX is homeomorphic toX=A (X;p).

Conversely

Theorem 1.1.28 ([Hat02, Proposition 1.40]). Let Y be a connected, locally
path-connected and letG be a group of homeomorphisms that acts properly
discontinuous.

Then p: Y ! Y=Gis a regular covering andA(Y;p) = G.

Corollary 1.1.29. In the same assumptions of Theorem 1.1.28, we have
the following short exact sequence:

11 (i) ' u(YsGipye) ! G! 1

Proof. By Theorem 1.1.13p is injective, while by Lemma 1.1.25 and The-
orem 1.1.28 we have 1(X;x)=p ( 1(X; %)) = A(X;p) = G. O

1.2 Existence Theorem of covering spaces

Every covering spacep: X' ! X induces a subgroupp 1(X; %) of 1(X;p(%))
for any point x 2 X.

In this section we want to investigate the \inverse" problem, that is:
given a subgroupK 1(X; X g), is there a covering space: Xk ! X such
that p 1(Xk ;%) = K for a suitable choice of the base poinx2 Xk ?

De nition 1.2.1. A topological space X is semilocally simply connected
if any point x 2 X has a neighborhoodUy such that every loop in Uy is
homotopic in X to the constant path.

The following statement gives a positive answer to our queson.

Theorem 1.2.2 ([Hat02, Proposition 1.36]). Let X be a topological space
which is path-connected, locally path-connected, and sefocally simply con-

nected. Then, for every subgroup oK 1(X; X o), there exists a covering
spacep: Xg ! X such thatp ( 1(Xk ;%)) = K for a suitable choice of the
base pointx 2 p 1(xo).
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Proof. The proof is divided in two steps: the rst step is to show how on-
struct an universal cover X of X ; the second step explains how to construct
Xk from X.

Step L we start de ning X as set:

X :=1f[]] isapathinX s.t. (0)= Xo0;

where, as usual, [] denotes the homotopy class of .
The function p: X! X sending [] to (1) is well de ned and surjective
since X is path-connected.

In order to give a covering space, we have to de ne a topology ro X.
We make a few preliminary observations. LetU be the collection of path-
connected open setdJ X such that 1(U) !  1(X) is trivial. Note
that if the map 1(U) | 1(X) is trivial for one choice of base point in
U, it is trivial for all choices of base point since U is path-connected. A
path-connected open subseV U U is also in U since the composition

(V) (U]  1(X) will also be trivial. It follows that U is a basis for
the topology on X if X is locally path-connected and semilocally simply-
connected.

Given a setU 2 U and a path in X from Xg to a pointin U let

U:=f[ ]j isapathinUst (0)= (1)g:

We note that U j depends only on the homotopy class [|. We also observe
that the restriction of p to U ; is surjective sinceU is path-connected and
injective since di erent choices of joining (1) to a xed u 2 U are all

homotopic in X .

If[ 92 Upjthen U= Up g, indeed if °=  then elements ofU[ q
have the form [ ] and hence lie inU; ;, while elements inU; ; have the
fom[ ]=[ ~1=[ % Jand hence lie inU q.

This property can be used to show that the setsU; ; form a basis for a
topology on X'. Let Up ; and V; q be two sets and let [ %92 U ;\ V; q, we
have Up ;= U og and V; g = V; og. So if W 2 U is contained inU\ V and
contains °¢1) then Wy oq  U; oq\ V; oq and [ %92 W og.

The bijection Uy ;! U given by the restriction of p is a homeomorphism
since it gives a bijection between the subset¥; ¢ U j and the setsV 2 U
contained in U. Namely, in one direction we havep(V; q) = V and in the
other direction we havep (V) \ U 1= Vqforany | 92 U 1 with end
pointin V sinceV; ¢ U; g = U;jandV, q maps ontoV.

The previous paragraph implies thatp: X! X is continuous. We can
also deduce that this is a covering space since for xedJ 2 U, the sets
U for varying [ ] partition p *(U), because if [°F 2 U;;\ U q then
Ur1= Yrog=Upo.

It remains only to show that X is simply-connected. For a point[ ]2 X
let ; be the path in X equals on [0;t] and is stationary at (t) on [t; 1].
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Then the function t 7! { is a path in X that starts at [ Xxg], the homotopy
class of the constant path atxp, and ends at [ ]. Since [ ] was an arbitrary
point in X, this shows that X is path-connected. To show that 1(X; [Xo])
is trivial, it su ces to show that the image of this group unde r p is trivial

sincep is injective. Elements in the image ofp are represented by loops

at xg that lift to loops in X based at kg]. We have observed that the path
t 7! [ ] lifts  starting at [Xg], and for this lifted path to be a loop means
that[ 1] =[xg]. Since ; = ,thissaysthat[ ]=[Xg], so is nullhomotopic
and the image ofp is trivial.

This completes the construction of a universal cover spacX ! X.

Step 2 For points [ ] and [ 9 in the simply-connected covering spaceX
wedene[] [9Qif ()= Q1) and[ 92 K. This is an equivalence
relation since K is a subgroup: it is re exive since K contains the identity
element, symmetric sinceK is closed under inverses, and transitive sinc&
is closed under multiplication. Let Xk be the quotient space ofX" obtained
by identifying [ Jwith[ 9if[ ] [ 9, with the quotient topology. Note that
if 1)= 9Y2),then[] [Yifandonlyif[ ] [ °] This means that
if any two points in basic neighborhoodsU; ; and U; q are identi ed in Xk
then the whole neighborhoods are identi ed. Hence the natual projection
Xk ! Xinduced by [ ]7! (1) is a covering space.

If we choose for the base pointxg 2 Xk the equivalence class of the
constant path c at xo, then the image ofp : 1(Xk;%o) ! 1(X;X ) is
exactly K. This is because for a loop in X based atXg, its lift to X
starting at [c] ends at [ ], so the image of this lifted path in Xk is a loop if
and only if [ T [c], or equivalently [ ]2 K. O

Remark 1.2.3 If the subgroup K in Theorem 1.2.2 is normal, thenXg is a
regular covering.

Remark 1.2.4. If K is normalin 1(X;Xg), then 1(X;X ) acts on the left on
Xk inthe followingway: lett 2 1(X;Xxg)andlet][ ]2 X,thent [ ]:=[t ].
First of all we observe that this is equivalent to take the nal point of the
unique lift of t of base point ] 2 Xk, the class of the constant path based
at Xo.

The action is well-de ned, indeed if Othent t 0= t( 9t. By as-
sumption 92 K that is normal in  1(X;xo) and sot( 9t 2 K.

s(t[D=s[t]=[st]=(s) []

proves that it is a left action. It is clear that (1) = t (1), thus p([ ]) =
p(lt D= (1)
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1.3 The monodromy of a covering space

Letp: X! X be acovering space of degred so that all points have exactly
d preimages. Letx 2 X, by Proposition 1.1.14 we have thatd is exactly the
index of p ( 10X %)) in 1(X;x) for x 2 p (x).

in X based atx we can associate a maf. as in (1.1). Next consider
the imagesL (yi), these also lie overx, and indeed they form the entire

obvious that it depends only on the homotopy class of , so we have a group
homomorphism
1(X;x) ! Sy

where S 4 denotes the symmetric group of all permutations ond elements.
This map is indeed a group homomorphism by Remark 1.1.20.

De nition 1.3.1.  The monodromy representation of a coveringp: X! X
of nite degree d is the group homomorphism : (X;x) ! Sg dened
above.

Proposition 1.3.2. Let p: X! X be a regular covering. Then the image
of the monodromy representation ofp is A(X; p).

Proof. Since the covering is regular we have thatX = X=G, with G =
A(X;p).
Lety 2 p }(x) and let 2 1(X;x). By Lemma 1.1.11 there exists an
unique lift  of ~ with base point y. By construction there exists an element
h 2 G such that h(y) = L (y), the uniqueness follows by Lemma 1.1.18. So
we have a map:

O X x) ! G:

The action of G on p (y) is transitive so for eachy®2 p (x) there
existsh 2 G and let y°= h(y). Since C is path-connected, there exists a
path fromy%toy. Let :=p ()2 1(X;x),theny®= L (y)= h(y)and
so 4 )= h. O



Chapter 2

Branched coverings of
Riemann surfaces

From now on we work over the eld of complex numbers:C.

We refer to [Har77, Chapter I1] for the basic de nition and pr operties
concerning algebraic varieties (irreducible, normal, dinension) and mor-
phism (proper, nite) between algebraic varieties.

2.1 Branched, Galois and quasietale coverings

In this section we assume that all the varieties are algebrai, irreducible and
normal.

De nition 2.1.1. Let f: X | Y be a nite proper morphism between
varieties of the same dimension. Then the inverse image of ew point is a
nite set of points. We call such a map a branched covering

De nition 2.1.2. Let X be a variety and let G be a nite subgroup of
Aut( X). We say thatf : X | Y = X=G is a Galois covering

De nition 2.1.3. Let X and Y be varieties of the same dimension and
f: X ! Y be aregular map such thatf (X) Y is dense. The degree of
the eld extension f (C(Y)) C(X), which is nite, is called the degreeof
f:

degf) :=[C(X) : f (C(Y))]:

Proposition 2.1.4 ([Sha77, Theorem 6.3.3]) Let f: X ! Y be a nite
map between varieties of the same dimension. Then for ajf 2 Y it holds

if )i deg().

De nition 2.1.5. Let f: X ! Y be a branched covering, letx 2 X and
y = f (x). If the number of preimages ofy is strictly less than deg(f ), then
we say thaty is a branch point and that x is a rami cation point . The set
of all branch points is called branch locus (or branch set).
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De nition 2.1.6. Let f: X ! Y be a branched covering, letx 2 X and

y = f (x). Let V be a neighborhood ofy such that the connected component
U of f (V) that contains x, does not contain other preimages ofy. The

rami cation index of x, denoted by ry, is the number of preimages inU for

a general point other thany in V.

Remark 2.1.7. For any unrami ed point, its rami cation index is ry = 1.

Proposition 2.1.8 ([Sha77, Theorem 6.3.4]) Letf : X | Y be a branched
covering. Then the set of unrami ed points in Y is an open set in the Zariski
topology.

Remark 2.1.9 If f : X | Y is a branched covering without branch points
thenf: X ! Y is a covering space oY and in this case we say thatf is
etale.

Quasietale covering are special cases of branched covegs, and they
have been rstly introduced in [Cat07].

De nition 2.1.10  (cf. [Cat07, De nition 1.1]) . Letf :Y ! X be a surjec-
tive morphism between varieties of the same dimension. We gathat f is a
quasietale morphismsif it isetale in codimension 1, i.e. there existsZ Y
of codimension 2 such thatfy,zy: Y nZ ! f(Y nZ)isetale.

Lemma 2.1.11 ([Cat07, Remark 3.1]). Let f: Y ! X be a quasietale
morphism. If Y is smooth andX is normal, then f isetale.

2.2 Some facts on Riemann surfaces

In this section we recall some facts on Riemann surfaces, wefer to [Mir90]
for further details.

By proposition 2.1.8, in the compact Riemann surfaces casene branch
locus is nite.

Lemma 2.2.1 ([Mir90, pages 48-49]) Let f : X | Y be a non constant
holomorphic map between compact Riemann surfaces. Thenis a branched
covering.

For compact Riemann surfaces it holds the well known \Hurwitz's for-
mula:

Theorem 2.2.2 (Hurwitz's formula, see [Mir90, Theorem 11.4.16]).
Let f: X ! Y be a non constant holomorphic map between compact Rie-
mann surfaces. Then

X
29(X) 2=deg(f)(29(Y) 2)+ (rx 1):
x2X
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Let C be a compact Riemann surface, we want to investigat€=G where
G is a nite group acting holomorphically and faithfully on C.

Remark 2.2.3 We rst observe that we can always assume thatG acts
faithfully. Indeed, if K/ G is the normal subgroup of the elements that
act trivially, then we can replace G by G°:= G=K and obviously we have
C=G= C=G°

From now on we always assume thatG acts faithfully and holomorphically,
so that G embeds in Aut(C).

Proposition 2.2.4  ([Mir90, Proposition 111.3.1]) . Let C be a Riemann sur-
face, let G/ Aut(C) and let p 2 C. Suppose that the stabilizer subgroup
Stab(p) is nite. Then Stab(p) is cyclic.

Proof. EIX a local coordinate z centered atp. For any g 2 Stab(p), write

a(z) = -1 an(g)z"; this power series has no constant term sinceg(p) = p
and a;(Q) 6 0 since g is an automorphism of X an hence it has multiplicity
one at every point.

Consider the function a;: Stab(p) ! C . Note that it is a homomor-
phism of groups: a;(gh) is calculated by computing the power series for
g(h(2)), so that ai(gh) = ai(g)as(h).

To nish the proof it su ces to prove that this map is injectiv e, since
the only nite subgroups of C are cyclic. Letg 2 ker(a1), i.e. g(z) = z +
(higher order terms); we have to show that in factg(z) = z. Suppose that
this is not the case and letm 2 be the exponent of the rst non zero
higher order term of g, therefore g(z) = z+ az™ mod z™*! with a6 0. It
is not di cult to prove by induction that g = z+ kaz™ mod z™*!. But
since the stabilizer is nite, this element must have nite order; hence for
somek, g¢(z) = z. It follows that for some k, ka = 0 hencea =0 and so g
is the identity. O

Proposition 2.2.5 ([Mir90, Proposition 111.3.2]) . Let C be a Riemann sur-
face, let G be a nite group acting faithfully and holomorphically. Then the
points of C with non trivial stabilizer are discrete.

Proof. Suppose that there exists a sequencepg converging to p such that
eachp; has a nontrivial elementg; xing it. Since G is nite, we may pass
to a subsequence and assume that eaqh is xed by the same nontrivial
element g that is continuous and so it xes the limit point p too. Sinceg
and the identity 15 agree on setS C with an accumulation point, they
must be equal (see [Mir90, Identity Theorem, Theorem 11.1.%]). O

Remark 2.2.6. In the same assumptions of the previous propaosition, ifC is
compact, then only nitely many points have non trivial stab ilizer.
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Proposition 2.2.7  ([Mir90, Proposition 111.3.3]) . Let C be a Riemann sur-
face and letG/ Aut(C) nite. Fix a point x 2 C. Then there is an open
neighborhoodU of x such that:

U is invariant under the action of Stabg(x): g(u) 2 U for everyg2 G
andu 2 U;

U\ g(U) = ; for every g Z Stabg(x);

the natural map : U=Stabg(x) ! C=G, induced by sending a point
in U to its orbit, is a homeomorphism onto an open subset o£=G;

no point of U exceptx is xed by any element of Stabg(x).

Using the previous statement, it is possible to de ne a compéx structure on
C=G. We get the following:

Theorem 2.2.8 ([Mir90, Theorem 111.3.4]) . Let C be a Riemann surface
and let G/ Aut(C) nite. Then C=G is a Riemann surface, the quotient
mapf: C! C=G is holomorphic of degreeiGj and rp(f ) = jStabg(p)j for
anyp2 C.

2.2.1 The Riemann Existence Theorem

Let C be a Riemann surface and letG/ Aut( C) nite. By Theorem 2.2.8
we can de ne a structure of Riemann surface orC%:= C=G. Let

f.ct cC°

branch locus off . Let X := C°nB and Cp := f 1(X) thus the restriction
fo: Co I X

of f to Cy is a covering space.
The aim of this section is to reverse this construction. We sart from a

We will show that F can be extended to a Galois covering : C! C° and
that the Riemann surface C is unique up to isomorphism.

Proposition 2.2.9. Let f% X nA ! X9%be a holomorphic map between
Riemann surfaces, whereA X is nite. If there exists a continuous map
f: X I XOthat extendsf °then f is holomorphic.
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Proof. Let x 2 Aandlet' :U! Cand :V ! Clocal chartsin X and
X Orespectively, such thatx 2 U and f (x) 2 V. The map

foro vt v)! C

is holomorphic in' (U\ f 1(V))n' (x) and it is bounded in a neighborhood
of ' (x). Using the Riemann extension theorem we conclude that the rap
is holomorphic also in' (x), thus f is holomorphic in x. O

Let D := fz 2 C:jzj < 1gbe the unitary open disc and letD := Dnf0Og
be the punctured disc. In order to prove the Riemann existene theorem we
need the following:

Theorem 2.2.10 ([For81, Theorem 5.10]) Let X be a Riemann surface
and lets: X | D be a connected covering space of degree< +1 .
Then there exists a biholomorphic map : X ! D such that the following

diagram commutes:

D
where pn (z) = z™M.

Theorem 2.2.11 (Riemann existence theorem) Let C and C°be Riemann
surfaces and letA  C%be a nite subset. Let

f:C! C%A

be a properetale covering.
Then f can be extended to a branched covering @ that is there exist
a Riemann surfaceC, a proper holomorphic map

F:c! cC°
and a biholomorphic map
':CnF A)! C
such that the following diagram commutes:
coolenF Y(A)—Jt
f F
ConA- o

Moreover C is unique up to isomorphisms.
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Proof. For eachx 2 A let (Ux; x) a chart centered in x, i.e. x(x) = 0;
moreover we can assume that x(Ux) = D and that Uy, \ Uy, = ; if X1 6 X».
Let U, := Uy nfxg, sincef is proper we have thatf (U,) has a nite
number of connected components/,; :

foHU)= Viert st Vi s
where eachV,; ! U, is a connected covering of nite degreem;. By Theo-
D such that the following diagram of holomorphic maps commutes:
Vig ——b

f
U, ——'b

Pm;

with pm,(z) = z™.

Adding a point yx; to eachV,; we get setsVy; := V,; [f yxig on which
we consider the natural topology that makes the natural extasion of h; to
amapVy; ! D (sendingyy; into 0) an homeomorphism. We de ne

On C there exists an unique topology such that the inclusionC | C is
continuous and for any W neighborhood ofx then

fyigl (F I(W)\ Vi)

is a neighborhood ofyy.i . This topology is Hausdor .
Wedene F: C! COwith F(z)= f(z) for eachz 2 C and F (yx;) = X.
It is easy to prove that F is proper. The charts (Vy;;h;) de ned above are
compatible with the charts of C and so they de ne a complex structure on
C. The covering
f:C! C%A

extends to a continuous map
F:c! C°

that is holomorphic because of Proposition 2.2.9. Sinc€EnF %(A) = C, we
can choose a$ : CnF (A)! C the identity. This prove the existence.

We construct C in such a way that for each pointx 2 A, F (x) has
cardinality equal to the number of connected components ofF (U, ). Let
F1: C1 ! CPbe a map satisfying the conditions of the statement. Then
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F 1(U,) = F, 1(UX) and so, sinceF; is proper, F; 1(x) contains at least a
point for each connected component oF (U, ).

= 1(x) does not contains other points, because if it contains an dter
point z it must be isolated and soC; is not a Riemann surface in a neigh-
borhood of z. So we can extend the identity mapld: C! C to a bijective
continuous map : C! Cj sending each pointyy; in the unique accumula-
tion point for V,,; in F; 1(UX). By Proposition 2.2.9, this map is holomorphic
and hence an isomorphism. O

2.2.2 Finiteness of Aut(C)

Lemma 2.2.12 (Linearization of the action, [Mir90, Corollary 111.3.5]) .

Let C be a Riemann surface and letG/ Aut(C) nite. Fix a point p2 C

with non trivial stabilizer of order m. Let g 2 Stab(p) be a generator of the
stabilizer subgroup. Then there is a local coordinatez on C centered atp

such thatg(z) = z, where =exp(2h).

Theorem 2.2.13 ([Mir90, Lemma 111.3.6]) . Let C be a compact Riemann
surface and letG/ Aut(C) nite. Let f: C! Y = C=G. Then for every
branch pointy 2 Y there is an integerr 2 such thatf 1(y) consists of
exactly jGj=r points of C, and each of these preimaget has multiplicity r.

Proof. Suppose thaty 2 Y is a branch point of the mapf. Let f (y) =
their stabilizers subgroups are conjugates and in particudr they have the

same order, sayr. The number s of points in this orbit is the index of the
stabilizer, and sos = jGj=r. O

Applying Theorem 2.2.2 to the previous statement, we get thefollowing:
Corollary 2.2.14. Let C be a compact Riemann surface and lecG be a

nite subgroup of Aut(C) . Let f: C! Y = C=G. Suppose that there are

points abovey;. Then

)4( .
iGiegc=6) 2+ G g

29(C) 2

I 1
Fi

jGj 29(C=G) 2+
i=1

In next chapters we will consider only Riemann surfaces of geisg 2,
hence the assumption of niteness ofG/ Aut( C) is automatic; indeed, study-
ing the Weierstrass points of Riemann surfaces, Schwartz i1890 proved

Theorem 2.2.15 (Schwartz, see [Sch90]) Any compact Riemann surface
of genusg 2 has a nite number of automorphisms.
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Moreover, for Riemann surfaces of genus at least 2, Corollgr2.2.14
leads to a bound on the order of the groupsG which act holomorphically
and e ectively.

Theorem 2.2.16 (Hurwitz's Theorem, [Mir90, Theorem 111.3.9]) . Let C be
a compact Riemann surface of genug 2 and let G/ Aut(C). Then

jG] 84(g 1):
Proof. SinceG is nite, by Corollary 2.2.14:
29 2=jGj2g° 2+R);

where g%is the genus ofC=G and R = P ik=1 Q@ 1=rp), r;i 2.

Suppose rst that g° 1. If R = 0, so there is no rami cation to the
quotient map, then ¢® 2, which implies that jGj g 1. If R 6 0, this
forceR 1=2,then2g° 2+ R 1=2 and sojGj 4(g 1).

Let us assume thatg®= 0, hence 23 2 = jGj(R 2) which forcesR > 2.
In this casek 3; we now assume thatr; ro  :::  rg.

Let k = 3, then only r; can be equal to 2; in this case iff, = 3 then
rs 7andR 2+1=42. Ifrp=4thenrs 5andR 2+1=20;ifr, 5
then for any r3 we getR 2+ 1=10.

If ri = 3, we only exclude the caser, = r, = r3 = 3: in this case R = 2,
otherwiseR 2+ 1=12 (see [Mir90, Lemma 111.3.8]).
fri=4,then R 2+ 1=4.

Letk=4andri=ro=rz3=rgs=2then R=2;if r; 3 for at least
onei then R 2+ 1=6.

Finally, if k 5thenR 2+1=2.

So the minimal value for R is obtained with ry =2, r», =3, r3=7: we
getthat R 2 1=42. ThereforejGj 84(g 1). O

If we make stronger assumptions orG we get the following results:

Proposition 2.2.17 (Nakajima's Theorem, see [Nak87]) Let C be a com-
pact Riemann surface of genugy 2 and let G be an abelian subgroup of
Aut(C). Then

iG] 4g+4:

Proposition 2.2.18 (Wiman's Theorem, see [Wim95]) Let C be a compact
Riemann surface of genugy 2 and let G be a cyclic subgroup ofAut( C).
Then

iG] 4g+2:
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2.3 The appropriate orbifold homomorphism of a
Galois covering

We start this section with some de nitions of group theory.
Given integersg 0 and my;:::;m, > 1 the orbifold surface group of
signature (or type) (g;mq;:::;m;) is de ned as:

ch;:::;cP“f,Qg [a;b] c1 i

g:= hagsby;iiag bhyj  [ai; bl

i=1

that is the fundamental group of a Riemann surface of genug.
For g = 0 we get the polygonal group

T(mg;:iosme) = hegsiinejetiind™;cn G (2.1)

is an appropriate orbifold homomorphism if it is surjective and (¢) has
order mj.

De nition 2.3.1.  Let H be a nite group and let g; my;:::;m; as above. A
generating vectorfor H of type (g;m1;:::;m;)isa(2g+r)- tuple of elements
of H:

such that V generatesH, Q, ;[di;&] hy h, hy=1and there exists a
permutation 2 S, such that ord(hj) = m ¢ fori=1;:::; . Ifsuch aVv
exists, then H is said to be (@; m1;:::; m;)-generated

In the particular case g = 0, we have the following:

De nition 2.3.2.  Let H be a nite group. A spherical system of generators
of H of type (or signature) (my;:::;m;) is a set of generatorsfhy;:::;h;g
of H such that hy h, =1 and there exists a permutation 2 S, such
that ord(hj) = m ( fori=1;:::;

Remark 2.3.3 To glve a generator vector of srgnature g my;:::;my) for a

cT(g;ma;:i;me) ! H.
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Let C be a compact Riemann surface of genug(C) 2 and let G/
Aut( C); we denote by C%the compact Riemann surfaceC=G, and by g(C9
its genus. LetB := fpy;::::prg be the branch locus off : C ! CO Let
X = C°nB and Cq := f 1(X) thus the restriction fo: Co! X of f to
Co is a covering space. We observe thaG | Aut(Cp) considering the
restriction of each automorphism to Cy and that Co=G = X . The action of
G on Cy is properly discontinuous, hencefg: Co! X is a regular covering
by Theorem 1.1.28.

n 2. By construction we have that there existg;:::;g 2 G such that
g = G.

Lemma 2.3.4. There is a G-equivariant bijection
f *(p1) !f gHg
wherefgHg is the set of the left cosets oH .

Proof. Two elementsg; ¢° 2 G are in the same coset if and only if there
existsh 2 H such that gh = ¢° that is gqo) = g(how) = g(a). Hence

g 7'f g2Gjogn=gqg9g
gives a bijection. O
Lemma 2.3.5. gHg, ' = Stabg(g).

Proof. Stab(g) gHg; 1, since GHg, Y)gH = gHH = gH.
For the other inclusion we note that if g 2 Stab(qg), then ggH = g/H and
so there existsh 2 H such that gg = gh. Henceg = ghg ' 2 gHg, *. O

Hence the stabilizers of theqg are isomorphic in particular they have all the
same cardinality n = @
Let p2 X and g°:= g(C9. We have

(Clp)=ha 1 g i [ il

Removing the points of B, we have that we cannot contract loops around
the p; and so we have that the fundamental group changes as followsor
eachi let | be a loop based atp going once aroundp;. Up to relabel the
points in B, we have that

1(Xsp)=h gy iy g0 g0 ity ) [ il o2 rl
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Sincefg: Co! X is regular, by Proposition 1.3.2 we get a surjective map
iX;p) ! G

Fori=1;:::;rleth;:= ( ;)andlet m; be the cardinality of the stabilizers

of the pomts inf (p). Forj =1;:::;¢°let a = (j)andb = ().

We get

Lemma 2.3.6. fag; ;i a9 by hy;:iiihegis a generating vector of type

Proo&) It is obvious that Q?;)l [ai;B] hy  h, =1since isahomomorphism
and ?:1[ i il 1 r =1

The non trivial part of the statement is that ord( h;) = m;. It is equiv-
alent to the fact that ¢ lifts to a closed path for d = m; and does not for
O0<d<mj.

Let VO be an open neighborhood ofg; such that V := V°nfpgis a
elementary neighborhood forfg. Let v2 V, let a pathin X from pto v
and let aloop inV around p; such that 71 = 1 Itis clear that if we
prove that ¢ lifts to a closed path for d = m; and does not for 0<d <m i,
we are done.

Letqg 2 f L(p), by Proposition 2.2.7, there exists an open neighborhood
U invariant under the action of Stab(q) = hhi = Z,,. So, up to shrinking
V% we can assume that each component; 3 g off (V9 is invariant under
the action of Stab(g). By Lemma 2.2.12, we can choose local coordinate
w centered in q such that h(w) = w with = exp( fn—'l) and so for each
point g 2 f *(p;) we can choose appropriate local coordinatev centered
in g in such a way that f (w) = w™. We note that we can assume that

=(1)™ and that is the loop (t)= 28E1). We can also assumg = 1;
Iet Z = exp( 5 21 ) be a primitive n"-root of the unity, hence the preimages
of v are the pomtsf v)\ Ug = fz2 Ok- We have that lifts to paths

2 |t
() = ( from Z 2 to % Hence M lifts to a closed path and

it does not happen for any integer inf1;:::;m; 1g. O

We get that every Galois coveringf : C! C=G = C°with C and G as
above, induces an appropriate orbifold homomorphism

T(g(C() myim) ! G

2.4 From the appropriate orbifold homomorphism
to the Galois covering

In this section we show how to invert the construction of the previous section.
In other words, given the compact Riemann surfaceC® the nite group G
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and the appropriate orbifold homomorphism
T(OCY;myim) G

we construct a compact Riemann surfaceC such that C°= C=G.
Let g%:= g(C9 be the genus ofC®and
\gO
1(Cop) = hg; aiiny g gl [ il
i=1

for G. Fix B := fpy;:::;pp;g CPland choosepcg X = COnB. For eachj,
0

let ; be a geometric loop aroundp; such that ~ %, [ i; i] i =1,s0
R4 Y
106Gp)=h gy 10y g g i b [l j =1i
i=1
The vector (ag; by;:::;ag0 by, hy; 225 hy) induces an epimorphism:
1(X;p) ! G
i 7! h;
j 7! q
j 7t b

let K be its kernel:
1! K! 1X;p)! GI 1

By Theorem 1.2.2, we can associate to the normal subgrou / 1(X;p) a
Galois covering spaced : Xx ! X such that 1(Xk;y) = K.

By Remark 1.2.4 we have that 1(X;p) acts on the left on Xk : let
t2 (X;p)andlet[ ]2 Xg,thent []:=]t ] Since for 2 K we
have [ ] = [ ], we have a leftG-action on Xk: leth2 Gthenh []:=
[ %(h) ]. This action is well de ned, indeed if %(h) and (h9 are two
di erent preimages of h, then they di er for some k 2 K ; hence [ 1(h) ]=
[k %(h) ],indeed (h) (k I(h) )= k2K.

G acts faithfully:

[1=h[1=[ *(h) 10 — Yh H2K
0 'th H2K
0 (hH=1k

Using Theorem 2.2.11, we extend theetale covering : Xx ! X = ChB
to a Galois coveringF : C ! CPof Riemann surfaces.
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Now X a pointin B, say p1, and let W be a small open neighborhood
of p; in C% so that W n fp;g is isomorphic to a punctured disc. LetD, t

t Dg=f YW nfpyg), where the D; are pairwise disjoint.
Let be aloop going aroundp; once inW of base pointp®and let :1 ! X
be a path from p to p° such that 1 is homotopic to

Claim 1. f (W nfp.g) hasjG : thiij connected components.

Proof. By construction of Xx [ 12 f 1(p9, let [ 9 be another point in
f 1(pY. We have that [ ] and [ 9 belong to the same componenD; if and
only if there exists a path : 1! Xy from[ Jto[ 9 such that := f
is contained in W. In other words, is a loop in W with base point p°, so
= Kand[9=[ ] Nowwe have ( )= h¥ and so to each point of
f 1(p9\ D, corresponds an unique element o6 := hhyi. Conversely, to
each power of ; is associated a point inD; : [ '1‘ ]. These points are exactly
mj = ord( hy), since we have that

[21=[210 ab2K 0 L

Hence there arem; elements in each component, hence there af& : hhij
connected components. O

From this proof it follows also that [ ] is in the sameD; of [ K] for each
k2Z.

Let S := hhii be the cyclic subgroup ofG generated byh, a straight-
forward computation shows that f[ KJgc= S [ ]

Claim 2. The correspondenceh 7! h [ ] is a bijection betweenG and

f(p9.

Proof. We start proving the surjectivity, if [ 12 f %(p) thenlet h= ( ™),
henceh [ ]=[ *h) ]=[ ]
For the injectivity we consider h and h®such that h[ ] = hq ] that is
= Yno Y= LYhn®°1) 2K, hencehh®1=1. O

Claim 3. To be in the sameD; corresponds to be in the same left cosetS.

Proof. To eachh 2 G is associated an unique point inf 1(p9: [ 1(h) ].
Let h and h® be two elements ofG, we have that hS = h% if and only if
there existsk such thath ( % 1) = hlthatish ( ¥ D[ ]1=h9 ]. In
other words, [ 1(h% 1= (h) % ]1=[ %Xh) K], thatis equivalent
to be in the same connected component, by the argument of Claa 1. [

We have just proved
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Lemma 2.4.1. There is a bijection

F im) ! f kSg

yj ! ki S

where S := hhji.
Moreover
Lemma 2.4.2. Stabg(y;) = kjSk; .
Proof. The proof is exactly the same as Lemma 2.3.5. O
Summarizing we get the following statement:

Theorem 2.4.3 (cf. [BCP11, Theorem 4.2]) A nite group G acts as a
group of automorphisms on a compact Riemann surfac€ of genusg if and

homomorphism
T(®my:iom) ! G
such that the Riemann-Hurwitz relation holds:
X 1

— i 0 + =
29 2=jG] 20° 2 ~ 1 m

If this is the case, thengPis the genus ofC°= C=G and the Galois covering
f:C! CPOsbranched inr points p1;:::;pr with branch indexesms;:::;m;,
respectively.

Remark 2.4.4. The appropriate orbifold homomorphism is induced by the
monodromy of the Galoisetale G-coveringfo: Co! C§ given by f, where
CJ is the Riemann surface obtained fromC° by removing the branch points
of f, and Co := f 1(CJ). In particular, ( i) generates the stabilizer of a
pointin f (p).

If we denote by h; 2 G the image of ; under , then

is the set of stabilizers for the action ofG on C.

2.5 Lifting automorphisms to the universal cover
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be an appropriate orbifold homomorphism. Letf: C ! C°be the Galois
covering of C% obtained by these data, as seen in the previous section.

Next consideru: ! C, the universal cover ofC; as seen in the proof
of Theorem 1.2.2, the elements of are the homotopy classes fopaths in C
with base point y =[p], the constant path in X of base pointp.

By Remark 1.2.4, we have that 1(C;y) acts on as follows: let 2
1(C;y)and[ ]2 , [1=] 1, thatis equivalent to take the nal point
of the unique lift of (that is a path in C) with base point [Xg], the class

of the constant path in C with base point y.
Let Co:= f 1(X)sofg:Co! X is anetale covering. Let g be the
genus ofC, we recall that

\%)
1(Cory) = hag;by;iiisag bgiesiinie ) [ash] a0 i
i=1
Plugging the holes, the fundamental group changes: by Van Kapen's The-
orem we have to quotient by the normal subgroup generated byhe ¢;, each
G is a simple loop around a hole; they are nullhomotopic inC:

i=1
Hence we have the following commutative diagram with exact ows and
columns:

1 N R N

1— 1(Co;y) o)y 10X p) —I6 —h

1—4(Cty) IF 6 —h

1 1 1

where hiAii denotes the normal subgroup generated byA. By construction,
it follows that

F

1(X; p)=hh™ii
SR TR O PR S B O F ] O A e

thus we have proved:
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Lemma 2.5.1. The sequence:
11 (Cy)!t TI G! 1.
is exact.

Lemma 2.5.2. The action of 1(C;y) on extends to an action of T on

Proof. Let[ ]2 , w:=u(])2C,andz:=f(w)2 C%lett2 T. Suppose

that w = b is the class of the path (path in C°based atp).

We have de nedt w=t b=t = w® which is the nal point of the unique

lift oft with base pointy = p: the constant path based atp. Now we lift
to the unigue lift with base point [ Xg], the constant path in C with base

point y; we denet [ ] as the nal point of this lift. Using the uniqueness

of the lift, it is easy to see that this is a well-de ned left action and that on
1(C;y) it coincides with the action de ned before. O

Remark 2.5.3 We observe that we already know howT acts on C and
utt [D=t uf .

We will use this construction in Section 7.1 to compute the fundamental
group of the surfaces that we construct.

The next step is to understand which points of have non-trivi al sta-
bilizer for the action just described:

Lemma 2.54. Let[]2 then

_flg if ful D) 2fpy:iiprg
Stabr([ 1) = hii Y if f(ul])= pi; forsome 2T

Proof. Let[ ]2 , w:=u[]=bandz:=f(w);lett2T. Ift []=]1,
then we have also thatt b= b.

as 1(X;p) that acts freely on Cy and so Stab() = f1g and sot = 1.

If z = p for somei, we have that w is a rami cation point for f, by
Lemma 2.4.2, we get that Stals(w) = kSk * where S = hhji and k 2 G,
but we recall that G acts as follows:g[ 1= *(g) ]=( ,d )[ ] for some

2Tandd2f1;:::;m; 1g, and so Stab(w)= hii 1. O



Chapter 3

Generalities on surfaces

In this chapter we recall some de nitions and properties abait divisors,
intersection theory on surfaces and birational transformdions. Some of
them are taken from [Bea96], but we refer also to [Har77] andGH78] for
further details and discussions.

We also recall the Enriques-Kodaira classi cation and we gie some prop-
erties of surfaces of general type (see also [BHPV04, Chapt¥1]).

3.1 Intersection theory on surfaces

Let S be a smooth projective complex variety of dimensiom. We recall that
the Picard group ([Har77, page 143]) ofS is the group of isomorphism classes
of invertible sheaves (or line bundle) onS, and it is denoted by Pic(S). To
every divisor D on S there corresponds an invertible sheafOs(D) and a
meromorphic global sections unique up to scalar multiplication such that
div(s)= D. ThemapD 7! Os(D) identi es Pic( S) with the group of linear
equivalence classes of divisors o0&, see [Har77, Section 11.6] for further
details.

Let & be the sheaf of the holomorphicp-forms; let! s = 2 be the line
bundle of the holomorphic n-forms on S. A canonical divisor is any divisor
K s such that OS(Ks) =lg.

Let X be another smooth variety and letf : S! X be a morphism. We
can de ne the inverse image with respect tof of an invertible sheaf (see
[Har77, Section 11.5]), to get a homomorphism

f :PicX ! PicS:

If f is a morphism of surfaces which is generically nite of degred, then
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we de ne the direct imagef C of an irreducible curve C by setting

8
3 0 if C is contracted to a point by f

re= 2 rf (C) if f(C)is acurve onS, and wherer is the degree

of C! (C)induced by f

We de ne f D for all divisors D on S by linearity. It follows by de nition
that
ff D=dD for all divisors D on S.

De nition 3.1.1.  Let C; C%be two irreducible distinct curves on a surface
S, let x 2 C\ CY and let Oy be the local ring (see [Har77, page 16]) o6 at
x. If f and g are equation of C and C%in Oy, the intersection multiplicity
of C and CPat x is de ned to be

my(C\ CY =dim c Oy=H;gi :

By Nullstellensatz the ring Ox=hf;gi is a nite-dimensional vector space
over C. We note that my(C\ C9 =1 if and only if f and g generate the
maximal ideal, i.e. form a system of local coordinates in a nghborhood of
x: in this case C and C°are said to betransverse at x.

De nition 3.1.2. If C and C?are two distinct irreducible curves on a
surfaceS, the intersection number C:CPis de ned by:

X
c:CcO= my(C\ CY:
x2C\ CO

We de ne the intersection number on divisors extending by linearity the
previous one and we get the following:

Proposition 3.1.3  ([Bea96, Theorem 1.4]) For L; L °2 Pic(S), de ne
LL%= (0s) (L bH (@w°H+ (t LOY:

Then : is a symmetric bilinear form on Pic(S), such that if C and C° are
two distinct irreducible curves on S then

05(C):05(CY = c:c°:

Remark 3.1.4 If D, D%are divisors onS, we write D:D %for Og(D):0s(D9.
By the previous statement, we can calculate this product by eplacingD or
DOby a linear equivalent divisor.

Lemma 3.1.5 ([Bea96, Lemma I|.6]) Let C be a non-singular irreducible
curve on S. For all L 2 Pic(S), we have

Os(C):L =deg(Ljc): (3.1)
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De nition 3.1.6. If D is any divisor on the surfaceS, we say that D:D,
usually denoted by D?, is the self-intersection of D.

In order to compute C? it would be useful the following remark:

Remark 3.1.7. Let C be a non singular irreducible curve on a surfaces.
Then C? = degc(Nc:s), where Nc:s is the normal bundle to C in S.

Lemma 3.1.8 ([Bea96, Proposition 1.8]). Let C be a smooth curve and let
f:S! C be a surjective morphism. LetF be a bre of f. Then F2=0.

Proposition 3.1.9  (Projection formula, [Bea96, Proposition 1.8]). Let S°
be a surface, letg: S! S°be a generically nite morphism of degreed, let
D and D°divisors on S® Then

g D:g D%°= d(D:DY:

3.2 Riemann-Roch Theorem

We start this section recalling the Serre duality theorem:

Theorem 3.2.1 (Serre duality theorem, [Har77, Section 11.7]). Let M be a
compact complex manifold of dimensiom, and let L be a line bundle onM .
Then for eachO ] n the vector spaces

Hi(M;L) and H" i(M;ly LY
are dual. In particular,
L= D" m LH:
Using the previous theorem we can prove the Riemann-Roch theem.
Theorem 3.2.2 (Riemann-Roch). Let S be a smooth surface, leL a line
bundle onS, it holds:
()= (0s)+ S(L? Lis):

Proof. LetuscomputeL %L ! Sl. By de nition of the intersection product
we get

LML tgt= (0s) (L) ('s L YH+ ('s):

By Serre duality, we have (Os)= (!s)and (L)= ('s L 1), therefore
we get:
L Ll 1gt=2( (0s) (L):

Using the bilinearity of the intersection form we get
L hL tgt=L he+L gt= L2+t

and this concludes the proof. O
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This theorem is usually written in terms of divisors:
hD)+ W(Ks D) hi(D)= (Os)+ (D> DKs):

As consequence of the Riemann-Roch theorem we have the follow:

Lemma 3.2.3 (Genus formula, [Bea96, Lemma 1.15]) Let C be an ir-
reducible curve on a smooth surfaceS. The geometric genus ofC (=
h1(C;Oc)) is given by g(C) =1+ 1(C?+ CKs).

The genus formula can be written
29(C) 2=(C+ Kg):C=deg(Ks+ C)jc:
This formula can also be deduced by (3.1) using the adjunctio formula:

Proposition 3.2.4  (Adjunction formula, [GH78, page 147]). Let M be a
compact complex manifold, letv M be a smooth analytic hypersurface.
Then

Ky =(Ku + V)jv:

3.3 Birational transformation and minimality

Let S be a smooth surface and lep 2 S. Take a neighborhoodU of p such
that there exist local coordinates x; y at p (i.e. curvesx = 0and y =0
which meet transversely atp). Up to shrink U, we can assume thatp is the
only point of U in the intersection of the two curves. We de ne U as the
subvariety of U P! given by the equationxY Xy =0, where X; Y are
the homogeneous coordinates dP®.

It is obvious that the projection : 0! U is an isomorphism over the
point of U where at most one coordinate vanishes, while (p) = fpg P
Let 8 be the surface obtained by passind) and SnfpgalongOn 1(p) =
U nfpg.

De nition 3.3.1.  Wecall : S! Stheblow-upofSinp. E := (p)= P
is the exceptional curveof the blow-up.

Remark 3.3.2 The restriction of to (S nfpg) is an isomorphism onto
Snfpg.

Let : 8! Sbethe blow-upinp2 S, and consider an irreducible curve
C on S passing through p with multiplicity m. The closure of 1(C nfpg)
in § is an irreducible curve € which is called the strict transform of C.

Lemma 3.3.3 ([Bea96, Lemma I1.2]). Let : S! S be the blow-up ofS in
p. Let C be an irreducible curve onS passing throughp with multiplicity m,
then

c=C+mE:
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Proposition 3.3.4  ([Bea96, Proposition 11.3]). Let : S! S be the blow-up
of a point p2 S. Let E be the exceptional curve, then

there exists an isomorphismPic(S) Z! Pic(S)
dened by (D;n) 7! D + nE.

Let D be a divisor onS. Then D:E =0 andE2= 1.

Lemma 3.3.5. Let : 8! S be the blow-up of a poinp 2 S. The canonical
divisor of & is given by Ks+ E andKZ=K3 1.

Proof. Since the canonical sheaf oi§ nE and S nfpg is the same, we have
Ke = Ks+ nE, for some integern. Using the adjuction formula we get

2=29(E) 2=(Kg+E)E =) KeE= 1:

It follows that 1= KgE= KsE+ nE2=0 n andson =1.
The formula for K? follows immediately using Proposition 3.3.4 and
Proposition 3.1.9. O

We now recall some statements taken from [Bea96] that relatédlow-ups
and rational maps.

Theorem 3.3.6 (elimination of indeterminacy, [Bea96, Theorem I1.7]). Let
' S99KX be a rational map from a surface to a projective variety.

Then there exists a surfaceS® and a morphism : S°! S which is the
composition of a nite number of blow-ups, and a morphismf : S°! X
such that the diagram

commutes.

Theorem 3.3.7 (universal property of blowing-up, [Bea96, Proposition
I.8]). Let f: S ! X be a birational morphism of surfaces, and suppose
that the rational map f ! is not de ned at the point p of X.

Then f factorizes as

f:s1? X1 X
where g is a birational morphism and is the blow-up atp.

Theorem 3.3.8 ([Bea96, Theorem I11.11]). Let f : S! Sy be a birational
morphism of surfaces.

Then there is a nite sequence of blow-upsy: Sx! Sk 1 (k=1;:::;n)
and an isomorphismu: S! S, such thatf = ¢ ::: , u.
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Corollary 3.3.9 ([Bea96, Corollary 11.12]). Let ' : S°99KS be a birational
map of surfaces.

Then there are a surface$ and morphismsf:S! SPandg: 8! S
which are the composition of a nite number of blow-ups and ismorphisms
such that the diagram

commutes.

De nition 3.3.10. Let S; and S, be two surfaces, we say thatS; bira-
tionally dominates S; if there exists a birational morphism S; ! So.

A smooth surfaceS is minimal if every birational morphism S! SOis
an isomorphism.

Proposition 3.3.11  ([Bea96, Proposition 11.16]). Every smooth surface bi-
rationally dominates a minimal surface.

De nition 3.3.12. Let S°! S be a birational morphism between smooth
surfaces. IfS is minimal, we say that S is the minimal model of S°

Remark 3.3.13 By Theorem 3.3.8 we have that a surface is minimal if and
only if it contains no exceptional curve.

Let E be an exceptional curve, by de nition E = P! and by Proposition
3.3.4E2= 1. The next important statement gives the converse:

Theorem 3.3.14 (Castelnuovo's contractibility criterion, [Bea96, Theorem
11.17]). Let S be a surface and letE S be a curve isomorphic toP* with
E2= 1. Then E is an exceptional curve onS.

Proposition 3.3.15 ([BHPVO04, Proposition 111.2.2]) . An irreducible curve
C S is an exceptional curve if and only if

C?°<0 and KsC<O:

3.4 Numerical invariants

To every smooth projective surfaceS we can associate some birational in-
variants (see [Bea96, Proposition 111.20]):

h'(S;Os)
h%(S;0s(Ks)) = h%(S;0s) (by Serre duality)
ho(S;0s(nKg)) for n 1

a(s)
Pg(S)
Pn(S)
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q(S) is called the irregularity of S, py = Py is the geometric genus and the
Pn are called theplurigenera of S. We have (Os)=1 q(S)+ py(S).

We (fw_lt;note_by e(S) the topological Euler-Poincae characteristic of S:
e(S) = ( 1'h whereb = dimcH'(S;C) are the Betti's numbers. By
Poincae duality, we get that

bh=kh=1 and by = bs: (3.2)

e(S) is not a birational invariant, indeed if : S°! S is the blow-up of S in
p, then e(SY = ¢(S) + 1, since we replace a point €(p) = 1) with a rational
curve E (e(E) = 2).

The invariants q(S) and by (S) are related by the following equation
([Bea96, Fact I11.19]):

aS) = h(S; 4= Jou(S); (33)

in particular qis a topological invariant.

The self-intersection of the canonical divisorKg is a topological (but not
birational, see Lemma 3.3.5) invariant, indeed by Topologtal index theorem
(see [BHPV04, Theorem 1.3.1]),

KZ2=3 (S)+2¢(S);

where (S) is the index of S (see [BHPVO04, page 22]) that is a topological
invariant.

Theorem 3.4.1 (Noether's formula, [GH78, page 438]) Let S be a smooth
surface:

1
(0s) = T5(KE+ €(S):
It follows that  (Os) (and so py(S)) is a topological invariant.

Lemma 3.4.2 ([Bea96, Lemma VI.3]). Let p: S°! S be anetale map
of degreed between surfaces. TherK3, = d K2, eS)°= d &S) and

(s9=d (S).

Proof. The last equation follows from the rst two using Noether's formula.
The rst follows immediately from projection formula, sinceKgo= p Ks:
To proveF;he second equation we start choosing a triangulabn of S,
thene(S) = ( 1)'fi(S), where fi(S) is the number of faces of dimension
i. Since the faces are simply connected, their inverse imagés S°triangulate
it. Clearly fi(S9 = d f;i(S) and we are done. O
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3.5 The Enriques-Kodaira classi cation

Let X be any compact complex manifold, let! x be its canonical bundle.
To X one associates itsanonical ring:

M
R(X) = HO( ™)
m O

This ring is commutative; let (tr (R(X)) be its degree of trascendency over
C.

De nition 3.5.1. Let X be a compact complex manifold. We de ne the
Kodaira dimension (X) as follows:

1 if R(X) = C

(X)= tr(R(X)) 1 otherwise

The Kodaira dimension is a birational invariant, and for a compact com-
plex manifold X, (X) can assume the values:1 , 0, ...,n=dim X.

Remark 3.5.2 ([Har77, page 421]) Let X be a smooth compact complex

variety, let K be a canonical divisor ofX , let k be the rational map from

X to the projective space associated with the linear systenjmKj. The

Kodaira dimension of X is equal to the maximal dimension of the images
mk (X), forn 1.

De nition 3.5.3. A variety X is said to be of general typeif its Kodaira
dimension is maximal: (X)=dim X.

Theorem 3.5.4 ([BHPVO04, Theorem 1.7.2] or [Uen75, Theorem 8.1])
Let X be a smooth compact complex variety. Then

(X)= 1 ifandonlyif Ph(X)=0 forall m 1
(X)=0 ifand only if Ph(X)=0 or 1for m 1, but not always 0.

(X)=k,for1 k dimX if and only if there are real constants
> 0and > Osuchthatm k<P, (X)< m Kfor m large enough.

Corollary 3.5.5. Let X be a smooth compact complex variety of dimension
k. X is of general type if and only if

im PmX) |

0
mil mk

Remark 3.5.6 ([Bea96, Example VII.2]) For a curve it is easy to give the
Kodaira dimension explicitly. Let C be a smooth curve of genug. Then
(C)=1190 g=0
(€)=0 0 g9=1
=10 g9 2
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Proposition 3.5.7 ([Bea96, Proposition VII.4]). Let C and D be two smooth
curves, letS=C D. Then

if C or D is rational, then Sis ruled: (S)= 1
if C and D are elliptic, then (S)=0.

if C is elliptic and g(D) 2then (S)=1.

if g(C) 2andg(D) 2then (S)=2.

Proof. If p; and p, are the projection of S to C and D respectively, we

have!'s = p!c p,! b ([Har77, Section 11.8]) and H?(S;0s(nK s)) =
HO(C;1 ") HOD;! ;™) ([Bea96, Fact 111.22]) , so that the rational map
nk - S 99KPN factorizes as

(nkcinkp)

k:C D T BOK °TpN® PN pN
where s is the Segre embedding. The proposition follows from Remark
3.5.6. O

The previous proposition is a particular case of a more genat theorem:

Theorem 3.5.8 ([Uen75, page 69]) If X; and X, are connected compact
complex manifolds, then (X1 X2)= (Xp)+ (X2).

Theorem 3.5.9. Let A be a compact complex manifold, and leG be a nite
group acting onA, let S! X be the minimal resolution of the singularities
of X := A=G. Then (A) (S).

Proof. Let us consider the following commutative diagram

Y — I

s—k&

where Y is the bred product of A and S over X.
We note that is a branched covering and sdKy = Ks+ D, with D
e ective divisor on Y; hence for each integem 1 we haveH%(mKs) |
HO(mKy), and soh®(mKy) h°(mKs). Let k:= (S);if k 0 it follows
immediately by Theorem 3.5.4 that (Y) (S); otherwise it is enough to
note that

im Py Pm(S)

m!l m mll m
in order to conclude that (Y) (S). Sincef is a birational map we get

(A= (Y) (S) and we are done. O
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As already noted, the Kodaira dimension of an-dimensional compact
complex manifold can assume the valuesl ;0;1;:::;n. In the casen = 2,
the surfaces in the classes = 1 and = 0, and to a lesser extent
those with =1 can be classi ed in detail. This classi cation is called the
\Enriques-Kodaira classi cation" and is collected in the following result.

Theorem 3.5.10 ([BHPVO04, Theorem VI.1.1]). Every compact complex
surface has a minimal model in exactly one of the ten classeg ®able 3.1.
This model is unique (up to isomorphism) except for the surfees with min-
imal model in classes 1) and 3).

(X) | Class ofX KZ e(X)

1 1) minimal rational surfaces 8or9 4o0r3
2) minimal surfaces of class VII 0 0
3) ruled surfaces of genug 1 8(1 9|41 g

0 4) Enriques surfaces 0 12
5) bi-elliptic surfaces 0 0
6) Kodaira surfaces 0 0
7) K3 surfaces 0 24
8) tori 0 0

1 9) minimal properly elliptic surfaces 0 0

2 10) minimal surfaces of general type] > 0 >0

Table 3.1:

A rational surface is a surface birational to P2. The only minimal sur-
faces of this type areP? and the Hirzebruch surfaces ,, = Pp1(Op1 O p1(N)),
with n=0;2;3;::: (Pt Pl= ).

Theorem 3.5.11 (Castelnuovo's Rationality Criterion, [Bea96, Theorem
V.1]). Let S be a surface withg= P, =0. Then S is rational.

Remark 3.5.12 The condition P, = 0 implies pg = 0. In analogy with the

case of the curves, it seems more natural to replace the hypbésis of the
statement with the weaker assumptionq = pg = 0, but in 1896 Enriques
constructed a surface withq= pg =0 and 1= Z, and so not rational.

A surface of class VIl is a surfaceX with (X)= 1 andb(X)=1,
moreover g = 1. These surfaces are neither algebraic nor Kahler. Exam-
ples of this type of surfaces are Hopf surfaces ([Hop48]) ankhoue surfaces
([Ino74)).

Ruled surfaces of genug have a smooth morphism to a curve of genus
g whose bres are linesP?.

Theorem 3.5.13 (Enriques, [Bea96, Corollary VI.18]). Let S be a smooth
projective complex surface, the following are equivalent:
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S is ruled;
P, =0 for all n;

P12=O.

An Enriques surfaceX is a surface withg(X ) = 0 and non-trivial canon-
ical K x , but with 2 K trivial.

A bi-elliptic surface (or hyperelliptic surface) is a surfaceX with by (X) =
2 and an elliptic bration over an elliptic curve. Any such surface is the
guotient of a product of two elliptic curves by a nite abelia n group.

Kodaira surfaces are usually divided into two subtypes: the primary
Kodaira surfaces are surfaces withy = 3 and an elliptic bration over an
elliptic curve; the secondary Kodaira surfaces are surfacewhich admits
a primary Kodaira surface as unrami ed covering of degree 2. These
surfaces are not algebraic.

A K3 surface X is a surface withq = 0 and trivial canonical bundle.
They are all Kahler varieties.

A torus is a surface isomorphic to the quotient ofC? by a lattice of real
rank 4. A torus is di eomorphic to S St S! S! so its fundamental
group is Z*.

A properly elliptic surface is a surface admitting an elliptic bration with

(X)=1. A very simple example is provided by the product of two curve,
one elliptic and the other of genus 2.

3.6 Surfaces of general type

Following the Enriques-Kodaira classi cation we can divide compact com-
plex surfaces in four main classes according to their Koda#& dimension:
1 ,0, 1, 2. Nowadays the rst three classes are much better undstood
than the last one.

De nition 3.6.1. A surface X is said to beof general typeif (X) = 2.

Remark 3.6.2 (BHPV, Corollary 6.5). Every smooth surface of general type
is projective.

Theorem 3.6.3 ([BHPVO04, Theorem VII.2.2]). If X is a minimal surface
of general type, thenK 2 > 0.

Theorem 3.6.4 ([Bea96, Theorem X.4]) If X is any surface of general
type, thene(X) Oand (Osg) 1

By Noether's formula, the condition &S) 0 is equivalent to K 2
12 (Os). For a surface of general type Bogomolov and Miyaoka, and ide-
pendently Yau proved the stronger
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Theorem 3.6.5 ([BHPVO04, Theorem VIl.4.1]). Let S be a smooth surface
of general type. Then
KZ 9 (Os): (BMY)

In literature are well-known other inequalities that involv e the invariants of
minimal surfaces of general type:

Theorem 3.6.6 ([BHPVO04, Theorem VII.3.1]). Let S be a smooth surface
of general type. Then
K& 2pg(S) 4 (N)

if >0=) K& 2py(S) (D)

The inequality (N) is due to Noether, while (D) is due to Debarre.
In the following picture there are drawn the limit lines of th e inequalities
in the ( ;K 2) plane.

Figure 3.1:

The above listed inequalities show that the pair ( (Os); K 2) for a surface S

of general type gives a point with integral coordinates in the convex region
limited by the \bold" piecewise linear curves. Moreover if g > 0 this point

cannot be at the \right" of the line D. The line labeled by S is the Severi
line K? =4
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In order to explain the meaning of this line we have to introduce the
Albanese variety and the Albanese morphism.

Let X be a connected compact Kahler manifold. ToX is associated a
complex torus of dimensiong = h9(X): the Albanese variety Alb( X ) as fol-

modulo torsion. We consider the vectors
Z Y4

V) = wiiii; wg 2 CY; ] =1;:11529:

It can be proved that they are linearly independent over R (see [BHPV04,
page 46]).

The vectors vy;:::;vog Span an integral lattice in C9 and thus deter-
mine a complex torusC9=. Replacing the h;'s or the wy's by another basis,
we obtain the same torus, up to isomorphism. This torus is Al{X).

Fixing a @Qint Xo 2 K de ne the holomorphic map : X ! Alb(X)
by (x) = )fo Wil XXO wg . Changing xo amounts to change by a
translation of Alb( X). This map is called the Albanese morphism

The Albanese morphism is a very useful tool for studying irrgular sur-
faces, in particular:

De nition 3.6.7. A variety X is called of maximal Albanese dimensionif
the image of the Albanese morphism has dimension dirX .

This is the general case for a surface, since otherwise the#dnese morphism
is a bration onto a smooth curve of genusq(X).
We can now explain the Severi line:

Theorem 3.6.8 ([Par05]). If S is a smooth complex minimal surface of
maximal Albanese dimension therk2 4 .

3.6.1 Surfaces of general type with =1

There is no hope at the moment to achieve a classi cation of tle whole class
of the surfaces of general type. Since for a surface in thisads the Euler
characteristic of the structure sheaf is strictly positive, one could hope
that a classi cation of the boundary case = 1 is more aordable. We

report here some progresses in this direction, we refer to [BP06] for more
details.

pg=q 4

Theorem 3.6.9 (Beauville, [Bea82]) If S is a minimal surface of general
type, thenpg 29 4. Moreover, if pg =29 4, then S is a product of a
curve of genus2 with a curve of genusq 2.
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Corollary 3.6.10. If pg= g, (i.,e. (Os)=1),thenpyg=qg 4. Moreover,
minimal surfaces of general type withpg = q= 4 are exactly the products of
two genus 2 curves.

Hence this case is clear, we just mention thak 2 = 8.

Pg=09=3

These surfaces have been studied in [CCML98], [Pir02] and [PD2] and they
are completely classi ed:

Theorem 3.6.11. A minimal surface of general type withpy = q =3 has
K2 =6 or K2=28 and, more precisely,

if K2=6, S is the symmetric square of a genus 3 curve;

otherwiseS = (C, Cz)= , where C4 denotes a curve of genug and
is an involution of product type acting on C, as an elliptic involution
(i.e., with elliptic quotient), and on C3 as a xed point free involution

Pg=Q=2

This case is still far from being classi ed, but Ciliberto and Mendes Lopes
in [CMLO2] classify the surfaces in this class with non-biratonal bicanonical
map (not presenting the standard case).

De nition 3.6.12. A surface S of general type presents the standard case
(for the non birationality of the bicanonical map), if there exists a dominant

rational map onto a curve f : S 99KB whose general bre is irreducible of

genus 2.

Theorem 3.6.13. If Sis a minimal surface of general type withpg = q=2
and non birational bicanonical map not presenting the standrd case, then
S is a double covering of a principally polarized abelian sugfce (A; ) , with

irreducible. The double coveringS ! A is branched along a divisor
B 2j2 j, having at most double points. In particularK§ =4,

Other results on the classi cation of minimal surfaces of geeral type
with pg = g =2 are due to Zucconi and Penegini (see [Zuc03] and [Pen11]).
They produced a complete classi cation of surfaces withpy = gq = 2 and
K 2 = 8 which are isogenous to a product of curves (see De nition 41.2);
as a by-product, they obtained the classi cation of all surfaces with these
invariant such that the image of the Albanese morphism is a cuve (see
Section 4.5).
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Pg=09=1
In this case the classical inequalities give 2 K? 9, and the Albanese
morphism is a map onto an elliptic curve, in particular all th ese surfaces

have a bration with base a curve of genus 1.
We denote by M K2:pgiq the projective moduli scheme of surfaces of

general type with xed K3; pg; .
Theorem 3.6.14. It holds:

M 2.1 is irreducible and unirational and it has dimension 7, and the
Albanese map of all these surfaces is a genus 2 bration.

M 3.1.1 has 4 connected components, all unirational of dimension 5.
The Albanese map is a genus 3 bration for the surfaces in onefo
those components, while it is a genus 2 bration for the othes.

The casesk 2 = 2; 3 are completely classi ed. In [Cat81b] the author
proves that all the surfaces with K 2 = 2 are double covers of the symmetric
square of their Albanese curve.

In [CC91] the authors study the caseK 2 = 3. They show that the Albanese
map could be either a genus 2 or 3 bration. The caseg = 3 was classi ed
in [CC93], while in [CP06] was classi ed the casey = 2.

Some examples of surfaces of withy = g=1 and K2 =4; 5 are due to
Catanese ([Cat99]), and these examples are constructed asdouble covers.

Rito ([Rit07]) and Polizzi ([Pol08]) constructed some exanples of sur-
faces of general type withpy = g=1 and K 2 = 6. Also the rst example
with K2 = 7 is due to Rito ([Rit10b]).

The caseK 2 = 8 was studied by Polizzi ([Pol06]) who consider the case
of surfaces having bicanonical map of degree 2. He could prethat all these
surfaces are isogenous to a product (see De nition 4.1.2) ahthey form three
components of the moduli space, one of dimension 5 and two ofirdension
4.

It remains unsettled the existence of surfaces of general pe with py =
g=1land K2=9,

Other results towards the classi cation of minimal surfaces of general
type with p; = g = 1 are due to Carnovale, Mistretta and Polizzi; we
comment these results in Section 4.5.

Pg=9=0
This class of surfaces is one of the most complicated and iriguing classes of
surfaces of general type. By the standard inequalities we hee 1 K2 9.

The rst examples of surfaces in this class are due to Campedie([Cam32])
and Godeaux ([God34b]) in the 30's, and in their honor minimd surfaces of
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general type with K2 = 1 are called numerical Godeaux surfacesand those
with K 2 = 2 are called numerical Campedelli surfaces

Concerning the classi cation of minimal surfaces of generatype with
pg = g = 0, there have been many recent progresses. Nowadays thereea
examples for each value of 1 K2 9.

If K2 =9, then S is a quotient of the unit ball in C? by a discrete
group acting freely ([Yau77],[Yau78]). This surfaces are alled fake pro-
jective planes they have the same Betti numbers ofP?, but they are not
birational to it. Thanks to the new works of Prasad and Yeung and of Steger
and Cartright ([PYO07], [PY10], [CS10]) asserting that the moduli space con-
sists exactly of 100 points, corresponding to 50 pairs of copiex conjugate
surfaces (cf. [KK02]), this case is completely classi ed.

Let K2 = 8. In this case, is the bidisk in C? the universal cover of S?
If this is the case, then a complete classi cation should be pssible. The
classi cation has already been accomplished in [BCGO08] fothe reducible
case where there is a niteetale covering which is isomorplt to a product
of curves, see Section 4.5 for further details.

There are many examples, due to Kuga and Shavel ([Kug75], [$t78]) for
the irreducible case, which yield rigid surfaces, but a comfete classi cation
of this second case is still missing.

Let K3 = 1. In this case it is known that the algebraic fundamental
group is nite:

Theorem 3.6.15 (cf. [Rei78]). Let S be a numerical Godeaux surface, then
NES)=Zyforl m 5.

The rst example of a numerical Godeaux surfaces with 9 = Zs is due to
Godeaux: see [God34b]. M. Reid in [Rei78] constructs the rsexamples of
numerical Godeaux surfaces with = Z,, for m = 3; 4. The rst examples
with ~; = Z, or / trivial, are due to R. Barlow, see [Bar84] and [Bar85]
respectively.

Moreover there is the following conjecture:

Conjecture (M. Reid). The moduli space of the canonical models of min-
imal surfaces of general type with =1 and K2 = 1, has exactly ve irre-
ducible components corresponding to each choice; = Z, forl m 5.

By [Rei78], it is known that the conjecture holds form 3.

Let Ké = 2. Also in this case the algebraic fundamental group (S) is
nite:
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Theorem 3.6.16 (cf.[Rei], [Xia85]). Let S be a numerical Campedelli sur-
face, thenj ™~ (S)] 9.

The question whether all these groups can occur has been opdar a
while. By the works of many authors the answer is a rmative:

Theorem 3.6.17. Let S be a numerical Campedelli surface, then™(S) is
either the quaternion group or an abelian group of order at mst 9.
All these cases are possible.

By the works of Mendes Lopes, Pardini and Reid ([Rei], [MLP0§, [MLPRO09]),
the cases of order 8 and 9 are classi ed. In particular, they lsow that the
topological fundamental group equals the algebraic fundarantal group and
that cannot be the dihedral group D 4 of order 8. In [Nai99] the author proves
that the symmetric group S3 of order 6 cannot occur as the fundamental
group of a numerical Campedelli surface.

The last open caseZg, is realized by our examples (see Section 7.1) and
by a completely dierent construction found independently by [PPS10a].
We note that the topological fundamental group of [PPS10a] § not known.

In [BCP11], two question about the topological fundamental group has
been posed:

Question 1. Let S be a numerical Campedelli surface.
Is 1(S) nite? In particular, j 1(S)j 9?

Does every group of order 9 exceptS 3 and D4 occur as topological
fundamental group (not only as algebraic fundamental group?

We mention (cf. [BCP11]) that after our constructions, the only open
case left for the latter question isZg.

The constructions of minimal surfaces of general type withpy = 0 and
K2 7 available in literature are listed in Table 3.2 and Table 33 (cf.
[BCP11, Table 1, 2, 3]). We remark that we have included in thetables also
the surfaces constructed in [BCGPO08] and [BP10]; in Sectiort.5, we will
comment with more details these results.
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Table 3.2: Minimal surfaces of general type withpg = 0 and K 2

in the literature

3 available

| K2 | 1 2 Hi | References |
1 Zs Zs Zs [God34a][Rei78][Miy76]
Z4 Z4 Z4 [Rei78][OP81][Bar84][Nai94] [BP10]
? Z3 Z3 [Rei78]
Z5 Z5 Z5 [Bar84][Ino94][KLP10] [BP10]
? Zs Zs [Wer94][Wer97]
flg f1g fOg [Bar85][LP07]
? flg fOg [CG94][DW99]
2 Zo Zo Zo [MLPOS]
Z3 z3 z3 [Xia85][MLPO8]
Z3 Z3 Z3 [Cam32][Rei][Pet76][In094] [Nai94][BCGP08]
Zy Zg4 Zo Za Zo Za [Rei][Nai94][Keu88] [BCGP08]
Zg Zg Zg [Rei] [BP10]
Qs Qs z3 [Rei] [Bea99][BP10]
Z7 Z7 Z7 [Re|91]
? Zs Zs [NPO9]
Zs Zs Zs [Cat81a][Sup98][BCGP08][BP10]
z3 z3 z3 [In094][Keu88] [BCGPO8][BP10]
? Zy Zy [PPS10a]
? Z3 Z3 [LPO9]
Z3 Z3 Z3 [BCGPO08][BP10]
Z Z Z [KLP10]
? Zs Zs [LPO9]
flg flg fOg [LPO7]
3123 z4| Z5 zZ4 Z5 Z4 | [Nai94] [Keu88] [MLPO4a]
Qs Z» Qs Z» Z3 [Bur96][Pet77] [In094][NP11][BC10]
Z14 Z14 Z14 [CS10]
Z13 Z13 Z13 [CS10]
Qs Qs Z5 [CS10]
Da Dy z3 [CS10]
Zo Za| Zy Za Z, Z. |[CS10][BP10]
Zo Ze | Zo Zsg Z> Zs | [BP10]
Zg Zg Zg [BP10]
Z7 Z7 Z7 [CS10]
S3 S3 Z; [CS10]
Zs Zs Ze [CS10][BP10]
Z, Zp Zy, Zy Z, Zp |[CS10]
Zy Zy Zy [CS10]
Z3 Z3 Z3 [CSs10]
Z Z Z [KLP10][CS10]
? ? Z5 [PPS10b]
f1lg flg fOg [PPS09a][CS10]
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Table 3.3: Minimal surfaces of general type withpg = 0 and 4 K2 7
available in the literature
] K2 \ 1 "{"g Hq \ References \
4 10 z4r g1 z31 1 N Z3 Z4 | [Nai94][Keu88][BCGPOS]
Z3 Z3 Z3 [BCGPOg]
Qs Z3 Qs Z5 z4 [Bur96][Pet77][In094]
(Z2 Z4)0Z4 (Z2 Z4)0Z4 z2 [BCGPOS§]
11 7210 (0 Zy, Zi! 1 N Z3 Z4 | [BCGPOS]
2?0274 Z°0Z4 Z3 Z4 | [BCGPOS]
Z1s Z1s Z1s [BCGPOg]
Z> Zs Z> Zg Z, Zg | [BP10]
Z°0Z3 Z°0Z3 z3 [BCGPOg]
Z%0Z, Z°0Z > Z3 [BCGPO8]
Zg Zsg Zsg [BP10]
Zs Zs Zs [BP10]
Z Z Z [KLP10]
flg filg fOg [PPS09b]
5 Qs Z3 Qs Z3 Z3 [Bur96][Pet77][In094]
11 721 1 Zg! 1 N Z3 Zg | [BP10]
Zs Qg Zs Qg Z, Zio | [BP10]
1! Z?! 1! Djg3! N Z5 Z4 | [BP10]
11 z21 1 Zg! 1 n Z, Zg | [BP10]
Z, Zig Z, Zio Z, Zjyo | [BP10]
Ds:a;3 Ds:a3 Z, Zg |[BP10]
Dgs: 1 Dss; 1 Zg [BP10]
? ? ? [In094]
22 oZ 15 22 oZ 15 23 215 [BCGPOS]
6 A BT 4 S | Ny Z$ [Bur96][Pet77][IN094]
11 z2 1 41 72 " Z3 z3 | [BCGPOg]
11 o0 1 Zy Zy! ny Z3 2z, | [BCGPOS]
Z7 A4 Z7 A4 221 [BCGPOS]
Zs A4 Zs A4 Z1s [BCGPOg]
1t z8r g1 z31 1 " Z% Hip | [Kulo4]
Sz Dgs 1 Sz Dus 1 | Z2 Z4 | [BCGPOg]
? ? . [IN094][MLP04b]
7] 1t 5 Z%1 41 Z3) A ? | [Ino94][MLPO1] [BCC] |







Chapter 4

Group action on product of
curves

The rst examples of surfaces of general type withpy = 0 have been con-
structed in the 30's by L. Campedelli and L. Godeaux.

The idea of Godeaux was to consider the quotient of simpler s@aces by
the free action of a nite group. In this spirit, Beauville (s ee [Bea96, page
118]) proposed a simple construction of surfaces of genergipe, considering
the quotient of a product of two curves C; and C, by the free action of
a nite group G. Moreover he gave an explicit example considering the
quotient of two Fermat curves of degree 5 inP?.

After [Cat00] many authors started studying the surfaces that appear as
quotient of a product of curves.

4.1 Group action on product of curves

genusg = g(Ci) and G will be a nite group actingon C; ::: C,.
Following [Cat00] the action can be of two types:

Unmixed: G acts independently on each factorG | Aut( C;), and the
actionof GonCy; ::: C, is the diagonal action:

inthiscaseG ! Aut(Cy ::: Cp) Aut(Cp) ::: Aut(Cp). The
latter inclusion is an equality if and only if the curves are not pairwise
isomorphic.

Mixed: there are elements ofG that permute some factorsCy;:::;C,,
in this case these factors are isomorphic;

for example in the caseC; = ::: = C,, we haveG ! Aut(C

C)=Aut( CO)"o S,.
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From now on, we always considery, 2 for eachi. The reason of this choice
is given by the following:

Lemma 4.1.1. Let G be a nite group actingonC; ::: C,, where the
C;i are Riemann surfaces. LetS! X be the minimal desingularization of
X :=(Cy ::: Cp). If Sis of general type theng(C;) 2 for eachi.

Proof. By Lemma 3.5.9, we have (C; ::: Cp) (S) = n, Sis of general
type. By Theorem 3.5.8, we get (C1 ::: Cp)= (Cp+:::+ (C,)= n,
hence (Ci) =1foreachi, by Remark 3.5.6 itis equivalenttog(C;) 2. O

Since we want to construct surfacesS of general type as minimal desingu-
larization of surfaces of the form C; C,)=G, we shall consider only curves
of genus at least 2.

De nition 4.1.2. A variety X is said to beisogenous to a higher product
if itis a quotient (Cy ::: Cp)=G where theC; are curves of genus at least
two, and G is a nite group acting freely on C; ::: C,.

The adjective higher emphasizes that the curves have genus at least two.
From now on we will drop this adjective and we will simple say \isogenous
to a product".

Proposition 4.1.3 ([Cat00, Proposition 3.11]). A surface S is isogenous to
a higher product if and only if S admits a nite unrami ed covering which
is isomorphic to a product of curves of genera at least two.

In the isogenous case we have a very nice description of therfdamental
group of the variety.

Proposition 4.1.4  (cf. [Cat00]). Let S:=(Cy; ::: Cpn)=G be isogenous

to a product. Then the fundamental group ofS sits in an exact sequence
1t g i w! 1S)! G! 1

where ¢ = 1(C).

Proof. Since the action of G is free, it is properly discontinuous (Lemma
1.1.6). By Corollary 1.1.29 we have the following short exacsequence:

1! 1(C1 i Cp) ! 1(s)! Gl 1;
but 1(C1 ::: Cp)= 1(Cy) i 1(Ch)= ¢ i Gn - O

Now we focus on the surfaces case, i.e. I& be a nite group acting on
the product C; C,, where the C; are Riemann surfaces of genus at least
two. There are two cases: theunmixed casewhere G acts diagonally; and
the mixed casewhere the action of G exchanges the two factors (and then
C1= Cy).



4.1 Group action on product of curves 49

Lemma 4.1.5 ([Cat00, Lemma 3.8]). Letf:C; C, ! B; By be a
surjective holomorphic map between product of curves. AsswrbothB1; B,
have genus at least two. Then, after possibly exchangiigy with B, there
are holomorphic mapsf;: C; ! B; such thatf (x;y) = (f1(x);f2(y)).

Lemma 4.1.6 ([Cat00, Corollary 3.9]). Assume that bothC4, C, are curves
of genus 2. Then the inclusion Aut(C; Cjy) Aut(C;p) Aut(Cyp) is an
equality if C1 is not isomorphic to C,, whereasAut(C C) is the semidirect
product of Aut( C)? with the Z, generated by the involution exchanging
the two factors.

De nition 4.1.7. Let Cq1; C» be Riemann surfaces of genus at least two, let
G Aut(C; C,)bea nite group and let G°:= G\ (Aut( C;) Aut( C»)).
Then G° acts on each factor and diagonally on the product. 1fG° acts
faithfully on both curves, we say that the action is minimal, and we refer to
X :=(C1 C»)=G as aminimal realization of X.

Proposition 4.1.8 ([Cat00, Proposition 3.13]). If S is a surface isogenous
to a higher product, then a minimal realization is unique.

A particular class of surfaces isogenous to a higher produgs the follow-
ing:
De nition 4.1.9  ([Cat00, Proposition 3.15]). A surface isogenous to a prod-
uct S:=(C; C,)=Gis said to be ofgeneralized hyperelliptic typeif

the Galois coveringp: C1! C;=G is unrami ed;
the quotient curve C,=G is isomorphic to PL.

The invariants of surfaces isogenous to a product may be comyted using
the following result:

Proposition 4.1.10. Let S :=(C; Cy)=G be a surface isogenous to a
higher product of curves, then

49(C1)  D(9(C2) 1)

e(S) =

iGi
<2 8@(C)  1(9(C2) 1)
S iGj

_ (9(C) D(9(C2) 1)
(5) iGi

Proof. Let p: (C1 C,)! S be the projection on the quotient; p is anetale
covering of degredG;.

The topological Euler-Poincae characteristic is multipl icative: e(C;
Co)=¢6(Cy) eCr)=(2 29(C))2 29(Cy)). By Lemma 3.4.2, we have
e(C1 Cy) = jGj e(S) which implies the rst equation.
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By [Bea96, Fact 111.22], it follows
HY(C1 C20c, c,)= H%C1 Caz &, ¢,)= H%Cy &) H%Cy &)

and so:
q(C1  Cz) = g(Cy) + 9(Cy):

Since %1 c, = P1 ¢ P2 c,, wherep; and p; are the projection ofC; C»
to C; and C, respectively, we have

HO(C1 Caz &, ¢,)= H%Cy &) H%Cz &)

hence
Pg(C1  Cz) = g(C1) 9(C2):
We get

(C1 C2)

1+ pg(Ci C2) q(C1 Cp)

1+ 9g(C1) 9(C2) 9(C1) 9(C2)

(9(C1) 1)(9(C2) 1):

By Lemma 3.4.2, we have (C1 Cj) = jGj (S) which implies the last

equation.
Using Noether's formula it is easy to prove the second equabin too. [

Theorem 4.1.11 (cf. [Fre71, Hilfsatz 3 and Satz 1]) Let V be a smooth
algebraic variety and letG be a nite group acting on V. Let X = V=G,
and assumecodimSing(X) > 1. Let S be the minimal resolution of the
singularities of X, then

HO(S; §) = HO(V: 1)°:

Corollary 4.1.12 ([MP10, Proposition 3.5]). Let V be a smooth algebraic
surface and letG be a nite group acting on V with only isolated xed points.
Let S be the minimal desingularization ofX := V=G, then

HOS; &)= HOv; §)°:

4.2 Cyclic quotient singularities

In this section we introduce the cyclic quotient singularities and we discuss
their minimal resolution. This class of singularities will be crucial in the next
chapters; we will see that a quotient surface of unmixed typgsee De nition
4.3.1) has only singularities of this type (see Propositior4.3.6).

De nition 4.2.1. A variety Z has aquotient singularity in z 2 Z if there
exists a neighborhoodU of z such that U = C™=H with H nite subgroup
of Aut(C™;0), the group of the holomorphic automorphism of C™ xing 0.
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Lemma 4.2.2 (Cartan, cf. [Bri68, Lemma 2.2]). If H is a nite subgroup
of Aut( C™; 0), then there exists a system of coordinates such that the aoti
of H can be linearized.

Thanks to the previous lemma, we can assume thad  GL(m; C).

De nition 4.2.3. A variety Z has acyclic quotient singularity in z 2 Z
if there exists a neighborhoodU of z such that U = C™=H with H cyclic
nite subgroup of GL( m; C).

We are interested on singularities on surface, so now we cadgr the case
H nite cyclic subgroup of GL(2 ;C). In this case we have thatH has the

following form * I+
e¥ 0 '
H= 2iq
0 er

for somep; q; r 2 Z, and we say that%(p; ) is the type of the cyclic quotient
singularity C?=H.

Lemma 4.2.4 ([BHPVO04, pages 104-105]) Each cyclic quotient singularity
of type %(p;q) is isomorphic to a cyclic quotient singularity of type %(1; a)
with 1 a nandgcd(@n)=1.

De nition 4.2.5. Let1 a n andgcd@;n) =1. We denote a cyclic
quotient singular point of type %(l;a) by Ch:a.

Remark 4.2.6. Let a and n as above, we denote by the unique integer in
f1;:::;n J1gsuchthata a®= 1 modn.

Lemma 4.2.7. Cy.a and Cp.50 are locally analytically isomorphic.

Proof. Let x;y be the coordinates ofC? an_d assume thatH = hhi acts in
this way: h(x;y) = ("x;"?y), with " = e’ . We de ne new coordinates:
(x®y9 = g(x;y) = (y; ). We now note that H = @i since gcd@®n) =1,
in these new coordinatesh®= h2° acts as follows:

hqx®y9 g(ha"gg 1(x0,y<>))0= g("%x; " 8%)
(y;"®x) = (x8"2y9

sincea a%= 1 modn.
O

De nition 4.2.8. Let n and a be coprime integers withn >a > 0. The
continued fraction of 2 is the nite expression
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The resolution of a cyclic quotient singularity of type %(1;a) is well
known, see [BHPVO04, Section 111.5] or [Rei03]. The exceptinal divisor E
of the minimal resolution of a cyclic quotient singularities is a so called
Hirzebruch-Jung string of type (n;a) (for short HJ-string), that is E =

!:1 E;, where theE; are smooth rational curves with Ei2 = b,Ei:Ej+x1 =
lfori=1;:::;1 landEj:E; =0for ji jj 1. Theb are given by the
continued fraction %, and the dual graph is:

Jung string of a singularity of type Cp.a, i.e.

0 1
bhh 1 0O 0 ::: 0
1 bh 1 0 ::: 0
Ay = : )
0 0O 1 b, 1
0 0 O 1 b

Then detAy = ( 1)'n.

Proof. We prove the statement by induction on .
If I =1 then n=a=[b] andn = by; detAp1= by =( 1)1b;.
If I=2then n=a=[b;b]=b £=222andn=bb 1
detApo = b 1=( 1)2n.
Now, we assume that the statement holds for 1 i<| and we prove it
for I. We note that

detA1) = bydetAy; detAs;

where
0 1
b 1

1 b1 1
Aj = D D :
1 b 1

From the other side we have:

n_ 1 N [ .- _q
J ) [o::i:;h]
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= blqk n, for somek 2 Nsg. By

inductive hypothesis,
detAz =( 1) ‘g  detAsy =( 1) *(bug n)
and so

b( 1) g (1) %(bg n)
( 1) %(bg bg+ n)
( D'n:

detA1;|

O]

Let :S! X be a minimal resolution of singularities, we have that (in
a neighborhood of a singular pointx 2 X):

xl
Kg= Kx + rE;:
i=1
Since E; is exceptional, Ky :E;j = 0. Moreover, by the genus formula we
get (K3 + Ej):Ei =29g(Ei) 2= 2.So

XI
(Ks+ Ex):Exk= 2 Ks riEi :Ex=0; 8k=1;:::;1: (4.1)

These equations determines the; as follows:

Lemma 4.2.10 ([Bar99], [Hir53]). Let o=n, 1= aand j+1 = b |
i1 fori=2;:::;1. Let 9g=0, 1 =1and 41 = ib i 1 for

Then in a neighborhood of a singular pointz 2 X of type Cy.5, we have

that
XI
nNKs= nKyx + aE;;
i=1

wherea; = j+ ; nfori=1;:::;l.
Proof. By (4.1):
NKs:Ex = n(Ks + Ex):Ex + nbk = n(be 2) 4.2)
and the a; satisfy the following equation:
X

nKs:Ex = n NEi Ex=ax 1 beag+ ake (4.3)
i=1
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prove that the a de ned in the statement give the unique solution for the
linear system

a 1 bt aa =nlbe 2) k=150

The coe cients matrix is the matrix A1, of Lemma 4.2.9 that has non zero
determinant, hence the linear system has an unique solutionWe claim that

a; as above are the unique solution. Noting that ; ia modn, it is easy
toshowthat | ;=h, [ 1=ah n, (=1, (=a ;41 =0, |4 =n.
Hence

ha; + a;= b(a+l n)+(bp+ba n n)=n(b 2);
a1 ha=hb@+1) 2n h@E@+1)+ bn=nh 2):
Foreachk 2f2;:::;1 1g

a 1+tak+1 = (k1+t k1 N+ k+ k Nn)
= k 1t ka1t k1t ka1 2N
= kb + kbe  2n
= ( k+ « n)+n(b 2) = bak+nb 2)

O

Lemma 4.2.11. For a singular point x of type C,.a, we have that in a
neighborhood ofx

0 {
K2= K2 # 2+ 0 2
Proof. We have
X
nKg = nKx + a E;j
i=1
Since :S! X is a biratonal morphism we get

) ) 1 X 1 X 2
Ks = ( Kx) +2 o aEi Kx)+p aE;
1 X 2
= K)2<+p aE;
Moreover
X 2 X
i Ej = aE; :(nKsg nK x )
i=1 it

= n a(EiKs)
X
ai(b  2)

1
=]
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where the last equality follows by the rst equation of (4.1), and so

X 2 X
aE; = n (;+ i n(b 2

i=1 ¥ X
= n[ i+ )b 20 n (b 2] (44

where the ; and the ; are as in Lemma 4.2.10. Extending the rst sum in
(4.4) we have:

X
(it (b 2

X X

(ib 29+ (ib 29)
X X

= (i#2* i1 29+ (st * i1 24)

and these two last sums are telescopic sums, thus:

X

(i+ Db 2) = o 1+ 1411 1t 0o 1t w1 I

= 1+n a%n a 1=2n 2 a &

Hence equation (4.4) becomes:

X 2 X

aEi =n(2n (a+a+2+n (b 2))]
i=1

and it follows:
1 X 2
KZ = K2 =3 & Ej
P
_ k2 [2n (a+a%+2+n (b 2))]
= K2 .
+ 904 X
= K2 2+#+ b 2):

O]

De nition 4.2.12. A singular point p of a normal surfaceX is a Rational
Double Point (R.D.P.) or Du Val singularity if X has a minimal resolution
of singularities f : S! X such that every irreducible componentE; of the
exceptional divisor E over p satis es Ks:E; =0, or equivalently, E? = 2.

De nition 4.2.13  ([Rei87, De nition 1.1]) . A normal variety X of dimen-
sion n has canonical singularities if

1. for somer 1, the Weil divisor rK x is Catrtier;

2. iff:Y ! X is aresolution of the singularities of X and fE;g is the
family of all exceptional irreducible divisors of f , then

X
rKy =f (rKx)+ aEi; with a O:
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Theorem 4.2.14 (cf. [Mat67, Theorem 4.6.7]). Let p be a singular point on
a normal surface X. Then p is a canonical singularity if and only if p is a
Rational Double Point.

Moreover the dual graph of the exceptional curves of the mimal reso-
lution is one of the following 5 types:

An  —— e e e e m—

Es ‘

Remark 4.2.15 Let X be a surface with at most canonical singularities.
Let :S! X be the minimal resolution of the singularities. By [Mat67,
Theorem 4.6.2], we have that

KS: KxZ

Remark 4.2.16 In the particular casea= n 1: C,, 1, we have that all the
curves of the minimal resolution are ( 2)-curves andH  SL(2;C). This
class of singularities is the class of the R.D.P. singularies of type A,,.

4.3 Surfaces: the unmixed case

De nition 4.3.1. Let C1; C» be two Riemann surface of respective genus
01, & 2, and let G be a nite group that acts diagonally on C; C,. An
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umixed action of GonC; C; is a monomorphismG | Aut(C1) Aut( C»).
We say that X :=(C; C3)=G is a quotient surface of unmixed type

Remark 4.3.2 (cf. [Cat00, Remark 3.10]) Every quotient surface X of un-
mixed type may be obtained by a minimal (see De nition 4.1.7) unmixed
action. Let (C1 C,)=G be a realization of X. If G does not embed in
Aut( Cj), then the kernel K; acts trivially on C; for i = 1; 2. Thus we re-
placeC;1 C, by Z := C1=K, C»=K; and G by G°:= G=hIK 1; K ii ; we
get that X = Z=G%and this is a minimal realization.

De nition 4.3.3. An unmixed surface X = (C; Cy)=G is the minimal
realization of a quotient surface of unmixed type. The minimal resolution
S of X is called aproduct quotient surface or astandard isotrivial bration .
X is also called thequotient model of the product quotient surface.

The name \standard isotrivial bration" comes from [Ser96]:

De nition 4.3.4. A bration is a morphism :S ! C with connected
bres from an algebraic smooth surface onto a smooth projedte curve.

A bration is said to be isotrivial if all smooth bres are isomorphic to each
other.

Remark 4.3.5 Let X = (C; C,)=G be an unmixed surface, the natural
maps i: X ! Cij=G (i =1;2) are two isotrivial bration: the general bre
of 1 is isomorphic to C, and the general bre of » is isomorphic to C;.

Proposition 4.3.6. Let X =(C; C,)=G be a quotient surface of unmixed
type. Then X has nitely many singular points that are cyclic quotient
singularities.

Proof. By Remark 2.2.6 we have that on both C; there are nitely many
points with non trivial stabilizer, which is cyclic by Theor em 2.2.4. SinceG
acts diagonally we have that Stabf; y) = Stab( x)\ Stab(y) thatis cyclic. [

Remark 4.3.7 The map C; C, ! X is quasietale, indeed the singular
locus of X : Sing(X) is also the branch locus of the quotient map.

Theorem 4.3.8 (cf. [Ser96, Theorem 2.1]) Letf:S! X =(Cy Cy)=G
be a standard isotrivial bration and let us consider the naural projection
f1:S! Cy1=G. Take any point overy 2 C;=G and letF = f,(y). Then

(i) The reduced structure of F is the union of an irreducible curveY,
called the central component ofF, and either none or at least two
mutually disjoint HJ-strings, each meeting Y at one point, and each
being contracted by to a singular point of X .

(i) The intersection of a string with Y is transversal, and it takes place
at only one of the end components of the string.
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An analogous statement holds if one considers the projectiof,: S! C,=G.

Proposition 4.3.9. Let :S! X =(C; C3)=G be a standard isotrivial
bration and let ;: X ! C;j=G be the natural brations. Let y 2 X be
a singular point of type Cn.a, and let x; := i(y) 2 Ci=G. Consider the
two bres Y; := ((x1) and Y2 := ,(X2) taken with the reduced structure.
Let Y; :=  (Y;) be the strict transforms of Y; (i = 1; 2) and let E be the
exceptional divisor overy.

Then Y7 intersects one of the extremal curves oE, while Y5 intersects
the other extremal curve.

Proof. Let f: C; Cy! X be the projection to the quotient and let p 2
f 1(y). By assumption, there existsg 2 Aut(C; Cy) with g(p) = p
and H = hgi = Stab(p). By Lemma 4.2.2 there exist coordinates in a
neighborhoodU of p, with p=(0;0)andg= M 2 GL(2;C).

Since ord@) is nite, then there exist coordinates (x;y) with M (x;y) =
(x; 3y)with = e,

Let Y; be the connected component of (Y;) passing through p. We
note that TpY; is an eigenspace foM sinceY; is a connected component of
a bre of the natural map C; C,! C;i=G, that is invariant for the action
of M. We also note that ToY1\ TpY2 = fOg.

If a6 1then TgY7 and ToY> are the coordinate axes; while ifa = 1 then
M = Id, and, up to a linear change of coordinate (that does not change
M), ToY1 and ToY2 become the coordinate axes.

Since ToY1 = fx + fi(x;y) = 0g and ToY2 = fy + fo(x;y) = 0g with
multof; 2, we de ne new coordinatesw := x+f(x;y)andt = y+fo(X;y);
in these coordinates,g(w) = w and g(t) = 2t.

So we have found coordinates such thag(w;t) = ( w; 2t) and such that
f(fw=0g)and f (ft =0g) are Y; and Ya.

By [Rei03, Proposition-De nition 1.1], U is the spectrum of the ring of
invariant monomials: C[w;t]". This ring is generated by monomials (see
[Rei03, Corollary 2.5])

Up=W";up=w" 3t;iii Uupey = t"
that satisfy
Ui 1ui+1=uio'i for i=1;::::k;
where the exponentsd; are given by T a [d1;:::;dk]. In other words,
U = SpecC[ug; us;:::; Uk+1 ]=J whereJ is the ideal of the relations between

the u;. Hence inU the two bres Y; and Y, are, set-theoretically,fug =0g
and fug+1 =0g.

Let L be the overlattice L = Z?+ Z 1(1;a) of Z2 (see [Rei03, Proposition
22])andletM =f(; )j +a 0 modng Z? be the dual lattice of
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invariant monomials. Let
e =(0;1); e = 7(1 a);:: e+ =(1;0)

be the lattice points of the boundary of N (L) in [0; 1]?, where N (L) is the
convex hull innR2 of all nonzero lattice points in the rst quadrant. Let
[b1;:::;0] = ~ by [Rei03, Proposition 2.2], the points g are related as
follows:

e+ +t€ 1= he:

Let i; ; be monomials forming the dual basis toe;; €+1, that is:
e(i)=0;e(i)=1;e+1(i)=1;e+(i)=0:

By [Rei03, Theorem 3.2], the resolution of singularitiesZ ! U is constructed
as follows:
Z=2Zol Z2[ [ Zi;

whereZ; = C? with coordinates ;; i, fori=1;:::;1. The gluing Z; [ Zi+1
and the morphismf : Z ! U are determined by the isomorphism:

Zinf =09 Zjx nf i =0g

de ned by

where [by;:::;h] = .

The prelmagef Yfuo=0g) = f 1(Yy) is the complex line C , that is
contained in the Z;-chart. f 1(Y;) intersects only one extremal exceptional
curve, namely the one obtained by the gluingf | 1 =0g[f | =0g.
Analogously, the preimagef *(fug+s =0g) = f 1(Y>) is the complex line
C , contained in the Zo-chart. f 1(Y;) intersects only one extremal excep-
tional curve, namely the one obtained by the gluingf ¢ =0g[f 1=0g. O

De nition 4.3.10. Let :S! =(Cy C2)=G be a standard isotrivial
brationandlet X ! Ci=G be one of the two natural bratlon?j Lety2

Sing(X ) be a point of type Cy.a with ——[bl """ h]. Let E := , 1 iEi

be the exceptional divisor overy. E is a tree of rational curves: E? = I,
with [by;:::;b], EitEj+1 = 1 while E;:Ej = 0 if ji  jj 2. Let Y be
the strict transform in SofY: the bre ( (y)) taken with the reduced
structure.

We say that y is of type C,.a with respect to if Y intersects E.

Remark 4.3.11 If y is of type Cp.a with respectto 1 theny is of type Cp 40
with respect to ».
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De nition 4.3.12  (cf. [Pol10, De nition 2.7]) . Let S! X =(C; Cy)=G
be a standard isotrivial bration. We say that a reducible b reF of : X !

. . a ar . : :

Ci=Gfori=1or 2is of type n—l; G n—r if F contains exactly r singular
1 r

points y1;:::;Yyr, Where eachy; is of type Cy, .5, With respect to

Proposition 4.3.13  (cf. [Pol10, Proposition 2.8]). Let S! X = (Cy
C,)=G be a standard isotrivial bration. Let F be a bre of : X ! Ci=G
for i =1 or 2, and let F its strict transform in S.

a a .
If F of type ——::::: "  with respect to , then
ni Ny
X a.
2= F2
nj

i=1
As corollary of Proposition 4.3.13 we get

Lemma 4.3.14. LetS! X =(C;y Cy)=G be a standard isotrivial bra-
tion. Let : X ! C;=G be the natural bration. If Sing(X) = fy1;:::;yrg

X a
i=1

Lemma 4.3.15 ([Ser96, Proposition 2.2]) If S is a smooth surface bira-
tional to the quotient surface of unmixed typeX = (C; C,)=G then

a(S) = 9(C1=G) + g(C>=G):
Proof. Let p1 and p, be the projections of C; C, onto its factors, we have
&, =P &) P &) ([Bea9b, Fact 111.22]), hence
oS) = dim HO( &, )¢ =dim H°( &)®+dim H°( ¢,)¢
= g(C1=G) + 9(C2=G)

where the rst and last equalities are given by Corollary 4.112. O

Therefore, for a product quotient surfaceS ! (C; C3)=G it holds
q(S) = 0 if and only if g(C1=G) = ¢g(C,=G) = 0. This implies that a
product quotient surface S of general type with quotient model (C; C»)=G
has pg(S) = 0 if and only if (Os) =1 and C;=G= Cp,=G= P

4.4 Surfaces: the mixed case

De nition 4.4.1. Let C be a Riemann surface of genug(C) 2, and let
G be a nite group. A mixed action of G on C C is a monomorphism
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G ! Aut(C C)whose image is not contained in AutC)2. Given a mixed
action we will denote by G°/ G the index two subgroup G\ Aut(C)?. A
quotient surface of mixed typeis a surface which arises as quotienX :=
(C C)=G by a mixed action of GonC C.

Remark 4.4.2 (cf. [Cat00, Remark 3.10]) Every quotient surface X of mixed
type may be obtained by a minimal mixed action.

Let (C C)=G be a realization of X and let 92 G be a transformation
notin G% qx;y9 =( »y® 1x). We choosey = »y%as a new coordinate
on the second factor, and then qx;y) = (y; x), where = 5 ;.

Let Ko Id:= GO\ (Aut(C) Id)andId Kgi:= G°\ (Id Aut(C)),
then K1 = K5 as subgroups of AutC); indeed if 2 K1 then (Id; )2 G,
conjugating it by © we get (; Id) 2 G°.

We obtain that K1 K3 is a normal subgroup ofG, and G=(K1 K3) acts
mixed and minimally on (C=K;) (C=Ky).

De nition 4.4.3. Let X be a quotient surface of mixed type. By the
previous remark we may obtainX asC C=G by a minimal mixed action;
we will callthe map C C! X the quotient mapof X.

Theorem 4.4.4 (cf. [Cat00, Proposition 3.16]). Let G | Aut(C C)
be a minimal mixed action. Fix 92 G nGP it determines an element

= ®2 GO and an element' 2 Aut(G°) dened by ' (h) := % 01
Then, up to a coordinate change,G acts as follows:

agxy) = (9x(g)y) 0
. forg 2 G 4.5
Bey) = (' @y 9%) : (45
Conversely, for everyG® Aut(C) and G extension of degree 2 ofz°,

xed 92 GnG® and dened and' as above, (4.5) de nes a minimal
mixed action onC C.

Proof. The argument in Remark 4.4.2 shows that, if the action is minmal
and mixed, then there are coordinates such thatG acts as in (4.5).

Observingthat G h="(g h,' (Y h)= g (h)andthat ' ( )= it
is easy to prove that (4.5) de nes a mixedG-action on C C. Moreover,
the action is minimal by de nition of G°. O

De nition 4.4.5. A mixed surface X = (C C)=G is a quotient surface
of mixed type provided by the corresponding minimal mixed adion, as de-
scribed in Theorem 4.4.4. If the quotient map is quasietak (see De nition
2.1.10) we say thatX is a mixed quasietale surface (for short \mixed g.e.
surface"). Let S be the minimal resolution of the singularities of a mixed
surface X, if S is regular (q(S) = 0), then we say that X is aregular mixed
surface
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Remark 4.4.6. Note that when we use Theorem 4.4.4 to de ne a mixed
action on C C, we choose an element®2 G n G0, but the mixed surface
(C C)=G obtained does not depend on this choice.

Remark 4.4.7. Let X = (C C)=G be a mixed surface, and letG° be the
index two subgroup of G of the elements that do not exchange the factors:
G%= G\ Aut(C)? ThenY =(C C)=G° is an unmixed surface.

4.5 Surfaces quotient of product of curves with
= 1. the classi cation so far

In this section we collect the main results of classi cation of the surfaces
S (of general type) that appear as minimal resolution of the shgularities
of X = (C1 Cy)=G where C; and C, are Riemann surfaces andG
Aut(C; Cy)is a nite group.

We have already seen (Section 3.6.1) that the minimal surfaes of general
type with pg = q 3 are completely classi ed and they are isogenous to a
product of curves.

The py = q=0 case

We start noting that if S is a surface of general type withpg(S) = 0, we
automatically have that g = 0, since (Os) =1+ py(S) q(S) 1 (see
Theorem 3.6.4).

In [BCO4] Bauer and Catanese study the above situation undetthe as-
sumption that the action of G is free and of unmixed type andpy(S) = 0.
They completely solve this case under the further assumptio that G is
abelian and give some examples in the non abelian case.

In [BCGO8] all the surfaces of general type withpg = 0 and isogenous to
a product of curves are classi ed, in particular they prove the following:

Theorem 4.5.1 ([BCGO08]). There are exactly 18 families of minimal sur-
faces of general type withpg = 0 isogenous to a product of curve.
13 of these families are of unmixed type, while 5 are of mixedspe.

Remark 4.5.2 We observe that in [BCGO08] the authors claim that there are
4 families of mixed type. They missed a family, that we have tgged by
7.3.13 in Table 6.1.

In [BCGPO08] Bauer, Catanese, Grunewald and Pignatelli startto study
the case of non free action assuming that the quotient surfae (C; C,)=G
has at most R.D.P. as singularities. They prove that indeed mly nodes (Du
Val singularities of type A1) can occur as singularities and they state:
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Theorem 4.5.3 ([BCGPO08]). Surfaces of general type withpyg(S) = O,
whose canonical model is a singular quotient surfacX = (C; Cy)=G
by an unmixed action ofG form 27 irreducible families.

We note that here automatically K2 > 0, sinceKZ > 0 andKs = Ky,
where :S! X is the minimal desingularization of X .

Finally in [BP10] the authors remove all the assumption on the singular-
ities and they give a complete classi cation of the product-quotient surfaces
S with KZ > 0 and pg = 0:

Theorem 4.5.4 ([BP10]). If Sis a product-quotient surface withpy(S) =0
and K§ > 0, then one of the following is true:

1. S is minimal and of general type.

2. S is the \fake Godeaux surface" which hasKé =1, 1(S)= Zg and
its minimal model hasK 2 = 3.

Moreover, their classi cation yields 32 irreducible families of minimal sur-
faces with p; = 0 which are the minimal resolution of the singularities of
X =(C1 C2)=G where the G-action is of unmixed type and X does not
have canonical singularities.

Dropping the assumption that G acts freely, Proposition 4.1.4 does not
hold. In [BCGPO08] (see also [DP10]) the authors proved that he fundamen-
tal group still has a very similar description:

compact complex curves of respective gengs 2 and let G be a nite group
acting faithfully on each C; (unmixed action). Let X :=(Cy ::: C,)=G,
and let S the minimal resolution of the singularities of X .

Then the fundamental group 1(X) = 1(S) has a normal subgroupgN of
nite index which is isomorphic to the product of surface graips (see Section
2.3).

The pg=q=1 case

In [Pol08], Polizzi investigates the surfacesS = (C; Cy)=G with py(S) =
q(S) = 1, such that the action of G is of unmixed type and free. He classi es
this case under the assumption thatG is abelian and gives some examples
in the non abelian case.

In [CPO9] all the surfaces of general type withpg = g =1 and isogenous
to a product of curves are classied, in particular Carnovale and Polizzi
prove the following:

Theorem 4.5.6 ([CPQ9]). The surfacesS = (C F)=Gwith p; = q=1
isogenous to a product of curves are minimal of general typena form 49
families. In particular, 44 families are of unmixed type, while 5 are of mixed

type.
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In [Pol09] the author starts to study the singular case admiting that the
quotient surface (C F)=G has at most R.D.P. as singularities. He proves
that indeed only nodes can occur as singular point and he shav

Theorem 4.5.7 ([Pol09]). Let :S! X = (C F)=G be a standard
isotrivial bration of general type pg = g = 1 not isogenous to a product
of curves. Assume thatX contains only R.D.P.'s. Then S is a minimal

surface, K 2 is even and the singularities ofX are exactly8 K3 nodes.

Moreover the occurrences forKé, g(F), g(C) and G are precisely described
and there are 28 possibilities.

Finally in [MP10], Mistretta and Polizzi remove all the assumption on
the singularities and they prove:

Theorem 4.5.8 ([Pol09]). Let :S! X = (C F)=G be a standard
isotrivial bration of general type pg = gq=1 and assume thatX contains at
least one singularity which is not a R.D.P. and thatS is a minimal model.
Then there are 15 possible 4-tup|e(;K§; o(F);g(C); G).

Moreover they describe the basket of singularities.

The py = q=2 case
In [Zuc03] the author proves the following:

Theorem 4.5.9. There are two classes of minimal surfacesS of general
type with py = g = 2 whose Albanese image is a surface and having an
irrational pencil, and they are both isogenous to a higher mduct.

More precisely, S = (C1  Cy)=Z, where, eitherg(C;) = g(Cz) =2 or
9(C1) = 9(C2) =3.

Zucconi manages also to remove the hypothesis on the Albanesnap
using the generalized hyperelliptic surfaces (see De nithn 4.1.9); he proves:

Theorem 4.5.10 ([Zuc03, Proposition 4.2]). Let S be a surface of gen-
eral type with py = q = 2 and not of Albanese general type. Therb is a
generalized hyperelliptic surface.

In [Penl1], Penegini deals the caspy = q = 2. He investigates both the
isogenous case both the singular case, in particular he pres:

Theorem 4.5.11. Let S be a minimal surface of general type withpg = q =
2 such that it is either a surface isogenous to a product of cues of mixed
type or it admits an isotrivial bration. Let :S! Alb(S) be the Albanese
map. Then we have the following possibilities:

1. If dim( (S))=1,thenS=(C F)=G and it is generalized hyperel-
liptic. There are exactly 24 families of these surfaces.
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2. If dim( (S)) =2, then there are three cases:
S is isogenous to product of unmixed typ€C F)=G, and there
are 3 families of such surfaces.

S is isogenous to a product of mixed typdC C)=G, there is
only one family of these surfaces.

S! T:=(C F)=Gis an isotrivial standard bration, and there
are 5 families of these surfaces.

Penegini also gives a detailed description for the basket adingularities and
for the possible 4-tuples K 2;9(F); g(C); G).






Chapter 5

Mixed quasietale surfaces

In this chapter we study the mixed quasietale surfaces; owaim is to produce
an algorithm to construct and classify all surfacesS with given values of the
invariants that appear as minimal resolution of a mixed quasetale surface.

In this chapter C will denote a Riemann surface of genug(C) 2,
G Aut(C C)a nite group with a mixed action on C C and G° :=
G\ Aut(C)?/G the index two subgroup of elements that do not exchange
the factors.

Let X :=(C C)=G be a mixed surface. We note that the quotient map
factors as follows

C C! Y:=(C ©C)=G"! X:
We are in the following situation:

P

(5.1)

s——IK =(C ©)=G

where p;; p2: C  C ! C are the projections to the rst and the second
factor. By de nition, G° ] Aut(C). Let c:C! C=G° be the projection
to the quotient. Let 1; ,:Y ! C=G° be the morphisms de ned by

1( (u;v)) = c(u); 2( (U;v)) = c(v): (5.2)
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Note that they are well de ned! Let :S! X be the minimal resolution
of X. Moreover we denote byQ: Y ! C=G° C=G° the map

Q( (u;v)) = (c(u);c(v)) : (5.3)

Theorem 5.0.12 (cf. [Cat00, Proposition 3.16]). Let X =(C C)=Ghe a
mixed surface. Then the quotient mapC C ! X is quasietale if and only
if the exact sequence

11 G%1 G1 ozt o1 (5.4)
does not split.

Proof. () ) We have to prove that the extension (5.4) does not split.
Let %and' as in Theorem 4.4.4. If there existsh 2 G° such that
( h)?2=1,i.e.' (h) h =1, then we get

hix; hx )= (" (h) hx; hx )=(x; hx) 8x2C;

hence the quotient mapC C ! X is ramied along the curve y =
( h)x, contradicting our assumptions.

(( ) We factor the quotient map of X :=(C C)=Gas
C C! Y:=(C ©C)=G"! X:

From the minimality of Y (G° acts faithfully on both factors), we have

that is branched only in a nite number of points rq;:::;r¢, therefore
our claim follows if we prove that the branch locus of the doulbe cover
is nite.

Aiming for a contradiction, we assume that there existsacuveD X
such thatj *(g)j=1forall q2 D.
Let 2 D be suchthat 1(g)= p°62f;:::;r:g. Since is ajGY% =:
n to 1 map, we have 1(p% = fpg;:::;png. Sincej( ) Y(Q)j=n,
we get that jStab(p1)j = 2, hence Stab{p;) = Z» is generated by an
element not in G°. Then (5.4) splits, a contradiction.

O

Theorem 5.0.13. Let X =(C C)=G be a mixed quasietale surface.

Then Sing(X) = (Sing(Y)).

then 1(g) = pY62f4;:::;rgand we can argue as in the proof of Theorem
5.0.12 to get a contradiction; therefore SingK) (Sing(Y)).
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Let y 2 Sing(Y). If y is not a rami cation point for , then it is obvious
that (y) 2 Sing(X). Let Z := Y n 1(Sing(X)). Then

jz:Z! X nSing(X)

is a quasietale morphism with Z normal and X n Sing(X) smooth hence,
by Lemma 2.1.11, ;7 isetale. So the branch points for are contained in
Sing(X). It follows that if y 2 Sing(Y) and it is a rami cation point for
then (y) 2 Sing(X). O

Remark 5.0.14 From the previous theorem it follows immediately that if
X =(C C)=Gis a mixed g.e. surface then the map

Y :=(C C)=G% X
is quasietale, since its branch locus is contained in SingX ).

Lemma 5.0.15. Let S be the minimal resolution of the mixed quasietale
surfaceX =(C C)=G.
Then (S) = g(C=G?).

Proof. From Corollary 4.1.12 it follows
HO( §)=(H°( & c)°:
Arguing as in [Cat00, Proposition 3.15], we get

(HOC & c)°

&) HO E)°

(1:)G° HO( (1:)G°)G=G°
= (H( &) HO( g™

HO( §)

1
—~ ~
I T
o O
—~~ ~

Since X is a quotient surface of mixed type, the quotientZ, = G=G° ex-
change the last summands, hence

HO( §) = H( &o):

We getq(S) = h°( 5) = h°( &o) = 9(CH. o

5.1 On the singularities

By construction Y = (C C)=G° is an unmixed surface and so its sin-
gularities are all cyclic quotient singularities. In this section we want to
understand which kind of singularities a mixed qg.e. surfacecan have. In
particular we study their resolution graph.

We start with the following observation:
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Remark 5.1.1 The group G induces an involution onY = (C C)=G°
in the following way: let (u;v) be a pointin Y, ( (u;v)) = (g(u;v)) for
someg 2 GnGO. Itis easy to prove that it is well de ned.

Let :T! Y be the minimal resolution of the singularities of Y.
Lemma 5.1.2. The involution onY lifts to an involution onT.

Proof. Let : T 99KT be the birational map de ned by := 1 .
Let T T be the graph of ; let f1 be the projection on the rst factor
and let f, be the projection on the second factor.
If is not dened in a point p2 T, then contains a ( 1)-curve C
contracted to pby f1. fo mapsC toacurve D T contracted to ( (p)) by
. But D? 1 and all the exceptional curves have self-intersection 2,
a contradiction. O

Remark 5.1.3 If xes p2 T then P 2 D, the exceptional divisor of .
Let y = (u;v) be a singular point in Y of type C,.a. Consider the
morphisms 1; »:Y ! C=G°dened as in (5.2):

1( (U v)) = c(u); 2( (U;v)) = c(v):

Proposition 5.1.4. If y is a point of type C,.a with respect to ; (see
De nition 4.3.10), then (y) is a point of type Cp.q0 with respect to 1,
whereaa’= 1 modn.

Proof. Let y = (u;v) and let z := (y) = ( (u;v)) = ( Yu;v)) =
(v; u); Q(2) =(c(v);c( u)) =(c(v);c(u)). Consider the following bres:

Y1:= 4(c(u)); Y2:= ,(c(V);

Zy:= 4(c(v)) and Zp:= ,(c(u);

all of them taken with the reduced structure.
Let Yi :=  Y(Yi)and Zi .= 1(Z)) (i = 1;2) be their strict transforms in
T. By Proposition 4.3.9, the situation is the following:

E
E
y s
Y2
&(u) o(v) i
E? E?

c(v) c(u)
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Then there exists 1;:::; 4, 1;:::; 1; 1,7 1 2 N such that:

XI

F1:=( 1) (c(u))= 1Yi+ iEi+ 1
i=1
XI

Fo = ( 2) (c(v))= 2Ya2+ iEi+ 2
i=1
X o

Fs:=( 1) (e(v) = 3Z1+ iEj+ 3
i=1
X 0

Fa:=( 2) (c(u)) = aZz+ JEj+ 4

j=1

Here the E; are the irreducible components of the exceptional divisorying
overy and the Ej0 are the irreducible components of the exceptional divisor
lying over z. Since is an isomorphism that exchanges these two divisors,
we have that they have the same number of irreducible componmgs. Here
the ; are unions of HJ-strings disjointed from the E; and Ejo; they are the
exceptional divisors lying over the other singular points d Y; and Z;. We
note that by assumptions,

_ _ fptg ifi=1 _ _ fptig ifi=1
Bil vi= ; ifiél Eil V2= ; ifi 61 (5-5)
EQ\ 7, = fpt:g ifi=1 EQ\ 75 = fpt.g ifi=I (5.6)

X ifigl ; ifi 61
By (55), fptg= (Ei\ Yi)= (E1)\ (Yi), but (Yi)= Z» and the
unique curve of  1(z) that intersect Z3 is EQ hence (E1) = E2 We get
b= EZ= Ef = tf, analogously (E;)= E{and E?=E% = b.
Arguing in this way, it is easy to prove, by induction, that (E;) = E2; |

and solh = bi1 . In particular, we get that Z7 intersects the extremal
curve with self-intersection Iy, hencez = (y) is of type C,,.50 with respect
to 1. O

5.1.1 Singularities of type Dpa
Proposition 5.1.5. Let X = (C C)=GP be a mixed g.e. surface and let

the minimal resolution of Y. If y is a rami cation pointof :Y ! X then

(i) nis even;

m 2 N, in particular the resolution graph of y is:
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b b by bna b b by

(iii) the minimal resolution of the singular point  (p) is the connected union

intersection numbers:

E2,, = 1 bm2+1 :in particular by+1 is even;
Ei:E;j=0ifji jj 2,1 &) m;

FZ=F2= 2;

Em+1:F1= Em+1:Fo= E{:Epn+1 =1 forall 1 i m;
FiEj = F2Ej=0if j 6 m+1:

%Eizz b fori=1;::::m

The resolution graph is:

Proof. (i) Let y = (u;v), jStabg(u;v)j =2n and jStabgo(u;Vv)j = n. If nis
odd, then there exists an elemenig of order 2 in Stalg(u; v) n Stabgo(u; V),
by Sylow's theorem. In particular g 2 G nGP°, a contradiction.

(i) Let D :=  (y), sincey is of type Cn.a We have that D is a tree of
| rational curves Dy;:::;D; with D2 = h, Di:Dj+1 =1 and Di:Dj; =0
if i jj 2. Arguing as in the proof of Proposition 5.1.4, we get that

(Di)=Dis1 jand b =D2=D?Z; ;= b i

Assume now that| = 2m be even, the involution exchangesD; with
Di+1 i, hencep= Dy \ Dmn+1 is the unique point xed by

Let us consider local coordinates in a neighborhood) of p centered inp,
in these coordinates the involution is& C?! C? with a unique xed point:
(0; 0). Up to a change of coordinates (Lemma 4.2.2), we can assuntkat &
is linear. The Jordan form of &is one of the following:

a 0 al
0 b 0 a
We note that

a? 2a

o .2 6ld 8a2cC

oo
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therefore &is of the form

a o0 . > 1o ..
0 b with a>= P =1
We have, up to a linear coordinate change, three cases:
10 1 0 1 0
o1 o 1 0 1

& cannot be neither the identity, which xes every point, nor t he second
matrix which xes a line. The third matrix xes only the point (0;0) but
it sends every line that passes through the origin into itsel, a contradiction
since we have that exchanges two lines throughp. Hencel is odd.
(iii) By point (i), I=2m+21and (Dm+1)= Dm+1. The restriction of
to Dm+1 is an involution & P! P!, by Hurwitz's formula we get that &
xes exactly two points p; and p, that cannot be the points of intersection
of Djn+1 With Dy of Dis2. Let : TO1 T be the blow-up of T in p; and
p2, we denote byDiOthe strict transform of D; and by A1 and A, the two
( 1)-exceptional curves. We have thatb® = D%, ;= D2=D2, .= h

fori=1:::;m,D%,; = 2 by andA2= AZ= 1.

Ay Az

1 1

Let us consider local coordinates X;y) in a neighborhood U = C? of p;
centered in py; arguing as before, we can assume that in these coordinates,
the involution is & (x;y) 7! ( X; Yy); moreover the blow-up of U in p;
is given by (Xx1;y1) 7! (X1;x1y1) on a chart (say U;) and by (Xz2;y2) 7!
(X2y2;y2) on the other chart (say U,). The gluing Ui [ U, is given by
(x1;y1) 7! (x4 % x1y1) and the exceptional curveE is fx; =0g[f y, = 0g.
The involution &lifts to an involution on the blow-up:

(X1y1) 70 ( X13y1) (X2;¥2) 7V (X2; Y2):

So the set of points xed by the lift of &isfx; =0g[f y2=0g= E.

Arguing in the same way for p, we lift the involutiog to an involution
on TO Let V be an open set ofT containing D%:= ~, DY[ A1[ Az and let
p:vV! V= jOV be the projection to the quotient. Up to shrinking V, the
restriction of 9to V is an isomorphism ofV that xes only A; and A, and

so the quotient V= jov is smooth and it has the form:

0
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F1 F2

where F1 = p(A), F2 = p(B), Ei = p(D) = p(D%, ;) fori=1;:::;m+1.
All these curves are rational, indeed the restriction of p to each of these
curves is an isomorphism onto its image, except for one cas®9?,,, . In this
case the mappjpo . : D%, ! Em+1 has degree 2 and it is the quotient
of DY,; = P! by an involution that xes two points, hence by Hurwitz's
formula we get:

2=2 29Em+1) 2+ }+ 1

m+1 2 2

It follows that g(Em+1) = O and so En+1 is a rational curve. Using
the projection formula, we can compute the self-intersectio of the curves
E1; 111 Emer R Fa

EZ= (0 (E)p (E) = ~(DP+ DPy )?)

- LYo = b iz

1 1
Efe1 = 5(P (Ems1):P (Emsa)) = 5(DfuaDpua)= 1
2_ 1 : _lopoan o Coq.
F©= é(p (Fi):p (Fi)) = é(2Ai.2Ai)— 2 fori=1;2
O

Corollary 5.1.6. Lety 2 Y as in Proposition 5.1.5, thena= a° i.e. a> =1
mod (n).

Proof. This follows directly by Proposition 5.1.5 (ii). O

Lemma 5.1.7. Let X = (C C)=G° be a mixed g.e. surface and ley 2

=g o] =

hn2+1+1 and =( 1p q:

Then x := (y) is a quotient singularity isomorphic to C>=H with:
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if =0 (i.,e. p=0), then

H=" n91 . with = e%r;
if 60 and odd, then
- o ! o 0 1 .. 2 2
H = 0 oo 1 1 o 1 0 ;with =ez ;| =e2;
if 60 and even, then
! i i
H = 0 ; . 01 ;owith = 6247 and! = ezzT:

Proof. The statement follows immediately from the classi cation of nite
subgroups of GL(2 C) without quasi-re ection (i.e. with only one xed
point), see [Bri68, Satz 2.11] or [Mat67, Theorem 4.6.20]. O

De nition 5.1.8.  We say that a singular point x as in Lemma 5.1.7 is a
singular point of type Dp:a.

Remark 5.1.9.

1. A singular point of type Dy, 1 is @ Rational Double Point. It is a Du
Val singularity of type D, where 2n 4 = n.

2. We note that a =1 if and only if p=g= 0. In this case we have a point
of type Dy.1 which is isomorphic to a cyclic quotient singularity type
C2n;n +1 -

Remark 5.1.1Q Let X = (C C)=G be a mixed quasietale surface and let

S ! X be its minimal resolution of the singularities. Let T ! Y be the
minimal resolution of Y = (C  C)=G°. By the proof of Proposition 5.1.5,
it follows that the involution  on T xes 2d points, whered is the number
of branch points for . The involution lifts to an involution % of T?that
xes the exceptional divisor and soT% %is smooth and it is isomorphic to
S. Moreover ~: T91 S is a double cover rami ed along the 21 exceptional
curves.

In the following the term multiset will be used in the sense of MAGMA,
that is a set with some of its members repeated.

De nition 5.1.11  (cf. [BP10, De nition 1.2]) . Let Y be an unmixed sur-
face. Then we de ne thebasket of singularities ofY to be the multiset

B(Y):= Cnha : Y has exactly singularities of type Cp.a
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Let X =(C C)=G be a mixed g.e. surface. We recall that Sing{) =
(Sing(Y)). We de ne the following two multisets:

Bc = Cnha : X has exactly singularities of type Cp.a
not in the branch locus

Bp = Dmp : X has exactly singularities of type Dy
in the branch locus

De nition 5.1.12.  The basket of singularities ofX is the multiset
B(X) = B¢ [B D -

Remark 5.1.13 As noted in [BP10, Remark 1.3], in the above de nitions
there is some ambiguity: a point of type Cp.5 is also a point of type Cy.50
with a®= a ! in Z,. We consider these di erent representations as equal
and usually we do not distinguish between them.

Lemma 5.1.14. Let X =(C C)=G be a mixed g.e. surface. LeB(X) =
Bc [B p be the basket of singularities oX with B¢ := f ; Cy,:5,01 and
Bo:=fj Dmg- Then
X . o X
R gt ji 27Z:
. n;j .
i j
Proof. If x 2 X is a singular point of type Dy, then  1(x) = y (with
y = (y)) is a singular point of type Cnp. If X 2 X is a singular point of
type Cna, then  1(x) = fy;zg (z = (y)) are two singular points of type
Ch:a, hence
B(Y)=f2i Chua: j ij b i (5.7)

Let :Y! C=GPthe bration given by 1( (u;v)) = c(u). By Propo-
sition 5.1.4, if y 2 Sing(Y) is a point of type C,.q4 with respect to , then
z= (y) is a point of type Cy.50 with respectto . So to each elemenD y,
in Bp corresponds a singular point of typeCy,, with respect to , while to
each elementC,.5 in B¢ corresponds a pair of singular points: one of type
Ch:a and one of type C,,.50 with respect to . By Lemma 4.3.14, we get

X . 0o X
i ara + j i 27:

ni m;
i ! j !
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5.2 On the invariants

De nition 5.2.1  (see [BP10, De nition 1.4]). Let x be a singular point of

We de ne the following correction terms:

: 2+a+a’ P
) ke=k(Cra)i= 2+ ——+" i, (b 2) O

Sl

ii) e = e(Cna)i= 1+1 0;

~

X

iii) By = B(Cna) =26+

De nition 5.2.2.  Let x be a singular point of type Dp.4 and

We de ne the following correction terms:

p
) k= k(Dna)= 2+ 3L+ (b 2+ M 0;

i) & = €e0Dna)=m+4 %;
i) Bx = B(Dna) :=2ex + K.

Remark 5.2.3 From the de nition it follows that

K(Cn, &(Cn; B(Cn.
K(Dpa) = (Cnia) &(Dn.a) = (Cnia) +3: B(Dna) = (Cnia) +6
2 2 >
Let B be the basket of singularities ofX . We use the following notation:
kB)=  ka eB)= e; B(B)=  Bx:
x2B x2B x2B

Proposition 5.2.4. Let :S! X be the minimal resolution of singularities
of X =(C C)=G, and let B be the basket of singularities o)X . Then

_8(g 1) .

K§= "S5 K@) (5.8)
_ 4g 1) .

&(S) = & e(B): (5.9)

Proof. Arguing as in Proposition 4.1.10, we getK2 . = 8(g 1)? and
eC C)=4(g 1) whereg:= g(C). By construction :C C! Y
has nite branch locus, then Kc ¢ = Ky. WegetK2 . =deg K2 =
jG% K2, so

_8(g 17,

T e

<N
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Since :Y ! X has nite branch locus, then Ky = Kx. We getK$ =
deg KZ =2 K2,s0
K2 = K¢ _ 8@ 1),
) iGj
let B=Bc[Bp =f i Cnadlf j Dn; a9, then the basket of

singularities of Y :=(C C)=G is
B(Y)=f i Cnuas i Cni;aiogi [f j Cn,- s

hence by de nition
k(B(Y))=2k(B):

Let : T ! Y bethe minimal resolution of singularities ofY, it is a product-
quotient surface (see [BP10, De nition 0.1]) and so by Lemma4.2.11 we have

8(g 1)°

2 —
“T = e

k(B(Y)) :

The involution on T has an even number of xed points: 21 with d = jBpj
(see Remark 5.1.10). Let : T9! T be the blow-up of T in these points.
We get

K2,= K2 2d=K2 (k(B(Y)+2d)=2(KZ k(B) d): (5.10)

Since lifts to an involution %on T%that xes the exceptional divisor of |,
the quotient T% %is smooth and isomorphic toS; ~: T°! S is a double
cover branched overF = Fq + :::+ F5q, where the F; are rational curves
and Fi:Fj =0 if i 6 j. In particular, we get (see [CD89, pages 13-14]):

F

Kro=~ Kg+ —
TO 82

We note that (Ks + Fi):Fi =degKg, = 2, and by construction F2 = 2
for all i and soK 5:F =0, it follows that

2
K2,=2 Ks+% =2 K§+%d =2(K& d): (5.11)
From equations (5.10) and (5.11), we get:
2
KZ=K2 k(B)= S(gjejl) k(B):

To prove (5.9), we argue as follows: leiX  := X nSing(X ) be the smooth
locus ofX . Let x be a point of type Cp.a, then  %(x) is a tree of| (the length
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of the continued fraction n=a) rational curves and soe( 1(x)) = 1+1, while
for a point x of type Dna: &  %(x)) = m + 4, where m is as in De nition
5.2.2; therefore
X X
e(S) = (X %)+ (Ix +1)+ (my +4) :
X2B ¢ X2Bp
Let Z9:=(C C)n(( ) 1(Sing(X))), so Z%! X0 isetale, hence

&z% _eC C)j( ) “sing(X))j

X% = == —
x5 iG] iG]
_oC o) X )i XiC ) i
jGj x2B ¢ JGJ x2Bp JGJ
_¢c ¢ X 1 X 1
iG] x2B ¢ Nx x2Bp = X
It follows that
X X
eS) = e(CGC) e +1 ni My + 4 2r1]
J J XZBC X XZBD X
49 1)7°
= ————+¢B
iG] (B)

Corollary 5.25. LetS! X =(C C)=G be the minimal resolution of
singularities of X, and let B be the basket of singularities oX . Then

K5=8 (S) %B(B):

Proof. By Proposition 5.2.4 we have

K2+k(B) K2+ B(B)

&(S) = &B) + 5 >

Using Noether's formula we get

3KZ+ B(B) .
5 :

12 (S)= K2+ &(S) =
SinceB(B) 0, it follows that

Corollary 5.2.6.
KZ 8 (S):
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Lemma 5.2.7. Let X be a mixed quasietale surface. Let : S! X be the
minimal resolution of X andlet : T! Y be the minimal resolution ofY.
Let d be the number of branch points for , then

d
Pg(T) =2pg(S) +1 5 ;
in particular d is even.

Proof. The involution on T has an even number of xed points: 21 with
d = jBpj; let : T°! T be the blow-up of T in these points. Moreover
lifts to an involution ©on TCthat xes only the exceptional divisor of
, hence the quotient T® %is smooth and isomorphic toS; we have that
~: T2 S is a double cover branched ovelF = Fq + :::+ Fyq, where the
F; are rational curves, andK 2,=2(K2 d). Since ~is branched along 2
rational curve (e(P!) = 2) we have that (T = 2¢e(S) 4d, we also note
that e(T)= eT9 2d=2¢(S) 6d. By the proof of Proposition 5.2.4, we

getK2 =2K 2.
SinceT is smooth, Noether's formula applies and

(Or) = S (KP+e(T)= (2KE+2e(S) 60
_ d
= 2 (0s) 5

By Lemma 4.3.15, sinceT ! X is a product-quotient surface, we have
o(T) =29g(C=G") = 2¢(S), hence

po(T) = 2+2p5(S) 24(S) S+a(T) 1

2pg(S)+1 g:

O]

Noting that the branch points of :Y ! X are exactly the singular
points of X of type Dy.a, the next statement follows:

Corollary 5.2.8. The numberd of singular points of type D.5 of a mixed
g.e. surfaceX is even and

g 2pg(S)+1

whereS ! X is the minimal resolution of X .
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5.2.1 Determining the signatures

De nition 5.2.9.  Let S be the minimal resolution of the mixed g.e. surface
X =(C C)=G. Let :T(g®my;:::;;m) ! GO be the appropriate
orbifold homomorphism induced byc: C! C=GP. Let B be the basket of
singularities of X. Then we de ne the following numbers:

=2 qS) 2+ ;

_ 12 (Os)+ k(B) &(B) .

3
k(B B
=4 (Os)+7() e():
3
Remark 5.2.10 We note that = . Moreover by Noether's formula we
have 12 (Os) = K2 + &(S) and so we get:
8(g 1) 49 1)
12 = ———~— k+ —————+¢e
iGj jGj
hence 1 4g 1> K2+ Kk(B)
_ _ 49 _ Ksgt .
= -(12 +k = — = .
3 9= g 2

In particular  depends only onK§ and on the basket of singularities.

De nition 5.2.11  (see [Rei87]) The minimal positive integer 1, such that
IxKx is Cartier in a neighborhood of x 2 X is called the index of the

singularity Xx.
The index of a normal variety X is the minimal positive integer | such that
IK x is Cartier. In particular, 1 =1Icm yssingx)!x-

Lemma 5.2.12. The index of a singularity of type Cp.4 is

n

ly = —————

X7 ged(n;a+1)
Proof. Let [by;:::;h] = g; let g=n, 1=aand j+1 = b i 1 for
i=2;::5;1. Let =0, 1=1and i1 = b i 1 fori=2;:::;10.

By Lemma 4.2.10, in a neighborhoodX = C?=H of a singular point of type
Cn;a,

i + n .
wherer; = fforlz S B
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By [Mat67, Remark 4-6-26],

Ix=minfe2 Njer; 2 Z8ig:

n
gecd(n;a+1)
Leti=0,thenro=(0+ n n)=n=0and rp2 Z.
+1

We claim that = ly.

Leti=1,then rq= a 1 and
n a+1
r{= 12 27:
! ged(n;a+1) n
By de nition, is the minimal integer such that rq1 2 Z.
To complete the proof it is enough to prove that r; 2 Zfori 2. We
prove it by induction on i:
o _ st s n_ (i )b i1t i1 ..
M+l = = 1:
n n n
Hence
Fisg = (Inl)h |1n|1 22;
since, by inductive hypothesis, we are summing three integs. O

For xed Ké, Pg(S), q(S) and B, we want to bound the possibilities for

S as minimal resolution of the mixed g.e. surfaceX =(C C)=G, where S
has these invariants.

Proposition 5.2.13  (cf. [BP10, Proposition 1.13]). Let S be the minimal

resolution of the singularities of the mixed g.e. surfaceXx = (C C)=G.

Let :T(g%my;:::;m;) ! GO be the appropriate orbifold homomorphism
induced byc: C! C=G°. Let B = B¢ [B p be the basket of singularities of
X. Then

a >0and =g9(C) 1,

s g 2 .
b) 1Gj = KZ+k(B)’
or SH®isa o

d) eachm; divides21 wherel is the index ofY;

e) there are at mostN := jB¢j + jBpj=2 indices i such thatm; does not
divide ;
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2
it reo,m I KSTKE) peem = max 13

moreover, except for at mostN indexesi, we have the stronger in-
K2+k(B)
-z

. 1
equality m; M 1+

’

Proof. a) Let g be the genus ofC. Sinceq(S) = g(C=G%) (Lemma 5.0.15),
Hurwitz's formula says that

29 1=i6%

hence = 2(ngOj1) > 0, sinceg 2. Let k := k(B) and B := B(B).

By Corollary 5.2.5, we get

_ 24 +3k B _ K2+k,
B 6 o2
and by Proposition 5.2.4 and Hurwitz's formula:

_8@g 1°_8@g 1Y _

T4y sg 1 9
8@ 1?2 _ 82
b) G} = K — KZ+k
c) We note that 29 2+%:%, hence
2
r 2 4(q 1)=K5+k+4(1 Q:

d) Each m; is the branch index of a branch pointp; of c: C ! CO Let F;
be the ber over pi ofthemapY =(C C)=G°! C=G°. Then F; = m;W;
for some irreducible Weil divisor W;, moreover F; is isomorphic to C (see
Remark 4.3.5), then

2 =29(C) 2=Ky:Fi+F2=Ky:Fj = miKy:W;:

| I|eref0re |
: ( Y) 1

e) By Theorem 4.3.8, ifF; contains a singular point of Y, then it contains
at least 2 singular points. Therefore there are at mostjB(Y)j=2 = jBcj +
iBpj=2 = N indexesi such that F; \ Sing(Y) 6 ;, here B(Y) is the basket
of singularities of Y.

For all other indexesj we haveF; \ Sing(Y) = ;. Then W; is Cartier
and Ky is Cartier in a neighborhood of W;. In particular,

Ky W,

27,
m; 2 '
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sinceKy W, is even.

f) We distinguish two cases:g=0and q 1.

If gq=0,then r 3, and if r = 3 at most one m; can be equal to 2.
Hence we have:

X
v o1y p 2L
mi L j 6
j=1;i6]
X
If r> 3,since =(r 2) —, we have that
j=1
x3
+ 1. (r 2 L
mi . i
j=1;i6]
r 1 r 3 r 3+4q_ 1
r 2 = = >
( ) 2 2 2 6
X o1
Ifq 1,wehavethat =2 q 2+r —, hence
j=1 M
1 X 1
+ — = 29 2+r —
m; i j
j=1;i6]
rr-1 r 3+4q_1
2 2+ = >
g " 2 6
It follows that + L max ;! 344 = M. Sincem; 21 =
@Lweget
1 1 KZ+k 1
moo 1em TR =S 7 = 1+(K2+ k)
Except for at most N indices, m; and so we get
1 K2+ k 1 K3+ k
. R + = — +
moow ! 2 Mot T2

Remark 5.2.14 By Proposition 5.2.13 we have that

- AL KEr k@)
K2+ k(B) 2

are strictly positive integers.
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Under the same assumption of Proposition 5.2.13, let

Qg :
gt T [ash] a Gl
and let h; .= (q), in particular ord( h;) = m;.

Lemma 5.2.15. Under the same assumptions of Proposition 5.2.13,

2
mj 2 —+3

Proof. We have that m; = ord( h;) and hh;i is a cyclic group acting onC
that has genusg 2. Theorem 2.2.18 applies and we get

m; 4g+2=2(2 +3)=2 2—+3

sinceg= +land = : O

Proposition 5.2.16. Under the same assumptions of Proposition 5.2.13,
letR:=r 3+4q. Foralli2fl;:::;rgwe have

i) if q(S)=0 andr =3 then

m; 12(2 +1)
ii) otherwise
8 +2
m 6+ ( . ) ;

Proof. Arguing as in point f) of the proof of Proposition 5.2.13, we gt

1
1 2 = ifgq=0;r=3
+ = 6
m; > R .
— otherwise
2
. my 6 .
i) If g=0and r =3, we have W; since 12(2 +1) > 12 we can
1 6m '
assumem; > 6 and so— —
By Lemma 5.2.15 we get: I
2 12m;
m 2 Z+3 2 ==Mig
m; 6

hence m; 6)> 24m; and so

m? 12m;(1+2 )+36 O:
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It follows that

p p—
mi 6(1+2 )+ 36(1+2)2 36 6[(1L+2)+ (1+2)2 1]
< 12(1+2):
.. Rmi .
i)If q6 0orr > 3, we have o and R 2 Nsg; since
[

8 +2 1 2m;

6+ > 6 we can assumemn; > 2 and so — Rm 2" By Lemma
5.2.15 we get: '
2 4m;
- —+ —+
mi 2 3 2 Rm; 2 3
hencem?R  2m;(3R+4 +1)+12 0. It follows that
. (BR+4 +1)+ IO(3R+4 +1)2 12R
|
R
BR+4 +1)+(B3R+4 +1) — 6+ 8 +2
R - R
O

Lemma 5.2.17. Under the same assumptions of Proposition 5.2.13, let
B(Y) be the basket of singularities off = (C C)=G°. Then for each
Cn:a 2 B(Y) there existsm; such thatn divides m;, in particular n  m;.

Proof. Let (x;y) be a singular point of Y of type C,a. We have that
Stabgo(X;y) = h i and has ordern, in particular  (x;y)=( (X);' ( )y)) =
(x;y), thatis 2 Stabgo(X), hence x is a rami cation point of c, let p :=
c(x). By Lemma 2.3.4 there is a bijection

c(p)!'f gHg

whereg 2 G° and H = hh;i for somei. By Lemma 2.3.5 Stal;o(gH) =
(gHg 1), andso = gh g 'forsome 2f1;:::;m; 1g,thennjm;. O



Chapter 6

An algorithm to classify
regular mixed guasietale
surfaces

In this chapter we give an algorithm to classify regular surices occurring
as minimal resolution of the singularities of a mixed g.e. stface, with xed
values of the invariants K 2 and pg- As an application of this algorithm we
will obtain the classi cation of these surfaces with K2 > 0 and pq = 0.

6.1 The classi cation

In this section we give a complete classi cation of the regudr surfacesS
with KZ > 0 and py(S) = 0 occurring as minimal resoluton :S! X of
the singularities of a mixed g.e. surfaceX :=(C C)=G.

We make a systematic computer search of the surfaces that safy these
assumptions. As output we get the following theorem:

Theorem 6.1.1. Let S be the minimal resolution of the singularities of a
mixed g.e. surfaceX with pg(S) = ¢(S) =0 and K3 > 0, then

1. S is minimal and of general type.
2. S belongs to one of the 17 families collected in Table 6.1.

This chapter is dedicated to proving the second part of this satement;
the rst part is proved in the next chapter.

The rst column of Table 6.1 gives K 2 of the surfaces, SingK ) repre-
sents the basket of singularities ofX . The column Type gives the type of the
set of spherical generators in a compacted notation, e.g.324 = (2;2; 2;4).
The columns G and G°, obviously, give the group and its index two sub-
group. The groups denoted by G(a,b) are groups of order a, wié b is
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the MAGMA identi er of the group, as described in Section 7.3. The last
column gives the reference. Some groups are given as semétit products
H oZ ; to specify them, we should indicate the image of the generatr of Z,
in Aut( H). For lack of space in the table, we explain in Section 7.3 with
is the automorphism. The columnb, gives the second Betti number ofX .

[K§] SingX) [ Type | GO \ G | by [ Label |
1 [2C1+2Dy1 | 2,4 | D4 2, |  Z30Z,4 [1] 731 |
2 6C2;1 2 Zg Z% 0Z4 2 7.3.2
2 6C2;1 43 (Zz Z4) oZ 4 G(64, 82) 2 7.3.3
2 C2;1+2 DZ;l 23;4 ZgOZZ ZgOZ4 1 7.3.4
2 C2;1+2 D2;1 22;32 Z%OZZ Z%OZ4 1 7.3.5
2 | 2C41+3Cp1 | 22:4 G(64, 73) G(128,1535) | 3 | 7.3.6
2 | 2C31+2Ca, | 334 G(384, 4) G(768, 1083540) | 2 | 7.3.7
2 | 2C31+2C3p | 324 G(384, 4) G(768, 1083541) | 2 | 7.3.8
[ 3 ] Cest+Css | 2,8 | 032,39 | G644 |2 739 |
4 4Cyy 25 D. Z» D2s50Z > 2 | 7.3.10
4 4C, 25 74 (Z20Z4) Z, | 2 |73.11
4 4Cyy 43 G(64, 23) G(128, 836) 2 | 7312
8 ) 2 Dy Z% (D2;8;5 oZ 2) Zy 2 7.3.13
8 : 43 G(128, 36) G(256, 3678) | 2 | 7.3.14
8 : 43 G(128, 36) G(256, 3678) | 2 | 7.3.15
8 : 43 G(128, 36) G(256,3678) | 2 | 7.3.16
8 . 43 G(128, 36) G(256, 3679) 2 | 7317

Table 6.1: The surfaces. G(a,b) denotes the B group of order a in the
MAGMA database of nite groups. See Section 7.3 for a detaild description.

Remark 6.1.2 Itis automatic that bp(X) = y(X) =1and by (X) = b3(X) =
0 (see (3.2) and (3.3)). If in addition k(X ) = 1 then X is a Q-homology
projective planes, i.e. normal projective complex surfacevith the same Betti
numbers of P2, as studied in [HK11] and [Keu10].

Remark 6.1.3 Let S! X be the minimal resolution of the singularities of
a mixed g.e. surface, withq(S) = 0. By Theorem 2.4.3, Theorem 4.4.4 and
Lemma 5.0.15,X is completely determined by the following data:

a nite group G;

a spherical system of generatorsHy;:::;h;) of type (mgq;:::;m;) of
an index two subgroupG®/G suchthat1! G°! G! Z,! 1 does
not split;
an ordered set ofr points pg;:::;pr in P

Once we x G and (hy;:::;hy) as above, by Theorem 2.4.3 we get a curve

C such that the Galois coveringc: C ! C=G° = P! is branched over
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and by Theorem 5.0.12 the quotient map is quasietale.

We note that, given a spherical set of generators, the mixed . surface
is determined up to the choice ofr points in P!, hence we get a family of
surfaces depending orr 3 parameters. We do not known the dimension
of its image in the moduli space.

Remark 6.1.4 We observe that the basket of singularities of each output
contains either zero or two points of typeDp.5.

We already knew this fact. Indeed it follows by Corollary 5.2.8:

Lemma 6.1.5. Let S be the minimal resolution of the singularities of the
mixed g.e. surfaceX = (C C)=G. Let T be the minimal resolution of the
singularities of Y = (C  C)=G’. If pg(S)=0, thenthe map :Y! X is

eitheretale and py(T) =1,

or branched exactly in 2 points andpg(T) = 0.

6.1.1 Finiteness of the classi cation

If in De nition 5.2.9 we assume that S is a regular surface, then (Og) =
1+ pg(S). Thus and are so de ned:

X mo1 _ 12(1+py(S) + k(B) e(B)
m; ' 3 .

From Proposition 5.2.13 it follows immediately:

Proposition 6.1.6. Let S be the minimal resolution of the regular mixed g.e.
surface X =(C C)=G. Let :T(g%my;:::;my)! GO be the appropriate
orbifold homomorphism induced byc: C! C=G°. Let B = B¢ [B p be the
basket of singularities ofX . Then

>0and =g9g(C) 1,

i Gi = g8 2 .
191 = wzvvEy

, K 2+Kk(B)

+4:
eachm; divides2 | , wherel is the index ofY;

there are at mostN := jB¢j+ jBpj=2 indices i such thatm; does not
divide ;
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1+1(K2+k(B
mi  ZESTKED fyhereM =max 113
moreover, except for at mostN indices i we have the stronger inequal-

ity
1 KZ+ k(B)+1

MM 2

Remark 6.1.7. By Corollary 5.2.5 and Hurwitz's formula, it follows that

_ K2+ Kk(B) .
= 5 :

Once we have xed the values ofpy(S) and q(S), by the standard in-
equalities (see Section 3.6) and Corollary 5.2.6, we get a ite number of

possible values fork 2: 2pg(S) 4 K2 8 (Os); if g > O the stronger
inequality 2pg(S) K% holds. By Corollary 5.2.5, we getB (B).

Lemma 6.1.8. Let H 2 Q. Then there are nitely many baskets B such
that
B(B)= H;

in particular:
1. jBj H=S;
P
2. if Cha 2B andn=a=[by;:::;h] then h H;

P
3. if Dna 2B andn=a=[by;:::;h] then ;( b +12) H.

P
Proof. We note that B(Cp.5) =Pa+na° + b 3,whileB(Dng) = % +

6 15=2. Itfollows that H = .5 Bx  3jBj, this prove 't_he rst point.
The second is obvious, while the third follows byH (% b +6). O

Remark 6.1.9 If B is the basket of singularities of a mixed g.e. surfac&
then, by Corollary 5.2.8, it contains either no points of type D5 or at least
two. In the latter case we have thatB(Dp,:a,) + B(Dn,.a,) B(B); thatis

2ai P
15 .t b
B(B) > B(Dnyay) = f"‘e
hence X
2a1
2B(B) 15 2B(Dpjay) = . + b +12:
1
That is X

h < 2B(B) 27:

By Lemma 6.1.8, we have only nitely many baskets with assigred B.
Fixing Ké and B, by Proposition 5.2.13, we have only nitely many types,
and for each type only nitely many groups.
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6.1.2 How to compute the singularities

We need to understand how to compute the singularities onY and on X
starting from the algebraic data.

Q( (x;y)) = (c(x); c(y))-

We recall the following commutative diagram:

(6.1)

pl pi X = (C C):G

Remark 6.1.10 We recall that the points in ¢ (p;) are the only ones with
non-trivial stabilizer with respect to the action of G° on C and they are
in bijection with the left cosets fgKig, where K; = hhji is the stabilizer of
a point of the bre (see Lemma 2.4.1). We recall that the point gK; has
. O.

stabilizer gK;g ! and that jc 1(p)j = ﬁ—] Moreover, each point x;y) 2

C Csuchthat (Q )(xy)=(pi;pj) is Iassociated to a pair of left cosets:
(gKi; gX;) (see Lemma 2.3.4).

Let 2 G°and assume that (x;y)=( x;' ()y) =(x;y):
%) = (aKi oK 2 gKig *
(9Ki; %) = (gKi; gX;) 0 ()2 g% g
Thatis 2 gKig '\ ' 1(g¥K;g®1). Hence the singular points ofY are the
points (u;v) such that

Stab(u; V) := Stab go(u) \ ' 1(Stabgo(Vv)) 6 f1g:

i) there is a G0-equivariant bijection (Q ) (pi;p)! G%=K; GO=K;,
where theG%-action on the target is given by left multiplication (simul-
taneously on both factors};

'GP acts as follows: g(aKi;bK;) = (gaKi;' (g)bK;)
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i) there is a Kj-equivariant bijection between the orbits of the abov&’-
action on G%=K; GO=K; with the orbits of the K;-action on f1g
GO=Kj .

Proof. i) By Lemma 2.4.1 we have aG°-equivariant bijection

c '(m) !'f  oKig
for eachi = 1;:::;r. Hence there is aGl-equivariant bijection between
(Q ) Ypi;p)and GO=K; GO=K;.
ii) We note that the GPorbits of G°=K; G%=K; are in one-to-one
correspondence with the points (Q ) (pi;p;)).
Observe that
(kiKi;kjKj) is in the same GP-orbit as (K;;' (k; 1)kj Kj).
(Ki;kiKj) is in the same GO-orbit as (Ki;koKj), if and only if there
exists 2 K; suchthatko =" 21( )ki.
O
We have to determine the types of the singularities:

Proposition 6.1.12  (cf. [BP10, Proposition 1.18]).
An element[g] 2f1g G°=K; corresponds to a point%(l; a) where
n=jK;\" 1(ng g 1)j, and ais given as follows: let ; be the minimal posi-

tive integer such that there existsl ~ ;  ord(h;) with h;' = g* *(h,")g *.
_ N
Then a = ord(h;)”

Proof. [g] 2 f 1g GO:KJ- corresponds to a (singular) point of type %(1;a)
with n = jStab(g;gq)j = jStab(g)\ * Y(Stab(gq))j = jKi\ ' (gK;g b,
whereg is the unique point of ¢ 1(p;) with stabilizer K; and g is the unique
point of ¢ (p;) with stabilizer K;.

Let be the minimal positive integer such thatthereis 2f 1;:::;ord(hj)g
such that h; = g *(h;)g. Then hh;i = Stab(g;gq).
Therefore ord(h;) = n . In local analytic coordinate (x;y) 2 C C, h; acts
as

2i

2
e = eod(h)

on the variable x and as
2ia 20
en = eord( hj)

on the variable y. This shows that a = O

n
ord(hj)"
Using Lemma 6.1.11 and Proposition 6.1.12 we can compute thgngu-
larities of Y. We have to do the same forX . Since we already know that the
quotient by an involution of a singular point Cp.5 is a singular point of type
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Dn.a we only need to know which singular points ofY are also rami cation
point for :Y ! X. We start computing \where" the rami cation points
can be.

Lemma 6.1.13. Lety 2 Y be a ramication point for . Then Q(y) =
(pi; pi) for somei.

Proof. Leth 2 G°, we recallthat % actsinthisway: %h(x;y) = ("' (h)y; hx).
Let (x;y) 2 Y be a ramication point for  then (x;y) = ( %h(x;y)),
for someh 2 G° Suppose that @ )(X;y) = (c(x);c(y))(pi;pj) then
(Q ) (h)y; hx) = (c( (h)y);c( hx)) = (c(y);c(x)) = (pj;pi) since
*(h); h 2 G% Hencep = p 2 PL. We get that every branch point
belongs toQ *(pi;pi), for somei. O

Proposition 6.1.14. An element[g] 2 f 1g GO:KJ- corresponds to a sin-
gular point that is also a rami cation point for :Y ! X if and only if
there exists an element % 2 G nG° such that:

*(h) h 2 K;
" (h)g 2 K;

Proof. The point (K;;gK;j) corresponding to [g] is a rami cation point for
if and only if there exists an element % 2 G nGP such that (K;; gK;) =
Q’](Ki;gKi) = (" (h)gKj; hK ), that is

F(h)gKi = K 0 " (h)gKi = K;
gKi = hK "(h) hK; =( q’])zKi:Ki

6.1.3 Hurwitz moves

of G such that
1! G%' G! Z,! 1 and
11 GY! G! Zp! 1

do not split.

In the following we investigate this problem: \when do two ses of spher-
ical generators give the same Galois covering of P! (up to isomorphism)?
And so isomorphic surfaces?"

Following the solution to the problem given in [BCGO08, Secton 1-2] (see
also [BCPO06, Section 5.1-5.2]), we start de ning thebraid group B, for
r2 N:

= gty jp> L
i+l i = g+ i ier fori=15ir 2
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Consider now the Hurwitz action of B, on the set ofr-tuples of G cor-
responding to the standard embedding ofB into the automorphism group
of a free group onr generators.

Let T = (01;:::;0) be ar-tuple of elements ofGand 1 i r 1.
Dene (T) by

It is easy to prove that the braid relations are satis ed and that the group
B maps set of spherical generators to set of spherical genems preserving
the type.

Also the automorphism group Aut(G) of G acts on the sets of spherical
generators by simultaneous application of an automorphisnto each element.

Given (; ) 2 By Aut(G)and T = (0;;:::;0-) a set of spherical
generators ofG®/, G, we set:

(; ) (G%5T):=( (&% ((M): (6.2)

Now, assume to have a Galois coverin@€ ! P! with Galois group G°.
Let fpy;:::;prg P! be the branch locus of the covering. Choose a base

they follow each other by counterclockwise ordering aroundhe base point).
Notice that 1 r= 1. Choose a monodromy representation, i.e., a sur-
jective homomorphism : ((Pnfpy;:::;prg) ! GO: Notice that only the
kernel of is uniquely determined by the covering. Then the elements

(see [BCPO6, De nition 17]), which is a quotient of the braid group B, oper-

ates on such homomorphisms, and their orbits are called Huritz equivalence

classes of spherical systems of generators. This action ikd one described
in (6.2).

6.2 The algorithm

Using the results of the previous sections we have implemeatl a MAGMA
script to nd all the regular surfaces that satisfy our assumptions.
We explain here the strategy of the program and the most impotant scripts;
we attach a commented version of the program in Section 6.4.

The algorithm follows closely the algorithms in [BCGPO08] ard [BP10].
We have adapted them to the mixed g.e. case and we have improdethe
computational complexity.

First of all we x a value of K§ and of pg. By assumption g = 0 so
=1+ Pg-
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Step 1:

Step 2:

Step 3:

the script Baskets lists all the possible baskets of singularities f0tK§
and pg, accordingly to Corollary 5.2.5 and Lemma 6.1.8.

once we xK § pg and a possible basket of singularitie3(X ) there are
nitely many possible signatures satisfying the condition of Proposi-
tion 6.1.6. ListOfTypes computes them. The input areK§ and pg, SO
this script rst computes Baskets(Ké; pg) and returns a list of pairs:
the rst entry is a possible basket and the second is the list vith all
the possible signatures.

if we know the signature, by Proposition 6.1.6, we carcompute the
order of G°. ListGroups , whose inputs areK 2 and pg, searches, for
every element in the output of ListOfTypes , if among the groups of
the right order there are groups having at least one set of spérical

generators of the prescribed type. Further it checks if thee groups
have a pair of sets of spherical generators that give the presibed

basket of singularities onY = (C C)=G°. Once it nds a group G°

with the right properties, it searches among all the groups & order

2jGYj, if there are groups which are unsplit extensions ofz°.

For each positive answer to these two questions it stores théourtuple
(basket; type; id G°); fid (G)g), where id (G°) is the MAGMA identi er
for GO, while fid(G)g s the set of the MAGMA identi ers of the groups
that are non split extensions of G°.

The script has some conditional instructions:

if one of the signatures is (23;7), then G°, being a quotient of
T(2;3;7), is perfect. MAGMA knows all perfect groups of order

50000, and thenListGroups checks rst if there are perfect
group of the right order: if not, this case cannot occur.

If the expected order of the group G° is 1024 or bigger than
2000, since MAGMA does not have a list of the nite groups of
this order, then ListGroups just stores these cases in a list, third
output of the script.

If the order of G° is in f1003%:::;200Q, since MAGMA does
not have a list of the groups of order bigger than 2000, we carot
check if there exist unsplit extensions ofG%; so we make the other
tests and if a group passes these tests, then we collect it in lzst,
second output of the script.

To save RAM memory, when the script has to make a search among
a big class of groups (e.g. the groups of order 576),istGroups uses
\SmallGroupProcess", which is a bit slow, but does not need b store
the whole class of groups under consideration.
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Step 4. ExistingSurfaces takes the output of ListGroups (Ké) and throws
away all 4-tuples (basket; type; id G®); id (G)) that do not give a surface
with the expected singularities.

Step 5: each fourtuple in the output of ExistingSurfaces (K 2) gives many
surfaces, one for each spherical systems of generators. Twlberent
spherical systems of generators can give isomorphic surfas: this is
taken into account by declaring that two spherical systems & gener-
ators are equivalent if and only if they are in the same orbit d the
natural action of Aut( G) and of the respective braid groups (see Sec-
tion 6.1.3). The script FindSurfaces produces one representative for
each equivalence class.

Step 6: Pil computes the fundamental group of the surfaces constructedis-
ing Armstrong's results (see [Arm65] and [Arm68]), as we wil see in
section 7.1.

Remark 6.2.1 The principal computational improvement in our script is in
the rst part of ListGroups , in particular in the search of which groups have
at least a set of spherical generators of the prescribed type

there exists an appropriate orbifold homomorphism
cT(my::me) ! GO:

The map induces a surjective morphism : T2 | G petween their
abelianizations, henceG%® is isomorphic to a quotient of T2,

Di erently from the analogous scripts in [BCGP08] and [BP10], our
script checks rst (by the script Test) which groups have abelianization
isomorphic to a quotient of the suitable T2 and only for the groups that
pass this test if they have a set of spherical generators of #hright type.

In the following table we compare the execution times of the pogram
with and without Test for high values of K 3.

K2 3 4 5 6 7 8

Time with Test 18.67 50.18 36.29 | 226.61| 4.36 | 4205.85

Time without Test | 1470.14| 1128.35| 3117.02| 262.63| 6.16 | 26431.57

Table 6.2: Eexecution times (in minutes) for high values ong.

6.3 Skipped cases for p;=0 and K2> 0

the MAGMA scripts ListGroups returns 3 output: the rstis processed by
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other functions of the program that possibly return some sufaces. All the
surfaces constructed are collected in Section 7.3.

We want to prove that they are all the mixed g.e. surfaces whos minimal
resolution of the singularities is a regular surface of gemal type with pg =0
and K2 > 0. In order to do this, we have to show that all the cases stored
by the script in the second and third output do not occur.

One of the main tools here is the script Test (or TestBAD in sonme cases),
which checks, given a signature and an order, if there exist @ups of that
order and with a spherical system of generators of that signaire.

For pg = 0 and all the values 1 K2 8, we have that the second
output is empty, while the cases stored in the third outputs are collected in
Table 6.3:

K3 SingX type [ jG% | [ K3 SingX type [ jG7
1 2 Cs1+ Can 2,38 6336 | 4 Cas + Can 23,8 2880
1 3 Cui+Cas | 238|2304|| 4 4 Cps 23,8 | 2304
1 Cg;l + C4;1 + C8;5 2,3,8 | 4032 4 C3;1 + 03;2 + C2;1 2,3,8 | 2496
1 4 C4;1 + Cz;l 2,3,8 | 2880 4 2 C4;1 + C2;1 2,45 | 2400
1 2 C8;3 + C4;1 + C2;1 2,3,8 | 2304 4 2 C4;1 + C2;1 2,3,8 | 3456
1 2 C2;1 + Cg;g + Cg;l 2,3,8 | 3744 5 C5;2 + C2;1 2,45 2160
2 2 Cg3+ Cyy 2,3,8 | 2880 5 3 Cai 2,3,8 | 2880
2 C8;3 + Cg;l + Cz;]_ 2,3,8 | 4320 5 C3;1 + C3;2 2,3,8 | 3072
2 4 Cy1 2,4,5| 2400 5 2 Cya 2,4,5| 2800
2 4 Cy1 2,3,8 | 3456 5 2 Cya 2,3,8 | 4032
2 Cg3+ Cgs+ Co1 2,3,8 | 2016 6 2 Cya 2,45 2400
2 | 2 Cu+t3 Cp1 |238|2304|| 6 2 Co 2,3,8 | 3456
2 |2 Cyp1+Cgz1+C32 | 2,38 2496 6 2 GCss 2,4,5 | 2560
3 2 Cp1+2 Cya 2,3,8 | 2880 7 Ca1 2,3,9 | 2268
3 Cg3+ Cg1 2,3,8 | 4896 7 Cza 2,4,5 | 2800
3 2 Cu1+Css | 245]|2160|| 7 Con 23,8 4032
3 Ce;3 + Ceg;s 2,3,8|2592|| 8 ; 2,39 2592
3 Ca3+ Cg1+ Con 2,3,8 | 2304 8 ; 2,4,5| 3200

8 ; 2,3,8 | 4608

Table 6.3: The skipped cases fopy =0 and K2 > 0
In the following we will sometimes need the number of perfecgroups of
a given order; we compute it by the MAGMA function:
NumberOfGroups(PerfectGroupDatabase(),order);
while the other functions that we use are in the MAGMA script r eported in
Section 6.4.
6.3.1 Non generation results

Lemma 6.3.1. No group of order 2016, 2304, 2496, 2592, 2880, 3456 or
3744 has a spherical system of generators of tyfjg; 3; 8].
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Proof. Assume that G° is a group of order 2016 (2304, 2496, 2592, 2880,
3456, 3744 resp.) admitting a surjective homomorphisnir(2;3;8) ! G°.

Since T(2; 3; 8)""b = Z, and since there are no perfect groups of order
2016 (2304, 2496, 2592, 2880, 3456, 3744 resp.), the commatasubgroup
G%% = [G% G] of G° has order 1008 (1152, 1248, 1296, 1440, 1728, 1872
resp.) and it is a quotient of [T(2; 3;8); T(2;3;8)] = T(3;3;4). The following
MAGMA computations

> Test([3,3,4], 1008);

{

>

> TestBAD([3,3,4], 1152);
{}

>

> Test([3,3,4], 1248);
{

>

> Test([3,3,4], 1296);
{

>

> Test([3,3,4], 1440);
{}

>

> Test([3,3,4], 1728);
{

>

> Test([3,3,4], 1872);
{}

>

show that there are no groups of order 1008 (1152, 1248, 1296440, 1728,
1827 resp.) with a spherical system of generators of type {3;4], a contra-
diction. O

Lemma 6.3.2. No group of order 4608 or 6336 has a spherical system of
generators of type[2; 3; 8].

Proof. Assume that G° is a group of order 4608 (6336 resp.) admitting a
surjective homomorphismT(2;3;8)! G°.

Since T(2; 3; 8)6‘b = Z, and since there are no perfect groups of order
4608 (6336 resp.), the commutator subgrougs® = [ G®; G°] of G° has order
2304 (3168 resp.) and it is a quotient of T(2;3;8); T(2;3;8] = T(3; 3;4).

Since T(3; 3; 4)ab = Z3 and since there are no perfect groups of order
2304 (3168 resp.), the commutator subgrougs®®’= [ G%% G%Y of G°has or-
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der 768 (1056 resp.) and it is a quotient of T(3;3;4); T(3;3;4)] = T(4; 4; 4).
The following MAGMA computations

> TestBAD([4,4,4], 768);
{

>

> Test([4,4,4], 1056);

{

>

show that there are no groups of order 768 (1056 resp.) with apherical
system of generators of type [44; 4], a contradiction. O

Lemma 6.3.3. No group of order 2400, 2800 or 3200 has a spherical system
of generators of type[2; 4; 5].

Proof. Assume that G° is a group of order 2400 (2800, 3200 resp.) admitting
a surjective homomorphismT(2;4;5) ! G°.

Since T(2; 4; 5)ab = Z, and since there are no perfect groups of order
2400 (2800, 3200 resp.), the commutator subgroug®’ = [ G°; G%] of G has
order 1200 (1400, 1600 resp.) and it is a quotient ofT[(2; 4;5); T(2; 4;5)] =
T(2;5;5). The following MAGMA computations

> Test([2,5,5], 1200);
{}
>
> Test([2,5,5], 1400);
{}
>
> Test([2,5,5], 1600);
{

show that there are no groups of order 1200 (1400, 1600 resp.with a
spherical system of generators of type [5; 5], a contradiction. O

Lemma 6.3.4. No group of order 2268 has a spherical system of generators
of type [2; 3; 9].

Proof. Assume that G is a group of order 2268 admitting a surjective ho-
momorphism T(2;3;9) ! G°.

Since T(2; 3; 9)""b = Z3 and since there are no perfect groups of order
2268, the commutator subgroupG® = [G?; G%] of G° has order 756 and
is a quotient of [T(2;3;9);T(2;3;9] = T(2;2;2;3). The following MAGMA
computation
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> Test([2,2,2,3], 756):
{}
>

shows that there are no groups of order 756 with a spherical syem of
generators of type [22;2; 3], a contradiction. O

Lemma 6.3.5. No group of order 2160 has a spherical system of generators
of type [2; 4; 5].

Proof. Assume that G° is a group of order 2160 admitting a surjective ho-
momorphism T(2;4:5) ! GO. It holds T(2;4;5)3P = 7,.

There is only one perfect group of order 2160, we denote itbid. H = 6:Ag
has the following MAGMA representation:

F<w>:=GF(9);

\%

x:=CambridgeMatrix(1,F,6,[
010000,

200000,

000100,

002000,

000001,

000020));

y:=CambridgeMatrix(1,F,6,[
300000,

550000,

007000,

126600,

000030,

240155));
H<x,y>:=MatrixGroup<6,F|x,y>;

VVVVVVVVVVYVVVYVYVYVYVYVYV

#H;

2160

> IsPerfect(H);
true

The following MAGMA computation

> ExSphGens(H,[2,4,5));
false

shows thatH does not have a spherical system of generators of type;[2 5]
If GO is a group of order 2160 with a spherical system of generators
of type [2 4;5], the commutator subgroup G = [ G G°] of G° has order
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1080 and it is a quotient of [T(2;4;5); T(2;4;5)] = T(2;5;5). The following
MAGMA computation

> Test([2,5,5], 1080);
{}
>

shows that there are no groups of order 1080 with a sphericalystem of
generators of type [25; 5], a contradiction. O

Lemma 6.3.6. No group of order 4320 has spherical system of generators
of type [2; 3; 8].

Proof. Assume that G is a group of order 4320 admitting a surjective ho-
momorphism T(2;3;8) ! GP°.

Since T(2;3; 8)""b = Z, and since there are no perfect groups of order
4320, the commutator subgroupG®° = [ G% G°] of G° has order 2160 and it
is a quotient of [T(2;3;8); T(2;3;8]= T(3;3;4).

Now T(3;3; 4)""IO = Z3 and there is only one perfect group of order
2160: theH = 6:Ag in the proof of Lemma 6.3.5. The following MAGMA
computation

> ExSphGens(H,[3,3,4));
false

shows thatH does not have a spherical system of generators of type;[3; 4]

If GO is a group of order 2160 with a spherical system of %eneratonaf
type [3:3;4], the commutator subgroup G°*°= [G%%G%Y of GO has order
720 and it is a quotient of [T(3;3;4);T(3;3;4)] = T(4;4;4). The following
MAGMA computation

> Test([4,4,4], 720);
{ 584, 585, 763, 765, 766, 773, 776 }
>

shows that only the groupsG(720;j)? with j 2 f 584 585 763 765 766, 773 7763
have a spherical system of generators of type [4; 4].

Assume that G°° has a spherical system of generators of type (3; 4).
Let us consider the following commutative diagram:

T(3;3,4)— I (3:3:4)® = 7,
p

1— 500 J00 f It IR

2G(a,b) denotes the b™ group of order a in the MAGMA database of nite groups.
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whereq(c) = d;. Let

T(3;3;4) he; c2; 3§ 635 635 ¢ crcacai

T(3;3;4)% hdy; dp; d3 j d3; d3; d%; didads; [di; i i 3

= (Zady Zsdy Z4d3)=R(1;1;1)i
since p1] = (1;0;0) Zh(1;1;1)i, then [d1] & [0]; so we haveq(c;) 6 [0], and

f (p(c1)) = f(g1) 6 0. We have found an element 0fG% of order 3 that does
not belong to G°", this means that the following exact sequence

1— oo Jppoo ' i, Ih,

splits with map

Zs | G

d]_ 7! 01

and s0G%°= G%°% z ..
The next claim, that we do not prove, is a standard result abou semi-
direct products.

Claim 4. Let L be a nite group and let K be a cyclic group of orderp.
Let' 1;' 2: K1 Aut(L) such that' 1(K) and ' 2(K) are conjugated. Then
Lo-,K=Lo,K.

This means that, in order to build up the group GOO, we have only to

look at the conjugacy classes of elements of order 3 in AUGOOS) and at
Id(Aut( GOOS). The function ConjugCI(A,n) (see Section 6.4) returns a rep-
resentative of each conjugacy class of elements &f of order n.

The following MAGMA script

> v:={ 584, 585, 763, 765, 766, 773, 776 },
> for jin v do

for> H2:=SmallGroup(720, ));

for> Aut2:=AutGr(H2);

for> A2:=AutomorphismGroup(H2);

for> R2:=ConjugCI(Aut2,3);

for> C3:=CyclicGroup(3);

for> R2[1+#R2]:=Id(A2);

for> f2:=[]; for i in [1..#R2] do

for|for> f2[i]:=hom<C3->A2|R2[i]>;end for;

for> h1:=[]; for i in [1..#R2] do

for|for> h1l[i]:=SemidirectProduct(H2,C3,f2[i]);
for[for> j, i, ExXSphGens(h1[i],[3,3,4]); end for; end for;
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584 1 false
584 2 false
585 1 false
585 2 false
773 1 false
773 2 false
763 1 false
763 2 false
765 1 false
765 2 false
776 1 false
776 2 false
766 1 false
766 2 false
>

shows that no group isomorphic t0G°= G*% z 3 has a spherical system
of generators of type [33; 4]. O

6.3.2 Non existence results

Remark 6.3.7. Let X =(C C)=G° be a mixed g.e. surface given by a set
spherical system of generatorst{;;:::;h;) of G® G, we have seen that in

spherical system of generators 06° G of the same type.

Hence, if a group has a set of spherical generators of the reged type, we
check if this group has a pair of set of spherical generatordiat give the right
singularities (on Y'). If this is not the case surely a set of spherical generators
and its conjugated by °in G cannot give the required singularities.

Lemma 6.3.8. No group of order 4032 has a pair of spherical system of
generators of type[2; 3; 8] which give the expected singularities orY, i.e.
either f2 Cg1;2 Cg1;2 Cgsgorfd Cgigorf2 Cuig.

Proof. Assume that G° is a group of order 4032 admitting a surjective ho-
momorphism T(2;3;8) ! GP°.

Since T(2; 3; 8)""b = Z, and since there are no perfect groups of order
4032, the commutator subgroupG?° = [G?; G°] of G° has order 2016 and it
is a quotient of [T(2;3;8); T(2;3;8]= T(3;3;4).

Since T(3; 3; 4)""b = Z3 and since there are no perfect groups of order
2016, the commutator subgroupG?®= [G°%G%Y of G has order 672 and
it is a quotient of [T(3;3;4); T(3;3;4)] = T(4;4,4). The following MAGMA
computation
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> Test([4,4,4], 672);
{ 1046, 1255 }
>

shows that only the groupsG(672; v) with v 2 f 1046 1255 have a spherical
system of generators of type [44; 4].

Now the proof continues exactly as the proof of Lemma 6.3.6: & have
that G%° = G°%% Z 3 and we construct all the groups of this form up to
isomorphism.

The following MAGMA script shows that no group isomorphic to G0%=
G%% Z 5, with G°%°= G(672;1046), has a spherical system of generators of
type [3;3;4]:

H2:=SmallGroup(672,1046);
A2:=AutomorphismGroup(H2);
Aut2:=AutGr(H2);
R2:=ConjugClI(Aut2,3);
C3:=CyclicGroup(3);
R2[1+#R2]:=Id(A2);

f2:=[]; for i in [1..#R2] do

for> f2[i]:=hom<C3->A2|R2[i]>;end for;

> h1:=[]; for i in [1..#R2] do

for> hl[il:=SemidirectProduct(H2,C3,f2[i]);
for> i, ExSphGens(h1]i],[3,3,4]); end for;
1 false

2 false

>

V VV VYV VYV

The following MAGMA script shows that two extensions G%°= G°°%Z s,
with GO%°= G(672;1255), have a spherical system of generators of type
[3; 3; 4]; moreover this two extensions are isomorphic.

H2:=SmallGroup(672,1255);
A2:=AutomorphismGroup(H2);
Aut2:=AutGr(H2);
R2:=ConjugClI(Aut2,3);
C3:=CyclicGroup(3);
R2[1+#R2]:=Id(A2);

f2:=[]; for i in [1..#R2] do

for> f2[i]:=hom<C3->A2|R2[i]>;end for;

> hl:=[]; for i in [1..#R2] do

for> hl[i]l:=SemidirectProduct(H2,C3,f2]i]);
for> i, ExSphGens(h1]i],[3,3,4]); end for;
1 true

2 false

VVVVYV\VYV
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3 true

4 false

> |Islsomorphic(h1[1],h1[3]);
true  Homomorphism of ...
>H1:=h1[1];

It can be proved, in a similar way as for G = G°%% Z 3, that GO is
isomorphic to a semidirect productGOoo Zo.
The following MAGMA script (that continues the previous one) shows that
G°°=h1[1] has only one extensionG® 0 Z 2 with a spherical system of gen-
erators of type (2; 3; 8):

Al:=AutomorphismGroup(H1);
Autl:=AutGr(H1);
R1:=ConjugClI(Autl,2);
R1[1+#R1]:=Id(Al);
C2:=CyclicGroup(2);

fl:=[]; for i in [1..#R1] do

for> fl[il:=hom<C2->A1|R1][i]>;end for;
> h:=[]; for i in [1..#R1] do

for> h[i]:=SemidirectProduct(H1,C2,f1[i]);
for> i, ExSphGens(hli],[2,3,8]); end for;
false

false

false

true

false

false

false

false

false

V V V V VYV

VVOoo~NOOOA,WNLPE

H:=h[4];

The following MAGMA script shows that for each pair of spherical systems
of generators of type [23;8] of G°=h[1], the singularity test fails, and so
also this case does not occur.

> SingularitiesY([{*1/8,1/4,5/8*},{**}],H,[2,3,8]);
false

>

> SingularitiesY ([{*1/4"2*},{**}],H,[2,3,8]);
false

>

> SingularitiesY ([{*1/2*},{**}],H,[2,3,8]);
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false
O

Lemma 6.3.9. No group of order 2560 has a pair of spherical system of
generators of type[2; 4;5] which give the expected singularities orY, i.e.

Proof. Assume that G° is a group of order 2560 admitting a surjective ho-
momorphism T(2;4;5) ! GP°.

Since T(2; 4; 5)ab = Z, and since there are no perfect groups of order
2560, the commutator subgroupG®°=[G%; G°] of G° has order 1280 and it
is a quotient of [T(2;4;5); T(2;4,5)] = T(2;5;5).

The following MAGMA computation

> Test([2,5,5], 1280);
{ 1116310 }
>

shows that only the group G(1280; 1116310) has a spherical system of gen-
erators of type [2 5;5].

Now the proof continues exactly as the proof of Lemma 6.3.6: & have
that G° = G°%z 2 and we construct all the groups of this form up to isomor-
phism. Among these groups only one has a spherical system oéwgerators
of type [2; 4; 5] as the following MAGMA script shows:

H1:=SmallGroup(1280,1116310);
Al:=AutomorphismGroup(H1);
Autl:=AutGr(H1);
C2:=CyclicGroup(2);
R:=ConjugCI(Autl,2);
R[1+#R]:=Id(AL);

f1:=[]; for i in [1.#R] do

for> f1[il:=hom<C2->A1|R[i]>; end for;
> h:=[]; for i in [1..#R] do

for> h[i]:=SemidirectProduct(H1,C2,f1[i]);
for> i, ExSphGens(h[i],[2,4,5]); end for;
true

false

false

false

false

false

false

false

false

10 false

V VVVYVYVYV

O©oOoO~NO O WNPRF
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11 false

The following MAGMA script shows that for each pair of spherical systems
of generators of type [24;5] of G°=h[1], the singularities test fails, and so
also this case does not occur.

> H:=h[1];

> SingularitiesY([{* 3/5 *}{* *}],H,[2,4,5]);
false

>

O]

Lemma 6.3.10. No group of order 3072 has a pair of spherical system of
generators of type[2; 3; 8] which give the expected singularities orY, i.e.
f2 C3;1;2 C3;zg.

Proof. Assume that G is a group of order 3072 admitting a surjective ho-
momorphism T(2;3;8) ! GP°.

Since T(2;3; 8)""b = Z, and since there are no perfect groups of order
3072, the commutator subgroupG®°= [ G%: G%] of G° has order 1536 and it
is a quotient of [T(2;3;8); T(2;3;8]= T(3;3;4).

The following MAGMA computation

> TestBAD([3,3,4], 1536);
{ 408526602 }
>

shows that only the group G(1536 408526602) has a spherical system of
generators of type [33;4].

Now the proof is the same of Lemma 6.3.9: we have thaB°® = G2z, and
we construct all the groups of this form up to isomorphism. Anpong these
groups only one has a spherical system of generators of typ&;B; 8] as the
following MAGMA script shows:

H1:=SmallGroup(1536,408526602);
Al:=AutomorphismGroup(H1);
Autl:=AutGr(H1);
C2:=CyclicGroup(2);
R:=ConjugCI(Autl,2);
R[1+#R]:=Id(Al);

f1:=[]; for i in [1..#R] do

for> fl[il:=hom<C2->A1|R][i]>; end for;
> h:=[]; for i in [1.#R] do

for> hl[i]:=SemidirectProduct(H1,C2,f1[i]);
for> i, ExSphGens(h[i],[2,3,8]); end for;
1 false

V VVVYVYVYV
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true
false
false
false
false
false
false
false
10 false
11 false
12 false
13 false
14 false
15 false
16 false
>

O©oOoO~NO O WN

The following MAGMA script shows that for each pair of spherical systems
of generators of type [23; 8] of G%=h[2], the singularities test fails, and so
also this case does not occur.

> H:=h[2];

> SingularitiesY([{* 1/3, 2/3 *}, {* *}], H, [2,3,8]);
false

>

O]

Lemma 6.3.11. No group of order 4896 has a pair of spherical system of
generators of type[2; 3; 8] which give the expected singularities orY, i.e.
f2 Cg;l; 2 C3;3g.

Proof. Assume that G° is a group of order 4896 admitting a surjective ho-
momorphism T(2;3;8) ! GP°.

It holds T(2;3; 8)""b = Z,. There is only one perfect group of order 4896,
we denote itbyH. H = 2:L»(17) has the following MAGMA representation:

F<w>:=GF(9);

x:=CambridgeMatrix(1,F,8,[
01000000,
20000000,
00010000,
00200000,
00000100,
00002000,

V VVVYVYVYVYVYV
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83300083,
37420004));

y:=CambridgeMatrix(1,F,8,[
62000000,

00100000,

48300000,

00001000,

00000010,

00000001,

00010000,

46466262]);

H<x,y>:=MatrixGroup<8,F|x,y>;
IsPerfect(H);

true

> #H;

4896

>

VVVVVVYVVVYVYVYVYVVYV

The following MAGMA computation

> ExSphGens(H,[2,4,5]);
false

shows thatH does not have a spherical system of generators of type;[2, 8]
If GO is a group of order 4896 with a spherical system of generatorsf type
[2; 3: 8], the commutator subgroup G°= [ G?; G%] of G° has order 2448 and
it is a quotient of [T(2;3;8); T(2;3;8)] = T(3;3;4).

It holds T(3;3; 4)5"b = Z3 and there is only one perfect group of order
2448, we denote it byH % and we will analyze it later.

If GO is a group of order 2448 G° 6 H9 with a spherical sgstem of
generators of type [33;4], the commutator subgroup G°°= [G°% G of
G%° has order 816 and it is a quotient of T(3;3;4);T(3;3;4)] = T(4;4;4).
The following MAGMA computation

> Test([4,4,4], 816);
{
>

shows that there are no groups of order 816 with a spherical sgem of
generators of type [44; 4].

Now we go back toH® HO? = 2:L,(17) has the following MAGMA
representation:

> F:=GF(17);
>
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x:=CambridgeMatrix(3,F,3,\[
1,0,0,

3,16,0,

3,0,16));

y:=CambridgeMatrix(3,F,3,\[
0,1,0,

0,0,1,

1,0,0));

H1<x,y>:=MatrixGroup<3,F|x,y>;
IsPerfect(H1);

true

> #H1;

2448

>

VVVVVVVYVYVYVYVYV

The following MAGMA script

> ExSphGens(H1,[3,3,4]);
true
>

shows that this group has a spherical system of generators aype [3; 3; 4].

Now the proof continues exactly as the proof of Lemma 6.3.9: & have
that G° = G°%2Z , and we construct all the groups of this form up to isomor-
phism. Among these groups only one has a spherical system oéwgerators
of type [2; 3; 8] as the following MAGMA script shows:

Al:=AutomorphismGroup(H1);
Autl:=AutGr(H1);
C2:=CyclicGroup(2);
R:=ConjugCI(Autl,2);
R[1+#R]:=Id(Al);

f1:=[]; for i in [1..#R] do

for> f1[il:=hom<C2->A1|R[i]>; end for;
> h:=[]; for i in [1..#R] do

for> h[il:=SemidirectProduct(H1,C2,f1[i]);
for> i, ExSphGens(hli],[2,3,8]); end for;
1 false

2 true

3 true

> |Islsomorphic(h[2],h[3]);

true  Homomorphism of ...

> H:=h[2];

V V.V V VYV
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The following MAGMA script shows that for each pair of spherical systems
of generators of type [23;8] of G°=h[2], the singularity test fails, and so
also this case does not occur.

> SingularitiesY([{* 3/5 *},{* *}],H.[2,4,5]);
false
>

O

De nition 6.3.12. We say that a pair of spherical systems generators
(T1; To) is disjoint if
(T)\ (T2 = flg:

We note that a pair of spherical system of generators are digjint if and
only if the basket of singularities that they induce is empty.

Lemma 6.3.13. No group of order 2592 has a disjoint pair of spherical
systems of generators of typd2; 3; 9].

Proof. Assume that G is a group of order 2592 admitting a surjective ho-
momorphism T(2;3;9) ! GP°.

Since T(2;3; 9)ab = Z3 and since there are no perfect groups of order
2592, the commutator subgroupG®° = [G?; G°] of G° has order 864 and it
is a quotient of [T(2;3;9);T(2;3;9] = T(2;2;2;3). The following MAGMA
computation

> Test([2,2,2,3], 864):
{2225, 4175}
>

shows that only the groupsG(864; v) with v 2 f 2225 4175 have a spherical
system of generators of type [22; 2; 3].

If (a1;b1;c1) and (az; bp;cy) are a disjoint pair of spherical system of
generators of type [23;9] for G then (a; hab ; Kab 2 ¢, for i =
1; 2, are spherical system of generators of type [2; 2; 3] for G%°= [ G%: G;
moreover these two systems are disjoint (see [BCGO08, Lemma.3l page
574])).

The following MAGMA computations

> SingularitiesY ([{**},{**}],SmallGroup(864,2225),[2 2,2,3));
false
> SingularitiesY ([{**},{**}],SmallGroup(864,4175),[2 2,2,3));
false

show that the groups G(864; 2225) andG(864; 4175) do not have a disjoint
pair of spherical system of generators of type [2; 2; 3], a contradiction. [
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6.4

The MAGMA script

In this section we report a commented version of the MAGMA scipt that
we used to nd the surfaces in Table 6.1.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I

Input: Ksquare and p_g; we are assuming g=0.
Step 1: the baskets.

We start finding, for each K2 and p_g,

what are the possible baskets of

singularities of X=(CxC)/G. By Lemma 5.2.5 the sum
of the invariants B of the singularities must

be equal to 3(8-K"2).

We will represent the singular points of type
C_{n,a} or D_{n,a} by the rational number

a/n in two different multisets;

a basket of singularities will be a pair of multisets
of rational numbers.

Remembering that cyclic quotient singularities C_{n,a}
and C _{n,a} are isomorphic if a*a'=1 mod n, we consider
rational numbers in (0,1) modulo the equivalence

relation a/n ~ a'/n.

We see the entries of the continuous fraction of n/a
as the sequence [b_1,...,b_r]. Note that the continuous
fraction of n/a' is the sequence [b_r,...,b_1].

This can be seen as a bijection between rational humbers
in (0,1) and sequences of integers strictly bigger than 1.
We make this bijiection explicit by the following scripts

ContFrac:=function(s)

CF:=[ ]; ri=1/s;

while not IsIntegral(r) do

Append(~CF, Ceiling(r)); r:=1/(Ceiling(r)-r);
end while;
return Append(CF, r);

end function;

Ng:=func<cf|#cf eq 1 select cf[1] else cf[1]-

1/$$(Remove(cf,1))>;



6.4 The MAGMA script 113

RatNum:=func<seq|1/Nq(seq)>;

/I "Wgt" computes the weight of a sequence.
/I 1t bounds strictly from below B of the corresponding
/I singular point of type C_{n,a}; and 2*B-12 for D_{n,a}.

Wgt:=function(seq)
w:=0; for i in seq do w+:=i; end for; return w;
end function;

/I The next script computes all rational number whose
/I continuous fraction has small weight.

RatNumsWithSmallWgt:=function(maxW)
S:={ }; T:={}; setnums:={RationalField()| };
for i in [2..maxW] do Include(~S, [i]); end for;
for i in [1..Floor(maxW/2)-1] do
for seq in S do
if #seq eq i then
if maxW-Wgt(seq) ge 2 then
for k in [2..maxW-Wgt(seq)] do
Include(~S,Append(seq, k));
end for; end if; end if;
end for; end for;
for seq in S do
if Reverse(seq) notin T then Include(~T,seq);
end if; end for;
for seq in T do Include(~setnums, RatNum(seq)); end for;
return setnums;
end function;

/I The next 4 scripts compute the invariants B and e
/I of singular points of type C and D respectively (r=a/n).

InvBC:=func<r|Wgt(ContFrac(r))+r+RatNum(Reverse(Con tFrac(r)))>;
InveC:=func<r|#ContFrac(r)+1-1/Denominator(Rational Field()!Ir)>;
InvBD:=func<r|InvBC(r)/2 +6>;
InveD:=func<r|inveC(r)/2 +3>;

/I The next two scripts compute the invariants B and e of
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/I a pair of multisets of rational numbers
/I (corresponding to a basket of singular points).

InvBSet:= function(basketC, basketD)
B:=0; for r in basketC do B+:=InvBC(r); end for;
for r in basketD do B+:=InvBD(r); end for;
return B;
end function;

InveSet:= function(basketC, basketD)
e:=0; for r in basketC do e+:=InveC(r); end for;
for r in basketD do e+:=InveD(r); end for;
return e;
end function;

/I Here is the invariant k of the basket:
InvkSet:=func<r,s|InvBSet(r,s)-2*InveSet(r,s)>;

/I The next script computes all rational numbers with

/I weight bounded from above by maxW, as computed by
/I RatNumsWithSmallWgt, and returns them in a sequence
/I ordered by the value of their invariant B,

/I starting from the one with biggest B.

OrderedRatNums:=function(maxW)
seq.=[RationalField()| ]; segB:=[RationalField()| I;
set:=RatNumsWithSmallWgt(Floor(maxW));

for r in set do i:=1;
for s in segqB do
if s gt InvBC(r) then i+:=1;
else break s;
end if; end for;
Insert(~seq, i, 1); Insert(~segB, i, InvBC(r));
end for;
return seq;
end function;

/I The next one, CutSegByB, takes a sequence "seq" and
/I recursively removes the first element if its invariant B
/[ is at least maxB.

CutSeqByB:=function(seq,maxB)
Seq:=seq;
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while #Seq ge 1 and InvBC(Seq[1]) gt maxB do
Remove(~Seq,1); end while;
return Seq;
end function;

/l Now we have a way to compute the set of rationals with
// B bounded by the integer maxB, ordered by B:

/ CutSeqByB(OrderedRatNums(maxB-1),maxB)

1

/I The next script takes a sequence of rational numbers
/l ordered by B and computes the baskets with invariant
/I exactly B that use only these rationals.

/Il The function is as follows:

/I - first it removes the elements with B too big to be

/I in a basket;

/I - then it takes the first element, say r, if B(r)=B,

/[ it stores {* r *};

/I - else it attaches it to each basket with invariant

/I B-B(r) (computed recalling the function with the

/[ same sequence) and store the result;

/I - now we have all baskets containing r. remove r

/[ from the sequence and repeat the procedure until

/I the sequence is empty.

=~

BasketsWithSeqAndB:=function(seq,B)
ratnums:=CutSeqByB(seq,B); baskets:={ };
while #ratnums gt 0 do
bigguy:=ratnums[1];
if InvBC(bigguy) eq B then
Include(~baskets{* bigguy *});
else for basket in $$(ratnums, B-InvBC(bigguy)) do
Include(~baskets, Include(basket, bigguy));

end for; end if;
Remove(~ratnums,1);

end while;

return baskets;

end function;

/Il Now we can compute all the "C-parts" (of baskets) with
/I a given B:

PartsOfTypeC:=func<B|BasketsWithSeqAndB(OrderedRatN ums(B),B)>;

/I Next script computes all the possible "D-parts"”
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/I with a given B and p_g:

PartsOfTypeD:=function(B,pg)
singD:={ }; basketD:={ };
D:=RatNumsWithSmallwgt(2*B-27);
for r in D do
if InvBD(r)le B then
if Isintegral(Denominator(RationalField()!r)/2) then
if ContFrac(r) eq Reverse(ContFrac(r)) then
if Isintegral((#ContFrac(r)+1)/2) then
if Isintegral(ContFrac(r)[IntegerRing()!((#ContFrac( N+1)/2)]/2) then
Include(~singD,r);
end if;end if;end if;end ifend if;
end for;
for d in { 2*x: x in { 0..(2*pg+1) }} do
for s in Multisets({ x: x in singD},d) do
if InvBSet({* *},s) le B then
Include(~basketD,s);
end if;
end for; end for;
return basketD;
end function;

/I We do not need all these baskets, since most of them

/I violate Corollary 5.1.14 or Lemma 5.2.16.

/I The next scripts take care of this:

/I "BasketOfY" computes the basket of the surface Y starting
/I from the basket of X.

/I "TestBasket" checks if a basket violates Corollary 5.1.1 4;
/Il "TestDen" checks if a basket respects Lemma 5.2.16;
1l

/I "Basket" constructs all the basket with given B and
/I removes all the baskets which violate the conditions.

BasketOfY:=function(basketX)

basketY:={**};

for r in basketX[1] do

Include(~basketY, r);

Include(~basketY, RatNum(Reverse(ContFrac(r))));
end for;

for r in basketX[2] do Include(~basketY, r); end for;
return basketY;

end function;
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TestBasket:=function(basketC, basketD)
S:=0; test:=false;
for r in BasketOfY([basketC, basketD]) do
S+:= r; end for;
if Isintegral(S) then test:=true;
end if;
return test;
end function;

TestDen:=function(chi, BC,BD)

test:=true; xi:= 4*chi+(InvkSet(BC,BD)-InveSet(BC,BD) )/3;

for r in Set(BC join BD) do
if Denominator(RationalField()!r) ge 12*(2*xi+1) then
test:=false; break r;

end if; end for;

return test;

end function;

Baskets:=function(Ksquare,pg)

baskets:=[**]; chi:=1+pg;

B:=3*(8*chi-Ksquare);

for partD in PartsOfTypeD(B,pg) do

if (InvBSet({**},partD) eq B) and TestBasket({* *}, partD)
then Append(~baskets, [{* *}, partD]); end if;

for partC in PartsOfTypeC(B-InvBSet({* *},partD)) do
if TestBasket(partC, partD) then
if TestDen(chi,partC,partD) then
Append(~baskets, [partC, partD]); end if; end if;

end for; end for;

return baskets;

end function;

/I Step 2: the signatures

1

/l Now we have found, for each K"2, a finite number of
/I possible baskets. Proposition 5.2.13 says that once
Il we fix K2, p_g and a basket of singularities,

/I there are finitely many possible signatures satisfying
/[ all the condition of the proposition.

1

/I The next step is to compute, for each basket, the
/I signatures. We will represent a signature as

/I a multiset of natural numbers {* m_i *}.

1
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/I We first define the index of a basket of singularities
/I as the lowest common multiple of the indexes of the
/I singularities of type C_{n,a} in BasketOfY.

Gl:=func<r|Denominator(r)/GCD(Numerator(r)+1,Denomi  nator(r))>;

Gorlnd:= function(bas)
I:=1;
for r in bas do l:=LCM(IntegerRing()!l,IntegerRing()!GI( N);
end for; return I;

end function;

/I We define the invariants Theta and Beta:

Theta:=function(sig)

a=-2,

for m in sig do at+:=(1-1/m); end for;
return a;

end function;

Beta:=func<K, B, T | (K+InvkSet(B[1],B[2]))/(2*T)>;

/I These two scripts transform a multiset, resp. a tuple
/I into a sequence.

MsetToSeq:=function(mset)

seq:=[ [;

while #mset ne 0 do Append(~seq, Minimum(mset));
Exclude(~mset, Minimum(mset)); end while;

return seq;

end function;

TupleToSeq:=function(tuple)
seq:=[];

for el in Tuplist(tuple) do
Append(~seq,el);

end for;

return seq;

end function;

/I Next script computes all the divisor (different from 1)
/I of a natural humber:

Divisors:=function(n)
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set:={};

for i in { 2.. n} do

if n/i in IntegerRing() then
Include(~set, i);

end if; end for;

return set;

end function;

I/l The input of the next script are 5 numbers: CardBasket,

/I Length, SBound, HBound (SBound<=HBound) and n,

/I and its output are all signatures with

/I #signature=Length such that (let M:=max(1/6,(Length-3 )I2)
/' 1) each m_i is smaller than HBound/M;

/[ 2) most m_i are smaller than SBound/M, the number of

I/l exceptions is bounded from above by half of CardBasket.
1

/I For sparing time, the script first checks if the length

/[ is smaller than the number of possible exceptions,

/I in which case only the inequality 1 is to consider.

I/l Moreover, to spare time, since m_i divides n=2*Beta*l,

/I the script looks for the m_i's only among the divisors of n.

CandTypes:=function(CardBasketY,Length,S,H,n)
D:=Divisors(n);
Exc:=Floor(CardBasketY/2);
if Length le Exc then
Types:=Multisets({x: x in D | x in { 2..H}},Length);
else Types:=Multisets({x: x in D | x in { 2..S}},Length);
for k in [1..Exc] do
for TypeBegin in Multisets({x: x in D | x in { 2..S}},Length-k ) do
for TypeEnd in Multisets({x: x in D | x in {S+1..H}},k) do
Include(~Types, TypeBegin join TypeEnd);
end for; end for; end for;
end if;
return Types;
end function;

/[ The function ListTypes calculates all the types that
/I fulfill the conditions imposed by Proposition 5.2.13:

ListTypes:=function(Ksquare,pg, basketX)
list:=[]; chi:=1+pg;

BC:=basketX[1]; BD:=basketX[2];
BY:=BasketOfY (basketX);
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den:={};
for r in BY do
Include(~den,Denominator(RationalField()!r)); end for ;
xi:= 4*chi+(InvkSet(BC,BD)-InveSet(BC,BD))/3;
I:=GorInd(BY); k:=InvkSet(BC,BD);
Rmin:=3; Tmin:=1/42;
Rmax:=Floor((Ksquare + k) +4);
BetaMax:=Floor(Beta(Ksquare,basketX,Tmin));
for R in [Rmin..Rmax] do
if R eq 3 then
top:=Floor(12*(2*xi+1));
else top:=Floor(6+(8*xi+2)/(R-3));
end if;
M:=Max(1/6,(R-3)/2);
SB:=Min(top, Floor((1/M)*(1+(Ksquare+k)/2)));
HB:=Min(top, Floor((1/M)*(1+I*(Ksquare+k))));
for b in { 1..BetaMax} do n:=2*b*l;
for cand in CandTypes(#BY,R,SB,HB,n) do ;
if foral{n : n in den |
exists{m: m in cand| m/n in IntegerRing()}} then
T:=Theta(cand);
if (T le (Ksquare+k)/2) and (T gt 0) then
beta:=Beta(Ksquare,basketX,T);
if Isintegral(beta) and beta eq b then
if Isintegral((Ksquare+k)/(T"2)) then
if Isintegral((4*beta”2)/(Ksquare+k)) then bads:=0;
for n in cand do
if not Isintegral(beta/n) then bads +:=1;
if bads gt #BY/2 then break cand; end if;
end if; end for;
Append(~list,cand);
end if;end if;end if;end if;end if;
end for;
end for;
end for;
return list;
end function;

/I ListOfTypes returns, for given K*2 and p_g, all possible
/I baskets (using Baskets) and for each basket all the
/I possible types (using ListTypes).

ListOfTypes:=function(Ksquare,pg)
list:=[**];  chi:=1+pg;
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B.=3*(8*chi-Ksquare);

for basket in Baskets(Ksquare,pg) do
L:=ListTypes(Ksquare,pg, basket);

if not ISEmpty(L) then

Append(~list,[* basket, L*]);

end if;

end for;

return list;

end function;

/I Step 3: calculating the groups.

1

/I Fixed K*2, p_g, the basket and the signature,

/I using Proposition 5.2.13 we can compute the order

/I of the group G”O.

/I We search among the group of this order which groups
/I have a prescribed set of spherical generators.

ElsOfOrd:=func<group, order | {g: g in group| Order(g) eq or der}>;

/I TuplesOfGivenOrder creates a sequence of the same length
/I as the input sequence seq, whose entries are subsets

/I of the group in the input, and precisely the subsets

/I of elements of order the corresponding entry of seq.

TuplesOfGivenOrders:=function(group,seq)

SEQ:=[];

for i in [1..#seq] do

if ISEmpty(EIsOfOrd(group,seq[i])) then SEQ:=[]; break i ;
else Append(~SEQ,EIsOfOrd(group,seq[i]));

end if; end for;

return SEQ;

end function;

/I This script says if a group has a set
/I of spherical generators of the given type:

ExSphGens:=function(group,type)
test:=false;
SetCands:=TuplesOfGivenOrders(group,Prune(type));
if not IsEmpty(SetCands) then
for cands in CartesianProduct(SetCands) do
if Order(&*cands) eq type[#type] then
if #sub<group|TupleToSeq(cands)> eq #group then
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test:=true; break cands;
end if; end if; end for; end if;
return test;
end function;

/I Polygonal builds the polygonal group of the type given by s

Polygonal:=function(seq)

F:=FreeGroup(#seq); Rel:={F![1..#seq]};

for i in [1..#seq] do Include(~Rel,F.i*(seq[i])); end for;
return quo<F|Rel>;

end function;

/I Test and TestBAD search among all the groups of

/I the order in input which groups have a spherical

/I system of generators of the type in input.

/I These function work in two steps (see Remark 6.2.1):

/I i) they check which groups have abelianization

/I isomorphic to a quotient of the abelianization

/[ of the polygonal group given by the type;

/I i) if a group passes the first test the scripts

/I check if it has a spherical system of generators

/I of the type in input.

/I These two scripts make exactly the same controls, and
/I we use Test in general, but in some cases there are too
/I much isomorphism classes of groups of the given order
/I and we use TestBAD because, SmallGroupProcess is slower
/I than SmallGroups but it uses less memory.

Test:=function(type, order)
group:=AbelianQuotient(Polygonal(type));
checked:={}; quo:={}; set:={}:
for g in Subgroups(group) do
Include(~quo, group/(g subgroup)); end for;
for h in quo do Include(~set,#h); end for;
i:=1;
for H in SmallGroups(order: Warning:=false) do
if #AbelianQuotient(H) in set then
for p in quo do
if Islsomorphic(p, AbelianQuotient(H)) then
if ExSphGens(H,type) then
Include(~checked,i); end if;
break p;end if; end for; end if;
i+:=1; end for;

€q
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return checked;
end function;

TestBAD:=function(type, order)
group:=AbelianQuotient(Polygonal(type));
checked:={}; quo:={}; set:={};
for g in Subgroups(group) do
Include(~quo, group/(g subgroup)); end for;
for h in quo do Include(~set,#h); end for;
i:=1; P:= SmallGroupProcess(order);
repeat
H := Current(P);
if #AbelianQuotient(H) in set then
for p in quo do
if Islsomorphic(p, AbelianQuotient(H)) then
if ExSphGens(H,type) then
Include(~checked,i); end fif;
break p;end if; end for; end if;
i+:=1; Advance(~P);
until ISEmpty(P);
return checked;
end function;

/I The next script takes a sequence of elements of a group
/I and a further element g and conjugates each element
/I of the sequence with g.

Conjug:=function(seq,el)

output:=[];

for h in seq do Append(~output,h”™el); end for;
return output;

end function;

/I SphGenUpToConj computes all possible sets of spherical
/I generators of a group of a prescribed type and return

/I (to spare memory) only one of these sets for each

/I conjugacy class.

SphGenUpToConj:=function(group,seq)
Set:={ }; Rep:={ };
SetCands:=TuplesOfGivenOrders(group,Prune(seq));
if not IsEmpty(SetCands) then
for cands in CartesianProduct(SetCands) do

if Order(&*cands) eq seq[#seq] then
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if Append(TupleToSeq(cands),(&*cands)*-1) notin Set

then if sub<group|TupleToSeq(cands)> eq group then
Include(~Rep, Append(TupleToSeg(cands),(&*cands)™-1)
for g in group do
Include(~Set, Conjug(Append(TupleToSeq(cands),(&*can

end for; end if; end if; end if; end for; end if;
return Rep;
end function;

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

If a group has a set of spherical generators of the
right type before to look for an unsplit extension,

we check if the group has a pair of sets of

spherical generators that give the right singularities.

If this is not the case surely a set of spherical
generators and its conjugation by tau' in G cannot give
the right singularities.

Given two sets of spherical generators,

next script computes the singular points
coming from a fixed pair (g1,02), where

- g_1 is a generator of the first set;

- g_2 is a generator of the second set;

and 1<=n_l1<=ord(g_1); 1<=n_2<=ord(g_2);
Moreover, it returns the element g such that
g_1"n_1= (g_2"n_2)"g.

BasketByAPairOfGens:= function(group,genl,gen2)

ordl := Order(genl); ord2 := Order(gen2);
basket := [ ], els:=[];
delta := GCD(ord1, ord2);
if delta eq 1 then return {* *}; end if;
alpha2 := ord2 div delta;
H := sub<group | gen2>; K := sub<group | genl>;
if Type(H) eq GrpPC then
RC := Transversal(group, H, K);
else RC := DoubleCosetRepresentatives(group, H, K);
end if;
for g in RC do
HgK = H"g meet K;
ord HgK := #HgK;
if ord HgK eq 1 then continue g; end if;
X = genl”™(ordl div ord_HgK);
y = (gen2”(ord2 div ord_HgK))"g;
if exists(i){i:i in [1..delta] | yN eq x} then

);

ds)*-1),9));
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d2 := (i*(ord2 div ord_HgK)) div alphaz;
Append(~basket, d2/delta);
Append(~els,q);
end if;
end for;
return basket,els;
end function;

/I CheckSingsH checks if a pair of set of spherical

/I generators of groupH gives a surface Y=(CxC)/G"0

/I with the expected singularities.

1

/I 1t only checks if, given two sets of spherical

/I generators and a "candidate" basket, the resulting

/I surface has the prescribed basket. The advantage is that
/I in the wrong cases, the script stops when it finds a

/[ "forbidden" singularity, without losing time computing

/[ all the other singular points.

ChecksSingsH:=function(basket,gens1,gens2,group)
test:=true; bas:=basket;
for i in [1..#gensl] do genl:=gensi]i];
for j in [1..#gens2] do gen2:=gens2][j];
pb:=BasketByAPairOfGens(group,genl,gen2);
for r in pb do rl:=RatNum(Reverse(ContFrac(r)));
if r in bas then Exclude(~bas,r);
elif r1 in bas then Exclude(~bas,rl);
else test:=false; break i;
end if; end for;
end for; end for;
return test and ISEmpty(bas);
end function;

/I These function checks if a group has a pair of sets
/I of spherical generators that give the expected
/I singularities

SingularitiesY:=function(basketX,groupH,type)
BY:=BasketOfY(basketX);
s:=SetToSequence(SphGenUpToConj(groupH,type));
c:=1; test:= false;
for i in [1.#s] do  gensl:=s[i];
for j in [c.#s] do  gens2:=s]j];

if CheckSingsH(BY,gensl1,gens2, groupH) then
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test:=true; break i;
end if; end for; c+:=1; end for;
return test;
end function;

/I Now we check if a given group G has a set of
/I spherical generators for a group isomorphic to G"0
/I in the group G of prescribed type.

ExistSphGens:=function(groupG, idH, type)
test:=false;
SetCands:=TuplesOfGivenOrders(groupG,Prune(type));
if not IsEmpty(SetCands) then
for cands in CartesianProduct(SetCands) do

if Order(&*cands) eq type[#type] then

if ldentifyGroup(sub<groupG|TupleToSeq(cands)>)

eq idH then test:=true; break cands;

end if; end if; end for; end if;
return test;
end function;

/I GroupExtension checks if the given group "groupH"=G"0
/I has some unsplit extension of degree 2, and returns

/I all the groups G which are unsplit extension of groupH.
1l

/I If the order of the group is "bad", it uses

/I SmallGroupProcess instead of SmallGroups.

GroupExtension:=function(groupH,type, badorders)

ordG:= 2*Order(groupH); ext:=[* *];

idH:=IdentifyGroup(groupH);

card:=#{x: x in groupH | Order(x) eq 2}

if ordG notin badorders then

for G in SmallGroups(ordG: Warning := false) do
if #{x: x in G | Order(x) eq 2} eq card then
if ExistSphGens(G, idH, type) then

Append(~ext, IdentifyGroup(G));

end if; end if;

end for;

else

P:= SmallGroupProcess(ordG);

repeat

G := Current(P);
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if #{x: x in G | Order(x) eq 2} eq card then
if ExistSphGens(G, idH,type) then
Append(~ext, IdentifyGroup(G));

end if;end if;

Advance(~P); until IsEmpty(P);

end if;

return ext;

end function;

/I ListGroups lists in checked all possible fourtuples

/I (basket, type, subgroup G”0, {groups G}).

/I 1t lists in limbo the triples

/I basket, type, group G”0, where G™0 has

/l a pair of sets of spherical generators of groupH

/I gives a surface Y=(CxC)/G"0 with the expected

/I singularities, but we cannot check the extensions,

/I since the order of the group is too big.

/I 1t lists in tocheck the triples basket, type, order G”O,
/I if order G™0 is bigger than 2000 or it is 1024.

ListGroups:=function(Ksquare, pg:
badorders1:={ 256, 384, 512, 576, 768},
badorders2:={ 1152,1280,1536,1920})
checked:=[* *]; tocheck:=[* *]; limbo:=[* *];
for pair in ListOfTypes(Ksquare, pg) do
basket:=pair[1]; setoftypes:=pair[2];
for type in setoftypes do
ordH:=IntegerRing()!((Ksquare+InvkSet(basket[1],bas ket[2]))/
((Theta(type))"2));
if {*2,3,7*} eq type and
NumberOfGroups(PerfectGroupDatabase(),ordH) eq O then ;
elif (ordH gt 2000) or (ordH eq 1024) then
Append(~tocheck, [* basket, type, ordH *]);
elif ordH in { 1001..2000} and
(ordH in Include(badorders2)) then
typel:=MsetToSeq(type);
for p in TestBAD(typel, ordH) do
H:=SmallGroup(ordH,p);
if SingularitiesY(basket,H,typel) then
Append(~limbo, [* basket, type, <ordH, p>*]); end if;
end for;
elif ordH in { 1001..2000} and
(ordH notin Include(badorders2)) then
typel:=MsetToSeq(type);
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for p in Test(typel, ordH) do
H:=SmallGroup(ordH,p);
if SingularitiesY(basket,H,typel) then
Append(~limbo, [*basket, type, <ordH, p>*]); end if;
end for;
elif ordH in Include(badorders1,512) then
typel:=MsetToSeq(type);
for p in TestBAD(typel, ordH) do
H:=SmallGroup(ordH,p);
if SingularitiesY(basket,H,typel) then
extensions:=GroupExtension(H,typel, badordersl join ba dorders?2);
if not ISEmpty(extensions) then
Append(~checked, [* basket, type, ldentifyGroup(H), exte nsions *));
end ifiend if; end for;
else typel:=MsetToSeq(type);
for p in Test(typel, ordH) do
H:=SmallGroup(ordH,p);
if SingularitiesY (basket,H,typel) then
extensions:=GroupExtension(H,typel, badordersl join ba dorders2);
if not ISEmpty(extensions) then
Append(~checked, [* basket, type, IdentifyGroup(H), exte nsions *]);
end if; end if; end for;
end if; end for; end for;
return checked, limbo, tocheck;
end function;

/I Step 4: existence of surfaces
1l

/I First we create all the sets of spherical generators
/I of a prescribed type that generate a
/I group isomorphic to G0 in the group G.

SphGens:=function(groupG, idH, type)
Gens:={ };
SetCands:=TuplesOfGivenOrders(groupG,Prune(type));
if not ISsEmpty(SetCands) then
for cands in CartesianProduct(SetCands) do
if Order(&*cands) eq typel[#type] then
if IdentifyGroup(sub<groupG|TupleToSeq(cands)>) eq idH then
Include(~Gens, Append(TupleToSeq(cands),(&*cands)®-1 ));
end if; end if; end for; end if;
return Gens;
end function;
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/I CheckSingsG checks if a set of elements of groupG that
/I is a system of spherical generators of groupH gives

/I a surface X=(CxC)/G with the expected singularities.

1

/[ First it checks if the singularities of Y=(CxC)/G"0

/[ are the expected ones.

/ If this is the case it checks if the ramification

/I points are right.

=~

ChecksSingsG:=function(basket, gens, groupG)
groupH:= sub<groupG|gens>;
tp:=[g: g in groupG | g notin groupH][1];
gens2:=[]; BY:=BasketOfY(basket); BD:=basket[2];
for i in [1..#gens] do Append(~gens2, gensli] tp);
end for,;
test:=CheckSingsH(BY,gens,gens2,groupH);
if test then
for k in [1..#gens] do gen:=gens[k]; gen2:=gentp;
sing,els:=BasketByAPairOfGens(groupH,gen,gen2);
S:=sub<groupH|gen>;
for j in [1..#sing] do
r:=sing[j]; g:=tp*(els[j]"(-1))*tp"(-1);
if exists{h: h in groupH | ((tp*h)*2 in S)
and ((tp*h*tp~-1)*g in S) } then
if r in BD then Exclude(~BD,r);
else test:= false; break k;
end if; end if;
end for; end for; end if;
if not ISEmpty(BD) then test:=false; end if;
return test;
end function;

/I ExistingSurfaces returns all the fourtuples
/I (basket, type, G0, G) that give at least
/I a surface with the correct singularities.

ExistingSurfaces:=function(Ksquare, pg)
M::[* *];
list,limbo,tocheck:=ListGroups(Ksquare, pg);
for quadruple in list do
basket:=quadruple[1]; type:=quadruple[2];
idH:=quadruple[3]; listOfG:=quadruple[4];
for idgroupG in listOfG do test:=false;
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G:=SmallGroup(idgroupG[1], idgroupG[2]);
SetGens:=SphGens(G,idH,MsetToSeq(type));
for gens in SetGens do
if CheckSingsG(basket, gens, G) then test:=true;
break gens; end if; end for;

if test then

Append(~M, [* basket, type, idH, idgroupG *]);

end if;

end for; end for;

return M, limbo, tocheck;

end function;

/I Step 5: to find all the surfaces.

1l

/I We still have not found all possible surfaces.

/I In fact the output of ExistingSurfaces(a, b)

/I gives all possible fourtuples (basket, type , G"0, G)

/I which give AT LEAST a surface with p_g=b and K"2=a,
/I but there could be more than one. In fact, there is

/I a surface for each set of spherical generators of the

/I prescribed types which passes the singularity test,

/I but they are often isomorphic. More precisely,

/I they are isomorphic if the sets of spherical generators
/[ are equivalent for the equivalence relation generated

/I by Hurwitz moves and the automorhisms of the group.
/I We need to construct orbits for this equivalence relation

/I The next scripts create the Automorphism Group of a group
/I as an explicit set.

AutGr:= function(gr)
Aut:=AutomorphismGroup(gr); A:={ Aut!l };
repeat

for g1 in Generators(Aut) do

for g2 in A do

Include(~A,g1*g2);

end for; end for;

until #A eq #Aut;

return A;

end function;

/I The next one create the Hurwitz moves:

HurwitzMove:= func<seq,idx|Insert(Remove(seq,idx),
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idx+1,seq[idx]*seq[idx+1])>;

/I This one, starting from a sequence of elements of a group,
/I creates all sequences of elements which are equivalent to
/I the given one for the equivalence relation generated by

/[ the Hurwitz moves, and return (to spare memory) only

/I the ones whose entries have never decreasing order.

HurwitzOrbit:=function(seq)

orb:={ }; shortorb:={ }; Trash:={ seq };

repeat
ExtractRep(~Trash,~gens); Include(~orb, gens);
for k in [1..#seqg-1] do newgens:=HurwitzMove(gens,k);
if newgens notin orb then Include(~Trash, newgens);
end if; end for;

until ISsEmpty(Trash);

for gens in orb do test:=true;

for k in [1..#seq-1] do
if Order(gens[k]) gt Order(gens[k+1]) then
test:=false; break k;
end if; end for;
if test then Include(~shortorb, gens); end if;

end for;

return shortorb;

end function;

/I Finally we can find all surfaces. The next program
/I finds all surfaces with a given groups, type and basket.

FindSurfaces:=function(K, basket, type,idH, idG)
Good:=[* *]; Surfaces:={ }; Al:={ };
G:=SmallGroup(idG[1], idG[2)]);
AutG:=AutGr(G);
NumberOfCands:=#SphGens(G,idH,MsetToSeq(type));
printf "To Find= %o0\n", NumberOfCands;
for gens in SphGens(G,idH,MsetToSeq(type)) do
if gens notin All then

printf "A new one! ";

Include(~Surfaces, gens); H:=sub<G|gens>;

if CheckSingsG(basket, gens, G) then

S:=[* basket, type, gens, idH, idG*];

printf " and right singularities'\n";

printf "A REALLY NEW SURFACE!'\n";

Append(~Good, S);
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else printf " but wrong singularities'\n";
end if;
orb:=HurwitzOrbit(gens);
for g1 in orb do
if g1 notin All then
for phi in AutG do Include(~All, phi(gl));
if #All eq NumberOfCands then
printf "#Surfs= %o\n", #Surfaces; break gens;
end if; end for; end if; end for;
printf "#Surfs= %o, To Find= %o\n", #Surfaces, NumberOfCan ds-#All;
end if; end for;
return Good;
end function;

/I Next script calls the previous scripts
/I and stores the data of the surfaces in
/I a text file.

Output:=function(Ksquare,pg)

t:=Realtime();

New:=[* *];

M, limbo, tocheck:=ExistingSurfaces(Ksquare,pg);

for m in M do
basket:=m[1]; type:=m[2]; idH:=m[3]; idgroup:=m[4];
printf "\n Checking news %0 \n", m[4];
Surf:=FindSurfaces(Ksquare, basket, type, idH, idgroup) ;
for surf in Surf do Append(~New, surf);

end for; end for;

F:= Open("OUTPUT_WITH_Ks" cat IntegerToString(Ksquare)

cat " _pg" cat IntegerToString(pg) cat ".txt","w");

fprintf F, "K*"2=%0\n\n\n", Ksquare;

if #New ne 0O then

fprintf F, "NEW SURFACES: %o0\n", #New;

fprintf F, "basket, type, gens, Id(H), 1d(G)\n\n";

for new in New do fprintf F, "%o\n\n", new; end for;

fprintf F, "\n\n";

end if;

if #limbo ne O then

fprintf F, "PARTIALLY TO CHECK CASES: %o\n", #limbo;

for L in limbo do fprintf F, "%o0\n\n", L; end for;

fprintf F, "\n\n";

end if;

if #tocheck ne 0 then

fprintf F, * TO CHECK CASES: %o0\n", #tocheck;



6.4 The MAGMA script 133

for T in tocheck do fprintf F, "%o\n\n", T; end for;
end if;

printf "Time: %o0\n", Realtime(t);

return "K"2="Ksquare,", #New surf="#New;

end function;

/I Step 6: the fundamental group

1

/I Next scripts allow us to calculate the topological
/I fundamental group of the surfaces we constructed.
/I We use the description of the fundamental

/I given in Theorem 7.1.2 and Proposition 7.1.8.

/I Poly constructs the polygonal group and the
/[ appropriate orbifold homomorphism.

Poly:=function(seq, gr)

F:=FreeGroup(#seq); Rel:={F![1..#seq]};

for i in [1..#seq] do
Include(~Rel,F.i"Order(seq[i])); end for;

P:=quo<F|Rel>;

return P, hom<P->gr|seq>;

end function;

/I DirProd(A,B) returns the direct product between
/I the groups A and B, and the corresponding injections
/I and projections.

DirProd:=function(G1,G2)
G1xG2:=DirectProduct(G1,G2); vars:=[];
n:=[NumberOfGenerators(G1),NumberOfGenerators(G2)];
for i in [1..(n[1]+n[2])] do

Append(~vars,G1xGZ2.i); end for;
SplittedVars:=Partition(vars,n);
injs:=[hom< G1->G1xG2 | SplittedVars[1]>,
hom< G2->G1xG2 | SplittedVars[2]>];
varsl:=[]; vars2:=[];
for i in [1..n[1]] do

Append(~vars1,G1l.i)); Append(~vars2,G2!1); end for;
for i in [1..n[2]] do

Append(~varsl1,G1!1); Append(~vars2,G2.i); end for;
projs:=[hom< G1xG2->G1 | varsl>hom< G1xG2->G2 | vars2>];
return G1xG2, injs, projs;
end function;



134  An algorithm to classify regular mixed quasietale surfaces

/I MapProd computes given two maps f,g:A->B the map product
/I induced by the product on B

MapProd:=function(mapl,map2)
seq:=[];
A:=Domain(map1l); B:=Codomain(mapl);
if Category(A) eq GrpPC then n:=NPCgens(A);
else n:=NumberOfGenerators(A); end if;
for i in [1..n] do
Append(~seq, mapl(A.i)*map2(A.i)); end for;
return hom<A->B|seq>;
end function;

/I Pil uses a sequence of spherical generators for G0

/I inside G to construct the corresponding polygonal group

/[ and the group HH that acts on the universal cover of CxC.
/I Then it constructs the degree 2 extension GG.

/I Finally it takes the quotient by Tors(GG).

Pil:=function(seq, G)
H:=sub<G|seq>; REL:=[]; TorsG:=[]; Sing:=;
el:=random{g: g in G | g notin H};
phil:=hom<H->H| x:-> x"el>;
T,f1:=Poly(seq,H); t:=(el"2)@@f1;
TXT,inT,proT:=DirProd(T,T);
HxH,inH:=DirectProduct(H,H);
Diag:=MapProd(inH[1],inH[2])(H);
f:=MapProd(proT[1]*f1*inH[1],proT[2]*f1*phil*inH[2] );
bigH:=Rewrite(TXT,Diag@ @f); tt:=inT[1](t)*InT[2](t);
PHI:=hom<bigH->bigH| x:-> inT[1](proT[2](x))*inT[2](t *proT[1](X)*(t"-1))>;
genH:=SetToSequence(Generators(bigH)); relH:=Relatio ns(bigH);
F:=FreeProduct(bigH,FreeGroup(1)); im:=[];
for i in [1..#genH] do Append(~im,F.i); end for;
map:=hom<bigH->F|im>; tau:=map(tt);
ul:=F.(#Generators(F)); Append(~REL, ul*2*(tau”-1));
for i in [1..#genH] do

Append(~REL, map(PHI(genH[i]))* ul * map(genH[i]*-1 )*(u n-1));
end for;
bigG,pr:=quo<F|REL>;
for i in [1..#seq] do genl:=seq[i];
for j in [1..#seq] do gen2:=seq[j];
for ol in [1..Order(genl)-1] do
for 02 in [1..Order(gen2)-1] do
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test,v:=IsConjugate(H,gen1”0l, phil(gen2”02));
if test then Include(~Sing, [i,j]);
for d in Centralizer(H, genl”o0l) do

Append(~TorsG, pr(map(TxT.i"ol *

((TXT.(j+#seq)o2)N(InT[2]((el *d™-1*v*elr-1)@ @f1)"- )))E

end for; end if; end for; end for; end for; end for;
for i in [1.#seq] do gen:=seq[]i];
if [i,i] in Sing then
for o in [1..Order(gen)-1] do
for h in H do
test, v:= IsConjugate(H, (el*h)*2, gen”o);
if test then
for d in Centralizer(H, gen™0) do
w:=(v*d)@@fl; hl:=h@@fl; h2:= (el*h*(el*-1))@@f1l; s:=h2 *t*hl,
k:=(s"-1)*((T.i"o)MwA-1));
Append(~TorsG, pr(ul*(map(inT[1](h1)*inT[2](k*h2)))) );
end for;
end if; end for; end for;end if; end for;

return Simplify(quo<bigG|TorsG>);
end function;

/I Next function is an additional function

/I that we used to exclude some skipped cases.

/[ 1t returns a representative of each conjugacy class
/I of elements of the given order.

ConjugCl:=function(group, order)
Set:={}; Rep:=[];
list:=[x: x in group | Order(x) eq order];
for el in list do
if el notin Set then
for a in group do
Include(~Set, el*a);
end for; Append(~Rep, el);
end if; end for;
return Rep;
end function;






Chapter 7

Regular mixed guasietale
surfaces with pg =0 and
K2> 0

In this chapter we study the surfaces constructed in the preeding chapter.

In Section 7.1 we explain how to compute the fundamental grop of
a regular surface which is the minimal resolution of a mixed cg. surface;
in particular we compute the fundamental group of the surfaes we have
constructed, see Table 7.1. In Section 7.2, we determine theminimal model
of the surfaces that we have constructed, proving that they ae all minimal.

So we prove the rst part of Theorem 6.1.1. Finally in Section 7.3, we
give a detailed description of the surfaces.

7.1 The fundamental group

In this section we show how to compute the fundamental group bthe sur-
faces that we have constructed. To calculate the fundamentiagroups we will
follow the idea developed in [BCGPO08] (see also [DP10]) forhe unmixed
case, and we adapt it to the mixed case.

Let X =(C C)=G be a regular mixed g.e. surface determined by the

appropriate orbifold homomorphism : T(my;:::;m;) ! GO Let
To=T(myime) = hegie jeftng'en i

By Lemma 2.5.1, the kernel of is isomorphic to the fundamental group
1(C) and the sequence

11 ¢! 11 6% o1 (7.1)

is exact. By Lemma 2.5.2, the action of 1(C) on the universal cover of
C extends to a discontinuous action ofT. Let u: ! C be the covering
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map, it is -equivariant, i.e u(g(x)) = (gQ)u(x) forall x 2 Candg2 T;
and soC=G’ = =T = PL Let U:=(u;u): I C C.

rr
errrrr ULLLLLLLL‘-L%
&

¢
u §SSSSS /iu
59 0 %
C (C, 05 C
= )
% 6%

P! (C C)=G P!

Fix °2GnG%let = 22 G%andlet’ 2 Aut(G° dened by ' (h) :=
h 01 Let

Hi=fut)2T Tj (t)=" ( (t2)g:
It embeds in Aut( ) as follows:
(h1;h2) (xy)=(h1 x;ha y) for (hq;hy) 2 H:

Chooset 2 (), since is surjective and' ( )= , then ~:=(t;t) 2 H.
We de ne

0. !
(xy) 70 (y;t x)
it is an element of Aut( ) that exchanges the factors and (~92 = ~; we
furtherdene ~: H! H as'~ty;ty):=(tz;t ty t 1), itis the conjugation
by ~°

Let H = hgen(H) jrel(H)i be a presentation ofH, and let REL :=
f'<(h)~%h 1-%21jh2 gen(H)g. We de ne G as follows:

G := hgen(H); ~%j rel(H); (-%%~ L RELI :

De nition 7.1.1. Let H be a group. Its torsion subgroup Tors(H) is the
normal subgroup generated by all elements of nite order inH.

Theorem 7.1.2. Let X =(C C)=G be a mixed g.e. surface. LeS! X
be its minimal resolution of the singularities and assumeg(S) = 0. Then

cc _ G
G "~ Tors(G)

1(S)= 1
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We recall that the minimal resolution S ! X of X replace each singular

point by a tree of smooth rational curves, hence, by van Kampa's theorem,
1(8) = 1(X).

To prove the second part of the theorem we need some lemmas.

H is an index 2 subgroup ofG and every elementg 2 G eitherisin H or
there existsh 2 H such that g = ~%. We de ne a left action of G on
as follows:

(h1;h2) (X1y)
~Ahi;h2) (xy)

(h1 x;hz y)
(hz y;(t h1) x)

for (h1;h) 2 H:  (7.2)

henceG embeds in Aut( ).
We also de ne a group homomorphism#: G! G:
#(h1; h2) (hy)=" 1 (hy)

#(~Yhzhy) = O (h)= © I( (hy) for (hy;hz) 2 H:

Remembering the relations between ®  and' , it is easy to prove that #
is a group homomorphism.

Lemma 7.1.3. U= (u;u): I C C is #-equivariant.
Proof. Let g=(hy;hy) 2 H. Remembering thatu is -equivariant, we get
U(g(x;y)) = U(hix;hay) = (u(hix); u(hzy))
= ( (hdu(x); (h2u(y)) =( (ha)u(x);" ( (ha))u(y))
while
#QUExy) = (hy)(u(x);u(y)) = ( (hu(x);" ( (hy)u(y)):
Let g=~%hy;hy) 2 H, we get
Ug(xy)) = U(=Yhix;hay)) = U(hay;thix)

(u(hay); u(thyx)) = (- (h2)u(y); (th1)u(x))
( (h2)uly);  (h1)u(x))

while

#(9)U(x;y)

% (ho)(ue)su) = A (hyux);* ( (h)u(y))
( (hau(y);  (hyu(x)):

It follows that
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Lemma 7.1.4. The following short sequence:
11 4«Cc ¢! G!" 6! 1
is exact.

Proof. We have to prove that ker# = 1(C C).

If g=~Yh1;hy) 2 GnH, then #(g)= © (hy) 61, so ker# H.

If g=(hy;hy) 2 H, then #(g) = (hy) = ' ( (hy) = 1 if and only if
hy; hy 2 ker( ), hence

ker# = f(hy;h2) 2 Gjhy; hy 2 ker( )g = ker ker = 1(C) 1(C):
O

Remark 7.1.5 The ;(C C)-action on is free, so (C C)\
Stab(x) = f 1g, this gives that the restriction of # to the stabilizer of a point
X 2 is an isomorphism onto Stab g (U(x)).

Lemma 7.1.6. The G-action on is discontinuous (see De nition
1.1.5).

Proof. (i) By Remark 7.1.5, the restriction of # to the stabilizer of x is
injective, and so Stab) is nite since G is nite.

(i) Let x 2 andlet y:=U(x)2C C;sinceGis niteand C C
is Hausdor , there exists a neighborhoodU° of y such that for any element
g 2 G not in the stabilizer of y: g(U%\ U%= ;. Let V°be the connected
component of U (U9 that contains x. Since U: I C Cisa
covering, there is a connected neighborhoo®  V°of x which is mapped
isomorphically by U onto its image. Shrinking it if necessary, we can assume
that U(V)=: U UPCis Stab(y)-invariant, and so V is Stab(x)-invariant.

Let g2 G nStab(x). We claim that g(V)\ V = ;:

U@\v)\ v) U (@(V))\U (V)
#(@U(V)\U (V)
#(@U\ U

Then we have#(g) 2 Stab(y), by Remark 7.1.5, there exists a uniqueg® 2
Stab(x) such that #(g% = #(7).
By assumption, g = kg’ with k2 ((C C) nfig, we get:

gV)\ V = kgqV)\ VvV
= k(V)\ V
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Lemma 7.1.7. The normal subgroupG° of G generated by the elements
which have non-empty xed-point set is exactlyTors(G).

Proof. To prove our claim we show that each elemeng 2 G of nite order
has non-empty xed-point set, and vice versa. We distinguish o cases:

() g2 H G. Let g=(h1;hy) for somehi;h, 2 T that xes a point
(x1y) 2

hy = 1 ,
(hy;h2)(xy) = (x;y) 0 hiz hi 1 0 (hi;hy) has nite order;

the rst equivalence follows by Lemma 2.5.4, while for the seond see
[Bea83].

(i) g2 GnH. Let g=~Yh1;h,) for somehyi:h, 2 T.
If g xes a point (x;y) 2 ,also g?2 H xes the point, by (i) it
has nite order, then g has nite order.
Conversely, if g has nite order, g?(x;y) = (x;y) for some (;y) 2
since g2 H has nite order:

06Y) = g?(6y) = (= Xh1:h2) 26 y) = (( hath1) x; (thihg) y);
hence th1)x = (h,1)x. It follows that g(x; (h,1)x) = (x; (h, })x).
O

Proof of Theorem 7.1.2. Because of Lemma 7.1.6, the main theorem in [Arm68]
applies and we get:

CcC C G

7 e T Y76 T o

where Gis the normal subgroup ofG generated by the elements which have
non-empty xed-point set, which is exactly Tors( G) by Lemma 7.1.7:

cc _ G
76 ~ Tors(G) ’

O]

In order to write a MAGMA script that calculates the fundamen tal
group, we have to nd a nite set of generators of Tors(G).

Proposition 7.1.8. Let X = (C C)=G be a regular mixed g.e. surface

cT(my:ime) ! G
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be the appropriate orbifold homomorphism. Fix °2 GnG% let = ®2 G°
and let' 2 Aut(G® dened by' (h):= % ° 1 Then

G

1(X) = Tors(G)

and G°= Tors( G) is normally generated by the nite setT,[ T» where:

Ty H: foreveryi;j 2f1;:::;rg, 1 m; landl m; 1,
if h; is conjugated to' *(h;), then we choose an elemenv 2 G°
such thatvh; v 1 =" 1(h;). Then for every elementd in the nite

group Z(h; ) we choose an elementv 2 L(v d) and we include
(we w Lc)in Ty

Ty GnH: for every i;2 f1;:::;rg, 1 mi landh 2
GO, if ( %h)? is conjugated toh, , then we choose an element 2 G°
such thatvh, v 1 = ( )2 and we chooseg; 2  %(h) and g, 2

(' (h)). Then for every elementd in the nite group Z(h;) we
choose an elemenwv 2 (v d), and we include ~gi;kgp) in To ,
wherek := (g2tgs) wgw L.

Proof. Let (g1;q2) 2 H G and assume that there existx;y 2 such that
(91;8)(x;y) = (xy). We have that (gi1;92) = (ag a *;bg b *) for some
a;b2 T. Since there is an element inH of the form (f; b), we can say that
every element that stabilizes some points is conjugate to arlement of the
form (z¢ z %;¢ ).

The elementsz 2 T such that (zg z %;¢ ) 2 H are in nite, but

1

#(zg z *;c

j):VhiV t= l(hj)

for somev 2 GO, Let v be a xed element of G° such that
vhiv t= (b))

the other v02 G° with vth, v * = '(h;) are of the form v d for some
d2 z(h;).

Let w be a preimage via of v d then (wg w l;cj ) 2 H; if we pick
another preimagew®of v d, then w = kwPwith k 2 ker , but (k;1) 2 H, so
(wew *;¢) and (w% wP ;¢ ) are conjugated in H, so it su ces to take
a preimagew of v d for eachd 2 Z(h; ) that are nitely many.

We note that every element in H that stabilizes some points in
belongs to the subgroup ofH generated byT; that is Tors(H).

Let h 2 GO such that %h(x;y) = (x;y) for some (x;y)2 C C,i.e.
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= (x x="(h)y x=( N2
oy =0 D2 0 v = hx
So % stabilizes some points inC  C if and only if ( %)? is conjugated to
h; forsomel i randl m; 1.
Fixgp2 (h)yandg.2 (' (h)), sothe preimages of % are of the form
~Yg1k1; goko), where ky; ko 2 ker , but up to coniugation with ( kq;1) 2 H,
we can assume that the preimages are of the form%g; kgo) with k 2 ker
We claim that for each point (x;y) 2 C C stabilized by %, there exists
k 2 ker such that ~Xg1; kg2)(Xo; Vo) = ( Xo; Yo) for some (Xo;Yo) 2 ,
ie.

Xo = kg2 Yo 0 Xo = kg2 Yo

Yo = 191 Xo Xo = Kg2tg1 Xo

Let s:= gotg1 2 T, we have that
(9= h)2=vhv?

for somev 2 G°. Forany d2 Z(h,), let w be a preimage ofv dvia |, so
s=wc w k®wherek®2 ker . We de ne

k:=(k9 t=s wd"w ?;
henceks is conjugated toc, and so it stabilizes some pointxg 2 and the
same goes for %g;; kgp) that stabilizes (xo; (kgz) xo) 2 , moreover
U(xo; (kg2) xo) = (x;y). We include ~Xgi;kg) in To.

To complete the proof we have to show that every element irG nH that
stabilizes some points in belongs to the subgroup normally generated
by T1[ T2

Let ~Yh1;hy) 2 G be an element that stabilizes a point k1;y1) 2 ,
so (~qhy; hy)) stabilizes the point U(x1;y1) 2 C C. By the above con-
struction, there exists g 2 T, such that g(Xo; Yo) = ( Xo; Yo) with U(Xg; Yo) =
U(x1;y1); by construction, there exists g° 2 G such that g4Xo; yo) = ( X1; Y1)
It follows that g%o® 1(x1;y1) = (X1;y1), and so Hhy;hy) and gy 2
Stab(x1;y1) nH. By remark 7.1.5, there existsh 2 Staby(x1;y1) Tors(H)
such that ~Yh;hy) = hgd 1. Noting that Tors( H) is normally generated
by T1, we are done. O

In order to compute the fundamental group of the surfaces we ave
constructed, we have developed a MAGMA script (see Section .8) that
implements these results. We have run it on the constructed srfaces, the
outputs are collected in Table 7.1.

In the rst column we report the value K2 of the self-intersection on the
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canonical class of the surface, Sing{() represents the basket of singularities
of X. The column Type gives the type of the set of spherical genetars
of G° (see Section 2.3) in a compacted way, e.g. 324 = (2;2;2;4). The
columns G and G° give the group and its index two subgroup. The column
(X)), H1(S;Z), and 1(S) give respectively the second Betti number ofX,
the rst homology group and the fundamental group of S. The last column
gives a label, referring to a subsection of Section 7.3, wherwe give more
details on each construction.

Remark 7.1.9. All the smooth surfaces in Table 7.1 have non trivial topo-
logical fundamental group andK 2 > 0, so they are surfaces of general type.

Remark 7.1.1Q0 We point out that the surfaces 7.3.4 and 7.3.7 are numerical
Campedelli surfaces K§ = 2) with topological fundamental group (and
therefore algebraic fundamental group)Z4. We discussed the importance of
these surfaces in Section 3.6.1.

Remark 7.1.11 We have constructed 2 new topological types of surfaces of
general type with py = 0. These surfaces are tagged by 7.3.10 and 7.3.12.

Remark 7.1.12 The surface tagged by 7.3.11 hak§ = 4 and the same
fundamental group of a Keum-Naie surface (see [Nai94] and [B{1]), as the
following MAGMA script shows:

> G:=SmallGroup(32,22);

seq:=[G.2*G.5, G.2*G.3, G.2*G.4,G.2*G.3*G.5,G.4];
P:=Pil(seq,G);

F<a,b,c,d,s,t>:=FreeGroup(6);
rel:=[(a,b),(a,c),(a,d),(b,c),(b,d),(c,d),s"2,t"2* b"-1,
(t,a),(t,b), (s"-1,a"-1)*a"2, (s™-1,bM-1)*b"2,

> (sh-1,cM-1)*cn2, (sM-1,dM-1)*d"2,(th-1,c1-1)*ch2,

> (th-1,dM-1)*d"2, (t"-1,8M-1)*(dN-1)*(b7-1)];

> E:=Simplify(quo<F|rel>);

> SearchForlsomorphism(E,P,5);

true Homomorphism of GrpFP: E into GrpFP: P induced by

V VV VYV

El |-> P.3
E.2 |-> P.2
E.3 |-> P.1
E4 |-> P4
Homomorphism of GrpFP: P into GrpFP: E induced by
P.1 |-> E.3
P.2 |-> E.2
P.3 |-> E.1
P.4 |-> E.4

>

We expect that this surface belongs to the family studied in BC11] but we
have not proved it.
Remark 7.1.13 There has been a growing interest for surfaces of general

type with pg = 0 having an involution, see [CCMLO7], [CMLPO8], [Rit10a]
and [LS10].



KE| Sing(X) | Type | GO \ G | (X) [ H1(S;2) | 1(S) | Label |
1 [2Cp1+2Dp1 | 2°;4| D4 Zp | Z30Z4 | 1 | Zs ] Z4 | 731 |
2 6Co1 2° Z3 Z50Z,4 2 Zy Z4 Zy Z4 7.3.2
2 6Co1 4 | (Zr Za)0Zy4 G(64, 82) 2 Z3 Z3 7.3.3
2 | Cp1+2Dyy | 284 Z30Z, Z30Z,4 1 Zy Z4 7.34
2 | Cp1+2Dgpy | 22,32 Z%0Z, Z30Z,4 1 Z3 Z3 7.35
2 | 2C41+3Co1 | 2°;4 G(64, 73) G(128, 1535) 3 Z3 Z3 7.3.6
2 | 2C31+2C3p | 3%;4 G(384, 4) G(768, 1083540) | 2 Z4 Z4 7.3.7
2 | 2C31+2Csp | 3%;4 G(384, 4) G(768, 1083541) 2 Z3 Z3 7.3.8
3| Cgz+Cgs | 25,8 G(32,39 | G(64, 42) | 2 [Zy Z4 Zo Z4 | 739 |
4 4Cy1 2° Ds 2o D2g50Z> 2 |z, Zsg Z50Zg 7.3.10
4 4Cpq 25 z3 (Z50Z4) Z 2 Z3 Z4 K-N 7.3.11
4 4Cpq 43 G(64, 23) G(128, 836) 2 Z3 Z202Z, 7.3.12
8 : 2° Dy Z3 (D2850Z2) Z> 2 Z3 Zg 1! 7 w! 1! G! 1]73.13
8 ; 43 G(128, 36) G(256, 3678) 2 z3 11 ¢ 9! 1! G! 1 |73.14
8 ; 43 G(128, 36) G(256, 3678) 2 Z3 Z4 | 11 9 9! 41 G! 1 |73.15
8 ; 43 G(128, 36) G(256, 3678) 2 Z5 z73 | 11 o ¢! 41 G! 1 |73.16
8 ; 43 G(128, 36) G(256, 3679) 2 Z5 Zz | 11 3 4! 1! G! 1 |7.3.17

Table 7.1: The surfaces and their fundamental group. See Seon 7.3 for a detailed description.

dnoub peluswepun) ayl 1/

14!
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The \intermediate" surface Y = (C C)=G° has an involution induced
by the action of G. The surfaceY haspgy = 0 in the cases 7.3.1, 7.3.4 and
7.3.5, andpg = 1 in the others, see Lemma 6.1.5.

The numerical Godeaux surface K § = 1) tagged by 7.3.1 is obtained as
minimal desingularization S! X of the mixed g.e. surfaceX =(C C)=G.
The surfaceY = (C C)=G° has 6 nodes andK 2 = 2, moreover its desingu-
larization T inherits an involution  from the involution acting on Y and has
K% =2, hence we have a numerical Campedelli surface with an invation.
By construction, the involution xes 4 points on T, by [CMLP08, Propo-
sition 2.3] in this case the involution is not composed with he bicanonical
map' : T ! P2 By construction S is also the desingularization ofT=h i,
this means that S is an example of the case (i) of [CMLPO08, Proposition
4.3].

In the cases 7.3.4 and 7.3.5Y is a surface with K2 = 4, pg = 0 and
4 nodes. These surfaces are the quotient models of two produquotient
surfaces constructed in [BCGPO08].

7.2 Determining the minimal model
In this section we want to determine the minimal model of the surfaces we

have constructed, we follow the ideas of [BP10, Section 4]. Wrecall the
following diagram:

C C (7.3)
M M
c £
c Y=(C C =G0 c
c=G° Cc=G°
X =(C C)=G
Assume tp,at X is a (possibly singular) rational curve. Let ©:=
( ) ()= '{ni i be the decomposition in irreducible components of its
pull back to C C. We observe thatn; =1 8i (since is quasietale),
and that G acts transitively on the setf ;ji =1;:::;kg. Hence there is a

subgroupH G of index k actingon j; suchthat ( ( 1))= 1=H =.



7.2 Determining the minimal model 147

Normalizing 1 and , we get the following commutative diagram:

~ I, ¢

:
pL— I Ik

Since each automorphism lifts to the normalization,H acts on ~; and f is
the quotient map ~;! ~1=H = PL

Moreover we have thatp; . 1! C is surjective for at least onei 2
f1;2g, otherwise ( ( 1)) is a point. Hence we have thatg( 1) 9(C) 2
and so by Corollary 2.2.14f is branched in at least 3 points.

Lemma 7.2.1. Let p be a branch point off , then (p) is a singular point
of X.

Proof. Let p°2 f (p) ~1 be a ramication point of f, then Staby (p9 :=
H, 6 fi1g and so Staks( ( (p%)) Hi. Hence (f(p%) = (p) 2 Sing(X).
]

Corollary 7.2.2.  Any rational curve in X passes at least 3 times through
singular points.

Lemma 7.2.3 (cf. [Bom73, Proposition 1]). On a smooth surfaceS of gen-
eral type every irreducible curveC satis es Kg:C 1

Proof. If an irreducible curve C on a surfaceS satises C2 0, it is clear
that C:D O for every e ective divisor D of S. SincejmK sj is not empty
for m large, there exists an e ective divisor E linearly equivalent to mK g
and somKs:C = E:C 0. Hence ifK5:C < 0 then C2 < 0 and so:

29(C) 2=KsC+C? 2:
SinceC is irreducible we get
g(C)=0 C?2= 1andKgC= 1:
O

Lemma 7.2.4 ([BP10, Remark 4.3]). On a smooth surfaceS of general type
every irreducible curveC with K5:C 0 is smooth and rational.

Proof. Consider the morphismf : S! M to its minimal model. Assume
that there is an irreducible curve C S with K5:C 0 which is either
singular or irrational. Then C is not contracted by f and C°:= f(C)
is a still singular resp. irrational curve with Ky :C® Kg:C 0 which
implies (see [Bom73, Proposition 1]) thatC%is a smooth rational curve of
self-intersection (-2), a contradiction. O
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Proposition 7.2.5. Let S be a smooth surface of general type. Assume that
E isa( 1)-curvein S, then C:E 1 for every rational curve C in S with
C?2f 2, 3 4g

Proof. Assume that C:E = n 2 and C? = 2f 2, 3 4g. Let
f:S ! S%pe the blow-down given by the contraction of E and let C°:=
f (C) that is a singular curve sincen 2.

SinceKs:C= C2 2= 2,KssE= 2 E?= 1anddegf =1, we
get
KsoC? = f (Kg)f (CY=(Ks E):(C+ nE)
= Kg:C C:E+nKgE+nE?
= 2 n
Sincen 2then Kso:C% 0 and soCPis smooth, a contradiction. O

Lemma 7.2.6. Let S be a smooth surface of general type. Assume th&
is a( 1)-curve in S, then E intersects at most one( 2) curve.

Proof. SupposeE intersects two ( 2) curves, contracting E we get two
(1) curves intersecting in a point. Pick one of these curves athcontract it,

we get a surfaceS® and a (0)-curve C°%such that K s0:C%+ C® = 2 and so
Ksa:C%= 2, but CCis irreducible and soK go:C° 1, a contradiction. [

Proposition 7.2.7. Let S be a surface of general type that is the minimal
resolution of singularities of the mixed g.e. surfaceX . If X has only R.D.P.
as singularities then S is minimal.

Proof. We recall that the minimal resolution of a R.D.P. is a tree of ( 2)-
curves. If S is not minimal there is a ( 1)-curve, and this curve intersects
three dierent ( 2)-curves by Corollary 7.2.2, but this contradicts Lemma
7.2.6. O

We need the following classical results.

Theorem 7.2.8 (see [Bom73, Proposition 1]) If S is a minimal surface of
general type, then the( 2)-curves form a nite set and they are numerically
independent onS.

Lemma 7.2.9 (see [BHPVO04, Proposition VII.2.5]). If S is a minimal sur-
face of general type, then the intersection form restrictedo the ( 2) curves
is negative-de nite.

De nition 7.2.10  (see [Bom73] and [BCP11, De nition 3.7]) The canoni-
cal model of a surfaceS of general type is the normal surfaceS.,, obtained
from the minimal model S, of S contracting all the ( 2)-curves.
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Proposition 7.2.11. Let S be a surface of general type. LeE1;:::;E, be
( 2)-curves onS and letM = (mj);; be the matrix given bym; = E;:E;.
Then M is negative-de nite.

Proof. Let Syin be the minimal model of S and let S¢ap, its canonical model;
hence

S! Smin ! Scan ;

where is a birational morphism and is the contraction of all the ( 2)-
curves of S.

Up to relabel the curves, we can assume that (E;) = fptigfori r,
while (E;j) = Fj is acurve fori>r .

Leti>r,then Fj is a ( 2)-curves; indeed ifE; intersects at least an
exceptional curve of , then Kg ,, :Fi < K s:Ej = 0, hence the canonical
divisor is not nef and Syin is not minimal, a contradiction. In particular

(Fi) = Ei. MoreoverE;:E; =0if i randj>r .

H2(Smin ). SinceH?(Smin) ! H?2(S) we getthat fE,;:::; Eng are indepen-
dent in H?(S).

independent and they form a basis forV := Span(Eq;:::;E;) H?(S).
Since ( Ks,, )?> > 0, by Algebraic Index Theorem (see [BHPVO04,

Corollary 1V.2.16]), we get that the intersection form restricted to V is

negative-de nite. O

Corollary 7.2.12. Let E; and E, be two ( 2)-curves on a surfaceS of
general type, thenE:E, 1.

Proof. If E1:Eo> 2 then

E? Ei;E;

et eE, E2

=4 2E1E» 0

and so the intersection form is not negative de nite, a contradiction. O

Proposition 7.2.13. Let S be a smooth surface of general type. Assume
that E is a ( 1)-curve in S, then E cannot intersect a( 2)-curve and two
( 3)-curves.

Proof. Aiming for a contradiction, let us assume that E intersects two ( 3)-
curves and a ( 2)-curve E® We contract E and then E°, so we get two ( 1)-
curvesE; and E», with E1:E» = 2 on the surface S moreoverK so:E; = 1.
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Contracting one of them, sayE;, we get a curveEJ on S®such that

KswES (Kgo Eq):i(Ez+2Eq) KsoEy EpEs+2KgeE; 2E2

1 2 2+2= 3,

but E2 is irreducible and soK swE 1, a contradiction. O

Proposition 7.2.14. Let S be a surface of general type that is the minimal
resolution of singularities of the mixed g.e. surfaceX .
If B(X)=1f2 C41;3 Cy10thenS is minimal.

Proof. The minimal resolution of the singularities in X is given by two ( 4)-
curves and three ( 2)-curves that do not intersect each other.

Assume that E is a ( 1)-curve in S, since it has to intersect at least
three exceptional curves and by Lemma 7.2.6 it cannot intersct more that
one ( 2)-curve. There is only one possible con guration of rationd curves
on S; its dual graph is:

-1

EO

-4 -4 -2 -2 -2

After the contraction of the ( 1)-curve we get that ECis a ( 1)-curve.
Contracting it we get two ( 2)-curvesE; and E,, with E1:E> = 2 on the
surface S contradicting Corollary 7.2.12. O

Proposition 7.2.15. Let S be a surface of general type that is the minimal
resolution of singularities of the mixed g.e. surfaceX .
If B(X) = fCag.3;Csg:59 then S is minimal.

Proof. The minimal resolution of the singularities in X is given by two
(' 3)-curves intersecting in a point and two ( 2)-curves intersecting in two
di erent points a further ( 3)-curve. The dual graph is:

-3 -3 -2 -3 -2
Assume that E is a ( 1)-curve in S, it has to intersect at least three
exceptional curves and it cannot intersect more that one ( 2)-curve.
Moreover, by Proposition 7.2.13,E cannot intersect a ( 2)-curve and
two ( 3)-curves, soE intersects the three ( 3)-curves. We claim that this
is not possible; indeed contractinge we get two ( 2)-curveskE; and E» with
E1:E» = 2, contradicting Corollary 7.2.12. O
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Proposition 7.2.16. Let S be a surface of general type that is the minimal
resolution of singularities of the mixed g.e. surfaceX .
If B(X)=f2 Cgz1;2 Cgz20thensS is minimal.

Proof. The minimal resolution of the singularities in X is given by two ( 3)-
curves and two pairs of ( 2)-curves intersecting in a point. The dual graph
is:

-3 -3 -2 -2 -2 -2
Assume that E is a ( 1)-curve in S, it has to intersect at least three
exceptional curves and it cannot intersect more that one ( 2)-curve, thank
to Proposition 7.2.5 and Lemma 7.2.6. So, the only possibiy left is that
E intersect both the ( 3)-curves and just one of the four ( 2)-curves, con-
tradicting Proposition 7.2.13. O

Corollary 7.2.17. If S is the minimal resolution S of the singularities of a
mixed g.e. surfaceX with pg(S) = q(S) =0 andK 2 > 0, then S is minimal.

7.3 The surfaces

In this section we give a detailed description of the surface collected in
Table 6.1. We will follow the scheme below:
G: the Galois group.
GP: the index 2 subgroup of the elements that do not exchanges #factors.
In the follow S, will denote the symmetric group in n letters, D.q;r the gen-
eralized dihedral group with presentation: Dp.qr = I yjxP;y% xyx 1y fi
and D, := D2,y 1 is the usual dihedral group of order 2.
T: the type of the system of spherical generators.
L: here we list the set of elements ofs that is a spherical generators system
for G that gives the curve C.
Hi: the rst homology group of the surface.

1. the fundamental group of the surface.

K?2= 1, basket f2 CZ;l; 2 D2;1g
0 1

1
0 1
G: h2;5;6;8)(3;7); (1;2)(3;5)(4,6)(7;8); (1;3)(2;5)(4;7)(6;8);

(2;6)(5;8); (1;4)(2;6)(3;7)(5;8)i < Sg
GOI D4 Zz

7.3.1. Galois group  (Z2)%0: Zs : ' (1)

o R K

N
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T:(2;2,2,4)

L: (1;8)(2; 7)(3;6)(4;5); (1;7)(2:8)(3;4)(5; 6); (1;3)(2;8)(4; 7)(5; 6);
(1;5:4,8)(2;7;6;,3)

H1i: Za4

10 Z4

K2=2, basket f6 C,1g
|

11
7.3.2. Galois group (Z»)?0: Z4: ' (1) = o 1

G: N(1;2,4;6)(3;5;7;8); (2;5)(6;8); (1;3)(2;5)(4;7)(6; 8);
(1,4)(2:6)(3; 7)(5:8)i < Sg

G (Z2)°

T:(2;2,2,2;2)

L: (1;3)(4;7); (1, 7)(2;6)(3;4)(5; 8); (1;3)(2;5)(4; 7)(6; 8); (2;5)(6; 8);
(1;7)(2;6)(3;4)(5; 8)

Hi: Zo 24
10 22 Zg

7.3.3. Galois group: G(64;82): Sylow 2-subgroup of the Suzuki group
Sz(8),
G: hoi; @) s O3 OF: Of: 0100, "0303; Oy 205 'Oy 105 01
90900 5 01 '03000, 5 0, 1080203 0 %0; 1020e i
GO G(32;2): thy;hy j hi; h3; hy thy ?hohy % h, ?hihy %hy T
(hihzh, *hz)?; (h, *hihohi)?; hy 2h, 3h, 2h41; (ha;hy Hy2i
11

it is isomorphic to (Z2 Z4) 0+ Z4 where' (1) = 0 3

T: (4;4;4)

L g5 " 01055 01080, “03030; 2
Hi: (Z2)°

1 (Z2)°
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K2 =2, basket fCy1; 2 D19

0 1
1 1 0 Q0
011
7.3.4. Galois group: (Z»)*0: Z4: ' (1) =
group:  (Z2) 4" (1) %O 10§
0 0 0 1

G: h2;6;7,12)(3;9; 10;16)(4; 11)(8; 14; 15; 13);
(1;2)(3;6)(4; 7)(5; 8)(9; 13)(10; 14)(11; 15)(12; 16);
(1;3)(2; 6)(4; 9)(5; 10)(7; 13)(8; 14)(11; 16)(12; 15);
(2,7)(3; 10)(6; 12)(8; 15)(9; 16)(13; 14);

(1;4)(2; 7)(3; 9)(5; 11)(6; 13)(8; 15)(10, 16)(12; 14);
(1;5)(2;8)(3; 10)(4; 11)(6; 14)(7; 15)(9; 16)(12,13)i < S16

GO (Z2)%0 Zp, (1)="'(2)

T:(2;2,2;,4)

L: (2;7)(3; 10)(6; 12)(8; 15)(9; 16)(13; 14);
(1;16)(2;12)(3; 11)(4; 10)(5; 9)(6; 15)(7; 14)(8; 13);
(1;14)(2;10)(3; 8)(4; 12)(5; 6)(7; 16)(9; 15)(11; 13);
(1;2;4;7)(3;14,9; 12)(5; 8; 11; 15)(6; 16; 13, 10)

Hi: Za

10 Z4
!
01

7.3.5. Galois group: (Z3)?0: Z4: ' (1) = -

G: N1;2)(3;4,5;6); (3;5)(4;6); (2:4,6); (1,3;5)(2;4,6)i < Ss

G% (Z3)?0 Zp (1)="'(2)
T.(2;2,3;,3)
L: (3;5)(4,6); (2,6)(3;5); (1,3;5); (1,5;3)(2;4,6)
Hll Zg
10 Z3

K?= 2, basket f2 C4;1; 3 C2;1g

7.3.6. Galois group: (G(128;1535)

G: hor; O2; G55 G4 O "0a0104; 0F; (9,193 )% s (Ge5 0, D) (05 1 02)%
% lug, ot 0 ' t00, Y 0, s Toi0s0y Y 0s 201080,

0, 20103039, 195 ; 0, 205 P010s0; 103; 930, 205 1030, L
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04 'O "0200, 0ug; toy b 0, 2030, aui
G% G(64;73): thy; hy; hgj h; h3; h3; (hihs)?; (hih2)%;
(h2h3)?; (hahshohihg)?; (hihzhshihs)?; (hohihs)?i
T:(2;2,2,4)
L: 01030, '03; 01030, °0s °03; Go0s; 020304, “0, “0305 °05
Hi: (Z2)3
11 (Z2)3

K?2= 2, basket f2 C3;1; 2 Cg;zg

7.3.7. Galois group: G(768;1083540)
G: h1;92; 935 G4; 055 96: O7: 98i G0 | G5 95(050607) 15 03(0506); 05(0s)
0% 08 05 08 05: (025 91)(0aG6TrTo) i (Ts: 01)(9307G0)
(931 92)05 % (9a: 91)(%8%0) % (Ga: )06 ™5 (945 B)Ty &
(9s; 91)(96G7) i (Gsi 92005 ™5 (Ts; 93)9o 5 (O 91)Ts
(96; 92) = 0s%o; (U6 B)Te s (6 U4)Ts 5 (97; 91)To 5 (97 G2) G
(97; 93)95 5 (97: Ga)o 5 (8 G1)Go s (Qoi Q)i
GO G(384;4): thy; hyj h3; h3; (h,thy)3; (hythy D)8, (ha;hp)%;
h, *h,?h1h, 2h; th, th, thohy thy b
h, *hihahih, thy thohihohy thy thy thohih, thy ts
T:(3;3;4)
L: 920400; 91060700; J2050s
Hi: Za
10 Z4

7.3.8. Galois group: G(768;1083541)
G: hou; G2 G OF: 05 O 02010, “01 “0s; 030505 *G5:
%9 10:09; 10205 %01; 9; 105 20102039, 105 *;
1 1 1. . 2 1 . 1 1 1\2.
0030, "01020; 0y “03; 0305030; ~020102; (95 "0, "030, )%,
9 105 10, 103010203; (95 192)%; 9010, 203 10, 105 10, 10, 103;
00305 10y 1080, 203 1015 020 1020105 102001020,
05 1050, 105 'n0s 1oy Tastn; 05 T0e030g; t0Rangs
1 1 1 2.2. 1 1 2 1 1.
0 10205 10205 10105 203; 080 10s01 0 10 2050, 101080,
% 101 10205 '010; 10, 1930, 20105
O3 1g1 192 193 192 1919392 193 19193 29293 191 192 4
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GO: G(384;4), as above.
T:(3;3;4)
L: 0202030, “0s030502010; "0503930; *; 010305050105 10305039,
0205 10 "0s019, 10 %0, T05 1050503
Hi: (Z2)2
10 (Z2)?

K?2= 3, basket fC8;3; Cs:50

7.3.9. Galois group: G(64;42):

G: N1;2;3,5;8;13,6;10)(4;7; 11, 14, 15, 16; 9; 12);
(2;4)(3;6)(5;9)(7; 12)(10; 11)(13;15)(14; 16)i < S16

GO G(32;39): h2;4)(5;7)(6;8)(9; 11)(10; 12)(13; 15);
(1;2)(3;5)(4;6)(7;9)(8; 10)(11; 13)(12 14)(15; 16);
(1;3)(2;5)(4; 7)(6; 9)(8; 11)(10; 13)(12; 15)(14, 16)i < S16

T:.(2;2,2;,8)

L: (2;13)(4; 15)(5; 10)(9; 11);
(1, 7)(2;5)(3; 12)(4; 15)(6; 14)(8; 16)(10; 13);
(2;15)(3;6)(4; 13)(5; 11)(7; 12)(9; 10)(14; 16);
(1;7;3;14;8;16;6;12)(2; 15, 10; 11; 13, 4;5;9)

Hi: Zo Z4

102y Zg

K2=4, basket f4 Cy0

X 7! X
y 7! yxy?
G: (1;2;3;6;4;5;7;8); (2;5)(3;7); (2;5)(6;8); (1;3;4,7)(2;6,5;8);
(1;4)(2:5)(3;7)(6;8)i < Sg
G’ D4y Z»
T.(2;2,2,2;2)
L: (2;5)(6;8); (1; 7)(2; 6)(3; 4)(5; 8); (1; 4)(2; 5); (1; 4)(2; 5);
(1;7)(2;8)(3; 4)(5; 6)
Hi: Zo Zg

7.3.10. Galois group: D2gs50' Z3, ' (1) =
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11 (Z2)%0 Zg, (1)=

7.3.11. Galois group: ((Z2)?0: Zg) Z2,' (1) =

G: N(1;2;5;8)(3;7;10;14)(4; 6; 11; 13)(9; 12, 15; 16);
(2;6)(7;12)(8; 13)(14; 16);

(2;3)(2; 7)(4;9)(5;10)(6; 12)(8; 14)(11; 15)(13; 16);
(1;4)(2; 6)(3;9)(5; 11)(7; 12)(8; 13)(10; 15)(14; 16);
(1;5)(2; 8)(3; 10)(4; 11)(6; 13)(7; 14)(9; 15)(12,16)i < S16

G z3

T:(2;2,2,2;2)

L: (1;5)(2; 13)(3; 10)(4; 11)(6; 8)(7; 16)(9; 15)(12; 14);
(1;3)(2;12)(4,9)(5; 10)(6; 7)(8; 16)(11; 15)(13; 14);
(1;4)(3;9)(5; 11)(10; 15);

(1;10)(2; 16)(3; 5)(4; 15)(6; 14)(7; 13)(8; 12)(9; 11);
(1;4)(2;6)(3;9)(5; 11)(7; 12)(8; 13)(10; 15)(14; 16)
Hi: (Z2) Z4
12 11 P2 P3; Paj P25 P3 (Pap2)%; (PP, )% papy 'pa Py T
PaP1P3P, "Pap1; (P1PF)?; (P, °Ps)?i
7.3.12. Galois group: Sylow 2-subgroup of a double cover of the Suzuki
group Sz(8)

G: G(128;836), h(2; 4;9; 13)(3; 7; 12, 15)(8; 10)(11; 16);
(1;2;5;9)(3;6)(4; 10,13, 8)(7;11)(12;, 14)(15; 16);
(1;3;8;7)(2;6;4;11)(5; 12, 10;15)(9; 14; 13,16)i < S

G G(64; 23): h(2;3;5;8)(6;10)(7; 11,12, 13)(14; 16);
(1;2;4,7)(3;6;11,14)(5;9; 12, 15)(8; 10; 13, 16)i < S

T: (4;4;4)

L: (1;12 8;15)(2; 14;4;16)(3; 10, 7; 5)(6; 13,11, 9);
(1;13,5;4)(2; 8;9; 10)(3; 11)(6; 7)(12; 16)(14; 15);
(1;14;8;16)(2; 3; 13,15)(4, 7;9; 12)(5; 6; 10; 11)

Hi: (22)3 I

10 (Za Z4)o Zp, ()=
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K2 =8, basket :
X 7! X

7.3.13. Galois group: (D2g50' Z3) Zp,' (1) =
y 7! yxy*

G: N1;2;4,8,5;9;12,16)(3;7;10; 15, 11, 6; 13; 14),
(2;6)(4;12)(7;9)(8; 15)(10; 13)(14; 16);
(1;3)(2; 7)(4; 10)(5; 11)(6; 9)(8; 15)(12 13)(14; 16);
(1;3)(2;6)(4; 10)(5; 11)(7; 9)(8; 14)(12 13)(15; 16);
(1;4,5;12)(2; 8;9;16)(3; 10; 11; 13)(6; 14; 7; 15);
(1;5)(2;9)(3; 11)(4; 12)(6; 7)(8; 16)(10; 13)(14,15)i < S16

GY% Dy Z, Zo

T:.(2;2,2,2;2)

L: (1;5)(2; 7)(3; 11)(6; 9)(8; 14)(15; 16);
(2;7)(4;12)(6;9)(8; 14)(10; 13)(15; 16);
(1;13)(2; 8)(3; 12)(4; 11)(5; 10)(6; 14)(7; 15)(9; 16);
(1;4)(2; 14)(3; 10)(5; 12)(6; 8)(7; 16)(9; 15)(11; 13);
(1;3)(2;6)(4; 10)(5; 11)(7; 9)(8; 14)(12; 13)(15; 16)

Hi: (Z2)%  Zg

10 1! 17 17! 1! G 1

7.3.14. Galois group: G(256;3678)
G: hor; O2; 03 ) Of: 03 OF; 9102030, Yo, &
1.2 1 1~ . 1 1 1 1 . 1 .
O, 79193 "9> 7935 9391 "9 O3 791 "92; 9192939, "010s;
030, 10, 101020s; 03030, 10301; 03010, 05 10, 105 1010s;
1 2 2~ - 2 1 1. . 2 1 1 3.
O 7010207103 "91; 919591093 "01093 "01; O "9; "93 "0103;
05 "0, 105 °0; 103020 i
G®: G(128,36): hhy; hy j h3; hi; hih3h, h, 2hy; (h, thihahi)?; (hosho)?;
(hythy thih, 12 (hy th, thy 2hohy 12, (h3h, th3hy)?i
T: (4;4,4)
L: Gos; 030, *0s “0200; 10301059205 °%203; 0, *020, 105 10005
Hi: (Z4)3
sl g gl 4! GI! 1

7.3.15. Galois group: G(256;3678)
G: as above
GO G(128;36), as above
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T.(4;4;4)

L: 010; °0; '0010503; 00, 2030, "05 "0205; 0105 05 2030, 0301050205 20203
H1:(Z2)* Za4

L1l g ol 4! GI 1

7.3.16. Galois group: G(256;3678)
G: as above
GO G(128;36), as above
T:(4;4;4)
L: 01050, 020, 05 20203; 0102050, '0s010503; U205 °0; ' 0010503
Hi: (Z2)*  (Za)?
1. 1! 9 9! 1P Gl

7.3.17. Galois group: G(256;3679)
G: hor; O2; 03 0 of: OF: 02030, ", Mot 050, M0 T n e, T
% ' 0:0:0%; O 1010, 105 10, 10 020, 105 10, 055 Op 10502010301
O1 192 19%9391 193 192 L O3 1929392 191 292 2, (93 192)4;

% 1010, 10105 *010501; i
GO G(128;36), as above
T: (4;4;4)

L 020s; Uz, 105 * 020501030 105 20, 105 20205 % O 1020, 105 1000s
Hii (Z2)? (Z4)?
1. 1! 9 9! 1! G! 1
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