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Abstract

Medical applications usually used Radial Basis Function Networks just as Artifi-
cial Neural Networks. However, RBFNs are Knowledge-Based Networks that can
be interpreted in several way: Artificial Neural Networks, Regularization Networks,
Support Vector Machines, Wavelet Networks, Fuzzy Controllers, Kernel Estimators,
Instanced-Based Learners. A survey of their interpretations and of their correspond-
ing learning algorithms is provided as well as a brief survey on dynamic learning
algorithms. RBFNs’ interpretations can suggest applications that are particularly
interesting in medical domains.
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1 Introduction

Since their first proposal Radial Basis Function Networks [58] (in the following
simply referred to as RBFNs) has been widely used in applications. Theoretical
results showing their interpretability in terms of other systems and methods
accumulated. In particular, they interpretability in terms of fuzzy logic and
probabilistic rules was noted [44,11,79,80] putting RBFNs in the wider family
of Knowledge-Based Neurocomputing [22]. However, in medical applications
RBFNs seems to be used simply as suitable alternatives to more popular
Artificial Neural Networks (ANNs) as the Multilayer Perceptron (MLP) (see
[11] for an exception). The goal of this paper is to survey several theoretical
interpretations of RBFNs emphasizing the properties they entail and their
potential application consequences in medical domains.

The architecture underlying RBFNs has been defined and presented several
times under different names. Initially presented in the neural network frame-
work [58] RBFNs were reintroduced as a particular case of regularization net-
works [68]. Support Vector Machines [23] reintroduced RBFNs again in the
framework of Statistical Learning Theory and Kernel-Based Algorithms [59].
The architecture of Wavelet Networks [91] is a particular case of RBFNs. In-
dependently, the fuzzy logic community developed fuzzy controllers [6] whose
effectiveness rely on the same approximation principles [44]. Closely related
to the fuzzy approach some research [11,79,80] proposed to use the RBFN
for mapping and refining propositional knowledge. With a very different ap-
proach in the mainstream of applied statistics [75], the problem of regression
and classification, and more generally density estimation, were faced by means
of kernel estimators that were strongly related to RBFN. Finally, RBFN can
also be placed in the framework of instance based learning [57]. As a conse-
quence RBFNs can be viewed from several different points of view.

Medical applications usually used RBFNs as an ANN. RBFNs were exploited
in medical domains such as surgical decision support on traumatic brain injury
patients [53], coronary artery disease from electrocardiography (ECG) [25,52],
classification of cardiac arrhnythmias from ECG [1], diagnostic ECG classi-
fication [14], prevision of heart rate [39] and analysis of its variability [7,63],
ischemia detection [8], spectroscopic detection of cervical precancer [81], es-
timation of evoked potentials [34] and of neural activity [2] and prognosis of
intensive care-unit patients [11].

Different interpretations of RBFNs lead to rather different learning algorithms.
The distinction between static and dynamic learning algorithms for RBFNs is
relevant. The static learning algorithms modify the parameters of the RBFN
given a fixed number of basis functions. The dynamic learning algorithms mod-
ify the number of basis functions of the network, integrating the actions occur-
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ring in the initialization and in the refining phases in an incremental learning
algorithm. An excellent survey of static learning algorithms for RBFNs has
been recently proposed [74].

The goal of this paper is to survey the different interpretations of RBFNs
in order to emphasize relevant properties of RBFNs that can be useful for a
reader interested in medical applications. A complete and exaustive survey on
RBFNs applications in the area of biomedicine goes beyond the scope of this
paper. Moreover, it’s not our goal to provide a unique formal framework for
different types of systems as done in [70]. Our aim is rather to focus the atten-
tion to properties of the RBFNs that can be useful for medical applications.
Some of these properties depend upon the fact the RBFNs can be interpreted
in rather different ways. As an example, we consider the scenario of melanoma
early diagnosis support addressed by MEDS [10,73] where the combination of
different classifiers was exploited in order to reach the required performance.
The task is to support the diagnosis of melanoma from digital images of pig-
mented skin lesion acquired by means of digital epi-luminescence microscopy
(D-ELM). In such a scenario, sensitivity and specificity are the main issues
but, given the so called ABCD rule (Area, Border, Color, Dimension) used
by the dermatologists, comprehension of the elaboration is important. The
task also requires feature extraction from images and possibly the use of clin-
ical information. Moreover, the scarce quantity of data available hardens the
learning task.

The paper is composed of two complementary parts. The first part (Sections
2 and 3) surveys the scientific literature related to RBFNs. The second part
(from Section 5 to Section 12) addresses the connections between RBFNs and
other methods and approaches. Concluding remarks are presented for each
single section of the second part. More in detail, Section 2 describe the basic
RBFN architecture and their approximation properties, i.e. the characteri-
zation of the problems that the RBFNs can solve. Section 3 deals with the
basic learning algorithms introducing the distinction between static and dy-
namic learning algorithms. Section 4 considers RBFNs as Neural Networks
and briefly reports on the recurrent version of the RBFNs. Section 5 6, 7
consider RBFNs as Regularization Networks, Support Vector Machines and
Wavelets Networks respectively. Section 8 and 9 deals with RBFNs as fuzzy
systems and their consequent symbolic interpretation. A statistical approach
to RBFNs is described in Section 10. RBFNs as a type of Instance Based
Learning is presented in Section 11. Section 12 briefly describes the learning
algorithms with structural changes. Finally, Section 13 and Section 14 draws
conclusions.
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2 Architecture and Approximation Properties

The RBFNs correspond to a particular class of function approximators which
can be trained, using a set of samples. RBFNs have been receiving a growing
amount of attention since their initial proposal [18,58], and now a great deal
of theoretical and empirical results are available.

2.1 Radial Basis Function Networks Architecture

The approximation strategy used in RBFNs consists of approximating an un-
known function with a linear combination of non–linear functions, called basis
functions. The basis functions are radial functions, i.e. they have radial sym-
metry with respect to a centre. Let X be a vectorial space, representing the
domain of the function f(x̄) to approximate, and x̄ a point in X. The general
form for an RBFN N is given by the following expression:

N (x̄) =
n
∑

i=1

wie(‖ x̄− c̄i ‖i) (1)

where e(z) is a non-linear radial function with centre in c̄i and ‖ x̄− c̄i ‖i
denotes the distance of x̄ from the centre and wi are real numbers (weights).
Each basis function is radial because its dependence on x̄ is only through the
term ‖ x̄− c̄i ‖i.

Many alternative choices are possible for the function e(z): triangular, car-box,
gaussian. Anyhow it is usual to choose e(z) in such a way that the following
conditions hold:

e(−z) = e(z)

lim
z−>±∞

e(z) = 0

A common choice for the distance function ‖ . ‖i is a biquadratic form:

‖ x̄ ‖i = x̄Qix̄
T

where Qi is a positive definite matrix, often constrained to be diagonal:
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Qi =





















qi,11 0 . . . 0

0 qi,22 . . . 0

. . . . . . . . . . . .

0 0 . . . qi,nn





















In the simplest case all diagonal elements of Qi are equal qi,jj = qi so that
Qi = qiI. In this case the radiality of the basis functions is proper and if
function e(z) fades to infinity, 1

qi
can be interpreted as the width of the i-th

basis function.

From the point of view of the notation is also common to write:

e(‖ x̄− c̄i ‖i) = ei(‖ x̄− c̄i ‖)

where the information about the distance function ‖ . ‖i is contained in the
function ei(x̄).

It is also possible to define a normalized version of the RBFN:

N (x̄) =

∑n
i=1 wie(‖ x̄− c̄i ‖i)
∑n

i=1 e(‖ x̄− c̄i ‖i)
(2)

Different type of output, continuous or boolean, may be needed depending on
the type of the target function. In order to obtain a boolean output NB we
need to compose function N and a derivable threshold function σ:

NB(x̄) = σ(N (x̄))

usually σ(x) is the sigmoid (logistic function):

σ(x) =
1

1 + e−kx

whose derivative is:

dσ(x)

dx
= σ(x)(1− σ(x))

The positive constant k expresses the steepness of the threshold. Alternatively,
we can obtain a boolean output composing N with the function sign(x + b)
where b ∈ R is a threshold.
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2.2 Universal Approximators

A relevant property usually required for a class of approximators is univer-
sal approximation. Given a family of function approximators, it is important
to characterize the class of functions which can be effectively approximated.
In general, an approximator is said to be universal if it can asymptotically
approximate any integrable function to a desired degree of precision.

Hornik et al. [43] proved that any network with at least three layers (input,
hidden and output layers) is an universal approximator provided that the acti-
vation function of the hidden layer is nonlinear. In the Multi-Layer Perceptron
(MLP), traditionally trained by means of the backpropagation algorithm, the
most frequently used activation function is the sigmoid. RBFNs are similar
to MLPs from the point of view of the topological structure but they adopt
activation functions having axial symmetry.

Universal approximation capability for RBFNs was presented in [65,64], where
the problem of characterizing the kinds of radial function that entail the prop-
erty of universal approximation was addressed by Chen and Chen [21] who
shown that for a continuous function e(z) the necessary and sufficient condi-
tion is that it is not an even polynomial.

From the mathematical point of view the universal approximation property
is usually asserted by demonstrating the density of the family of approxi-
mators into the set of the target functions. This guarantees the existence of
an approximator that with a high, but finite number of units, can achieve
an approximation with every degree of precision. The result states only that
this approximator exists. It does not, however, suggest any direct method
for constructing it. In general this assertion is true, even when the function
is explicitly given. In other words, it is not always possible to find the best
approximation within a specified class of approximators, even when the ana-
lytical expression of the function is given.

2.3 The Function Approximation Problem

Whether the target function is boolean or continuous, the learning task of a
feed–forward RBFN can be stated as a classification or regression problem.
In both cases the problem can be stated in the general framework of the
function approximation problem, formally expressed as: given an unknown
target function f : Rn → D and a set S of samples (xi, yi) such that f(xi) = yi
for i = 1 . . . N . find an approximator f̂ of f that minimizes a cost function
E(f, f̂). Function f is a mapping from a continuous multidimensional domain
X to a codomain D ⊂ R (regression) or D = B = {0, 1} (classification).
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The approximation accuracy is measured by the cost function E(f, f̂) also
said error function (or approximation criterion) and which depends on the
set of examples S. In general the solution depends upon S, upon the choice
of the approximation criterion and upon the class of functions in which we
approximator f̂ is searched. In practice, a common choice for the cost function
is the empirical square error:

SEemp =
N
∑

i=0

(yi − f̂(xi))
2

(3)

Under some restrictive hypothesis it can be shown that minimizing (3) is
equivalent to finding the approximator that maximizes the likelihood of S, i.e.
the probability of observing S given the a priori hypothesis f = f̂ (P (S/f = f̂)
[57].

Given a family of approximators the optimal one minimizes the error in (3).
Finding the optimal approximator is thus equivalent to solving a least squared
error problem.

It is worth noting, that the problem definition and the considerations about
the errors, can be extended to the case in which a subset of the dimension
of the domain is boolean and so the domain is the Cartesian product of a
n-dimensional continuous space to a m-dimensional boolean space Rn × Bm.
The boolean inputs can be viewed as continuous inputs that receive only the
boolean values 0 and 1.

3 Learning Algorithms for RBFNs

The universal approximation property states that an optimal solution to the
approximation problem exists: finding the corresponding minimum of the cost
function is the goal of the learning algorithms. This section introduces some of
the basic facts about learning algorithms for RBFNs. More advanced learning
methods are presented in the Sections 5-12.

In the following we will assume that the choice of the radial basis function e(z)
has already been made. In order to find the minimum of the cost function a
learning algorithms must accomplish the following steps:

(1) select a search space (i.e. a subset of the parameter space);
(2) select a starting point in the space (initialization);
(3) search for the minimum (refining).
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An RBFN is completely specified by choosing the following parameters:

• The number n of radial basis functions;
• The centres ci and the distances ‖ . ‖i, i.e. the matrices Qi (i = 1 . . . n);
• The weights wi.

The number n of radial functions is a critical choice and depending on the
approach can be made a priori or determined incrementally. In fact, both the
dimensions of the parameter space and, consequently, the size of the family
of approximators depend on the value of n. We will call an algorithm that
starts with a fixed number n of radial functions determined a priori ’static,’
and an algorithm that during the computation is able to add or delete one or
more basis functions ’dynamic.’ A static learning algorithm is also parametric
because the search for the optimal approximator corresponds to a search in
the parameter space defined by the fixed number of radial basis functions. On
the contrary, a dynamic learning algorithms changes the parameter space in
which it operates, while adding or deleting radial basis functions. The learning
algorithms are also very different depending on whether the sample set S is
completely available before the learning process or if it is given, sample by
sample, during training. In the former case, off–line learning is possible while
in the latter, an on-line learning approach is needed. While some of the static
algorithms can be adapted for both learning types, the application of the
dynamic one makes sense only in the case of on-line learning.

The static methods for learning RBFNs from examples are based on a two–
step learning procedure: first the centres and the widths of the basis functions
are determined and then in a second step the weights are determined. Each
one of the steps can be done by means of several different strategies. A usual
training procedure uses a statistical clustering algorithm, such as k-Means for
determining the centres and the widths associated to the basis functions and
then estimates the weights by computing the coefficients of the pseudo-inverse
matrix or, alternatively, by performing the error gradient descent.

Given n, the corresponding parameter space is defined by the parameters that
characterize each one of the radial basis functions, i.e. the centres ci and the
matrices Qi, and the weights wi (i = 1 . . . n).

The search space can be restricted, by limiting the possible choices of the
parameters, or imposing constraints on the values. Several basic techniques
are available for initializing and refining an RBFN. Some of them apply to all
kinds of parameter in the network, some not.

3.0.0.1 Gradient Descent. Using continuous radial functions derivable
in the whole parameter space, it is immediatly possible to apply the classical
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error gradient descent technique, in order to finely tune not only the weights
wi but also the centres ci and the elements of the matrix Qi in the first hidden
layer units. More specifically, let SEemp be the quadratic error evaluated on
the learning set and let λk indicate a generic parameter in the network, such
as a weight wi on a link, or an element of the matrix of the width Qi or a
component of the centre c̄i of a radial function, all the necessary derivatives
can be easily computed, and the learning rule takes the form:

∆λk = −η
∂SEemp

∂λk
(4)

where η is the learning rate. The main problems with gradient descent are
that the convergence is slow and depends on the choice of the initial point.
Although Bianchini et al. [9] demonstrated that, in the case of classification,
a wide class of RBFNs has a unique minimum, (i.e. no local minima exists in
the cost function) it is not possible to reach this optimal point, in a short time,
from every starting point of the parameter space. Hence the initialization of
the network is critical. Giordana and Piola [35] showed that the adaptation
of all the parameters (namely, centres, widths, and weights) can lead to a
misbehavior of the gradient descent procedure for some value of the learning
rate and proposed a remedy. Optimized versions of the gradient descent tech-
nique such as conjugate gradient, momentum or others are possible. It is also
possible to use the so-called on-line gradient descent. Analysis of the learning
behavior of on-line gradient descent has been proposed by Freeman and Saad
[30] and more recently by Marinaro and Scarpetta [54] who showed that for
RBFN with radial Gaussian and n > |X|, namely number of centres greater
than the number of inputs, no plateau of the generalization error is produced.

3.0.0.2 Instance-Based Initialization. In the first formulation of RBFNs
[58] all instances of the sample set S were used as centres of the basis func-
tions and the width of the basis function were the same for all the functions
of the network. This technique is very simple but produces excessively large
networks which are inefficient and sensitive to overfitting, and exhibit poor
performance.

3.0.0.3 Centre Clustering. A partial solution to the problems of Instance-
Based initialization is to cluster similar samples together, adopting a well–
known technique (clustering), widely used in Pattern Recognition. The tech-
nique assigns a corresponding centroid to every cluster, i.e. a real or artificial
sample that appears to be prototypical for the cluster. The centroid is then
chosen as the centre for a radial basis function. The resulting network is re-
markably smaller than when Instance Based Learning is used. Moreover in this
case the centres can also be tuned via gradient descent. This basic technique
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also permits the radial condition to be relaxed, adopting different widths along
different dimensions of the domain X. The parameter space contains all the
centre values and the width values so it is larger than in the other case. The
price to pay for better performance is an increase in the training time. Several
clustering techniques are useful for the task, like k-means or fuzzy clustering
[66]. An interesting version is input/output clustering where the input and
output vectors are concatenated before the clustering process. The technique
was already used in practice (for example in [11]) and a deeper analysis of it
has been proposed recently [83].

3.0.0.4 Symbolic Initialization. An alternative method for constructing
the layout, i.e. choosing the centres and the corresponding widths of an RBFN
is to use a symbolic learning algorithm [4,79]. This becomes particularly simple
in the case of Factorizable RBFNs (F-RBFNs). In this case the factorization
permits seeing each factor of the radial function as a fuzzy membership of
widths Aij determined by the width of the basis function and the product as a
logical AND, so that F-RBFN can be approximated by a set of propositional
clauses of the type:

Rj = member(x1, A1j) ∧member(x2, A2j) ∧ . . . (5)

. . . ∧member(xn, Anj)→ wj

Rules of this type can be easily learned using an algorithm for inducing decision
trees, such as ID3 [69,72] or, better an algorithm for inducing regression trees,
such as CART [17]. Initialization of RBFNs by means of decision trees has
been proposed by [5] and extensively analysed by Kubat [51].

3.0.0.5 Weights Linear Optimization. Both equations (1) and (2) are
linear in the weights wi hence, given the parameters ci and Qi of the basis
functions it is possible to use a linear optimization method for finding the
values of the wi, that minimize the cost function computed on the sample set.
This is the learning strategy adopted in the regularization theory approach
[68]. This method relies on the computation of the pseudo-inverse matrix.
This point will be addressed in detail in Section 5 where the links between
RBFNs and regularization theory are discussed. Further optimizations of the
method have been presented [20] [61]. In particular Chen et al. [20] exploited
orthogonal decomposition in their Orhogonal Least Squares algorithm (OLS).
Recently recursive versions of OLS has been proposed and applied also to the
selection of the centres [37].
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3.0.0.6 Basis Function Learning, Above we have made the assumption
that the choice of the radial function e(z) has already been made. However,
Webb and Shannon [85] explored the possibility of learning the shape of the
basis function. Their work shows that the adaptive shape RBFNs generally
achieve lower error than the fixed shape networks with the same number of
centres.

3.0.0.7 Evolutionary Computation. Evolutionary computation can be
applied to the learning algorithms of RBFNs [86,27]. In general evolutionary
computation is a powerful search strategy that is particularly well suited to
application in combinatory domains, where the cross–over of locally good solu-
tions can lead to better global solutions. That seems to be the case for RBFNs.
In fact the RBFNs architecture is based on a local strategy of approximation:
the different functions interact poorly with each other and so allow their com-
binations to be significantly better than the original networks. As long as the
intermediate solutions have a variable number of basis functions the methods
could be classified as dynamic, static otherwise.

4 RBFNs as Neural Networks

RBFNs can be described as three layer neural networks where hidden units
have a radial activation function. Although some of the results of the neu-
ral networks can be extended to RBFN, exploiting this interpretation (e.g.
approximation capabilities [43] and the existence of a unique minimum [9],
substantial differences still remain with respect to the other feed–forward net-
works. In fact, RBFNs exhibit properties substantially different with respect
to both learning properties and semantic interpretation. In order to under-
stand the different behaviours of the two network types, assume we have to
modify a weight between two nodes in the Multi Layer Perceptron (MLP),
as is done by the backpropagation updating rule during the training phase.
The effect involves an infinite region of the input space and can affect a large
part of the co-domain of the target function. On the contrary, changing the
amplitude of the region of the input space in which the activation function of
a neuron in an RBFN fires, or shifting its position, will have an effect local to
the region dominated by that neuron. More in general, this locality property

of RBFNs allows the network layout to be incrementally constructed (see for
instance [55]), adjusting the existing neurons, and/or adding new ones. As
every change has a local effect, the knowledge encoded in the other parts of
the network is not lost; so, it will not be necessary to go through a global
revision process.

Considering the sigmodal activation function Oi = σ(
∑N

j=1wijIj) of the MLP’s
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hidden units, we see that each neuron, apart from a narrow region where the
sigmoid transient occurs, splits the input domain into two semi-spaces where
its output is significantly close to 1 or to 0. The whole semispace where the
output is close to 1 contributes to the value of the target function. On the
contrary, in an RBFN, each hidden neuron is associated to a convex closed
region in the input domain (activation area), where its response is significantly
greater than zero, and dominates over every other neuron. The greatest con-
tribution of a neuron to the output value Y comes essentially from this region.
On the contrary, RBFNs, while similar in the topological structure, make use
of activation functions having axial symmetry. As a consequence, MLP and
RBFNs encode the target function in a totally different way.

Most attention in the ANN literature is focused on feed–forward networks,
but there is a growing interest in networks provided with feedback called Re-
current Networks [26]. A recurrent network is characterized by having some
output units connected with some units of the other layers. This apparently
simple modification causes heavy changes in behaviour and computational
properties of a network. Owing to the presence of feedback arcs, a network
becomes an approximator of dynamical systems. Frasconi et al. [29] intro-
duced a second order RBFNs where the feedback connections are obtained
via a product. It is shown how these networks can be forced to work as finite
state automata. The authors report examples where a recurrent RBFN learns
a Tomita grammar and provide an algorithm for extracting symbolic descrip-
tion of the corresponding automaton. Not directly interpretable as RBFN the
networks proposed in the work of Kim and Kasabov [49] shows the power that
a recurrent architecture can provide and their approach proved to be effec-
tive in a biologic context [60]. Further investigation is still required to test
possible relations with other formalisms like Feature Grammars and Markov
Chains that could emerge from a recurrent generalization of the symbolic and
statistical interpretations (see Sections 9 and 10).

4.0.0.8 Concluding Remarks. In this framework, the basic learning tech-
nique is gradient descent. Using an F-RBFN with factors that appear in more
than one product Back-Propagation training can be used as is usually done
for MLPs. As was noted in Section 3, the initialization is critical and is usually
achieved using the whole data set or a clustering technique. The convergence of
gradient descent algorithms is guaranteed only in the case of off-line learning.
Empirically, an on-line version appear to converge reasonably well. Dynamic
versions were presented by Platt [67] and, combined with an on-line clustering
algorithm by Fritske [32]. As noted in the introduction, most of the medi-
cal applications considers RBFNs as ANNs. The melanoma diagnosis scenario
provides a natural application for ANNs (see references in [10]).
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5 RBFNs as Regularization Networks

In a paper that is fundamental for RBFN theory Poggio and Girosi [68] pro-
vided an elegant connection with Kolmogorov regularization theory. The basic
idea of regularization consists of reducing an approximation problem to the
minimization of a functional. The functional contains prior information about
the nature of the unknown function, like constraints on its smoothness. The
structure of the approximator is not initially given, so in the regularization
framework the function approximation problem is stated as:

Find the function F (x) that minimizes:

E(F ) =
1

2

n
∑

i=1

(di − F (xi))
2 + λ‖ PF ‖2 = Es(F ) + λEc(F ) (6)

Where ES(F ) is the standard error term, ER(F ) is the regularization term, λ
is a regularization parameter and P is a differential operator.

By differentiating equation (6) we obtain

P ∗PF (x) =
1

λ

n
∑

i=1

(di − F (xi))δ(x− xi) (7)

where δ(.) is Dirac’s function. The solution F of equation (7) is finally:

F (x) =
1

λ

n
∑

i=1

(di − F (xi))G(x, xi) (8)

Regularization theory leads to an approximator that is an expansion on a
set of Green’s functions G(x, xi) of the operator P ∗P . By definition Green’s
function of the operator A centred in xi is

AG(x, xi) = δ(x− xi)

The shape of these functions depends only on the differential operator P , i.e.
on the former assumptions about the characteristics of the mapping between
input and output space. Thus the choice of P completely determines the basis
functions of the approximator. In particular if P is invariant for rotation and
translation Green’s function is:

G(x, xi) = G(‖ x− xi ‖)
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so they depend only on the distance ‖ x− xi ‖ and are therefore Radial
Functions.

The points xi are the centres of the expansion and the terms 1
λ
(di−F (xi)) of

equation (8) are the coefficients.

The approximator is

wi =
1
λ
(di − F (xi)) F (x) =

∑n
i=1wiG(x, xi) (9)

Equation (9) evaluated in the point xj leads to

F (xj) =
n
∑

i=1

wiG(xj, xi) (10)

In order to determine the wi let us define the matrices:

F =





















F (x1)

F (x2)
...

F (xN)





















d =





















d1

d2
...

dN





















W =





















wi

w2

...

wN





















G =





















G(x1, x1) G(x1, x2)
... G(x1, xN )

G(x2, x1) G(x2, x2)
... G(x2, xN )

...
...

...
...

G(xN , x1) G(xN , x2)
... G(xN , xN)





















Then equations (9) can be represented in the form of matrices:

W =
1

λ
(d− F )

F = GW

Eliminating F from both expressions, we obtain:

(G+ λI)W = d
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The matrix G is symmetric and for some operator is positive definite. It is
always possible to choose a proper value of λ such that G + λI is invertible,
that leads to:

W = (G+ λI)−1d

It is not necessary to expand the approximator over the whole data set, in fact
the point xi on which equations (9) was evaluated is arbitrarily chosen. If we
consider a more general case in which the centres of the basis functions ci with
i = 1 . . . n are distinct from the data the matrix G is rectangular. Defining
two new matrices as:

G0 = (G(ci, cj)) i, j = 1 . . . n

G = (G(xi, cj)) i = 1 . . . N j = 1 . . . n

the optimal weights are:

w = (GTG+ λG0)
−1
GTd

and if λ = 0

w = (GTG)
−1
GTd = G+d

where G+ = (GTG)
−1
GTd is the pseudoinverse matrix.

In the regularization framework the choice of the differential operator P de-
termines the shape of the basis function. Haykin [40] reports a formal descrip-
tion of the operator that leads to the Gaussian RBFN. The operator expresses
conditions on the absolute value of the derivatives of the approximator. Hence
the minimization of the regularization term ER(F ) causes a smoothing of the
function encoded by the approximator.

In an analogous way Girosi et al. [36] presented an extension of the regulariza-
tion networks. The regularization functional is mathematically expressed as a
condition on the Fourier transform of the approximator. In their work they set
the constraint that the bandwidth be small. Such an approximator, they ar-
gue, oscillates less so it presents a smoother behaviour. They obtain the class
of the generalized regularization networks strongly connected to what they
called Hyper Basis Functions (HBF) that approximates the function with:
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f(x) =
n
∑

i=1

ci(‖ x− xi ‖W ) (11)

where the weighted norm is defined as: ‖ x ‖W = xW TWx, with W the vector
of weights.

The RBFN described by equation (11) is not radial. The surface with the same
value of the function are not spheric any more but hyper–ellipsoidal. That is
the case of the network described by equation (1).

Finally, Orr [61] exploited the regularization framework for determining a
criterion for the selecting the position of the centres. As a conclusion, regu-
larization theory provides a strong mathematical framework which allows an
optimal estimate of the weights and, at the same time, allows smoothing of the
function encoded in the RBFN, to be controlled via the regularization term.

5.0.0.9 Concluding Remarks. By applying regularization theory to RBFNs
we obtain an off-line learning method: The centres of the radial basis functions
are initialized with the samples or with a clustering technique, the widths are
usually a fixed parameter and the weights are computed via pseudoinversion.
The number of basis functions is fixed, so the method is static. The main fea-
ture of the framework is to provide guidelines for an optimal choice of the type
of basis functions, depending on the regularization term used for expressing
the differential smoothing properties of the approximators. In other terms the
choice of the radial function implicitly corresponds to a choice of a regular-
ization term. Learning of the basis function has been explored in [85]. Quite
often in practical applications λ = 0 and the effect of the regularization term
is lost. Considering values of λ 6= 0 can be useful. An analytical justification
of the shape of the radial function can improve confidence in the system. In
the melanoma diagnosis scenario regularization can be explored in order to
enhance the performance. However, cost-sensitiveness has to be considered.

6 RBFNs as Support Vector Machines

RBFNs are deeply related to Support Vector Machines (SVM) [23] that are
learners based on Statistical Learning Theory [84]. In the case of classification
the decision surface of a SVM is given in general by

SVM(x̄) = sign(w̄φ(x̄) + b)

where φ : Rn → F is a mapping in some feature space F . The parameters
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w̄ ∈ F and b ∈ R are such that they minimize an upper bound on the ex-
pected risk. We omit the formula of the bound that represents a fundamental
contribute given by Vapnik to statistical learning theory. For the present pur-
pose it suffices to remember that the bound is composed by an empirical risk
term and a complexity term that depends on the VC dimension of the linear
separator. Controlling or minimizing both the terms permits control over the
generalization error in a theoretically well-founded way.

The learning procedure of a SVM can be sketched as follows. The minimization
of the complexity term can be achieved by minimizing the quantity 1

2
||w̄||2,

namely the square of the norm of the vector w̄. In addition the strategy is to
control the empirical risk term by constraining:

yi(w̄φ(x̄i) + b) ≥ 1− µi

with µi ≥ 0 and i = 1 . . . N for each sample of the training set. The presence
of the variables µi allows some misclassification on the training set.

Introducing a set of Lagrange multipliers αi i = 1 . . . N if is possible to solve
the programming problem defined above, finding w̄, the multipliers and the
threshold term b. The vector w̄ has the form:

w̄ =
N
∑

i=1

αiyiφ(x̄i)

so the decision surface is:

SVM(x̄) = sign(
N
∑

i=1

αiyiφ(x̄i)φ(x̄) + b)

where the mapping φ compares only in the dot product φ(x̄i)φ(x̄). The depen-
dency only on the dot product and not on the mapping φ is valid also for the
multipliers. Following [59], the connection between RBFNs and SVMs is based
upon the remark that a kernel function k(x̄, ȳ) defined on k : C × C → R
with C a compact set of Rn, namely

∀f ∈ L2(C) :
∫

C
k(x̄, ȳ)f(x̄)f(ȳ)dx̄dȳ ≥ 0

can be seen as the dot product k(x̄, ȳ) = φ(x̄)φ(ȳ) of a mapping φ : Rn → F in
some feature space F . As a consequence, it is possible to substitute k(x̄, ȳ) =
φ(x̄)φ(ȳ) obtaining the decision surface expressed as:
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SVM(x̄) = sign(
N
∑

i=1

αiyik(x̄i, x̄) + b) (12)

Choosing a radial kernel k(x̄, ȳ) = e(||x̄− ȳ||) equation 12 has the same struc-
ture of the RBFN presented in section 2.1 in the case of a classification task.

6.0.0.10 Concluding Remarks. The possibility of interpreting RBFNs
as an SVM permits application of this technique to control complexity and
prevent overfitting. Complexity regularization has also been studied directly
for RBFNs [50] with bounds on the expected risk in terms of the sample
set size. SVMs are popular. They also connect RBFNs with Kernel-Based
Algorithms and, following Muller et al. [59] with Boosting techniques (see [24]
for an application of Boosting to RBFNs). In the melanoma diagnosis scenario,
[71] reports satisfying performance of a gaussian SVM with respect to other
machine learning techniques in the task of diagnosis of pigmented skin lesions.
Theoretical bounds on the generalization error can improve confidence in the
system and its chances of acceptance.

7 RBFNs as Wavelet Networks

Wavelet Networks (WN) were proposed as nonparametric regressors [92,91].
The proposal relies on the results of the broad area of wavelet theory and
wavelet analysis that is very popular for signal analysis and data compression.
In a nutshell, the basic idea of the wavelet transform is to analyse signals in
terms of local variability with more flexibility than the usual Fourier analysis.
The wavelet network estimator is given by:

WN(x̄) =
K
∑

i=1

βiφ
i(x̄)

where φi(x) is a function belonging to the set

F = {φp̄,v = ψ−
1

2
nvφ(ψ−vx̄− p̄τ) : v ∈ Z, p̄ ∈ Zn}

where ψ and τ are dilation and translation step sizes and φ(x) is a radial
wavelet function so it can be written as φ(x) = ξ(x̄x̄T ).

Equation 7 can be written as
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WN(x̄) =
K
∑

i=1

βiψ
−1/2nviφ(ψ−vix̄− p̄iτ)

with p̄i, vi corresponding to the values of p̄ and v characterizing φi.

Eq. 7 corresponds to the RBFN of Eq. 1 where wi = βiψ
−1/2nvi , c̄i = p̄iτψ

vi ,
e(||x̄− c̄i||i) = ξ(ψvix̄x̄T ) and consequently Qi = ψviI.

Informally, the RBFN corresponding to WN has centres that are distributed in
the input space in a variable but regular pattern depending on the value of τ .
The width of the functions depends on ψ. The learning methods are essentially
based on the selection of the wavelets. The major drawback is presented by the
high number of centers requested. Recently a bayesian approach was proposed
in [42].

7.0.0.11 Concluding Remarks. Not all radial functions are permissible
as radial wavelets so there is no general equivalence. The consequence of the
connection between these methods has not been completely investigated, both
theoretically and empirically. Wavelets are commonly used in signal processing
(e.g. ECG or EEG). A suggestion could be that wavelets decomposition could
be a viable way to insert knowledge in a RBFN network expressed in an
analytical form. In the melanoma diagnosis scenario wavelets could be used to
elaborate the images and RBFNs can provide a common framework for signal
related features and clinical features.

8 RBFNs as Fuzzy Controllers

RBFNs can also be interpreted as fuzzy controllers [44]. In general, a controller
of this kind is a software or hardware implementation of a control function,
defined from the state–space of the system to its input–space. In this way,
the control function maps a set of information about the state of the system
we want to control, to the actions the controller has to apply to the system.
Typically, the state and the actions are continuous vectors and the controller
is fully described by a set of input variables X, a set of output variables
Y , and the set of elements implementing the control function. In the case of
fuzzy controllers, the internal elements are defined by means of a fuzzy logic
propositional theory.
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8.1 Fuzzy Logics

Fuzzy logics are based on a generalization of the characteristic function of a
set. Formally, let fA be the characteristic function of a set A:

fA(x) =











1 if x ∈ A

0 if x 6∈ A

Fuzzy set theory [90] generalizes the notion of presence of an element in a set
and consequently the notion of characteristic function, by introducing fuzzy
values. This approach is equivalent to introducing uncertainty in the presence
of an element in a set. In this context the fuzzy characteristic function, that
is called membership, can assume any value in the interval [0, 1]. A set in
which the membership function is restricted to assume the values in the set
{0, 1}, is said to be crisp. The introduction of a fuzzy membership has deep
implications concerning the logics which can be built on it. The first one
is the possibility of having fuzzy truth values for predicates. A predicate is
no longer simply false (0) or true (1) but can assume any value between.
Consequently, the definitions of the basic connectives (disjunction, conjunction
and negation) have to deal with fuzzy values. Fuzzy logics is typically used
for expressing uncertain or approximate knowledge in the form of rules. The
theory can be partially contradictory, causing fuzzy memberships to overlap
each other. Many different shapes for the membership functions have been
proposed (triangular, trapezoidal, gaussian) (see [6]).

8.2 Fuzzy Controllers and RBFNs

Usually a fuzzy controller is organized as three layers. The first one imple-
ments the so–called fuzzyfication operation and maps every dimension of the
input space via the memberships, to one or more linguistic variables, in a fuzzy
logic language. The linguistic variables are then combined with the fuzzy con-
nectives to form the fuzzy theory. Typically the theory is propositional and it
can be flat or not, e.g. expressed as a sum of minterms. Finally, the last layer
implements the defuzzification transforming back the continuous truth values
into points in the output space.

Therefore, Factorized Radial Basis Function Networks (F–RBFNs), that were
initially introduced in [68] can be interpreted as fuzzy controllers [11]. The
architecture is also similar to the fuzzy/neural networks introduced by Berenji
[6] for implementing fuzzy controllers capable of learning from a reinforcement
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signal, and to the architecture proposed by Tresp et al. [79]. Figure 1 describes
the basic network topology.

X

Y

A

B

C

D

E

F

r1

r2

r3

r4

r5

Z

w1

w2

w3

w4

w5

Gaussian Unit

Product Unit

Output Unit

Fig. 1. Reference F–RBFN architecture. The first layer hidden units have a
one–dimensional Gaussian activation function. The second layer hidden units com-
pose the input values using arithmetic product. An average sum unit performs the
weighted sum of the activation values received from the product units.

The activation function used in an F-RBFN with n input units is defined as
the product of n one–dimensional radial functions, each one associated to one
of the input features. Therefore an F-RBFN can be described as a network
with two hidden layers. The neurons in the first hidden layer are feature de-
tectors, each associated to a single one–dimensional activation function and
are connected to a single input only. For example, if we choose to use Gaus-
sian functions, the neuron rij (the i-th component of the j-th activation area)
computes the output:

µij = e
−

(

Ii−Cij

σij

)2

(13)

The neurons in the second hidden layer simply compute a product and con-
struct multi-dimensional radial functions:

rj =
∏

i

µij = ej (14)

where ej was introduced in section 2.1.

Finally, the output neuron combines the contributions of the composite func-
tions computed in the second hidden layer. In this architecture, a choice of
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four different activation functions is possible for the output unit, in order to
adapt the network to different needs. The output function can be a weighted
sum

Y =
∑

j

wjrj (15)

The same function can be followed by a sigmoid when the network is used
for a classification task. Using this function the network tends to produce an
output value close to ’0’ everywhere the input vector falls in a point of the
domain which is far from every activation area. The consequence is under-
generalization in the classification tasks.

This problem can be avoided by introducing a normalization term in the out-
put activation function:

Ŷ =

∑

j wjrj
∑

j rj
(16)

This function is frequently used for fuzzy controller architectures [6]. In this
case, one obtains a network biased toward over-generalization in a similar
way as for the multi-layer perceptron. Depending on the application, under-
generalization or over-generalization can be preferable. It is straightforward
to note that equations 15 and 16 correspond to 1 and 2 respectively.

8.2.0.12 Concluding Remarks. Traditionally fuzzy controllers were de-
signed by hand, expressing the domain knowledge in a set of fuzzy rules. When
the membership functions are differentiable, gradient descent techniques can
be applied [45]. Reyneri [70] introduced the Weighted RBFNs as a general
paradigm for covering a wider set of neuro-fuzzy system. Fuzzy logic has been
widely used in medical domains. RBFNs are a viable way to combine training
and comprehensibility of the fuzzy rules (for an example of an application
in bioengineering see [46]). In the Melanoma diagnosis scenario fuzzy con-
ceptssuch as ”black dots” or ”pseudopodus” or ”dominant color” could be
defined and provided to the network. Alternatively linguistic variables corre-
sponding to the memberships can be discovered by the learning procedures.

9 Symbolic Interpretation of RBFNs

An important property, directly related to the fuzzy controller interpretation
of the F–RBFNs is the possibility of giving an immediate, symbolic interpre-
tation of the hidden neuron semantics [11,79,80]. In fact, the closed regions
corresponding to neuron activation areas can be labelled with a symbol and
interpreted as elementary concepts. In this section we will define a straight-
forward interpretation in terms of propositional logics following [11].
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Activation area A(r) of neuron "r"

x>1 & x<3 & y>1.2 & y < 2.3           R(r)

     Symbolic
 Approximation

A(r)

Fig. 2. The closed region where a factorizable radial function is dominant can be
roughly approximated using a conjunctive logical assertion.

Factorized RBFNs have an immediate symbolic interpretation. In fact, defin-
ing the activation area Aj of a neuron rj as the region in the input domain
where the output of rj is greater than a given threshold T, we obtain an el-
lipse with the axis parallel to the input features. Moreover, Aj is inscribed
into a rectangle Rj having the edges parallel to the input features (see Fig-
ure 2). Then, every edge rij of Rj can be seen as a pair of conditions on the
input Ii and then the whole rectangle can be read as a conjunctive condition
on the input. A variant of this symbolic interpretation, could be to assign a
symbol to every edge, interpreted as an atomic proposition. In this way, the
one–dimensional activation functions can be seen as a ”fuzzy” semantics of
the atomic propositions. Finally, links from the second hidden layer to the
output neuron can be seen as implication rule of the type:

Rj → wj (17)

being Rj the logical description of the rectangle Rj. In other words, the mean-
ing of (17) is: ”if conditions Rj hold then the value of the output is wj”. Then,
the activation function associated with the output neuron implements a kind
of evidential reasoning taking into account the different pieces of evidence
coming from the rules encoded in the network.

Therefore, mapping such a theory into the network structure of Figure 1, is
immediate according to the fuzzy interpretation we established in the previous
section. The antecedent of a rule Ri will be represented by a proper set of
neurons in the first hidden layer and by a single neuron in the second one,
connected to the output neuron, representing class H. The weight on the link
will be set to the numeric value (say 1) representing the concept of ”true”, if
the rule is a positive one (implies H) or to the numeric value representing the
”false” (say 0 or -1) if the rule is a negative one (i.e implies ¬H).

Using activation functions having a value greater than zero on the whole do-
main D, such as Gaussians do, the choice between a nonnormalized weighted
sum function (equations 15or 1) and a normalized weighted sum function

23



(equations 16 or 2) for the output neuron is not so obvious and deserves some
more attention. In logics, it is quite common to assume the Closed World
Assumption (CWA) so that, anything which is not explicitly asserted is as-
sumed to be false. Under this assumption, a classification theory can contain
only positive rules, because the negation of a class follows from the CWA. If
a nonnormalized weighted sum function (equations 15 or 1) is used, the CWA
can be automatically embedded in the network semantics by using a threshold
function (a sigmoid in our case) in order to split the output co–domain into
two regions: one, above the threshold where the output value is high and the
target class is asserted, and another, below the threshold, where the output
value is low and the class is negated. As a consequence we can only model
positive rules on the network. On the contrary, using a normalized weighted
sum function (equations 16 or 2) the output value tends to always be ”1”, if
the theory contains only positive rules, because of the normalization factor.
Then, the CWA doesn’t hold anymore and negative rules must be explicitly
inserted in the network in order to cover the whole domain D either with a
positive or with a negative rule.

The considered F-RBFN architecture is able to approximate continuous func-
tions as well as classification functions and, also in this case, it is possible to
give them a qualitative symbolic interpretation, as is done for fuzzy controllers.
In this case, both nonnormalize and normalize weighted sum function can be
used for the output neuron.

9.0.0.13 Concluding Remarks. The symbolic interpretation of an RBFN
allows a wide range of symbolic learning algorithms to be applied in order to
initialize the basis functions. Decision trees [17] or symbolic induction systems
such as SMART+ [15] can be used to construct the layout from a sample set of
data. Alternatively, if domain knowledge is available, e.g. from an expert, it can
be directly inserted into the network. Gradient descent provides a technique
for refining knowledge with data. Finally, it is possible to exploit symbolic
semantics for mapping knowledge back (for an example in a prognosis domain
see [11]). For an extension of this property to first-order logics see [16]. Sym-
bolic interpretation permits to map, refine and extract knowledge in terms of
rules. The comprehensibility of the rules can be an advantage for the validation
and acceptatance of a system in medical domains. In the melanoma diagnosis
scenario the ABCD rules used by the dermatologists could be inserted and
refined in the network. Activated rules can be prompted as an explanation.
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10 A Statistical Approach to RBFNs

The architecture of the RBFNs presents a strong similarity with regression
techniques, based on non–parametric estimation of an unknown density func-
tion [75] and with the Probabilistic Neural Networks [76,77].

10.1 Kernel Regression Estimators

This method is known as kernel regression. The basic idea is that an un-
known random function f(x̄) = y can be constructed by estimating the joint
probability density function g(x̄, y):

f(x̄) = E(Y |X̄ = x̄) =
∫

Rn
yf(y|x̄)dy =

∫

Rn yf(x̄, y)dy
∫

Rn f(x̄, y)dy

The technique used for estimating g, is the kernel smoothing of which the
Parzen windows technique is a particular case. The general form of a kernel
estimator of a density function h(z̄) defined on a space Rd is:

ĥ(z̄) =
1

N |H|

N
∑

i=1

Kn+1(H
−1(z̄ − z̄i))

where H is a d × d nonsingular matrix and Kd : Rd → R is a multivariate
kernel density that satisfies the conditions:

∫

Rd
Kd(w̄)dw̄ = 1d

∫

Rd
w̄Kd(w̄)dw̄ = 0d

∫

Rd
w̄w̄TKd(w̄)dw̄ = Id

The constant N is the number of kernels that in the statistical literature
usually coincides with the number of examples.

Let us consider z̄ = (x̄, y) and a product kernel of the form

Kn+1(z̄) = Kn(x̄)K1(y)
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The estimation of g becomes:

ĝ(x̄, y) =
1

N |Hx|hy

N
∑

i=1

Kn(H
−1
x (x̄− x̄i))K1(h

−1
y (y − yi))

Remembering that
1

hy

∫

Rn
K1(h

−1
y (y − yi))dy = 1

1

hy

∫

Rn
yK1(h

−1
y (y − yi))dy = yi

and substituting the estimate of g in the denominator and numerator of the
(10.1)

∫

Rn
f(x̄, y)dy =

1

N |Hx|hy

N
∑

i=1

Kn(H
−1
x (x̄− x̄i))

∫

Rn
K1(h

−1
y (y − yi))dy =

1

N |Hx|

N
∑

i=1

Kn(H
−1
x (x̄− x̄i))

∫

Rn
yf(x̄, y)dy =

1

N |Hx|

N
∑

i=1

yiKn(H
−1
x (x̄− x̄i))

finally we obtain the approximation of the f :

f̂(x̄) =

∑N
i=1 yiKn(H

−1
x (x̄− x̄i))

∑N
i=1Kn(H−1

x (x̄− x̄i))
(18)

In the univariate case the (18) is called Nadaraya-Watson Estimator. It is easy
to see by comparing the equation (18) to the normalized RBFN;

N(x) =

∑n
i=1wiei(‖ x− ci ‖)
∑n

i=1 ei(‖ x− ci ‖)

that this kind of network has the same structure. The only difference relies
on the fact that no kernel-like conditions are usually stated on the radial
functions. Among others this connection was noted by Xu et al. [87], who
exploited it for extending some results of kernel estimators like consistency
and convergence rate to RBFNs. An accessible description of this approach
has been proposed by Figueiredo [28]. More recently Miller and Uyar [56]
presented a similar result for the decision surface of the RBFN classifier. In
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particular, Yee and Haykin [88] and [89] developed this interpretation for time
series prediction.

10.2 Probabilistic Neural Networks

Probabilistic Neural Networks (PNN) originate in a pattern recognition frame-
work as tools for building up classifiers. In that framework the examples of a
classification problem are points in a continuous space and they belong to two
different classes conventionally named 0 and 1. PNN were first proposed by
Specht [76,77], who proposed to approximate, separately, the density distribu-
tions g1(x̄) and g0(x̄) of the two classes and use a Bayes strategy for predicting
the class.

f̂(x̄) =











1 if p1l1g1(x̄) > p0l0g0(x̄)

0 if p1l1g1(x̄) < p0l0g0(x̄)

where p1 and p0 are the a priori probabilities for the classes to separate and l1
and l0 are the losses associated with their misclassification (l1 loss associated
with the decision f̂(x̄) = 0 when f(x̄) = 1).

Then the decision surface is described by the equation:

g1(x̄) = kg0(x̄)

where,

k =
p0l0
p1l1

and defining σ(x) as a threshold function the estimate of the target function
is:

f̂(x̄) = σ(g1(x̄)− kg0(x̄))

Again the density approximations are made using the kernel estimations

g1(x̄) =
1

N1|H|

N1
∑

i=1

Kn+1(H
−1(z̄ − z̄i))
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with the extension of the sum limited to the N1 instances belonging to class
1 and analogously for the class 0.

f̂(x̄) = σ(
1

|H|

N
∑

i=1

C(zi)Kn+1(H
−1(z̄ − z̄i)) (19)

where,

C(zi) =











1 if f(zi) = 1

−kN1

N0
if f(zi) = 0

The equation (19) is a particular case of the RBFN described in equation 2
for approximating boolean functions.

10.2.0.14 Concluding Remarks. In the statistical framework it is com-
mon to use all the data as centres of the kernels. In the case of a large data
set it is possible to limit the initialization to an extracted sample of data. It is
worth noting, that no computation is needed to find the values of the weights.
In fact, as an effect of the normalization terms contained in the kernels, the
weights are equal to the output values, or set to an estimate of the a priori
probability of the class. This method can be applied in an incremental way, but
like any other method which uses all the data, it suffers for the overgrowing
of the approximator. This property permits to analyse directly the network
in terms of probability having a direct statistical interpretation. In fact, given
the estimation of the density implicitly formed by the RBFN is possible es-
timate all the statistics parameter of the distribution. Moreover exploiting a
factorizable architecture is possible to express independency between the in-
puts as is normally done in Bayesian Networks. Probabilistic interpretation is
important in a medical domain. Performance of the network can be evaluated
with respect to the known statistics of the diseases. In the Melanoma diag-
nosis scenario the conditional probabilities of the malignant outcome given a
variable, e.g. age, can be showed validating the model.

11 RBFNs as Instance–Based Learners

Instance–based learning or lazy learning can be defined as a learning method
that delays some, or even all, the computation efforts until the prediction
phase, limiting the learning to the simple memorization of samples (see [57]).
Since little or no computation at all is done during the learning phase, the
approach is suitable for on–line learning. Some of the most used algorithms in
this context, are the well-known, k–Nearest Neighbour family. During the pre-
diction phase, the computation of a distance defined on the input space, leads
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to the determination of the k nearest neighbours to be used for predicting
the value of the target variable. RBFNs can be viewed as a particular k-NN
with k = n number of the basis function and a local distance function defined
by e(‖ x̄ − x̄i ‖). In this framework, training the network can be interpreted
as the determination of the n local metrics, associated to the centres of the
basis functions. Moreover, RBFN centres can be viewed as instances of the
unknown function, in fact the earlier proposal of the RBFN with no centre
clustering was a completely instance–based approach. When the centres are
determined by a training algorithm, they can be interpreted in association
with the respective weight as prototypes of the unknown function. An ap-
plication of this is the shrinking technique [48] based on the principle that
centres and weights of an RBFN can be seen as pairs (ci, wi) belonging to the
space X × Y , as the examples of the target function do. Hence, they can be
interpreted as prototypes of the target function and be processed by the same
techniques used for the data. In particular, Katenkamp clustered the (ci, wi)
of a trained network for initializing a new smaller network. That can be useful
for implementing a simple knowledge transfer between different –but similar–
learning tasks. Katenkamp exploited this technique successfully on the simple
cart-pole control task, transferring knowledge from tasks that differ only for
the numeric values of the parameters.

11.0.0.15 Concluding Remarks. RBFNs can be considered as instance-
based learners. As a consequence is possible to consider to extract the knowl-
edge in terms of similar cases. Cases can be a natural way of presenting the
results to a physician. In the melanoma diagnosis scenario it could be possible
by inspection of the activation of the Radial Functions retrieve a similar lesion
and visualize it to the user as an explanation of the outcome.

12 RBFNs as Structurally Modifiable Learners

In the sections 5-11 we noted that some of the presented methods were imme-
diately suitable for working incrementally. In particular, both statistical and
instance–based learning frameworks, adopt the technique of initializing the
centres with the samples of the training set and performing almost no other
computation during the training phase. Hence, it is straightforward to add a
new function when a new sample is available. Unfortunately, as noted by Platt
[67] referring to Parzen Windows and k–NN, the two mentioned algorithms
present a drawback. The resulting RBFN grows linearly with the number of
the samples. Platt also proposed a neural architecture, called Resource Allo-
cation Networks, which combines an on–line gradient descent with a method
for adding new radial functions. A new function is added when a new sample
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falls far from the already existing centres, or causes an error which is greater
than the average. Fritske [31] noted that RANs suffer from noise sensitivity
because they add a new function for each poorly mapped sample. He therefore
proposed an interesting algorithm, called GCS (see also [33]). Blanzieri and
Katenkamp [12] reported that, when experimented in its original formulation,
Fritske’s algorithm showed two major drawbacks. First, instead of reaching
a stable structure, it indefinitely continues to alternate neuron insertions and
neuron deletions, while the error rate remains quite high. Second, GCS turned
out to be very keen on unlearning. Blanzieri and Katenkamp proposed an im-
proved version of GCS called DCL (Dynamic Competitive Learning) which
fixes the first drawback but is not yet able to avoid the unlearning problem.
In order to cope with this last case, a new algorithm (Dynamic Regression
Tree, DRT), which adopts a different strategy for constructing the network,
has been proposed. In particular, DRT uses a more accurate strategy for in-
serting new radial function so that the on-line clustering algorithm is not
required. This is done by explicitly considering the symbolic interpretation (6)
associated to the radial functions. When an activation area Ar accumulates an
error which cannot be reduced any further by the ∆-rule, DRT split it along a
dimension, using a method similar to the one used by CART [17]. In order to
select the dimension and the split point, DRT keeps a window on the learning
events as is done in some approaches to incremental construction of decision
trees [82]. Moreover, DRT is not prone to unlearning and is somehow related
to Median RBFNs proposed by [13].

A regularization–based approach to solve some of the problems of the RAN
is proposed by Orr [61]. The method is named Regularization Forward Selec-
tion and selects the centres among the samples of the basis functions, that
mostly contribute to the output variance. The selection is performed in the
regularization framework. Its major drawback is that the fast version of the
algorithm is not suitable for on–line learning.

A completely different approach was pursued by [47], which set the problem
of centres selection within the framework of functional Hilbert spaces. Intro-
ducing the notion of scalar product between two basis functions, the angle
they form can be used as a criterion for inserting new functions. Moreover
the authors substituted the gradient descent used in the RAN with an ex-
tended Kalman filter. Yee and Haykin [88] proposed also a structural update
algorithm for time-varying regression function. Structural learning is also a
characteristic of the neuro-fuzzy system of Kim and Kasabov [49] similar to
some regard to recurrent RBFNs. Finally is necessary to cite the bayesian ap-
proach proposed by Holmes and Mallick[41], the evolutionary strategy adopted
by Esposito et al [27] and the competitive learning approach of [62]. The lo-
cality property that permits the structural learning can be also exploited for
divide-and-conquer strategies such as the decomposition technique proposed
by [19]. Pruning of trained neural networks in order to get more readable rules
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has been studied by Augusteijn and Shaw [3].

12.0.0.16 Concluding Remarks. The architecture of RBFNs is charac-
terized by locality. As a consequence RBFNs support incremental and struc-
tural dynamic algorithms in a natural way. Unlearning can be prevented as
noted again by Hamker [38]. In medical domains, it is common to have a grow-
ing number of cases [60]. In the melanoma diagnosis scenario the low number
of malignant lesions suggest that an incremental algorithm can be useful.

13 The Melanoma Diagnosis Scenario Revised

The melanoma diagnosis scenario introduced in section 1 has been used through-
out the paper in order to illustrate the potential advantages of the different
way of interpreting RBFNs. In this section we revise and discuss systematically
those potential advantages posing them in a more general perspective.

In the melanoma diagnosis scenario a dermatologist that uses a D-ELM device
is supported in her diagnostic activity of this potential fatal skin lesion. A
complete illustration of the applicative scenario is reported in [73]. Here we
emphasize the following points:

• The misclassification costs is an issue: false negative are far worse than
false positives (sensitivity and specificity and ROC curves are introduced
for measuring the performance);

• The input is hybrid: D-ELM image and clinical information;
• Knowledge is available from dermatology literature (ABCD rules and qual-

itative concepts as Black dots and pseudopods;
• Comprehension of the result is an issue;
• Datasets are small.

Some interpretations of RBFNs have been already exploited for melanoma
diagnosis, others are potential. RBFN’s can be considered as Neural Networks
(Section 4) and we have already noted that this appears to be the most com-
mon use of the RBFNs in medical application. This is also the case for the
Melanoma Diagnosis scenario (see references in [10]). Considering RBFNs as
Regularization Networks (Section 5) is important because it sets a differential
contraint on the approximating function. Regularization could be explored in
order to enhance the performance. However, cost-sensitiveness has to be con-
sidered. RBFNs considered as Supported Vector Machines (Section 6) were
where used in [71] for the task of diagnosis of pigmented skin lesions. More-
over, theoretical bounds on the generalization error can improve confidence in
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the system and its chances of acceptance. Section 7 shows that Wavelets Net-
works can be seen as particular RBFNs In the melanoma diagnosis scenario
wavelets could be used to elaborate the D-ELM images so RBFNs can provide
a common framework for signal related features and clinical features. More
in general, Regularization Theory, SVM and WAVELETS approaches share
the feature of fixing a property of the approximator: a differential property, a
generalization property and a spectral property respectively.

Considering RBFNs as fuzzy systems leads to their symbolic interpretation
(Sections 8 and 9). Fuzzy concepts such as ”black dots” or ”pseudopodus” or
”dominant color” could be defined and provided to the network. Alternatively,
linguistic variables corresponding to the memberships can be discovered by
the learning procedures. The ABCD rules elaborated by the dermatologists
could be inserted and refined in the network. Moreover, activated rules can
be prompted as an explanation. More in general, RBFNs are knowledge-based
neural system.

The statistical approach to RBFNs leads to a probabilistic interpretation (Sec-
tion 10) that is particularly important in a medical domain. Performance of the
network can be evaluated with respect to the known risk statistics of the dis-
eases. The conditional probabilities of the malignant outcome given a variable,
e.g. age, can be naturally computed and showed to an expert for validation.
Seeing RBFNs as a type of Instance Based Learning (Section 11) suggests to
use the activation of the Radial Functions for retrieving and returning a sim-
ilar lesion as an explanation of the outcome. More in general, RBFN shares
with kernel-regression methods the nice property of representing a model of
the data (the regressor, namely the RBFN) and a set of samples/prototypes.

Finally, RBFNs naturally support learning algorithms with structural changes
(Section 12). In the melanoma diagnosis scenario the low number of malignant
lesions suggest that an incremental algorithm can be useful. A growing set of
cases can be exploited in order to provide a better performance. More in
general, the locality of the approximation strategy of the RBFN allows for
structural online learning.

It is worth noting that the cost-sensitive requirements of the melanoma diag-
nosis scenario do not seem to be met by RBFNs. In fact, at the best knowledge
of the author, cost-sensitive learning for RBFNs has not been systematically
addressed yet. However, cost-sensitiveness is an open issue, for instance, in
SVM research, so, given the SVM intepretation, the results can be transferred
to a subclass of RBFNs. In this way it is possible to exploit different properties
depending on the characteristics of the application
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14 Conclusions

This paper is concerned with Radial Basis Function Networks (RBFNs) and it
addresses their different interpretations and the applicative perspectives that
those interpretations suggest using as example a melanoma diagnosis scenario.

We have introduced the feed–forward version of the network and placed it in
the framework of function approximation problems. From the technical point
of view, we have presented the basic architecture of the RBFNs as well as
the different approaches (Artificial Neural Networks, Regularization Theory,
Support Vector Machines, Wavelet Networks, Fuzzy Controllers, Symbolic In-
terpretation, Statistical Approach, Instanced Based Learning) and their corre-
spondent learning algorithms. After having introduced the distinction between
static and dynamic algorithms we completed the work presenting a brief sur-
vey of the latter.

An important point of the present work is the systematic way the differ-
ent interpretations has been presented in order to permit their comparison.
RBFNs are particularly suitable for integrating the symbolic and connectionist
paradigms in the line draw by Towell and Shavlik [78] whose recent develop-
ments has been surveyed by Cloete and Zurada [22]. This symbolic interpreta-
tion permits to consider RBFNs as intrinsically Knowledge-Based Networks.
Moreover, RBFN have also very different interpretations. They are Regular-
ization Networks so there is the possibility of tuning the regularization param-
eter. They are Support Vector Machines so they gain theoretical foundation
from statistical learning theory. They are related to Wavelet Networks so they
can gain advantage in signal applications such as ECG. They have a Fuzzy
interpretation so they can be interpreted in terms of fuzzy logic. They have
a statistical interpretation so they can produce, after training, knowledge in
terms of probability. They are also Instance-Based learners and so they can
provide a case-based reasoning modality. Finally, another basic property of
the RBFN is the locality that permits the synthesis of incremental dynamic
algorithms permitting the growing of the cases without unlearning.

From the ponit of view of medical application the potential of the RBFN archi-
tecture is not yet been exploited completely. In fact, given the interpretations
and properties described above it is possible to tailor in a very flexible way
applications that exploit two or more of the properties.
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