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Diffusion tensor imaging (DTI) is an important way to characterize white matter (WM)
microstructural changes. While several cross-sectional DTI studies investigated possible
links between mindfulness practices and WM, only few longitudinal investigations
focused on the effects of these practices on WM architecture, behavioral change, and
the relationship between them. To this aim, in the current study, we chose to conduct
an unbiased tract-based spatial statistics (TBSS) analysis (n = 35 healthy participants)
to identify longitudinal changes in WM diffusion parameters following 6 and 12 weeks
of daily Quadrato Motor Training (QMT), a whole-body mindful movement practice
aimed at improving well-being by enhancing attention, coordination, and creativity. We
also investigated the possible relationship between training-induced WM changes and
concomitant changes in creativity, self-efficacy, and motivation. Our results indicate that
following 6 weeks of daily QMT, there was a bilateral increase of fractional anisotropy
(FA) in tracts related to sensorimotor and cognitive functions, including the corticospinal
tracts, anterior thalamic radiations, and uncinate fasciculi, as well as in the left inferior
fronto-occipital, superior and inferior longitudinal fasciculi. Interestingly, significant FA
increments were still present after 12 weeks of QMT in most of the above WM
tracts, but only in the left hemisphere. FA increase was accompanied by a significant
decrease of radial diffusivity (RD), supporting the leading role of myelination processes in
training-related FA changes. Finally, significant correlations were found between training-
induced diffusion changes and increased self-efficacy as well as creativity. Together,
these findings suggest that QMT can improve WM integrity and support the existence
of possible relationships between training-related WM microstructural changes and
behavioral change.

Keywords: Quadrato Motor Training, diffusion tensor imaging, mindfulness, creativity, general self-efficacy

INTRODUCTION

In the last two decades, white matter (WM) microstructural changes of the human brain have been
widely described in vivo using the diffusion tensor imaging (DTI) magnetic resonance technique
(Basser et al., 1994; Pierpaoli et al., 1996). DTI is sensitive to the magnitude and orientation of
water diffusion throughout brain tissue, and exploits this information to calculate several diffusion
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parameters through a tensor model. The most commonly used
DTI parameter is the fractional anisotropy (FA), which represents
the degree of directionality of water diffusivity. Higher FA
values are thought to reflect better WM integrity as a result of
greater intravoxel coherence of fiber orientation, axon density
and diameter and/or myelination (Beaulieu et al., 1996; Sen and
Basser, 2005; Caminiti et al., 2013). Instead, reduced FA values
have been found in aging and in psychiatric and neurological
disorders (Taubert et al., 2012; Barysheva et al., 2013; Mayo et al.,
2017).

Several DTI studies which have aimed at characterizing
the mechanisms of FA change and at determining if these
changes are the result of axon morphological modification or
myelination, have also examined other diffusion parameters, such
as axial and radial diffusivity (AD, RD), in the location where
FA significantly changes, respectively (Wheeler-Kingshott and
Cercignani, 2009; Bennett et al., 2010; Tang et al., 2012). As
a matter of fact, alterations in AD have been associated with
changes in axon morphology (Kumar et al., 2012), and lower
AD values have been generally related to decrements of axonal
density or caliber (Mac Donald et al., 2007). On the other hand,
RD has been generally associated with myelination (Song et al.,
2002, 2005), where RD decrease has been thought to reflect
increased myelination (Keller and Just, 2009; Bennett et al.,
2010).

Neuroimaging studies have consistently demonstrated that
training and learning can modify the WM microstructure of
the brain, determining related changes in behavior and/or
performance (Taubert et al., 2012; Zatorre et al., 2012).
WM microstructural changes have been reported by several
longitudinal DTI studies after various amounts of training in
different domains, such as visuo-motor coordination and whole-
body balancing tasks (Scholz et al., 2009; Taubert et al., 2010),
musical (Imfeld et al., 2009; Steele et al., 2013), working memory
(Takeuchi et al., 2010; Salminen et al., 2016) and reasoning
trainings (Mackey et al., 2012).

Mindfulness practices have also been found to induce WM
microstructural changes (for recent reviews see Fox et al.,
2014; Tang et al., 2015). Mindfulness has been defined as
“the awareness that emerges through paying attention, on
purpose, in the present moment, and non-judgmentally to
the unfolding of experience moment by moment” (Kabat-
Zinn, 2003). Mindfulness practices were reported to improve
psychological health and well-being (Keng et al., 2011), as
well as cognitive functions, such as attention, memory, and
concentration (Jha et al., 2007; MacLean et al., 2010; Mrazek
et al., 2013). In particular, mindful movement practices, such as
mindful walking, Yoga, Tai Chi and Aikido involve intentional
movement while bringing awareness to the body and its location
in space (Kabat-Zinn, 2013).

Many cross-sectional studies have demonstrated
microstructural WM differences between mindfulness
practitioners and controls, as well as between novice and
expert practitioners (Luders et al., 2011; Kang et al., 2013).
However, only few studies have performed longitudinal
investigations to establish the effects of mindfulness practices
on WM architecture and assess possible relationships between

WM changes and concomitant changes in behavior. Of note,
these studies only focused on the longitudinal effect of sitting
mindfulness practices, with subjects tested only two times
(pre-post training) and with some important limitations, related
to possible cultural-genetic differences of the samples used (Tang
et al., 2012) or relatively small sample size (Holzel et al., 2016).
Furthermore, these studies used standard approaches for the
analysis of longitudinal diffusion data, while recent developments
have highlighted the importance of processing each subject’s data
at multiple time points in an unbiased way, especially reporting
inaccuracies of longitudinal measures obtained with standard
registration methods (Yushkevich et al., 2010; Reuter et al., 2012;
Keihaninejad et al., 2013).

To our knowledge, no longitudinal investigations examined
the effects of whole-body mindful movement practices on
WM architecture and the possible relation between WM and
behavioral changes. In addition, none of the previous studies
investigated if there is a ceiling beyond which further mindful
training results in no further structural changes (Fox et al., 2014).

Recently, a new whole-body mindful movement paradigm,
the Quadrato Motor Training (QMT), was developed to enhance
attention, coordination, creativity, and mindfulness (Dotan Ben-
Soussan et al., 2013; Ben-Soussan et al., 2014b). The QMT
requires standing at one corner of a square and making
movements toward different corners in response to verbal
instructions (see The Quadrato Motor Training paragraph in the
Methods for a detailed description of the training). The QMT
requires a state of enhanced attention to the motor response
and cognitive processing for producing the correct direction of
movement to the next corner in the Quadrato space (Dotan
Ben-Soussan et al., 2013).

Quadrato Motor Training incorporates all the three
interdependent phases of a mindful act (Kabat-Zinn, 2013):
(1) suspension from the habitual act of allowing the mind and
body to go where they want, (2) redirection of attention (toward
the external cue and the internally generated movement), and
(3) receptivity toward the experience (the subject stands in a
receptive manner in between instructions, without correcting
motor or decision errors) (Depraz et al., 2000). Importantly,
respect to other mindful movement practices such as Tai Chi
and Aikido, QMT has the advantage of being a relatively short
training, very easy to perform and practice in limited spaces.

In the last years, QMT has been deeply investigated in order
to highlight eventual behavioral and neurophysiological changes
induced by this whole-body mindful training.

At the behavioral level, it has been demonstrated that a session
or a month of daily QMT improves reaction times, ideational
flexibility and spatial cognition, in contrast to several control
groups, such as simple motor training and verbal training (Dotan
Ben-Soussan et al., 2013; Ben-Soussan et al., 2015a). QMT also
proved its validity in improving emotional well-being following
a month of daily training, compared to breathing meditation as
well as a simple motor training (Ben-Soussan, 2014). Creativity
and general self-efficacy are important aspects of psychological
well-being, previously related to mindfulness practices (Capurso
et al., 2014; Charoensukmongkol, 2014; Sanaei et al., 2014; Tabak
et al., 2015; Mehdizadeh Zare Anari and Shafiei, 2016).
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At the electrophysiological level, previous studies showed
that a session of QMT practice significantly increases inter-
and intra-hemispheric EEG alpha (α; 8–12 Hz) coherence
within frontal and parietal areas in healthy adults respect to
controls (Dotan Ben-Soussan et al., 2013). Interestingly, these
changes significantly correlated with creativity improvements
in ideational flexibility, supporting the idea of a connection
between functional connectivity in the α range and enhanced
creativity (Ben-Soussan et al., 2015b). Furthermore, using
magnetoencephalography (MEG), Ben-Soussan et al. (2014a) also
found that a month of daily QMT increases cerebellar oscillatory
α power and inter-hemispheric α coherence in dyslexics respect
to normal readers which served as controls, also improving the
reading performance of both groups.

As mentioned above, no previous longitudinal study looked
at the effects of whole-body mindful movement practices
on WM architecture and their relationship with concomitant
behavioral changes. Therefore, the first aim of the present
study was to investigate the longitudinal effects of QMT on
WM microstructure. In this way, we also aimed at increasing
our understanding of the possible effects of this practice at a
neuroanatomical level.

The second aim was to identify possible relationships between
training-related longitudinal WM changes and concomitant
changes in creativity, general self-efficacy and motivation. Of
note, respect to previous conventional longitudinal studies
in which the subjects were tested only two times, the
participants in the current study were tested three times
over a period of 12 weeks of daily QMT, to explore
the trend of training-related microstructural WM changes
over time. Furthermore, in the current work a longitudinal
analysis of diffusion data was carried out following an
unbiased tensor-based registration approach (Keihaninejad
et al., 2013), which provides more accurate and sensitive
longitudinal measures respect to standard FA-based image
registration methods (Jones et al., 2002; Smith et al., 2006),
followed by a whole brain tract-based spatial statistics (TBSS)
analysis.

MATERIALS AND METHODS

The present study is part of a larger project aimed at
investigating the longitudinal effect of QMT using different brain
imaging techniques. For this reason, the experimental procedure
also includes electrophysiological measures, which have been
analyzed and discussed elsewhere (Lasaponara et al., 2017).

Subjects
We recruited 50 healthy volunteers. Following the inclusion and
exclusion criteria reported in Table 1, 4 subjects were excluded
due to the presence of WM lesion, 3 subjects because they were
left-handed, 6 subjects because of MRI incomplete protocol and
2 subjects because of lack in complying motor exercise. Thus, the
analyses were conducted in a group of 35 healthy right-handed
subjects (21 women and 14 men, mean age ± SD: 35 ± 5 and
36± 5 years, respectively).

Ethics Statement
All procedures were explained to participants, verifying
sufficient understanding and written informed consent was
obtained in accordance with the declaration of Helsinki. The
ethical committee of the Università Campus Bio-Medico
di Roma, Rome, Italy, approved the experimental phase
I study entitled “Effect of quadrato MOtor Training On
the BRAIN of healthy volunteers” (MOTO-BRAIN, 09/14
PAR ComEt CBM. Compliance with GCP (Good Clinical
Practice) was warranted and data were collected following
the ALCOA (Attributable, Legible, Contemporaneous,
Original and Accurate) algorithm. The TREND checklist
was also accomplished (S1 TREND Checklist). Participants
were free to interrupt the QMT and drop-out from
the study at any time for any reason, without any
prejudice.

Procedure
Volunteers were asked to consent to a longitudinal evaluation
at our institution as a pre-requisite for recruitment. The
longitudinal protocol consisted of three time points: (i)
baseline – the day of recruitment (T0), (ii) 6 weeks after
daily QMT (T1), and (iii) 12 weeks after daily QMT (T2)
(see Figure 1A for an overview of the experimental protocol).
We chose these time-intervals since they have been both
widely used in previous longitudinal studies focusing on
structural training-related changes (Draganski et al., 2004;
Scholz et al., 2009; Taubert et al., 2010; Mackey et al.,
2012).

To check for compliance to the exercise, subjects were asked
to fill up a personal diary on a daily basis and collect information
about their practice and habits during the period of exercise.

TABLE 1 | Inclusion and exclusion criteria of the present study.

Inclusion criteria

– Age between 25 and 45 year

– Right-handedness

– No history of current or past drug addiction/abuse or antidepressant use

– No motor, emotional, cognitive or developmental coordination disorders

– No previous practice of the QMT or other motor activation programs

Exclusion criteria

– History of traumatic injury, previous neurosurgery, stroke, inflammatory/infective
brain disease

– Co-morbidity of congenital metabolic diseases or malformations

– Diagnosis of one histologically proven primary cancer ( < 1 years)

– Vitamin B12 deficiency, positive serology for secondary dementia (RPR/ VDRL,
HIV, anti-Borrelia), abnormal thyroid function

– Clinical evidence of depression or other psychiatric conditions, epilepsy, drugs or
alcohol addiction (according to DSM IV-TR)

– Severe cognitive impairment (Mini Mental State Examination ≤ 24)

– Diagnosis of malnutrition

– Chronic or acute inflammatory disease

– Hearing or visual impairment or motor deficits incompatible with the workout

– Hormone replacement therapy

– Current or recent history of smoking (i.e., not smoking during the last year)
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FIGURE 1 | (A) Flowchart of the experiment. A schematic representation of
the longitudinal organization of the experimental procedure over time (MRI,
Magnetic Resonance Imaging scanning; EEG, Electroencephalographic
recordings; AU, Alternative Uses task; GSE, General Self Efficacy scale; Mot,
Motivation scale). (B) Flowchart of processing pipeline for longitudinal diffusion
tensor imaging analysis (R1, R2, R3: iterative processes of rigid, affine and
non-linear diffeomorphic registrations; CDF: combined deformation field that
define the mapping from subject-space to within-subject template,
within-subject template to inter-subject template and inter-subject template to
ICBM-152 standard template; FA, fractional anisotropy; RD, radial diffusivity;
AD, axial diffusivity; TBSS, Tract-based Spatial Statistics).

FIGURE 2 | Graphical illustration of the Quadrato Motor Training. The
participants stood in a quiet room at one corner of a 0.5 m × 0.5 m square
and made movements to the different corners of the square in response to
verbal instructions given by an audio tape recording, indicating the next corner
to which the participant should move (for example, “one four” means move
from corner 1 to corner 4). Participants were instructed to keep their eyes
focused straight ahead, their hands loose at the side of the body and to begin
all movements with the leg closest to the center of the square. In this
longitudinal experimental protocol, the daily training consisted of a sequence
of 69 commands lasting 7 min.

At each time point, the diary needed to be accurate and
complete as a pre-requisite for proceeding to the next time point
measurements.

At each time point, participants underwent
magnetic resonance imaging (MRI) scanning brain and
electroencephalography (EEG). Clinical interview and cognitive
examination were performed in a dedicated room beside the
MRI magnet site. Handedness was assessed by the Edinburgh
Handedness Inventory (Oldfield, 1971). Creativity was assessed
using the Alternate Uses (AU) Task (Guilford, 1978; Ben-Soussan
et al., 2015a). General Self-Efficacy (GSE) test (Chen and
Gully, 1997) and Motivation (Mot) scale (Pintrich, 1991) were
also administered to investigate perceived self-efficacy and
motivation, respectively.

The Quadrato Motor Training
The QMT, created by Patrizio Paoletti, requires standing at one
corner of 0.5 m × 0.5 m square and making movements to
different corners of the square in response to verbal instructions
given by an audio tape recording indicating the next corner
to which the participant should move (see Figure 2). In the
QMT, there are 3 optional directions of movement, and the
movement is always in one step. Each movement can be forward,
backward, left, right, or diagonal, thus the training consists of
12 possible movements (3 directions × 4 corners): 2 forward,
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2 backward, 2 left, 2 right and 4 diagonals. The instructions
given to the participants were to (i) keep eyes focused straight
ahead and hands loose at the side of the body, (ii) immediately
continue with the next instruction and (iii) do not stop in
case of mistakes. Daily training consisted of a sequence of 69
commands lasting a total of 7 min, with a movement sequence
paced at a rate of an average of 0.5 Hz (comparable to a
slow walking rate). The participants were also instructed to
begin all movements with the leg closest to the center of the
square.

Alternate Uses (AU) Task
The AUs Task is an established psychometric test to assess
divergent creative thinking (Guilford, 1968, 1978), previously
used to study changes in creativity following whole-body training
(Netz et al., 2007; Fink et al., 2009; Colzato et al., 2012)
including the QMT (Dotan Ben-Soussan et al., 2013; Ben-Soussan
et al., 2015a; Venditti et al., 2015). Sustaining and improving
creativity may serve a significant role in maintaining cognitive
and emotional well-being and health (Schmid, 2005). In this
task, the participant is required to name as many different ways
as possible in which a given item might be used within a 1-
min time frame. Three basic measures were computed from
the AU task: ideational fluency, defined as the total number of
generated responses, ideational flexibility, defined as the tendency
to generate a heterogeneous pool of responses, and originality,
defined as the capacity to provide unusual or unique responses.

General Self Efficacy (GSE) Scale
The GSE (Chen and Gully, 1997) is a 14-item psychometric
scale designed to assess a general sense of perceived self-efficacy,
defined as a person’s belief in his/her overall ability to perform
well across a variety of difficult demands in life (Chen et al.,
2001). Physical exercise as well as different mindfulness practices
have been previously found to enhance self-efficacy (McAuley
and Blissmer, 2000; Chang et al., 2010; Charoensukmongkol,
2014; Sanaei et al., 2014; Paoletti et al., 2017). High general self-
efficacy is considered a resource that buffers against stressful
experiences, as high self-efficacious individuals perceive demands
as challenging, not as threatening (Jerusalem and Schwarzer,
1992). In this task, the participant was asked to state the degree
to which he or she agrees with each of the statements in the
questionnaire on a scale ranging from “1” (strongly disagree)
to “5” (strongly agree). The total scores on the questionnaire
range from 14 to 70, with the highest score reflecting higher
self-efficacy.

The Motivation (Mot) Scale
The Mot scale was inspired by the Motivated Strategies
for Learning Questionnaire (MSLQ), (Pintrich, 1991). The
Mot is a 10-item scale designed to assess a sense of
perceived motivation and enjoyment. Motivation involves the
mental process people use to activate, sustain, and maintain
behavior (Pintrich and Maehr, 2002). It has been demonstrated
that confident and motivated people tend to try hard,
persist, and perform better than those who doubt of their

capabilities (Schunk, 1991; Pintrich and Schrauben, 1992;
Pintrich, 1999).

In this task, the participant was asked to state the degree
to which he or she agrees with each of the statements in the
questionnaire on a scale ranging from “1” (strongly disagree)
to “7” (strongly agree) related to the level of motivation and
enjoyment prior, during and following the training. The total
scores on the questionnaire range from 10 to 70, with the highest
score reflecting higher motivation.

MRI Data Acquisition
Imaging data were acquired using a Siemens 1.5-T MAGNETOM
Avanto (Siemens, Erlangen, Germany) whole body scanner
equipped with a 12-element designed Head Matrix coil, as
part of the standard system configuration. Diffusion weighted
images (DWIs) were acquired using an axial pulsed-gradient
spin-echo echo-planar sequence (7600/103; 38 sections; section
thickness, 3.0 mm with no intersection gap), with diffusion-
encoding gradients applied in 12 non-collinear directions (b
factor 0 and 1000 s/mm2; number of acquired signals, four).
A 2D fluid attenuated inversion recovery (FLAIR) T2 weighted
scan was also used to exclude the presence of small vessel
ischemic disease and other supra- or infra-tentorial brain
lesions (TR = 11460 ms, TE = 102 ms, TI = 2360 ms,
FOV = 280 mm × 330 mm, NEX = 2, matrix = 248 × 320,
1.00 × 1.00 mm2 in-plane resolution, horizontal slices with
slice thickness of 3.0 mm and no gap). Structural images
were collected using a sagittal magnetization-prepared rapid
acquisition gradient echo (MPRAGE) T1-weighted sequence
(TR = 2400 ms, TE = 3.61 ms, TI = 1000 ms, flip
angle = 15◦, FOV = 240 mm × 280 mm, NEX = 1,
matrix = 192 × 192, 1.00 × 1.00 mm2 in-plane resolution,
horizontal slices with slice thickness of 1.2 mm and no
gap). Whole brain functional scans were also acquired in 25
contiguous axial slices approximately parallel to the anterior-
posterior commissure plane with interleaved multi-slice T2
echo-planar imaging (TR = 3560 ms, TE = 50 ms, field of
view = 22 cm, flip angle = 90◦, voxel size = 3.4 × 3.4 × 3 mm,
slice thickness = 3 mm, no inter-slice gap, 135 volumes).
Since the present paper focused on WM microstructural
QMT- related changes, resting-state data will not be discussed
further.

MRI Data Analysis
To avoid a type I error induced by the effect of WM
hyperintensities on brain connectivity results, two expert
radiologists (CCQ, YE) examined all MRIs. Subjects were
excluded when more than 3 lesions with a maximum diameter
of 5 mm were detected in the subcortical or periventricular WM
on axial FLAIR images (Quattrocchi et al., 2015).

Preprocessing of Diffusion Data
All DWIs were visually inspected for artifacts and preprocessed
using different tools from FDT (FMRIB Diffusion Toolbox, part
of FSL (FMRIB’s Software Library v.5.0.8,1; Smith et al., 2004).

1http://www.fmrib.ox.ac.uk/fsl/
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Images were corrected for eddy current distortion and head
motion using a 12 parameter affine registration to the first no-
diffusion weighted volume of each subject, and the gradient
directions were rotated accordingly (Leemans and Jones, 2009).
Corrected images were skull-stripped using BET (Smith, 2002).
Diffusion tensor images were then generated for each participant
and each time point using the Diffusion Tensor Imaging ToolKit
software package (DTI-TK2) (Zhang et al., 2006). An unbiased
longitudinal analysis approach was chosen for the registration of
DTI data (Keihaninejad et al., 2013) using DTI-TK, which applies
a registration algorithm that leverages the full diffusion tensor
information (rather than scalar features) to drive the registration
and improve the alignment of WM structures (Wang et al.,
2011) (see Figure 1B for an overview of analysis pipeline). The
tensor-based registration method using DTI-TK showed a good
reproducibility of DTI metrics when performing repeated DTI
measurements (Keihaninejad et al., 2013). For each participant,
a within-subject template was generated from the three time
points tensor images using an iterative process of rigid, affine
and non-linear diffeomorphic registrations. The within-subject
templates were then used to create a study-specific inter-subject
template using the same iterative process of linear and non-
linear registrations (Keihaninejad et al., 2013). The inter-subject
template was subsequently registered to an ICBM-152 space
enhanced diffusion template (Zhang et al., 2011), again using the
same sequence of registrations. Finally, we computed for each
subject the combined deformation field that define the mapping
from subject-space to within-subject template, within-subject
template to inter-subject template and inter-subject template to
ICBM-152 standard template. These combined fields were then
used to normalize each corresponding subject’s DTI data to the
ICBM-152 template. For each participant and each time point FA,
RD and AD maps were generated using the normalized tensor
images.

Tract-Based Spatial Statistic (TBSS) Analysis of DTI
Data
FA, RD, and AD data from each participant were furtherly
analyzed using the Tract-Based Spatial Statistics (TBSS; Smith
et al., 2006) toolbox, available in FSL. The mean FA image
was created and thinned to create a mean FA skeleton, which
represents the centers of all tracts common to the group. Each
participant’s FA image was then projected onto this common
skeleton to minimize any residual misalignment of tracts. The
skeleton projection was then applied to RD and AD images to
create a separate skeleton representing the RD and AD values.
Individual difference images between time points (T1-T0, T2-T0
and T2-T1) were finally obtained for FA, RD, and AD data.

Statistical Analyses
To investigate on the effects of QMT on creativity, perceived self-
efficacy and motivation, repeated measure analyses of variance
(ANOVA) over the three time points (T0, T1, and T2) were
performed, separately for ideational fluency, flexibility and
originality AUs’ subscales scores, GSE and Mot measures. The

2http://dti-tk.sourceforge.net/pmwiki/pmwiki.php

differences between time points were finally computed for the all
the AUs’ subscales scores, the GSE scores and the Mot scores.
Statistical analyses on behavioral data were performed using
Statistica v.7 software (StatSoft Inc., United States).

White matter microstructural changes were also investigated
performing three separate one-sample t-tests on the difference
images of FA, RD and AD, using age and gender as nuisance
variables. RD and AD changes were only investigated within the
regions where FA changes were found, to determine whether the
FA changes are related to axon morphology (i.e., AD) or character
of myelin (i.e., RD) (Wheeler-Kingshott and Cercignani, 2009;
Tang et al., 2012; Taubert et al., 2012).

Voxelwise statistical analyses were carried out using
permutation-based non-parametric statistics using the FSL
Randomize permutation-based program (Nichols and Holmes,
2002) with 5,000 permutations. The statistical threshold
was established with a family wise error corrected p-value
(pFWE) < 0.05 with multiple comparison correction using
threshold-free cluster enhancement (TFCE) (Smith and Nichols,
2009). Mean FA values were also extracted from each individual’s
FA skeleton map and a repeated measures ANOVA was
conducted on FA values at T0, T1, and T2, to explore the trend of
FA changes in time.

Randomize tool (5,000 permutations) was also used
to examine the statistical correlation between significant
longitudinal changes of diffusion parameters and longitudinal
behavioral changes. Resulting statistical maps were thresholded
at pFWE < 0.05.

All the results were anatomically localized using the JHU
ICBM-DTI-81 White-Matter Labels and the JHU White-Matter
Tractography atlases included in the FSL distribution3.

RESULTS

QMT-Related Behavioral Changes
As shown by repeated measures ANOVAs, QMT significantly
increased the originality subscale score of the AU task over time
(p < 0.05), but it does not have a significant effect on ideational
fluency and ideational flexibility. Bonferroni post hoc tests were
conducted on all the possible pairwise contrasts for the originality
subscale scores, revealing that T1 scores were significantly higher
than T0 scores (p < 0.05). GSE measures were also significantly
increased over time and with the training (p < 0.005); Bonferroni
post hoc test indicated that GSE scores at T2 were significantly
higher than GSE scores at T0 and T1 (p < 0.005 and p < 0.05,
respectively). Finally, the repeated measures ANOVA on Mot
scores did not show a significant effect for time (p > 0.1).

QMT-Related WM Microstructural
Variations and Associated Behavioral
Changes
At T1 respect to T0, TBSS analysis revealed a significant
(pFWE < 0.05) FA increase of several WM tracts (Figure 3

3http://www.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
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FIGURE 3 | Significant increases in FA and decreases in RD after 6 weeks of daily QMT (T1) respect to T0 baseline (pFWE < 0.05, TFCE corrected). RD changes
were investigated in the locations where FA significantly changed. The study-specific FA skeleton, representing the centers of principal WM tracts, is displayed in
green, overlaid on the mean FA map. The vertical lines on the coronal view indicate the sagittal slices displayed. The horizontal lines on the sagittal view indicate the
axial slices displayed. The red–yellow and blue–light blue color bars represent level of significance for FA increase and RD decrease, respectively.

and Table 2), including corticospinal tracts, uncinate fasciculi,
anterior thalamic radiations and internal capsules bilaterally,
right external capsule, cerebral peduncle and left superior
cerebellar peduncle. Increased FA was also found in the forceps
minor at the level of the genu, and in the body of the corpus
callosum. Finally, FA increments in the left hemisphere were
found in the superior longitudinal fasciculus and its temporal
part, inferior fronto-occipital and inferior longitudinal fasciculi.

The increase of FA at T1 respect to T0 was accompanied
by a significant bilateral decrease of RD in corticospinal tracts
and anterior thalamic radiations, also including the posterior
limbs of internal capsule. RD decrements were also found in the
left uncinate, inferior fronto-occipital, and superior longitudinal
fasciculi, as well as in the right anterior limb of the internal
capsule and cerebral peduncle (Figure 3 and Table 3).

At T2 respect to T0, a significant (pFWE < 0.05) increase
of FA was still present (Figure 4 and Table 4). Notably,
longitudinal changes were less widespread and only found in
the left-hemisphere, including uncinate and inferior longitudinal
fasciculi, forceps minor and corticospinal tract. Furthermore,
FA increments were found in the anterior thalamic radiation
and inferior fronto-occipital fasciculus. In this case, the increase
of FA was accompanied by a significant decrease of RD
only in the left anterior thalamic radiation and uncinate
fasciculus (Figure 4 and Table 5). No significant changes of
FA and RD were found at T2 respect to T1. Furthermore, no
significant changes of AD were found in the location where FA
changed.

The repeated measures ANOVA performed on the mean FA
values at T0, T1, and T2, showed a significant effect for time
(p < 0.05) (Figure 5). Post hoc comparisons using the Bonferroni

test indicated that FA values at T1 were significantly higher
than at T0 (p < 0.05). Interestingly, although not significantly
different, FA values at T2 were lower than at T1.

The correlation analyses between significant longitudinal
changes of diffusion parameters and behavioral changes
yielded no FWE-corrected results. However, since previous
studies already reported significant correlations between QMT-
related changes of psychological well-being measures and
electrophysiological indices (Dotan Ben-Soussan et al., 2013),
proNGF levels (Venditti et al., 2015), and structural changes
(Ben-Soussan et al., 2015a,c), the uncorrected statistical results
(p < 0.005) are also reported in Table 6. Positive correlations
were found between longitudinal increments of FA and both
AUs originality and GSE scores at T1 respect to T0. More
specifically, these correlations were similarly located in the
right anterior thalamic radiation and left superior longitudinal
fasciculus. In addition, the correlation between FA and GSE
also included the left anterior thalamic radiation. Negative
correlations were also found between longitudinal decrements of
RD and improvements of both AUs originality and GSE scores
at T1 respect to T0. The correlation between RD and originality
was mainly located in the left superior longitudinal fasciculus,
while the one between RD and GSE was mostly located in the left
anterior thalamic radiation. Thus, although these correlations
did not survive correction for multiple comparisons, they
nonetheless suggest that participants with higher increase of
FA and decrease of RD have the higher increase of originality
and GSE scores at T1. No significant correlations were found
between longitudinal changes of diffusion parameters and AUs’
fluency and flexibility subscales scores, as well as motivation
scores.
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TABLE 2 | Significant increases in FA at T1 respect to T0 (pFWE < 0.05 TFCE-corrected).

MNI coordinates

Cluster size T p x y z WM structures

7409 5.93 <0.001 −16 −7 3 Left posterior limb of internal capsule

5.79 <0.001 −20 −18 42 Left corticospinal tract

4.32 0.007 −24 25 6 Left inferior fronto-occipital fasciculus, Left Uncinate fasciculus

4.01 0.007 −34 4 2 Left superior longitudinal fasciculus

3.57 0.008 −20 18 30 Left superior longitudinal fasciculus (temporal part)

3.47 0.018 −3 21 −2 Forceps minor/Genu of corpus callosum

2266 4.93 0.003 −10 −17 16 Left anterior thalamic radiation

3.69 0.019 9 −28 −11 Right anterior thalamic radiation

1163 4.44 0.021 10 −1 −4 Right anterior thalamic radiation

3.89 0.023 28 −19 19 Right corticospinal tract

2.77 0.038 18 −20 −7 Right corticospinal tract/Right cerebral peduncle

1159 4.86 0.019 −53 −37 −19 Left superior longitudinal fasciculus (temporal part)

4.67 0.015 −37 −28 −2 Left inferior fronto-occipital fasciculus/Left retrolenticular part of internal capsule

4.23 0.019 −42 −4 −26 Left inferior longitudinal fasciculus

316 3.74 0.021 −21 −53 60 Left superior longitudinal fasciculus

153 3.42 0.029 −46 −14 −11 Left inferior longitudinal fasciculus

128 4.05 0.043 17 7 8 Right anterior thalamic radiation/Right anterior limb of internal capsule

106 3.56 0.044 24 −18 35 Right corticospinal tract

75 2.79 0.046 33 5 −11 Right uncinate fasciculus/Right external capsule

45 3.13 0.047 −6 −39 −21 Left anterior thalamic radiation/Left superior cerebellar peduncle

44 2.55 0.047 17 19 −11 Right uncinate fasciculus/Right external capsule

28 2.23 0.047 −15 11 29 Body of corpus callosum

28 2.44 0.033 −33 −35 8 Left inferior longitudinal fasciculus/Left retrolenticular part of internal capsule

Peak MNI coordinates (mm) within clusters were identified using a minimum peak-distance between local maxima of 20 mm. Only clusters showing a spatial extent of at
least 20 contiguous voxels were reported. Anatomical localizations of peak MNI coordinates were established according to the JHU White-Matter Tractography and the
JHU ICBM-DTI-81 White-Matter Labels (cursive font) atlases.

TABLE 3 | Significant decreases in RD at T1 respect to T0 (pFWE < 0.05 TFCE-corrected).

MNI coordinates

Cluster size T P X y z WM structures

4615 4.82 <0.001 −16 −7 4 Left anterior thalamic radiation/Left posterior limb of internal capsule

4.80 0.002 −12 −15 67 Left superior longitudinal fasciculus

3.87 <0.001 −26 −20 22 Left corticospinal tract

2.24 0.009 −23 21 5 Left inferior fronto-occipital fasciculus, Left uncinate fasciculus

906 5.27 0.007 −10 −16 16 Left anterior thalamic radiation

3.68 0.011 10 −15 15 Right anterior thalamic radiation

468 4.42 0.012 12 −3 −4 Right anterior thalamic radiation

2.31 0.035 24 −6 18 Right corticospinal tract/Right anterior limb of internal capsule

388 3.73 0.014 28 −19 18 Right corticospinal tract/Right posterior limb of internal capsule

122 3.47 0.032 18 −20 −7 Right corticospinal tract/Right cerebral peduncle

74 4.93 0.028 17 7 8 Right anterior thalamic radiation/Right anterior limb of internal capsule

RD changes were investigated in the locations where FA significantly changed. Refer to Table 2 for a detailed explanation of the table layout.

DISCUSSION

In this work, we investigated for the first time the longitudinal
effects of daily QMT on WM microstructure in a healthy
group of subjects. Of note, respect to conventional pre–
post training longitudinal studies, our subjects were tested
three times over a period of 12 weeks of QMT, to examine

the trend of training-related microstructural WM changes
over time. Furthermore, we used an unbiased DTI analysis
pipeline for tracking longitudinal WM changes, following
recent advances in tensor-based image registration (Zhang
et al., 2006; Keihaninejad et al., 2013). We also investigated
the possible relationships between longitudinal microstructural
changes and concomitant changes in several well-being
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FIGURE 4 | Significant increases in FA and decreases in RD after 12 weeks of daily QMT (T2) respect to T0 baseline (pFWE < 0.05, TFCE corrected). See Figure 3
for additional details.

TABLE 4 | Significant increases in FA at T2 respect to T0 (pFWE < 0.05 TFCE-corrected).

MNI coordinates

Cluster size T p X y Z WM structures

4337 4.89 0.012 −20 51 −2 Left anterior thalamic radiation

4.79 0.016 −23 27 −2 Left uncinate fasciculus, Left inferior fronto-occipital fasciculus

4.25 0.021 −16 53 18 Forceps minor

4.05 0.014 −35 −3 −14 Left uncinate fasciculus

3.90 0.023 −28 −28 7 Left inferior fronto-occipital fasciculus/Left retrolenticular part of internal capsule

3.38 0.022 −22 −5 15 Left anterior thalamic radiation/Left posterior limb of internal capsule

1.95 0.031 −43 −28 −7 Left inferior longitudinal fasciculus

653 4.57 0.025 −21 −24 40 Left corticospinal tract

Refer to Table 2 for a detailed explanation of the table layout.

related measures of creativity, perceived self-efficacy and
motivation.

Our results revealed that QMT daily practice significantly
affected WM microstructural architecture over time. Respect
to the baseline (T0), FA values increased after 6 weeks of
training (T1) in different bilateral tracts and in major associative
tracts of the left hemisphere. Significant training-induced FA
increments were still present after 12 weeks of QMT (T2) respect
to T0, although less widespread and only localized in the left-
hemisphere. No significant FA changes were found at T2 respect
to T1.

We also examined the pattern of AD and RD changes in
tracts where FA significantly increased and found a significant
decrease of RD both at T1 and at T2, supporting the relevance of
myelination processes in training-related FA changes. Behavioral
analyses showed that our subjects remained motivated during
the entire course of training, confirmed and deepened the
knowledge of the longitudinal effect of QMT on creativity
and revealed a training-related effect on self-efficacy. Finally,

we found significant correlations between individual WM
microstructural changes and individual improvements of self-
efficacy and originality. These findings support the effectiveness
of QMT in improving WM integrity and suggest the relevance of
these microstructural changes for psychological well-being.

QMT-Induced Longitudinal Effect on WM
Microstructure
The unique combination of motor and cognitive components,
which distinguishes the QMT from other mindfulness practices,
could explain the present pattern of results, which comprises WM
tracts related to sensorimotor functions as well as critical tracts
for high-level cognitive operations.

Respect to T0, significant FA increments were found bilaterally
in the corticospinal tract at T1. These changes are probably
related to the sensorimotor effect of the QMT, in accordance
with previous studies (Bengtsson et al., 2005; Wang et al.,
2014). However, these FA increments only persisted in the
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TABLE 5 | Significant decreases in RD at T2 respect to T0 (pFWE < 0.05 TFCE-corrected), investigated in the locations where FA significantly changed.

MNI coordinates

Cluster size T p x y z WM structures

139 4.11 0.008 −10 −4 −6 Left anterior thalamic radiation

40 3.30 0.033 −27 10 −13 Left uncinate fasciculus

Refer to Table 2 for a detailed explanation of the table layout.

FIGURE 5 | ANOVA repeated measures - Time (3) factor for mean FA values.
Data show a significant principal effect for the Time factor. Bonferroni post hoc
correction showed that FA values at T1 were significantly higher than at T0
(p < 0.05). It should be noted that, although not significantly different, FA
values at T2 were lower than at T1.

left hemisphere at T2. This asymmetry could be attributed to
handedness; since all participants were right-handers, the left
corticospinal tract could be more susceptible to the long-term
sensorimotor effect of training than the right tract (Imfeld et al.,
2009). Furthermore, several studies reported a left hemisphere
specialization for precise control of motor actions on both sides of
the body in right-handers (for a review see Sadeghi et al., 2000),
which extends to motor learning (Schambra et al., 2011). With
practice, motor associated areas of the left-hemisphere reveal
increased activity, also suggesting a left-hemispheric dominance
in the storage of visuomotor skills (Halsband and Lange, 2006).
We also observed an increase of FA in the body of corpus
callosum at T1, suggesting an increase of interhemispheric
communication between motor areas taking place in the first
phase of training. It cannot be excluded that such changes could
reflect cross-hemispheric transcallosal inhibition processes (Fling
et al., 2013), which might contribute to the left-lateralized FA
increase of the corticospinal tract at T2.

Significant FA increments were also found at T1 in the
anterior thalamic radiations, which are generally related to
executive function, memory encoding and planning of complex
behaviors (Van der Werf et al., 2003; Mamah et al., 2010).
Executive functions and memory are central to plan and perform
movements in the correct sequence as well as to navigate in the
Quadrato space. The FA increments only survived in the left

hemisphere at T2 respect to T0. Longitudinal DTI studies have
already reported significant FA increments in the left anterior
thalamic radiation after memory training (Engvig et al., 2012; de
Lange et al., 2016). Furthermore, this fiber tract has been recently
related to gait stability and speed (Bruijn et al., 2014; Vercruysse
et al., 2015), both crucial aspects for the correct execution of
the QMT.

Other significant microstructural FA increments were found
at T1 in both left and right uncinate fasciculi, which persisted
in the left-hemisphere at T2. These fasciculi play a role in
emotion regulation, emotional learning, memory, and language
functions (Papagno et al., 2011; Von Der Heide et al., 2013; Holzel
et al., 2016). Microstructural changes in these fiber bundles were
somewhat expected, since QMT already proved its validity in
improving emotional well-being (Ben-Soussan, 2014), emotional
regulation (Ben-Soussan et al., 2017), and reading performance
(Ben-Soussan et al., 2014a).

Fractional anisotropy increments at T1 were also localized in
the genu of the corpus callosum and forceps minor, as well as
in the superior cerebellar peduncles. Longitudinal increases of
FA in the genu and forceps minor have been already reported
after mindfulness (Tang et al., 2010; Tang et al., 2012), as well
as memory trainings (Salminen et al., 2016). The forceps minor
connects, via the genu, the prefrontal cortices (Hofer and Frahm,
2006; Park et al., 2008). Interestingly, this interhemispheric
communication it is thought to be involved in locomotion
(Wang et al., 2012; Bolandzadeh et al., 2014), and in lower
extremity control (Fling et al., 2016). Furthermore, the prefrontal
cortex forms close connections with the cerebellum, connected
to the midbrain by the superior cerebellar peduncles (Allen
et al., 2005; Krienen and Buckner, 2009; Watson et al., 2014).
Prefrontal cortex and cerebellum are both engaged when high
level of attention and concentration are required, especially
during challenging and novel tasks (Diamond, 2000). Therefore,
the present FA changes could be related to the higher levels
of sensorimotor coordination, balance and attention required
during the first weeks of QMT.

At T1, an increase of FA was also detected in the left superior
longitudinal fasciculus, which connects parietal to frontal
ipsilateral regions, as well as in its temporal part, which instead
connects temporal with ipsilateral frontal areas, also including
fibers belonging to the arcuate fasciculus (Mori and Crain, 2005;
Wakana et al., 2007; Madhavan et al., 2014). Microstructural WM
integrity of both superior longitudinal and arcuate fasciculi in
the left hemisphere has been associated with auditory and verbal
working memory as well as several language functions (Peters
et al., 2012; Lopez-Barroso et al., 2013; Yeatman and Feldman,
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TABLE 6 | Results of voxelwise correlation analyses between longitudinal changes in FA and RD maps and concomitant changes in behavioral tests (p < 0.005
uncorrected).

MNI coordinates

Cluster size T p x y z WM structures

FA - Originality ↑

34 2.65 <0.001 15 −2 7 Right anterior thalamic radiation/ Right Posterior limb of internal capsule

23 3.31 <0.001 −34 −18 35 Left superior longitudinal fasciculus

RD – Originality ↓

56 3.44 <0.001 −17 −14 55 Left superior longitudinal fasciculus

38 4.26 <0.001 16 −2 6 Right posterior limb of internal capsule

31 3.31 0.001 −29 −3 27 Left superior longitudinal fasciculus (temporal part)

FA – GSE ↑

82 3.33 <0.001 −23 18 13 Left anterior thalamic radiation

30 4.31 <0.001 −22 −3 15 Left anterior thalamic radiation / Left Anterior limb of internal capsule

29 3.88 0.001 9 −7 11 Right anterior thalamic radiation

24 4.79 <0.001 −37 −24 31 Left superior longitudinal fasciculus, Left Superior longitudinal fasciculus (temporal part)

RD – GSE ↓

29 3.51 0.001 −21 −3 16 Left anterior thalamic radiation/Left anterior limb of internal capsule

22 3.93 <0.001 −22 15 12 Left anterior thalamic radiation/Left anterior limb of internal capsule

Positive correlations were found between regions showing longitudinal increments of FA and both AUs originality and GSE scores at T1 respect to T0. Negative correlations
were also found between longitudinal decrements of RD and improvements of originality and GSE scores at T1 respect to T0. Refer to Table 2 for a detailed explanation
of the table layout.

2013; Urger et al., 2015; Piervincenzi et al., 2016). Moreover,
recent studies have reported a strong relationship between
visuospatial and attentional processing and this fasciculus
(Thiebaut de Schotten et al., 2011; Bartolomeo et al., 2012;
Chechlacz et al., 2015). The QMT requires a state of enhanced
attention: the subject needs to pay attention to the verbal
instruction (auditory working memory) but at the same time
focus on his/her higher-order body location to remain in the
Quadrato space. The increased connectivity between auditory
and motor areas [connected by the arcuate fasciculus (Catani
et al., 2005)] and between parietal body awareness and attention
areas and prefrontal executive regions [connected by the superior
longitudinal fasciculus (Thiebaut de Schotten et al., 2011)] could
be explained by the high attentional demand of the QMT.

Robust long lasting (at both T1 and T2 respect to T0) left-
lateralized FA increases were present in two long association
fiber tracts, the inferior longitudinal and inferior fronto-occipital
fasciculi. While the inferior longitudinal fasciculus is thought to
mediate fast transfer of visual signal to temporal regions (Catani
et al., 2003), and to play an important role in visual recent
memory and language (Ffytche and Catani, 2005; Mandonnet
et al., 2007; Ross, 2008), the functions of the inferior fronto-
occipital fasciculus are not clearly understood. However, it
has been suggested that it participates to reading, semantic
processing, attention, and visual processing (Catani and Thiebaut
de Schotten, 2008; Almairac et al., 2015). The attentional
and working memory visuospatial resources required for the
correct execution of the QMT are likely to contribute to the
microstructural changes in these fiber tracts. However, since
they have been also related to language functions in the left
hemisphere, effects of QMT on language abilities should be
also taken into consideration. As a matter of fact, this practice

have already proved its utility in improving reading performance
in dyslexic populations (Ben-Soussan et al., 2014a), which
showed decreased WM integrity in language-related pathways
(Steinbrink et al., 2008; Richards et al., 2015).

In the present work, no significant FA changes were instead
found at T2 respect to T1. However, the repeated measures
ANOVA showed that mean FA values at T2 were lower than at
T1. This leads to the suggestion that the training-related increase
of FA could have already met at T2 a descending phase. Notably,
the same trend has been previously reported in several domains of
expertise, such as motor sequence learning (Doyon et al., 2002),
language acquisition (Sakai, 2005) and concentration meditation
(Brefczynski-Lewis et al., 2007). This trend may be related to
an adaptation component, as well as to offline processes, such
as skill stabilization and improvement, which reflect memory
consolidation (Dayan and Cohen, 2011). Long-term follow-up
studies are required to further elucidate the present findings
and confirm/disconfirm persistent or cumulative effects of QMT
practice on WM microstructure.

QMT-Related Left-Lateralized
Microstructural Changes
Although previous studies reported left-lateralized changes
following different types of training like working memory
(Takeuchi et al., 2010; Salminen et al., 2016) or reading
training (Keller and Just, 2009), little is known about the
lateralization of WM microstructural changes related to
mindfulness practices (Fox et al., 2014). Very few longitudinal
studies investigated on the effects of mindfulness practices
on WM integrity, with somewhat conflicting results about
the lateralization of WM microstructural changes. Tang
et al. (2010) reported left-lateralized FA changes in several
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fiber tracts, after 4 weeks integrative body-mind training
(IBMT), a specific form of mindfulness meditation. In a
second study, the same authors investigated IBMT-related
longitudinal changes of FA, RD and AD in two separate ethnic
groups of subjects performing 2 or 4 weeks of training, and
reported similar left-lateralized WM changes (Tang et al.,
2012). Conversely, Holzel et al. (2016) reported a specific
FA increase in the right uncinate fasciculus after 8 weeks of
Mindfulness-Based Stress Reduction (MBSR) course, which
was also related to behavioral changes in emotional learning.
Further research is needed to better address the link between
WM hemispheric asymmetries and mindfulness practices, also
using dedicated methods for the quantitative assessment of WM
hemispheric lateralization (Catani et al., 2007; Perlaki et al.,
2013).

QMT-Related Changes as a Result of
Myelination Process
Likewise the present results, several works reported the same
pattern of FA increase and RD decrease after training (Keller
and Just, 2009; Hu et al., 2011; Engvig et al., 2012). Since RD
is thought to reflect the myelination degree (Fields, 2010; Hu
et al., 2011), these studies supported the idea that myelination
could be the leading process of the increased FA following
training. Myelination has been found, in both animal and
humans, to be modifiable by experience (Ishibashi et al.,
2006; Fields, 2008, 2010). It has been proposed that training
would increase neural firing and thus increase myelination,
that enhances communication among cortical areas and may
result in better performance (Keller and Just, 2009). Evidence on
active myelination process after 12-week QMT training has been
already described by Ben-Soussan et al. (2015c), who reported
increased levels of proBDNF, which directly affects myelination
by regulating the development of oligodendrocyte progenitor
cells (for a review see also Zatorre et al., 2012). Therefore, the
present results could support QMT as an effective myelination-
promoting intervention.

Correlations between QMT-Related WM
and Behavioral Changes
In the present work, training-induced improvements in
originality and general self-efficacy (GSE) were associated
with increased FA/decreased RD in the right anterior thalamic
radiation, and left superior longitudinal fasciculus. Creativity
measures have been previously related to the anterior thalamic
radiation, a fiber tract associated to creative cognition (Jung
et al., 2010). Little instead is known about possible relationships
between the superior longitudinal fasciculus and creativity,
although it has been suggested a role of this tract in the process
of creative thinking (Fink and Neubauer, 2006).

Similar to the originality results, we found that higher GSE
scores were associated with increased FA/decreased RD in
the anterior thalamic radiations and left superior longitudinal
fasciculus. This is the first study that investigated on possible
correlations between training-related WM changes and
measures of self-efficacy. GSE has been positively related to

optimism, self-respect and internal control (Bandura, 1997;
Magaletta and Oliver, 1999) and negatively associated with
anxiety and depression (Endler et al., 2001; Tahmassian and
Jalali Moghadam, 2011). Interestingly, anxious and depressed
patients also showed alteration in the WM integrity of both
superior longitudinal fasciculus and anterior thalamic radiation
(Lai and Wu, 2014; Albaugh et al., 2016). Furthermore, a
recent large-scale study (n = 776 healthy subjects) of Nakagawa
et al. (2015) reported significant correlations between GSE
scores and WM density of prefrontal, parietal regions and
temporo-parietal junction, all regions interconnected by the
superior longitudinal fasciculus, suggesting a pivotal role for
these areas in self-cognition, self-efficacy and social cognition.
The present correlation between GSE scores and QMT-
related microstructural changes in the above-mentioned tracts
strengthens previous claims that mindfulness practices can
effectively improve self-efficacy and supports the idea that
one mean of QMT to promote psychological well-being is by
enhancing self-confidence and copying skills (McAuley and
Blissmer, 2000; Cataldo et al., 2013; Sanaei et al., 2014).

Limitations of the Study
There are a few limitations to this study, which should be noted.
The first is the lack of a control group with no training or a
control group with the same type of motor activity (but with
reduced cognitive demands) or cognitive effort (but reduced
motor load). However, several studies have already demonstrated
the longitudinal reliability of DTI measures, including previous
learning studies where control groups did not show FA changes
(Scholz et al., 2009; Taubert et al., 2010). Furthermore, our
previous studies have already demonstrated that the neuronal
and cognitive changes are QMT specific, compared to different
control groups controlling separately for cognitive and motor
load (Dotan Ben-Soussan et al., 2013; Ben-Soussan et al., 2014b;
Venditti et al., 2015), thus providing more confidence in the
findings of the present work. A second limitation is that we used
DTI images of 12 diffusion directions with a number of scan
repetitions of four. Although more scan repetition seem to be
related to a higher signal-to-noise ratio and more reliable FA and
tractography data (Jones, 2004; Farrell et al., 2007), it has been
suggested that a larger number of diffusion gradient directions
may improve the estimation of the diffusion tensor (Jones, 2004;
Ni et al., 2006). Thus, future controlled QMT studies should
include more directions of the diffusion gradient.

CONCLUSION

The effectiveness of the Quadrato Motor Training, together with
the ease of learning and the minimal time and space it requires,
make this training a very promising and feasible paradigm
for children, adolescents and elderly people, contributing to
well-being in the healthy but also useful for neurorehabilitation.
Future research should examine QMT efficacy on different
populations suffering from altered WM microstructural
connectivity and impaired cognitive performance, such as mild
cognitive impairment patients, or with decreased motor and/or
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cognitive functions, such as learning disabilities, language
disorder and Parkinson disease. Furthermore, exploring how
WM microstructural changes are related to measures of well-
being and health may have relevant implications for cognitive
and educational neuroscience as well as psychotherapeutic
programs.
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