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Introduction

In this thesis we de�ne and study the mixed quasi-�etale surfaces. In partic-
ular we classify all the mixed quasi-�etale surfaces whose minimal resolution
of the singularities is a regular surface withpg = 0 and K 2 > 0.

It is a well known fact that each Riemann surface with pg = 0 is iso-
morphic to P1. At the end of XIX century M. Noether conjectured that an
analogous statement holds for the surfaces: in modern words, he conjectured
that every smooth projective surface with pg = q = 0 be rational.
The �rst counterexample to this conjecture is due to F. Enriques (1869). He
constructed the so called Enriques surfaces (see [Enr96]).

The Enriques-Kodaira classi�cation divides compact complex surfaces in
four main classes according to their Kodaira dimension� : �1 , 0, 1, 2. A
surface is said to be ofgeneral type if � = 2. Nowadays this class is much
less understood than the other three. The Enriques surfaceshave � = 0.

The �rst examples of surfaces of general type withpg = 0 have been
constructed in the 30's by L. Campedelli e L. Godeaux.

The idea of Godeaux to construct surfaces was to consider thequotient of
simpler surfaces by the free action of a �nite group. In this spirit, Beauville
(see [Bea96, Page 118]) proposed a simple construction of surfaces of general
type, considering the quotient of a product of two curvesC1 and C2 by the
free action of a �nite group G. Moreover he gave an explicit example with
pg = q = 0 considering the quotient of two Fermat curves of degree 5 in P2.

There is no hope at the moment to achieve a classi�cation of the whole
class of the surfaces of general type. Since for a surface in this class the
Euler characteristic of the structure sheaf � is strictly positive, one could
hope that a classi�cation of the boundary case� = 1 is more a�ordable.

Some progresses in this direction have been done in the last years through
the work of many authors, but this (a priori small) case has proved to be
very challenging, and we are still very far from a classi�cation of it. At
the same time, this class of surfaces, and in particular the subclass of the
surfaces withpg = 0 contains some of the most interesting surfaces of general
type, see [BCP11] for more details.

If S is a surface of general type with� = 1, which means pg = q, then
by Beauville ([Bea82]), pg = q � 4, and if pg = q = 4, then S is birational to
the product of curves of genus 2. The casepg = q = 3 has been studied in
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[CCML98], [Pir02] and [HP02] and the surfaces in this class are completely
classi�ed. The casespg = q � 2 are still far from being classi�ed.

Generalizing the Beauville example, Catanese considers the quotient
(C1 � C2)=G, where the Ci are Riemann surfaces of genus at least two,
and G is a �nite group. Following [Cat00], there are two cases: themixed
case where the action of G exchanges the two factors (and thenC1

�= C2);
and the unmixed casewhere G acts diagonally.

After [Cat00] many authors studied the surfaces birational to a quotient
of a product of two curves, mainly in the case of surfaces of general type
with � = 1. We refer to [BC04], [BCG08], [BCGP08] and [BP10] for the case
pg = q = 0, to [CP09], [Pol08],[Pol09] and [MP10] for the casepg = q = 1
and to [Pen11] for the casepg = q = 2. In all these works the authors work
either in the unmixed case or in the mixed case under the assumption that
the group acts freely.

The main purpose of this thesis is to extend the results and the strategies
of the above mentioned papers in the non free mixed case. LetC be a
Riemann surface of genusg � 2, let G be a �nite group that acts on C � C
with a mixed action, i.e. there exists an element inG that exchanges the two
factors. Let G0 / G be the index two subgroup of the elements that do not
exchange the factors. We say thatX = ( C � C)=G is a mixed quasi-�etale
surface if the quotient map C � C ! (C � C)=G has �nite branch locus.

We present an algorithm to construct regular surfaces as theminimal
resolution of the singularities of mixed quasi-�etale surfaces. We give a com-
plete classi�cation of the regular surfaces withpg = 0 and K 2 > 0 that arise
in this way. Moreover we show a way to compute the fundamentalgroup of
these surfaces and we apply it to the surfaces we construct; we follow the
idea in [BCGP08] (see also [DP10]) for the unmixed case, and we adapt it
to the mixed case.

The main theorem of the thesis is the following:

Theorem. Let S be the minimal resolution of the singularities of a mixed
quasi-�etale surface X with pg(S) = q(S) = 0 and K 2

S > 0, then

1. S is minimal and of general type.

2. S belongs to one of the 17 families collected in Table 1.

In the �rst column of Table 1 we report the value K 2
S of the self-

intersection of the canonical class of the surface, Sing(X ) represents the
singularities of X (see De�nition 5.1.12 for the notation we use). The col-
umn Type gives the type of the set of spherical generators ofG0 (see Section
2.3) in a compacted way, e.g. 23; 4 = (2 ; 2; 2; 4). The columnsG and G0 give
the group and its index two subgroup. The groups denoted byG(a; b) are
groups of ordera, while b is the MAGMA identi�er of the group. The col-
umn b2(X ), H1(S;Z), and � 1(S) give respectively the second Betti number
of X , the �rst homology group and the fundamental group of S.
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K 2
S Sing(X ) Type G0 G b2(X ) H1(S;Z) � 1(S) Label

1 2C2;1 + 2 D2;1 23 ; 4 D4 � Z2 Z3
2 o Z 4 1 Z4 Z4 7.3.1

2 6C2;1 25 Z3
2 Z2

2 o Z 4 2 Z2 � Z4 Z2 � Z4 7.3.2
2 6C2;1 43 (Z2 � Z4) o Z 4 G(64, 82) 2 Z3

2 Z3
2 7.3.3

2 C2;1 + 2 D2;1 23 ; 4 Z4
2 o Z 2 Z4

2 o Z 4 1 Z4 Z4 7.3.4
2 C2;1 + 2 D2;1 22 ; 32 Z2

3 o Z 2 Z2
3 o Z 4 1 Z3 Z3 7.3.5

2 2C4;1 + 3 C2;1 23 ; 4 G(64, 73) G(128, 1535) 3 Z3
2 Z3

2 7.3.6
2 2C3;1 + 2 C3;2 32 ; 4 G(384, 4) G(768, 1083540) 2 Z4 Z4 7.3.7
2 2C3;1 + 2 C3;2 32 ; 4 G(384, 4) G(768, 1083541) 2 Z2

2 Z2
2 7.3.8

3 C8;3 + C8;5 23 ; 8 G(32, 39) G(64, 42) 2 Z2 � Z4 Z2 � Z4 7.3.9

4 4C2;1 25 D4 � Z2 D2;8;5 o Z 2 2 Z2 � Z8 Z2
2 o Z 8 7.3.10

4 4C2;1 25 Z4
2 (Z2

2 o Z 4) � Z2 2 Z3
2 � Z4 K-N 7.3.11

4 4C2;1 43 G(64, 23) G(128, 836) 2 Z3
2 Z2

4 o Z 2 7.3.12

8 ; 25 D4 � Z2
2 (D2;8;5 o Z 2) � Z2 2 Z3

2 � Z8 1 ! � 17 � � 17 ! � 1 ! G ! 1 7.3.13
8 ; 43 G(128, 36) G(256, 3678) 2 Z3

4 1 ! � 9 � � 9 ! � 1 ! G ! 1 7.3.14
8 ; 43 G(128, 36) G(256, 3678) 2 Z4

2 � Z4 1 ! � 9 � � 9 ! � 1 ! G ! 1 7.3.15
8 ; 43 G(128, 36) G(256, 3678) 2 Z2

2 � Z2
4 1 ! � 9 � � 9 ! � 1 ! G ! 1 7.3.16

8 ; 43 G(128, 36) G(256, 3679) 2 Z2
2 � Z2

4 1 ! � 9 � � 9 ! � 1 ! G ! 1 7.3.17

Table 1: The surfaces and their fundamental group. See Section 7.3 for a detailed description.
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The last column gives a label, referring to a subsection of Section 7.3,
where we give more details on each construction.

Some of our construction are more interesting than others. We would
like to point out the surfaces 7.3.4 and 7.3.7: these are numerical Campedelli
surfaces (K 2

S = 2) with topological fundamental group (and therefore alge-
braic fundamental group) Z4, we discuss the role of these surfaces in the
classi�cation of the numerical Campedelli surfaces in Section 3.6.1. More-
over, according to [BCP11], two of our constructions realize surfaces whose
topological type was not present in the literature before. These surfaces are
tagged by 7.3.10 and 7.3.12. We also note that the surfaces 7.3.1, 7.3.4 and
7.3.5 areQ-homology projective planes in sense of [HK11].

The thesis is divided in seven chapters. The new results are contained in
the last three chapters, whereas the �rst four chapters collect known results
from the literature, which we used. More precisely we have organized the
thesis as follows.

� In Chapter 1, we recall some standard de�nitions and properties about
covering spaces and lifts, in particular we recall how the fundamental
group � 1(X; x ) acts on the �bre p� 1(x) of a covering spacep: ~X ! X .

We give and prove the theorem of existence of covering spaces.
Finally we discuss the monodromy of a covering space.

� In Chapter 2, we recall the basic properties of branched and Galois
coverings; here we give the de�nition of quasi-�etale morphism. We
recall some classical results about Riemann surfaces as theHurwitz's
formula and the Riemann existence theorem.

In Section 2.3 we explain how to associate an algebraic datum, an
appropriate orbifold homomorphism, to any Galois covering c: C !
C=H. In Section 2.4 we give the inverse construction, obtaininga
Galois covering c: C ! C=H from any appropriate orbifold homo-
morphism. Theorem 2.4.3 shifts our geometric classi�cation problem
into an algebraic problem.

Finally, in Section 2.5, we consider a Riemann surfaceC (and a �nite
subgroup H of Aut( C)). We extend the action of � 1(C) on the uni-
versal cover ofC to the action of a bigger group, anorbifold surface
group. We will use it later for computing the fundamental group of
the surfaces that we construct.

� In Chapter 3 we recall some standard de�nitions and classical proper-
ties of smooth complex surfaces.

In the Sections 3.5 and 3.6 we explain the Enriques-Kodaira classi�-
cation of compact complex surfaces and we focus on the surfaces of
general type. In particular, in the last part of the chapter we present
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the actual knowledge about the classi�cation of the surfaces of general
type with � = 1.

� In the fourth chapter we consider group actions on product ofcurves.
Following [Cat00] the action can be of two types: mixed or unmixed.

In Section 4.2, we give the de�nition of cyclic quotient singularity (type
Cn;a ) and we give their resolution graphs (in terms of the continued
fraction of n

a ).

In Section 4.3 we give the de�nition of product quotient surfaces, i.e.
the surfacesS that are minimal resolution of the singularities of a
surfaceX := ( C1 � C2)=G where G acts with an unmixed action. We
recall the properties of these surfaces (in particular the formulae for
their numerical invariant).

In section 4.4 we introduce themixed surfaces, and the mixed quasi-
�etale surfaces.

In the last section of this chapter we summarize the actual knowledge
about the classi�cation of the surfaces with � = 1 that are birational
to a quotient of product of curves.

� Chapter 5 is dedicated to investigate the mixed quasi-�etale surfaces,
their singularities and the numerical invariants of the minimal resolu-
tion of their singularities.

Let X = ( C � C)=G be a mixed surface, letG0 be the index two
subgroup of the elements that do not exchange the factors. Wedenote
by Y the surface (C � C)=G0 and by � the natural map Y ! X .
We start translating the quasi-�etale condition in algebra ic terms, by
showing (Theorem 5.0.12) that a mixed surface is mixed quasi-�etale if
and only if the exact sequence

1 �! G0 �! G �! Z2 �! 1

does not split.
We show that for a mixed q.e. surface it holds Sing(X ) = � (Sing(Y )).

Then the singular points of X are naturally divided in two subsets,
according if they are branch points of � or not, and the second set
of points is a set of cyclic quotient singularities. In Section 5.1.1 we
investigate the singular points of X that are also branch points of � ,
introducing what we call singularities of type Dn;a .

Let S be the minimal resolution of the singularities of a mixed qe
surfaceX = ( C � C)=G. Following the ideas of the unmixed case, in
Section 5.2 we relate the numerical invariantse and K 2 of S with the
genus ofC, the order of G and Sing(X ). In Section 5.2.1 we prove some
inequalities relating the invariants of S with the possible signatures
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of the orbifold surface groups which are domain of the appropriate
orbifold homomorphisms involved.

� In Chapter 6 we develop an algorithm to classify all the smooth reg-
ular surfaces with �xed values of the invariants K 2 and pg which are
minimal resolution of the singularities of a mixed quasi-�etale surface.
As byproduct we get the second part of the main theorem of the thesis
(see Theorem 6.1.1).

In Section 6.1 we provide the theoretical background of the algorithm,
in particular giving explicit bounds for the algebraic data depending
on the invariants of the surface (necessary for the �niteness of the
algorithm) and explaining how to read the singularities of the mixed
quasi-�etale surfaces from the algebraic data.

In Section 6.2 we explain the strategy of the algorithm, that we have
implemented in MAGMA. Running the script in the case pg = 0 and
K 2 > 0 we get the surfaces in Table 1. The algorithm needs to \skip"
few cases: in Section 6.3 we prove the second part of the main theorem
excluding these cases.

Finally, in Section 6.4 we report the MAGMA script.

� In the last chapter we show a method to compute the fundamental
group of a smooth regular surface birational to a mixed q.e. surface
and we apply it to the surfaces we construct.

In Section 7.2 we determine the minimal model of the constructed
surfaces, proving that they are all minimal, so completing the proof of
the main theorem.

In the last section we report a detailed description of all the regular
surfaces in Table 1.
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Chapter 1

Covering spaces

In this �rst chapter, we recall some de�nitions and properti es related to
covering spaces. In particular we give the basic de�nitionsand the lifting
properties, for further details we refer to [Hat02, Section1.3] and [Mas02,
Chapter 5]. We will give and prove the theorem of existence ofcovering
spaces. Finally we will discuss the monodromy of a covering space.

If not di�erent stated, we shall assume that all spaces are path-connected
and locally path-connected.

1.1 Generalities on covering spaces

De�nition 1.1.1. Let X be a topological space. Acovering space(or �etale-
covering) of X is a pair consisting of a topological space~X and a continuous
map p: ~X ! X such that the following condition holds: each point x 2 X
has a path-connected open neighborhoodU such that each component of
p� 1(U) is mapped homeomorphically ontoU by p. Any open neighborhood
U that satis�es this condition is called an elementary neighborhood.

Remark 1.1.2. For every x 2 X the topology induced by the topology of ~X
on the �ber p� 1(x) is the discrete topology.

De�nition 1.1.3. Let X be a topological space and letG be a group that
acts on X . If for all g 2 G the map � g : x 7! g � x is continuous then X is
called G-space.

Remark 1.1.4. If X is a G-space, then� g is an homeomorphism for each
g 2 G.

De�nition 1.1.5. Let X be a G-space. The action ofG on X is discontin-
uous if:

(i) the stabilizer of each point is �nite;
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(ii) each point x of X has a neighborhoodU such that any element ofG
not in the stabilizer of x maps U outside itself.

Moreover, the action of G on X is properly discontinuous if the stabilizer of
each point is trivial.

Proposition 1.1.6. Let X be an Hausdor� G-space, withG �nite and that
acts freely on X , then the action of G on X is properly discontinuous.

Proof. Since the action is free, the stabilizer of each point is trivial.
Let 1G; g1; : : : ; gk be the elements ofG and let x 2 X . The points

yi = gi � x are all distinct since the action is free. X is an Hausdor� space
and so there exist a neighborhoodU0 of x and neighborhoodsVi of yi such
that U0 \ Vi = ; for i = 1 ; : : : ; k. Let Ui = � � 1

gi
(Vi ) for i = 1 ; : : : ; k. The Ui

are open neighborhoods ofx and so alsoU =
T

i Ui is an open neighborhood
of x. We claim that U has the required property: U \ � gj (U) = ; for each
j . SinceU � Uj = � � 1

gj
(Vj ) we get � gj (U) � Vj , while U � U0. We conclude

remembering that U0 \ Vj = ; .

Proposition 1.1.7. Let X be a G-space; if the action of G is properly
discontinuous, then p: X ! X=G is a covering space.

Proof. We start showing that the map p: X ! X=G is open. LetV an open
subset ofX , then

p� 1(p(V )) = f x 2 X j p(x) 2 p(V )g = f x 2 X j p(x) = p(y); y 2 V g

= f x 2 X j x = � g(y); y 2 V g = f x 2 X j x 2 � g(V )g

=
[

g2 G

� g(V )

hencep� 1(p(V )) is open in X , and by de�nition of quotient topology, p(V )
is open in X=G.

Let U be an open neighborhood of a pointx that satis�es the condition
(ii ) of De�nition 1.1.5 (the stabilizer is trivial), hence p� 1(p(U)) = [ � g(U)
is a disjoint union of open subsets. The restriction ofp on one of these open
subsets is continuous, open and bijective and so it is an homeomorphism.

If p: ~X ! X is a covering space, then the cardinality of the �berp� 1(x) is
locally constant over X . Since we are assumingX connected this cardinality
is constant overX , it is called the number of sheetsor degreeof the covering.
If the number of sheets is �nite, we say that the covering is�nite .

De�nition 1.1.8. Let p: ~X ! X be a covering space, alift of a map
f : Y ! X is a map ~f : Y ! ~X such that p ~f = f .

We now collect some results concerning uniqueness and existence of lifts.
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Lemma 1.1.9 (Uniqueness of the lift). Let p: ~X ! X be a covering space
and let Y be a connected space. Given any two continuous maps~f 0; ~f 1 : Y !
~X such that p ~f 0 = p ~f 1 the set W = f y 2 Y : ~f 0(y) = ~f 1(y)g is either empty

or all of Y .

Proof. Since Y is connected it su�ces to show that W is both open and
closed. Lety 2 Y , and let U be an elementary neighborhood ofx = p ~f 0(y) =
p ~f 1(y). By de�nition p� 1(U) = t Vj , assumeV0 and V1 are the components
of p� 1(U) which contain ~f 0(y) and ~f 1(y) respectively. By continuity there
exists a neighborhoodZ of y such that ~f i (Z ) � Vi , i = 0 ; 1.

If y 62W , then V0 \ V1 = ; and Z is a neighborhood ofy in W c and so
W is closed. Ify 2 W , then V0 = V1; sincep ~f 0(y) = p ~f 1(y) and that p is an
homeomorphism onV0, hence injective, we get that ~f 0 = ~f 1 on Z , and so
W is open.

De�nition 1.1.10. A path in X is a continuous mapf from I := [0 ; 1] to
X .

If � and � are two paths in X such that � (1) = � (0), we can de�ne the
composition path as follows:

(�� )( t) :=
�

� (2t) if t 2 [0; 1=2]
� (2t � 1) if t 2 [1=2; 1]

A path � : I ! X is called loop if � (0) = � (1).
The inverse path of � is the path � : I ! X de�ned by � (t) := � (1 � t).

Lemma 1.1.11 (Lifting paths) . Let p: ~X ! X be a covering space. Let

 : I ! X be a path with starting point x0, for any ~x0 2 p� 1(x0) there exists
a unique lift ~
 : I ! ~X with starting point ~x0.

Proof. Let f Uj gj 2 J be a open cover ofX by elementary neighborhoods; then
f 
 � 1(Uj )g is an open cover of the compact spaceI , so it is possible to �nd
a �nite sequence of points 0 = t0; t1; : : : ; tk = 1 such that for each k there
exists j k 2 J such that 
 ([tk ; tk+1 ]) � Uj k .

We construct the lift by induction on [0 ; tk ]. For k = 0 we set ~
 (0) = ~x0.
Now suppose to have de�ned ~
 k : [0; tk ] ! ~X with ~
 k (0) = ~x0 and that this
lift is unique. By construction 
 ([tk ; tk+1 ]) � Ui k and p� 1(Ui k ) is the disjoint
union of some open subsetsWj � ~X homeomorphic to Ui k via p. Among
these open subsets, letW be the one that contains ~
 k (tk ); we de�ne ~
 k+1 as
follows:

(~
 k+1 )( t) :=
�

~
 k+1 (t) if t 2 [0; tk ]
(pjW ) � 1(
 (t)) if t 2 [tk ; tk+1 ]

It follows immediately that ~
 k+1 is continuous, the uniqueness follows by
Lemma 1.1.9.
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Using the same strategy of Lemma 1.1.11 it is possible to prove the
following statement:

Lemma 1.1.12 ([Mas02, Lemma V.3.3]). Let p: ~X ! X be a covering space
and let 
 0; 
 1 : I ! ~X be paths in ~X which have the same starting point. If
p
 0 and p
 1 are homotopic, then
 0 and 
 1 are homotopic; in particular, 
 0

and 
 1 have the same end point.

As corollary of Lemma 1.1.12, we have the following theorem:

Theorem 1.1.13. Let p: ~X ! X be a covering space, let~x0 2 ~X and
x0 = p(~x0). Then, the induced homomorphism

p� : � 1( ~X; x 0) �! � 1(X; x 0)

p� [
 ] = [ p
 ]

is a monomorphism.

Proof. It is obvious that p� is a homomorphism. Let [
 ] 2 � 1( ~X; x 0) such
that p� [
 ] = [ c], with c the constant path of base pointx0, sop� 
 and c are
homotopic. 
 is the lift of p� 
 of base point ~x0 and the constant path ~c with
base ~x0 is the unique lift of c of base point ~x0, hence they are homotopic by
Lemma 1.1.12. Hence [
 ] = [~c] and sop� is injective.

Proposition 1.1.14. Let p: ~X ! X be a covering space, let~x0 2 ~X
and x0 = p(~x0). The number of sheets of the covering equals the index
of p� (� 1( ~X; ~x0)) in � 1(X; x 0).

Proof. For a loop g in X based at x0, let ~g be its unique lift based at ~x0.
A product h � g with [ h] 2 H := p� � 1( ~X; ~x0) lifts to ( gh � g) = ~h � ~g ending
at the same point as ~g since~h is a loop based at ~x0. Thus we may de�ne a
function � from the cosetsH [g] to p� 1(x0) by sendingH [g] to ~g(1). It is well
de�ned and the path-connectedness of~X implies that � is surjective, since
~x0 can be jointed to any point in p� 1(x0) by a path ~g projecting to a loop g
based atx0. To see that � is injective, we observe that� (H [g1]) = � (H [g2])
implies that g1g2 lifts to a loop in ~X based at ~x0 so [g1][g2]� 1 2 H an hence
H [g1] = H [g2].

Theorem 1.1.15 ([Mas02, Lemma V.4.2]). Let p: ~X ! X be a covering
space and letx0 2 X . Then, the subgroupsp� � 1( ~X; ~x) for ~x 2 p� 1(x0) are
exactly a conjugacy class of subgroups of� 1(X; x 0).

Theorem 1.1.16 (Existence of lifts, [Hat02, Proposition 1.33]).
Let Y be a connected and locally path-connected space. Letp: ~X ! X be
a covering space and letf : Y ! X be a continuous map. Lety0 2 Y ,
x0 = f (y0) and ~x0 2 p� 1(x0). There exists a unique lift ~f of f such that
~f (y0) = ~x0 if and only if

f � � 1(Y; y0) � p� � 1( ~X; ~x0) :
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De�nition 1.1.17. An isomorphism between covering spacesp1 : ~X 1 ! X
and p2 : ~X 2 ! X is a homeomorphism� : ~X 1 ! ~X 2 such that p1 = p2� .
In particular, the isomorphisms from the covering p: ~X ! X to itself are
said deck transformations or automorphisms of covering spaces, they form
a group that is denoted by A( ~X; p).

Obviously A( ~X; p) acts on the left on ~X . We have that this action has
no �xed points, indeed:

Lemma 1.1.18. Let ' 2 A( ~X; p). If ' 6= 1 then ' (q) 6= q for each q 2 ~X .

Proof. By contradiction, assume that ' (q) = q for someq 2 ~X . Applying
Theorem 1.1.9, we have that the unique lift ofp with ' (q) = q is the identity
and so ' = 1.

Using Lemma 1.1.9 and Theorem 1.1.16, we have immediately

Proposition 1.1.19. Two covering spacesp1 : ~X 1 ! X and p2 : ~X 2 ! X
are isomorphic via an isomorphism � : ~X 1 ! ~X 2 taking ~x1 2 p� 1

1 (x0) to
~x2 2 p� 1

2 (x0) if and only if p1� (� 1( ~X 1; ~x1)) = p2� (� 1( ~X 2; ~x2)) .

A consequence of Theorem 1.1.16 is that a simply-connected covering
space of a spaceX is also a covering space of every other covering space
of X . A simply connected covering space ofX is called a universal cover.
By Proposition 1.1.19 it is unique up to isomorphism, so we can call it the
universal cover.

1.1.1 The action of the group � 1(X; x 0) on the set p� 1(x0)

We now de�ne an action of the group � 1(X; x 0) on the set p� 1(x0) for any
x0 2 X ; i.e., we make� 1(X; x 0) operating on the left on the set p� 1(x0).

Let p: ~X ! X be a covering space and let
 be a path in X . By Lemma
1.1.11, there exists a unique lift ~
 of 
 , the inverse path of 
 , starting at a
given point of p� 1(
 (1)). In this way we get a well-de�ned map

L 
 : p� 1(
 (1)) �! p� 1(
 (0)) (1.1)

by sending the starting point ~
 (0) of each lift ~
 to its ending point ~
 (1).

Remark 1.1.20. The reason for taking a lift of 
 and not of 
 is that in this
way we have that L 
� = L 
 L � , otherwise we haveL 
� = L � L 
 .

By Lemma 1.1.12, L 
 depends only on the homotopy class of
 , this
means that if we restrict to loops base atx0 2 X , then the association

 7! L 
 gives a homomorphism from� 1(X; x 0) to the group of permutation
of p� 1(x0). By Remark 1.1.20, we get a left action of� 1(X; x 0) on the �ber
p� 1(x0).

Lemma 1.1.21. The action of � 1(X; x 0) on the �ber p� 1(x0) is transitive.
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Proof. Let ~x1 and ~x2 be points in p� 1(x0), since ~X is path-connected, there
exists a path 
 : I ! ~X such that 
 (0) = ~x1 and 
 (1) = ~x2. The path
� = p � 
 : I ! X is a loop based atx0. Since 
 is the unique lift of � with
starting point ~x2, we have

L � (~x1) = ~x2 :

Lemma 1.1.22. The stabilizer of ~x 2 p� 1(x0) for the � 1(X; x 0) action is
the subgroupp� (� 1( ~X; ~x)) .

Proof. The stabilizer of ~x is the subgroup of � 1(X; x 0) given by the classes
[� ] such that L � (~x) = ~x, in other words, the classes whose lift is a loop
based at ~x. So, if [� ] belongs to the stabilizer, then it is the image of a loop
based at ~x and so [� ] 2 p� � 1( ~X; ~x).

Conversely, let [
 ] 2 p� (� 1( ~X; ~x)), then [ 
 ] = p� [~
 ] with ~
 loop of base
point ~x, hence

L 
 (~x) = ~x

hence the stabilizer of ~x is p� (� 1( ~X; ~x)).

The following statement shows the connection between the group A( ~X; p)
of automorphism of a covering space and the action of� 1(X; x 0) on p� 1(x).

Proposition 1.1.23. For any ' 2 A( ~X; p), any 
 2 � 1(X; x ) and any
~x 2 p� 1(x), it holds:

' (L 
 (~x)) = L 
 (' (~x)) :

Proof. Let � be the unique lift of 
 in ~X with base point ~x, then L 
 (~x) is
the end point of � . Let consider the path ' � (� ) in ~X ; its starting point is
' (~x) and its end point is ' (L 
 (~x)). We observe that

p� (' � (� )) = ( p' ) � (� ) = p� (� ) = 
 ;

that is ' � (� ) is the lift of 
 with base point ' (~x), henceL 
 (' (~x)) is the end
point of ' � (� ) that is ' (L 
 (~x)).

1.1.2 Regular covering spaces and quotient spaces

De�nition 1.1.24. Let p: ~X ! X be a covering space and let ~x 2 p� 1(x).
If p� � 1( ~X; ~x) is a normal subgroup of� 1(X; x ), the covering is calledregular.

For a regular covering spacep: ~X ! X , it holds the following nice
description of A( ~X; p):

Lemma 1.1.25 ([Hat02, Proposition 1.39]). Let p: ~X ! X be a regular cov-
ering, then A( ~X; p) is isomorphic to the quotient group� 1(X; x )=p� (� 1( ~X; ~x))
for any x 2 X and any ~x 2 p� 1(x).
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By Theorem 1.1.15 and Proposition 1.1.19 we get

Lemma 1.1.26. Let p: ~X ! X be a covering space. The automorphism
group A( ~X; p) operates transitively on p� 1(x), x 2 X , if and only if the
covering is regular.

As consequence we have the following:

Proposition 1.1.27 (see [Mas02, Section 5.8]). Let p: ~X ! X be a regular
covering space, thenX is homeomorphic to ~X=A ( ~X; p).

Conversely

Theorem 1.1.28 ([Hat02, Proposition 1.40]). Let Y be a connected, locally
path-connected and letG be a group of homeomorphisms that acts properly
discontinuous.

Then p: Y ! Y=G is a regular covering andA(Y; p) �= G.

Corollary 1.1.29. In the same assumptions of Theorem 1.1.28, we have
the following short exact sequence:

1 �! � 1(Y; y0)
p��! � 1(Y=G; p(y0)) �! G �! 1 :

Proof. By Theorem 1.1.13p� is injective, while by Lemma 1.1.25 and The-
orem 1.1.28 we have� 1(X; x )=p� (� 1( ~X; ~x)) �= A( ~X; p) �= G.

1.2 Existence Theorem of covering spaces

Every covering spacep: ~X ! X induces a subgroupp� � 1( ~X; ~x) of � 1(X; p(~x))
for any point ~x 2 ~X .

In this section we want to investigate the \inverse" problem, that is:
given a subgroupK � � 1(X; x 0), is there a covering spacep: X K ! X such
that p� � 1(X K ; ~x) = K for a suitable choice of the base point ~x 2 X K ?

De�nition 1.2.1. A topological space X is semilocally simply connected
if any point x 2 X has a neighborhoodUx such that every loop in Ux is
homotopic in X to the constant path.

The following statement gives a positive answer to our question.

Theorem 1.2.2 ([Hat02, Proposition 1.36]). Let X be a topological space
which is path-connected, locally path-connected, and semilocally simply con-
nected. Then, for every subgroup ofK � � 1(X; x 0), there exists a covering
spacep: X K ! X such that p� (� 1(X K ; ~x)) = K for a suitable choice of the
base point ~x 2 p� 1(x0).
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Proof. The proof is divided in two steps: the �rst step is to show how con-
struct an universal cover ~X of X ; the second step explains how to construct
X K from ~X .
Step 1: we start de�ning ~X as set:

~X := f [
 ] j 
 is a path in X s.t. 
 (0) = x0g;

where, as usual, [
 ] denotes the homotopy class of
 .
The function p: ~X ! X sending [
 ] to 
 (1) is well de�ned and surjective
sinceX is path-connected.

In order to give a covering space, we have to de�ne a topology on ~X .
We make a few preliminary observations. LetU be the collection of path-
connected open setsU � X such that � 1(U) ,! � 1(X ) is trivial. Note
that if the map � 1(U) ,! � 1(X ) is trivial for one choice of base point in
U, it is trivial for all choices of base point since U is path-connected. A
path-connected open subsetV � U � U is also in U since the composition
� 1(V ) ,! � 1(U) ,! � 1(X ) will also be trivial. It follows that U is a basis for
the topology on X if X is locally path-connected and semilocally simply-
connected.

Given a set U 2 U and a path 
 in X from x0 to a point in U let

U[
 ] := f [
� ] j � is a path in U s.t. � (0) = 
 (1)g:

We note that U[
 ] depends only on the homotopy class [
 ]. We also observe
that the restriction of p to U[
 ] is surjective sinceU is path-connected and
injective since di�erent choices of � joining 
 (1) to a �xed u 2 U are all
homotopic in X .

If [ 
 0] 2 U[
 ] then U[
 ] = U[
 0], indeed if 
 0 = 
� then elements ofU[
 0]
have the form [
�� ] and hence lie inU[
 ], while elements in U[
 ] have the
form [
� ] = [ 
� �� ] = [ 
 0�� ] and hence lie inU[
 0].

This property can be used to show that the setsU[
 ] form a basis for a
topology on ~X . Let U[
 ] and V[
 0] be two sets and let [
 00] 2 U[
 ] \ V[
 0], we
have U[
 ] = U[
 00] and V[
 0] = V[
 00]. So if W 2 U is contained in U \ V and
contains 
 00(1) then W[
 00] � U[
 00] \ V[
 00] and [
 00] 2 W[
 00].

The bijection U[
 ] ! U given by the restriction of p is a homeomorphism
since it gives a bijection between the subsetsV[
 0] � U[
 ] and the setsV 2 U
contained in U. Namely, in one direction we havep(V[
 0]) = V and in the
other direction we have p� 1(V ) \ U[
 ] = V[
 0] for any [
 0] 2 U[
 ] with end
point in V sinceV[
 0] � U[
 0] = U[
 ] and V[
 0] maps onto V .

The previous paragraph implies that p: ~X ! X is continuous. We can
also deduce that this is a covering space since for �xedU 2 U, the sets
U[
 ] for varying [
 ] partition p� 1(U), because if [
 00] 2 U[
 ] \ U[
 0] then
U[
 ] = U[
 00] = U[
 0].

It remains only to show that ~X is simply-connected. For a point [
 ] 2 ~X
let 
 t be the path in X equals 
 on [0; t] and is stationary at 
 (t) on [t; 1].
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Then the function t 7! 
 t is a path in ~X that starts at [ x0], the homotopy
class of the constant path atx0, and ends at [
 ]. Since [
 ] was an arbitrary
point in ~X , this shows that ~X is path-connected. To show that � 1( ~X; [x0])
is trivial, it su�ces to show that the image of this group unde r p� is trivial
sincep� is injective. Elements in the image ofp� are represented by loops

at x0 that lift to loops in ~X based at [x0]. We have observed that the path
t 7! [
 t ] lifts 
 starting at [ x0], and for this lifted path to be a loop means
that [ 
 1] = [ x0]. Since
 1 = 
 , this says that [
 ] = [ x0], so
 is nullhomotopic
and the image ofp� is trivial.

This completes the construction of a universal cover space~X ! X .

Step 2: For points [
 ] and [
 0] in the simply-connected covering space~X
we de�ne [
 ] � [
 0] if 
 (1) = 
 0(1) and [
 
 0] 2 K . This is an equivalence
relation since K is a subgroup: it is re
exive sinceK contains the identity
element, symmetric sinceK is closed under inverses, and transitive sinceK
is closed under multiplication. Let X K be the quotient space of ~X obtained
by identifying [ 
 ] with [ 
 0] if [ 
 ] � [
 0], with the quotient topology. Note that
if 
 (1) = 
 0(1), then [
 ] � [
 0] if and only if [ 
� ] � [
 0� ]. This means that
if any two points in basic neighborhoodsU[
 ] and U[
 0] are identi�ed in X K

then the whole neighborhoods are identi�ed. Hence the natural projection
X K ! X induced by [
 ] 7! 
 (1) is a covering space.

If we choose for the base point ~x0 2 X K the equivalence class of the
constant path c at x0, then the image of p� : � 1(X K ; ~x0) ! � 1(X; x 0) is
exactly K . This is because for a loop
 in X based at x0, its lift to ~X
starting at [ c] ends at [
 ], so the image of this lifted path in X K is a loop if
and only if [
 ] � [c], or equivalently [
 ] 2 K .

Remark 1.2.3. If the subgroup K in Theorem 1.2.2 is normal, thenX K is a
regular covering.

Remark 1.2.4. If K is normal in � 1(X; x 0), then � 1(X; x 0) acts on the left on
X K in the following way: let t 2 � 1(X; x 0) and let [
 ] 2 X , then t � [
 ] := [ t
 ].
First of all we observe that this is equivalent to take the �na l point of the
unique lift of t
 of base point [c] 2 X K , the class of the constant path based
at x0.
The action is well-de�ned, indeed if 
 � 
 0 then t
 t
 0 = t(
 
 0)t. By as-
sumption 
 
 0 2 K that is normal in � 1(X; x 0) and so t(
 
 0)t 2 K .

s � (t � [
 ]) = s � [t
 ] = [ st
 ] = ( st) � [
 ]

proves that it is a left action. It is clear that 
 (1) = t
 (1), thus p([
 ]) =
p([t
 ]) = 
 (1).
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1.3 The monodromy of a covering space

Let p: ~X ! X be a covering space of degreed, so that all points have exactly
d preimages. Letx 2 X , by Proposition 1.1.14 we have thatd is exactly the
index of p� (� 1( ~X; ~x)) in � 1(X; x ) for ~x 2 p� 1(x).

Let us consider the �ber p� 1(x) = f y1; : : : ; ydg over x. To every loop

 in X based at x we can associate a mapL 
 as in (1.1). Next consider
the images L 
 (yi ), these also lie overx, and indeed they form the entire
�bre p� 1(x). Hence the mapL 
 permutes the indexesf 1; : : : ; dg and it is
obvious that it depends only on the homotopy class of
 , so we have a group
homomorphism

 : � 1(X; x ) �! S d

where S d denotes the symmetric group of all permutations ond elements.
This map is indeed a group homomorphism by Remark 1.1.20.

De�nition 1.3.1. The monodromy representationof a coveringp: ~X ! X
of �nite degree d is the group homomorphism : � 1(X; x ) �! S d de�ned
above.

Proposition 1.3.2. Let p: ~X ! X be a regular covering. Then the image
of the monodromy representation ofp is A( ~X; p).

Proof. Since the covering is regular we have thatX �= ~X=G, with G :=
A( ~X; p).
Let y 2 p� 1(x) and let 
 2 � 1(X; x ). By Lemma 1.1.11 there exists an
unique lift � of 
 with base point y. By construction there exists an element
h 2 G such that h(y) = L 
 (y), the uniqueness follows by Lemma 1.1.18. So
we have a map:

 0: � 1(X; x ) �! G :

The action of G on p� 1(y) is transitive so for each y0 2 p� 1(x) there
exists h 2 G and let y0 = h(y). Since C is path-connected, there exists a
path � from y0 to y. Let 
 := p� (� ) 2 � 1(X; x ), then y0 = L 
 (y) = h(y) and
so  0(
 ) = h.



Chapter 2

Branched coverings of
Riemann surfaces

From now on we work over the �eld of complex numbers:C.
We refer to [Har77, Chapter II] for the basic de�nition and pr operties

concerning algebraic varieties (irreducible, normal, dimension) and mor-
phism (proper, �nite) between algebraic varieties.

2.1 Branched, Galois and quasi-�etale coverings

In this section we assume that all the varieties are algebraic, irreducible and
normal.

De�nition 2.1.1. Let f : X ! Y be a �nite proper morphism between
varieties of the same dimension. Then the inverse image of every point is a
�nite set of points. We call such a map a branched covering.

De�nition 2.1.2. Let X be a variety and let G be a �nite subgroup of
Aut( X ). We say that f : X ! Y = X=G is a Galois covering.

De�nition 2.1.3. Let X and Y be varieties of the same dimension and
f : X ! Y be a regular map such that f (X ) � Y is dense. The degree of
the �eld extension f � (C(Y )) � C(X ), which is �nite, is called the degreeof
f :

deg(f ) := [ C(X ) : f � (C(Y ))] :

Proposition 2.1.4 ([Sha77, Theorem 6.3.3]). Let f : X ! Y be a �nite
map between varieties of the same dimension. Then for ally 2 Y it holds
jf � 1(y)j � deg(f ).

De�nition 2.1.5. Let f : X ! Y be a branched covering, letx 2 X and
y = f (x). If the number of preimages ofy is strictly less than deg(f ), then
we say that y is a branch point and that x is a rami�cation point . The set
of all branch points is called branch locus(or branch set).
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De�nition 2.1.6. Let f : X ! Y be a branched covering, letx 2 X and
y = f (x). Let V be a neighborhood ofy such that the connected component
U of f � 1(V ) that contains x, does not contain other preimages ofy. The
rami�cation index of x, denoted by r x , is the number of preimages inU for
a general point other than y in V .

Remark 2.1.7. For any unrami�ed point, its rami�cation index is r x = 1.

Proposition 2.1.8 ([Sha77, Theorem 6.3.4]). Let f : X ! Y be a branched
covering. Then the set of unrami�ed points in Y is an open set in the Zariski
topology.

Remark 2.1.9. If f : X ! Y is a branched covering without branch points
then f : X ! Y is a covering space ofY and in this case we say thatf is
�etale.

Quasi-�etale covering are special cases of branched coverings, and they
have been �rstly introduced in [Cat07].

De�nition 2.1.10 (cf. [Cat07, De�nition 1.1]) . Let f : Y ! X be a surjec-
tive morphism between varieties of the same dimension. We say that f is a
quasi-�etale morphisms if it is �etale in codimension 1, i.e. there existsZ � Y
of codimension� 2 such that f j(Y nZ ) : Y n Z ! f (Y n Z ) is �etale.

Lemma 2.1.11 ([Cat07, Remark 3.1]). Let f : Y ! X be a quasi-�etale
morphism. If Y is smooth andX is normal, then f is �etale.

2.2 Some facts on Riemann surfaces

In this section we recall some facts on Riemann surfaces, we refer to [Mir90]
for further details.

By proposition 2.1.8, in the compact Riemann surfaces case the branch
locus is �nite.

Lemma 2.2.1 ([Mir90, pages 48-49]). Let f : X ! Y be a non constant
holomorphic map between compact Riemann surfaces. Thenf is a branched
covering.

For compact Riemann surfaces it holds the well known \Hurwitz's for-
mula":

Theorem 2.2.2 (Hurwitz's formula, see [Mir90, Theorem II.4.16]).
Let f : X ! Y be a non constant holomorphic map between compact Rie-
mann surfaces. Then

2g(X ) � 2 = deg(f )(2g(Y ) � 2) +
X

x2 X

(r x � 1) :
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Let C be a compact Riemann surface, we want to investigateC=G where
G is a �nite group acting holomorphically and faithfully on C.

Remark 2.2.3. We �rst observe that we can always assume thatG acts
faithfully. Indeed, if K / G is the normal subgroup of the elements that
act trivially, then we can replace G by G0 := G=K and obviously we have
C=G �= C=G0.

From now on we always assume thatG acts faithfully and holomorphically,
so that G embeds in Aut(C).

Proposition 2.2.4 ([Mir90, Proposition III.3.1]) . Let C be a Riemann sur-
face, let G / Aut( C) and let p 2 C. Suppose that the stabilizer subgroup
Stab(p) is �nite. Then Stab(p) is cyclic.

Proof. Fix a local coordinate z centered at p. For any g 2 Stab(p), write
g(z) =

P 1
n=1 an (g)zn ; this power series has no constant term sinceg(p) = p

and a1(g) 6= 0 since g is an automorphism ofX an hence it has multiplicity
one at every point.

Consider the function a1 : Stab(p) ! C� . Note that it is a homomor-
phism of groups: a1(gh) is calculated by computing the power series for
g(h(z)), so that a1(gh) = a1(g)a1(h).

To �nish the proof it su�ces to prove that this map is injectiv e, since
the only �nite subgroups of C� are cyclic. Let g 2 ker(a1), i.e. g(z) = z +
(higher order terms); we have to show that in fact g(z) = z. Suppose that
this is not the case and let m � 2 be the exponent of the �rst non zero
higher order term of g, therefore g(z) = z + azm mod zm+1 with a 6= 0. It
is not di�cult to prove by induction that gk = z + kazm mod zm+1 . But
since the stabilizer is �nite, this element must have �nite o rder; hence for
somek, gk (z) = z. It follows that for some k, ka = 0 hence a = 0 and so g
is the identity.

Proposition 2.2.5 ([Mir90, Proposition III.3.2]) . Let C be a Riemann sur-
face, let G be a �nite group acting faithfully and holomorphically. Then the
points of C with non trivial stabilizer are discrete.

Proof. Suppose that there exists a sequencef pkg converging to p such that
eachpi has a nontrivial element gi �xing it. Since G is �nite, we may pass
to a subsequence and assume that eachpi is �xed by the same nontrivial
element g that is continuous and so it �xes the limit point p too. Since g
and the identity 1 G agree on setS � C with an accumulation point, they
must be equal (see [Mir90, Identity Theorem, Theorem II.1.35]).

Remark 2.2.6. In the same assumptions of the previous proposition, ifC is
compact, then only �nitely many points have non trivial stab ilizer.
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Proposition 2.2.7 ([Mir90, Proposition III.3.3]) . Let C be a Riemann sur-
face and let G / Aut( C) �nite. Fix a point x 2 C. Then there is an open
neighborhoodU of x such that:

� U is invariant under the action of StabG(x): g(u) 2 U for every g 2 G
and u 2 U;

� U \ g(U) = ; for every g =2 StabG(x);

� the natural map � : U=StabG(x) ! C=G, induced by sending a point
in U to its orbit, is a homeomorphism onto an open subset ofC=G;

� no point of U exceptx is �xed by any element ofStabG(x).

Using the previous statement, it is possible to de�ne a complex structure on
C=G. We get the following:

Theorem 2.2.8 ([Mir90, Theorem III.3.4]) . Let C be a Riemann surface
and let G / Aut( C) �nite. Then C=G is a Riemann surface, the quotient
map f : C ! C=G is holomorphic of degreejGj and rp(f ) = jStabG(p)j for
any p 2 C.

2.2.1 The Riemann Existence Theorem

Let C be a Riemann surface and letG / Aut( C) �nite. By Theorem 2.2.8
we can de�ne a structure of Riemann surface onC0 := C=G. Let

f : C �! C0

be the quotient map; it is a Galois covering. Let B := f p1; : : : ; pr g be the
branch locus off . Let X := C0n B and C0 := f � 1(X ) thus the restriction

f 0 : C0 ! X

of f to C0 is a covering space.
The aim of this section is to reverse this construction. We start from a

Riemann surfaceC0, r points x1; : : : ; xr of C0 and an �etale covering

F : C ! C0n f x1; : : : ; xr g:

We will show that F can be extended to a Galois coveringf : C ! C0, and
that the Riemann surface C is unique up to isomorphism.

Proposition 2.2.9. Let f 0: X n A ! X 0 be a holomorphic map between
Riemann surfaces, whereA � X is �nite. If there exists a continuous map
f : X ! X 0 that extendsf 0 then f is holomorphic.
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Proof. Let x 2 A and let ' : U ! C and  : V ! C local charts in X and
X 0 respectively, such that x 2 U and f (x) 2 V . The map

 � f � ' � 1 : ' (U \ f � 1(V )) ! C

is holomorphic in ' (U \ f � 1(V )) n' (x) and it is bounded in a neighborhood
of ' (x). Using the Riemann extension theorem we conclude that the map
is holomorphic also in ' (x), thus f is holomorphic in x.

Let D := f z 2 C : jzj < 1g be the unitary open disc and letD � := D nf 0g
be the punctured disc. In order to prove the Riemann existence theorem we
need the following:

Theorem 2.2.10 ([For81, Theorem 5.10]). Let X be a Riemann surface
and let s: X ! D � be a connected covering space of degreem < + 1 .
Then there exists a biholomorphic map : X ! D � such that the following
diagram commutes:

X
 //

s !!BB
BB

BB
BB

D �

pm}}zz
zz

zz
zz

D �

where pm (z) = zm .

Theorem 2.2.11 (Riemann existence theorem). Let C and C0 be Riemann
surfaces and letA � C0 be a �nite subset. Let

f : C �! C0n A

be a proper �etale covering.
Then f can be extended to a branched covering ofC0, that is there exist

a Riemann surfaceC, a proper holomorphic map

F : C �! C0

and a biholomorphic map

' : C n F � 1(A) �! C

such that the following diagram commutes:

C

f
��

C n F � 1(A) �• ////'oo C

F
��

C0n A �• //C0

Moreover C is unique up to isomorphisms.
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Proof. For each x 2 A let (Ux ;  x ) a chart centered in x, i.e.  x (x) = 0;
moreover we can assume that x (Ux ) �= D and that Ux1 \ Ux2 = ; if x1 6= x2.
Let U �

x := Ux n f xg, since f is proper we have that f � 1(U �
x ) has a �nite

number of connected componentsV �
x;i :

f � 1(U �
x ) = V �

x;1 t : : : t V �
x;N ;

where eachV �
x;i ! U �

x is a connected covering of �nite degreemi . By Theo-
rem 2.2.10, for eachi = 1 ; : : : ; N there exists a biholomorphismhi : V �

x;i !
D � such that the following diagram of holomorphic maps commutes:

V �
x;i

h i //

f
��

D �

pm i

��
U �

x
 
x

//D �

with pm i (z) = zm i .
Adding a point yx;i to each V �

x;i we get setsVx;i := V �
x;i [ f yx;i g on which

we consider the natural topology that makes the natural extension of hi to
a map Vx;i ! D (sending yx;i into 0) an homeomorphism. We de�ne

C := C [ f yx;i ; i = 1 ; : : : ; N gx2 A :

On C there exists an unique topology such that the inclusionC ,! C is
continuous and for any W neighborhood ofx then

f yx;i g [ (f � 1(W ) \ V �
x;i )

is a neighborhood ofyx;i . This topology is Hausdor�.
We de�ne F : C ! C0 with F (z) = f (z) for each z 2 C and F (yx;i ) = x.

It is easy to prove that F is proper. The charts (Vx;i ; hi ) de�ned above are
compatible with the charts of C and so they de�ne a complex structure on
C. The covering

f : C �! C0n A

extends to a continuous map

F : C �! C0

that is holomorphic because of Proposition 2.2.9. SinceC nF � 1(A) = C, we
can choose as' : C n F � 1(A) �! C the identity. This prove the existence.

We construct C in such a way that for each point x 2 A, F � 1(x) has
cardinality equal to the number of connected components ofF � 1(U �

x ). Let
F1 : C1 ! C0 be a map satisfying the conditions of the statement. Then
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F � 1(U �
x ) = F � 1

1 (U �
x ) and so, sinceF1 is proper, F � 1

1 (x) contains at least a
point for each connected component ofF � 1(U �

x ).
F � 1

1 (x) does not contains other points, because if it contains an other
point z it must be isolated and soC1 is not a Riemann surface in a neigh-
borhood of z. So we can extend the identity mapId : C ! C to a bijective
continuous map � : C ! C1 sending each pointyx;i in the unique accumula-
tion point for V �

x;i in F � 1
1 (U �

x ). By Proposition 2.2.9, this map is holomorphic
and hence an isomorphism.

2.2.2 Finiteness of Aut( C)

Lemma 2.2.12 (Linearization of the action, [Mir90, Corollary III.3.5]) .
Let C be a Riemann surface and letG / Aut( C) �nite. Fix a point p 2 C
with non trivial stabilizer of order m. Let g 2 Stab(p) be a generator of the
stabilizer subgroup. Then there is a local coordinatez on C centered at p
such that g(z) = �z , where � = exp( 2�i

m ).

Theorem 2.2.13 ([Mir90, Lemma III.3.6]) . Let C be a compact Riemann
surface and letG / Aut( C) �nite. Let f : C ! Y = C=G. Then for every
branch point y 2 Y there is an integer r � 2 such that f � 1(y) consists of
exactly jGj=r points of C, and each of these preimagesf has multiplicity r .

Proof. Suppose that y 2 Y is a branch point of the map f . Let f � 1(y) =
f x1; : : : ; xsg; they form a single orbit for the action of G on C. Moreover
their stabilizers subgroups are conjugates and in particular they have the
same order, sayr . The number s of points in this orbit is the index of the
stabilizer, and sos = jGj=r.

Applying Theorem 2.2.2 to the previous statement, we get thefollowing:

Corollary 2.2.14. Let C be a compact Riemann surface and letG be a
�nite subgroup of Aut( C) . Let f : C ! Y = C=G. Suppose that there are
k branch points y1; : : : ; yk in Y , with f having multiplicity r i at the jGj=ri

points aboveyi . Then

2g(C) � 2 = jGj(2g(C=G) � 2) +
kX

i =1

jGj
r i

(r i � 1)

= jGj
�

2g(C=G) � 2 +
kX

i =1

�
r i � 1

r i

��

In next chapters we will consider only Riemann surfaces of genus g � 2,
hence the assumption of �niteness ofG/ Aut( C) is automatic; indeed, study-
ing the Weierstrass points of Riemann surfaces, Schwartz in1890 proved

Theorem 2.2.15 (Schwartz, see [Sch90]). Any compact Riemann surface
of genusg � 2 has a �nite number of automorphisms.
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Moreover, for Riemann surfaces of genus at least 2, Corollary 2.2.14
leads to a bound on the order of the groupsG which act holomorphically
and e�ectively.

Theorem 2.2.16 (Hurwitz's Theorem, [Mir90, Theorem III.3.9]) . Let C be
a compact Riemann surface of genusg � 2 and let G / Aut( C). Then

jGj � 84(g � 1) :

Proof. SinceG is �nite, by Corollary 2.2.14:

2g � 2 = jGj(2g0� 2 + R) ;

where g0 is the genus ofC=G and R =
P k

i =1 (1 � 1=ri ), r i � 2.
Suppose �rst that g0 � 1. If R = 0, so there is no rami�cation to the

quotient map, then g0 � 2, which implies that jGj � g � 1. If R 6= 0, this
force R � 1=2, then 2g0� 2 + R � 1=2 and sojGj � 4(g � 1).

Let us assume thatg0 = 0, hence 2g� 2 = jGj(R � 2) which forcesR > 2.
In this case k � 3; we now assume thatr1 � r2 � : : : � r k .

Let k = 3, then only r1 can be equal to 2; in this case ifr2 = 3 then
r3 � 7 and R � 2 + 1=42. If r2 = 4 then r3 � 5 and R � 2 + 1=20; if r2 � 5
then for any r3 we get R � 2 + 1=10.
If r1 = 3, we only exclude the caser1 = r2 = r3 = 3: in this case R = 2,
otherwise R � 2 + 1=12 (see [Mir90, Lemma III.3.8]).
If r1 = 4, then R � 2 + 1=4.

Let k = 4 and r1 = r2 = r3 = r4 = 2 then R = 2; if r i � 3 for at least
one i then R � 2 + 1=6.

Finally, if k � 5 then R � 2 + 1=2.
So the minimal value for R is obtained with r1 = 2, r2 = 3, r3 = 7: we

get that R � 2 � 1=42. ThereforejGj � 84(g � 1).

If we make stronger assumptions onG we get the following results:

Proposition 2.2.17 (Nakajima's Theorem, see [Nak87]). Let C be a com-
pact Riemann surface of genusg � 2 and let G be an abelian subgroup of
Aut( C). Then

jGj � 4g + 4 :

Proposition 2.2.18 (Wiman's Theorem, see [Wim95]). Let C be a compact
Riemann surface of genusg � 2 and let G be a cyclic subgroup ofAut( C).
Then

jGj � 4g + 2 :
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2.3 The appropriate orbifold homomorphism of a
Galois covering

We start this section with some de�nitions of group theory.
Given integers g � 0 and m1; : : : ; mr > 1 the orbifold surface group of

signature (or type) (g; m1; : : : ; mr ) is de�ned as:

T(g; m1; : : : ; mr ) := ha1; b1; : : : ; ag; bg; c1; : : : ; cr j
cm1

1 ; : : : ; cm r
r ;

Q g
i =1 [ai ; bi ] � c1 � � � cr i :

For r = 0 we have the surface groupof genusg

� g := ha1; b1; : : : ; ag; bg j
gY

i =1

[ai ; bi ]i

that is the fundamental group of a Riemann surface of genusg.
For g = 0 we get the polygonal group

T(m1; : : : ; mr ) := hc1; : : : ; cr j cm1
1 ; : : : ; cm r

r ; c1 � � � cr i : (2.1)

Let H be a �nite group, we say that an homomorphism

 : T(g; m1; : : : ; mr ) �! H

is an appropriate orbifold homomorphism if it is surjective and  (ci ) has
order mi .

De�nition 2.3.1. Let H be a �nite group and let g; m1; : : : ; mr as above. A
generating vectorfor H of type (g; m1; : : : ; mr ) is a (2g+ r )-tuple of elements
of H :

V := ( d1; e1; : : : ; dg; eg; h1; : : : ; hr )

such that V generatesH ,
Q g

i =1 [di ; ei ] � h1 � h2 � � � hr = 1 and there exists a
permutation � 2 S r such that ord(hi ) = m� ( i ) for i = 1 ; : : : ; r . If such a V
exists, then H is said to be (g; m1; : : : ; mr )-generated.

In the particular case g = 0, we have the following:

De�nition 2.3.2. Let H be a �nite group. A spherical system of generators
of H of type (or signature) (m1; : : : ; mr ) is a set of generatorsf h1; : : : ; hr g
of H such that h1 � � � hr = 1 and there exists a permutation � 2 S r such
that ord( hi ) = m� ( i ) for i = 1 ; : : : ; r .

Remark 2.3.3. To give a generator vector of signature (g; m1; : : : ; mr ) for a
�nite group H is equivalent to give an appropriate orbifold homomorphism
 : T(g; m1; : : : ; mr ) ! H .
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Let C be a compact Riemann surface of genusg(C) � 2 and let G /
Aut( C); we denote byC0 the compact Riemann surfaceC=G, and by g(C0)
its genus. Let B := f p1; : : : ; pr g be the branch locus off : C ! C0. Let
X := C0 n B and C0 := f � 1(X ) thus the restriction f 0 : C0 ! X of f to
C0 is a covering space. We observe thatG ,! Aut( C0) considering the
restriction of each automorphism to C0 and that C0=G �= X . The action of
G on C0 is properly discontinuous, hencef 0 : C0 ! X is a regular covering
by Theorem 1.1.28.

Let us �x a point of B , say p1, and let f q1; : : : ; qt g be its �ber f � 1(p1).
By Proposition 2.2.4 we have that H := Stab( q1) �= Zn for some integer
n � 2. By construction we have that there exist g2; : : : ; gt 2 G such that
gi q1 = qi .

Lemma 2.3.4. There is a G-equivariant bijection

f � 1(p1)  ! f gHg

where f gHg is the set of the left cosets ofH .

Proof. Two elements g; g0 2 G are in the same coset if and only if there
exists h 2 H such that gh = g0, that is g0(q1) = g(hq1) = g(q1). Hence

qj 7�! f g 2 G j gq1 = qj g

gives a bijection.

Lemma 2.3.5. gi Hg � 1
i

�= StabG(qi ).

Proof. Stab(qi ) � gi Hg � 1
i , since (gi Hg � 1

i )gi H = gi HH = gi H .
For the other inclusion we note that if g 2 Stab(qi ), then ggi H = gi H and
so there existsh 2 H such that ggi = gi h. Henceg = gi hg� 1

i 2 gi Hg � 1
i .

Hence the stabilizers of theqi are isomorphic in particular they have all the
same cardinality n = jGj

t .
Let p 2 X and g0 := g(C0). We have

� 1(C0; p) = h� 1; � 1; : : : ; � g0; � g0 j
g0

Y

i =1

[� i ; � i ]i :

Removing the points of B , we have that we cannot contract loops around
the pi and so we have that the fundamental group changes as follows:for
each i let 
 i be a loop based atp going once aroundpi . Up to relabel the
points in B , we have that

� 1(X; p) = h� 1; � 1; : : : ; � g0; � g0; 
 1; : : : ; 
 r j
g0

Y

i =1

[� i ; � i ] � 
 1 � � � 
 r i :
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Sincef 0 : C0 ! X is regular, by Proposition 1.3.2 we get a surjective map

� : � 1(X; p) �! G :

For i = 1 ; : : : ; r let hi := � (
 i ) and let mi be the cardinality of the stabilizers
of the points in f � 1(pi ). For j = 1 ; : : : ; g0 let aj := � (� j ) and bj := � (� j ).
We get

Lemma 2.3.6. f a1; b1; : : : ; ag0; bg0; h1; : : : ; hr g is a generating vector of type
(g0; m1; : : : ; mr ).

Proof. It is obvious that
Q g0

i =1 [ai ; bi ]�h1 � � � hr = 1 since � is a homomorphism
and

Q g0

i =1 [� i ; � i ] � 
 1 � � � 
 r = 1.
The non trivial part of the statement is that ord( hi ) = mi . It is equiv-

alent to the fact that 
 i
d lifts to a closed path for d = mi and does not for

0 < d < m i .
Let V 0 be an open neighborhood ofpi such that V := V 0 n f pi g is a

elementary neighborhood forf 0. Let v 2 V , let � a path in X from p to v
and let � a loop in V around pi such that 
 1 = � �� � 1. It is clear that if we
prove that � d lifts to a closed path for d = mi and does not for 0< d < m i ,
we are done.

Let qj 2 f � 1(pi ), by Proposition 2.2.7, there exists an open neighborhood
U invariant under the action of Stab(qj ) = hhi �= Zm i . So, up to shrinking
V 0, we can assume that each componentUj 3 qj of f � 1(V 0) is invariant under
the action of Stab(qj ). By Lemma 2.2.12, we can choose local coordinate
w centered in q such that h(w) = �w with � = exp( 2�i

m i
), and so for each

point q 2 f � 1(pi ) we can choose appropriate local coordinatew centered
in q in such a way that f (w) = wm i . We note that we can assume that
v = ( 1

2)m i and that � is the loop � (t) = exp(2�it )
2m i . We can also assumej = 1;

let z = exp( 2�i
m i

) be a primitive nth -root of the unity, hence the preimages

of v are the points f � 1(v) \ U1 = f zk

2 gk . We have that � lifts to paths

~� k (t) = zk
exp(2�it

m i
)

2
from zk

2 to zk +1

2 . Hence� m i lifts to a closed path and

it does not happen for any integer in f 1; : : : ; mi � 1g.

We get that every Galois coveringf : C ! C=G �= C0 with C and G as
above, induces an appropriate orbifold homomorphism

 : T(g(C0); m1; : : : ; mr ) �! G

or equivalently, a generating vector of type (g(C0); m1; : : : ; mr ) for G.

2.4 From the appropriate orbifold homomorphism
to the Galois covering

In this section we show how to invert the construction of the previous section.
In other words, given the compact Riemann surfaceC0, the �nite group G
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and the appropriate orbifold homomorphism

 : T(g(C0); m1; : : : ; mr ) �! G

we construct a compact Riemann surfaceC such that C0 = C=G.
Let g0 := g(C0) be the genus ofC0 and

� 1(C0; p) = h� 1; � 1; : : : ; � g0; � g0; j
g0

Y

i =1

[� i ; � i ]i :

Let (a1; b1; : : : ; ag0; bg0; h1; : : : ; hr ) be a generating vector of type (g0; m1; : : : ; mr )
for G. Fix B := f p1; : : : ; pr g � C0 and choosep 2 X := C0n B . For each j ,
let 
 j be a geometric loop aroundpj such that

Q g0

i =1 [� i ; � i ] �
Q


 j = 1, so

� 1(X; p) = h� 1; � 1; : : : ; � g0; � g0; 
 1; : : : ; 
 r j
g0

Y

i =1

[� i ; � i ] �
Y


 j = 1 i :

The vector (a1; b1; : : : ; ag0; bg0; h1; : : : ; hr ) induces an epimorphism:

� : � 1(X; p) �! G


 i 7�! hi

� j 7�! aj

� j 7�! bj

let K be its kernel:

1 �! K �! � 1(X; p) ��! G �! 1 :

By Theorem 1.2.2, we can associate to the normal subgroupK / � 1(X; p) a
Galois covering spacef : X K �! X such that � 1(X K ; y) �= K .

By Remark 1.2.4 we have that � 1(X; p) acts on the left on X K : let
t 2 � 1(X; p) and let [
 ] 2 X K , then t � [
 ] := [ t
 ]. Since for � 2 K we
have [
 ] = � [
 ], we have a left G-action on X K : let h 2 G then h � [
 ] :=
[� � 1(h)
 ]. This action is well de�ned, indeed if � � 1(h) and � � 1(h0) are two
di�erent preimages of h, then they di�er for some k 2 K ; hence [� � 1(h)
 ] =
[k� � 1(h)
 ], indeed � � 1(h)
 (k� � 1(h)
 ) = k 2 K .

G acts faithfully:

[
 ] = h[
 ] = [ � � 1(h)
 ] () 
 
� � 1(h� 1) 2 K

() � � 1(h� 1) 2 K

() (h� 1) = 1 K

Using Theorem 2.2.11, we extend the �etale coveringf : X K ! X = C0nB
to a Galois coveringF : C ! C0 of Riemann surfaces.
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Now �x a point in B , say p1, and let W be a small open neighborhood
of p1 in C0, so that W n f p1g is isomorphic to a punctured disc. Let D �

1 t
� � � t D �

s = f � 1(W n f p1g), where the D �
i are pairwise disjoint.

Let � be a loop going aroundp1 once inW of base pointp0and let 
 : I ! X
be a path from p to p0, such that 
 1 is homotopic to 
� 
 .

Claim 1. f � 1(W n f p1g) has jG : hh1ij connected components.

Proof. By construction of X K [
 ] 2 f � 1(p0), let [ 
 0] be another point in
f � 1(p0). We have that [
 ] and [
 0] belong to the same componentD �

i if and
only if there exists a path � : I ! X K from [
 ] to [
 0] such that � := f � �
is contained in W . In other words, � is a loop in W with base point p0, so
� = � k and [
 0] = [ 
� ]. Now we have� (
� 
 ) = hk

1 and so to each point of
f � 1(p0) \ D �

i corresponds an unique element ofS := hh1i . Conversely, to
each power of
 1 is associated a point inD �

i : [
 k
1 
 ]. These points are exactly

m1 = ord( h1), since we have that

[
 a
1 
 ] = [ 
 b

1
 ] () 
 a� b
1 2 K () 1K = � (
 a� b

1 ) = ha� b
1

() a �= b mod m1

Hence there arem1 elements in each component, hence there arejG : hh1ij
connected components.

From this proof it follows also that [ 
 ] is in the sameD �
i of [
� k ] for each

k 2 Z.
Let S := hh1i be the cyclic subgroup ofG generated byh1, a straight-

forward computation shows that f [
� k ]gk = S � [
 ]

Claim 2. The correspondenceh 7! h � [
 ] is a bijection betweenG and
f � 1(p0).

Proof. We start proving the surjectivity, if [ � ] 2 f � 1(p) then let h = � (� 
 ),
henceh � [
 ] = [ � � 1(h)
 ] = [ � ].

For the injectivity we consider h and h0 such that h[
 ] = h0[
 ] that is
� � 1
 
� � 1(h0� 1) = � � 1(hh0� 1) 2 K , hencehh0� 1 = 1 K .

Claim 3. To be in the sameD �
i corresponds to be in the same left cosetgS.

Proof. To each h 2 G is associated an unique point inf � 1(p0): [� � 1(h)
 ].
Let h and h0 be two elements ofG, we have that hS = h0S if and only if
there exists k such that h� (
� k 
 � 1) = h0 that is h� (
� k 
 � 1)[
 ] = h0[
 ]. In
other words, [� � 1(h0)
 ] = [ � � 1(h)
� k 

 ] = [ � � 1(h)
� k ], that is equivalent
to be in the same connected component, by the argument of Claim 1.

We have just proved
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Lemma 2.4.1. There is a bijection

F � 1(pi )  ! f kSg

yj  ! kj S

where S := hhi i .

Moreover

Lemma 2.4.2. StabG(yj ) = kj Sk� 1
j .

Proof. The proof is exactly the same as Lemma 2.3.5.

Summarizing we get the following statement:

Theorem 2.4.3 (cf. [BCP11, Theorem 4.2]). A �nite group G acts as a
group of automorphisms on a compact Riemann surfaceC of genusg if and
only if there are natural numbersg0; m1; : : : ; mr and an appropriate orbifold
homomorphism

� : T(g0; m1; : : : ; mr ) �! G

such that the Riemann-Hurwitz relation holds:

2g � 2 = jGj
�

2g0� 2 +
rX

i =1

�
1 �

1
mi

��
:

If this is the case, theng0 is the genus ofC0 = C=G and the Galois covering
f : C ! C0 is branched inr points p1; : : : ; pr with branch indexesm1; : : : ; mr ,
respectively.

Remark 2.4.4. The appropriate orbifold homomorphism � is induced by the
monodromy of the Galois �etale G-covering f 0 : C0 ! C0

0 given by f , where
C0

0 is the Riemann surface obtained fromC0 by removing the branch points
of f , and C0 := f � 1(C0

0). In particular, � (
 i ) generates the stabilizer of a
point in f � 1(pi ).

If we denote by hi 2 G the image of 
 i under � , then

�( h1; : : : ; hr ) := [ a2 G [ i 2 Z f ahi
1a� 1; : : : ; ahi

r a� 1g;

is the set of stabilizers for the action ofG on C.

2.5 Lifting automorphisms to the universal cover

Let C0 be a Riemann surface of genusg0, let f p1; : : : ; pr g � C0, let p 2 X :=
C0n f p1; : : : ; pr g and let

� : T(g0; m1; : : : ; mr ) �! G
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be an appropriate orbifold homomorphism. Let f : C ! C0 be the Galois
covering of C0 obtained by these data, as seen in the previous section.

Next consider u : � ! C, the universal cover ofC; as seen in the proof
of Theorem 1.2.2, the elements of � are the homotopy classes of paths in C
with base point y = [ p], the constant path in X of base point p.

By Remark 1.2.4, we have that � 1(C; y) acts on � as follows: let � 2
� 1(C; y) and [� ] 2 �, � � [� ] = [ �� ], that is equivalent to take the �nal point
of the unique lift of �� (that is a path in C) with base point [x0], the class
of the constant path in C with base point y.

Let C0 := f � 1(X ) so f 0 : C0 ! X is an �etale covering. Let g be the
genus ofC, we recall that

� 1(C0; y) �= ha1; b1; : : : ; ag; bg; c1; : : : ; cr j
gY

i =1

[ai ; bi ] � c1 � � � cr i :

Plugging the holes, the fundamental group changes: by Van Kampen's The-
orem we have to quotient by the normal subgroup generated by the ci , each
ci is a simple loop around a hole; they are nullhomotopic inC:

� 1(C; y) �= ha1; b1; : : : ; ag; bg j
gY

i =1

[ai ; bi ]i = � g :

Hence we have the following commutative diagram with exact rows and
columns:

1

��

1

��
1 //hhci ii

ci 7! 

m i
i //

��

hh
 m i
i ii //

��

1

��
1 //� 1(C0; y)

��

(f 0 ) � //� 1(X; p) � //

��

G //1

1 //� 1(C; y) //

��

F //

��

G //

��

1

1 1 1

wherehhAii denotes the normal subgroup generated byA. By construction,
it follows that

F = � 1(X; p)=hh
 m i
i ii

= h� 1; � 1; : : : ; � g0; � g0
 1; : : : ; 
 r j
Y

[� i ; � i ] � 
 1 � � � 
 r ; 
 m j
j i =: T

thus we have proved:
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Lemma 2.5.1. The sequence:

1 ! � 1(C; y) ! T ! G ! 1:

is exact.

Lemma 2.5.2. The action of � 1(C; y) on � extends to an action ofT on
� .

Proof. Let [� ] 2 �, w := u([� ]) 2 C, and z := f (w) 2 C0; let t 2 T. Suppose
that w = b
 is the class of the path
 (path in C0 based atp).
We have de�ned t � w = t � b
 = bt
 = w0, which is the �nal point of the unique
lift � of t
 with base point y = bp: the constant path based atp. Now we lift
� to the unique lift with base point [ x0], the constant path in C with base
point y; we de�ne t � [� ] as the �nal point of this lift. Using the uniqueness
of the lift, it is easy to see that this is a well-de�ned left act ion and that on
� 1(C; y) it coincides with the action de�ned before.

Remark 2.5.3. We observe that we already know howT acts on C and
u(t � [� ]) = t � u([� ]).

We will use this construction in Section 7.1 to compute the fundamental
group of the surfaces that we construct.

The next step is to understand which points of � have non-trivi al sta-
bilizer for the action just described:

Lemma 2.5.4. Let [� ] 2 � then

StabT([� ]) =
�

f 1g if f (u([� ])) =2 f p1; : : : ; pr g
� h
 i i � � 1 if f (u([� ])) = pi ; for some � 2 T

Proof. Let [� ] 2 �, w := u[� ] = b
 and z := f (w); let t 2 T. If t � [� ] = [ � ],
then we have also thatt � b
 = b
 .
Now there are two cases: eitherz 62 fp1; : : : ; pr g or z = pi for somei .

If z 62 fp1; : : : ; pr g then w is not a rami�cation point for f , so the T acts
as � 1(X; p) that acts freely on C0 and so Stab(w) = f 1g and sot = 1.

If z = pi for some i , we have that w is a rami�cation point for f , by
Lemma 2.4.2, we get that StabG(w) = kSk� 1 where S = hhi i and k 2 G,
but we recall that G acts as follows:g[
 ] = [ � � 1(g)
 ] = ( �
 d

i � )[
 ] for some
� 2 T and d 2 f 1; : : : ; mi � 1g, and so StabT(w) = � h
 i i � � 1.



Chapter 3

Generalities on surfaces

In this chapter we recall some de�nitions and properties about divisors,
intersection theory on surfaces and birational transformations. Some of
them are taken from [Bea96], but we refer also to [Har77] and [GH78] for
further details and discussions.

We also recall the Enriques-Kodaira classi�cation and we give some prop-
erties of surfaces of general type (see also [BHPV04, Chapter VI]).

3.1 Intersection theory on surfaces

Let S be a smooth projective complex variety of dimensionn. We recall that
the Picard group ([Har77, page 143]) ofS is the group of isomorphism classes
of invertible sheaves (or line bundle) onS, and it is denoted by Pic(S). To
every divisor D on S there corresponds an invertible sheafOS(D ) and a
meromorphic global sections unique up to scalar multiplication such that
div(s) = D . The map D 7! O S(D ) identi�es Pic( S) with the group of linear
equivalence classes of divisors onS, see [Har77, Section II.6] for further
details.

Let 
 p
S be the sheaf of the holomorphicp-forms; let ! S = 
 n

S be the line
bundle of the holomorphic n-forms on S. A canonical divisor is any divisor
K S such that OS(K S) = ! S.

Let X be another smooth variety and let f : S ! X be a morphism. We
can de�ne the inverse image with respect tof of an invertible sheaf (see
[Har77, Section II.5]), to get a homomorphism

f � : PicX �! PicS :

If f is a morphism of surfaces which is generically �nite of degree d, then
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we de�ne the direct image f � C of an irreducible curve C by setting

f � C =

8
>><

>>:

0 if C is contracted to a point by f

rf (C) if f (C) is a curve on S, and wherer is the degree
of C ! � (C) induced by f

We de�ne f � D for all divisors D on S by linearity. It follows by de�nition
that

f � f � D = dD for all divisors D on S.

De�nition 3.1.1. Let C; C0 be two irreducible distinct curves on a surface
S, let x 2 C \ C0, and let Ox be the local ring (see [Har77, page 16]) ofS at
x. If f and g are equation ofC and C0 in Ox , the intersection multiplicity
of C and C0 at x is de�ned to be

mx (C \ C0) = dim C Ox=hf; g i :

By Nullstellensatz the ring Ox=hf; g i is a �nite-dimensional vector space
over C. We note that mx (C \ C0) = 1 if and only if f and g generate the
maximal ideal, i.e. form a system of local coordinates in a neighborhood of
x: in this caseC and C0 are said to betransverse at x.

De�nition 3.1.2. If C and C0 are two distinct irreducible curves on a
surfaceS, the intersection number C:C0 is de�ned by:

C:C0 =
X

x2 C\ C0

mx (C \ C0) :

We de�ne the intersection number on divisors extending by linearity the
previous one and we get the following:

Proposition 3.1.3 ([Bea96, Theorem I.4]). For L; L 0 2 Pic(S), de�ne

L:L 0 := � (OS) � � (L � 1) � � (L 0� 1) + � (L � 1 
 L 0� 1) :

Then : is a symmetric bilinear form on Pic(S), such that if C and C0 are
two distinct irreducible curves on S then

OS(C):OS(C0) = C:C0:

Remark 3.1.4. If D , D 0 are divisors onS, we write D:D 0 for OS(D ):OS(D 0).
By the previous statement, we can calculate this product by replacing D or
D 0 by a linear equivalent divisor.

Lemma 3.1.5 ([Bea96, Lemma I.6]). Let C be a non-singular irreducible
curve on S. For all L 2 Pic(S), we have

OS(C):L = deg(L jC ) : (3.1)
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De�nition 3.1.6. If D is any divisor on the surfaceS, we say that D:D ,
usually denoted by D 2, is the self-intersection of D .

In order to compute C2 it would be useful the following remark:

Remark 3.1.7. Let C be a non singular irreducible curve on a surfaceS.
Then C2 = degC (NC;S ), where NC;S is the normal bundle to C in S.

Lemma 3.1.8 ([Bea96, Proposition I.8]). Let C be a smooth curve and let
f : S ! C be a surjective morphism. LetF be a �bre of f . Then F 2 = 0 .

Proposition 3.1.9 (Projection formula, [Bea96, Proposition I.8]). Let S0

be a surface, letg: S ! S0 be a generically �nite morphism of degreed, let
D and D 0 divisors on S0. Then

g� D:g � D 0 = d(D:D 0) :

3.2 Riemann-Roch Theorem

We start this section recalling the Serre duality theorem:

Theorem 3.2.1 (Serre duality theorem, [Har77, Section II.7]). Let M be a
compact complex manifold of dimensionn, and let L be a line bundle onM .
Then for each 0 � j � n the vector spaces

H j (M; L ) and H n� j (M; ! M 
 L � 1)

are dual. In particular,

� (L ) = ( � 1)n � (! M 
 L � 1) :

Using the previous theorem we can prove the Riemann-Roch theorem.

Theorem 3.2.2 (Riemann-Roch). Let S be a smooth surface, letL a line
bundle onS, it holds:

� (L ) = � (OS) +
1
2

(L 2 � L:! S) :

Proof. Let us computeL � 1:L 
 ! � 1
S . By de�nition of the intersection product

we get

L � 1:L 
 ! � 1
S = � (OS) � � (L ) � � (! S 
 L � 1) + � (! S) :

By Serre duality, we have� (OS) = � (! S) and � (L ) = � (! S 
 L � 1), therefore
we get:

L � 1:L 
 ! � 1
S = 2( � (OS) � � (L )) :

Using the bilinearity of the intersection form we get

L � 1:L 
 ! � 1
S = L � 1:L + L � 1:! � 1

S = � L 2 + L:! S

and this concludes the proof.
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This theorem is usually written in terms of divisors:

h0(D ) + h0(K S � D ) � h1(D ) = � (OS) +
1
2

(D 2 � D:K S) :

As consequence of the Riemann-Roch theorem we have the following:

Lemma 3.2.3 (Genus formula, [Bea96, Lemma I.15]). Let C be an ir-
reducible curve on a smooth surfaceS. The geometric genus ofC (=
h1(C; OC )) is given by g(C) = 1 + 1

2(C2 + C:K S).

The genus formula can be written

2g(C) � 2 = ( C + K S):C = deg(K S + C) jC :

This formula can also be deduced by (3.1) using the adjunction formula:

Proposition 3.2.4 (Adjunction formula, [GH78, page 147]). Let M be a
compact complex manifold, letV � M be a smooth analytic hypersurface.
Then

K V = ( K M + V) jV :

3.3 Birational transformation and minimality

Let S be a smooth surface and letp 2 S. Take a neighborhoodU of p such
that there exist local coordinates x; y at p (i.e. curves x = 0 and y = 0
which meet transversely atp). Up to shrink U, we can assume thatp is the
only point of U in the intersection of the two curves. We de�ne Û as the
subvariety of U � P1 given by the equation xY � Xy = 0, where X; Y are
the homogeneous coordinates ofP1.

It is obvious that the projection � : Û ! U is an isomorphism over the
point of U where at most one coordinate vanishes, while� � 1(p) = f pg � P1.
Let Ŝ be the surface obtained by passinĝU and S n f pg along Û n � � 1(p) �=
U n f pg.

De�nition 3.3.1. We call � : Ŝ ! S the blow-up ofS in p. E := � � 1(p) �= P1

is the exceptional curveof the blow-up.

Remark 3.3.2. The restriction of � to � � 1(S n f pg) is an isomorphism onto
S n f pg.

Let � : Ŝ ! S be the blow-up in p 2 S, and consider an irreducible curve
C on S passing throughp with multiplicity m. The closure of� � 1(C n f pg)
in Ŝ is an irreducible curve Ĉ which is called the strict transform of C.

Lemma 3.3.3 ([Bea96, Lemma II.2]). Let � : Ŝ ! S be the blow-up ofS in
p. Let C be an irreducible curve onS passing throughp with multiplicity m,
then

� � C = Ĉ + mE :
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Proposition 3.3.4 ([Bea96, Proposition II.3]). Let � : Ŝ ! S be the blow-up
of a point p 2 S. Let E be the exceptional curve, then

� there exists an isomorphismPic(S) � Z ! Pic(Ŝ)
de�ned by (D; n ) 7! � � D + nE .

� Let D be a divisor onS. Then � � D:E = 0 and E 2 = � 1.

Lemma 3.3.5. Let � : Ŝ ! S be the blow-up of a pointp 2 S. The canonical
divisor of Ŝ is given by� � K S + E and K 2

Ŝ
= K 2

S � 1.

Proof. Since the canonical sheaf on̂S n E and S n f pg is the same, we have
K Ŝ = � � K S + nE , for some integern. Using the adjuction formula we get

� 2 = 2g(E) � 2 = ( K Ŝ + E):E =) K Ŝ:E = � 1:

It follows that � 1 = K Ŝ:E = � � K S:E + nE 2 = 0 � n and son = 1.
The formula for K 2 follows immediately using Proposition 3.3.4 and

Proposition 3.1.9.

We now recall some statements taken from [Bea96] that relateblow-ups
and rational maps.

Theorem 3.3.6 (elimination of indeterminacy, [Bea96, Theorem II.7]). Let
' : S 99KX be a rational map from a surface to a projective variety.

Then there exists a surfaceS0 and a morphism � : S0 ! S which is the
composition of a �nite number of blow-ups, and a morphismf : S0 ! X
such that the diagram

S0

�

••~~
~~

~~
~ f

  AA
AA

AA
A

S '
//_______ X

commutes.

Theorem 3.3.7 (universal property of blowing-up, [Bea96, Proposition
II.8]) . Let f : S ! X be a birational morphism of surfaces, and suppose
that the rational map f � 1 is not de�ned at the point p of X .

Then f factorizes as

f : S
g

�! X̂ ��! X

where g is a birational morphism and � is the blow-up atp.

Theorem 3.3.8 ([Bea96, Theorem III.11]). Let f : S ! S0 be a birational
morphism of surfaces.

Then there is a �nite sequence of blow-ups� k : Sk ! Sk� 1 (k = 1 ; : : : ; n)
and an isomorphismu: S ! Sn such that f = � 1 � : : : � � n � u.
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Corollary 3.3.9 ([Bea96, Corollary II.12]). Let ' : S0 99KS be a birational
map of surfaces.

Then there are a surfaceŜ and morphisms f : Ŝ ! S0 and g: Ŝ ! S
which are the composition of a �nite number of blow-ups and isomorphisms
such that the diagram

Ŝ
f

����
��

��
�� g

��??
??

??
??

S '
//_______ X

commutes.

De�nition 3.3.10. Let S1 and S2 be two surfaces, we say thatS1 bira-
tionally dominates S2 if there exists a birational morphism S1 ! S2.

A smooth surfaceS is minimal if every birational morphism S ! S0 is
an isomorphism.

Proposition 3.3.11 ([Bea96, Proposition II.16]). Every smooth surface bi-
rationally dominates a minimal surface.

De�nition 3.3.12. Let S0 ! S be a birational morphism between smooth
surfaces. IfS is minimal, we say that S is the minimal model of S0.

Remark 3.3.13. By Theorem 3.3.8 we have that a surface is minimal if and
only if it contains no exceptional curve.

Let E be an exceptional curve, by de�nition E �= P1 and by Proposition
3.3.4 E 2 = � 1. The next important statement gives the converse:

Theorem 3.3.14 (Castelnuovo's contractibility criterion, [Bea96, Theor em
II.17]) . Let S be a surface and letE � S be a curve isomorphic toP1 with
E 2 = � 1. Then E is an exceptional curve onS.

Proposition 3.3.15 ([BHPV04, Proposition III.2.2]) . An irreducible curve
C � S is an exceptional curve if and only if

C2 < 0 and K S:C < 0:

3.4 Numerical invariants

To every smooth projective surfaceS we can associate some birational in-
variants (see [Bea96, Proposition III.20]):

q(S) = h1(S;OS)

pg(S) = h0(S;OS(K S)) = h2(S;OS) (by Serre duality)

Pn (S) = h0(S;OS(nK S)) for n � 1
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q(S) is called the irregularity of S, pg = P1 is the geometric genus, and the
Pn are called theplurigenera of S. We have � (OS) = 1 � q(S) + pg(S).

We denote by e(S) the topological Euler-Poincar�e characteristic of S:
e(S) =

P
(� 1)i bi where bi = dim C H i (S;C) are the Betti's numbers. By

Poincar�e duality, we get that

b0 = b4 = 1 and b1 = b3 : (3.2)

e(S) is not a birational invariant, indeed if � : S0 ! S is the blow-up of S in
p, then e(S0) = e(S) + 1, since we replace a point (e(p) = 1) with a rational
curve E (e(E) = 2).

The invariants q(S) and b1(S) are related by the following equation
([Bea96, Fact III.19]):

q(S) = h0(S; 
 1
S) =

1
2

b1(S) ; (3.3)

in particular q is a topological invariant.
The self-intersection of the canonical divisorK 2

S is a topological (but not
birational, see Lemma 3.3.5) invariant, indeed by Topological index theorem
(see [BHPV04, Theorem I.3.1]),

K 2
S = 3 � (S) + 2 e(S) ;

where � (S) is the index of S (see [BHPV04, page 22]) that is a topological
invariant.

Theorem 3.4.1 (Noether's formula, [GH78, page 438]). Let S be a smooth
surface:

� (OS) =
1
12

(K 2
S + e(S)) :

It follows that � (OS) (and so pg(S)) is a topological invariant.

Lemma 3.4.2 ([Bea96, Lemma VI.3]). Let p: S0 ! S be an �etale map
of degreed between surfaces. ThenK 2

S0 = d � K 2
S, e(S)0 = d � e(S) and

� (S0) = d � � (S).

Proof. The last equation follows from the �rst two using Noether's formula.
The �rst follows immediately from projection formula, sinc e K S0 = p� K S:

To prove the second equation we start choosing a triangulation of S,
then e(S) =

P
(� 1)i f i (S), where f i (S) is the number of faces of dimension

i . Since the faces are simply connected, their inverse imagesin S0 triangulate
it. Clearly f i (S0) = d � f i (S) and we are done.
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3.5 The Enriques-Kodaira classi�cation

Let X be any compact complex manifold, let! X be its canonical bundle.
To X one associates itscanonical ring:

R(X ) =
M

m� 0

H 0(! 
 m
X ) :

This ring is commutative; let ( tr (R(X )) be its degree of trascendency over
C.

De�nition 3.5.1. Let X be a compact complex manifold. We de�ne the
Kodaira dimension � (X ) as follows:

� (X ) =
�

�1 if R(X ) �= C
tr (R(X )) � 1 otherwise

The Kodaira dimension is a birational invariant, and for a compact com-
plex manifold X , � (X ) can assume the values:�1 , 0, . . . , n = dim X .

Remark 3.5.2 ([Har77, page 421]). Let X be a smooth compact complex
variety, let K be a canonical divisor ofX , let � mK be the rational map from
X to the projective space associated with the linear systemjmK j. The
Kodaira dimension of X is equal to the maximal dimension of the images
� mK (X ), for n � 1.

De�nition 3.5.3. A variety X is said to be of general type if its Kodaira
dimension is maximal: � (X ) = dim X .

Theorem 3.5.4 ([BHPV04, Theorem I.7.2] or [Uen75, Theorem 8.1]).
Let X be a smooth compact complex variety. Then

� � (X ) = �1 if and only if Pm (X ) = 0 for all m � 1.

� � (X ) = 0 if and only if Pm (X ) = 0 or 1 for m � 1, but not always 0.

� � (X ) = k, for 1 � k � dim X if and only if there are real constants
� > 0 and � > 0 such that �m k < P m (X ) < �m k for m large enough.

Corollary 3.5.5. Let X be a smooth compact complex variety of dimension
k. X is of general type if and only if

lim
m!1

Pm (X )
mk > 0

Remark 3.5.6 ([Bea96, Example VII.2]). For a curve it is easy to give the
Kodaira dimension explicitly. Let C be a smooth curve of genusg. Then

� (C) = �1 () g = 0

� (C) = 0 () g = 1

� (C) = 1 () g � 2
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Proposition 3.5.7 ([Bea96, Proposition VII.4]). Let C and D be two smooth
curves, let S = C � D . Then

� if C or D is rational, then S is ruled: � (S) = �1 .

� if C and D are elliptic, then � (S) = 0 .

� if C is elliptic and g(D) � 2 then � (S) = 1 .

� if g(C) � 2 and g(D) � 2then � (S) = 2 .

Proof. If p1 and p2 are the projection of S to C and D respectively, we
have ! S

�= p�
1! C 
 p�

2! D ([Har77, Section II.8]) and H 0(S;OS(nK S)) �=
H 0(C; ! 
 n

C ) 
 H 0(D; ! 
 n
D ) ([Bea96, Fact III.22]) , so that the rational map

� nK : S 99KPN factorizes as

� nK : C � D
(� nK C ;� nK D )

99K PN 0
� PN 00 s

,! PN

where s is the Segre embedding. The proposition follows from Remark
3.5.6.

The previous proposition is a particular case of a more general theorem:

Theorem 3.5.8 ([Uen75, page 69]). If X 1 and X 2 are connected compact
complex manifolds, then� (X 1 � X 2) = � (X 1) + � (X 2).

Theorem 3.5.9. Let A be a compact complex manifold, and letG be a �nite
group acting on A, let S ! X be the minimal resolution of the singularities
of X := A=G. Then � (A) � � (S).

Proof. Let us consider the following commutative diagram

Y

�
��

f //A

��
S //X

where Y is the �bred product of A and S over X .
We note that � is a branched covering and soK Y = � � K S + D, with D
e�ective divisor on Y ; hence for each integerm � 1 we haveH 0(mK S) ,!
H 0(mK Y ), and so h0(mK Y ) � h0(mK S). Let k := � (S); if k � 0 it follows
immediately by Theorem 3.5.4 that � (Y ) � � (S); otherwise it is enough to
note that

lim
m!1

Pm (Y )
mk � lim

m!1

Pm (S)
mk

in order to conclude that � (Y ) � � (S). Since f is a birational map we get
� (A) = � (Y ) � � (S) and we are done.
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As already noted, the Kodaira dimension of an-dimensional compact
complex manifold can assume the values�1 ; 0; 1; : : : ; n. In the casen = 2,
the surfaces in the classes� = �1 and � = 0, and to a lesser extent
those with � = 1 can be classi�ed in detail. This classi�cation is called the
\Enriques-Kodaira classi�cation" and is collected in the fo llowing result.

Theorem 3.5.10 ([BHPV04, Theorem VI.1.1]) . Every compact complex
surface has a minimal model in exactly one of the ten classes of Table 3.1.
This model is unique (up to isomorphism) except for the surfaces with min-
imal model in classes 1) and 3).

� (X ) Class ofX K 2
X e(X )

�1 1) minimal rational surfaces 8 or 9 4 or 3
2) minimal surfaces of class VII � 0 � 0
3) ruled surfaces of genusg � 1 8(1 � g) 4(1 � g)

0 4) Enriques surfaces 0 12
5) bi-elliptic surfaces 0 0
6) Kodaira surfaces 0 0
7) K3 surfaces 0 24
8) tori 0 0

1 9) minimal properly elliptic surfaces 0 � 0
2 10) minimal surfaces of general type > 0 > 0

Table 3.1:

A rational surface is a surface birational to P2. The only minimal sur-
faces of this type areP2 and the Hirzebruch surfaces �n = PP1 (OP1 �O P1 (n)),
with n = 0 ; 2; 3; : : : (P1 � P1 = � 0).

Theorem 3.5.11 (Castelnuovo's Rationality Criterion, [Bea96, Theorem
V.1]). Let S be a surface withq = P2 = 0 . Then S is rational.

Remark 3.5.12. The condition P2 = 0 implies pg = 0. In analogy with the
case of the curves, it seems more natural to replace the hypothesis of the
statement with the weaker assumption q = pg = 0, but in 1896 Enriques
constructed a surface withq = pg = 0 and � 1 = Z2 and so not rational.

A surface of class VII is a surfaceX with � (X ) = �1 and b1(X ) = 1,
moreover q = 1. These surfaces are neither algebraic nor K•ahler. Exam-
ples of this type of surfaces are Hopf surfaces ([Hop48]) andInoue surfaces
([Ino74]).

Ruled surfaces of genusg have a smooth morphism to a curve of genus
g whose �bres are linesP1.

Theorem 3.5.13 (Enriques, [Bea96, Corollary VI.18]). Let S be a smooth
projective complex surface, the following are equivalent:
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� S is ruled;

� Pn = 0 for all n;

� P12 = 0 .

An Enriques surfaceX is a surface withq(X ) = 0 and non-trivial canon-
ical K X , but with 2 K X trivial.

A bi-elliptic surface (or hyperelliptic surface) is a surfaceX with b1(X ) =
2 and an elliptic �bration over an elliptic curve. Any such su rface is the
quotient of a product of two elliptic curves by a �nite abelia n group.

Kodaira surfaces are usually divided into two subtypes: the primary
Kodaira surfaces are surfaces withb1 = 3 and an elliptic �bration over an
elliptic curve; the secondary Kodaira surfaces are surfaces which admits
a primary Kodaira surface as unrami�ed covering of degree� 2. These
surfaces are not algebraic.

A K3 surface X is a surface with q = 0 and trivial canonical bundle.
They are all K•ahler varieties.

A torus is a surface isomorphic to the quotient ofC2 by a lattice of real
rank 4. A torus is di�eomorphic to S1 � S1 � S1 � S1 so its fundamental
group is Z4.

A properly elliptic surface is a surface admitting an elliptic �bration with
� (X ) = 1. A very simple example is provided by the product of two curve,
one elliptic and the other of genus� 2.

3.6 Surfaces of general type

Following the Enriques-Kodaira classi�cation we can divide compact com-
plex surfaces in four main classes according to their Kodaira dimension:
�1 , 0, 1, 2. Nowadays the �rst three classes are much better understood
than the last one.

De�nition 3.6.1. A surface X is said to beof general typeif � (X ) = 2.

Remark 3.6.2 (BHPV, Corollary 6.5). Every smooth surface of general type
is projective.

Theorem 3.6.3 ([BHPV04, Theorem VII.2.2]) . If X is a minimal surface
of general type, thenK 2

X > 0.

Theorem 3.6.4 ([Bea96, Theorem X.4]). If X is any surface of general
type, then e(X ) � 0 and � (OS) � 1.

By Noether's formula, the condition e(S) � 0 is equivalent to K 2
S �

12� (OS). For a surface of general type Bogomolov and Miyaoka, and inde-
pendently Yau proved the stronger
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Theorem 3.6.5 ([BHPV04, Theorem VII.4.1]) . Let S be a smooth surface
of general type. Then

K 2
S � 9� (OS) : (BMY)

In literature are well-known other inequalities that involv e the invariants of
minimal surfaces of general type:

Theorem 3.6.6 ([BHPV04, Theorem VII.3.1]) . Let S be a smooth surface
of general type. Then

K 2
S � 2pg(S) � 4 (N)

if q > 0 =) K 2
S � 2pg(S) (D)

The inequality (N) is due to Noether, while (D) is due to Debarre.
In the following picture there are drawn the limit lines of th e inequalities

in the ( �; K 2) plane.

S

D

N

BMY

K 2

�

K 2 = 1

� = 1

Figure 3.1:

The above listed inequalities show that the pair (� (OS); K 2
S) for a surfaceS

of general type gives a point with integral coordinates in the convex region
limited by the \bold" piecewise linear curves. Moreover if q > 0 this point
cannot be at the \right" of the line D . The line labeled by S is the Severi
line K 2 = 4 � .
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In order to explain the meaning of this line we have to introduce the
Albanese variety and the Albanese morphism.

Let X be a connected compact K•ahler manifold. ToX is associated a
complex torus of dimensiong = h1;0(X ): the Albanese varietyAlb( X ) as fol-
lows. Let w1; : : : ; wg be a basis forH 0(X; 
 1

X ), so that w1; : : : ; wg; w1; : : : ; wg

form a basis ofH 1(X; C). Furthermore, let h1; : : : ; h2g be a basis forH1(X; Z)
modulo torsion. We consider the vectors

vj =
� Z

h j

w1; : : : ;
Z

h j

wg

�
2 Cg ; j = 1 ; : : : ; 2g :

It can be proved that they are linearly independent over R (see [BHPV04,
page 46]).

The vectors v1; : : : ; v2g span an integral lattice � in Cg and thus deter-
mine a complex torusCg=�. Replacing the hj 's or the wk 's by another basis,
we obtain the same torus, up to isomorphism. This torus is Alb(X ).

Fixing a point x0 2 X de�ne the holomorphic map � : X ! Alb( X )
by � (x) =

� Rx
x0

w1; : : : ;
Rx

x0
wg

�
. Changing x0 amounts to change� by a

translation of Alb( X ). This map is called the Albanese morphism.
The Albanese morphism is a very useful tool for studying irregular sur-

faces, in particular:

De�nition 3.6.7. A variety X is called of maximal Albanese dimensionif
the image of the Albanese morphism has dimension dimX .

This is the general case for a surface, since otherwise the Albanese morphism
is a �bration onto a smooth curve of genusq(X ).

We can now explain the Severi line:

Theorem 3.6.8 ([Par05]). If S is a smooth complex minimal surface of
maximal Albanese dimension thenK 2

S � 4� .

3.6.1 Surfaces of general type with � = 1

There is no hope at the moment to achieve a classi�cation of the whole class
of the surfaces of general type. Since for a surface in this class the Euler
characteristic of the structure sheaf � is strictly positive, one could hope
that a classi�cation of the boundary case � = 1 is more a�ordable. We
report here some progresses in this direction, we refer to [BCP06] for more
details.

pg = q � 4

Theorem 3.6.9 (Beauville, [Bea82]). If S is a minimal surface of general
type, then pg � 2q � 4. Moreover, if pg = 2q � 4, then S is a product of a
curve of genus2 with a curve of genusq � 2.
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Corollary 3.6.10. If pg = q, (i.e. � (OS) = 1 ), then pg = q � 4. Moreover,
minimal surfaces of general type withpg = q = 4 are exactly the products of
two genus 2 curves.

Hence this case is clear, we just mention thatK 2
S = 8.

pg = q = 3

These surfaces have been studied in [CCML98], [Pir02] and [HP02] and they
are completely classi�ed:

Theorem 3.6.11. A minimal surface of general type with pg = q = 3 has
K 2 = 6 or K 2 = 8 and, more precisely,

� if K 2 = 6 , S is the symmetric square of a genus 3 curve;

� otherwiseS = ( C2 � C3)=� , whereCg denotes a curve of genusg and �
is an involution of product type acting on C2 as an elliptic involution
(i.e. , with elliptic quotient), and on C3 as a �xed point free involution

pg = q = 2

This case is still far from being classi�ed, but Ciliberto and Mendes Lopes
in [CML02] classify the surfaces in this class with non-birational bicanonical
map (not presenting the standard case).

De�nition 3.6.12. A surface S of general typepresents the standard case
(for the non birationality of the bicanonical map), if there exists a dominant
rational map onto a curve f : S 99KB whose general �bre is irreducible of
genus 2.

Theorem 3.6.13. If S is a minimal surface of general type withpg = q = 2
and non birational bicanonical map not presenting the standard case, then
S is a double covering of a principally polarized abelian surface (A; �) , with
� irreducible. The double coveringS ! A is branched along a divisor
B 2 j 2� j, having at most double points. In particular K 2

S = 4 .

Other results on the classi�cation of minimal surfaces of general type
with pg = q = 2 are due to Zucconi and Penegini (see [Zuc03] and [Pen11]).
They produced a complete classi�cation of surfaces withpg = q = 2 and
K 2 = 8 which are isogenous to a product of curves (see De�nition 4.1.2);
as a by-product, they obtained the classi�cation of all surfaces with these
invariant such that the image of the Albanese morphism is a curve (see
Section 4.5).
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pg = q = 1

In this case the classical inequalities give 2� K 2 � 9, and the Albanese
morphism is a map onto an elliptic curve, in particular all th ese surfaces
have a �bration with base a curve of genus 1.

We denote by M K 2
S ; pg ; q the projective moduli scheme of surfaces of

general type with �xed K 2
S; pg; q.

Theorem 3.6.14. It holds:

� M 2;1;1 is irreducible and unirational and it has dimension 7, and the
Albanese map of all these surfaces is a genus 2 �bration.

� M 3;1;1 has 4 connected components, all unirational of dimension 5.
The Albanese map is a genus 3 �bration for the surfaces in one of
those components, while it is a genus 2 �bration for the others.

� M j; 1;1 is non empty for j = 4 ; : : : ; 8.

The casesK 2 = 2 ; 3 are completely classi�ed. In [Cat81b] the author
proves that all the surfaces with K 2 = 2 are double covers of the symmetric
square of their Albanese curve.
In [CC91] the authors study the caseK 2 = 3. They show that the Albanese
map could be either a genus 2 or 3 �bration. The caseg = 3 was classi�ed
in [CC93], while in [CP06] was classi�ed the caseg = 2.

Some examples of surfaces of withpg = q = 1 and K 2 = 4 ; 5 are due to
Catanese ([Cat99]), and these examples are constructed as bidouble covers.

Rito ([Rit07]) and Polizzi ([Pol08]) constructed some examples of sur-
faces of general type withpg = q = 1 and K 2 = 6. Also the �rst example
with K 2 = 7 is due to Rito ([Rit10b]).

The caseK 2 = 8 was studied by Polizzi ([Pol06]) who consider the case
of surfaces having bicanonical map of degree 2. He could prove that all these
surfaces are isogenous to a product (see De�nition 4.1.2) and they form three
components of the moduli space, one of dimension 5 and two of dimension
4.

It remains unsettled the existence of surfaces of general type with pg =
q = 1 and K 2 = 9.

Other results towards the classi�cation of minimal surfaces of general
type with pg = q = 1 are due to Carnovale, Mistretta and Polizzi; we
comment these results in Section 4.5.

pg = q = 0

This class of surfaces is one of the most complicated and intriguing classes of
surfaces of general type. By the standard inequalities we have 1 � K 2 � 9.

The �rst examples of surfaces in this class are due to Campedelli ([Cam32])
and Godeaux ([God34b]) in the 30's, and in their honor minimal surfaces of
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general type with K 2 = 1 are called numerical Godeaux surfaces, and those
with K 2 = 2 are called numerical Campedelli surfaces.

Concerning the classi�cation of minimal surfaces of general type with
pg = q = 0, there have been many recent progresses. Nowadays there are
examples for each value of 1� K 2 � 9.

If K 2
S = 9, then S is a quotient of the unit ball in C2 by a discrete

group acting freely ([Yau77],[Yau78]). This surfaces are called fake pro-
jective planes: they have the same Betti numbers ofP2, but they are not
birational to it. Thanks to the new works of Prasad and Yeung and of Steger
and Cartright ([PY07], [PY10], [CS10]) asserting that the moduli space con-
sists exactly of 100 points, corresponding to 50 pairs of complex conjugate
surfaces (cf. [KK02]), this case is completely classi�ed.

Let K 2
S = 8. In this case, is the bidisk in C2 the universal cover ofS?

If this is the case, then a complete classi�cation should be possible. The
classi�cation has already been accomplished in [BCG08] forthe reducible
case where there is a �nite �etale covering which is isomorphic to a product
of curves, see Section 4.5 for further details.

There are many examples, due to Kuga and Shavel ([Kug75], [Sha78]) for
the irreducible case, which yield rigid surfaces, but a complete classi�cation
of this second case is still missing.

Let K 2
S = 1. In this case it is known that the algebraic fundamental

group is �nite:

Theorem 3.6.15 (cf. [Rei78]). Let S be a numerical Godeaux surface, then
^� 1(S) �= Zm for 1 � m � 5.

The �rst example of a numerical Godeaux surfaces with ^� 1
�= Z5 is due to

Godeaux: see [God34b]. M. Reid in [Rei78] constructs the �rst examples of
numerical Godeaux surfaces with ^� 1

�= Zm for m = 3 ; 4. The �rst examples
with �̂ 1

�= Z2 or ^� 1 trivial, are due to R. Barlow, see [Bar84] and [Bar85]
respectively.

Moreover there is the following conjecture:

Conjecture (M. Reid) . The moduli space of the canonical models of min-
imal surfaces of general type with� = 1 and K 2 = 1, has exactly �ve irre-
ducible components corresponding to each choice� 1 = Zm for 1 � m � 5.

By [Rei78], it is known that the conjecture holds for m � 3.

Let K 2
S = 2. Also in this case the algebraic fundamental group ^� 1(S) is

�nite:
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Theorem 3.6.16 (cf. [Rei], [Xia85]). Let S be a numerical Campedelli sur-
face, then j ^� 1(S)j � 9.

The question whether all these groups can occur has been openfor a
while. By the works of many authors the answer is a�rmative:

Theorem 3.6.17. Let S be a numerical Campedelli surface, then^� 1(S) is
either the quaternion group or an abelian group of order at most 9.
All these cases are possible.

By the works of Mendes Lopes, Pardini and Reid ([Rei], [MLP08], [MLPR09]),
the cases of order 8 and 9 are classi�ed. In particular, they show that the
topological fundamental group equals the algebraic fundamental group and
that cannot be the dihedral group D4 of order 8. In [Nai99] the author proves
that the symmetric group S 3 of order 6 cannot occur as the fundamental
group of a numerical Campedelli surface.

The last open case,Z4, is realized by our examples (see Section 7.1) and
by a completely di�erent construction found independently by [PPS10a].
We note that the topological fundamental group of [PPS10a] is not known.

In [BCP11], two question about the topological fundamental group has
been posed:

Question 1. Let S be a numerical Campedelli surface.

� Is � 1(S) �nite? In particular, j� 1(S)j � 9?

� Does every group of order� 9 exceptS 3 and D4 occur as topological
fundamental group (not only as algebraic fundamental group)?

We mention (cf. [BCP11]) that after our constructions, the only open
case left for the latter question isZ6.

The constructions of minimal surfaces of general type withpg = 0 and
K 2 � 7 available in literature are listed in Table 3.2 and Table 3.3 (cf.
[BCP11, Table 1, 2, 3]). We remark that we have included in thetables also
the surfaces constructed in [BCGP08] and [BP10]; in Section4.5, we will
comment with more details these results.
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Table 3.2: Minimal surfaces of general type withpg = 0 and K 2 � 3 available
in the literature

K 2 � 1 � alg
1 H1 References

1 Z5 Z5 Z5 [God34a][Rei78][Miy76]
Z4 Z4 Z4 [Rei78][OP81][Bar84][Nai94] [BP10]
? Z3 Z3 [Rei78]

Z2 Z2 Z2 [Bar84][Ino94][KLP10] [BP10]
? Z2 Z2 [Wer94][Wer97]

f 1g f 1g f 0g [Bar85][LP07]
? f 1g f 0g [CG94][DW99]

2 Z9 Z9 Z9 [MLP08]
Z2

3 Z2
3 Z2

3 [Xia85][MLP08]
Z3

2 Z3
2 Z3

2 [Cam32][Rei][Pet76][Ino94] [Nai94][BCGP08]
Z2 � Z4 Z2 � Z4 Z2 � Z4 [Rei][Nai94][Keu88] [BCGP08]

Z8 Z8 Z8 [Rei] [BP10]
Q8 Q8 Z2

2 [Rei] [Bea99][BP10]
Z7 Z7 Z7 [Rei91]
? Z6 Z6 [NP09]

Z5 Z5 Z5 [Cat81a][Sup98][BCGP08][BP10]
Z2

2 Z2
2 Z2

2 [Ino94][Keu88] [BCGP08][BP10]
? Z4 Z4 [PPS10a]
? Z3 Z3 [LP09]

Z3 Z3 Z3 [BCGP08][BP10]
Z2 Z2 Z2 [KLP10]
? Z2 Z2 [LP09]

f 1g f 1g f 0g [LP07]

3 Z2
2 � Z4 Z2

2 � Z4 Z2
2 � Z4 [Nai94] [Keu88] [MLP04a]

Q8 � Z2 Q8 � Z2 Z3
2 [Bur96][Pet77] [Ino94][NP11][BC10]

Z14 Z14 Z14 [CS10]
Z13 Z13 Z13 [CS10]
Q8 Q8 Z2

2 [CS10]
D4 D4 Z2

2 [CS10]
Z2 � Z4 Z2 � Z4 Z2 � Z4 [CS10][BP10]
Z2 � Z6 Z2 � Z6 Z2 � Z6 [BP10]

Z8 Z8 Z8 [BP10]
Z7 Z7 Z7 [CS10]
S 3 S 3 Z2 [CS10]
Z6 Z6 Z6 [CS10][BP10]

Z2 � Z2 Z2 � Z2 Z2 � Z2 [CS10]
Z4 Z4 Z4 [CS10]
Z3 Z3 Z3 [CS10]
Z2 Z2 Z2 [KLP10][CS10]
? ? Z2 [PPS10b]

f 1g f 1g f 0g [PPS09a][CS10]
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Table 3.3: Minimal surfaces of general type withpg = 0 and 4 � K 2 � 7
available in the literature

K 2 � 1 � alg
1 H1 References

4 1 ! Z4 ! � 1 ! Z2
2 ! 1 �̂ 1 Z3

2 � Z4 [Nai94][Keu88][BCGP08]
Z3

3 Z3
3 Z3

3 [BCGP08]
Q8 � Z2

2 Q8 � Z2
2 Z4

2 [Bur96][Pet77][Ino94]
(Z2 � Z4) o Z 4 (Z2 � Z4) o Z 4 Z2

4 [BCGP08]
1 ! Z2 ! � 1 ! Z2 � Z4 ! 1 ^� 1 Z2

2 � Z4 [BCGP08]
Z2 o Z 4 Z2 o Z 4 Z2

2 � Z4 [BCGP08]
Z15 Z15 Z15 [BCGP08]

Z2 � Z6 Z2 � Z6 Z2 � Z6 [BP10]
Z2 o Z 3 Z2 o Z 3 Z2

3 [BCGP08]
Z2 o Z 2 Z2 o Z 2 Z3

2 [BCGP08]
Z8 Z8 Z8 [BP10]
Z6 Z6 Z6 [BP10]
Z2 Z2 Z2 [KLP10]
f 1g f 1g f 0g [PPS09b]

5 Q8 � Z3
2 Q8 � Z3

2 Z5
2 [Bur96][Pet77][Ino94]

1 ! Z2 ! � 1 ! Z8 ! 1 ^� 1 Z2
2 � Z8 [BP10]

Z5 � Q8 Z5 � Q8 Z2 � Z10 [BP10]
1 ! Z2 ! � 1 ! D2;8;3 ! 1 ^� 1 Z2

2 � Z4 [BP10]
1 ! Z2 ! � 1 ! Z8 ! 1 ^� 1 Z2 � Z8 [BP10]

Z2 � Z10 Z2 � Z10 Z2 � Z10 [BP10]
D8;4;3 D8;4;3 Z2 � Z8 [BP10]

D8;5;� 1 D8;5;� 1 Z8 [BP10]
? ? ? [Ino94]

Z2 o Z 15 Z2 o Z 15 Z3 � Z15 [BCGP08]
6 1 ! Z6 ! � 1 ! Z3

2 ! 1 �̂ 1 Z6
2 [Bur96][Pet77][Ino94]

1 ! Z2 � � 2 ! � 1 ! Z2
2 ! 1 �̂ 1 Z2

2 � Z2
4 [BCGP08]

1 ! � 2 ! � 1 ! Z2 � Z4 ! 1 �̂ 1 Z3
2 � Z4 [BCGP08]

Z7 � A4 Z7 � A4 Z21 [BCGP08]
Z5 � A4 Z5 � A4 Z15 [BCGP08]

1 ! Z6 ! � 1 ! Z3
3 ! 1 �̂ 1 Z3

3 � H1 [Kul04]
S 3 � D4;5;� 1 S 3 � D4;5;� 1 Z2 � Z4 [BCGP08]

? ? ? [Ino94][MLP04b]

7 1 ! � 3 � Z4 ! � 1 ! Z3
2 ! 1 �̂ 1 ? [Ino94][MLP01] [BCC]





Chapter 4

Group action on product of
curves

The �rst examples of surfaces of general type withpg = 0 have been con-
structed in the 30's by L. Campedelli and L. Godeaux.

The idea of Godeaux was to consider the quotient of simpler surfaces by
the free action of a �nite group. In this spirit, Beauville (s ee [Bea96, page
118]) proposed a simple construction of surfaces of generaltype, considering
the quotient of a product of two curves C1 and C2 by the free action of
a �nite group G. Moreover he gave an explicit example considering the
quotient of two Fermat curves of degree 5 inP2.

After [Cat00] many authors started studying the surfaces that appear as
quotient of a product of curves.

4.1 Group action on product of curves

In this chapter C1; : : : ; Cn will be smooth projective curves of respective
genusgi := g(Ci ) and G will be a �nite group acting on C1 � : : : � Cn .
Following [Cat00] the action can be of two types:

� Unmixed: G acts independently on each factorG ,! Aut( Ci ), and the
action of G on C1 � : : : � Cn is the diagonal action:

g(x1; : : : ; xn ) = ( g(x1); : : : ; g(xn )) ;

in this caseG ,! Aut( C1 � : : : � Cn ) � Aut( C1) � : : : � Aut( Cn ). The
latter inclusion is an equality if and only if the curves are not pairwise
isomorphic.

� Mixed: there are elements ofG that permute some factorsC1; : : : ; Cn ,
in this case these factors are isomorphic;
for example in the caseC1

�= : : : �= Cn , we haveG ,! Aut( C � : : : �
C) = Aut( C)n o Sn .
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From now on, we always considergi � 2 for eachi . The reason of this choice
is given by the following:

Lemma 4.1.1. Let G be a �nite group acting on C1 � : : : � Cn , where the
Ci are Riemann surfaces. LetS ! X be the minimal desingularization of
X := ( C1 � : : : � Cn ). If S is of general type theng(Ci ) � 2 for each i .

Proof. By Lemma 3.5.9, we have� (C1 � : : :� Cn ) � � (S) = n, S is of general
type. By Theorem 3.5.8, we get� (C1 � : : : � Cn ) = � (C1)+ : : :+ � (Cn ) = n,
hence� (Ci ) = 1 for each i , by Remark 3.5.6 it is equivalent to g(Ci ) � 2.

Since we want to construct surfacesS of general type as minimal desingu-
larization of surfaces of the form (C1 � C2)=G, we shall consider only curves
of genus at least 2.

De�nition 4.1.2. A variety X is said to be isogenous to a higher product
if it is a quotient ( C1 � : : : � Cn )=G where theCi are curves of genus at least
two, and G is a �nite group acting freely on C1 � : : : � Cn .

The adjective higher emphasizes that the curves have genus at least two.
From now on we will drop this adjective and we will simple say \isogenous
to a product".

Proposition 4.1.3 ([Cat00, Proposition 3.11]). A surface S is isogenous to
a higher product if and only if S admits a �nite unrami�ed covering which
is isomorphic to a product of curves of genera at least two.

In the isogenous case we have a very nice description of the fundamental
group of the variety.

Proposition 4.1.4 (cf. [Cat00]). Let S := ( C1 � : : : � Cn )=G be isogenous
to a product. Then the fundamental group ofS sits in an exact sequence

1 ! � g1 � : : : � � gn ! � 1(S) ! G ! 1

where � gi := � 1(Ci ).

Proof. Since the action of G is free, it is properly discontinuous (Lemma
1.1.6). By Corollary 1.1.29 we have the following short exact sequence:

1 �! � 1(C1 � : : : � Cn ) �! � 1(S) �! G �! 1 ;

but � 1(C1 � : : : � Cn ) = � 1(C1) � : : : � � 1(Cn ) = � g1 � : : : � � gn .

Now we focus on the surfaces case, i.e. letG be a �nite group acting on
the product C1 � C2, where the Ci are Riemann surfaces of genus at least
two. There are two cases: theunmixed casewhere G acts diagonally; and
the mixed casewhere the action of G exchanges the two factors (and then
C1

�= C2).
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Lemma 4.1.5 ([Cat00, Lemma 3.8]). Let f : C1 � C2 ! B1 � B2 be a
surjective holomorphic map between product of curves. Assume bothB1; B2

have genus at least two. Then, after possibly exchangingB1 with B2, there
are holomorphic mapsf i : Ci ! B i such that f (x; y) = ( f 1(x); f 2(y)) .

Lemma 4.1.6 ([Cat00, Corollary 3.9]). Assume that bothC1, C2 are curves
of genus� 2. Then the inclusion Aut( C1 � C2) � Aut( C1) � Aut( C2) is an
equality if C1 is not isomorphic to C2, whereasAut( C � C) is the semidirect
product of Aut( C)2 with the Z2 generated by the involution� exchanging
the two factors.

De�nition 4.1.7. Let C1; C2 be Riemann surfaces of genus at least two, let
G � Aut( C1 � C2) be a �nite group and let G0 := G \ (Aut( C1) � Aut( C2)).
Then G0 acts on each factor and diagonally on the product. IfG0 acts
faithfully on both curves, we say that the action is minimal , and we refer to
X := ( C1 � C2)=G as aminimal realization of X .

Proposition 4.1.8 ([Cat00, Proposition 3.13]). If S is a surface isogenous
to a higher product, then a minimal realization is unique.

A particular class of surfaces isogenous to a higher productis the follow-
ing:

De�nition 4.1.9 ([Cat00, Proposition 3.15]). A surface isogenous to a prod-
uct S := ( C1 � C2)=G is said to be ofgeneralized hyperelliptic typeif

� the Galois coveringp: C1 ! C1=G is unrami�ed;

� the quotient curve C2=G is isomorphic to P1.

The invariants of surfaces isogenous to a product may be computed using
the following result:

Proposition 4.1.10. Let S := ( C1 � C2)=G be a surface isogenous to a
higher product of curves, then

e(S) =
4(g(C1) � 1)(g(C2) � 1)

jGj

K 2
S =

8(g(C1) � 1)(g(C2) � 1)
jGj

� (S) =
(g(C1) � 1)(g(C2) � 1)

jGj

Proof. Let p: (C1 � C2) ! S be the projection on the quotient; p is an �etale
covering of degreejGj.

The topological Euler-Poincar�e characteristic is multipl icative: e(C1 �
C2) = e(C1) � e(C2) = (2 � 2g(C1))(2 � 2g(C2)). By Lemma 3.4.2, we have
e(C1 � C2) = jGj � e(S) which implies the �rst equation.
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By [Bea96, Fact III.22], it follows

H 1(C1 � C2; OC1 � C2 ) = H 0(C1 � C2; 
 1
C1 � C2

) = H 0(C1; 
 1
C1

) � H 0(C2; 
 1
C2

)

and so:
q(C1 � C2) = g(C1) + g(C2) :

Since 
 2
C1 � C2

�= p�
1
 C1 
 p�

2
 C2 , wherep1 and p2 are the projection ofC1� C2

to C1 and C2 respectively, we have

H 0(C1 � C2; 
 2
C1 � C2

) = H 0(C1; 
 1
C1

) 
 H 0(C2; 
 1
C2

)

hence
pg(C1 � C2) = g(C1) � g(C2) :

We get

� (C1 � C2) = 1 + pg(C1 � C2) � q(C1 � C2)

= 1 + g(C1) � g(C2) � g(C1) � g(C2)

= ( g(C1) � 1)(g(C2) � 1) :

By Lemma 3.4.2, we have� (C1 � C2) = jGj � � (S) which implies the last
equation.

Using Noether's formula it is easy to prove the second equation too.

Theorem 4.1.11 (cf. [Fre71, Hilfsatz 3 and Satz 1]). Let V be a smooth
algebraic variety and letG be a �nite group acting on V . Let X := V=G,
and assumecodim Sing(X ) > 1. Let S be the minimal resolution of the
singularities of X , then

H 0(S; 
 1
S) �= H 0(V;
 1

V )G :

Corollary 4.1.12 ([MP10, Proposition 3.5]). Let V be a smooth algebraic
surface and letG be a �nite group acting on V with only isolated �xed points.
Let S be the minimal desingularization ofX := V=G, then

H 0(S; 
 1
S) �= H 0(V;
 1

V )G :

4.2 Cyclic quotient singularities

In this section we introduce the cyclic quotient singularities and we discuss
their minimal resolution. This class of singularities will be crucial in the next
chapters; we will see that a quotient surface of unmixed type(see De�nition
4.3.1) has only singularities of this type (see Proposition4.3.6).

De�nition 4.2.1. A variety Z has aquotient singularity in z 2 Z if there
exists a neighborhoodU of z such that U �= Cm =H with H �nite subgroup
of Aut( Cm ; 0), the group of the holomorphic automorphism ofCm �xing 0.
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Lemma 4.2.2 (Cartan, cf. [Bri68, Lemma 2.2]). If H is a �nite subgroup
of Aut( Cm ; 0), then there exists a system of coordinates such that the action
of H can be linearized.

Thanks to the previous lemma, we can assume thatH � GL(m; C).

De�nition 4.2.3. A variety Z has a cyclic quotient singularity in z 2 Z
if there exists a neighborhoodU of z such that U �= Cm =H with H cyclic
�nite subgroup of GL( m; C).

We are interested on singularities on surface, so now we consider the case
H �nite cyclic subgroup of GL(2 ; C). In this case we have that H has the
following form

H =

* 
e

2�ip
r 0

0 e
2�iq

r

!+

:

for somep; q; r 2 Z, and we say that 1
r (p; q) is the type of the cyclic quotient

singularity C2=H.

Lemma 4.2.4 ([BHPV04, pages 104-105]). Each cyclic quotient singularity
of type 1

r (p; q) is isomorphic to a cyclic quotient singularity of type 1
n (1; a)

with 1 � a � n and gcd(a; n) = 1 .

De�nition 4.2.5. Let 1 � a � n and gcd(a; n) = 1. We denote a cyclic
quotient singular point of type 1

n (1; a) by Cn;a .

Remark 4.2.6. Let a and n as above, we denote bya0 the unique integer in
f 1; : : : ; n � 1g such that a � a0 �= 1 mod n.

Lemma 4.2.7. Cn;a and Cn;a0 are locally analytically isomorphic.

Proof. Let x; y be the coordinates ofC2 and assume thatH = hhi acts in
this way: h(x; y) = ( "x; " ay), with " = e

2�i
n . We de�ne new coordinates:

(x0; y0) := g(x; y) = ( y; x). We now note that H = hha0
i since gcd(a0; n) = 1,

in these new coordinatesh0 = ha0
acts as follows:

h0(x0; y0) = g(ha0
(g� 1(x0; y0))) = g("a0

x; " aa0
y)

= ( y; "a0
x) = ( x0; "a0

y0)

sincea � a0 �= 1 mod n.

De�nition 4.2.8. Let n and a be coprime integers with n > a > 0. The
continued fraction of n

a is the �nite expression

n
a

= b1 �
1

b2 � 1
b3 � :::

= [ b1; : : : ; bl ] :
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The resolution of a cyclic quotient singularity of type 1
n (1; a) is well

known, see [BHPV04, Section III.5] or [Rei03]. The exceptional divisor E
of the minimal resolution of a cyclic quotient singularities is a so called
Hirzebruch-Jung string of type (n; a) (for short HJ-string), that is E =P l

i =1 E i , where theE i are smooth rational curves with E 2
i = � bi , E i :E i +1 =

1 for i = 1 ; : : : ; l � 1 and E i :E j = 0 for ji � j j � 1. The bi are given by the
continued fraction n

a , and the dual graph is:

� b1 � b2 � bl � 1 � bl
� � � �

Lemma 4.2.9. Let n and a be coprime integers withn > a > 0 and let n
a =

[b1; : : : ; bl ]. Let A1;l be the intersection matrix determined by the Hirzebruch-
Jung string of a singularity of type Cn;a , i.e.

A1;l =

0

B
B
B
B
B
@

� b1 1 0 0 : : : 0
1 � b2 1 0 : : : 0
...

...
. . .

...
...

0 : : : 0 1 � bl � 1 1
0 : : : 0 0 1 � bl

1

C
C
C
C
C
A

:

Then det A1;l = ( � 1)l n.

Proof. We prove the statement by induction on l.
If l = 1 then n=a = [ b1] and n = b1; det A1;1 = � b1 = ( � 1)1b1.

If l = 2 then n=a = [ b1; b2] = b1 � 1
b2

= b1b2 � 1
b2

and n = b1b2 � 1;
det A1;2 = b1b2 � 1 = ( � 1)2n.

Now, we assume that the statement holds for 1� i < l and we prove it
for l . We note that

det A1;l = � b1 det A2;l � det A3;l ;

where

A i;l =

0

B
B
B
B
@

� bi 1
1 � bi +1 1

: : : : : :
1 � bl � 1 1

1 � bl

1

C
C
C
C
A

:

From the other side we have:

n
q

= b1 �
1

[b2; : : : ; bl ]
=) [b2; : : : ; bl ] =

q
b1q � n

:
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In the same way we get that [b3; : : : ; bl ] =
b1q � n

k
, for somek 2 N> 0. By

inductive hypothesis,

det A2;l = ( � 1)l � 1q det A3;l = ( � 1)l � 2(b1q � n)

and so

det A1;l = � b1(� 1)l � 1q � (� 1)l � 2(b1q � n)

= ( � 1)l � 2(b1q � b1q + n)

= ( � 1)l n :

Let � : S ! X be a minimal resolution of singularities, we have that (in
a neighborhood of a singular pointx 2 X ):

K S = � � K X +
lX

i =1

r i E i :

Since E i is exceptional, � � K X :E i = 0. Moreover, by the genus formula we
get (K 2

S + E i ):E i = 2g(E i ) � 2 = � 2. So

(K S + Ek ):Ek = � 2;
�

K S �
lX

i =1

r i E i

�
:Ek = 0 ; 8k = 1 ; : : : ; l : (4.1)

These equations determines ther i as follows:

Lemma 4.2.10 ([Bar99], [Hir53]). Let � 0 = n, � 1 = a and � i +1 = bi � i �
� i � 1 for i = 2 ; : : : ; l . Let � 0 = 0 , � 1 = 1 and � i +1 = � i bi � � i � 1 for
i = 2 ; : : : ; l .

Then in a neighborhood of a singular pointz 2 X of type Cn;a , we have
that

nK S = � � nK X +
lX

i =1

ai E i ;

where ai = � i + � i � n for i = 1 ; : : : ; l .

Proof. By (4.1):

nK S:Ek = n(K S + Ek ):Ek + nbk = n(bk � 2) (4.2)

and the ai satisfy the following equation:

nK S:Ek = n
� lX

i =1

r i E i

�
:Ek = ak� 1 � bkak + ak+1 (4.3)
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where a0 = al+1 = 0 and aj = nr j for j = 1 ; : : : ; l . The thesis follows if we
prove that the ai de�ned in the statement give the unique solution for the
linear system

ak� 1 � bkak + ak+1 = n(bk � 2) k = 1 ; : : : ; l :

The coe�cients matrix is the matrix A1;l of Lemma 4.2.9 that has non zero
determinant, hence the linear system has an unique solution. We claim that
ai as above are the unique solution. Noting that� i � � i a mod n, it is easy
to show that � l � 1 = bl , � l � 1 = a0bl � n, � l = 1, � l = a0, � l+1 = 0, � l+1 = n.
Hence

� b1a1 + a2 = � b1(a + 1 � n) + ( b1 + b1a � n � n) = n(b1 � 2) ;

al � 1 � bl al = bl (a0+ 1) � 2n � bl (a0+ 1) + bl n = n(bl � 2) :

For each k 2 f 2; : : : ; l � 1g

ak� 1 + ak+1 = ( � k� 1 + � k� 1 � n) + ( � k + � k � n)
= � k� 1 + � k+1 + � k� 1 + � k+1 � 2n
= � kbk + � kbk � 2n
= bk (� k + � k � n) + n(bk � 2) = bkak + n(bk � 2)

Lemma 4.2.11. For a singular point x of type Cn;a , we have that in a
neighborhood ofx

K 2
S = K 2

X �
�

a + a0+ 2
n

� 2 +
lX

i =1

(bi � 2)
�

:

Proof. We have

nK S = � � nK X +
lX

i =1

ai E i

Since� : S ! X is a biratonal morphism we get

K 2
S = ( � � K X )2 + 2

�
1
n

X
ai E i

�
:(� � K X ) +

1
n2

� X
ai E i

� 2

= K 2
X +

1
n2

� X
ai E i

� 2

:

Moreover
� X

i =1

ai E i

� 2

=
� X

i =1

ai E i

�
:(nK S � � � nK X )

= n
X

ai (E i :K S)

= n
X

ai (bi � 2)
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where the last equality follows by the �rst equation of (4.1), and so
� X

i =1

ai E i

� 2

= n
X

i

(� i + � i � n)(bi � 2)

= n[
X

(� i + � i )(bi � 2) � n
X

(bi � 2)] (4.4)

where the � i and the � i are as in Lemma 4.2.10. Extending the �rst sum in
(4.4) we have:
X

(� i + � i )(bi � 2) =
X

(� i bi � 2� i ) +
X

(� i bi � 2� i )

=
X

(� i +1 + � i � 1 � 2� i ) +
X

(� i +1 + � i � 1 � 2� i )

and these two last sums are telescopic sums, thus:
X

(� i + � i )(bi � 2) = � 0 � � 1 + � l+1 � � l + � 0 � � 1 + � l+1 � � l

= � 1 + n � a0+ n � a � 1 = 2n � 2 � a � a0

Hence equation (4.4) becomes:
� X

i =1

ai E i

� 2

= n[2n � (a + a0+ 2 + n
X

(bi � 2))]

and it follows:

K 2
X = K 2

S �
1
n2

� X
ai E i

� 2

= K 2
S �

[2n � (a + a0+ 2 + n
P

(bi � 2))]
n

= K 2
S � 2 +

a + a0+ 2
n

+
X

(bi � 2) :

De�nition 4.2.12. A singular point p of a normal surfaceX is a Rational
Double Point (R.D.P.) or Du Val singularity if X has a minimal resolution
of singularities f : S ! X such that every irreducible componentE i of the
exceptional divisor E over p satis�es K S:E i = 0, or equivalently, E 2

i = � 2.

De�nition 4.2.13 ([Rei87, De�nition 1.1]) . A normal variety X of dimen-
sion n has canonical singularities if

1. for somer � 1, the Weil divisor rK X is Cartier;

2. if f : Y ! X is a resolution of the singularities ofX and f E i g is the
family of all exceptional irreducible divisors of f , then

rK Y = f � (rK X ) +
X

ai E i ; with ai � 0 :
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Theorem 4.2.14 (cf. [Mat67, Theorem 4.6.7]). Let p be a singular point on
a normal surface X . Then p is a canonical singularity if and only if p is a
Rational Double Point.

Moreover the dual graph of the exceptional curves of the minimal reso-
lution is one of the following 5 types:

� � �

� � 	




�

� 
 � � �

�

� � � �

�

� �

� � � � � � �

 

An

Dn

E6

E7

E8

Remark 4.2.15. Let X be a surface with at most canonical singularities.
Let � : S ! X be the minimal resolution of the singularities. By [Mat67,
Theorem 4.6.2], we have that

K S = � � K X :

Remark 4.2.16. In the particular case a = n� 1: Cn;n � 1, we have that all the
curves of the minimal resolution are (� 2)-curves and H � SL(2; C). This
class of singularities is the class of the R.D.P. singularities of type An .

4.3 Surfaces: the unmixed case

De�nition 4.3.1. Let C1; C2 be two Riemann surface of respective genus
g1; g2 � 2, and let G be a �nite group that acts diagonally on C1 � C2. An
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umixed action of G on C1 � C2 is a monomorphismG ,! Aut( C1) � Aut( C2).
We say that X := ( C1 � C2)=G is a quotient surface of unmixed type.

Remark 4.3.2 (cf. [Cat00, Remark 3.10]). Every quotient surface X of un-
mixed type may be obtained by a minimal (see De�nition 4.1.7) unmixed
action. Let (C1 � C2)=G be a realization of X . If G does not embed in
Aut( Ci ), then the kernel K i acts trivially on Ci for i = 1 ; 2. Thus we re-
place C1 � C2 by Z := C1=K2 � C2=K1 and G by G0 := G=hhK 1; K 2ii ; we
get that X = Z=G0 and this is a minimal realization.

De�nition 4.3.3. An unmixed surface X = ( C1 � C2)=G is the minimal
realization of a quotient surface of unmixed type. The minimal resolution
S of X is called aproduct quotient surface or astandard isotrivial �bration .
X is also called thequotient model of the product quotient surface.

The name \standard isotrivial �bration" comes from [Ser96] :

De�nition 4.3.4. A �bration is a morphism � : S ! C with connected
�bres from an algebraic smooth surface onto a smooth projective curve.
A �bration is said to be isotrivial if all smooth �bres are isomorphic to each
other.

Remark 4.3.5. Let X = ( C1 � C2)=G be an unmixed surface, the natural
maps � i : X ! Ci =G (i = 1 ; 2) are two isotrivial �bration: the general �bre
of � 1 is isomorphic to C2 and the general �bre of � 2 is isomorphic to C1.

Proposition 4.3.6. Let X = ( C1 � C2)=G be a quotient surface of unmixed
type. Then X has �nitely many singular points that are cyclic quotient
singularities.

Proof. By Remark 2.2.6 we have that on both Ci there are �nitely many
points with non trivial stabilizer, which is cyclic by Theor em 2.2.4. SinceG
acts diagonally we have that Stab(x; y) = Stab( x)\ Stab(y) that is cyclic.

Remark 4.3.7. The map C1 � C2 ! X is quasi-�etale, indeed the singular
locus of X : Sing(X ) is also the branch locus of the quotient map.

Theorem 4.3.8 (cf. [Ser96, Theorem 2.1]). Let f : S ! X = ( C1 � C2)=G
be a standard isotrivial �bration and let us consider the natural projection
f 1 : S ! C1=G. Take any point over y 2 C1=G and let F = f �

1 (y). Then

(i) The reduced structure of F is the union of an irreducible curve Y ,
called the central component ofF , and either none or at least two
mutually disjoint HJ-strings, each meeting Y at one point, and each
being contracted by� to a singular point of X .

(ii) The intersection of a string with Y is transversal, and it takes place
at only one of the end components of the string.
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An analogous statement holds if one considers the projection f 2 : S ! C2=G.

Proposition 4.3.9. Let � : S ! X = ( C1 � C2)=G be a standard isotrivial
�bration and let � i : X ! Ci =G be the natural �brations. Let y 2 X be
a singular point of type Cn;a , and let x i := � i (y) 2 Ci =G. Consider the
two �bres Y1 := � �

1(x1) and ~Y2 := � �
2(x2) taken with the reduced structure.

Let ~Yi := � � 1
� (Yi ) be the strict transforms of Yi (i = 1 ; 2) and let E be the

exceptional divisor overy.
Then ~Y1 intersects one of the extremal curves ofE , while ~Y2 intersects

the other extremal curve.

Proof. Let f : C1 � C2 ! X be the projection to the quotient and let p 2
f � 1(y). By assumption, there exists g 2 Aut( C1 � C2) with g(p) = p
and H := hgi = Stab( p). By Lemma 4.2.2 there exist coordinates in a
neighborhoodU of p, with p = (0 ; 0) and g = M 2 GL(2; C).
Since ord(g) is �nite, then there exist coordinates (x; y) with M (x; y) =
(�x; � ay) with � = e

2�i
n .

Let ~Yi be the connected component off � 1(Yi ) passing through p. We
note that T0 ~Yi is an eigenspace forM since ~Yi is a connected component of
a �bre of the natural map C1 � C2 ! Ci =G, that is invariant for the action
of M . We also note that T0 ~Y1 \ T0 ~Y2 = f 0g.

If a 6= 1 then T0 ~Y1 and T0 ~Y2 are the coordinate axes; while ifa = 1 then
M = � � Id 2 and, up to a linear change of coordinate (that does not change
M ), T0 ~Y1 and T0 ~Y2 become the coordinate axes.

Since T0 ~Y1 = f x + f 1(x; y) = 0 g and T0 ~Y2 = f y + f 2(x; y) = 0 g with
mult 0f i � 2, we de�ne new coordinatesw := x+ f 1(x; y) and t = y+ f 2(x; y);
in these coordinates,g(w) = �w and g(t) = � at.

So we have found coordinates such thatg(w; t) = ( �w; � at) and such that
f (f w = 0g) and f (f t = 0g) are Y1 and Y2.

By [Rei03, Proposition-De�nition 1.1], U is the spectrum of the ring of
invariant monomials: C[w; t]H . This ring is generated by monomials (see
[Rei03, Corollary 2.5])

u0 = wn ; u1 = wn� at ; : : : ; uk+1 = tn

that satisfy
ui � 1ui +1 = udi

i for i = 1 ; : : : ; k ;

where the exponentsdi are given by
n

n � a
=: [ d1; : : : ; dk ]. In other words,

U �= SpecC[u0; u1; : : : ; uk+1 ]=J whereJ is the ideal of the relations between
the ui . Hence in U the two �bres Y1 and Y2 are, set-theoretically, f u0 = 0g
and f uk+1 = 0g.

Let L be the overlattice L = Z2+ Z� 1
n (1; a) of Z2 (see [Rei03, Proposition

2.2] ) and let M = f (�; � ) j � + a� � 0 mod ng � Z2 be the dual lattice of
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invariant monomials. Let

e0 = (0 ; 1); e1 =
1
r

(1; a); : : : ; el+1 = (1 ; 0)

be the lattice points of the boundary of N (L) in [0; 1]2, where N (L) is the
convex hull in R2 of all nonzero lattice points in the �rst quadrant. Let
[b1; : : : ; bl ] :=

n
a

, by [Rei03, Proposition 2.2], the points ei are related as

follows:
ei +1 + ei � 1 = bi ei :

Let � i ; � i be monomials forming the dual basis toei ; ei +1 , that is:

ei (� i ) = 0 ; ei (� i ) = 1 ; ei +1 (� i ) = 1 ; ei +1 (� i ) = 0 :

By [Rei03, Theorem 3.2], the resolution of singularitiesZ ! U is constructed
as follows:

Z = Z0 [ Z1 [ � � � [ Z l ;

where Z i
�= C2 with coordinates � i ; � i , for i = 1 ; : : : ; l . The gluing Z i [ Z i +1

and the morphism f : Z ! U are determined by the isomorphism:

Z i n f � i = 0g
�=! Z i +1 n f � i +1 = 0g

de�ned by
� i +1 = � � 1

i ; � i +1 = � i �
bi +1
i

where [b1; : : : ; bl ] :=
n
a

.

The preimage f � 1(f u0 = 0g) = f � 1(Y1) is the complex line C� l , that is
contained in the Z l -chart. f � 1(Y1) intersects only one extremal exceptional
curve, namely the one obtained by the gluingf � l � 1 = 0g [ f � l = 0g.
Analogously, the preimagef � 1(f uk+1 = 0g) = f � 1(Y2) is the complex line
C� 0 contained in the Z0-chart. f � 1(Y2) intersects only one extremal excep-
tional curve, namely the one obtained by the gluingf � 0 = 0g[f � 1 = 0g.

De�nition 4.3.10. Let � : S ! X = ( C1 � C2)=G be a standard isotrivial
�bration and let � : X ! Ci =G be one of the two natural �brations. Let y 2

Sing(X ) be a point of type Cn;a with
n
a

= [ b1; : : : ; bl ]. Let E :=
P l

i =1 
 i E i

be the exceptional divisor overy. E is a tree of rational curves: E 2
i = � bi ,

with [ b1; : : : ; bl ], E i :E i +1 = 1 while E i :E j = 0 if ji � j j � 2. Let ~Y be
the strict transform in S of Y : the �bre � � (� (y)) taken with the reduced
structure.
We say that y is of type Cn;a with respect to � if ~Y intersects E1.

Remark 4.3.11. If y is of type Cn;a with respect to � 1 then y is of type Cn;a0

with respect to � 2.
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De�nition 4.3.12 (cf. [Pol10, De�nition 2.7]) . Let S ! X = ( C1 � C2)=G
be a standard isotrivial �bration. We say that a reducible �b re F of � : X !

Ci =G for i = 1 or 2 is of type
�

a1

n1
; : : : ;

ar

nr

�
if F contains exactly r singular

points y1; : : : ; yr , where eachyi is of type Cn i ;ai with respect to � .

Proposition 4.3.13 (cf. [Pol10, Proposition 2.8]). Let S ! X = ( C1 �
C2)=G be a standard isotrivial �bration. Let F be a �bre of � : X ! Ci =G
for i = 1 or 2, and let ~F its strict transform in S.

If F of type
�

a1

n1
; : : : ;

ar

nr

�
with respect to � , then

rX

i =1

ai

ni
= � ~F 2 :

As corollary of Proposition 4.3.13 we get

Lemma 4.3.14. Let S ! X = ( C1 � C2)=G be a standard isotrivial �bra-
tion. Let � : X ! C1=G be the natural �bration. If Sing(X ) = f y1; : : : ; yr g
where eachyi is of type Cn i ;ai with respect to � , then

rX

i =1

ai

ni
2 Z :

Lemma 4.3.15 ([Ser96, Proposition 2.2]). If S is a smooth surface bira-
tional to the quotient surface of unmixed typeX := ( C1 � C2)=G then

q(S) = g(C1=G) + g(C2=G) :

Proof. Let p1 and p2 be the projections ofC1 � C2 onto its factors, we have

 1

C1 � C2
= p�

1(
 1
C1

) � p�
2(
 1

C2
) ([Bea96, Fact III.22]), hence

q(S) = dim H 0(
 1
C1 � C2

)G = dim H 0(
 1
C1

)G + dim H 0(
 1
C2

)G

= g(C1=G) + g(C2=G)

where the �rst and last equalities are given by Corollary 4.1.12.

Therefore, for a product quotient surface S ! (C1 � C2)=G it holds
q(S) = 0 if and only if g(C1=G) = g(C2=G) = 0. This implies that a
product quotient surface S of general type with quotient model (C1 � C2)=G
has pg(S) = 0 if and only if � (OS) = 1 and C1=G �= C2=G �= P1.

4.4 Surfaces: the mixed case

De�nition 4.4.1. Let C be a Riemann surface of genusg(C) � 2, and let
G be a �nite group. A mixed action of G on C � C is a monomorphism
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G ,! Aut( C � C) whose image is not contained in Aut(C)2. Given a mixed
action we will denote by G0 / G the index two subgroup G \ Aut( C)2. A
quotient surface of mixed typeis a surface which arises as quotientX :=
(C � C)=G by a mixed action of G on C � C.

Remark 4.4.2 (cf. [Cat00, Remark 3.10]). Every quotient surfaceX of mixed
type may be obtained by a minimal mixed action.

Let (C � C)=G be a realization ofX and let � 0 2 G be a transformation
not in G0: � 0(x; y0) = ( � 2y0; � 1x). We choosey = � 2y0 as a new coordinate
on the second factor, and then� 0(x; y) = ( y; �x ), where � = � 2� 1.
Let K 2 � Id := G0 \ (Aut( C) � Id) and Id � K 1 := G0 \ (Id � Aut( C)),
then K 1

�= K 2 as subgroups of Aut(C); indeed if  2 K 1 then (Id ;  ) 2 G0,
conjugating it by � 0, we get ( ; Id) 2 G0.
We obtain that K 1 � K 1 is a normal subgroup ofG, and G=(K 1 � K 1) acts
mixed and minimally on (C=K1) � (C=K1).

De�nition 4.4.3. Let X be a quotient surface of mixed type. By the
previous remark we may obtainX as C � C=G by a minimal mixed action;
we will call the map C � C ! X the quotient map of X .

Theorem 4.4.4 (cf. [Cat00, Proposition 3.16]). Let G ,! Aut( C � C)
be a minimal mixed action. Fix � 0 2 G n G0; it determines an element
� := � 02 2 G0 and an element ' 2 Aut( G0) de�ned by ' (h) := � 0h� 0� 1.
Then, up to a coordinate change,G acts as follows:

g(x; y) = ( gx; (' g )y)
� 0g(x; y) = ( ' (g)y; �g x )

for g 2 G0 (4.5)

Conversely, for everyG0 � Aut( C) and G extension of degree 2 ofG0,
�xed � 0 2 G n G0 and de�ned � and ' as above, (4.5) de�nes a minimal
mixed action on C � C.

Proof. The argument in Remark 4.4.2 shows that, if the action is minimal
and mixed, then there are coordinates such thatG acts as in (4.5).

Observing that � 0g� 0h = ' (g)�h , ' (� 0g� 0h) = �g' (h) and that ' (� ) = � it
is easy to prove that (4.5) de�nes a mixedG-action on C � C. Moreover,
the action is minimal by de�nition of G0.

De�nition 4.4.5. A mixed surface X = ( C � C)=G is a quotient surface
of mixed type provided by the corresponding minimal mixed action, as de-
scribed in Theorem 4.4.4. If the quotient map is quasi-�etale (see De�nition
2.1.10) we say thatX is a mixed quasi-�etale surface(for short \mixed q.e.
surface"). Let S be the minimal resolution of the singularities of a mixed
surfaceX , if S is regular (q(S) = 0), then we say that X is a regular mixed
surface.
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Remark 4.4.6. Note that when we use Theorem 4.4.4 to de�ne a mixed
action on C � C, we choose an element� 0 2 G n G0, but the mixed surface
(C � C)=G obtained does not depend on this choice.

Remark 4.4.7. Let X = ( C � C)=G be a mixed surface, and letG0 be the
index two subgroup of G of the elements that do not exchange the factors:
G0 = G \ Aut( C)2. Then Y = ( C � C)=G0 is an unmixed surface.

4.5 Surfaces quotient of product of curves with
� = 1: the classi�cation so far

In this section we collect the main results of classi�cation of the surfaces
S (of general type) that appear as minimal resolution of the singularities
of X = ( C1 � C2)=G where C1 and C2 are Riemann surfaces andG �
Aut( C1 � C2) is a �nite group.

We have already seen (Section 3.6.1) that the minimal surfaces of general
type with pg = q � 3 are completely classi�ed and they are isogenous to a
product of curves.

The pg = q = 0 case

We start noting that if S is a surface of general type withpg(S) = 0, we
automatically have that q = 0, since � (OS) = 1 + pg(S) � q(S) � 1 (see
Theorem 3.6.4).

In [BC04] Bauer and Catanese study the above situation underthe as-
sumption that the action of G is free and of unmixed type andpg(S) = 0.
They completely solve this case under the further assumption that G is
abelian and give some examples in the non abelian case.

In [BCG08] all the surfaces of general type withpg = 0 and isogenous to
a product of curves are classi�ed, in particular they prove the following:

Theorem 4.5.1 ([BCG08]). There are exactly 18 families of minimal sur-
faces of general type withpg = 0 isogenous to a product of curve.
13 of these families are of unmixed type, while 5 are of mixed type.

Remark 4.5.2. We observe that in [BCG08] the authors claim that there are
4 families of mixed type. They missed a family, that we have tagged by
7.3.13 in Table 6.1.

In [BCGP08] Bauer, Catanese, Grunewald and Pignatelli start to study
the case of non free action assuming that the quotient surface (C1 � C2)=G
has at most R.D.P. as singularities. They prove that indeed only nodes (Du
Val singularities of type A1) can occur as singularities and they state:
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Theorem 4.5.3 ([BCGP08]). Surfaces of general type withpg(S) = 0 ,
whose canonical model is a singular quotient surfaceX = ( C1 � C2)=G
by an unmixed action ofG form 27 irreducible families.

We note that here automatically K 2
S > 0, sinceK 2

X > 0 and K S = � � K X ,
where � : S ! X is the minimal desingularization of X .

Finally in [BP10] the authors remove all the assumption on the singular-
ities and they give a complete classi�cation of the product-quotient surfaces
S with K 2

S > 0 and pg = 0:

Theorem 4.5.4 ([BP10]). If S is a product-quotient surface withpg(S) = 0
and K 2

S > 0, then one of the following is true:

1. S is minimal and of general type.

2. S is the \fake Godeaux surface" which hasK 2
S = 1 , � 1(S) = Z6 and

its minimal model has K 2 = 3 .

Moreover, their classi�cation yields 32 irreducible families of minimal sur-
faces with pg = 0 which are the minimal resolution of the singularities of
X = ( C1 � C2)=G where the G-action is of unmixed type and X does not
have canonical singularities.

Dropping the assumption that G acts freely, Proposition 4.1.4 does not
hold. In [BCGP08] (see also [DP10]) the authors proved that the fundamen-
tal group still has a very similar description:

Theorem 4.5.5 (see [BCGP08, Theorem 0.10], [DP10]). Let C1; : : : ; Cn be
compact complex curves of respective genusgi � 2 and let G be a �nite group
acting faithfully on each Ci (unmixed action). Let X := ( C1 � : : : � Cn )=G,
and let S the minimal resolution of the singularities of X .

Then the fundamental group� 1(X ) �= � 1(S) has a normal subgroupN of
�nite index which is isomorphic to the product of surface groups (see Section
2.3).

The pg = q = 1 case

In [Pol08], Polizzi investigates the surfacesS = ( C1 � C2)=G with pg(S) =
q(S) = 1, such that the action of G is of unmixed type and free. He classi�es
this case under the assumption thatG is abelian and gives some examples
in the non abelian case.

In [CP09] all the surfaces of general type withpg = q = 1 and isogenous
to a product of curves are classi�ed, in particular Carnovale and Polizzi
prove the following:

Theorem 4.5.6 ([CP09]). The surfacesS = ( C � F )=G with pg = q = 1
isogenous to a product of curves are minimal of general type and form 49
families. In particular, 44 families are of unmixed type, while 5 are of mixed
type.
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In [Pol09] the author starts to study the singular case admitting that the
quotient surface (C � F )=G has at most R.D.P. as singularities. He proves
that indeed only nodes can occur as singular point and he shows

Theorem 4.5.7 ([Pol09]). Let � : S ! X = ( C � F )=G be a standard
isotrivial �bration of general type pg = q = 1 not isogenous to a product
of curves. Assume thatX contains only R.D.P.'s. Then S is a minimal
surface, K 2

S is even and the singularities ofX are exactly 8 � K 2
S nodes.

Moreover the occurrences forK 2
S, g(F ), g(C) and G are precisely described

and there are 28 possibilities.
Finally in [MP10], Mistretta and Polizzi remove all the assumption on

the singularities and they prove:

Theorem 4.5.8 ([Pol09]). Let � : S ! X = ( C � F )=G be a standard
isotrivial �bration of general type pg = q = 1 and assume thatX contains at
least one singularity which is not a R.D.P. and thatS is a minimal model.
Then there are 15 possible 4-tuples(K 2

S; g(F ); g(C); G).

Moreover they describe the basket of singularities.

The pg = q = 2 case

In [Zuc03] the author proves the following:

Theorem 4.5.9. There are two classes of minimal surfacesS of general
type with pg = q = 2 whose Albanese image is a surface and having an
irrational pencil, and they are both isogenous to a higher product.

More precisely, S = ( C1 � C2)=Z2 where, either g(C1) = g(C2) = 2 or
g(C1) = g(C2) = 3 .

Zucconi manages also to remove the hypothesis on the Albanese map
using the generalized hyperelliptic surfaces (see De�nition 4.1.9); he proves:

Theorem 4.5.10 ([Zuc03, Proposition 4.2]). Let S be a surface of gen-
eral type with pg = q = 2 and not of Albanese general type. ThenS is a
generalized hyperelliptic surface.

In [Pen11], Penegini deals the casepg = q = 2. He investigates both the
isogenous case both the singular case, in particular he proves:

Theorem 4.5.11. Let S be a minimal surface of general type withpg = q =
2 such that it is either a surface isogenous to a product of curves of mixed
type or it admits an isotrivial �bration. Let � : S ! Alb(S) be the Albanese
map. Then we have the following possibilities:

1. If dim( � (S)) = 1 , then S = ( C � F )=G and it is generalized hyperel-
liptic. There are exactly 24 families of these surfaces.
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2. If dim( � (S)) = 2 , then there are three cases:

� S is isogenous to product of unmixed type(C � F )=G, and there
are 3 families of such surfaces.

� S is isogenous to a product of mixed type(C � C)=G, there is
only one family of these surfaces.

� S ! T := ( C � F )=G is an isotrivial standard �bration, and there
are 5 families of these surfaces.

Penegini also gives a detailed description for the basket ofsingularities and
for the possible 4-tuples (K 2

S; g(F ); g(C); G).





Chapter 5

Mixed quasi-�etale surfaces

In this chapter we study the mixed quasi-�etale surfaces; our aim is to produce
an algorithm to construct and classify all surfacesS with given values of the
invariants that appear as minimal resolution of a mixed quasi-�etale surface.

In this chapter C will denote a Riemann surface of genusg(C) � 2,
G � Aut( C � C) a �nite group with a mixed action on C � C and G0 :=
G \ Aut( C)2 / G the index two subgroup of elements that do not exchange
the factors.

Let X := ( C � C)=G be a mixed surface. We note that the quotient map
factors as follows

C � C ��! Y := ( C � C)=G0 ��! X :

We are in the following situation:

C � C

�

��

p2

((QQQQQQQQQQQQQQ
p1

vvmmmmmmmmmmmmmm
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��
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c

��

Y = ( C � C)=G0

�
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OOO
OOO� 1

wwooo
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ooo
ooo

C=G0 C=G0

S
� //X = ( C � C)=G

(5.1)

where p1; p2 : C � C ! C are the projections to the �rst and the second
factor. By de�nition, G0 ,! Aut( C). Let c: C ! C=G0 be the projection
to the quotient. Let � 1; � 2 : Y ! C=G0 be the morphisms de�ned by

� 1(� (u; v)) = c(u) ; � 2(� (u; v)) = c(v) : (5.2)
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Note that they are well de�ned! Let � : S ! X be the minimal resolution
of X . Moreover we denote byQ: Y ! C=G0 � C=G0 the map

Q(� (u; v)) = ( c(u); c(v)) : (5.3)

Theorem 5.0.12 (cf. [Cat00, Proposition 3.16]). Let X = ( C � C)=G be a
mixed surface. Then the quotient mapC � C ! X is quasi-�etale if and only
if the exact sequence

1 �! G0 �! G �! Z2 �! 1 (5.4)

does not split.

Proof. () ) We have to prove that the extension (5.4) does not split.
Let � 0 and ' as in Theorem 4.4.4. If there existsh 2 G0 such that
(� 0h)2 = 1, i.e. ' (h)�h = 1, then we get

� 0h(x; �hx ) = ( ' (h)�hx; �hx ) = ( x; �hx ) 8x 2 C ;

hence the quotient mapC � C ! X is rami�ed along the curve y =
(�h )x, contradicting our assumptions.

(( ) We factor the quotient map of X := ( C � C)=G as

C � C ��! Y := ( C � C)=G0 ��! X :

From the minimality of Y (G0 acts faithfully on both factors), we have
that � is branched only in a �nite number of points r1; : : : ; r t , therefore
our claim follows if we prove that the branch locus of the double cover
� is �nite.

Aiming for a contradiction, we assume that there exists a curve D � X
such that j� � 1(q)j = 1 for all q 2 D .
Let q 2 D be such that � � 1(q) = p0 62 fr1; : : : ; r t g. Since� is a jG0j =:
n to 1 map, we have� � 1(p0) = f p1; : : : ; png. Since j(� � � ) � 1(q)j = n,
we get that jStab(p1)j = 2, hence Stab(p1) �= Z2 is generated by an
element not in G0. Then (5.4) splits, a contradiction.

Theorem 5.0.13. Let X = ( C � C)=G be a mixed quasi-�etale surface.
Then Sing(X ) = � (Sing(Y )) .

Proof. Let f r1; : : : ; r t g be the singular locus ofY . If q 2 Sing(X )n� (Sing(Y ))
then � � 1(q) = p0 62 fr1; : : : ; r t g and we can argue as in the proof of Theorem
5.0.12 to get a contradiction; therefore Sing(X ) � � (Sing(Y )).
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Let y 2 Sing(Y ). If y is not a rami�cation point for � , then it is obvious
that � (y) 2 Sing(X ). Let Z := Y n � � 1(Sing(X )). Then

� jZ : Z ! X n Sing(X )

is a quasi-�etale morphism with Z normal and X n Sing(X ) smooth hence,
by Lemma 2.1.11,� jZ is �etale. So the branch points for � are contained in
Sing(X ). It follows that if y 2 Sing(Y ) and it is a rami�cation point for � ,
then � (y) 2 Sing(X ).

Remark 5.0.14. From the previous theorem it follows immediately that if
X = ( C � C)=G is a mixed q.e. surface then the map

� : Y := ( C � C)=G0�! X

is quasi-�etale, since its branch locus is contained in Sing(X ).

Lemma 5.0.15. Let S be the minimal resolution of the mixed quasi-�etale
surface X = ( C � C)=G.

Then q(S) = g(C=G0).

Proof. From Corollary 4.1.12 it follows

H 0(
 1
S) = ( H 0(
 1

C� C ))G :

Arguing as in [Cat00, Proposition 3.15], we get

H 0(
 1
S) = ( H 0(
 1

C� C ))G

= ( H 0(
 1
C ) � H 0(
 1

C ))G

= ( H 0(
 1
C )G0

� H 0(
 1
C )G0

)G=G0

= ( H 0(
 1
C0) � H 0(
 1

C0))G=G0
:

Since X is a quotient surface of mixed type, the quotient Z2 = G=G0 ex-
change the last summands, hence

H 0(
 1
S) �= H 0(
 1

C0) :

We get q(S) = h0(
 1
S) = h0(
 1

C0) = g(C0).

5.1 On the singularities

By construction Y = ( C � C)=G0 is an unmixed surface and so its sin-
gularities are all cyclic quotient singularities. In this section we want to
understand which kind of singularities a mixed q.e. surfacecan have. In
particular we study their resolution graph.

We start with the following observation:
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Remark 5.1.1. The group G induces an involution � on Y = ( C � C)=G0

in the following way: let � (u; v) be a point in Y , � (� (u; v)) = � (g(u; v)) for
someg 2 G n G0. It is easy to prove that it is well de�ned.

Let � : T ! Y be the minimal resolution of the singularities of Y .

Lemma 5.1.2. The involution � on Y lifts to an involution � on T.

Proof. Let � : T 99KT be the birational map de�ned by � := � � 1 � � � � .
Let � � T � T be the graph of � ; let f 1 be the projection on the �rst factor
and let f 2 be the projection on the second factor.

If � is not de�ned in a point p 2 T, then � contains a ( � 1)-curve C
contracted to p by f 1. f 2 mapsC to a curve D � T contracted to �(� (p)) by
� . But D 2 � � 1 and all the exceptional curves have self-intersection� � 2,
a contradiction.

Remark 5.1.3. If � �xes p 2 T then P 2 D, the exceptional divisor of � .

Let y = � (u; v) be a singular point in Y of type Cn;a . Consider the
morphisms � 1; � 2 : Y ! C=G0 de�ned as in (5.2):

� 1(� (u; v)) = c(u) ; � 2(� (u; v)) = c(v) :

Proposition 5.1.4. If y is a point of type Cn;a with respect to � 1 (see
De�nition 4.3.10), then �(y) is a point of type Cn;a0 with respect to � 1,
where aa0 �= 1 mod n.

Proof. Let y = � (u; v) and let z := �(y) = �(� (u; v)) = � (� 0(u; v)) =
� (v; �u ); Q(z) = ( c(v); c(�u )) = ( c(v); c(u)). Consider the following �bres:

Y1 := � �
1(c(u)) ; Y2 := � �

2(c(v)) ;

Z1 := � �
1(c(v)) and Z2 := � �

2(c(u)) ;

all of them taken with the reduced structure.
Let ~Yi := � � 1

� (Yi ) and ~Z i := � � 1
� (Z i ) ( i = 1 ; 2) be their strict transforms in

T. By Proposition 4.3.9, the situation is the following:

�c(u)

z

y

�

�

~Z1

~Y1

E l

E 0
lE 0

1

E1

c(u)

c(v)

c(v)

�
~Z2

~Y2
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Then there exists � 1; : : : ; � 4; 
 1; : : : ; 
 l ; � 1; : : : ; � l 2 N such that:

F1 := ( � � � 1) � (c(u)) = � 1 ~Y1 +
lX

i =1


 i E i + � 1

F2 := ( � � � 2) � (c(v)) = � 2 ~Y2 +
lX

i =1


 i E i + � 2

F3 := ( � � � 1) � (c(v)) = � 3 ~Z1 +
lX

j =1

� j E 0
j + � 3

F4 := ( � � � 2) � (c(u)) = � 4 ~Z2 +
lX

j =1

� j E 0
j + � 4

Here the E i are the irreducible components of the exceptional divisor lying
over y and the E 0

j are the irreducible components of the exceptional divisor
lying over z. Since � is an isomorphism that exchanges these two divisors,
we have that they have the same number of irreducible components. Here
the � i are unions of HJ-strings disjointed from the E i and E 0

j ; they are the
exceptional divisors lying over the other singular points of Yi and Z i . We
note that by assumptions,

E i \ ~Y1 =
�

f pt:g if i = 1
; if i 6= 1

E i \ ~Y2 =
�

f pt:g if i = l
; if i 6= l

(5.5)

E 0
i \ ~Z1 =

�
f pt:g if i = 1

; if i 6= 1
E 0

i \ ~Z2 =
�

f pt:g if i = l
; if i 6= l

(5.6)

By (5.5), f pt:g = � (E1 \ ~Y1) = � (E1) \ � ( ~Y1), but � ( ~Y1) = ~Z2 and the
unique curve of � � 1(z) that intersect ~Z2 is E 0

l , hence� (E1) = E 0
l . We get

� b1 = E 2
1 = E 02

l = � b0
l ; analogously � (E l ) = E 0

1 and � E 2
l = E 02

1 = � bl .
Arguing in this way, it is easy to prove, by induction, that � (E i ) = E 0

l+1 � i

and so bi = bl+1 � i . In particular, we get that ~Z1 intersects the extremal
curve with self-intersection � bl , hencez = �(y) is of type Cn;a0 with respect
to � 1.

5.1.1 Singularities of type Dn;a

Proposition 5.1.5. Let X = ( C � C)=G0 be a mixed q.e. surface and let

y 2 Sing(Y ) be a point of typeCn;a with
n
a

= [ b1; : : : ; bl ]. Let � : T ! Y be

the minimal resolution of Y . If y is a rami�cation point of � : Y ! X then

(i) n is even;

(ii) bi = bl+1 � i for all i = 1 ; : : : ; l and l is odd: l = 2m + 1 for some
m 2 N, in particular the resolution graph of y is:
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! " # $ % & '

� b1 � b2 � bm � bm+1 � bm � b2 � b1

(iii) the minimal resolution of the singular point � (p) is the connected union
E of m + 3 rational curves E1; : : : ; Em+1 ; F1; F2 with the following
intersection numbers:

8
>>>>>><

>>>>>>:

E 2
i = � bi for i = 1 ; : : : ; m ;

E 2
m+1 = � 1 � bm +1

2 ; in particular bm+1 is even;
E i :E j = 0 if ji � j j � 2 ; 1 � i; j � m ;
F 2

1 = F 2
2 = � 2;

Em+1 :F1 = Em+1 :F2 = E i :Em+1 = 1 for all 1 � i � m ;
F1:E j = F2:E j = 0 if j 6= m + 1 :

The resolution graph is:

( ) * +

,

-

� b1 � b2 � bm
� bm +1

2 � 1

� 2

� 2

Proof. (i) Let y = � (u; v), jStabG(u; v)j = 2n and jStabG0 (u; v)j = n. If n is
odd, then there exists an elementg of order 2 in StabG(u; v) n StabG0 (u; v),
by Sylow's theorem. In particular g 2 G n G0, a contradiction.

(ii) Let D := � � 1(y), since y is of type Cn;a we have that D is a tree of
l rational curves D1; : : : ; D l with D 2

i = � bi , D i :D i +1 = 1 and D i :D j = 0
if ji � j j � 2. Arguing as in the proof of Proposition 5.1.4, we get that
� (D i ) = D l+1 � i and � bi = D 2

i = D 2
l+1 � i = � bl+1 � i .

Assume now that l = 2m be even, the involution � exchangesD i with
D l+1 � i , hencep = Dm \ Dm+1 is the unique point �xed by � .

Let us consider local coordinates in a neighborhoodU of p centered inp,
in these coordinates the involution is&: C2 ! C2 with a unique �xed point:
(0; 0). Up to a change of coordinates (Lemma 4.2.2), we can assumethat &
is linear. The Jordan form of &is one of the following:

�
a 0
0 b

� �
a 1
0 a

�

We note that
�

a 1
0 a

� 2

=
�

a2 2a
0 a2

�
6= Id 8a 2 C
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therefore &is of the form
�

a 0
0 b

�
with a2 = b2 = 1 :

We have, up to a linear coordinate change, three cases:
�

1 0
0 1

�
;

�
� 1 0
0 1

�
;

�
� 1 0
0 � 1

�
:

& cannot be neither the identity, which �xes every point, nor t he second
matrix which �xes a line. The third matrix �xes only the point (0; 0) but
it sends every line that passes through the origin into itself, a contradiction
since we have that� exchanges two lines throughp. Hencel is odd.

(iii) By point (ii), l = 2m + 1 and � (Dm+1 ) = Dm+1 . The restriction of
� to Dm+1 is an involution &: P1 ! P1, by Hurwitz's formula we get that &
�xes exactly two points p1 and p2 that cannot be the points of intersection
of Dm+1 with Dm or Dm+2 . Let � : T0 ! T be the blow-up of T in p1 and
p2, we denote byD 0

i the strict transform of D i and by A1 and A2 the two
(� 1)-exceptional curves. We have thatD 02

i = D 02
l+1 � i = D 2

i = D 2
l+1 � i = � bi

for i = 1 : : : ; m, D 02
m+1 = � 2 � bm+1 and A2

1 = A2
2 = � 1.

D 0
m

D 0
m+1

D 0
m+2

A1 A2

� 1� 1

� 2 � bm+1

Let us consider local coordinates (x; y) in a neighborhood U �= C2 of p1

centered in p1; arguing as before, we can assume that in these coordinates,
the involution is &: (x; y) 7! (� x; � y); moreover the blow-up of U in p1

is given by (x1; y1) 7! (x1; x1y1) on a chart (say U1) and by (x2; y2) 7!
(x2y2; y2) on the other chart (say U2). The gluing U1 [ U2 is given by
(x1; y1) 7! (x � 1

1 ; x1y1) and the exceptional curveE is f x1 = 0g [ f y2 = 0g.
The involution &lifts to an involution on the blow-up:

(x1; y1) 7�! (� x1; y1) (x2; y2) 7�! (x2; � y2) :

So the set of points �xed by the lift of &is f x1 = 0g [ f y2 = 0g = E.
Arguing in the same way for p2 we lift the involution � to an involution � 0

on T0. Let V be an open set ofT containing D 0 :=
S

i D 0
i [ A1 [ A2 and let

p: V ! V=� 0
jV be the projection to the quotient. Up to shrinking V , the

restriction of � 0 to V is an isomorphism ofV that �xes only A1 and A2 and
so the quotient V=� 0

jV is smooth and it has the form:
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Em+1

Em

F1 F2

where F1 = p(A), F2 = p(B ), E i = p(D 0
i ) = p(D 0

l+1 � i ) for i = 1 ; : : : ; m + 1.
All these curves are rational, indeed the restriction of p to each of these
curves is an isomorphism onto its image, except for one case:D 0

m+1 . In this
case the mappjD 0

m +1
: D 0

m+1 ! Em+1 has degree 2 and it is the quotient

of D 0
m+1

�= P1 by an involution that �xes two points, hence by Hurwitz's
formula we get:

� 2 = 2
�

2g(Em+1 ) � 2 +
1
2

+
1
2

�
:

It follows that g(Em+1 ) = 0 and so Em+1 is a rational curve. Using
the projection formula, we can compute the self-intersection of the curves
E1; : : : ; Em+1 ; F1; F2:

E 2
i =

1
2

(p� (E i ):p� (E i )) =
1
2

((D 0
i + D 0

l+1 � i )
2)

=
1
2

((D 0
i )

2 + ( D 0
l+1 � i )

2) = � bi 8i = 1 ; : : : ; m

E 2
m+1 =

1
2

(p� (Em+1 ):p� (Em+1 )) =
1
2

(D 0
m+1 :D 0

m+1 ) = � 1 �
bm+1

2

F 2
i =

1
2

(p� (Fi ):p� (Fi )) =
1
2

(2A i :2A i ) = � 2 for i = 1 ; 2

Corollary 5.1.6. Let y 2 Y as in Proposition 5.1.5, then a = a0, i.e. a2 = 1
mod (n).

Proof. This follows directly by Proposition 5.1.5 (ii).

Lemma 5.1.7. Let X = ( C � C)=G0 be a mixed q.e. surface and lety 2

Sing(Y ) be a point of typeCn;a with
n
a

= [ b1; : : : ; bm ; bm+1 ; bm ; : : : ; b1]. Let

p
q

:= [ b1; : : : ; bm ] ; � :=
bm+1

2
+ 1 and � := ( � � 1)p � q :

Then x := � (y) is a quotient singularity isomorphic to C2=H with:
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� if � = 0 (i.e. p = 0 ), then

H =
��

� 0
0 � n+1

��
; with � = e

2�i
2n ;

� if � 6= 0 and odd, then

H =
��

� 0
0 �

�
;
�

! 0
0 ! � 1

�
;
�

0 1
� 1 0

��
; with � = e

2�i
2� ; ! = e

2�i
2p ;

� if � 6= 0 and even, then

H =
��

0 �
� � 0

�
;
�

! 0
0 ! � 1

��
; with � = e

2�i
4� and ! = e

2�i
2p :

Proof. The statement follows immediately from the classi�cation of �nite
subgroups of GL(2; C) without quasi-re
ection (i.e. with only one �xed
point), see [Bri68, Satz 2.11] or [Mat67, Theorem 4.6.20].

De�nition 5.1.8. We say that a singular point x as in Lemma 5.1.7 is a
singular point of type Dn;a .

Remark 5.1.9.

1. A singular point of type Dn;n � 1 is a Rational Double Point. It is a Du
Val singularity of type Dm , where 2m � 4 = n.

2. We note that a = 1 if and only if p=q= 0. In this case we have a point
of type Dn;1 which is isomorphic to a cyclic quotient singularity type
C2n;n +1 .

Remark 5.1.10. Let X = ( C � C)=G be a mixed quasi-�etale surface and let

S
�

! X be its minimal resolution of the singularities. Let T �! Y be the
minimal resolution of Y = ( C � C)=G0. By the proof of Proposition 5.1.5,
it follows that the involution � on T �xes 2d points, where d is the number
of branch points for � . The involution � lifts to an involution � 0 of T0 that
�xes the exceptional divisor and soT0=� 0 is smooth and it is isomorphic to
S. Moreover ~� : T0 ! S is a double cover rami�ed along the 2d exceptional
curves.

In the following the term multiset will be used in the sense of MAGMA,
that is a set with some of its members repeated.

De�nition 5.1.11 (cf. [BP10, De�nition 1.2]) . Let Y be an unmixed sur-
face. Then we de�ne thebasket of singularities ofY to be the multiset

B(Y ) :=
�

� � Cn;a : Y has exactly � singularities of type Cn;a
	

:
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Let X = ( C � C)=G be a mixed q.e. surface. We recall that Sing(X ) =
� (Sing(Y )). We de�ne the following two multisets:

BC :=
�

� � Cn;a : X has exactly � singularities of type Cn;a

not in the branch locus
	

:

BD :=
�

� � Dm;b : X has exactly � singularities of type Dm;b

in the branch locus
	

:

De�nition 5.1.12. The basket of singularities ofX is the multiset

B(X ) = BC [ B D :

Remark 5.1.13. As noted in [BP10, Remark 1.3], in the above de�nitions
there is some ambiguity: a point of type Cn;a is also a point of type Cn;a0

with a0 = a� 1 in Zn . We consider these di�erent representations as equal
and usually we do not distinguish between them.

Lemma 5.1.14. Let X = ( C � C)=G be a mixed q.e. surface. LetB(X ) =
BC [ B D be the basket of singularities ofX with BC := f � i � Cn i ;ai gi and
BD := f � j � Dm j ;bj gj . Then

X

i

� i
ai + a0

i

ni
+

X

j

� j
bj

mj
2 Z :

Proof. If x 2 X is a singular point of type Dm;b, then � � 1(x) = y (with
y = �(y)) is a singular point of type Cm;b. If x 2 X is a singular point of
type Cn;a , then � � 1(x) = f y; zg (z = �(y)) are two singular points of type
Cn;a , hence

B(Y ) = f 2� i � Cn i ;ai ; � j � Cm j ;bj gi;j : (5.7)

Let � : Y ! C=G0 the �bration given by � 1(� (u; v)) = c(u). By Propo-
sition 5.1.4, if y 2 Sing(Y ) is a point of type Cn;a with respect to � , then
z = �(y) is a point of type Cn;a0 with respect to � . So to each elementDm;b

in BD corresponds a singular point of typeCm;b with respect to � , while to
each elementCn;a in BC corresponds a pair of singular points: one of type
Cn;a and one of typeCn;a0 with respect to � . By Lemma 4.3.14, we get

X

i

� i
ai + a0

i

ni
+

X

j

� j
bj

mj
2 Z :
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5.2 On the invariants

De�nition 5.2.1 (see [BP10, De�nition 1.4]). Let x be a singular point of
type Cn;a and let n

a := [ b1; : : : ; bl ].
We de�ne the following correction terms:

i) kx = k(Cn;a ) := � 2 +
2 + a + a0

n
+

P l
i =1 (bi � 2) � 0;

ii) ex = e(Cn;a ) := l + 1 �
1
n

� 0;

iii) Bx = B (Cn;a ) := 2 ex + kx .

De�nition 5.2.2. Let x be a singular point of type Dn;a and
let n

a := [ b1; : : : ; bm ; bm+1 ; bm ; : : : ; b1].
We de�ne the following correction terms:

i) kx = k(Dn;a ) := � 2 + a+1
n +

P m
i =1 (bi � 2) + bm +1

2 � 0;

ii) ex = e(Dn;a ) := m + 4 �
1

2n
;

iii) Bx = B (Dn;a ) := 2 ex + kx .

Remark 5.2.3. From the de�nition it follows that

k(Dn;a ) =
k(Cn;a )

2
e(Dn;a ) =

e(Cn;a )
2

+ 3 ; B (Dn;a ) =
B (Cn;a )

2
+ 6 :

Let B be the basket of singularities ofX . We use the following notation:

k(B) =
X

x2B

kx ; e(B) =
X

x2B

ex ; B (B) =
X

x2B

Bx :

Proposition 5.2.4. Let � : S ! X be the minimal resolution of singularities
of X = ( C � C)=G, and let B be the basket of singularities ofX . Then

K 2
S =

8(g � 1)2

jGj
� k(B) ; (5.8)

e(S) =
4(g � 1)2

jGj
+ e(B) : (5.9)

Proof. Arguing as in Proposition 4.1.10, we getK 2
C� C = 8( g � 1)2 and

e(C � C) = 4( g � 1)2, where g := g(C). By construction � : C � C ! Y
has �nite branch locus, then K C� C = � � K Y . We get K 2

C� C = deg � � K 2
Y =

jG0j � K 2
Y , so

K 2
Y =

8(g � 1)2

jG0j
:
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Since � : Y ! X has �nite branch locus, then K Y = � � K X . We get K 2
Y =

deg� � K 2
X = 2 � K 2

X , so

K 2
X =

K 2
Y

2
=

8(g � 1)2

jGj
:

Let B = BC [ B D = f � i � Cn i ;ai gi [ f � j � Dn j ;aj gj , then the basket of
singularities of Y := ( C � C)=G0 is

B(Y ) = f � i � Cn i ;ai ; � i � Cn i ;a0
i
gi [ f � j � Cn j ;aj gj ;

hence by de�nition
k(B(Y )) = 2 k(B) :

Let � : T ! Y be the minimal resolution of singularities ofY , it is a product-
quotient surface (see [BP10, De�nition 0.1]) and so by Lemma4.2.11 we have

K 2
T =

8(g � 1)2

jG0j
� k(B(Y )) :

The involution � on T has an even number of �xed points: 2d with d = jBD j
(see Remark 5.1.10). Let� : T0 ! T be the blow-up of T in these points.
We get

K 2
T 0 = K 2

T � 2d = K 2
Y � (k(B(Y )) + 2 d) = 2( K 2

X � k(B) � d) : (5.10)

Since� lifts to an involution � 0 on T0 that �xes the exceptional divisor of � ,
the quotient T0=� 0 is smooth and isomorphic toS; ~� : T0 ! S is a double
cover branched overF = F1 + : : : + F2d, where the Fi are rational curves
and Fi :Fj = 0 if i 6= j . In particular, we get (see [CD89, pages 13-14]):

K T 0 = ~� �
�

K S +
F
2

�
:

We note that (K S + Fi ):Fi = deg K F i = � 2, and by construction F 2
i = � 2

for all i and soK S:F = 0, it follows that

K 2
T 0 = 2

�
K S +

F
2

� 2

= 2
�

K 2
S +

� 4d
4

�
= 2( K 2

S � d) : (5.11)

From equations (5.10) and (5.11), we get:

K 2
S = K 2

X � k(B) =
8(g � 1)2

jGj
� k(B) :

To prove (5.9), we argue as follows: letX 0 := X nSing(X ) be the smooth
locus ofX . Let x be a point of type Cn;a , then � � 1(x) is a tree of l (the length
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of the continued fraction n=a) rational curves and soe(� � 1(x)) = l +1, while
for a point x of type Dn;a : e(� � 1(x)) = m + 4, where m is as in De�nition
5.2.2; therefore

e(S) = e(X 0) +
X

x2B C

(lx + 1) +
X

x2B D

(mx + 4) :

Let Z 0 := ( C � C) n (( � � � ) � 1(Sing(X ))), so Z 0 ! X 0 is �etale, hence

e(X 0) =
e(Z 0)
jGj

=
e(C � C) � j (� � � ) � 1(Sing(X )) j

jGj

=
e(C � C)

jGj
�

X

x2B C

j(� � � ) � 1(x)j
jGj

�
X

x2B D

j(� � � ) � 1(x)j
jGj

=
e(C � C)

jGj
�

X

x2B C

1
nx

�
X

x2B D

1
2nx

It follows that

e(S) =
e(C � C)

jGj
�

X

x2B C

�
lx + 1 �

1
nx

�
�

X

x2B D

�
mx + 4 �

1
2nx

�

=
4(g � 1)2

jGj
+ e(B)

Corollary 5.2.5. Let S ! X = ( C � C)=G be the minimal resolution of
singularities of X , and let B be the basket of singularities ofX . Then

K 2
S = 8 � (S) �

1
3

B (B) :

Proof. By Proposition 5.2.4 we have

e(S) = e(B) +
K 2

S + k(B)
2

=
K 2

S + B (B)
2

:

Using Noether's formula we get

12� (S) = K 2
S + e(S) =

3K 2
S + B (B)

2
:

SinceB (B) � 0, it follows that

Corollary 5.2.6.
K 2

S � 8� (S) :
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Lemma 5.2.7. Let X be a mixed quasi-�etale surface. Let� : S ! X be the
minimal resolution of X and let � : T ! Y be the minimal resolution of Y .
Let d be the number of branch points for� , then

pg(T) = 2 pg(S) + 1 �
d
2

;

in particular d is even.

Proof. The involution � on T has an even number of �xed points: 2d with
d = jBD j; let � : T0 ! T be the blow-up of T in these points. Moreover
� lifts to an involution � 0 on T0 that �xes only the exceptional divisor of
� , hence the quotient T0=� 0 is smooth and isomorphic to S; we have that
~� : T0 ! S is a double cover branched overF = F1 + : : : + F2d, where the
Fi are rational curves, andK 2

T 0 = 2( K 2
S � d). Since ~� is branched along 2d

rational curve (e(P1) = 2) we have that e(T0) = 2 e(S) � 4d, we also note
that e(T) = e(T0) � 2d = 2e(S) � 6d. By the proof of Proposition 5.2.4, we
get K 2

T = 2K 2
S.

SinceT is smooth, Noether's formula applies and

� (OT ) =
1
12

(K 2
T + e(T)) =

1
12

(2K 2
S + 2e(S) � 6d)

= 2 � (OS) �
d
2

By Lemma 4.3.15, sinceT ! X is a product-quotient surface, we have
q(T) = 2 g(C=G0) = 2 q(S), hence

pg(T) = 2 + 2 pg(S) � 2q(S) �
d
2

+ q(T) � 1

= 2pg(S) + 1 �
d
2

:

Noting that the branch points of � : Y ! X are exactly the singular
points of X of type Dn;a , the next statement follows:

Corollary 5.2.8. The number d of singular points of type Dn;a of a mixed
q.e. surfaceX is even and

d
2

� 2pg(S) + 1 ;

where S ! X is the minimal resolution of X .



5.2 On the invariants 81

5.2.1 Determining the signatures

De�nition 5.2.9. Let S be the minimal resolution of the mixed q.e. surface
X = ( C � C)=G. Let  : T(g0; m1; : : : ; mr ) �! G0 be the appropriate
orbifold homomorphism induced by c: C �! C=G0. Let B be the basket of
singularities of X . Then we de�ne the following numbers:

� := 2 q(S) � 2 +
rX

i =1

�
mi � 1

mi

�
;

� :=
12� (OS) + k(B) � e(B)

3�
;

� := 4 � (OS) +
k(B) � e(B)

3
:

Remark 5.2.10. We note that � = � � �. Moreover by Noether's formula we
have 12� (OS) = K 2

S + e(S) and so we get:

12� =
8(g � 1)2

jGj
� k +

4(g � 1)2

jGj
+ e

hence

� =
1
3

(12� + k � e) =
4(g � 1)2

jGj
=

K 2
S + k(B)

2
:

In particular � depends only onK 2
S and on the basket of singularities.

De�nition 5.2.11 (see [Rei87]). The minimal positive integer I x such that
I xK X is Cartier in a neighborhood of x 2 X is called the index of the
singularity x.
The index of a normal variety X is the minimal positive integer I such that
IK X is Cartier. In particular, I = lcm x2 Sing(X ) I x .

Lemma 5.2.12. The index of a singularity of type Cn;a is

I x =
n

gcd(n; a + 1)
:

Proof. Let [b1; : : : ; bl ] :=
n
a

; let � 0 = n, � 1 = a and � i +1 = bi � i � � i � 1 for

i = 2 ; : : : ; l . Let � 0 = 0, � 1 = 1 and � i +1 = � i bi � � i � 1 for i = 2 ; : : : ; l .
By Lemma 4.2.10, in a neighborhoodX = C2=H of a singular point of type
Cn;a ,

K S = � � K X +
lX

i =1

r i E i ;

where r i =
� i + � i � n

n
for i = 1 ; : : : ; l .
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By [Mat67, Remark 4-6-26],

I x = min f e 2 N j eri 2 Z 8ig:

We claim that � :=
n

gcd(n; a + 1)
= I x .

Let i = 0, then r0 = (0 + n � n)=n = 0 and � � r0 2 Z.

Let i = 1, then r1 =
a + 1

n
� 1 and

� � r1 =
n

gcd(n; a + 1)
�

a + 1
n

� 1 2 Z :

By de�nition, � is the minimal integer such that � � r1 2 Z.
To complete the proof it is enough to prove that � � r i 2 Z for i � 2. We
prove it by induction on i :

r i +1 =
� i +1 + � i +1 � n

n
=

(� i + � i )bi

n
�

� i � 1 + � i � 1

n
� 1:

Hence

� � r i +1 = � �
(� i + � i )

n
bi � � �

� i � 1 + � i � 1

n
� � 2 Z ;

since, by inductive hypothesis, we are summing three integers.

For �xed K 2
S, pg(S), q(S) and B, we want to bound the possibilities for

(m1; : : : ; mr ) and jGj for a group G acting on C � C giving rise to a surface
S as minimal resolution of the mixed q.e. surfaceX = ( C � C)=G, where S
has these invariants.

Proposition 5.2.13 (cf. [BP10, Proposition 1.13]). Let S be the minimal
resolution of the singularities of the mixed q.e. surfaceX = ( C � C)=G.
Let  : T(g0; m1; : : : ; mr ) ! G0 be the appropriate orbifold homomorphism
induced byc: C ! C=G0. Let B = BC [ B D be the basket of singularities of
X . Then

a) � > 0 and � = g(C) � 1;

b) jGj = 8� 2

K 2
S + k(B) ;

c) r � K 2
S + k(B)

� + 4(1 � q);

d) each mi divides 2�I where I is the index of Y ;

e) there are at mostN := jBC j + jBD j=2 indices i such that mi does not
divide � ;
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f) if r 6= 0 , mi �
1 + I (K 2

S + k(B))
M

, where M := max
� 1

6 ; r � 3+4 q
2

	
;

moreover, except for at mostN indexes i , we have the stronger in-

equality mi �
1

M

�
1 + K 2

S + k(B)
2

�
;

Proof. a) Let g be the genus ofC. Sinceq(S) = g(C=G0) (Lemma 5.0.15),
Hurwitz's formula says that

2(g � 1) = jG0j � � ;

hence � =
2(g � 1)

jG0j
> 0, sinceg � 2. Let k := k(B) and B := B (B).

By Corollary 5.2.5, we get

� =
24� + 3k � B

6�
=

K 2
S + k
2�

;

and by Proposition 5.2.4 and Hurwitz's formula:

� =
8(g � 1)2

4� jG0j
=

8(g � 1)2

8(g � 1)
= g � 1:

b) jGj =
8(g � 1)2

K 2
X

=
8� 2

K 2
S + k

.

c) We note that � � 2q � 2 + r
2 = r +4( q� 1)

2 , hence

r � 2� � 4(q � 1) =
K 2

S + k
�

+ 4(1 � q) :

d) Each mi is the branch index of a branch pointpi of c: C ! C0. Let Fi

be the �ber over pi of the map Y = ( C � C)=G0 ! C=G0. Then Fi = mi Wi

for some irreducible Weil divisor Wi , moreover Fi is isomorphic to C (see
Remark 4.3.5), then

2� = 2g(C) � 2 = K Y :Fi + F 2
i = K Y :Fi = mi K Y :Wi :

Therefore
2�I
mi

= ( IK Y )Wi 2 Z :

e) By Theorem 4.3.8, ifFi contains a singular point ofY , then it contains
at least 2 singular points. Therefore there are at mostjB(Y )j=2 = jBC j +
jBD j=2 = N indexes i such that Fi \ Sing(Y ) 6= ; , here B(Y ) is the basket
of singularities of Y .

For all other indexes j we haveFj \ Sing(Y ) = ; . Then Wj is Cartier
and K Y is Cartier in a neighborhood of Wj . In particular,

�
mi

=
K Y Wj

2
2 Z ;
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sinceK Y Wj is even.
f) We distinguish two cases:q = 0 and q � 1.
If q = 0, then r � 3, and if r = 3 at most one mi can be equal to 2.

Hence we have:

� +
1

mi
= � 1 +

rX

j =1 ;i 6= j

�
1 �

1
mj

�
�

1
6

:

If r > 3, since � = ( r � 2) �
rX

j =1

1
mj

, we have that

� +
1

mi
= ( r � 2) �

3X

j =1 ;i 6= j

1
mj

� (r � 2) �
r � 1

2
=

r � 3
2

=
r � 3 + 4q

2
>

1
6

:

If q � 1, we have that � = 2 q � 2 + r �
rX

j =1

1
mj

, hence

� +
1

mi
= 2q � 2 + r �

rX

j =1 ;i 6= j

1
mj

� 2q � 2 + r �
r � 1

2
=

r � 3 + 4q
2

>
1
6

:

It follows that � + 1
m i

� max
� 1

6 ; r � 3+4 q
2

	
=: M . Since mi � 2�I =

K 2
S + k
� I , we get

mi �
1

M

�
1 + � � mi

�
�

1
M

�
1 + � �

K 2
S + k
�

I
�

=
1

M

�
1 + ( K 2

S + k)I
�

:

Except for at most N indices, mi � � and so we get

mi �
1

M

�
1 + � �

K 2
S + k
2�

�
=

1
M

�
1 +

K 2
S + k
2

�
:

Remark 5.2.14. By Proposition 5.2.13 we have that

jG0j =
4� 2

K 2
S + k(B)

=
K 2

S + k(B)
� 2

are strictly positive integers.
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Under the same assumption of Proposition 5.2.13, let

T(g0; m1; : : : ; mr ) := ha1; b1; : : : ; ag0; bg0; c1; : : : ; cr j
cm1

1 ; : : : ; cm r
r ;

Q g0

i =1 [ai ; bi ] � c1 � � � cr i ;

and let hi :=  (ci ), in particular ord( hi ) = mi .

Lemma 5.2.15. Under the same assumptions of Proposition 5.2.13,

mi � 2
�

2�
�

+ 3
�

:

Proof. We have that mi = ord( hi ) and hhi i is a cyclic group acting on C
that has genusg � 2. Theorem 2.2.18 applies and we get

mi � 4g + 2 = 2(2 � + 3) = 2
�

2�
�

+ 3
�

;

sinceg = � + 1 and � = � � �.

Proposition 5.2.16. Under the same assumptions of Proposition 5.2.13,
let R := r � 3 + 4q. For all i 2 f 1; : : : ; r g we have

i) if q(S) = 0 and r = 3 then

mi � 12(2� + 1)

ii) otherwise

mi � 6 +
(8� + 2)

R
;

Proof. Arguing as in point f) of the proof of Proposition 5.2.13, we get

� +
1

mi
�

8
><

>:

1
6

if q = 0 ; r = 3

R
2

otherwise

i) If q = 0 and r = 3, we have � �
mi � 6

6mi
; since 12(2� + 1) > 12 we can

assumemi > 6 and so
1
�

�
6mi

mi � 6
.

By Lemma 5.2.15 we get:

mi � 2
�

2�
�

+ 3
�

� 2
�

12�m i

mi � 6
+ 3

�

hence (mi � 6)2 � 24�m i and so

m2
i � 12mi (1 + 2 � ) + 36 � 0:
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It follows that

mi � 6(1 + 2� ) +
p

36(1 + 2� )2 � 36 � 6[(1 + 2� ) +
p

(1 + 2 � )2 � 1 ]

< 12(1 + 2� ) :

ii) If q 6= 0 or r > 3, we have � �
Rm i � 2

2mi
and R 2 N> 0; since

6 +
8� + 2

R
> 6 we can assumemi > 2 and so

1
�

�
2mi

Rm i � 2
. By Lemma

5.2.15 we get:

mi � 2
�

2�
�

+ 3
�

� 2
�

4�m i

Rm i � 2
+ 3

�

hencem2
i R � 2mi (3R + 4 � + 1) + 12 � 0. It follows that

mi �
(3R + 4 � + 1) +

p
(3R + 4 � + 1) 2 � 12R
R

<
(3R + 4 � + 1) + (3 R + 4 � + 1)

R
= 6 +

8� + 2
R

:

Lemma 5.2.17. Under the same assumptions of Proposition 5.2.13, let
B(Y ) be the basket of singularities ofY = ( C � C)=G0. Then for each
Cn;a 2 B(Y ) there existsmi such that n divides mi , in particular n � mi .

Proof. Let � (x; y) be a singular point of Y of type Cn;a . We have that
StabG0 (x; y) = h� i and has ordern, in particular � (x; y) = ( � (x); ' (� )(y)) =
(x; y), that is � 2 StabG0 (x), hence x is a rami�cation point of c, let p :=
c(x). By Lemma 2.3.4 there is a bijection

c� 1(p)  ! f gHg

where g 2 G0 and H = hhi i for some i . By Lemma 2.3.5 StabG0 (gH) =
(gHg� 1), and so � = gh�

i g� 1 for some� 2 f 1; : : : ; mi � 1g, then n j mi .



Chapter 6

An algorithm to classify
regular mixed quasi-�etale
surfaces

In this chapter we give an algorithm to classify regular surfaces occurring
as minimal resolution of the singularities of a mixed q.e. surface, with �xed
values of the invariants K 2 and pg. As an application of this algorithm we
will obtain the classi�cation of these surfaces with K 2 > 0 and pg = 0.

6.1 The classi�cation

In this section we give a complete classi�cation of the regular surfacesS
with K 2

S > 0 and pg(S) = 0 occurring as minimal resolution � : S ! X of
the singularities of a mixed q.e. surfaceX := ( C � C)=G.
We make a systematic computer search of the surfaces that satisfy these
assumptions. As output we get the following theorem:

Theorem 6.1.1. Let S be the minimal resolution of the singularities of a
mixed q.e. surfaceX with pg(S) = q(S) = 0 and K 2

S > 0, then

1. S is minimal and of general type.

2. S belongs to one of the 17 families collected in Table 6.1.

This chapter is dedicated to proving the second part of this statement;
the �rst part is proved in the next chapter.

The �rst column of Table 6.1 gives K 2
S of the surfaces, Sing(X ) repre-

sents the basket of singularities ofX . The column Type gives the type of the
set of spherical generators in a compacted notation, e.g. 23; 4 = (2 ; 2; 2; 4).
The columns G and G0, obviously, give the group and its index two sub-
group. The groups denoted by G(a,b) are groups of order a, while b is
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the MAGMA identi�er of the group, as described in Section 7.3. The last
column gives the reference. Some groups are given as semidirect products
H oZ r ; to specify them, we should indicate the image of the generator of Zr

in Aut( H ). For lack of space in the table, we explain in Section 7.3 which
is the automorphism. The column b2 gives the second Betti number ofX .

K 2
S Sing(X ) Type G0 G b2 Label

1 2C2;1 + 2 D2;1 23 ; 4 D4 � Z2 Z3
2 o Z 4 1 7.3.1

2 6C2;1 25 Z3
2 Z2

2 o Z 4 2 7.3.2
2 6C2;1 43 (Z2 � Z4) o Z 4 G(64, 82) 2 7.3.3
2 C2;1 + 2 D2;1 23 ; 4 Z4

2 o Z 2 Z4
2 o Z 4 1 7.3.4

2 C2;1 + 2 D2;1 22 ; 32 Z2
3 o Z 2 Z2

3 o Z 4 1 7.3.5
2 2C4;1 + 3 C2;1 23 ; 4 G(64, 73) G(128, 1535) 3 7.3.6
2 2C3;1 + 2 C3;2 32 ; 4 G(384, 4) G(768, 1083540) 2 7.3.7
2 2C3;1 + 2 C3;2 32 ; 4 G(384, 4) G(768, 1083541) 2 7.3.8
3 C8;3 + C8;5 23 ; 8 G(32, 39) G(64, 42) 2 7.3.9
4 4C2;1 25 D4 � Z2 D2;8;5 o Z 2 2 7.3.10
4 4C2;1 25 Z4

2 (Z2
2 o Z 4) � Z2 2 7.3.11

4 4C2;1 43 G(64, 23) G(128, 836) 2 7.3.12
8 ; 25 D4 � Z2

2 (D2;8;5 o Z 2) � Z2 2 7.3.13
8 ; 43 G(128, 36) G(256, 3678) 2 7.3.14
8 ; 43 G(128, 36) G(256, 3678) 2 7.3.15
8 ; 43 G(128, 36) G(256, 3678) 2 7.3.16
8 ; 43 G(128, 36) G(256, 3679) 2 7.3.17

Table 6.1: The surfaces. G(a,b) denotes the bth group of order a in the
MAGMA database of �nite groups. See Section 7.3 for a detailed description.

Remark 6.1.2. It is automatic that b0(X ) = b4(X ) = 1 and b1(X ) = b3(X ) =
0 (see (3.2) and (3.3)). If in addition b2(X ) = 1 then X is a Q-homology
projective planes, i.e. normal projective complex surfacewith the same Betti
numbers of P2, as studied in [HK11] and [Keu10].

Remark 6.1.3. Let S ! X be the minimal resolution of the singularities of
a mixed q.e. surface, withq(S) = 0. By Theorem 2.4.3, Theorem 4.4.4 and
Lemma 5.0.15,X is completely determined by the following data:

� a �nite group G;

� a spherical system of generators (h1; : : : ; hr ) of type (m1; : : : ; mr ) of
an index two subgroupG0 / G such that 1 ! G0 ! G ! Z2 ! 1 does
not split;

� an ordered set ofr points p1; : : : ; pr in P1.

Once we �x G and (h1; : : : ; hr ) as above, by Theorem 2.4.3 we get a curve
C such that the Galois covering c: C ! C=G0 �= P1 is branched over
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f p1; : : : ; pr g � P1. Using Theorem 4.4.4 we de�ne a mixed action onC � C
and by Theorem 5.0.12 the quotient map is quasi-�etale.

We note that, given a spherical set of generators, the mixed q.e. surface
is determined up to the choice ofr points in P1, hence we get a family of
surfaces depending onr � 3 parameters. We do not known the dimension
of its image in the moduli space.

Remark 6.1.4. We observe that the basket of singularities of each output
contains either zero or two points of typeDn;a .

We already knew this fact. Indeed it follows by Corollary 5.2.8:

Lemma 6.1.5. Let S be the minimal resolution of the singularities of the
mixed q.e. surfaceX = ( C � C)=G. Let T be the minimal resolution of the
singularities of Y = ( C � C)=G0. If pg(S) = 0 , then the map� : Y ! X is

� either �etale and pg(T) = 1 ;

� or branched exactly in 2 points andpg(T) = 0 .

6.1.1 Finiteness of the classi�cation

If in De�nition 5.2.9 we assume that S is a regular surface, then� (OS) =
1 + pg(S). Thus � and � are so de�ned:

� := � 2 +
rX

i =1

�
mi � 1

mi

�
� :=

12(1 + pg(S)) + k(B) � e(B)
3�

:

From Proposition 5.2.13 it follows immediately:

Proposition 6.1.6. Let S be the minimal resolution of the regular mixed q.e.
surface X = ( C � C)=G. Let  : T(g0; m1; : : : ; mr ) ! G0 be the appropriate
orbifold homomorphism induced byc: C ! C=G0. Let B = BC [ B D be the
basket of singularities ofX . Then

� � > 0 and � = g(C) � 1;

� j Gj = 8� 2

K 2
S + k(B) ;

� r � K 2
S + k(B)

� + 4 ;

� eachmi divides 2�I , where I is the index of Y ;

� there are at mostN := jBC j + jBD j=2 indices i such that mi does not
divide � ;



90 An algorithm to classify regular mixed quasi-�etale surfaces

� mi � 1+ I (K 2
S + k(B))
M , where M := max

� 1
6 ; r � 3

2

	
;

moreover, except for at mostN indices i we have the stronger inequal-
ity

mi �
1

M

�
K 2

S + k(B)
2

+ 1
�

:

Remark 6.1.7. By Corollary 5.2.5 and Hurwitz's formula, it follows that

� =
K 2 + k(B)

2�
:

Once we have �xed the values ofpg(S) and q(S), by the standard in-
equalities (see Section 3.6) and Corollary 5.2.6, we get a �nite number of
possible values forK 2

S: 2pg(S) � 4 � K 2
S � 8� (OS); if q > 0 the stronger

inequality 2pg(S) � K 2
S holds. By Corollary 5.2.5, we getB (B).

Lemma 6.1.8. Let H 2 Q. Then there are �nitely many baskets B such
that

B (B) = H ;

in particular:

1. jBj � H=3;

2. if � � Cn;a 2 B and n=a = [ b1; : : : ; bl ] then �
P

bi � H ;

3. if � � Dn;a 2 B and n=a = [ b1; : : : ; bl ] then �
2(

P
bi + 12) � H .

Proof. We note that B (Cn;a ) = a+ a0

n +
P

bi � 3, while B (Dn;a ) = B (Cn;a )
2 +

6 � 15=2. It follows that H =
P

x2B Bx � 3jBj , this prove the �rst point.
The second is obvious, while the third follows byH � � ( 1

2

P
bi + 6).

Remark 6.1.9. If B is the basket of singularities of a mixed q.e. surfaceX
then, by Corollary 5.2.8, it contains either no points of type Dn;a or at least
two. In the latter case we have that B (Dn1 ;a1 ) + B (Dn2 ;a2 ) � B (B); that is

B (B) �
15
2

� B (Dn1 ;a1 ) =
2a1
n1

+
P

bi

2
+ 6

hence
2B (B) � 15 � 2B (Dn1 ;a1 ) =

2a1

n1
+

X
bi + 12 :

That is X
bi < 2B (B) � 27:

By Lemma 6.1.8, we have only �nitely many baskets with assigned B .
Fixing K 2

S and B, by Proposition 5.2.13, we have only �nitely many types,
and for each type only �nitely many groups.
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6.1.2 How to compute the singularities

We need to understand how to compute the singularities onY and on X
starting from the algebraic data.

Let (h1; : : : ; hr ) be a spherical system of generators for the groupG0, of
type (m1; : : : ; mr ). By Theorem 2.4.3 we get the Galois coveringc: C !
C=G0 �= P1 branched overf p1; : : : ; pr g � P1. Let Q: Y ! P1 � P1 the map
Q(� (x; y)) = ( c(x); c(y)).
We recall the following commutative diagram:

C � C

�

��

))TTTTTTTTTTTTTTTTTT

wwooooooooooooo

C

c

��

C

c

��

Y = ( C � C)=G0

Q

��

))SSSSSSSSSSSSSSSSS

wwpppppppppppp

�

##GGG
GGG

GGG
GGG

GGG
GGG

GGG
G

P1 P1

P1 � P1

ggNNNNNNNNNNNN

55kkkkkkkkkkkkkkkkkk
X = ( C � C)=G

(6.1)

Remark 6.1.10. We recall that the points in c� 1(pi ) are the only ones with
non-trivial stabilizer with respect to the action of G0 on C and they are
in bijection with the left cosets f gK i g, where K i = hhi i is the stabilizer of
a point of the �bre (see Lemma 2.4.1). We recall that the point gK i has

stabilizer gK i g� 1 and that jc� 1(pi )j =
jG0j
mi

. Moreover, each point (x; y) 2

C � C such that (Q � � )(x; y) = ( pi ; pj ), is associated to a pair of left cosets:
(gK i ; g0K j ) (see Lemma 2.3.4).

Let � 2 G0 and assume that� (x; y) = ( �x; ' (� )y) = ( x; y):

� (gK i ; g0K j ) = ( gK i ; g0K j ) ()
�

� 2 gK i g� 1

' (� ) 2 g0K j g0� 1

That is � 2 gK i g� 1 \ ' � 1(g0K j g0� 1). Hence the singular points ofY are the
points � (u; v) such that

Stab(u; v) := Stab G0 (u) \ ' � 1(StabG0 (v)) 6= f 1g:

Lemma 6.1.11 (cf. [BP10, Proposition 1.16]). Let i; j 2 f 1; : : : ; r g. Then

i) there is a G0-equivariant bijection (Q� � ) � 1(pi ; pj ) ! G0=K i � G0=K j ,
where theG0-action on the target is given by left multiplication (simul-
taneously on both factors)1;

1G0 acts as follows: g(aK i ; bK j ) = ( gaK i ; ' (g)bK j )
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ii) there is a K i -equivariant bijection between the orbits of the aboveG0-
action on G0=K i � G0=K j with the orbits of the K i -action on f 1g �
G0=K j .

Proof. i) By Lemma 2.4.1 we have aG0-equivariant bijection

c� 1(pi )  ! f gK i g

for each i = 1 ; : : : ; r . Hence there is aG0-equivariant bijection between
(Q � � ) � 1(pi ; pj ) and G0=K i � G0=K j .

ii) We note that the G0-orbits of G0=K i � G0=K j are in one-to-one
correspondence with the points� ((Q � � ) � 1(pi ; pj )).

Observe that

� (ki K i ; kj K j ) is in the sameG0-orbit as (K i ; ' (k� 1
i )kj K j ).

� (K i ; k1K j ) is in the same G0-orbit as (K i ; k2K j ), if and only if there
exists � 2 K i such that k2 = ' � 1(� )k1.

We have to determine the types of the singularities:

Proposition 6.1.12 (cf. [BP10, Proposition 1.18]).
An element [g] 2 f 1g � G0=K j corresponds to a point 1

n (1; a) where
n = jK i \ ' � 1(gK j g� 1)j, and a is given as follows: let� i be the minimal posi-
tive integer such that there exists1 � 
 j � ord(hj ) with h� i

i = g' � 1(h
 j
j )g� 1.

Then a =
n
 j

ord(hj )
.

Proof. [g] 2 f 1g � G0=K j corresponds to a (singular) point of type 1
n (1; a)

with n = jStab(qi ; gqj )j = jStab(qi ) \ ' � 1(Stab(gqj )) j = jK i \ ' � 1(gK j g� 1)j,
whereqi is the unique point of c� 1(pi ) with stabilizer K i and qj is the unique
point of c� 1(pj ) with stabilizer K j .

Let � be the minimal positive integer such that there is
 2 f 1; : : : ; ord(hj )g
such that h�

i = g' � 1(h

j )g. Then hh�

i i = Stab( qi ; gqj ).
Therefore ord(hi ) = n� . In local analytic coordinate (x; y) 2 C � C, h�

i acts
as

e
2�i
n = e

2�i�
ord( h i )

on the variable x and as

e
2�ia

n = e
2�i


ord( h j )

on the variable y. This shows that a = n

ord( h j ) .

Using Lemma 6.1.11 and Proposition 6.1.12 we can compute thesingu-
larities of Y . We have to do the same forX . Since we already know that the
quotient by an involution of a singular point Cn;a is a singular point of type
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Dn;a we only need to know which singular points ofY are also rami�cation
point for � : Y ! X . We start computing \where" the rami�cation points
can be.

Lemma 6.1.13. Let y 2 Y be a rami�cation point for � . Then Q(y) =
(pi ; pi ) for some i .

Proof. Let h 2 G0, we recall that � 0h acts in this way: � 0h(x; y) = ( ' (h)y; �hx ).
Let � (x; y) 2 Y be a rami�cation point for � then � (x; y) = � (� 0h(x; y)),
for some h 2 G0. Suppose that (Q � � )(x; y) = ( c(x); c(y))( pi ; pj ) then
(Q � � )( ' (h)y; �hx ) = ( c(' (h)y); c(�hx )) = ( c(y); c(x)) = ( pj ; pi ) since
' (h); �h 2 G0. Hence pi = pj 2 P1. We get that every branch point
belongs toQ� 1(pi ; pi ), for some i .

Proposition 6.1.14. An element [g] 2 f 1g � G0=K j corresponds to a sin-
gular point that is also a rami�cation point for � : Y ! X if and only if
there exists an element� 0h 2 G n G0 such that:

�
' (h)�h 2 K i

' (h)g 2 K i

Proof. The point ( K i ; gK i ) corresponding to [g] is a rami�cation point for
� if and only if there exists an element� 0h 2 G n G0 such that (K i ; gK i ) =
� 0h(K i ; gK i ) = ( ' (h)gK i ; �hK i ), that is

�
' (h)gK i = K i

gK i = �hK i
()

�
' (h)gK i = K i

' (h)�hK i = ( � 0h)2K i = K i

6.1.3 Hurwitz moves

Let G be a �nite group. Let ( h1; : : : ; hr ) and (h0
1; : : : ; h0

r ) be spherical sys-
tems of generators of type (m1; : : : ; mr ) of G0 and G0

1, index two subgroups
of G such that

1 ! G0 ! G ! Z2 ! 1 and
1 ! G0

1 ! G ! Z2 ! 1

do not split.
In the following we investigate this problem: \when do two sets of spher-

ical generators give the same Galois coveringC of P1 (up to isomorphism)?
And so isomorphic surfaces?"

Following the solution to the problem given in [BCG08, Section 1-2] (see
also [BCP06, Section 5.1-5.2]), we start de�ning thebraid group B r , for
r 2 N:

B r :=
�

� 1; : : : ; � r � 1

�
�
�
�

� i � j = � j � i if ji � j j > 1;
� i � i +1 � i = � i +1 � i � i +1 for i = 1 ; : : : ; r � 2

�
:
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Consider now theHurwitz action of B r on the set of r -tuples of G cor-
responding to the standard embedding ofB r into the automorphism group
of a free group onr generators.

Let T = ( g1; : : : ; gr ) be a r -tuple of elements ofG and 1 � i � r � 1.
De�ne � i (T) by

� i (T) := [ g1; : : : ; gi +1 ; g� 1
i +1 gi gi +1 ; gi ; gi +2 ; : : : ; gr ] :

It is easy to prove that the braid relations are satis�ed and that the group
B r maps set of spherical generators to set of spherical generators preserving
the type.

Also the automorphism group Aut(G) of G acts on the sets of spherical
generators by simultaneous application of an automorphismto each element.

Given (
; � ) 2 B r � Aut( G) and T = ( g1; : : : ; gr ) a set of spherical
generators ofG0 / 2 G, we set:

(
; � ) � (G0; T) := ( � (G0); � (
 (T))) : (6.2)

Now, assume to have a Galois coveringC ! P1 with Galois group G0.
Let f p1; : : : ; pr g � P1 be the branch locus of the covering. Choose a base
point p 2 P1 distinct from them. Choose a geometric basis
 1 : : : ; 
 r of
� 1(P1 n f p1; : : : ; pr g; p) ( 
 i is a simple counterclockwise loop aroundpi , and
they follow each other by counterclockwise ordering aroundthe base point).
Notice that 
 1 � � � 
 r = 1. Choose a monodromy representation, i.e., a sur-
jective homomorphism  : � 1(P1 n f p1; : : : ; pr g) ! G0 : Notice that only the
kernel of  is uniquely determined by the covering. Then the elements
 (
 i ); : : : ;  (
 r ) form a spherical system of generators ofG0.

The mapping class group of the sphere� 0(Dif f ((P1 n f p1; : : : ; pr g; p)))
(see [BCP06, De�nition 17]), which is a quotient of the braid group B r , oper-
ates on such homomorphisms, and their orbits are called Hurwitz equivalence
classes of spherical systems of generators. This action is the one described
in (6.2).

6.2 The algorithm

Using the results of the previous sections we have implemented a MAGMA
script to �nd all the regular surfaces that satisfy our assumptions.
We explain here the strategy of the program and the most important scripts;
we attach a commented version of the program in Section 6.4.

The algorithm follows closely the algorithms in [BCGP08] and [BP10].
We have adapted them to the mixed q.e. case and we have improved the
computational complexity.

First of all we �x a value of K 2
S and of pg. By assumption q = 0 so

� = 1 + pg.
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Step 1: the script Baskets lists all the possible baskets of singularities forK 2
S

and pg, accordingly to Corollary 5.2.5 and Lemma 6.1.8.

Step 2: once we �xK 2
S, pg and a possible basket of singularitiesB(X ) there are

�nitely many possible signatures satisfying the condition of Proposi-
tion 6.1.6. ListOfTypes computes them. The input areK 2

S and pg, so
this script �rst computes Baskets(K 2

S; pg) and returns a list of pairs:
the �rst entry is a possible basket and the second is the list with all
the possible signatures.

Step 3: if we know the signature, by Proposition 6.1.6, we cancompute the
order of G0. ListGroups , whose inputs areK 2

S and pg, searches, for
every element in the output of ListOfTypes , if among the groups of
the right order there are groups having at least one set of spherical
generators of the prescribed type. Further it checks if these groups
have a pair of sets of spherical generators that give the prescribed
basket of singularities onY = ( C � C)=G0. Once it �nds a group G0

with the right properties, it searches among all the groups of order
2jG0j, if there are groups which are unsplit extensions ofG0.

For each positive answer to these two questions it stores thefourtuple
(basket; type; id(G0); f id(G)g), where id(G0) is the MAGMA identi�er
for G0, while f id(G)g is the set of the MAGMA identi�ers of the groups
that are non split extensions ofG0.

The script has some conditional instructions:

� if one of the signatures is (2; 3; 7), then G0, being a quotient of
T(2; 3; 7), is perfect. MAGMA knows all perfect groups of order
� 50000, and thenListGroups checks �rst if there are perfect
group of the right order: if not, this case cannot occur.

� If the expected order of the group G0 is 1024 or bigger than
2000, since MAGMA does not have a list of the �nite groups of
this order, then ListGroups just stores these cases in a list, third
output of the script.

� If the order of G0 is in f 1001; : : : ; 2000g, since MAGMA does
not have a list of the groups of order bigger than 2000, we cannot
check if there exist unsplit extensions ofG0; so we make the other
tests and if a group passes these tests, then we collect it in alist,
second output of the script.

To save RAM memory, when the script has to make a search among
a big class of groups (e.g. the groups of order 576),ListGroups uses
\SmallGroupProcess", which is a bit slow, but does not need to store
the whole class of groups under consideration.
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Step 4: ExistingSurfaces takes the output of ListGroups (K 2
S) and throws

away all 4-tuples (basket; type; id(G0); id(G)) that do not give a surface
with the expected singularities.

Step 5: each fourtuple in the output of ExistingSurfaces (K 2
S) gives many

surfaces, one for each spherical systems of generators. Twodi�erent
spherical systems of generators can give isomorphic surfaces: this is
taken into account by declaring that two spherical systems of gener-
ators are equivalent if and only if they are in the same orbit of the
natural action of Aut( G) and of the respective braid groups (see Sec-
tion 6.1.3). The script FindSurfaces produces one representative for
each equivalence class.

Step 6: Pi1 computes the fundamental group of the surfaces constructedus-
ing Armstrong's results (see [Arm65] and [Arm68]), as we will see in
section 7.1.

Remark 6.2.1. The principal computational improvement in our script is in
the �rst part of ListGroups , in particular in the search of which groups have
at least a set of spherical generators of the prescribed type.
If the group G0 has a set of spherical generators of type (m1; : : : ; mr ), then
there exists an appropriate orbifold homomorphism

 : T(m1; : : : ; mr ) ! G0 :

The map  induces a surjective morphism : Tab ! G0ab between their
abelianizations, henceG0ab is isomorphic to a quotient of Tab.

Di�erently from the analogous scripts in [BCGP08] and [BP10], our
script checks �rst (by the script Test ) which groups have abelianization
isomorphic to a quotient of the suitable Tab and only for the groups that
pass this test if they have a set of spherical generators of the right type.

In the following table we compare the execution times of the program
with and without Test for high values of K 2

S.

K 2 3 4 5 6 7 8
Time with Test 18.67 50.18 36.29 226.61 4.36 4205.85

Time without Test 1470.14 1128.35 3117.02 262.63 6.16 26431.57

Table 6.2: Eexecution times (in minutes) for high values ofK 2
S.

6.3 Skipped cases for pg = 0 and K 2 > 0

We run the script for pg = 0 and K 2 = 1 ; : : : ; 8; for each value ofK 2,
the MAGMA scripts ListGroups returns 3 output: the �rst is processed by
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other functions of the program that possibly return some surfaces. All the
surfaces constructed are collected in Section 7.3.
We want to prove that they are all the mixed q.e. surfaces whose minimal
resolution of the singularities is a regular surface of general type with pg = 0
and K 2 > 0. In order to do this, we have to show that all the cases stored
by the script in the second and third output do not occur.

One of the main tools here is the script Test (or TestBAD in some cases),
which checks, given a signature and an order, if there exist groups of that
order and with a spherical system of generators of that signature.

For pg = 0 and all the values 1 � K 2
S � 8, we have that the second

output is empty, while the cases stored in the third outputs are collected in
Table 6.3:

K 2
S SingX type jG0j

1 2 � C8;1 + C4;1 2,3,8 6336
1 3 � C4;1 + C4;3 2,3,8 2304
1 C8;1 + C4;1 + C8;5 2,3,8 4032
1 4 � C4;1 + C2;1 2,3,8 2880
1 2 � C8;3 + C4;1 + C2;1 2,3,8 2304
1 2 � C2;1 + C8;3 + C8;1 2,3,8 3744
2 2 � C8;3 + C4;1 2,3,8 2880
2 C8;3 + C8;1 + C2;1 2,3,8 4320
2 4 � C4;1 2,4,5 2400
2 4 � C4;1 2,3,8 3456
2 C8;3 + C8;5 + C2;1 2,3,8 2016
2 2 � C4;1 + 3 � C2;1 2,3,8 2304
2 2 � C4;1 + C3;1 + C3;2 2,3,8 2496
3 2 � C4;1 + 2 � C2;1 2,3,8 2880
3 C8;3 + C8;1 2,3,8 4896
3 2 � C4;1 + C5;3 2,4,5 2160
3 C8;3 + C8;5 2,3,8 2592
3 C4;3 + C4;1 + C2;1 2,3,8 2304

K 2
S SingX type jG0j

4 C4;3 + C4;1 2,3,8 2880
4 4 � C2;1 2,3,8 2304
4 C3;1 + C3;2 + C2;1 2,3,8 2496
4 2 � C4;1 + C2;1 2,4,5 2400
4 2 � C4;1 + C2;1 2,3,8 3456
5 C5;2 + C2;1 2,4,5 2160
5 3 � C2;1 2,3,8 2880
5 C3;1 + C3;2 2,3,8 3072
5 2 � C4;1 2,4,5 2800
5 2 � C4;1 2,3,8 4032
6 2 � C2;1 2,4,5 2400
6 2 � C2;1 2,3,8 3456
6 2 � C5;3 2,4,5 2560
7 C2;1 2,3,9 2268
7 C2;1 2,4,5 2800
7 C2;1 2,3,8 4032
8 ; 2,3,9 2592
8 ; 2,4,5 3200
8 ; 2,3,8 4608

Table 6.3: The skipped cases forpg = 0 and K 2 > 0

In the following we will sometimes need the number of perfectgroups of
a given order; we compute it by the MAGMA function:

NumberOfGroups(PerfectGroupDatabase(),order);

while the other functions that we use are in the MAGMA script r eported in
Section 6.4.

6.3.1 Non generation results

Lemma 6.3.1. No group of order 2016, 2304, 2496, 2592, 2880, 3456 or
3744 has a spherical system of generators of type[2; 3; 8].
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Proof. Assume that G0 is a group of order 2016 (2304, 2496, 2592, 2880,
3456, 3744 resp.) admitting a surjective homomorphismT(2; 3; 8) ! G0.

Since T(2; 3; 8)ab �= Z2 and since there are no perfect groups of order
2016 (2304, 2496, 2592, 2880, 3456, 3744 resp.), the commutator subgroup
G00 = [ G0; G0] of G0 has order 1008 (1152, 1248, 1296, 1440, 1728, 1872
resp.) and it is a quotient of [T(2; 3; 8); T(2; 3; 8)] �= T(3; 3; 4). The following
MAGMA computations

> Test([3,3,4], 1008);
{}
>
> TestBAD([3,3,4], 1152);
{}
>
> Test([3,3,4], 1248);
{}
>
> Test([3,3,4], 1296);
{}
>
> Test([3,3,4], 1440);
{}
>
> Test([3,3,4], 1728);
{}
>
> Test([3,3,4], 1872);
{}
>

show that there are no groups of order 1008 (1152, 1248, 1296,1440, 1728,
1827 resp.) with a spherical system of generators of type [3; 3; 4], a contra-
diction.

Lemma 6.3.2. No group of order 4608 or 6336 has a spherical system of
generators of type[2; 3; 8].

Proof. Assume that G0 is a group of order 4608 (6336 resp.) admitting a
surjective homomorphismT(2; 3; 8) ! G0.

Since T(2; 3; 8)ab �= Z2 and since there are no perfect groups of order
4608 (6336 resp.), the commutator subgroupG00 = [ G0; G0] of G0 has order
2304 (3168 resp.) and it is a quotient of [T(2; 3; 8); T(2; 3; 8] �= T(3; 3; 4).

Since T(3; 3; 4)ab �= Z3 and since there are no perfect groups of order
2304 (3168 resp.), the commutator subgroupG000= [ G00; G00] of G00 has or-
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der 768 (1056 resp.) and it is a quotient of [T(3; 3; 4); T(3; 3; 4)] �= T(4; 4; 4).
The following MAGMA computations

> TestBAD([4,4,4], 768);
{}
>
> Test([4,4,4], 1056);
{}
>

show that there are no groups of order 768 (1056 resp.) with a spherical
system of generators of type [4; 4; 4], a contradiction.

Lemma 6.3.3. No group of order 2400, 2800 or 3200 has a spherical system
of generators of type[2; 4; 5].

Proof. Assume that G0 is a group of order 2400 (2800, 3200 resp.) admitting
a surjective homomorphismT(2; 4; 5) ! G0.

Since T(2; 4; 5)ab �= Z2 and since there are no perfect groups of order
2400 (2800, 3200 resp.), the commutator subgroupG00 = [ G0; G0] of G0 has
order 1200 (1400, 1600 resp.) and it is a quotient of [T(2; 4; 5); T(2; 4; 5)] �=
T(2; 5; 5). The following MAGMA computations

> Test([2,5,5], 1200);
{}
>
> Test([2,5,5], 1400);
{}
>
> Test([2,5,5], 1600);
{}

show that there are no groups of order 1200 (1400, 1600 resp.)with a
spherical system of generators of type [2; 5; 5], a contradiction.

Lemma 6.3.4. No group of order 2268 has a spherical system of generators
of type [2; 3; 9].

Proof. Assume that G0 is a group of order 2268 admitting a surjective ho-
momorphism T(2; 3; 9) ! G0.

Since T(2; 3; 9)ab �= Z3 and since there are no perfect groups of order
2268, the commutator subgroupG00 = [ G0; G0] of G0 has order 756 and
is a quotient of [T(2; 3; 9); T(2; 3; 9] �= T(2; 2; 2; 3). The following MAGMA
computation
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> Test([2,2,2,3], 756);
{}
>

shows that there are no groups of order 756 with a spherical system of
generators of type [2; 2; 2; 3], a contradiction.

Lemma 6.3.5. No group of order 2160 has a spherical system of generators
of type [2; 4; 5].

Proof. Assume that G0 is a group of order 2160 admitting a surjective ho-
momorphism T(2; 4; 5) ! G0. It holds T(2; 4; 5)ab �= Z2.
There is only one perfect group of order 2160, we denote it byH . H = 6 :A 6

has the following MAGMA representation:

> F<w>:=GF(9);
>
> x:=CambridgeMatrix(1,F,6,[
> 010000,
> 200000,
> 000100,
> 002000,
> 000001,
> 000020]);
>
> y:=CambridgeMatrix(1,F,6,[
> 300000,
> 550000,
> 007000,
> 126600,
> 000030,
> 240155]);
> H<x,y>:=MatrixGroup<6,F|x,y>;
>
> #H;
2160
> IsPerfect(H);
true

The following MAGMA computation

> ExSphGens(H,[2,4,5]);
false

shows that H does not have a spherical system of generators of type [2; 4; 5]
If G0 is a group of order 2160 with a spherical system of generators

of type [2; 4; 5], the commutator subgroup G00 = [ G0; G0] of G0 has order
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1080 and it is a quotient of [T(2; 4; 5); T(2; 4; 5)] �= T(2; 5; 5). The following
MAGMA computation

> Test([2,5,5], 1080);
{}
>

shows that there are no groups of order 1080 with a spherical system of
generators of type [2; 5; 5], a contradiction.

Lemma 6.3.6. No group of order 4320 has spherical system of generators
of type [2; 3; 8].

Proof. Assume that G0 is a group of order 4320 admitting a surjective ho-
momorphism T(2; 3; 8) ! G0.

Since T(2; 3; 8)ab �= Z2 and since there are no perfect groups of order
4320, the commutator subgroupG00 = [ G0; G0] of G0 has order 2160 and it
is a quotient of [T(2; 3; 8); T(2; 3; 8] �= T(3; 3; 4).

Now T(3; 3; 4)ab �= Z3 and there is only one perfect group of order
2160: theH = 6 :A 6 in the proof of Lemma 6.3.5. The following MAGMA
computation

> ExSphGens(H,[3,3,4]);
false

shows that H does not have a spherical system of generators of type [3; 3; 4]
If G0 is a group of order 2160 with a spherical system of generatorsof

type [3; 3; 4], the commutator subgroup G000= [ G00; G00] of G00 has order
720 and it is a quotient of [T(3; 3; 4); T(3; 3; 4)] �= T(4; 4; 4). The following
MAGMA computation

> Test([4,4,4], 720);
{ 584, 585, 763, 765, 766, 773, 776 }
>

shows that only the groupsG(720; j )2 with j 2 f 584; 585; 763; 765; 766; 773; 776g
have a spherical system of generators of type [4; 4; 4].

Assume that G00 has a spherical system of generators of type (3; 3; 4).
Let us consider the following commutative diagram:

T(3; 3; 4)
q //

p
��

T(3; 3; 4)ab = Z3

1 //G000 //G00 f //Z3 //1

2G(a,b) denotes the bth group of order a in the MAGMA database of �nite groups.
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where q(ci ) = di . Let

T(3; 3; 4) = hc1; c2; c3 j c3
1; c3

2; c4
3; c1c2c3i

T(3; 3; 4)ab = hd1; d2; d3 j d3
1; d3

2; d4
3; d1d2d3; [di ; dj ]1� i;j � 3i

= ( Z3d1 � Z3d2 � Z4d3)=h(1; 1; 1)i

since [d1] = (1 ; 0; 0) =2 h(1; 1; 1)i , then [d1] 6= [0]; so we haveq(c1) 6= [0], and
f (p(c1)) = f (g1) 6= 0. We have found an element ofG00 of order 3 that does
not belong to G000, this means that the following exact sequence

1 //G000 //G00 f //Z3 //1

splits with map

� : Z3 �! G00

d1 7�! g1

and soG00 �= G000o Z 3.
The next claim, that we do not prove, is a standard result about semi-

direct products.

Claim 4. Let L be a �nite group and let K be a cyclic group of orderp.
Let ' 1; ' 2 : K ! Aut( L ) such that ' 1(K ) and ' 2(K ) are conjugated. Then
L o ' 1 K �= L o ' 2 K .

This means that, in order to build up the group G00, we have only to
look at the conjugacy classes of elements of order 3 in Aut(G000) and at
Id(Aut( G000)). The function ConjugCl(A,n) (see Section 6.4) returns a rep-
resentative of each conjugacy class of elements ofA of order n.

The following MAGMA script

> v:={ 584, 585, 763, 765, 766, 773, 776 };
> for j in v do
for> H2:=SmallGroup(720, j);
for> Aut2:=AutGr(H2);
for> A2:=AutomorphismGroup(H2);
for> R2:=ConjugCl(Aut2,3);
for> C3:=CyclicGroup(3);
for> R2[1+#R2]:=Id(A2);
for> f2:=[]; for i in [1..#R2] do
for|for> f2[i]:=hom<C3->A2|R2[i]>;end for;
for> h1:=[]; for i in [1..#R2] do
for|for> h1[i]:=SemidirectProduct(H2,C3,f2[i]);
for|for> j, i, ExSphGens(h1[i],[3,3,4]); end for; end for;
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584 1 false
584 2 false
585 1 false
585 2 false
773 1 false
773 2 false
763 1 false
763 2 false
765 1 false
765 2 false
776 1 false
776 2 false
766 1 false
766 2 false
>

shows that no group isomorphic toG00 = G000o Z 3 has a spherical system
of generators of type [3; 3; 4].

6.3.2 Non existence results

Remark 6.3.7. Let X = ( C � C)=G0 be a mixed q.e. surface given by a set
spherical system of generators (h1; : : : ; hr ) of G0 � G, we have seen that in
order to compute the basket of singularities we have to compare (h1; : : : ; hr )
with its conjugate by � 0 2 G n G0. Note that ( � 0h1� 0� 1; : : : ; � 0hr � 0� 1) is a
spherical system of generators ofG0 � G of the same type.
Hence, if a group has a set of spherical generators of the required type, we
check if this group has a pair of set of spherical generators that give the right
singularities (on Y). If this is not the case surely a set of spherical generators
and its conjugated by � 0 in G cannot give the required singularities.

Lemma 6.3.8. No group of order 4032 has a pair of spherical system of
generators of type[2; 3; 8] which give the expected singularities onY , i.e.
either f 2 � C8;1; 2 � C4;1; 2 � C8;5g or f 4 � C4;1g or f 2 � C2;1g.

Proof. Assume that G0 is a group of order 4032 admitting a surjective ho-
momorphism T(2; 3; 8) ! G0.

Since T(2; 3; 8)ab �= Z2 and since there are no perfect groups of order
4032, the commutator subgroupG00 = [ G0; G0] of G0 has order 2016 and it
is a quotient of [T(2; 3; 8); T(2; 3; 8] �= T(3; 3; 4).

Since T(3; 3; 4)ab �= Z3 and since there are no perfect groups of order
2016, the commutator subgroupG000= [ G00; G00] of G00 has order 672 and
it is a quotient of [T(3; 3; 4); T(3; 3; 4)] �= T(4; 4; 4). The following MAGMA
computation
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> Test([4,4,4], 672);
{ 1046, 1255 }
>

shows that only the groupsG(672; v) with v 2 f 1046; 1255g have a spherical
system of generators of type [4; 4; 4].

Now the proof continues exactly as the proof of Lemma 6.3.6: we have
that G00 = G000o Z 3 and we construct all the groups of this form up to
isomorphism.

The following MAGMA script shows that no group isomorphic to G00 =
G000o Z 3, with G000= G(672; 1046), has a spherical system of generators of
type [3; 3; 4]:

> H2:=SmallGroup(672,1046);
> A2:=AutomorphismGroup(H2);
> Aut2:=AutGr(H2);
> R2:=ConjugCl(Aut2,3);
> C3:=CyclicGroup(3);
> R2[1+#R2]:=Id(A2);
> f2:=[]; for i in [1..#R2] do
for> f2[i]:=hom<C3->A2|R2[i]>;end for;
> h1:=[]; for i in [1..#R2] do
for> h1[i]:=SemidirectProduct(H2,C3,f2[i]);
for> i, ExSphGens(h1[i],[3,3,4]); end for;
1 false
2 false
>

The following MAGMA script shows that two extensions G00 = G000oZ 3,
with G000 = G(672; 1255), have a spherical system of generators of type
[3; 3; 4]; moreover this two extensions are isomorphic.

> H2:=SmallGroup(672,1255);
> A2:=AutomorphismGroup(H2);
> Aut2:=AutGr(H2);
> R2:=ConjugCl(Aut2,3);
> C3:=CyclicGroup(3);
> R2[1+#R2]:=Id(A2);
> f2:=[]; for i in [1..#R2] do
for> f2[i]:=hom<C3->A2|R2[i]>;end for;
> h1:=[]; for i in [1..#R2] do
for> h1[i]:=SemidirectProduct(H2,C3,f2[i]);
for> i, ExSphGens(h1[i],[3,3,4]); end for;
1 true
2 false
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3 true
4 false
> IsIsomorphic(h1[1],h1[3]);
true Homomorphism of ...
>H1:=h1[1];

It can be proved, in a similar way as for G00 �= G000o Z 3, that G0 is
isomorphic to a semidirect product G00o Z 2.
The following MAGMA script (that continues the previous one ) shows that
G00=h1[1] has only one extensionG00o Z 2 with a spherical system of gen-
erators of type (2; 3; 8):

> A1:=AutomorphismGroup(H1);
> Aut1:=AutGr(H1);
> R1:=ConjugCl(Aut1,2);
> R1[1+#R1]:=Id(A1);
> C2:=CyclicGroup(2);
> f1:=[]; for i in [1..#R1] do
for> f1[i]:=hom<C2->A1|R1[i]>;end for;
> h:=[]; for i in [1..#R1] do
for> h[i]:=SemidirectProduct(H1,C2,f1[i]);
for> i, ExSphGens(h[i],[2,3,8]); end for;
1 false
2 false
3 false
4 true
5 false
6 false
7 false
8 false
9 false
>
> H:=h[4];

The following MAGMA script shows that for each pair of spherical systems
of generators of type [2; 3; 8] of G0=h[1], the singularity test fails, and so
also this case does not occur.

> SingularitiesY([{*1/8,1/4,5/8*},{**}],H,[2,3,8]);
false
>
> SingularitiesY([{*1/4^^2*},{**}],H,[2,3,8]);
false
>
> SingularitiesY([{*1/2*},{**}],H,[2,3,8]);
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false

Lemma 6.3.9. No group of order 2560 has a pair of spherical system of
generators of type[2; 4; 5] which give the expected singularities onY , i.e.
f 2 � C5;3g.

Proof. Assume that G0 is a group of order 2560 admitting a surjective ho-
momorphism T(2; 4; 5) ! G0.

Since T(2; 4; 5)ab �= Z2 and since there are no perfect groups of order
2560, the commutator subgroupG00 = [ G0; G0] of G0 has order 1280 and it
is a quotient of [T(2; 4; 5); T(2; 4; 5)] �= T(2; 5; 5).

The following MAGMA computation

> Test([2,5,5], 1280);
{ 1116310 }
>

shows that only the group G(1280; 1116310) has a spherical system of gen-
erators of type [2; 5; 5].

Now the proof continues exactly as the proof of Lemma 6.3.6: we have
that G0 = G00oZ 2 and we construct all the groups of this form up to isomor-
phism. Among these groups only one has a spherical system of generators
of type [2; 4; 5] as the following MAGMA script shows:

> H1:=SmallGroup(1280,1116310);
> A1:=AutomorphismGroup(H1);
> Aut1:=AutGr(H1);
> C2:=CyclicGroup(2);
> R:=ConjugCl(Aut1,2);
> R[1+#R]:=Id(A1);
> f1:=[]; for i in [1..#R] do
for> f1[i]:=hom<C2->A1|R[i]>; end for;
> h:=[]; for i in [1..#R] do
for> h[i]:=SemidirectProduct(H1,C2,f1[i]);
for> i, ExSphGens(h[i],[2,4,5]); end for;
1 true
2 false
3 false
4 false
5 false
6 false
7 false
8 false
9 false
10 false
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11 false

The following MAGMA script shows that for each pair of spherical systems
of generators of type [2; 4; 5] of G0=h[1], the singularities test fails, and so
also this case does not occur.

> H:=h[1];
> SingularitiesY([{* 3/5 *},{* *}],H,[2,4,5]);
false
>

Lemma 6.3.10. No group of order 3072 has a pair of spherical system of
generators of type[2; 3; 8] which give the expected singularities onY , i.e.
f 2 � C3;1; 2 � C3;2g.

Proof. Assume that G0 is a group of order 3072 admitting a surjective ho-
momorphism T(2; 3; 8) ! G0.

Since T(2; 3; 8)ab �= Z2 and since there are no perfect groups of order
3072, the commutator subgroupG00 = [ G0; G0] of G0 has order 1536 and it
is a quotient of [T(2; 3; 8); T(2; 3; 8] �= T(3; 3; 4).

The following MAGMA computation

> TestBAD([3,3,4], 1536);
{ 408526602 }
>

shows that only the group G(1536; 408526602) has a spherical system of
generators of type [3; 3; 4].
Now the proof is the same of Lemma 6.3.9: we have thatG0 = G00oZ 2 and
we construct all the groups of this form up to isomorphism. Among these
groups only one has a spherical system of generators of type [2; 3; 8] as the
following MAGMA script shows:

> H1:=SmallGroup(1536,408526602);
> A1:=AutomorphismGroup(H1);
> Aut1:=AutGr(H1);
> C2:=CyclicGroup(2);
> R:=ConjugCl(Aut1,2);
> R[1+#R]:=Id(A1);
> f1:=[]; for i in [1..#R] do
for> f1[i]:=hom<C2->A1|R[i]>; end for;
> h:=[]; for i in [1..#R] do
for> h[i]:=SemidirectProduct(H1,C2,f1[i]);
for> i, ExSphGens(h[i],[2,3,8]); end for;
1 false
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2 true
3 false
4 false
5 false
6 false
7 false
8 false
9 false
10 false
11 false
12 false
13 false
14 false
15 false
16 false
>

The following MAGMA script shows that for each pair of spherical systems
of generators of type [2; 3; 8] of G0=h[2], the singularities test fails, and so
also this case does not occur.

> H:=h[2];
> SingularitiesY([{* 1/3, 2/3 *}, {* *}], H, [2,3,8]);
false
>

Lemma 6.3.11. No group of order 4896 has a pair of spherical system of
generators of type[2; 3; 8] which give the expected singularities onY , i.e.
f 2 � C8;1; 2 � C8;3g.

Proof. Assume that G0 is a group of order 4896 admitting a surjective ho-
momorphism T(2; 3; 8) ! G0.

It holds T(2; 3; 8)ab �= Z2. There is only one perfect group of order 4896,
we denote it by H . H = 2 :L 2(17) has the following MAGMA representation:

> F<w>:=GF(9);
>
> x:=CambridgeMatrix(1,F,8,[
> 01000000,
> 20000000,
> 00010000,
> 00200000,
> 00000100,
> 00002000,
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> 83300083,
> 37420004]);
>
> y:=CambridgeMatrix(1,F,8,[
> 62000000,
> 00100000,
> 48300000,
> 00001000,
> 00000010,
> 00000001,
> 00010000,
> 46466262]);
>
> H<x,y>:=MatrixGroup<8,F|x,y>;
> IsPerfect(H);
true
> #H;
4896
>

The following MAGMA computation

> ExSphGens(H,[2,4,5]);
false

shows that H does not have a spherical system of generators of type [2; 3; 8]
If G0 is a group of order 4896 with a spherical system of generatorsof type
[2; 3; 8], the commutator subgroup G00 = [ G0; G0] of G0 has order 2448 and
it is a quotient of [T(2; 3; 8); T(2; 3; 8)] �= T(3; 3; 4).

It holds T(3; 3; 4)ab �= Z3 and there is only one perfect group of order
2448, we denote it byH 0, and we will analyze it later.

If G0 is a group of order 2448 (G0 6= H 0) with a spherical system of
generators of type [3; 3; 4], the commutator subgroup G000= [ G00; G00] of
G00 has order 816 and it is a quotient of [T(3; 3; 4); T(3; 3; 4)] �= T(4; 4; 4).
The following MAGMA computation

> Test([4,4,4], 816);
{}
>

shows that there are no groups of order 816 with a spherical system of
generators of type [4; 4; 4].

Now we go back to H 0. H 0 = 2 :L 2(17) has the following MAGMA
representation:

> F:=GF(17);
>
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> x:=CambridgeMatrix(3,F,3,\[
> 1,0,0,
> 3,16,0,
> 3,0,16]);
>
> y:=CambridgeMatrix(3,F,3,\[
> 0,1,0,
> 0,0,1,
> 1,0,0]);
>
> H1<x,y>:=MatrixGroup<3,F|x,y>;
> IsPerfect(H1);
true
> #H1;
2448
>

The following MAGMA script

> ExSphGens(H1,[3,3,4]);
true
>

shows that this group has a spherical system of generators oftype [3; 3; 4].
Now the proof continues exactly as the proof of Lemma 6.3.9: we have

that G0 = G00oZ 2 and we construct all the groups of this form up to isomor-
phism. Among these groups only one has a spherical system of generators
of type [2; 3; 8] as the following MAGMA script shows:

> A1:=AutomorphismGroup(H1);
> Aut1:=AutGr(H1);
> C2:=CyclicGroup(2);
> R:=ConjugCl(Aut1,2);
> R[1+#R]:=Id(A1);
> f1:=[]; for i in [1..#R] do
for> f1[i]:=hom<C2->A1|R[i]>; end for;
> h:=[]; for i in [1..#R] do
for> h[i]:=SemidirectProduct(H1,C2,f1[i]);
for> i, ExSphGens(h[i],[2,3,8]); end for;
1 false
2 true
3 true
> IsIsomorphic(h[2],h[3]);
true Homomorphism of ...
> H:=h[2];
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The following MAGMA script shows that for each pair of spherical systems
of generators of type [2; 3; 8] of G0=h[2], the singularity test fails, and so
also this case does not occur.

> SingularitiesY([{* 3/5 *},{* *}],H,[2,4,5]);
false
>

De�nition 6.3.12. We say that a pair of spherical systems generators
(T1; T2) is disjoint if

�( T1) \ �( T2) = f 1g:

We note that a pair of spherical system of generators are disjoint if and
only if the basket of singularities that they induce is empty.

Lemma 6.3.13. No group of order 2592 has a disjoint pair of spherical
systems of generators of type[2; 3; 9].

Proof. Assume that G0 is a group of order 2592 admitting a surjective ho-
momorphism T(2; 3; 9) ! G0.

Since T(2; 3; 9)ab �= Z3 and since there are no perfect groups of order
2592, the commutator subgroupG00 = [ G0; G0] of G0 has order 864 and it
is a quotient of [T(2; 3; 9); T(2; 3; 9] �= T(2; 2; 2; 3). The following MAGMA
computation

> Test([2,2,2,3], 864);
{2225, 4175}
>

shows that only the groupsG(864; v) with v 2 f 2225; 4175g have a spherical
system of generators of type [2; 2; 2; 3].

If ( a1; b1; c1) and (a2; b2; c2) are a disjoint pair of spherical system of
generators of type [2; 3; 9] for G0, then (ai ; bi ai b� 1

i ; b2
i ai b� 2

i ; c3
i ), for i =

1; 2, are spherical system of generators of type [2; 2; 2; 3] for G00 = [ G0; G0];
moreover these two systems are disjoint (see [BCG08, Lemma 4.3, page
574]).

The following MAGMA computations

> SingularitiesY([{**},{**}],SmallGroup(864,2225),[2 ,2,2,3]);
false
> SingularitiesY([{**},{**}],SmallGroup(864,4175),[2 ,2,2,3]);
false

show that the groups G(864; 2225) andG(864; 4175) do not have a disjoint
pair of spherical system of generators of type [2; 2; 2; 3], a contradiction.
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6.4 The MAGMA script

In this section we report a commented version of the MAGMA script that
we used to �nd the surfaces in Table 6.1.

// Input: Ksquare and p_g; we are assuming q=0.
//
// Step 1: the baskets.
//
// We start finding, for each K^2 and p_g,
// what are the possible baskets of
// singularities of X=(CxC)/G. By Lemma 5.2.5 the sum
// of the invariants B of the singularities must
// be equal to 3(8-K^2).
//
// We will represent the singular points of type
// C_{n,a} or D_{n,a} by the rational number
// a/n in two different multisets;
// a basket of singularities will be a pair of multisets
// of rational numbers.
//
// Remembering that cyclic quotient singularities C_{n,a}
// and C_{n,a'} are isomorphic if a*a'=1 mod n, we consider
// rational numbers in (0,1) modulo the equivalence
// relation a/n ~ a'/n.
//
// We see the entries of the continuous fraction of n/a
// as the sequence [b_1,...,b_r]. Note that the continuous
// fraction of n/a' is the sequence [b_r,...,b_1].
//
// This can be seen as a bijection between rational numbers
// in (0,1) and sequences of integers strictly bigger than 1.
// We make this bijiection explicit by the following scripts .

ContFrac:=function(s)
CF:=[ ]; r:=1/s;
while not IsIntegral(r) do

Append(~CF, Ceiling(r)); r:=1/(Ceiling(r)-r);
end while;
return Append(CF, r);

end function;

Nq:=func<cf|#cf eq 1 select cf[1] else cf[1]-
1/$$(Remove(cf,1))>;
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RatNum:=func<seq|1/Nq(seq)>;

// "Wgt" computes the weight of a sequence.
// It bounds strictly from below B of the corresponding
// singular point of type C_{n,a}; and 2*B-12 for D_{n,a}.

Wgt:=function(seq)
w:=0; for i in seq do w+:=i; end for; return w;

end function;

// The next script computes all rational number whose
// continuous fraction has small weight.

RatNumsWithSmallWgt:=function(maxW)
S:={ }; T:={}; setnums:={RationalField()| };
for i in [2..maxW] do Include(~S, [i]); end for;
for i in [1..Floor(maxW/2)-1] do
for seq in S do

if #seq eq i then
if maxW-Wgt(seq) ge 2 then
for k in [2..maxW-Wgt(seq)] do
Include(~S,Append(seq, k));

end for; end if; end if;
end for; end for;
for seq in S do
if Reverse(seq) notin T then Include(~T,seq);
end if; end for;
for seq in T do Include(~setnums, RatNum(seq)); end for;
return setnums;

end function;

// The next 4 scripts compute the invariants B and e
// of singular points of type C and D respectively (r=a/n).

InvBC:=func<r|Wgt(ContFrac(r))+r+RatNum(Reverse(Con tFrac(r)))>;

InveC:=func<r|#ContFrac(r)+1-1/Denominator(Rational Field()!r)>;

InvBD:=func<r|InvBC(r)/2 +6>;

InveD:=func<r|InveC(r)/2 +3>;

// The next two scripts compute the invariants B and e of
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// a pair of multisets of rational numbers
// (corresponding to a basket of singular points).

InvBSet:= function(basketC, basketD)
B:=0; for r in basketC do B+:=InvBC(r); end for;

for r in basketD do B+:=InvBD(r); end for;
return B;

end function;

InveSet:= function(basketC, basketD)
e:=0; for r in basketC do e+:=InveC(r); end for;

for r in basketD do e+:=InveD(r); end for;
return e;

end function;

// Here is the invariant k of the basket:

InvkSet:=func<r,s|InvBSet(r,s)-2*InveSet(r,s)>;

// The next script computes all rational numbers with
// weight bounded from above by maxW, as computed by
// RatNumsWithSmallWgt, and returns them in a sequence
// ordered by the value of their invariant B,
// starting from the one with biggest B.

OrderedRatNums:=function(maxW)
seq:=[RationalField()| ]; seqB:=[RationalField()| ];
set:=RatNumsWithSmallWgt(Floor(maxW));

for r in set do i:=1;
for s in seqB do
if s gt InvBC(r) then i+:=1;
else break s;
end if; end for;

Insert(~seq, i, r); Insert(~seqB, i, InvBC(r));
end for;

return seq;
end function;

// The next one, CutSeqByB, takes a sequence "seq" and
// recursively removes the first element if its invariant B
// is at least maxB.

CutSeqByB:=function(seq,maxB)
Seq:=seq;
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while #Seq ge 1 and InvBC(Seq[1]) gt maxB do
Remove(~Seq,1); end while;

return Seq;
end function;

// Now we have a way to compute the set of rationals with
// B bounded by the integer maxB, ordered by B:
// CutSeqByB(OrderedRatNums(maxB-1),maxB)
//
// The next script takes a sequence of rational numbers
// ordered by B and computes the baskets with invariant
// exactly B that use only these rationals.
// The function is as follows:
// - first it removes the elements with B too big to be
// in a basket;
// - then it takes the first element, say r, if B(r)=B,
// it stores {* r *};
// - else it attaches it to each basket with invariant
// B-B(r) (computed recalling the function with the
// same sequence) and store the result;
// - now we have all baskets containing r: remove r
// from the sequence and repeat the procedure until
// the sequence is empty.

BasketsWithSeqAndB:=function(seq,B)
ratnums:=CutSeqByB(seq,B); baskets:={ };
while #ratnums gt 0 do

bigguy:=ratnums[1];
if InvBC(bigguy) eq B then
Include(~baskets,{* bigguy *});
else for basket in $$(ratnums, B-InvBC(bigguy)) do

Include(~baskets, Include(basket, bigguy));
end for; end if;
Remove(~ratnums,1);

end while;
return baskets;

end function;

// Now we can compute all the "C-parts" (of baskets) with
// a given B:

PartsOfTypeC:=func<B|BasketsWithSeqAndB(OrderedRatNums(B),B)>;

// Next script computes all the possible "D-parts"
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// with a given B and p_g:

PartsOfTypeD:=function(B,pg)
singD:={ }; basketD:={ };
D:=RatNumsWithSmallWgt(2*B-27);
for r in D do

if InvBD(r)le B then
if IsIntegral(Denominator(RationalField()!r)/2) then
if ContFrac(r) eq Reverse(ContFrac(r)) then
if IsIntegral((#ContFrac(r)+1)/2) then
if IsIntegral(ContFrac(r)[IntegerRing()!((#ContFrac( r)+1)/2)]/2) then
Include(~singD,r);
end if;end if;end if;end if;end if;

end for;
for d in { 2*x: x in { 0..(2*pg+1) }} do
for s in Multisets({ x: x in singD},d) do

if InvBSet({* *},s) le B then
Include(~basketD,s);
end if;

end for; end for;
return basketD;
end function;

// We do not need all these baskets, since most of them
// violate Corollary 5.1.14 or Lemma 5.2.16.
// The next scripts take care of this:
// "BasketOfY" computes the basket of the surface Y starting
// from the basket of X.
// "TestBasket" checks if a basket violates Corollary 5.1.1 4;
// "TestDen" checks if a basket respects Lemma 5.2.16;
//
// "Basket" constructs all the basket with given B and
// removes all the baskets which violate the conditions.

BasketOfY:=function(basketX)
basketY:={**};
for r in basketX[1] do
Include(~basketY, r);
Include(~basketY, RatNum(Reverse(ContFrac(r))));
end for;
for r in basketX[2] do Include(~basketY, r); end for;
return basketY;
end function;
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TestBasket:=function(basketC, basketD)
S:=0; test:=false;

for r in BasketOfY([basketC, basketD]) do
S+:= r; end for;

if IsIntegral(S) then test:=true;
end if;

return test;
end function;

TestDen:=function(chi, BC,BD)
test:=true; xi:= 4*chi+(InvkSet(BC,BD)-InveSet(BC,BD) )/3;
for r in Set(BC join BD) do

if Denominator(RationalField()!r) ge 12*(2*xi+1) then
test:=false; break r;

end if; end for;
return test;

end function;

Baskets:=function(Ksquare,pg)
baskets:=[**]; chi:=1+pg;
B:=3*(8*chi-Ksquare);
for partD in PartsOfTypeD(B,pg) do
if (InvBSet({**},partD) eq B) and TestBasket({* *}, partD)

then Append(~baskets, [{* *}, partD]); end if;
for partC in PartsOfTypeC(B-InvBSet({* *},partD)) do

if TestBasket(partC, partD) then
if TestDen(chi,partC,partD) then
Append(~baskets, [partC, partD]); end if; end if;

end for; end for;
return baskets;
end function;

// Step 2: the signatures
//
// Now we have found, for each K^2, a finite number of
// possible baskets. Proposition 5.2.13 says that once
// we fix K^2, p_g and a basket of singularities,
// there are finitely many possible signatures satisfying
// all the condition of the proposition.
//
// The next step is to compute, for each basket, the
// signatures. We will represent a signature as
// a multiset of natural numbers {* m_i *}.
//



118 An algorithm to classify regular mixed quasi-�etale surfaces

// We first define the index of a basket of singularities
// as the lowest common multiple of the indexes of the
// singularities of type C_{n,a} in BasketOfY.

GI:=func<r|Denominator(r)/GCD(Numerator(r)+1,Denomi nator(r))>;

GorInd:= function(bas)
I:=1;
for r in bas do I:=LCM(IntegerRing()!I,IntegerRing()!GI( r));
end for; return I;

end function;

// We define the invariants Theta and Beta:

Theta:=function(sig)
a:=-2;
for m in sig do a+:=(1-1/m); end for;
return a;
end function;

Beta:=func<K, B, T | (K+InvkSet(B[1],B[2]))/(2*T)>;

// These two scripts transform a multiset, resp. a tuple
// into a sequence.

MsetToSeq:=function(mset)
seq:=[ ];
while #mset ne 0 do Append(~seq, Minimum(mset));
Exclude(~mset, Minimum(mset)); end while;
return seq;
end function;

TupleToSeq:=function(tuple)
seq:=[];
for el in Tuplist(tuple) do
Append(~seq,el);
end for;
return seq;
end function;

// Next script computes all the divisor (different from 1)
// of a natural number:

Divisors:=function(n)
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set:={};
for i in { 2.. n} do
if n/i in IntegerRing() then
Include(~set, i);
end if; end for;
return set;
end function;

// The input of the next script are 5 numbers: CardBasket,
// Length, SBound, HBound (SBound<=HBound) and n,
// and its output are all signatures with
// #signature=Length such that (let M:=max(1/6,(Length-3 )/2)
// 1) each m_i is smaller than HBound/M;
// 2) most m_i are smaller than SBound/M, the number of
// exceptions is bounded from above by half of CardBasket.
//
// For sparing time, the script first checks if the length
// is smaller than the number of possible exceptions,
// in which case only the inequality 1 is to consider.
// Moreover, to spare time, since m_i divides n=2*Beta*I,
// the script looks for the m_i's only among the divisors of n.

CandTypes:=function(CardBasketY,Length,S,H,n)
D:=Divisors(n);
Exc:=Floor(CardBasketY/2);
if Length le Exc then
Types:=Multisets({x: x in D | x in { 2..H}},Length);

else Types:=Multisets({x: x in D | x in { 2..S}},Length);
for k in [1..Exc] do
for TypeBegin in Multisets({x: x in D | x in { 2..S}},Length-k ) do
for TypeEnd in Multisets({x: x in D | x in {S+1..H}},k) do

Include(~Types, TypeBegin join TypeEnd);
end for; end for; end for;

end if;
return Types;

end function;

// The function ListTypes calculates all the types that
// fulfill the conditions imposed by Proposition 5.2.13:

ListTypes:=function(Ksquare,pg, basketX)
list:=[]; chi:=1+pg;
BC:=basketX[1]; BD:=basketX[2];
BY:=BasketOfY(basketX);
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den:={};
for r in BY do
Include(~den,Denominator(RationalField()!r)); end for ;
xi:= 4*chi+(InvkSet(BC,BD)-InveSet(BC,BD))/3;
I:=GorInd(BY); k:=InvkSet(BC,BD);
Rmin:=3; Tmin:=1/42;
Rmax:=Floor((Ksquare + k) +4);
BetaMax:=Floor(Beta(Ksquare,basketX,Tmin));
for R in [Rmin..Rmax] do
if R eq 3 then

top:=Floor(12*(2*xi+1));
else top:=Floor(6+(8*xi+2)/(R-3));

end if;
M:=Max(1/6,(R-3)/2);
SB:=Min(top, Floor((1/M)*(1+(Ksquare+k)/2)));
HB:=Min(top, Floor((1/M)*(1+I*(Ksquare+k))));
for b in { 1..BetaMax} do n:=2*b*I;
for cand in CandTypes(#BY,R,SB,HB,n) do ;
if forall{n : n in den |
exists{m: m in cand| m/n in IntegerRing()}} then

T:=Theta(cand);
if (T le (Ksquare+k)/2) and (T gt 0) then
beta:=Beta(Ksquare,basketX,T);
if IsIntegral(beta) and beta eq b then
if IsIntegral((Ksquare+k)/(T^2)) then
if IsIntegral((4*beta^2)/(Ksquare+k)) then bads:=0;
for n in cand do
if not IsIntegral(beta/n) then bads +:=1;

if bads gt #BY/2 then break cand; end if;
end if; end for;
Append(~list,cand);
end if;end if;end if;end if;end if;

end for;
end for;

end for;
return list;
end function;

// ListOfTypes returns, for given K^2 and p_g, all possible
// baskets (using Baskets) and for each basket all the
// possible types (using ListTypes).

ListOfTypes:=function(Ksquare,pg)
list:=[**]; chi:=1+pg;
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B:=3*(8*chi-Ksquare);
for basket in Baskets(Ksquare,pg) do
L:=ListTypes(Ksquare,pg, basket);
if not IsEmpty(L) then
Append(~list,[* basket, L*]);
end if;
end for;
return list;
end function;

// Step 3: calculating the groups.
//
// Fixed K^2, p_g, the basket and the signature,
// using Proposition 5.2.13 we can compute the order
// of the group G^0.
// We search among the group of this order which groups
// have a prescribed set of spherical generators.

ElsOfOrd:=func<group, order | {g: g in group| Order(g) eq or der}>;

// TuplesOfGivenOrder creates a sequence of the same length
// as the input sequence seq, whose entries are subsets
// of the group in the input, and precisely the subsets
// of elements of order the corresponding entry of seq.

TuplesOfGivenOrders:=function(group,seq)
SEQ:=[];
for i in [1..#seq] do
if IsEmpty(ElsOfOrd(group,seq[i])) then SEQ:=[]; break i ;
else Append(~SEQ,ElsOfOrd(group,seq[i]));
end if; end for;
return SEQ;
end function;

// This script says if a group has a set
// of spherical generators of the given type:

ExSphGens:=function(group,type)
test:=false;
SetCands:=TuplesOfGivenOrders(group,Prune(type));
if not IsEmpty(SetCands) then
for cands in CartesianProduct(SetCands) do

if Order(&*cands) eq type[#type] then
if #sub<group|TupleToSeq(cands)> eq #group then
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test:=true; break cands;
end if; end if; end for; end if;
return test;
end function;

// Polygonal builds the polygonal group of the type given by s eq

Polygonal:=function(seq)
F:=FreeGroup(#seq); Rel:={F![1..#seq]};
for i in [1..#seq] do Include(~Rel,F.i^(seq[i])); end for;
return quo<F|Rel>;
end function;

// Test and TestBAD search among all the groups of
// the order in input which groups have a spherical
// system of generators of the type in input.
// These function work in two steps (see Remark 6.2.1):
// i) they check which groups have abelianization
// isomorphic to a quotient of the abelianization
// of the polygonal group given by the type;
// ii) if a group passes the first test the scripts
// check if it has a spherical system of generators
// of the type in input.
// These two scripts make exactly the same controls, and
// we use Test in general, but in some cases there are too
// much isomorphism classes of groups of the given order
// and we use TestBAD because, SmallGroupProcess is slower
// than SmallGroups but it uses less memory.

Test:=function(type, order)
group:=AbelianQuotient(Polygonal(type));
checked:={}; quo:={}; set:={};
for g in Subgroups(group) do
Include(~quo, group/(g`subgroup)); end for;
for h in quo do Include(~set,#h); end for;
i:=1;
for H in SmallGroups(order: Warning:=false) do

if #AbelianQuotient(H) in set then
for p in quo do
if IsIsomorphic(p, AbelianQuotient(H)) then
if ExSphGens(H,type) then
Include(~checked,i); end if;
break p;end if; end for; end if;

i+:=1; end for;
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return checked;
end function;

TestBAD:=function(type, order)
group:=AbelianQuotient(Polygonal(type));
checked:={}; quo:={}; set:={};
for g in Subgroups(group) do
Include(~quo, group/(g`subgroup)); end for;
for h in quo do Include(~set,#h); end for;
i:=1; P:= SmallGroupProcess(order);
repeat
H := Current(P);

if #AbelianQuotient(H) in set then
for p in quo do
if IsIsomorphic(p, AbelianQuotient(H)) then
if ExSphGens(H,type) then
Include(~checked,i); end if;
break p;end if; end for; end if;

i+:=1; Advance(~P);
until IsEmpty(P);
return checked;
end function;

// The next script takes a sequence of elements of a group
// and a further element g and conjugates each element
// of the sequence with g.

Conjug:=function(seq,el)
output:=[];
for h in seq do Append(~output,h^el); end for;
return output;
end function;

// SphGenUpToConj computes all possible sets of spherical
// generators of a group of a prescribed type and return
// (to spare memory) only one of these sets for each
// conjugacy class.

SphGenUpToConj:=function(group,seq)
Set:={ }; Rep:={ };
SetCands:=TuplesOfGivenOrders(group,Prune(seq));
if not IsEmpty(SetCands) then
for cands in CartesianProduct(SetCands) do

if Order(&*cands) eq seq[#seq] then
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if Append(TupleToSeq(cands),(&*cands)^-1) notin Set
then if sub<group|TupleToSeq(cands)> eq group then

Include(~Rep, Append(TupleToSeq(cands),(&*cands)^-1) );
for g in group do
Include(~Set, Conjug(Append(TupleToSeq(cands),(&*can ds)^-1),g));

end for; end if; end if; end if; end for; end if;
return Rep;
end function;

// If a group has a set of spherical generators of the
// right type before to look for an unsplit extension,
// we check if the group has a pair of sets of
// spherical generators that give the right singularities.
// If this is not the case surely a set of spherical
// generators and its conjugation by tau' in G cannot give
// the right singularities.
//
// Given two sets of spherical generators,
// next script computes the singular points
// coming from a fixed pair (g1,g2), where
// - g_1 is a generator of the first set;
// - g_2 is a generator of the second set;
// and 1<=n_1<=ord(g_1); 1<=n_2<=ord(g_2);
// Moreover, it returns the element g such that
// g_1^n_1= (g_2^n_2)^g.

BasketByAPairOfGens:= function(group,gen1,gen2)
ord1 := Order(gen1); ord2 := Order(gen2);
basket := [ ]; els:=[];
delta := GCD(ord1, ord2);
if delta eq 1 then return {* *}; end if;
alpha2 := ord2 div delta;
H := sub<group | gen2>; K := sub<group | gen1>;
if Type(H) eq GrpPC then

RC := Transversal(group, H, K);
else RC := DoubleCosetRepresentatives(group, H, K);
end if;
for g in RC do

HgK := H^g meet K;
ord_HgK := #HgK;
if ord_HgK eq 1 then continue g; end if;
x := gen1^(ord1 div ord_HgK);
y := (gen2^(ord2 div ord_HgK))^g;
if exists(i){i:i in [1..delta] | y^i eq x} then
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d2 := (i*(ord2 div ord_HgK)) div alpha2;
Append(~basket, d2/delta);
Append(~els,g);

end if;
end for;
return basket,els;

end function;

// CheckSingsH checks if a pair of set of spherical
// generators of groupH gives a surface Y=(CxC)/G^0
// with the expected singularities.
//
// It only checks if, given two sets of spherical
// generators and a "candidate" basket, the resulting
// surface has the prescribed basket. The advantage is that
// in the wrong cases, the script stops when it finds a
// "forbidden" singularity, without losing time computing
// all the other singular points.

CheckSingsH:=function(basket,gens1,gens2,group)
test:=true; bas:=basket;
for i in [1..#gens1] do gen1:=gens1[i];
for j in [1..#gens2] do gen2:=gens2[j];

pb:=BasketByAPairOfGens(group,gen1,gen2);
for r in pb do r1:=RatNum(Reverse(ContFrac(r)));
if r in bas then Exclude(~bas,r);
elif r1 in bas then Exclude(~bas,r1);
else test:=false; break i;
end if; end for;

end for; end for;
return test and IsEmpty(bas);
end function;

// These function checks if a group has a pair of sets
// of spherical generators that give the expected
// singularities

SingularitiesY:=function(basketX,groupH,type)
BY:=BasketOfY(basketX);
s:=SetToSequence(SphGenUpToConj(groupH,type));
c:=1; test:= false;
for i in [1..#s] do gens1:=s[i];
for j in [c..#s] do gens2:=s[j];

if CheckSingsH(BY,gens1,gens2, groupH) then
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test:=true; break i;
end if; end for; c+:=1; end for;
return test;
end function;

// Now we check if a given group G has a set of
// spherical generators for a group isomorphic to G^0
// in the group G of prescribed type.

ExistSphGens:=function(groupG, idH, type)
test:=false;
SetCands:=TuplesOfGivenOrders(groupG,Prune(type));
if not IsEmpty(SetCands) then
for cands in CartesianProduct(SetCands) do

if Order(&*cands) eq type[#type] then
if IdentifyGroup(sub<groupG|TupleToSeq(cands)>)

eq idH then test:=true; break cands;
end if; end if; end for; end if;
return test;
end function;

// GroupExtension checks if the given group "groupH"=G^0
// has some unsplit extension of degree 2, and returns
// all the groups G which are unsplit extension of groupH.
//
// If the order of the group is "bad", it uses
// SmallGroupProcess instead of SmallGroups.

GroupExtension:=function(groupH,type, badorders)
ordG:= 2*Order(groupH); ext:=[* *];
idH:=IdentifyGroup(groupH);
card:=#{x: x in groupH | Order(x) eq 2};
if ordG notin badorders then
for G in SmallGroups(ordG: Warning := false) do

if #{x: x in G | Order(x) eq 2} eq card then
if ExistSphGens(G, idH, type) then

Append(~ext, IdentifyGroup(G));
end if; end if;

end for;
else
P:= SmallGroupProcess(ordG);
repeat
G := Current(P);
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if #{x: x in G | Order(x) eq 2} eq card then
if ExistSphGens(G, idH,type) then
Append(~ext, IdentifyGroup(G));

end if;end if;
Advance(~P); until IsEmpty(P);
end if;
return ext;
end function;

// ListGroups lists in checked all possible fourtuples
// (basket, type, subgroup G^0, {groups G}).
// It lists in limbo the triples
// basket, type, group G^0, where G^0 has
// a pair of sets of spherical generators of groupH
// gives a surface Y=(CxC)/G^0 with the expected
// singularities, but we cannot check the extensions,
// since the order of the group is too big.
// It lists in tocheck the triples basket, type, order G^0,
// if order G^0 is bigger than 2000 or it is 1024.

ListGroups:=function(Ksquare, pg:
badorders1:={ 256, 384, 512, 576, 768},
badorders2:={ 1152,1280,1536,1920})

checked:=[* *]; tocheck:=[* *]; limbo:=[* *];
for pair in ListOfTypes(Ksquare, pg) do
basket:=pair[1]; setoftypes:=pair[2];
for type in setoftypes do
ordH:=IntegerRing()!((Ksquare+InvkSet(basket[1],bas ket[2]))/
((Theta(type))^2));
if {*2,3,7*} eq type and

NumberOfGroups(PerfectGroupDatabase(),ordH) eq 0 then ;
elif (ordH gt 2000) or (ordH eq 1024) then

Append(~tocheck, [* basket, type, ordH *]);
elif ordH in { 1001..2000} and

(ordH in Include(badorders2)) then
type1:=MsetToSeq(type);
for p in TestBAD(type1, ordH) do
H:=SmallGroup(ordH,p);
if SingularitiesY(basket,H,type1) then
Append(~limbo, [* basket, type, <ordH, p>*]); end if;
end for;

elif ordH in { 1001..2000} and
(ordH notin Include(badorders2)) then

type1:=MsetToSeq(type);
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for p in Test(type1, ordH) do
H:=SmallGroup(ordH,p);
if SingularitiesY(basket,H,type1) then
Append(~limbo, [*basket, type, <ordH, p>*]); end if;
end for;

elif ordH in Include(badorders1,512) then
type1:=MsetToSeq(type);
for p in TestBAD(type1, ordH) do
H:=SmallGroup(ordH,p);
if SingularitiesY(basket,H,type1) then
extensions:=GroupExtension(H,type1, badorders1 join ba dorders2);
if not IsEmpty(extensions) then
Append(~checked, [* basket, type, IdentifyGroup(H), exte nsions *]);
end if;end if; end for;

else type1:=MsetToSeq(type);
for p in Test(type1, ordH) do
H:=SmallGroup(ordH,p);
if SingularitiesY(basket,H,type1) then
extensions:=GroupExtension(H,type1, badorders1 join ba dorders2);
if not IsEmpty(extensions) then
Append(~checked, [* basket, type, IdentifyGroup(H), exte nsions *]);
end if; end if; end for;

end if; end for; end for;
return checked, limbo, tocheck;
end function;

// Step 4: existence of surfaces
//

// First we create all the sets of spherical generators
// of a prescribed type that generate a
// group isomorphic to G^0 in the group G.

SphGens:=function(groupG, idH, type)
Gens:={ };
SetCands:=TuplesOfGivenOrders(groupG,Prune(type));
if not IsEmpty(SetCands) then
for cands in CartesianProduct(SetCands) do

if Order(&*cands) eq type[#type] then
if IdentifyGroup(sub<groupG|TupleToSeq(cands)>) eq idH then
Include(~Gens, Append(TupleToSeq(cands),(&*cands)^-1 ));

end if; end if; end for; end if;
return Gens;
end function;
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// CheckSingsG checks if a set of elements of groupG that
// is a system of spherical generators of groupH gives
// a surface X=(CxC)/G with the expected singularities.
//
// First it checks if the singularities of Y=(CxC)/G^0
// are the expected ones.
// If this is the case it checks if the ramification
// points are right.

CheckSingsG:=function(basket, gens, groupG)
groupH:= sub<groupG|gens>;
tp:=[g: g in groupG | g notin groupH][1];
gens2:=[]; BY:=BasketOfY(basket); BD:=basket[2];
for i in [1..#gens] do Append(~gens2, gens[i]^tp);

end for;
test:=CheckSingsH(BY,gens,gens2,groupH);
if test then
for k in [1..#gens] do gen:=gens[k]; gen2:=gen^tp;

sing,els:=BasketByAPairOfGens(groupH,gen,gen2);
S:=sub<groupH|gen>;
for j in [1..#sing] do

r:=sing[j]; g:=tp*(els[j]^(-1))*tp^(-1);
if exists{h: h in groupH | ((tp*h)^2 in S)

and ((tp*h*tp^-1)*g in S) } then
if r in BD then Exclude(~BD,r);
else test:= false; break k;
end if; end if;

end for; end for; end if;
if not IsEmpty(BD) then test:=false; end if;
return test;
end function;

// ExistingSurfaces returns all the fourtuples
// (basket, type, G^0, G) that give at least
// a surface with the correct singularities.

ExistingSurfaces:=function(Ksquare, pg)
M:=[* *];
list,limbo,tocheck:=ListGroups(Ksquare, pg);
for quadruple in list do
basket:=quadruple[1]; type:=quadruple[2];
idH:=quadruple[3]; listOfG:=quadruple[4];
for idgroupG in listOfG do test:=false;
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G:=SmallGroup(idgroupG[1], idgroupG[2]);
SetGens:=SphGens(G,idH,MsetToSeq(type));
for gens in SetGens do
if CheckSingsG(basket, gens, G) then test:=true;
break gens; end if; end for;

if test then
Append(~M, [* basket, type, idH, idgroupG *]);
end if;
end for; end for;
return M, limbo, tocheck;
end function;

// Step 5: to find all the surfaces.
//
// We still have not found all possible surfaces.
// In fact the output of ExistingSurfaces(a, b)
// gives all possible fourtuples (basket, type , G^0, G)
// which give AT LEAST a surface with p_g=b and K^2=a,
// but there could be more than one. In fact, there is
// a surface for each set of spherical generators of the
// prescribed types which passes the singularity test,
// but they are often isomorphic. More precisely,
// they are isomorphic if the sets of spherical generators
// are equivalent for the equivalence relation generated
// by Hurwitz moves and the automorhisms of the group.
// We need to construct orbits for this equivalence relation .

// The next scripts create the Automorphism Group of a group
// as an explicit set.

AutGr:= function(gr)
Aut:=AutomorphismGroup(gr); A:={ Aut!1 };
repeat
for g1 in Generators(Aut) do
for g2 in A do
Include(~A,g1*g2);
end for; end for;
until #A eq #Aut;
return A;
end function;

// The next one create the Hurwitz moves:

HurwitzMove:= func<seq,idx|Insert(Remove(seq,idx),
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idx+1,seq[idx]^seq[idx+1])>;

// This one, starting from a sequence of elements of a group,
// creates all sequences of elements which are equivalent to
// the given one for the equivalence relation generated by
// the Hurwitz moves, and return (to spare memory) only
// the ones whose entries have never decreasing order.

HurwitzOrbit:=function(seq)
orb:={ }; shortorb:={ }; Trash:={ seq };
repeat

ExtractRep(~Trash,~gens); Include(~orb, gens);
for k in [1..#seq-1] do newgens:=HurwitzMove(gens,k);
if newgens notin orb then Include(~Trash, newgens);
end if; end for;

until IsEmpty(Trash);
for gens in orb do test:=true;
for k in [1..#seq-1] do

if Order(gens[k]) gt Order(gens[k+1]) then
test:=false; break k;
end if; end for;
if test then Include(~shortorb, gens); end if;

end for;
return shortorb;
end function;

// Finally we can find all surfaces. The next program
// finds all surfaces with a given groups, type and basket.

FindSurfaces:=function(K, basket, type,idH, idG)
Good:=[* *]; Surfaces:={ }; All:={ };
G:=SmallGroup(idG[1], idG[2]);
AutG:=AutGr(G);
NumberOfCands:=#SphGens(G,idH,MsetToSeq(type));
printf "To Find= %o\n", NumberOfCands;
for gens in SphGens(G,idH,MsetToSeq(type)) do
if gens notin All then

printf "A new one! ";
Include(~Surfaces, gens); H:=sub<G|gens>;
if CheckSingsG(basket, gens, G) then
S:=[* basket, type, gens, idH, idG*];
printf " and right singularities!\n";
printf "A REALLY NEW SURFACE!!!\n";
Append(~Good, S);
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else printf " but wrong singularities!\n";
end if;
orb:=HurwitzOrbit(gens);
for g1 in orb do

if g1 notin All then
for phi in AutG do Include(~All, phi(g1));
if #All eq NumberOfCands then
printf "#Surfs= %o\n", #Surfaces; break gens;

end if; end for; end if; end for;
printf "#Surfs= %o, To Find= %o\n", #Surfaces, NumberOfCan ds-#All;

end if; end for;
return Good;
end function;

// Next script calls the previous scripts
// and stores the data of the surfaces in
// a text file.

Output:=function(Ksquare,pg)
t:=Realtime();
New:=[* *];
M, limbo, tocheck:=ExistingSurfaces(Ksquare,pg);
for m in M do

basket:=m[1]; type:=m[2]; idH:=m[3]; idgroup:=m[4];
printf "\n Checking news %o \n", m[4];
Surf:=FindSurfaces(Ksquare, basket, type, idH, idgroup) ;
for surf in Surf do Append(~New, surf);

end for; end for;
F:= Open("OUTPUT_WITH_Ks" cat IntegerToString(Ksquare)
cat "_pg" cat IntegerToString(pg) cat ".txt","w");
fprintf F, "K^2=%o\n\n\n", Ksquare;
if #New ne 0 then
fprintf F, "NEW SURFACES: %o\n", #New;
fprintf F, "basket, type, gens, Id(H), Id(G)\n\n";
for new in New do fprintf F, "%o\n\n", new; end for;
fprintf F, "\n\n";
end if;
if #limbo ne 0 then
fprintf F, "PARTIALLY TO CHECK CASES: %o\n", #limbo;
for L in limbo do fprintf F, "%o\n\n", L; end for;
fprintf F, "\n\n";
end if;
if #tocheck ne 0 then
fprintf F, " TO CHECK CASES: %o\n", #tocheck;
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for T in tocheck do fprintf F, "%o\n\n", T; end for;
end if;
printf "Time: %o\n", Realtime(t);
return "K^2=",Ksquare,", #New surf=",#New;
end function;

// Step 6: the fundamental group
//
// Next scripts allow us to calculate the topological
// fundamental group of the surfaces we constructed.
// We use the description of the fundamental
// given in Theorem 7.1.2 and Proposition 7.1.8.

// Poly constructs the polygonal group and the
// appropriate orbifold homomorphism.

Poly:=function(seq, gr)
F:=FreeGroup(#seq); Rel:={F![1..#seq]};
for i in [1..#seq] do

Include(~Rel,F.i^Order(seq[i])); end for;
P:=quo<F|Rel>;
return P, hom<P->gr|seq>;
end function;

// DirProd(A,B) returns the direct product between
// the groups A and B, and the corresponding injections
// and projections.

DirProd:=function(G1,G2)
G1xG2:=DirectProduct(G1,G2); vars:=[];
n:=[NumberOfGenerators(G1),NumberOfGenerators(G2)];
for i in [1..(n[1]+n[2])] do

Append(~vars,G1xG2.i); end for;
SplittedVars:=Partition(vars,n);
injs:=[hom< G1->G1xG2 | SplittedVars[1]>,
hom< G2->G1xG2 | SplittedVars[2]>];
vars1:=[]; vars2:=[];
for i in [1..n[1]] do

Append(~vars1,G1.i); Append(~vars2,G2!1); end for;
for i in [1..n[2]] do

Append(~vars1,G1!1); Append(~vars2,G2.i); end for;
projs:=[hom< G1xG2->G1 | vars1>,hom< G1xG2->G2 | vars2>];
return G1xG2, injs, projs;
end function;
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// MapProd computes given two maps f,g:A->B the map product
// induced by the product on B

MapProd:=function(map1,map2)
seq:=[];
A:=Domain(map1); B:=Codomain(map1);
if Category(A) eq GrpPC then n:=NPCgens(A);
else n:=NumberOfGenerators(A); end if;
for i in [1..n] do

Append(~seq, map1(A.i)*map2(A.i)); end for;
return hom<A->B|seq>;
end function;

// Pi1 uses a sequence of spherical generators for G^0
// inside G to construct the corresponding polygonal group
// and the group HH that acts on the universal cover of CxC.
// Then it constructs the degree 2 extension GG.
// Finally it takes the quotient by Tors(GG).

Pi1:=function(seq, G)
H:=sub<G|seq>; REL:=[]; TorsG:=[]; Sing:=;
el:=random{g: g in G | g notin H};
phi1:=hom<H->H| x:-> x^el>;
T,f1:=Poly(seq,H); t:=(el^2)@@f1;
TxT,inT,proT:=DirProd(T,T);
HxH,inH:=DirectProduct(H,H);
Diag:=MapProd(inH[1],inH[2])(H);
f:=MapProd(proT[1]*f1*inH[1],proT[2]*f1*phi1*inH[2] );
bigH:=Rewrite(TxT,Diag@@f); tt:=inT[1](t)*inT[2](t);
PHI:=hom<bigH->bigH| x:-> inT[1](proT[2](x))*inT[2](t *proT[1](x)*(t^-1))>;
genH:=SetToSequence(Generators(bigH)); relH:=Relatio ns(bigH);
F:=FreeProduct(bigH,FreeGroup(1)); im:=[];
for i in [1..#genH] do Append(~im,F.i); end for;
map:=hom<bigH->F|im>; tau:=map(tt);
ul:=F.(#Generators(F)); Append(~REL, ul^2*(tau^-1));
for i in [1..#genH] do

Append(~REL, map(PHI(genH[i]))* ul * map(genH[i]^-1 )*(u l^-1));
end for;
bigG,pr:=quo<F|REL>;
for i in [1..#seq] do gen1:=seq[i];
for j in [1..#seq] do gen2:=seq[j];
for o1 in [1..Order(gen1)-1] do
for o2 in [1..Order(gen2)-1] do
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test,v:=IsConjugate(H,gen1^o1, phi1(gen2^o2));
if test then Include(~Sing, [i,j]);
for d in Centralizer(H, gen1^o1) do

Append(~TorsG, pr(map(TxT.i^o1 *
((TxT.(j+#seq)^o2)^(inT[2]((el *d^-1*v*el^-1)@@f1)^- 1)))));

end for; end if; end for; end for; end for; end for;
for i in [1..#seq] do gen:=seq[i];
if [i,i] in Sing then
for o in [1..Order(gen)-1] do
for h in H do
test, v:= IsConjugate(H, (el*h)^2, gen^o);
if test then
for d in Centralizer(H, gen^o) do
w:=(v*d)@@f1; h1:=h@@f1; h2:= (el*h*(el^-1))@@f1; s:=h2 *t*h1;
k:=(s^-1)*((T.i^o)^(w^-1));
Append(~TorsG, pr(ul*(map(inT[1](h1)*inT[2](k*h2)))) );
end for;
end if; end for; end for;end if; end for;

return Simplify(quo<bigG|TorsG>);
end function;

// Next function is an additional function
// that we used to exclude some skipped cases.
// It returns a representative of each conjugacy class
// of elements of the given order.

ConjugCl:=function(group, order)
Set:={}; Rep:=[];
list:=[x: x in group | Order(x) eq order];
for el in list do

if el notin Set then
for a in group do

Include(~Set, el^a);
end for; Append(~Rep, el);

end if; end for;
return Rep;
end function;





Chapter 7

Regular mixed quasi-�etale
surfaces with pg = 0 and
K 2 > 0

In this chapter we study the surfaces constructed in the preceding chapter.
In Section 7.1 we explain how to compute the fundamental group of

a regular surface which is the minimal resolution of a mixed q.e. surface;
in particular we compute the fundamental group of the surfaces we have
constructed, see Table 7.1. In Section 7.2, we determine theminimal model
of the surfaces that we have constructed, proving that they are all minimal.

So we prove the �rst part of Theorem 6.1.1. Finally in Section 7.3, we
give a detailed description of the surfaces.

7.1 The fundamental group

In this section we show how to compute the fundamental group of the sur-
faces that we have constructed. To calculate the fundamental groups we will
follow the idea developed in [BCGP08] (see also [DP10]) for the unmixed
case, and we adapt it to the mixed case.

Let X = ( C � C)=G be a regular mixed q.e. surface determined by the
appropriate orbifold homomorphism  : T(m1; : : : ; mr ) ! G0. Let

T := T(m1; : : : ; mr ) = hc1; : : : ; cr j cm1
1 ; : : : ; cm r

r ; c1 � � � cr i :

By Lemma 2.5.1, the kernel of  is isomorphic to the fundamental group
� 1(C) and the sequence

1 �! � 1(C) �! T
 

�! G0 �! 1 (7.1)

is exact. By Lemma 2.5.2, the action of� 1(C) on the universal cover � of
C extends to a discontinuous action ofT. Let u : � ! C be the covering
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map, it is  -equivariant, i.e u(g(x)) =  (g)u(x) for all x 2 C and g 2 T;
and soC=G0 �= � =T �= P1. Let U := ( u; u) : � � � ! C � C.

� � �

yyrrr
rrr

rrr
rr

&&LLL
LLL

LLL
LL

U
��

�

u

��

C � C

�
�� %%KKK

KKK
KKK

KK

yysss
sss

sss
ss

�

u

��
C

��

(C � C)=G0

�
�� %%KKKKKKKKKK

yyssssssssss
C

��
P1 (C � C)=G P1

Fix � 0 2 G n G0; let � = � 02 2 G0 and let ' 2 Aut( G0) de�ned by ' (h) :=
� 0h� 0� 1. Let

H := f (t1; t2) 2 T � T j  (t1) = ' � 1( (t2))g :

It embeds in Aut(� � �) as follows:

(h1; h2) � (x; y) = ( h1 � x; h2 � y) for ( h1; h2) 2 H :

Chooset 2  � 1(� ), since  is surjective and ' (� ) = � , then ~� := ( t; t ) 2 H.
We de�ne

~� 0: � � � �! � � �

(x; y) 7�! (y; t � x)

it is an element of Aut(� � �) that exchanges the factors and (~� 0)2 = ~� ; we
further de�ne ~' : H ! H as ~' (t1; t2) := ( t2; t � t1 � t � 1), it is the conjugation
by ~� 0.

Let H = hgen(H) j rel (H)i be a presentation of H, and let REL :=
f ~' (h)~� 0h� 1~� 0� 1 j h 2 gen(H)g. We de�ne G as follows:

G := hgen(H); ~� 0 j rel (H); (~� 0)2~� � 1; REL i :

De�nition 7.1.1. Let H be a group. Its torsion subgroup Tors(H ) is the
normal subgroup generated by all elements of �nite order inH .

Theorem 7.1.2. Let X = ( C � C)=G be a mixed q.e. surface. LetS ! X
be its minimal resolution of the singularities and assumeq(S) = 0 . Then

� 1(S) �= � 1

�
C � C

G

�
�=

G
Tors(G)

:
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We recall that the minimal resolution S ! X of X replace each singular
point by a tree of smooth rational curves, hence, by van Kampen's theorem,
� 1(S) = � 1(X ).
To prove the second part of the theorem we need some lemmas.

H is an index 2 subgroup ofG and every elementg 2 G either is in H or
there existsh 2 H such that g = ~� 0h. We de�ne a left action of G on � � �,
as follows:

(h1; h2) � (x; y) = ( h1 � x; h2 � y)
~� 0(h1; h2) � (x; y) = ( h2 � y; (t � h1) � x)

for (h1; h2) 2 H : (7.2)

henceG embeds in Aut(� � �).
We also de�ne a group homomorphism# : G ! G:

#(h1; h2) =  (h1) = ' � 1 (h2)
#(~� 0(h1; h2)) = � 0 (h1) = � 0' � 1( (h2))

for (h1; h2) 2 H :

Remembering the relations between� 0, � and ' , it is easy to prove that #
is a group homomorphism.

Lemma 7.1.3. U = ( u; u) : � � � ! C � C is #-equivariant.

Proof. Let g = ( h1; h2) 2 H. Remembering that u is  -equivariant, we get

U(g(x; y)) = U(h1x; h2y) = ( u(h1x); u(h2y))

= (  (h1)u(x);  (h2)u(y)) = (  (h1)u(x); ' ( (h1))u(y))

while

#(g)U(x; y) =  (h1)(u(x); u(y)) = (  (h1)u(x); ' ( (h1))u(y)) :

Let g = ~� 0(h1; h2) 2 H, we get

U(g(x; y)) = U(~� 0(h1x; h2y)) = U(h2y; th1x)

= ( u(h2y); u(th1x)) = (  (h2)u(y);  (th1)u(x))

= (  (h2)u(y); �  (h1)u(x))

while

#(g)U(x; y) = � 0 (h1)(u(x); u(y)) = � 0( (h1)u(x); ' ( (h1))u(y))

= (  (h2)u(y); �  (h1)u(x)) :

It follows that
� � �

G
�=

C � C
G

:
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Lemma 7.1.4. The following short sequence:

1 �! � 1(C � C) �! G #�! G �! 1

is exact.

Proof. We have to prove that ker# �= � 1(C � C).
If g = ~� 0(h1; h2) 2 G n H, then #(g) = � 0 (h1) 6= 1, so ker# � H.
If g = ( h1; h2) 2 H, then #(g) =  (h1) = ' � 1( (h2)) = 1 if and only if
h1; h2 2 ker( ), hence

ker # = f (h1; h2) 2 G j h1; h2 2 ker( )g = ker  � ker  �= � 1(C) � � 1(C) :

Remark 7.1.5. The � 1(C � C)-action on � � � is free, so � 1(C � C) \
Stab(x) = f 1g, this gives that the restriction of # to the stabilizer of a point
x 2 � � � is an isomorphism onto Stab G(U(x)).

Lemma 7.1.6. The G-action on � � � is discontinuous (see De�nition
1.1.5).

Proof. (i) By Remark 7.1.5, the restriction of # to the stabilizer of x is
injective, and so Stab(x) is �nite since G is �nite.

(ii) Let x 2 � � � and let y := U(x) 2 C � C; sinceG is �nite and C � C
is Hausdor�, there exists a neighborhoodU0 of y such that for any element
g 2 G not in the stabilizer of y: g(U0) \ U0 = ; . Let V 0 be the connected
component of U� 1(U0) that contains x. Since U: � � � ! C � C is a
covering, there is a connected neighborhoodV � V 0 of x which is mapped
isomorphically by U onto its image. Shrinking it if necessary, we can assume
that U(V ) =: U � U0 is Stab(y)-invariant, and so V is Stab(x)-invariant.
Let g 2 G n Stab(x). We claim that g(V ) \ V = ; :

U(g(V ) \ V ) � U (g(V )) \ U (V )

= #(g)U(V ) \ U (V )

= #(g)U \ U

Then we have#(g) 2 Stab(y), by Remark 7.1.5, there exists a uniqueg0 2
Stab(x) such that #(g0) = #(g).
By assumption, g = kg0, with k 2 � 1(C � C) n f 1g, we get:

g(V ) \ V = kg0(V ) \ V

= k(V ) \ V

= ;
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Lemma 7.1.7. The normal subgroupG0 of G generated by the elements
which have non-empty �xed-point set is exactlyTors(G).

Proof. To prove our claim we show that each elementg 2 G of �nite order
has non-empty �xed-point set, and vice versa. We distinguish two cases:

(i) g 2 H � G. Let g = ( h1; h2) for some h1 ; h2 2 T that �xes a point
(x; y) 2 � � �:

(h1; h2)(x; y) = ( x; y) ()
�

h1 = �c n i
i � � 1

h2 = �c n j
j � � 1 () (h1; h2) has �nite order;

the �rst equivalence follows by Lemma 2.5.4, while for the second see
[Bea83].

(ii) g 2 G n H. Let g = ~� 0(h1; h2) for some h1 ; h2 2 T.
If g �xes a point ( x; y) 2 � � �, also g2 2 H �xes the point, by (i) it
has �nite order, then g has �nite order.
Conversely, if g has �nite order, g2(x; y) = ( x; y) for some (x; y) 2
� � � since g2 2 H has �nite order:

(x; y) = g2(x; y) = (~� 0(h1; h2))2(x; y) = (( h2th1) � x; (th1h2) � y) ;

hence (th1)x = ( h� 1
2 )x. It follows that g(x; (h� 1

2 )x) = ( x; (h� 1
2 )x).

Proof of Theorem 7.1.2. Because of Lemma 7.1.6, the main theorem in [Arm68]
applies and we get:

� 1

�
C � C

G

�
�= � 1

�
� � �

G

�
�=

G
G0

whereG0 is the normal subgroup ofG generated by the elements which have
non-empty �xed-point set, which is exactly Tors( G) by Lemma 7.1.7:

� 1

�
C � C

G

�
�=

G
Tors(G)

:

In order to write a MAGMA script that calculates the fundamen tal
group, we have to �nd a �nite set of generators of Tors(G).

Proposition 7.1.8. Let X = ( C � C)=G be a regular mixed q.e. surface
determined by the spherical system of generators(h1; : : : ; hr ) and let

 : T(m1; : : : ; mr ) ! G0



142 Regular mixed quasi-�etale surfaces with pg = 0 and K 2 > 0

be the appropriate orbifold homomorphism. Fix� 0 2 GnG0; let � = � 02 2 G0

and let ' 2 Aut( G0) de�ned by ' (h) := � 0h� 0� 1. Then

� 1(X ) �=
G

Tors(G)

and G0 = Tors( G) is normally generated by the �nite setT1 [ T2 where:

� T1 � H: for every i; j 2 f 1; : : : ; r g, 1 � � � mi � 1 and 1 � � � mj � 1,
if h�

i is conjugated to ' � 1(h�
j ), then we choose an elementv 2 G0

such that v h�
i v� 1 = ' � 1(h�

j ). Then for every elementd in the �nite
group Z (h�

i ) we choose an elementw 2  � 1(v � d) and we include
(w c�

i w� 1; c�
j ) in T1.

� T2 � G n H: for every i; 2 f 1; : : : ; r g, 1 � � � mi � 1 and h 2
G0, if (� 0h)2 is conjugated to h�

i , then we choose an elementv 2 G0

such that v h�
i v� 1 = ( � 0h)2 and we chooseg1 2  � 1(h) and g2 2

 � 1(' (h)) . Then for every element d in the �nite group Z (h�
i ) we

choose an elementw 2  � 1(v � d), and we include ~� 0(g1; kg2) in T2 ,
where k := ( g2 t g1) � 1wc�

i w� 1.

Proof. Let (g1; g2) 2 H � G and assume that there existx; y 2 � such that
(g1; g2)(x; y) = ( x; y). We have that (g1; g2) = ( ac�

i a� 1; bc�j b� 1) for some
a; b 2 T. Since there is an element inH of the form (f; b), we can say that
every element that stabilizes some points is conjugate to anelement of the
form (zc�

i z� 1; c�
j ).

The elementsz 2 T such that (zc�
i z� 1; c�

j ) 2 H are in�nite, but

#(zc�
i z� 1; c�

j ) = vh�
i v� 1 = ' � 1(h�

j )

for somev 2 G0. Let v be a �xed element of G0 such that

vh�
i v� 1 = ' � 1(h�

j ) ;

the other v0 2 G0 with v0h�
i v0� 1 = ' � 1(h�

j ) are of the form v � d for some
d 2 Z (h�

i ).
Let w be a preimage via of v � d then (wc�

i w� 1; c�
j ) 2 H; if we pick

another preimagew0 of v � d, then w = kw0 with k 2 ker  , but ( k; 1) 2 H, so
(wc�

i w� 1; c�
j ) and (w0c�

i w0� 1; c�
j ) are conjugated in H, so it su�ces to take

a preimagew of v � d for each d 2 Z (h�
i ) that are �nitely many.

We note that every element in H that stabilizes some points in � � �
belongs to the subgroup ofH generated byT1 that is Tors( H).

Let h 2 G0 such that � 0h(x; y) = ( x; y) for some (x; y) 2 C � C, i.e.
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� 0h(x; y) = ( x; y) ()
�

x = ' (h) y
y = �h x

()
�

x = ( � 0h)2x
y = �h x

So � 0h stabilizes some points inC � C if and only if ( � 0h)2 is conjugated to
h�

i for some 1� i � r and 1 � � � mi � 1.
Fix g1 2  � 1(h) and g2 2  � 1(' (h)), so the preimages of� 0h are of the form
~� 0(g1k1; g2k2), where k1; k2 2 ker  , but up to coniugation with ( k1; 1) 2 H,
we can assume that the preimages are of the form ~� 0(g1; kg2) with k 2 ker  .
We claim that for each point (x; y) 2 C � C stabilized by � 0h, there exists
k 2 ker  such that ~� 0(g1; kg2)(x0; y0) = ( x0; y0) for some (x0; y0) 2 � � �,
i.e. �

x0 = kg2 y0

y0 = tg1 x0
()

�
x0 = kg2 y0

x0 = kg2tg1 x0

Let s := g2tg1 2 T, we have that

 (s) = ( � 0h)2 = vh�
i v� 1

for somev 2 G0. For any d 2 Z (h�
i ), let w be a preimage ofv � d via  , so

s = wc�
i w� 1k0 where k0 2 ker  . We de�ne

k := ( k0) � 1 = s� 1wcm
i w� 1 ;

henceks is conjugated to c�
i and so it stabilizes some pointx0 2 � and the

same goes for ~� 0(g1; kg2) that stabilizes (x0; (kg2) � 1x0) 2 � � �, moreover
U(x0; (kg2) � 1x0) = ( x; y). We include ~� 0(g1; kg2) in T2.

To complete the proof we have to show that every element inG nH that
stabilizes some points in � � � belongs to the subgroup normally generated
by T1 [ T2

Let ~� 0(h1; h2) 2 G be an element that stabilizes a point (x1; y1) 2 � � �,
so � (~� 0(h1; h2)) stabilizes the point U(x1; y1) 2 C � C. By the above con-
struction, there exists g 2 T2 such that g(x0; y0) = ( x0; y0) with U(x0; y0) =
U(x1; y1); by construction, there exists g0 2 G such that g0(x0; y0) = ( x1; y1).
It follows that g0gg0� 1(x1; y1) = ( x1; y1), and so ~� 0(h1; h2) and g0gg0� 1 2
Stab(x1; y1) n H. By remark 7.1.5, there existsh 2 StabH(x1; y1) � Tors(H)
such that ~� 0(h1; h2) = hg0gg0� 1. Noting that Tors( H) is normally generated
by T1, we are done.

In order to compute the fundamental group of the surfaces we have
constructed, we have developed a MAGMA script (see Section 6.4) that
implements these results. We have run it on the constructed surfaces, the
outputs are collected in Table 7.1.
In the �rst column we report the value K 2

S of the self-intersection on the
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canonical class of the surface, Sing(X ) represents the basket of singularities
of X . The column Type gives the type of the set of spherical generators
of G0 (see Section 2.3) in a compacted way, e.g. 23; 4 = (2 ; 2; 2; 4). The
columns G and G0 give the group and its index two subgroup. The column
b2(X ), H1(S;Z), and � 1(S) give respectively the second Betti number ofX ,
the �rst homology group and the fundamental group of S. The last column
gives a label, referring to a subsection of Section 7.3, where we give more
details on each construction.

Remark 7.1.9. All the smooth surfaces in Table 7.1 have non trivial topo-
logical fundamental group andK 2 > 0, so they are surfaces of general type.

Remark 7.1.10. We point out that the surfaces 7.3.4 and 7.3.7 are numerical
Campedelli surfaces (K 2

S = 2) with topological fundamental group (and
therefore algebraic fundamental group)Z4. We discussed the importance of
these surfaces in Section 3.6.1.

Remark 7.1.11. We have constructed 2 new topological types of surfaces of
general type with pg = 0. These surfaces are tagged by 7.3.10 and 7.3.12.

Remark 7.1.12. The surface tagged by 7.3.11 hasK 2
S = 4 and the same

fundamental group of a Keum-Naie surface (see [Nai94] and [BC11]), as the
following MAGMA script shows:

> G:=SmallGroup(32,22);
> seq:=[G.2*G.5, G.2*G.3, G.2*G.4,G.2*G.3*G.5,G.4];
> P:=Pi1(seq,G);
> F<a,b,c,d,s,t>:=FreeGroup(6);
> rel:=[(a,b),(a,c),(a,d),(b,c),(b,d),(c,d),s^2,t^2* b^-1,
> (t,a),(t,b), (s^-1,a^-1)*a^2, (s^-1,b^-1)*b^2,
> (s^-1,c^-1)*c^2, (s^-1,d^-1)*d^2,(t^-1,c^-1)*c^2,
> (t^-1,d^-1)*d^2, (t^-1,s^-1)*(d^-1)*(b^-1)];
> E:=Simplify(quo<F|rel>);
> SearchForIsomorphism(E,P,5);
true Homomorphism of GrpFP: E into GrpFP: P induced by

E.1 |--> P.3
E.2 |--> P.2
E.3 |--> P.1
E.4 |--> P.4

Homomorphism of GrpFP: P into GrpFP: E induced by
P.1 |--> E.3
P.2 |--> E.2
P.3 |--> E.1
P.4 |--> E.4

>

We expect that this surface belongs to the family studied in [BC11] but we
have not proved it.

Remark 7.1.13. There has been a growing interest for surfaces of general
type with pg = 0 having an involution, see [CCML07], [CMLP08], [Rit10a]
and [LS10].
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K 2
S Sing(X ) Type G0 G b2(X ) H1(S;Z) � 1(S) Label

1 2C2;1 + 2 D2;1 23 ; 4 D4 � Z2 Z3
2 o Z 4 1 Z4 Z4 7.3.1

2 6C2;1 25 Z3
2 Z2

2 o Z 4 2 Z2 � Z4 Z2 � Z4 7.3.2
2 6C2;1 43 (Z2 � Z4) o Z 4 G(64, 82) 2 Z3

2 Z3
2 7.3.3

2 C2;1 + 2 D2;1 23 ; 4 Z4
2 o Z 2 Z4

2 o Z 4 1 Z4 Z4 7.3.4
2 C2;1 + 2 D2;1 22 ; 32 Z2

3 o Z 2 Z2
3 o Z 4 1 Z3 Z3 7.3.5

2 2C4;1 + 3 C2;1 23 ; 4 G(64, 73) G(128, 1535) 3 Z3
2 Z3

2 7.3.6
2 2C3;1 + 2 C3;2 32 ; 4 G(384, 4) G(768, 1083540) 2 Z4 Z4 7.3.7
2 2C3;1 + 2 C3;2 32 ; 4 G(384, 4) G(768, 1083541) 2 Z2

2 Z2
2 7.3.8

3 C8;3 + C8;5 23 ; 8 G(32, 39) G(64, 42) 2 Z2 � Z4 Z2 � Z4 7.3.9

4 4C2;1 25 D4 � Z2 D2;8;5 o Z 2 2 Z2 � Z8 Z2
2 o Z 8 7.3.10

4 4C2;1 25 Z4
2 (Z2

2 o Z 4) � Z2 2 Z3
2 � Z4 K-N 7.3.11

4 4C2;1 43 G(64, 23) G(128, 836) 2 Z3
2 Z2

4 o Z 2 7.3.12

8 ; 25 D4 � Z2
2 (D2;8;5 o Z 2) � Z2 2 Z3

2 � Z8 1 ! � 17 � � 17 ! � 1 ! G ! 1 7.3.13
8 ; 43 G(128, 36) G(256, 3678) 2 Z3

4 1 ! � 9 � � 9 ! � 1 ! G ! 1 7.3.14
8 ; 43 G(128, 36) G(256, 3678) 2 Z4

2 � Z4 1 ! � 9 � � 9 ! � 1 ! G ! 1 7.3.15
8 ; 43 G(128, 36) G(256, 3678) 2 Z2

2 � Z2
4 1 ! � 9 � � 9 ! � 1 ! G ! 1 7.3.16

8 ; 43 G(128, 36) G(256, 3679) 2 Z2
2 � Z2

4 1 ! � 9 � � 9 ! � 1 ! G ! 1 7.3.17

Table 7.1: The surfaces and their fundamental group. See Section 7.3 for a detailed description.
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The \intermediate" surface Y = ( C � C)=G0 has an involution induced
by the action of G. The surfaceY has pg = 0 in the cases 7.3.1, 7.3.4 and
7.3.5, andpg = 1 in the others, see Lemma 6.1.5.

The numerical Godeaux surface (K 2
S = 1) tagged by 7.3.1 is obtained as

minimal desingularization S ! X of the mixed q.e. surfaceX = ( C � C)=G.
The surfaceY = ( C � C)=G0 has 6 nodes andK 2

Y = 2, moreover its desingu-
larization T inherits an involution � from the involution acting on Y and has
K 2

T = 2, hence we have a numerical Campedelli surface with an involution.
By construction, the involution �xes 4 points on T, by [CMLP08, Propo-
sition 2.3] in this case the involution is not composed with the bicanonical
map ' : T ! P2. By construction S is also the desingularization ofT=h� i ,
this means that S is an example of the case (i) of [CMLP08, Proposition
4.3].

In the cases 7.3.4 and 7.3.5,Y is a surface with K 2 = 4, pg = 0 and
4 nodes. These surfaces are the quotient models of two product-quotient
surfaces constructed in [BCGP08].

7.2 Determining the minimal model

In this section we want to determine the minimal model of the surfaces we
have constructed, we follow the ideas of [BP10, Section 4]. We recall the
following diagram:

C � C

�

��

p2

((QQQQQQQQQQQQQQ
p1

vvmmmmmmmmmmmmmm

C

c

��

C

c

��

Y = ( C � C)=G0

''OOO
OOO

OOO
OOO

wwooo
ooo

ooo
ooo

�

��

C=G0 C=G0

X = ( C � C)=G

(7.3)

Assume that � � X is a (possibly singular) rational curve. Let � 0 :=
(� � � ) � (�) =

P k
1 ni � i be the decomposition in irreducible components of its

pull back to C � C. We observe that ni = 1 8i (since � � � is quasi-�etale),
and that G acts transitively on the set f � i j i = 1 ; : : : ; kg. Hence there is a
subgroup H � G of index k acting on � 1 such that � (� (� 1)) = � 1=H = �.
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Normalizing � 1 and �, we get the following commutative diagram:

~� 1
� //

f
��

� 1
� //

��

C � C

��
P1 � //� �• //X

Since each automorphism lifts to the normalization,H acts on ~� 1 and f is
the quotient map ~� 1 ! ~� 1=H �= P1.

Moreover we have thatpi � � � � : � 1 ! C is surjective for at least onei 2
f 1; 2g, otherwise � (� (� 1)) is a point. Hence we have thatg(� 1) � g(C) � 2
and so by Corollary 2.2.14f is branched in at least 3 points.

Lemma 7.2.1. Let p be a branch point off , then � (p) is a singular point
of X .

Proof. Let p0 2 f � 1(p) � ~� 1 be a rami�cation point of f , then StabH (p0) :=
H1 6= f 1g and so StabG(� (� (p0))) � H1. Hence� (f (p0)) = � (p) 2 Sing(X ).

Corollary 7.2.2. Any rational curve in X passes at least 3 times through
singular points.

Lemma 7.2.3 (cf. [Bom73, Proposition 1]). On a smooth surfaceS of gen-
eral type every irreducible curveC satis�es K S:C � � 1.

Proof. If an irreducible curve C on a surfaceS satis�es C2 � 0, it is clear
that C:D � 0 for every e�ective divisor D of S. Since jmK S j is not empty
for m large, there exists an e�ective divisor E linearly equivalent to mK S

and somK S:C = E:C � 0. Hence ifK S:C < 0 then C2 < 0 and so:

2g(C) � 2 = K S:C + C2 � � 2 :

SinceC is irreducible we get

g(C) = 0 C2 = � 1 and K S:C = � 1:

Lemma 7.2.4 ([BP10, Remark 4.3]). On a smooth surfaceS of general type
every irreducible curveC with K S:C � 0 is smooth and rational.

Proof. Consider the morphism f : S ! M to its minimal model. Assume
that there is an irreducible curve C � S with K S:C � 0 which is either
singular or irrational. Then C is not contracted by f and C0 := f (C)
is a still singular resp. irrational curve with K M :C0 � K S:C � 0 which
implies (see [Bom73, Proposition 1]) thatC0 is a smooth rational curve of
self-intersection (-2), a contradiction.
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Proposition 7.2.5. Let S be a smooth surface of general type. Assume that
E is a (� 1)-curve in S, then C:E � 1 for every rational curve C in S with
C2 2 f� 2; � 3; � 4g.

Proof. Assume that C:E = n � 2 and C2 = � � 2 f� 2; � 3; � 4g. Let
f : S ! S0 be the blow-down given by the contraction of E and let C0 :=
f (C) that is a singular curve sincen � 2.
SinceK S:C = � C2 � 2 = � � 2, K S:E = � 2 � E 2 = � 1 and degf = 1, we
get

K S0:C0 = f � (K S):f � (C0) = ( K S � E ):(C + nE )

= K S:C � C:E + nK S:E + nE 2

= � � 2 � n

Sincen � 2 then K S0:C0 � 0 and soC0 is smooth, a contradiction.

Lemma 7.2.6. Let S be a smooth surface of general type. Assume thatE
is a (� 1)-curve in S, then E intersects at most one(� 2) curve.

Proof. SupposeE intersects two (� 2) curves, contracting E we get two
(� 1) curves intersecting in a point. Pick one of these curves and contract it,
we get a surfaceS0 and a (0)-curve C0 such that K S0:C0+ C02 = � 2 and so
K S0:C0 = � 2, but C0 is irreducible and soK S0:C0 � � 1, a contradiction.

Proposition 7.2.7. Let S be a surface of general type that is the minimal
resolution of singularities of the mixed q.e. surfaceX . If X has only R.D.P.
as singularities thenS is minimal.

Proof. We recall that the minimal resolution of a R.D.P. is a tree of (� 2)-
curves. If S is not minimal there is a (� 1)-curve, and this curve intersects
three di�erent ( � 2)-curves by Corollary 7.2.2, but this contradicts Lemma
7.2.6.

We need the following classical results.

Theorem 7.2.8 (see [Bom73, Proposition 1]). If S is a minimal surface of
general type, then the(� 2)-curves form a �nite set and they are numerically
independent onS.

Lemma 7.2.9 (see [BHPV04, Proposition VII.2.5]). If S is a minimal sur-
face of general type, then the intersection form restrictedto the (� 2) curves
is negative-de�nite.

De�nition 7.2.10 (see [Bom73] and [BCP11, De�nition 3.7]). The canoni-
cal model of a surfaceS of general type is the normal surfaceScan obtained
from the minimal model Smin of S contracting all the ( � 2)-curves.
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Proposition 7.2.11. Let S be a surface of general type. LetE1; : : : ; En be
(� 2)-curves onS and let M = ( mij ) i;j be the matrix given bymij = E i :E j .
Then M is negative-de�nite.

Proof. Let Smin be the minimal model ofS and let Scan its canonical model;
hence

S ��! Smin
�

�! Scan ;

where � is a birational morphism and � is the contraction of all the (� 2)-
curves ofS.

Up to relabel the curves, we can assume that� (E i ) = f pt:g for i � r ,
while � (E i ) = Fi is a curve for i > r .

Let i > r , then Fi is a (� 2)-curves; indeed ifE i intersects at least an
exceptional curve of � , then K Smin :Fi < K S:E i = 0, hence the canonical
divisor is not nef and Smin is not minimal, a contradiction. In particular
� � (Fi ) = E i . Moreover E i :E j = 0 if i � r and j > r .
We note that f E1; : : : ; Er g are independent in H 2(S) since they are the
exceptional curves of� (see Proposition 3.3.4).
Since Smin is minimal, by Theorem 7.2.8, f Fr ; : : : ; Fng are independent in

H 2(Smin ). SinceH 2(Smin )
� �

,! H 2(S) we get that f Er ; : : : ; Eng are indepen-
dent in H 2(S).

The intersection form is non-degenerate,f E1; : : : ; Er g and f Er ; : : : ; Eng
are independent andE i :E j = 0 if i � r and j > r , hencef E1; : : : ; Eng is
independent and they form a basis forV := Span(E1; : : : ; Er ) � H 2(S).

Since (� � K Smin )2 > 0, by Algebraic Index Theorem (see [BHPV04,
Corollary IV.2.16]), we get that the intersection form restricted to V is
negative-de�nite.

Corollary 7.2.12. Let E1 and E2 be two (� 2)-curves on a surfaceS of
general type, thenE1:E2 � 1.

Proof. If E1:E2 � 2 then

det
�

E 2
1 E1:E2

E1:E2 E 2
2

�
= 4 � 2E1:E2 � 0

and so the intersection form is not negative de�nite, a contradiction.

Proposition 7.2.13. Let S be a smooth surface of general type. Assume
that E is a (� 1)-curve in S, then E cannot intersect a (� 2)-curve and two
(� 3)-curves.

Proof. Aiming for a contradiction, let us assume that E intersects two (� 3)-
curves and a (� 2)-curve E 0. We contract E and then E 0, so we get two (� 1)-
curvesE1 and E2, with E1:E2 = 2 on the surfaceS0, moreoverK S0:E i = � 1.
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Contracting one of them, sayE1, we get a curveE 0
2 on S00such that

K S00:E 0
2 � (K S0 � E1):(E2 + 2E1) = K S0:E2 � E1:E2 + 2K S0:E1 � 2E 2

1

= � 1 � 2 � 2 + 2 = � 3;

but E 0
2 is irreducible and soK S00:E 0

2 � � 1, a contradiction.

Proposition 7.2.14. Let S be a surface of general type that is the minimal
resolution of singularities of the mixed q.e. surfaceX .

If B(X ) = f 2 � C4;1; 3 � C2;1g then S is minimal.

Proof. The minimal resolution of the singularities in X is given by two (� 4)-
curves and three (� 2)-curves that do not intersect each other.

Assume that E is a (� 1)-curve in S, since it has to intersect at least
three exceptional curves and by Lemma 7.2.6 it cannot intersect more that
one (� 2)-curve. There is only one possible con�guration of rational curves
on S; its dual graph is:

. / 0

1

2 3

-1

-4 -4 -2 -2 -2

E 0

After the contraction of the ( � 1)-curve we get that E 0 is a (� 1)-curve.
Contracting it we get two ( � 2)-curves E1 and E2, with E1:E2 = 2 on the
surfaceS0, contradicting Corollary 7.2.12.

Proposition 7.2.15. Let S be a surface of general type that is the minimal
resolution of singularities of the mixed q.e. surfaceX .

If B(X ) = f C8;3; C8;5g then S is minimal.

Proof. The minimal resolution of the singularities in X is given by two
(� 3)-curves intersecting in a point and two (� 2)-curves intersecting in two
di�erent points a further ( � 3)-curve. The dual graph is:

4 5 6 7 8

E1 E2

-3 -3 -2 -3 -2

Assume that E is a (� 1)-curve in S, it has to intersect at least three
exceptional curves and it cannot intersect more that one (� 2)-curve.

Moreover, by Proposition 7.2.13, E cannot intersect a (� 2)-curve and
two ( � 3)-curves, soE intersects the three (� 3)-curves. We claim that this
is not possible; indeed contractingE we get two (� 2)-curvesE1 and E2 with
E1:E2 = 2, contradicting Corollary 7.2.12.



7.3 The surfaces 151

Proposition 7.2.16. Let S be a surface of general type that is the minimal
resolution of singularities of the mixed q.e. surfaceX .

If B(X ) = f 2 � C3;1; 2 � C3;2g then S is minimal.

Proof. The minimal resolution of the singularities in X is given by two (� 3)-
curves and two pairs of (� 2)-curves intersecting in a point. The dual graph
is:

9 : ; < = >

-3 -3 -2 -2-2 -2 -2

Assume that E is a (� 1)-curve in S, it has to intersect at least three
exceptional curves and it cannot intersect more that one (� 2)-curve, thank
to Proposition 7.2.5 and Lemma 7.2.6. So, the only possibility left is that
E intersect both the (� 3)-curves and just one of the four (� 2)-curves, con-
tradicting Proposition 7.2.13.

Corollary 7.2.17. If S is the minimal resolution S of the singularities of a
mixed q.e. surfaceX with pg(S) = q(S) = 0 and K 2

S > 0, then S is minimal.

7.3 The surfaces

In this section we give a detailed description of the surfaces collected in
Table 6.1. We will follow the scheme below:
G: the Galois group.
G0: the index 2 subgroup of the elements that do not exchanges the factors.
In the follow S n will denote the symmetric group in n letters, Dp;q;r the gen-
eralized dihedral group with presentation: Dp;q;r = hx; yjxp; yq; xyx � 1y� r i
and Dn := D2;n; � 1 is the usual dihedral group of order 2n.
T: the type of the system of spherical generators.
L: here we list the set of elements ofG that is a spherical generators system
for G0 that gives the curve C.
H1: the �rst homology group of the surface.
� 1: the fundamental group of the surface.

K 2 = 1, basket f 2 � C2;1; 2 � D2;1g

7.3.1. Galois group (Z2)3 o ' Z4 : ' (1) =

0

B
B
@

1 1 1

0 1 1

0 0 1

1

C
C
A

G: h(2; 5; 6; 8)(3; 7); (1; 2)(3; 5)(4; 6)(7; 8); (1; 3)(2; 5)(4; 7)(6; 8);

(2; 6)(5; 8); (1; 4)(2; 6)(3; 7)(5; 8)i < S 8

G0: D4 � Z2
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T: (2; 2; 2; 4)

L: (1; 8)(2; 7)(3; 6)(4; 5); (1; 7)(2; 8)(3; 4)(5; 6); (1; 3)(2; 8)(4; 7)(5; 6);

(1; 5; 4; 8)(2; 7; 6; 3)

H1: Z4

� 1: Z4

K 2 = 2, basket f 6 � C2;1g

7.3.2. Galois group (Z2)2 o ' Z4: ' (1) =

 
1 1

0 1

!

G: h(1; 2; 4; 6)(3; 5; 7; 8); (2; 5)(6; 8); (1; 3)(2; 5)(4; 7)(6; 8);

(1; 4)(2; 6)(3; 7)(5; 8)i < S 8

G0: (Z2)3

T: (2; 2; 2; 2; 2)

L: (1; 3)(4; 7); (1; 7)(2; 6)(3; 4)(5; 8); (1; 3)(2; 5)(4; 7)(6; 8); (2; 5)(6; 8);

(1; 7)(2; 6)(3; 4)(5; 8)

H1: Z2 � Z4

� 1: Z2 � Z4

7.3.3. Galois group: G(64; 82): Sylow 2-subgroup of the Suzuki group

Sz(8),

G: hg1; g2; g3 j g4
3; g4

2; g4
1; g1g3g� 1

1 g3g2
2; g� 2

2 g� 1
3 g� 1

1 g� 1
3 g1;

g2g3g2
1g2g� 1

3 ; g� 1
1 g2

3g2g1g� 1
2 ; g� 1

2 g2
3g2g2

3; g� 2
1 g� 1

3 g2g3g2i

G0: G(32; 2): hh1; h2 j h4
1; h4

2; h� 1
2 h� 2

1 h2h� 2
1 ; h� 2

2 h1h� 2
2 h� 1

1 ;

(h1h2h� 1
1 h2)2; (h� 1

2 h1h2h1)2; h� 2
1 h�

2 3h� 2
1 h� 1

2 ; (h2; h� 1
1 )2i

it is isomorphic to (Z2 � Z4) o ' Z4 where ' (1) =

 
1 1

0 3

!

T: (4 ; 4; 4)

L: g� 1
3 ; g1g� 2

3 ; g1g3g� 2
2 g2

3g2
2g� 2

1

H1: (Z2)3

� 1: (Z2)3
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K 2 = 2, basket f C2;1; 2 � D2;1g

7.3.4. Galois group: (Z2)4 o ' Z4: ' (1) =

0

B
B
B
B
B
@

1 1 0 0

0 1 1 1

0 1 0 0

0 0 0 1

1

C
C
C
C
C
A

G: h(2; 6; 7; 12)(3; 9; 10; 16)(4; 11)(8; 14; 15; 13);

(1; 2)(3; 6)(4; 7)(5; 8)(9; 13)(10; 14)(11; 15)(12; 16);

(1; 3)(2; 6)(4; 9)(5; 10)(7; 13)(8; 14)(11; 16)(12; 15);

(2; 7)(3; 10)(6; 12)(8; 15)(9; 16)(13; 14);

(1; 4)(2; 7)(3; 9)(5; 11)(6; 13)(8; 15)(10; 16)(12; 14);

(1; 5)(2; 8)(3; 10)(4; 11)(6; 14)(7; 15)(9; 16)(12; 13)i < S 16

G0: (Z2)4 o  Z2,  (1) = ' (2)

T: (2 ; 2; 2; 4)

L: (2; 7)(3; 10)(6; 12)(8; 15)(9; 16)(13; 14);

(1; 16)(2; 12)(3; 11)(4; 10)(5; 9)(6; 15)(7; 14)(8; 13);

(1; 14)(2; 10)(3; 8)(4; 12)(5; 6)(7; 16)(9; 15)(11; 13);

(1; 2; 4; 7)(3; 14; 9; 12)(5; 8; 11; 15)(6; 16; 13; 10)

H1: Z4

� 1: Z4

7.3.5. Galois group: (Z3)2 o ' Z4: ' (1) =

 
0 1

2 0

!

G: h(1; 2)(3; 4; 5; 6); (3; 5)(4; 6); (2; 4; 6); (1; 3; 5)(2; 4; 6)i < S 6

G0: (Z3)2 o  Z2,  (1) = ' (2)

T: (2 ; 2; 3; 3)

L: (3; 5)(4; 6); (2; 6)(3; 5); (1; 3; 5); (1; 5; 3)(2; 4; 6)

H1: Z3

� 1: Z3

K 2 = 2, basket f 2 � C4;1; 3 � C2;1g

7.3.6. Galois group: G(128; 1535)

G: hg1; g2; g3; g4 j g� 1
1 g4g1g4; g4

4; (g� 1
2 g� 1

3 )2; g4
2; (g3; g� 1

4 ); (g� 1
3 g2)2;

g� 1
2 g4g� 1

2 g� 1
4 ; g� 1

1 g� 1
2 g1g� 1

2 ; g� 1
1 g� 1

3 g2
1g3g� 1

1 ; g� 2
3 g1g2

3g� 1
1 ;

g� 2
4 g1g3g2

2g� 1
1 g� 1

3 ; g� 2
4 g� 1

3 g1g3g� 1
1 g2

2; g2
4g� 2

1 g� 1
3 g2

2g� 1
3 ;
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g� 1
4 g� 1

1 g2g3g� 1
2 g4g� 1

3 g� 1
1 ; g� 2

4 g3
1g� 2

4 g1i

G0: G(64; 73): hh1; h2; h3 j h2
1; h2

2; h2
3; (h1h3)4; (h1h2)4;

(h2h3)4; (h2h3h2h1h3)2; (h1h2h3h1h3)2; (h2h1h3)4i

T: (2 ; 2; 2; 4)

L: g1g3g� 1
4 g2

2; g1g3g� 2
2 g� 2

3 g2
2; g2g3; g2g3g4g� 2

2 g� 2
4 g2

2g� 2
3 g2

2

H1: (Z2)3

� 1: (Z2)3

K 2 = 2, basket f 2 � C3;1; 2 � C3;2g

7.3.7. Galois group: G(768; 1083540)

G: hg1; g2; g3; g4; g5; g6; g7; g8; g9 j g3
1; g2

2(g5g6g7) � 1; g2
3(g5g6); g2

4(g5) � 1;

g2
5; g2

6; g2
7; g2

8; g2
9; (g2; g1)(g4g6g7g9) � 1; (g3; g1)(g3g7g9) � 1;

(g3; g2)g� 1
5 ; (g4; g1)(g8g9) � 1; (g4; g2)g� 1

6 ; (g4; g3)g� 1
7 ;

(g5; g1)(g6g7) � 1; (g5; g2)g� 1
8 ; (g5; g3)g� 1

9 ; (g6; g1)g� 1
8 ;

(g6; g2) = g8g9; (g6; g3)g� 1
9 ; (g6; g4)g� 1

8 ; (g7; g1)g� 1
9 ; (g7; g2)g� 1

9 ;

(g7; g3)g� 1
8 ; (g7; g4)g� 1

9 ; (g8; g1)g� 1
9 ; (g9; g1)i

G0: G(384; 4): hh1; h2 j h3
1; h4

2; (h� 1
2 h1)3; (h� 1

2 h� 1
1 )6; (h2; h1)4;

h� 1
1 h� 2

2 h1h� 2
2 h� 1

1 h� 1
2 h� 1

1 h2h� 1
1 h� 1

2 ;

h� 1
2 h1h2h1h� 1

2 h� 1
1 h2h1h2h� 1

1 h� 1
2 h� 1

1 h2h1h� 1
2 h� 1

1 ; i

T: (3 ; 3; 4)

L: g2
1g4g9; g1g6g7g9; g2g5g8

H1: Z4

� 1: Z4

7.3.8. Galois group: G(768; 1083541)

G: hg1; g2; g3 j g3
1; g4

3; g4
2; g2g3g1g� 1

2 g� 1
1 g3; g2

3g2
2g� 2

3 g2
2;

g3g� 1
2 g3g� 1

1 g2g� 2
3 g1; g� 1

1 g� 2
3 g1g2g3g� 1

2 g� 1
3 ;

g2g3g� 1
2 g1g2g� 1

1 g� 1
2 g3; g3g2

2g3g� 1
1 g2g1g2; (g� 1

3 g� 1
2 g3g� 1

2 )2;

g� 1
2 g� 1

3 g� 1
1 g2

3g1g2g3; (g� 1
3 g2)4; g3g1g� 2

2 g� 1
3 g� 1

2 g� 1
3 g� 1

1 g� 1
2 g3;

g3g2
2g� 1

3 g� 1
1 g3g� 2

2 g� 1
3 g1; g2g� 1

1 g2g1g� 1
3 g2g3g1g2g� 1

1 ;

g� 1
3 g2

2g� 1
1 g� 1

3 g1g� 1
3 g� 1

1 g3g1; g� 1
3 g2g2

3g2g� 1
1 g2

2g1g� 1
3 ;

g� 1
1 g2g� 1

3 g2g� 1
3 g1g� 2

3 g2
2; g3g� 1

1 g3g1g� 1
3 g� 2

2 g3g� 1
2 g1g3g� 1

1 ;

g� 1
2 g� 1

1 g2g� 1
3 g1g� 1

3 g� 1
1 g3g� 2

2 g1g3;

g� 1
3 g� 1

1 g� 1
2 g� 1

3 g� 1
2 g1g3g� 1

2 g� 1
3 g1g� 2

3 g2g� 1
3 g� 1

1 g� 1
2 i
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G0: G(384; 4), as above.

T: (3 ; 3; 4)

L: g2
1g2g3g� 2

2 g3g2
2g3g2

2g1g� 1
3 g2

2g3g2
2g� 1

1 ; g1g3
2g3g2

2g1g� 1
3 g2

2g3g2
2g� 1

1 ;

g2g� 1
3 g� 1

1 g3g1g� 1
2 g� 2

3 g� 1
2 g� 1

3 g3
2g3g2

2

H1: (Z2)2

� 1: (Z2)2

K 2 = 3, basket f C8;3; C8;5g

7.3.9. Galois group: G(64; 42):

G: h(1; 2; 3; 5; 8; 13; 6; 10)(4; 7; 11; 14; 15; 16; 9; 12);

(2; 4)(3; 6)(5; 9)(7; 12)(10; 11)(13; 15)(14; 16)i < S 16

G0: G(32; 39): h(2; 4)(5; 7)(6; 8)(9; 11)(10; 12)(13; 15);

(1; 2)(3; 5)(4; 6)(7; 9)(8; 10)(11; 13)(12; 14)(15; 16);

(1; 3)(2; 5)(4; 7)(6; 9)(8; 11)(10; 13)(12; 15)(14; 16)i < S 16

T: (2; 2; 2; 8)

L: (2; 13)(4; 15)(5; 10)(9; 11);

(1; 7)(2; 5)(3; 12)(4; 15)(6; 14)(8; 16)(10; 13);

(2; 15)(3; 6)(4; 13)(5; 11)(7; 12)(9; 10)(14; 16);

(1; 7; 3; 14; 8; 16; 6; 12)(2; 15; 10; 11; 13; 4; 5; 9)

H1: Z2 � Z4

� 1: Z2 � Z4

K 2 = 4, basket f 4 � C2;1g

7.3.10. Galois group: D2;8;5 o ' Z2, ' (1) =

(
x 7! x

y 7! yxy4

G: h(1; 2; 3; 6; 4; 5; 7; 8); (2; 5)(3; 7); (2; 5)(6; 8); (1; 3; 4; 7)(2; 6; 5; 8);

(1; 4)(2; 5)(3; 7)(6; 8)i < S 8

G0: D4 � Z2

T: (2; 2; 2; 2; 2)

L: (2; 5)(6; 8); (1; 7)(2; 6)(3; 4)(5; 8); (1; 4)(2; 5); (1; 4)(2; 5);

(1; 7)(2; 8)(3; 4)(5; 6)

H1: Z2 � Z8
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� 1: (Z2)2 o  Z8,  (1) =

 
1 1

0 1

!

7.3.11. Galois group: ((Z2)2 o ' Z4) � Z2, ' (1) =

 
1 1

0 1

!

G: h(1; 2; 5; 8)(3; 7; 10; 14)(4; 6; 11; 13)(9; 12; 15; 16);

(2; 6)(7; 12)(8; 13)(14; 16);

(1; 3)(2; 7)(4; 9)(5; 10)(6; 12)(8; 14)(11; 15)(13; 16);

(1; 4)(2; 6)(3; 9)(5; 11)(7; 12)(8; 13)(10; 15)(14; 16);

(1; 5)(2; 8)(3; 10)(4; 11)(6; 13)(7; 14)(9; 15)(12; 16)i < S 16

G0: Z4
2

T: (2; 2; 2; 2; 2)

L: (1; 5)(2; 13)(3; 10)(4; 11)(6; 8)(7; 16)(9; 15)(12; 14);

(1; 3)(2; 12)(4; 9)(5; 10)(6; 7)(8; 16)(11; 15)(13; 14);

(1; 4)(3; 9)(5; 11)(10; 15);

(1; 10)(2; 16)(3; 5)(4; 15)(6; 14)(7; 13)(8; 12)(9; 11);

(1; 4)(2; 6)(3; 9)(5; 11)(7; 12)(8; 13)(10; 15)(14; 16)

H1: (Z2)3 � Z4

� 1: hp1; p2; p3; p4 j p2
1; p2

3; (p3p2)2; (p1p� 1
2 )2; p4p� 1

2 p� 1
4 p� 1

2 ;

p4p1p3p� 1
4 p3p1; (p1p2

4)2; (p� 2
4 p3)2i

7.3.12. Galois group: Sylow 2-subgroup of a double cover of the Suzuki

group Sz(8)

G: G(128; 836), h(2; 4; 9; 13)(3; 7; 12; 15)(8; 10)(11; 16);

(1; 2; 5; 9)(3; 6)(4; 10; 13; 8)(7; 11)(12; 14)(15; 16);

(1; 3; 8; 7)(2; 6; 4; 11)(5; 12; 10; 15)(9; 14; 13; 16)i < S 16

G0: G(64; 23): h(2; 3; 5; 8)(6; 10)(7; 11; 12; 13)(14; 16);

(1; 2; 4; 7)(3; 6; 11; 14)(5; 9; 12; 15)(8; 10; 13; 16)i < S 16

T: (4; 4; 4)

L: (1; 12; 8; 15)(2; 14; 4; 16)(3; 10; 7; 5)(6; 13; 11; 9);

(1; 13; 5; 4)(2; 8; 9; 10)(3; 11)(6; 7)(12; 16)(14; 15);

(1; 14; 8; 16)(2; 3; 13; 15)(4; 7; 9; 12)(5; 6; 10; 11)

H1: (Z2)3

� 1: (Z4 � Z4) o  Z2,  (1) =

 
3 2

2 1

!
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K 2 = 8, basket ;

7.3.13. Galois group: (D2;8;5 o ' Z2) � Z2, ' (1) =

(
x 7! x

y 7! yxy4

G: h(1; 2; 4; 8; 5; 9; 12; 16)(3; 7; 10; 15; 11; 6; 13; 14);

(2; 6)(4; 12)(7; 9)(8; 15)(10; 13)(14; 16);

(1; 3)(2; 7)(4; 10)(5; 11)(6; 9)(8; 15)(12; 13)(14; 16);

(1; 3)(2; 6)(4; 10)(5; 11)(7; 9)(8; 14)(12; 13)(15; 16);

(1; 4; 5; 12)(2; 8; 9; 16)(3; 10; 11; 13)(6; 14; 7; 15);

(1; 5)(2; 9)(3; 11)(4; 12)(6; 7)(8; 16)(10; 13)(14; 15)i < S 16

G0: D4 � Z2 � Z2

T: (2; 2; 2; 2; 2)

L: (1; 5)(2; 7)(3; 11)(6; 9)(8; 14)(15; 16);

(2; 7)(4; 12)(6; 9)(8; 14)(10; 13)(15; 16);

(1; 13)(2; 8)(3; 12)(4; 11)(5; 10)(6; 14)(7; 15)(9; 16);

(1; 4)(2; 14)(3; 10)(5; 12)(6; 8)(7; 16)(9; 15)(11; 13);

(1; 3)(2; 6)(4; 10)(5; 11)(7; 9)(8; 14)(12; 13)(15; 16)

H1: (Z2)3 � Z8

� 1: 1 ! � 17 � � 17 ! � 1 ! G ! 1

7.3.14. Galois group: G(256; 3678)

G: hg1; g2; g3 j g4
1; g4

2; g4
3; g1g2g2

3g� 1
1 g� 1

2 ;

g� 1
2 g2

1g� 1
3 g� 1

2 g3; g3g� 1
1 g� 1

2 g� 1
3 g� 1

1 g2; g1g2g3g� 1
2 g1g3;

g3g� 1
1 g� 1

2 g1g2g3; g2
2g3g� 1

1 g3g1; g3g1g� 1
2 g� 1

3 g� 1
2 g� 1

3 g1g3;

g� 1
2 g1g2g2

1g� 2
3 g1; g1g2

2g1g� 1
3 g1g� 1

3 g1; g� 2
2 g� 1

1 g� 1
3 g1g3

3;

g� 1
3 g1g� 1

2 g� 2
3 g� 1

1 g2
3g2g� 1

3 i

G0: G(128; 36): hh1; h2 j h4
2; h4

1; h1h2
2h� 2

1 h� 2
2 h1; (h� 1

2 h1h2h1)2; (h1; h2)2;

(h� 1
1 h� 1

2 h1h� 1
2 )2; (h� 1

1 h� 1
2 h� 2

1 h2h� 1
1 )2; (h2

2h� 1
1 h2

2h1)2i

T: (4 ; 4; 4)

L: g2g3; g3g� 1
2 g� 1

3 g2g3g� 1
1 g3g1g3g2g� 2

3 g2g2
3; g� 1

2 g2
3g� 1

2 g� 1
3 g2g3

H1: (Z4)3

� 1: 1 ! � 9 � � 9 ! � 1 ! G ! 1

7.3.15. Galois group: G(256; 3678)

G: as above

G0: G(128; 36), as above
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T: (4; 4; 4)

L: g1g� 2
3 g� 1

1 g3g1g3g2
2; g3g� 2

2 g2
3g� 1

2 g� 1
3 g2g3; g1g� 1

3 g� 2
2 g2

3g� 1
1 g3g1g3g2g� 2

3 g2g2
3

H1:(Z2)4 � Z4

� 1: 1 ! � 9 � � 9 ! � 1 ! G ! 1

7.3.16. Galois group: G(256; 3678)

G: as above

G0: G(128; 36), as above

T: (4; 4; 4)

L: g1g3g� 2
2 g2

3g� 1
2 g� 2

3 g2g2
3; g1g2g3g� 1

1 g3g1g3g2
2; g2g� 2

3 g� 1
1 g3g1g3g2

2

H1: (Z2)2 � (Z4)2

� 1: 1 ! � 9 � � 9 ! � 1 ! G ! 1

7.3.17. Galois group: G(256; 3679)

G: hg1; g2; g3 j g4
3; g4

1; g4
2; g2g2

3g� 1
1 g� 1

2 g1; g� 1
3 g� 1

2 g� 1
3 g1g� 1

2 g1;

g� 1
3 g2g3g2g2

1; g� 1
2 g1g� 1

2 g� 1
3 g� 1

1 g3; g2
1g� 1

2 g� 1
3 g� 1

2 g3; g� 1
2 g3g2g1g3g1;

g� 1
1 g� 1

2 g2
1g3g� 1

1 g� 1
3 g� 1

2 ; g� 1
3 g2g3g� 1

2 g� 2
1 g� 2

2 ; (g� 1
3 g2)4;

g� 1
2 g1g� 1

2 g1g� 1
3 g1g3g1; i

G0: G(128; 36), as above

T: (4; 4; 4)

L: g2g3; g3g� 1
2 g� 1

3 g2g3g1g2
3g� 1

1 g� 2
3 g� 1

2 g� 2
3 g2g� 2

3 ; g� 1
2 g2

3g� 1
2 g� 1

3 g2g3

H1: (Z2)2 � (Z4)2

� 1: 1 ! � 9 � � 9 ! � 1 ! G ! 1
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