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Introduction

The notion of maximal class for p-groups was introduced in 1958 by Blackburn
[Bla58]. Let G, γ2(G), γ3(G), . . . be the terms of the lower central series of a group
G with pn elements. It is well known that all finite p-groups are nilpotent, namely
there exists an integer k such that γk(G) = 1. If k is the smallest among these
integers, G is said to be of nilpotency class k− 1. The nilpotency class for G is at
most n− 1 and, if this upper bound is reached, we say that G is of maximal class.

Finite abelian p-groups are easily classified. When one moves to class two
groups, one finds that there are simply too many of them, and a classification is
impossible. However, the situation is different if one looks at the coclass instead.

If G has order pn and (nilpotency) class c, then its coclass is

cc(G) = n− c.

The notion of coclass can be extended to pro-p-groups. Let G be a pro-p-
group. We denote by G, γ2(G), . . . the terms of the lower central series and by
Gi = G/γi(G). The coclass of G is defined as

cc(G) = lim
i→∞

cc(Gi).

Aiming at classifying p-groups and pro-p groups, given p and the coclass r, in
1980 Leedham-Green and Newman formulated five conjectures. The proof of these
conjectures has involved many people and nowadays they are all proved. Details
about these results can be found in [LGM02].

The notions of maximal class and coclass can be defined also for Lie algebras.
Let L be a residually nilpotent Lie algebra and Li the terms of the lower cen-
tral series. Suppose that dim(Li/Li+1) are all finite and dim(Li/Li+1) ≤ 1 for
sufficiently large i. Then we say that L has finite coclass and define

cc(L) =
∑
i≥1

Li 6=0

(dim(Li/Li+1)− 1).

When cc(L) = 1 we say that L is of maximal class. Of special interest from a group-
theoretic point of view are N-graded Lie algebras of maximal class, L =

⊕
i≥1 Li,

generated by L1 and satisfying dim(L1) = 2 and dim(Li) = 1, for i > 1, since
graded Lie algebras arising from pro-p-groups of maximal class are of this type.

Shalev and Zelmanov [SZ97] developed a coclass theory for Lie algebras of
characteristic zero in analogy with the theory established by Leedham-Green and
Newman for groups. Shalev and Zelmanov first dealt with the N-graded Lie
algebras of finite coclass that are generated, as it happens for groups, by their
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8 INTRODUCTION

first homogeneous component. They proved that there is only one just infinite
algebra, namely

a = 〈x, y : [yxiy] = 0, for all i ≥ 1〉.

Indeed such an algebra is of maximal class and metabelian.
In positive characteristic, there is exactly one infinite-dimensional metabelian

Lie algebra of maximal class. Shalev [Sha94] showed that there are countable
many infinite-dimensional graded Lie algebras of maximal class over a field of
positive characteristic p generated by the first homogeneous component.We will
refer to theses algebras as AFS-algebras.

In 1997, Caranti, Mattarei and Newman [CMN97] proved that, for each prime
p, there are 2ℵ0 isomorphism types of N-graded Lie algebras of maximal class over
Fp, generated in weight 1. Such algebras were constructed using the algebras in
[Sha94], by means of a technical process called inflation.

In 1999, Caranti and Newman [CN00] proved that all N-graded Lie algebras
of maximal class in characteristic p > 2 generated in weight 1 are obtained via
possibly infinitely many inflation steps from some AFS-algebra.

Later the case of N-graded Lie algebras of maximal class in characteristic
p = 2 generated in weight 1 has been dealt by Jurman [Jur05]. The author
proved that, in addition to algebras obtained by inflations of AFS-algebras, there
is also a further family of infinite-dimensional graded Lie algebras of maximal
class.

There are other possibilities for a graded Lie algebra to be of maximal class.
One of them is that each homogeneous component of L has dimension one and
that [L1Li] = Li+1, for i > 1. We will refer to such algebras as algebras of type 2,
since they are generated by one element of weight 1 and one of weight 2. Shalev
and Zelmanov [SZ97] proved that over a field of characteristic zero there are three
infinite-dimensional algebras of this type, namely

m = 〈e1, e2 : [e2e
i
1e2] = 0, for all i ≥ 1〉,

m2 = 〈ei : [eie1] = ei+1, for all i ≥ 2,

[eie2] = ei+2, for all i ≥ 3,

[ei, ej] = 0, for all i, j ≥ 3〉.
and

W = 〈ei, i ≥ 1 : [eiej] = (i− j)ei+j〉.

In characteristic p > 2, the algebras m and m2 are still graded Lie algebras of
maximal class, but the same does not hold for W . The other algebras of type 2 are
the algebras obtainable as subalgebra of an algebra generated in weight one, one
further family of soluble algebras and, for p = 3, one additional family of soluble
algebras [CVL00].
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Caranti and Vaughan-Lee [CVL03] have studied algebras of type 2 also in
characteristic two. This case is more uniform than the odd characteristic case.

The aim of this thesis is to begin the study of graded Lie algebras over a field
of odd characteristic

L = L1 ⊕
∞⊕
i=n

Li

where dim(L1) = 1, dim(Li) = 1, for i ≥ n, and [L1Li] = Li+1, for each integer
i ≥ n. From now on, when we will write Lie algebra of maximal class, we will
refer to an algebra satisfying the conditions above.

In analogy with [CMN97] and [CVL00] in Chapter 2 the notion of constituent
is introduced for the algebras we study in our work. We denote by ek = [en, e

k−n
1 ]

the generator of the homogeneous component of weight k of an algebra of maximal
class and say that the first constituent has length k if

[ei, en] = 0 for i < k

[ek, en] 6= 0.

In Chapter 2 it will be proved that there are some restrictions for the length l
of the first constituent of a graded Lie algebra of maximal class. In particular,
provided that p > 2n, there is no graded Lie algebra of maximal class such that
ph + n ≤ l ≤ ph+1 − n + 1, where p is the characteristic of the underlying field
and h a positive integer. The question about the existence of such algebras for
ph ≤ l ≤ ph+n−1 and l ≤ p−n+1 is open. We suppose that there are no algebras
of maximal class with such constituent length, except for l = n+1. Computations
performed in GAP suggest that, for p > 2n, and an arbitrary choice of λ ∈ F there
is exactly one graded Lie algebra of maximal class such that [[ene1]en] = λe2n+1.

The problem of the existence of graded Lie algebras of maximal class with first
constituent length l in the range ph − n + 2 ≤ l ≤ ph + 1 or l = 2ph − n + 1 is
addressed in Chapter 3. In the latter case, it will be proved that such algebras are
obtainable as subalgebras of a graded Lie algebra of maximal class generated by
two elements of weight one. In the case ph − n+ 2 ≤ l ≤ ph + 1, it will be proved
that there is an upper bound for the number of graded Lie algebras for any value
l in the range.

In Chapter 4 it will be shown that such bound is actually reached. Moreover
an explicit construction of such algebras will be provided.

We wish to mention that in a work not reported here we have considered the
case of graded Lie algebras of the form

L = L1 ⊕
∞⊕
i=q

Li,

where dim(L1) = 1 and dim(Li) = 1, for i ≥ q, and [L1Li] = Li+1, where q = ph,
for some prime p and positive integer h, over a field of characteristic p. We think
that, in analogy with the case of algebras of type 2 in characteristic two, such case
is more uniform than that of algebras generated in weight 1 and n.





CHAPTER 1

Preliminaries

1.1. Lie algebras

We begin this introductory section recalling the definition of Lie algebra.

Definition 1.1.1. A Lie algebra L over a field F is a vector space over F
endowed with a binary operation

L× L → L

(x, y) 7→ [x, y]

called the bracket or commutator of x and y such that

(1) [x, x] = 0, for any x ∈ L;
(2) for any x, y, z ∈ L, the Jacobi identity holds:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

Remark. As an immediate consequence of the definition we have that

[x, y] = −[y, x], for any x, y ∈ L,
namely the bracket operation is anticommutative.

Herein we point out that, given x, y, z ∈ L, we will often write [xyz] in place
of [[x, y], z].

As a consequence of the Jacobi identity we have that

[x, [yzk]] =
k∑
i=0

(−1)i
(
k

i

)
[xziyzk−i].

1.1.1. Free Lie algebras. In this section we recall the notion of free algebra
and free Lie algebra. We follow the approach of Bourbaki.

Let X be a set. We can construct the free magma M(X) on X. We define
inductively the sets Xn, for n ≥ 1. For n = 1 we define X1 = X. Once we have
defined X1, X2, . . . , Xn−1 we say that Xn is the union of the sets Xi × Xn−i, for
1 ≤ i ≤ n−1. We denote the union of the sets Xn just defined by M(X). Consider
two elements wi, wj ∈ M(X) and suppose that wi ∈ Xi, wj ∈ Xj respectively.
Denote n = i+ j and consider the injection

ι : Xn ×Xn−i → Xn

(wi, wj) 7→ ι(wi, wj).

We denote ι(wi, wj) by wi ∗ wj and say that this is the product of wi and wj.
The algebra of the magma M(X) with the coefficients in the ring K is denoted

by LibK(X), or Lib(X) when there is no ambiguity.

11



12 1. PRELIMINARIES

We are in a position to give the definition of free Lie algebra.

Definition 1.1.2. The free Lie algebra over the set X is the quotient algebra

L(X) = Lib(X)/a,

where a is the ideal of Lib(X) generated by the elements of one of the forms:

a ∗ a, for a ∈ Lib(X)
a ∗ (b ∗ c) + b ∗ (c ∗ a) + c ∗ (a ∗ b), for a, b, c ∈ Lib(X).

1.1.2. Presentation of a Lie algebra. Let g be a Lie algebra and a =
(ai)i∈I a family of elements of g. Consider the homomorphism

fa : L(I) → g

i 7→ ai, for i ∈ I.

The elements of ker(fa) are called the relators of the family a. If fa is surjective
we say that a is generating.

Given a Lie algebra g, we say that the ordered pair (a, r) is a presentation of
g if the family a = (ai)i∈I generates g and r = (rj)j∈J generates the kernel of the
homomorphism fa, between L(I) and g, defined above.

In general, if we take a set I, we can construct the free Lie algebra over I. If
r = (rj)j∈J is a subset of L(I) and ar the ideal generated by r, then the quotient
algebra L(I)/ar is defined by the presentation (I, r).

1.1.3. Derivations of Lie algebras. Let L be a Lie algebra. We say that a
linear map D : L→ L is a derivation if

D[a, b] = [Da, b] + [a,Db], for any a, b ∈ L.

If we denote by juxtaposition the composition of two derivations, we can define
the commutator of two derivations D,E as

[D,E] = DE − ED.

Then, Der(L) is a Lie algebra. For any x ∈ L it is possible to define the endomor-
phism

ad(x) : L → L

y 7→ [x, y].

As a consequence of the Jacobi identity, it is easily seen that ad(x) is a derivation.
In fact [x, [y, z] = [[x, y], z] + [y, [x, z]].

A subspace I of a Lie algebra L is an ideal of L if, for any x ∈ L and y ∈ I,
the bracket [x, y] ∈ I. An important example of ideal of L is the derived algebra of
L, denoted by [L,L], which consists of the all linear combinations of commutators
[x, y], for x, y ∈ L.

We remind the following result on vector spaces.

Lemma 1.1.3. Let U, V be vector spaces and W a vector subspace of U . Let
f : U → V be a linear map, whose kernel contains W , and π : U → U/W the
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projection onto U/W . Then there exists a unique linear map f̄ : U/W → V such
that the following diagram commutes:

U
f

//

π
��

V

U/W
f̄

<<zzzzzzzz

Consider now a free Lie algebra L(X) over a set X. The following holds.

Lemma 1.1.4. Every mapping of X into L(X) can be extended uniquely to a
derivation of L(X).

The following result holds.

Lemma 1.1.5. Let D : L(X) → L(X) be a derivation and I an ideal of L(X)
such that I ⊆ ker(D). There exists and is unique a derivation D̄ : L(X)/I →
L(X)/I such that the following diagram commutes:

L(X)
π◦D

//

π

��

L(X)/I

L(X)/I
D̄

99rrrrrrrrrr

Proof. Since D and π◦D are a linear maps, as a consequence of Lemma 1.1.3
we have that there exists a unique linear map D̄ : L(X)/I → L(X)/I making the
diagram commute. The map D̄ takes an element x + I to D(x) + I . It is now
easy to verify that D̄ is a derivation too. In fact,

D̄([x+ I, y + I]) = D̄([x, y] + I)

= D([x, y]) + I = [Dx, y] + [x,Dy] + I

= [D̄(x+ I), y + I] + [x, D̄(y + I)].

�

1.1.4. Solvable, nilpotent and residually nilpotent Lie algebras. For
any Lie algebra L it is possible to define the derived series by L(1) = L,L(2) =
[L1, L1] and more generally L(i) = [L(i−1), L(i−1)]. We say that L is solvable, if
L(n) = 0, for some n. For example, if [x, y] = 0 for any x, y ∈ L (namely, L is
abelian), then L is solvable.

For any Lie algebra L it is also possible to define another sequence of ideals,
the lower central series, by L1 = L,L2 = [L,L] and, in general, Li = [LLi−1]. We
say that L is nilpotent if Ln = 0, for some n. As before, an abelian Lie algebra is
nilpotent and all nilpotent algebras are solvable.

Finally, we say that a Lie algebra L is residually nilpotent if ∩iLi = ∅.
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1.2. Graded Lie algebras of maximal class

We remind firstly what a graded vector space is. Denote by N+ the set of
positive integers and let V be a vector space. We say that V is graded if it can be
decomposed as a direct sum

V =
⊕
n≥1

Vn,

where each Vn is a vector space.
A graded Lie algebra L is a Lie algebra endowed with a gradation compatible

with the Lie bracket. Therefore there exists a family {Ln}n∈N+ of Lie algebras
such that L can be decomposed as a direct sum of vector spaces

L =
⊕
n≥1

Ln

and, for each ei ∈ Li and ej ∈ Lj,

[ei, ej] ∈ Li+j.

It is always possible to grade a Lie algebra L. In fact, we can define, for i ∈ N+,

Li = Li/Li+1

and then consider the algebra
∞⊕
i=1

Li.

Now, consider a graded Lie algebra

L =
∞⊕
i=1

Li.

If dim(Li/Li+1) <∞, for each i, and dim(Li/Li+1) ≤ 1, for all sufficiently large i,
then L has finite coclass. If this is the case, we define

cc(L) =
∑
i≥1

Li 6=0

(dim(Li/Li+1)− 1).

If cc(L) = 1, then L is of maximal class.
In [CMN97], [CN00] and [CVL00] the authors studied the following:

(1) infinite dimensional graded Lie algebras over a field of odd characteristic,
generated by two elements x, y of weight one, such that dim(L1) = 2,
dim(Li) = 1, for any i ≥ 2, and [Li, L1] = Li+1;

(2) infinite dimensional graded Lie algebras over a field of odd characteristic,
generated by two elements x, y of weights respectively 1 and 2, such that
dim(Li) = 1, for any i, and [Li, L1] = Li+1.

Of course, these are not the only possibilities for an infinite dimensional graded
Lie algebra over a field of odd characteristic to be of maximal class.
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We focused on another case. The object of study of our thesis has been the
infinite dimensional graded Lie algebras of maximal class over a field F of odd
characteristic p of the form

L = L1 ⊕
∞⊕
i=n

Li,

where each Li has dimension one, L1 = 〈e1〉, Ln = 〈en〉 and, for i > n, Li = 〈ei〉,
having defined inductively ei = [ei−1, e1].

From now on, when we refer to a graded Lie algebra of maximal class without
further specifications, we mean a graded Lie algebra as defined above.

1.3. Binomial identities and determinants

In the following we will use without further mention some identities for bino-
mial coefficients. Here we write down some of them.

Assume that m,n, r, s are integers.(
n

k

)
=

(
n

n− k

)
∑
k∈Z

(
r

m+ k

)(
s

n+ k

)
=

(
r + s

r −m+ n

)
(
r

m

)(
m

k

)
=

(
r

k

)(
r − k
m− k

)
.

We will often rely upon the following Theorem, named after Lucas.

Theorem 1.3.1 (Lucas’ Theorem). Let p be a prime and a, b two positive
integers. If

a = ahp
h + ah−1p

h−1 + · · ·+ a1p+ a0,

b = bhp
h + bh−1p

h−1 + · · ·+ b1p+ b0,

where h is a non-negative integer and 0 ≤ ai, bi < p for 0 ≤ i ≤ h, then

(1.3.1)

(
a

b

)
≡
(
ah
bh

)
·
(
ah−1

bh−1

)
. . .

(
a0

b0

)
(mod p).

As a consequence of Lucas’ theorem we deduce the following.

Corollary 1.3.2. If q = ph, for some prime p and positive integer h, and
0 ≤ a, b < q, then(

a

q − 1− b

)
≡ (−1)a+b

(
b

q − 1− a

)
(mod p).(1.3.2)

Proof. Suppose firstly that h = 1. Therefore 0 ≤ a, b < p. Consider

(p− 1)! = (p− 1)(p− 2) . . . (p− a) · (p− a− 1)! ≡ (−1)aa!(p− a− 1)! (mod p)

(p− 1)! = (p− 1)(p− 2) . . . (p− b) · (p− b− 1)! ≡ (−1)bb!(p− b− 1)! (mod p).
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Then,(
a

p− 1− b

)
=

a!

(p− 1− b)!(a− p+ 1 + b)!
=

a!(p− 1) . . . (p− b)
(p− 1)!(a− p+ 1 + b)!

≡ a!(−1)bb!

(−1)aa!(p− 1− a)!(a− p+ 1 + b)!

≡ (−1)a+b b!

(p− 1− a)!(a− p+ 1 + b)!

≡ (−1)a+b

(
b

p− 1− a

)
(mod p).

Now consider the case of h greater than 1. Let

a = ah−1p
h−1 + · · ·+ a1p+ a0;

b = bh−1p
h−1 + · · ·+ b1p+ b0;

q − 1− a = (p− 1− ah−1)ph−1 + · · ·+ (p− 1− a1)p+ (p− 1− a0);

q − 1− b = (p− 1− bh−1)ph−1 + · · ·+ (p− 1− b1)p+ (p− 1− b0).

By means of Lucas’ theorem we get:(
a

q − 1− b

)
≡

h−1∏
i=0

(
ai

p− 1− bi

)
≡

h−1∏
i=0

(−1)ai+bi

(
bi

p− 1− ai

)

≡
h−1∏
i=0

(−1)p
i(ai+bi)

(
bi

p− 1− ai

)
≡ (−1)a+b

(
b

q − 1− a

)
(mod p).

�

In some of our proofs it will be useful to evaluate the determinant of matrices
whose entries are binomials. The determinant evaluations we are going to write
down are taken by [Kra99].

The following holds.

Theorem 1.3.3. Let n be a positive integer, and let L1, L2, . . . , Ln and A,B
be indeterminates. Then there holds

det
1≤i,j≤n

((
BLi + A

Li + j

))
=

=

∏
1≤i<j≤n(Li − Lj)∏n

i=1(Li + n)!

n∏
i=1

(BLi + A)!

((B − 1)Li + A− 1)!

n∏
i=1

(A−Bi+ 1)i−1,

where (A−Bi+ 1)i−1 = (A−Bi+ 1) · (A−Bi+ 2) . . . (A−Bi+ i− 1), if i > 1,
or (A−Bi+ 1)i−1 = 1, if i = 1.
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If we set

Li = x− i
B = −1

A = 2x+ y

we deduce immediately the following

Corollary 1.3.4. Let x, y be integers. Then,

det
1≤i,j≤n

((
x+ y + i

x− i+ j

))
=

=

∏
1≤i<j≤n(j − i)∏n
i=1(x− i+ n)!

n∏
i=1

(x+ y + i)!

(y + 2i− 1)!

n∏
i=1

(2x+ y + i+ 1)i−1.

Another useful determinant evaluation is the following.

Lemma 1.3.5. Let a, b be nonnegative integers and n a positive integer. Then,

det
1≤i,j≤n

((
a+ b

a− i+ j

))
=

n∏
i=1

a∏
j=1

b∏
k=1

i+ j + k − 1

i+ j + k − 2
.





CHAPTER 2

The length of the first constituent

Through this section L will denote a graded Lie algebra of maximal class,
generated by two elements of weights 1 and n respectively, over a field F of char-
acteristic p > 2n.

We define the length and the type of a constituent in a graded Lie algebra of
maximal class M =

⊕
iMi generated by two elements of weight 1 and n such that

[Mi−1M1] = Mi in analogy with [CVL00].
Let e1 and en be the generators of the homogeneous components of weight

respectively 1 and n. We define inductively ei+1 = [ei, e1], for i ≥ n. Suppose that
[ek−1, en] = 0, but [ek, en] = λek+n 6= 0, for some integer k and non-zero λ ∈ F. Let
m, r be positive integers and suppose that [ek+m, en] = · · · = [ek+m+r−1, en] = 0.
Finally suppose that [ek+m+r, en] 6= 0. Let us denote [ei, en] = λiei+n for k ≤ i ≤
k +m− 1.

Definition 2.0.6. We call the pattern

[ek−1, en] = 0
[ei, en] = λi · ei+n for k ≤ i ≤ k +m− 1
[ei, en] = 0 for k +m ≤ i ≤ k +m+ r − 1

[ek+m+r, en] 6= 0

a constituent of length m+ r and type (λk, . . . , λk+m−1) or {λi}k+m−1
i=k .

We define separately the first constituent.

Definition 2.0.7. Let

[ei, en] = 0 for i ≤ n < k,

[ek, en] 6= 0,

for some integer k. We say that the length of the first constituent is k.

Denote by l the length of the first constituent of L. The following holds.

Lemma 2.0.8. The length l is even if and only if n is odd.

19



20 2. THE LENGTH OF THE FIRST CONSTITUENT

Proof. Take a positive integer n. If n is even, suppose that l is even too,
otherwise suppose that l is odd. In both cases l ± n is even. Then,

0 = [e l+n
2
, ene

l−n
2

1 ]

=

 l−n
2∑
i=0

(−1)i
(
l−n

2

i

)
λi+ l+n

2

 el+n

= (−1)
l−n
2 λlel+n,

in contradiction with the hypothesis that l is the length of the first constituent.
Hence, l is even if and only if n is odd. �

We begin proving a Lemma, we will use repeatedly through this and the fol-
lowing sections.

Lemma 2.0.9. Suppose that the length of the first constituent of L is l ≥ n+3,
namely [ei, en] = 0, for n ≤ i < l, and [el, en] = λlen+l, for some nonzero element
λl ∈ F.

Then

[el+n+i, en] = 0, for 0 ≤ i ≤ l − n− 3

2
.

More generally, if {λi}k+m−1
i=k is a constituent of length s+m and s ≥ l − n− 1

2
,

[ek+m+s+n+i, en] = 0, for 0 ≤ i ≤ l − n− 3

2
.

Proof. Since the length of the first constituent is l,

[ene
i
1, ene

i+1
1 ] = 0, for 0 ≤ i ≤ l − n− 3

2
.

Now we prove the thesis, in the general case, by induction on 0 ≤ i ≤ l − n− 3

2
.

The particular case follows taking k = n,m = 0, s = l − n.
When i = 0,

0 = [ek+m+s−1, [en, ene1]]

= λk+m+s[ek+m+s+n, en] = λk+m+s · λk+m+s+n · ek+m+s+2n,

hence λk+m+s+n = 0.
Suppose that λk+m+s+n+i = 0, for all integers i smaller or equal to r, where

0 ≤ r < l−n−3
2

. Then,

0 = [ek+m+s−r−2, [ene
r+1
1 , ene

r+2
1 ]]

= (−1)r+1λk+m+s

(
r+1∑
i=0

(
r + 1

i

)
(−1)iλk+m+s+n+i

)
ek+m+s+2n+r+1

= λk+m+s · λk+m+s+n+r+1ek+m+s+2n+r+1.

Hence, λk+m+s+n+r+1 = 0 and we are done. �
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Given an integer r, we define the parameter

εr =

{
0 if r is even
1 if r is odd.

We want to prove that the length of the first constituent takes the values

• n+ 1
• ph + εn, p

h + εn − 2, . . . , ph − (n− 2), for some positive integer h
• 2ph − (n− 1), for some positive integer h.

Firstly we prove the following.

Lemma 2.0.10. There is no graded Lie algebra of maximal class with the length
of the first constituent l, such that

rph + n ≤ l ≤ (r + 1)ph − n, for 1 ≤ r ≤ p− 1

Proof. According to Lemma 2.0.9,

(2.0.3) λl+n+j = 0 for 0 ≤ j ≤ l − n− 3

2
.

Now we can prove, by induction on i, that

(2.0.4) [el+n−i, en] = 0 for 0 ≤ i ≤ n.

The base step is trivially true. We write l = (r + 1)ph − n − k, for some
non-negative integer k. Suppose that (2.0.4) is true for all indices i smaller than
a given positive integer j < n. Consider

[el+n−j, ene
ph−n−k−j+1
1 ] =

=

ph−n−k−j+1∑
i=0

(−1)i
(
ph − n− k − j + 1

i

)
λl+n−j+iel+n−k−2j+1+ph .

We note that

l − n− 3

2
=

(r + 1)ph − 2n− 3− k
2

≥ ph − n− 3 + k − ε3+k

2
.

We know that λl+n+i = 0, for 0 ≤ i ≤ l − n− 3

2
. At the same time, λl+n−i = 0,

for 0 ≤ i < j.
Supposing that 0 ≤ i ≤ ph − n− k − j + 1 and j ≥ 1,

l + n− j + i ≤ l + n− 1 + ph − n− k − j + 1 ≤ l + n+ (ph − n− k − 1)

≤ l + n+ (ph − n− k + 3− εk+3

2
).



22 2. THE LENGTH OF THE FIRST CONSTITUENT

Hence,

[el+n−j, ene
ph−n−k−j+1
1 ] =

λl+n−jel+n−k−2j+1+ph

= −[eph−k−j+1, ene
(r+1)ph−k−j−n
1 ]

= −
(r+1)ph−k−j−n∑

i=0

(−1)i
(

(r + 1)ph − k − j − n
i

)
λph−k−j+1+iel+n−k−2j+1+ph

= −
r∑

h=0

(−1)h
(
r

h

) ph−k−j−n∑
i=0

(−1)i
(
ph − k − j − n

i

)
λ(h+1)ph−k−j+1+iel+n−k−2j+1+ph

= 0.

Therefore, also λl+n−j = 0. We conclude that all λl+n−j = 0, for 0 ≤ j ≤ n.
In particular λl = 0, in contradiction with the fact that the length of the first
constituent was l. �

Consider the following.

Lemma 2.0.11. There is no graded Lie algebra of maximal class with the length
of the first constituent l, such that

2ph − n+ 2 ≤ l ≤ 2ph,
rph − n ≤ l ≤ rph, when 3 ≤ r ≤ p− 1.

Proof. In Lemma 2.0.9 we proved that, if λi = 0, for i < l, and λl 6= 0, then
λi = 0, for l + n ≤ i ≤ l + n+ l−n−3

2
.

Consider

[ene
l+(1−r)ph−n
1 , ene

rph

1 ] = (−1)r−1

(
rph

(r − 1)ph

)
[el, ene

ph

1 ] = (−1)r−1rλl · el+ph+n

= −[erph+n, ene
l+(1−r)ph−n
1 ]

=

l+(1−r)ph−n∑
i=0

(−1)i+1

(
l + (1− r)ph − n

i

)
λi+rph+n · el+ph+n.(2.0.5)

We have that, for 0 ≤ i ≤ l + (1− r)ph − n,

l + n ≤ rph + n+ i ≤ l + ph.

If r = 2,

n+
l − n− 3

2
≥ 2ph − 1

2
,

namely λk = 0, for l + n ≤ k ≤ l + ph, hence the sum in (2.0.5) is 0. This implies
that λl = 0 and we are in contradiction.

If 3 ≤ r < p− 1,

n+
l − n− 3

2
≥ rph − 3

2
> ph,
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hence the sum in (2.0.5) is 0 is zero too and we are in contradiction with the
assumption λl 6= 0. �

We proceed proving the following.

Lemma 2.0.12. There is no graded Lie algebra of maximal class with the length
of the first constituent l, such that

rph < l < rph + n, for 2 ≤ r < p.

Proof. With the usual notation, suppose that λi = 0, for i < l and λl 6= 0,
where l is an integer greater than rph and smaller than rph+n for some 2 ≤ r < p.
Then λi = 0, for l + n ≤ i ≤ l + n + l−n−3

2
. We can write l = rph + k, for some

integer 1 ≤ k < n. Let q = ph.
Consider[

ene
rq+k
1 , ene

q−n
1

]
=

q−n∑
i=0

(−1)i
(
q − n
i

)
λrq+k+n+ien+(r+1)q+k = 0.

The sum just written is zero, since the coefficients λrq+k+n+i are zero. In fact,

l + n ≤ rq + k + n+ i ≤ (r + 1)q + k

and

l + n+
l − n− 3

2
=

3l + n− 3

2
= rq + k +

rq + k + n− 3

2

≥ rq + k + q +
k + n− 3

2
≥ rq + k + q,

since n ≥ 2 and k ≥ 1.
At the same time,

[ene
rq+k
1 , ene

q−n
1 ] = −[eq, ene

rq+k
1 ] =

≡
r∑

h=0

(−1)h
(
r

h

) k∑
i=0

(−1)i
(
k

i

)
λ(h+1)q+i

= (−1)r−1r(−1)kλrq+k.

Hence, λl = λrq+k = 0 and we are in contradiction with the initial hypothesis that
λl 6= 0. �

The cases l = q + εn − 2i, for q a power of p and 0 ≤ i ≤ n− 2 + εn
2

, and

l = 2q−n+1 have not been excluded. In fact, there exist Lie algebras of maximal
class for such values of l.

So far, we have not dealt with Lie algebras having first constituent length l
smaller than p− (n− 2) or such that ph < l < ph + n, for a positive integer h. As
regards the latter case, we have not yet proved the non-existence of Lie algebras
of maximal class with such first constituent length. Computations performed in
GAP suggest that there are no Lie algebras with such first constituent length. The
case of Lie algebras with l smaller than p− (n− 2) is still unsolved, but based on
a conjecture that we formulate in the subsection below.
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2.0.1. Length smaller than p-(n-2). Experimental results seem to support
the following

Conjecture 2.0.13. Let L be a graded Lie algebra of maximal class generated
by two elements of weights 1 and n over a field F of characteristic p > 2n. If
[ene1en] = λe2n+1, for some non-zero λ ∈ F, then

[ek, en] = λek+n, for all k > n.

Indeed, the conjecture is true for n = 2 (see [CVL00] for the details).
Suppose that there exists a graded Lie algebra of maximal class L with length

of the first constituent l such that n+ 1 < l < p− (n− 2). As usual, let us denote
the generators of the homogeneous components of weights 1 and n by e1 and en
and in general es = [en, e

s−n
1 ], for s > n. Define k = l − (n + 1). We note that k

is even, so we can take the integer m = n+ k
2
. Consider now the subalgebra M of

L generated by the elements e1 and em = [ene
k/2
1 ]. Such an algebra is of maximal

class with first constituent length equal to m+ 1. In fact

[em+1, em] = [em+1, ene
k/2
1 ] =

k/2∑
i=0

(−1)i
(
k/2

i

)
[em+1+iene

k/2−i
1 ]

= [el, en] = (−1)k/2λlel+n,

since [em+i+1, en] = 0, whenever m+ i+ 1 < l.
Moreover, p > 2m. In fact,

2m = 2n+ k = 2n+ l − (n+ 1) = n+ l − 1 < n+ p− (n− 2)− 1 = p+ 1.

Since 2m is even and 2m < p+ 1, it follows that 2m ≤ p− 1.
What we have just proved implies that M is a graded Lie algebra of maximal

class generated in weights 1 and m and such that the length of the first constituent
is m+ 1, where p > 2m. Then,

[ek, em] = (−1)k/2λlek+m, for k > m.

This fact implies that in L the following holds

(2.0.6) [el+i, en] = (−1)i
(
p− k/2− 1

i

)
λlel+n+i for 0 ≤ i ≤ p− k/2− 1.

This can be proved by induction. The base step is obvious, since

[el, en] = λlel+n.
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Now we prove the inductive step. To do that, suppose to have proved (2.0.6) for
0 ≤ i ≤ r − 1. Then,

(−1)k/2λlel+r+n = [em+1+r, ene
k/2
1 ]

=

k/2−1∑
j=0

(−1)j
(
k/2

j

)
[em+1+r+jene

k/2−j
1 ] + (−1)k/2[el+r, en]

= (−1)r−k/2λl

k/2−1∑
j=0

(
k/2

j

)(
p− k/2− 1

j − (k/2− r)

)
el+r+n + (−1)k/2[el+r, en]

= (−1)r−k/2λl

((
p− 1

r

)
−
(
p− k/2− 1

r

))
el+r+n + (−1)k/2[el+r, en]

= λl

(
(−1)k/2 − (−1)r−k/2

(
p− k/2− 1

r

))
el+r+n + (−1)k/2[el+r, en].

Hence,

[el+r, en] = (−1)r
(
p− k/2− 1

r

)
λlel+r+n.

We remind that n + 1 < l < p − (n − 2), so [ene1en] = 0. It follows that
[el+n, en] = 0. Moreover,

n+
k

2
+ 1 = m+ 1 < l < p,

namely n < p− (k
2

+ 1), so we are in contradiction with the fact that

[el+n, en] = (−1)n
(
p− k/2− 1

n

)
λlel+2n 6= 0.





CHAPTER 3

Lie algebras with given first constituent lengths

We will denote by L a graded Lie algebra of maximal class, generated in weights
1 and n, over a field F of characteristic p.

3.1. First constituent length 2q − n+ 1

In all this section we assume that q is a power of p, a prime integer greater
than 2n. In the following we will characterize the subalgebra, generated by the
elements of weights 1 and n, of a graded Lie algebra of maximal class generated by
two elements of weight one. The arguments used go back to [CVL00]. The reader
can find the relevant definitions and the classification of graded Lie algebras of
maximal class generated by two elements of weight one in [CMN97] and [CN00].

Let L be a graded Lie algebra of maximal class generated by two elements x
and y of weight 1. Without loss of generality we assume that y generates the first
two-step centralizer, namely C2 = 〈y〉. Suppose that in L we have the following
sequence of two-step centralizers,

C2 = Cr−2 = Cr−1, Cr = 〈y − λx〉 6= C2, Cr+1 = · · · = Cr+n = C2.

Note in passing that Cr+1 = · · · = Cr+p−1 = C2 by the properties of the two-
step centralizers proved in [CMN97]. By our assumption p > 2n it follows that
Cr+1 = · · · = Cr+n = C2.

Let en = [yxn−1] and in general ei = [yxi−1], for i > 1.
We have that

[er−n+1, en] = [er−n+1, yx
n−1] =

= (−1)n−1([er, y − λx] + [er, λx])

= (−1)n−1λer+1.

More in general, for 0 ≤ i ≤ n− 1,

[er−i, en] = (−1)i
(
n− 1

i

)
λer+n−i.

We have just proved that the subalgebra generated by the elements of weight
one and n of a graded Lie algebra of maximal class generated by two elements of
weight one has all constituents of type{

(−1)n−1+i

(
n− 1

i

)
λ
}n−1

i=0
,

for some λ 6= 0.

27
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Under certain hypotheses the converse holds too. Firstly we note that, as a
consequence of Lemma 2.0.9, the following holds.

Lemma 3.1.1. Let L be a graded Lie algebra of maximal class generated by two
elements e1, en of weight 1 and n with the length of the first constituent equal to
2q − (n − 1). In the multiplication table, denote [ei, en] = λiei+n. Suppose that,
for some integer k ≥ 2q − n + 1, the coefficient λk 6= 0 and that λk−n−1 = · · · =
λk−1 = 0. Then λk+n = · · · = k + 2n = 0.

Lemma 3.1.2. Let g be a graded Lie algebra of maximal class generated by
two elements of weight 1 and n with the length of the first constituent equal to
2q − (n− 1). Suppose that all the constituents are of type

{λj+i}n−1
i=0 =

{
(−1)i

(
n− 1

i

)
λj

}n−1

i=0

for j ∈ J ⊂ N and λj ∈ F.

Then g is isomorphic to a subalgebra of a graded Lie algebra of maximal class
generated by two elements of weight one.

Proof. For n = 2 the result has been already proved in [CVL00]. Take
n > 2 and suppose that g is a graded Lie algebra of maximal class generated by
two elements e1, en of weights respectively 1 and n. Such generators are related
by the relators [ej+i, en] + (−1)i+1

(
n−1
i

)
λjen+j+i, when j ∈ J and 0 ≤ i ≤ n − 1,

and [ek, en] if k is not one of the integers j + i, for some j ∈ J and 0 ≤ i ≤ n− 1.
We want to extend g by a derivation of weight n − 1 on g. In such a way we
get a graded Lie algebra of maximal class generated by two elements of weight
1 and n − 1, which, by inductive hypothesis, is isomorphic to a subalgebra of a
graded Lie algebra of maximal class generated by two elements of weight 1. Let
X = {e1, en} and L(X) the free Lie algebra over X. Define

D : X → L(X)
e1 7→ en
en 7→ 0

We can extend D uniquely to a derivation of L(X) according to Lemma 1.1.4.
Consider in L(X) the ideal I generated by the relators introduced above. The
quotient algebra L(X)/I is then isomorphic to g.

We can order the elements of J and say that j1 < j2 < . . . . Now we prove
that D(ek) = 0 for the integers k ≤ j1. Of course the assertion is true for k = n.
Suppose to have proved the assertion for an integer k − 1 < j1. Then, D(ek) =
D([ek−1, e1]) = [Dek−1, e1] + [ek−1, De1] = [ek−1, en] = 0.

Suppose now to have reached the beginning of a constituent. That means that
we have k = j, for some j ∈ J . We have that [ej−1, en] = 0 and [ej, en] =
ej+n. Moreover, D(ej) = 0. Therefore D(ej+1) = D([ej, e1]) = [Dej, e1] +
[ej, De1] = [ej, en] = λjej+n. By inductive hypothesis, suppose that D(ej+i) =
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(−1)i−1
(
n−2
i−1

)
λjej+i+n, for some i such that 0 ≤ i < n− 2. Then,

D(ej+i+1) = D([ej+i, e1]) = [Dej+i, e1] + [ej+i, De1]

=

(
(−1)i−1

(
n− 2

i− 1

)
+ (−1)i

(
n− 1

i

))
λjej+i+n+1

= (−1)i
(
n− 2

i

)
λjej+i+n+1.

This proves that

Dej+i = (−1)i−1

(
n− 2

i− 1

)
λjei+j+n for 0 ≤ i ≤ n− 1.

Now consider ji + n ≤ k ≤ ji+1. If k = ji + n, then D(ek) = D([eji+n−1, e1]) =
(−1)n−2 + (−1)n−1. If we have already proved that D(ek) = 0, for some ji + n ≤
k < ji+1, then D(ek+1) = [Dek, e1] + [ek, en] = 0.

Now we check that I ⊆ ker(D). We do that considering the generators of I,
namely the relators defined above. If k 6= j, j+1, . . . , j+(n−1) for some j ∈ J , it
is easily verified that D([ek, en]) = [Dek, en] + [ek, Den] = 0. Conversely, suppose
that k = j + i, for some j ∈ J and i = 0, 1, . . . , n− 1. Then,

D([ej+i, en]) = [Dej+i, en] = (−1)i−1

(
n− 2

i− 1

)
[ej+i+n−1, en] = 0.

Hence we have extended g to a graded Lie algebra of maximal class generated by
one element of weight 1 and n− 1, namely e1 and D. �

Using the previous result we will prove that, if a graded Lie algebra of maximal
class L has the length of the first constituent equal to 2q−n+1, then it is obtainable
from a graded Lie algebra of maximal class generated by two elements of weight
one.

Let L be generated by the elements e1 and en of weight respectively 1 and n.
Suppose that the first constituent has length l = 2q−(n−1), where q = ph, for some
positive integer h. With the usual notation it means that in the multiplication
table λi = 0 for i < l, while λl 6= 0. Up to scaling en we can suppose that λl = 1.
We remind that λl+n+i = 0, for 0 ≤ i ≤ n. Consider the following relations:[

eq+h, ene
q+h−n
1

]
= 0 for 1 ≤ h ≤ n− 1.

For a fixed h we have then
q+h−n∑
i=0

(−1)i
(
q − (n− h)

i

)
λq+h+ie2q+2h = 0.

We note that each integer q+h+ i is not greater than 2q+n−2. Since λq+h+i 6= 0
if and only if 2q − (n− 1) ≤ q + h + i ≤ 2q, we can consider the sum above over
a smaller range of indices, namely for q − h− (n− 1) ≤ i ≤ q − h. Fix an integer
h. Then i = q − (n− 1)− h+ j, for some 0 ≤ j ≤ n− 1. By Lucas’ theorem(

q − (n− h)

i

)
≡
(

p− (n− h)

p− (n− 1)− h+ j

)
(mod p).
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We can rewrite the previous sums as

n−1∑
j=0

(−1)j
(

p− (n− h)

p− (n− 1)− h+ j

)
λ2q−(n−1)+je2q+2h = 0 for 1 ≤ h ≤ n− 1.

Taking into consideration the fact that λ2q−n+1 = 1, such equalities can be
reformulated in the following non-homogenous linear system


(
p−n+1
p−n+1

)
−
(
p−n+1
p−n+2

)
. . . (−1)n

(
p−n+1
p−1

)(
p−n+2
p−n

)
−
(
p−n+2
p−n+1

)
. . . (−1)n

(
p−n+2
p−2

)
...

...
...(

p−1
p−2n+3

)
−
(

p−1
p−2n+4

)
. . . (−1)n

(
p−1

p−n+1

)



λ2q−(n−2)

λ2q−(n−3)
...
λ2q

 =


1
1
...
1


We aim at evaluating the determinant of the matrix associated to this system.

By basic properties of the determinant of a matrix, it is equal to

(3.1.1) ± det

((
p− n+ i

p− n+ 1− i+ j

))
i,j=1,...,n−1

.

If we prove that determinant 3.1.1 is not congruent to zero (mod p), the (n− 1)-
dimensional square matrix has full rank, hence the solution of the non-homogeneous
system is unique. We rely upon Corollary 1.3.4 in order to evaluate determinant
3.1.1. According to the notation of the corollary we set x = p−n+ 1 and y = −1.
Hence,

det

((
p− n+ i

p− n+ 1− i+ j

))
i,j=1,...,n−1

=

=

∏
1≤i<j≤n−1(j − i)∏n−1

i=1 (p− i)!

n−1∏
i=1

(p− n+ i)!

(2i− 2)!

n−1∏
i=1

(2p− 2n+ 2 + i)i−1.

In this expansion no factor is divisible by p. In fact, 0 < j − i < n− 2, whichever
values of i, j we take in the range 1, . . . , n− 1. As regards the factors (p− n+ i)!,
they are the product of integers not greater than p− 1. We must take care at the
factors

(2p− 2n+ 2 + i)i−1 = (2p− 2n+ 2 + i) · (2p− 2n+ 2 + i+ 1) . . . (2p− 2n+ 2i).

It is easily seen that each of the factors is greater than p, being p > 2n. Moreover,
each factor is smaller or equal to

2p− 2n+ 2i ≤ 2p− 2n+ 2n− 2 = 2p− 2.

We can conclude that our non-homogeneous system admits exactly one solu-
tion. By means of elementary properties of binomial coefficients, we can determine
the solution. Indeed, the vector

(λ2q−(n−2), . . . , λ2q) =

(
−
(
n− 1

1

)
,

(
n− 1

2

)
, . . . , (−1)n−1

(
n− 1

n− 1

) )
gets the job done.



3.1. FIRST CONSTITUENT LENGTH 2q − n + 1 31

Our next goal is proving that all the constituents are of the form

(3.1.2)

{
(−1)i

(
n− 1

i

)
λj

}n−1

i=0

for some λj 6= 0 ∈ F

and with length at least q and not exceeding 2q. We suppose to have proved the
assertion up to a certain constituent ending with λk−1 = 0. Moreover suppose to
have proved that

λk+i = (−1)i
(
n− 1

i

)
λk for 0 ≤ i ≤ n− 1 and λk 6= 0 ∈ F.

We want to prove that {λk+1}i=0,...,n−1 is the beginning of a constituent of length at
least q and not greater than 2q. We begin proving that λk+n = · · · = λk+q−1 = 0.
By Lemma (3.1.1) the coefficients λk+n = · · · = λk+2n = 0. Suppose to have
proved that λk+2n = · · · = λk+r−1 = 0 for a certain r such that 2n < r < q = ph.
We prove that also λk+r = 0. We note that

0 =
[
ek+(n−2), [ene

r−(2n−2)
1 en]

]
,

which implies that

0 =
(
λk+(n−2) − (r − (2n− 2))λk+(n−1) − (−1)r−(2n−2)λk+(n−2)

)
λr.

If r is even we get (r − (2n− 2))λk+(n−1)λr = 0, hence λr = 0.
We deal now with the case r odd. We get then

0 =
(
2λk+(n−2) − (r − (2n− 2))λk+(n−1)

)
λr.

If r 6≡ 0 (mod p), we have that
(
2λk+(n−2) − (r − (2n− 2))λk+(n−1)

)
6≡ 0 (mod p),

hence λr ≡ 0 (mod p).
Suppose now that r ≡ 0 (mod p). We can write r = βpt, for some integer β 6≡ 0

(mod p). Moreover r < q, hence pt < ph = q. Since r+pt−n = (β+1)pt−n ≤ q−n,
the following holds:

0 =
[
ek−pt , [ene

r+pt−n
1 en]

]
.

Since we have already proved that all the previous constituents are of type (3.1.2)
and have length at least q, this relation implies

0 =

(
n−1∑
i=0

(
r + pt − n
pt + i

)(
n− 1

i

)
λk

)
λk+r.

Let us concentrate for a moment on the binomials which appear in the previous
sum: (

r + pt − n
pt + i

)
≡
(
β

1

)(
p− n
i

)
(mod p).

Hence we can rewrite the previous sum as

0 =

(
n−1∑
i=0

(
p− n
i

)(
n− 1

i

)
λk

)
λk+r

=

(
p− 1

p− n

)
λkλk+r.
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Since neither
(
p−1
p−n

)
nor λk are equivalent to zero (mod p), we conclude that

λk+r ≡ 0 (mod p).
Now we prove that the length of the new constituent is at most 2q. Suppose,

on the converse, that λk+n = λk+n+1 = · · · = λk+2q = 0. Then,

0 = [ek+n−1, ene
2q−2n+1
1 en − ene2q−n+1

1 ]

implies that λk+n−1 = 0 and this is in contradiction with our hypotesis. Hence,
we have proved that the constituent has length not shorter than q and not longer
than 2q. Let r be the length of the constituent. If r < 2q − 1,

0 = [ek+(n−2), [ene
r−(2n−2)
1 en]].

With the same argument used above we deduce that r must be divisible by p. If
this is the case, r = βpt, for some positive integer t and β 6≡ 0 (mod p). Consider

0 = [ek−(2q−βpt−n), ene
2q−2n+1
1 en − ene2q−n+1

1 ].

Firstly,

[ek−(2q−βpt−n), ene
2q−2n+1
1 en] =

= (−1)βp
t+n

(
n−1∑
i=0

(−1)i
(

2q − 2n+ 1

2q − βpt − n+ i

)
λk+i

)
λk+rek+r+n

≡ (−1)βp
t+n

(
2ph−1 − 1

2ph−1 − βpt−1 − 1

)(n−1∑
i=0

(−1)i
(
p− 2n+ 1

p− n+ i

)
λk+i

)
λk+rek+r+n

≡ 0 (mod p).

Moreover,

[ek−(2q−βpt−n), ene
2q−n+1
1 ]

= (−1)βp
t+n

(
n−1∑
i=0

(−1)i
(

2q − n+ 1

2q − βpt − n+ i

)
λk+i

)
ek+r+n+1

+(−1)n

(
1∑
i=0

(−1)i
(

2q − n+ 1

2q − n+ i

)
λk+r+i

)
ek+r+n+1

≡ (−1)βp
t+n

(
2ph−1 − 1

2ph−1 − βpt−1 − 1

)(n−1∑
i=0

(
p− n+ 1

p− n+ i

)(
n− 1

i

)
λk

)
ek+r+n+1

+(−1)n

(
1∑
i=0

(−1)i
(

2q − n+ 1

2q − n+ i

)
λk+r+i

)
ek+r+n+1 (mod p)

≡ (−1)n

(
1∑
i=0

(−1)i
(

2q − n+ 1

2q − n+ i

)
λk+r+i

)
ek+r+n+1 (mod p)
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Summing all up, we have that

0 = [ek−(2q−βpt−n), ene
2q−2n+1
1 en − ene2q−n+1

1 ]

≡

(
1∑
i=0

(−1)i
(
p− n+ 1

p− n+ i

)
λk+r+i

)
ek+r+n+1 (mod p)

Hence λk+r+1 = −
(
n−1

1

)
λk+r.

Suppose now to have proved that λk+r+i = (−1)i
(
n−1
i

)
λk+r, for i = 0, 1, . . . , j−

1 < n− 1. With the same argument used before, we consider the relation

0 = [ek−(2q−βpt−n)+j−1, ene
2q−2n+1
1 en − ene2q−n+1

1 ].

We observe that

[ek−(2q−βpt−n)+j−1, ene
2q−2n+1
1 en] ≡

≡
(

2ph−1 − 1

2ph−1 − βpt−1 − 1

)(n−1∑
i=0

(−1)i
(

p− 2n+ 1

p− n− j + 1 + i

)
λk+i

)
λk+r+jek+r+j+n

≡ 0 (mod p).

Moreover,

[ek−(2q−βpt−n)+j−1, ene
2q−n+1
1 ]

= (−1)βp
t−n−j+1

(
n−1∑
i=0

(−1)i
(

2q − n+ 1

2q − βpt − n− j + 1 + i

)
λk+i

)
ek+r+n+j

+(−1)n+j−1

(
n−1∑
i=0

(−1)i
(

2q − n+ 1

2q − n− j + 1 + i

)
λk+r+i

)
ek+r+n+j

≡ (−1)βp
t−n−j+1

(
2ph−1 − 1

2ph−1 − βpt−1 − 1

)(n−1∑
i=0

(
p− n+ 1

p− n− j + 1 + i

)(
n− 1

i

)
λk

)
ek+r+n+j

+(−1)n+j−1

(
n−1∑
i=0

(−1)i
(

2q − n+ 1

2q − n− j + 1 + i

)
λk+r+i

)
ek+r+n+j (mod p)

≡ +(−1)n+j−1

(
n−1∑
i=0

(−1)i
(

2q − n+ 1

2q − n− j + 1 + i

)
λk+r+i

)
ek+r+n+j (mod p)

Summing all up, we have that

0 = [ek−(2q−βpt−n)+j−1, ene
2q−2n+1
1 en − ene2q−n+1

1 ]

≡

(
j∑
i=0

(−1)i
(

p− n+ 1

p− n− j + 1 + i

)
λk+r+i

)
ek+r+n+j (mod p)

Hence λk+r+j = (−1)j
(
n−1
j

)
λk+r.
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We deal now with the cases of a constituent of length 2q − 1 or 2q. In both
cases, λk+n = · · · = λk+2q−2 = 0. If the length of the constituent is 2q− 1 consider
the relations[

ek+2n−2+i, ene
2q−2n+1
1 en − ene2q−n+1

1

]
= 0, 0 ≤ i ≤ n− 2,

while, if the length is 2q, consider[
ek+2n−1+i, ene

2q−2n+1
1 en − ene2q−n+1

1

]
= 0, 0 ≤ i ≤ n− 2.

By Lemma (3.1.1), in the case of length 2q− 1, the coefficients λk+2q−1+n = · · · =
λk+2q−1+2n = 0, while in the other case the coefficients λk+2q+n = · · · = λk+2q+2n =

0. As a consequence we have that in the former case
[
ek+2n−2+i, ene

2q−2n+1
1 en

]
= 0,

while in the latter
[
ek+2n−1+i, ene

2q−2n+1
1 en

]
= 0. Hence we have in the two cases

respectively [
ek+2n−2+i, ene

2q−n+1
1

]
= 0, 0 ≤ i ≤ n− 2,[

ek+2n−1+i, ene
2q−n+1
1

]
= 0, 0 ≤ i ≤ n− 2.

As a consequence the following equalities hold respectively

0 =
n−1∑
j=0

(−1)j
(

2q − n+ 1

2q − 1− 2n+ 2− i+ j

)
λk+2q−1+j

≡
n−1∑
j=0

(−1)j
(

p− n+ 1

p− 2n+ 1− i+ j

)
λk+2q−1+j (mod p),

0 ≡
n−1∑
j=0

(−1)j
(

p− n+ 1

p− 2n+ 1− i+ j

)
λk+2q+j (mod p).

Let us denote v1 = (λk+2q−1, λ2q, . . . , λ2q+n−2) and v2 = (λk+2q, λ2q+1, . . . , λ2q+n−1).
Moreover, let µ1 = λ2q−1 and µ2 = λ2q and

cr = −µr ·
((

p− n+ 1

p− 2n+ 1

)
,

(
p− n+ 1

p− 2n

)
, . . . ,

(
p− n+ 1

p− 2n− n+ 3

))
,

where r takes values 1 or 2.
The relations just written give rise to the following linear systems
−
(

p−n+1
p−2n+1+1

) (
p−n+1

p−2n+1+2

)
. . . (−1)n−1

(
p−n+1

p−2n+1+(n−1)

)
−
(
p−n+1
p−2n+1

) (
p−n+1
p−2n+2

)
. . . (−1)n−1

(
p−n+1

p−2n+(n−1)

)
...

...
...

...
−
(

p−n+1
p−2n−n+3+1

) (
p−n+1

p−2n−n+3+2

)
. . . (−1)n−1

(
p−n+1

p−2n−n+3+(n−1)

)
 · vTr = cTr

Denote by A the matrix of the coefficients of the system above. We want to prove
that A has full rank, namely n− 1. This will be done evaluating the determinant
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of the matrix B such defined

B =

((
p− n+ 1

p− 2n+ 2− i+ j

)
ij

)
, for i, j = 1, . . . n− 1.

Since det(B) = ± det(A), the determinant of A is non zero if and only if det(B)
is different from zero. We rely upon Lemma (1.3.5) in order to evaluate det(B).
Using the notation of the Lemma, we set a = p− 2n+ 2 and b = n− 1. Then,

det(B) =
n−1∏
i=1

p−2n+2∏
j=1

n−1∏
k=1

i+ j + k − 1

i+ j + k − 2
.

We note that

1 < i+ j + k − 1 ≤ (n− 1) + (p− 2n+ 2) + (n− 1)− 1 = p− 1.

Hence det(B) 6≡ 0 (mod p). So we are done. Now it is an easy matter to determine
the solution of the nonhomogeneous system, namely

vr =

{
(−1)j

(
n− 1

j

)
µr

}
for 0 ≤ j ≤ n− 1.

Hence we have proved that all the constituents of a graded Lie algebra, with length
of the first constituent equal to 2q − (n − 1), are of type {(−1)j

(
n−1
j

)
µ}0≤j≤n−1.

By Lemma (3.1.2) such an algebra is obtainable by a graded Lie algebra generated
by two elements of weight one.

3.2. First constituent length (q − n+ 4, q + 1)

When p > 4n, the following result holds.

Lemma 3.2.1. If p > 4n and the length of the first constituent of L is q+εn−2i,
where 0 ≤ i ≤ n+εn−2

2
, then

λq+εn−2i+n+k = 0 for 0 ≤ k ≤ q − 1− 2n

2

and at least one among the coefficients λq+k, with 1 ≤ k ≤ n, is different from
zero.

Proof. The first part of the Lemma is a direct consequence of Lemma 2.0.9.
In fact, being q + εn − 2i ≥ q − n+ 2, we have that

l − n− 3

2
≥ q − 2n+ 2− 3

2
.

Hence, λq+εn−2i+n+k = 0 for 0 ≤ k ≤ q−1−2n
2

.
As regards the second part of the Lemma, suppose that λq+k = 0, for 1 ≤ k ≤

n. Take into consideration the following relations:[
ene

q−2n+1
2

+i

1 , ene
q−2n+1

2
+i

1

]
= 0, for 1 ≤ i ≤ n− 1
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Such n− 1 relations give rise to a homogeneous system of n− 1 linear equations
in the indeterminates λi, for q − n+ 2 ≤ i ≤ q. The n− 1 linear equations are

(3.2.1)
2n−2∑
j=1

(−1)j
( q−2n+1

2
+ i

q−2n+1
2
− i+ j

)
λq−n+1+j = 0, for 1 ≤ i ≤ n− 1.

We note that

q − 2n+ 1 + 2i = (p− 1 + 2i− 2n+ 2) +
h−1∑
l=1

pl(p− 1)

q − 2n+ 1− 2i+ 2j = (p− 1 + 2− 2n− 2i+ 2j) +
h−1∑
l=1

pl(p− 1).

Hence, by Lucas’ theorem,( q−2n+1
2

+ i
q−2n+1

2
− i+ j

)
≡
( p−1

2
− (−i+ n− 1)

p−1
2
− (−j + i+ n− 1)

)
(mod p).

Since λq+εn−2i+n+k = 0 for 0 ≤ k ≤ q−1−2n
2

, the coefficients aij of the matrix A
associated with the equations (3.2.1) are

aij = (−1)j
(

(p−1
2
− n+ 1) + i

(p−1
2
− n+ 1)− i+ j

)
, for 1 ≤ i, j ≤ n− 1.

We want to prove that the determinant of A is different from zero. We can
multiply each column of A by −1 and get the matrix B, having the same deter-
minant of A up to the sign. For the sake of the clarity, we write c = p−1

2
− n+ 1.

So the entries of the matrix B are

bij =

(
c+ i

c− i+ j

)
, for 1 ≤ i, j ≤ n− 1.

It is possible to evaluate the determinant of B using the result given in Corollary
(1.3.4). The evaluation of the determinant of B is

det
1≤i,j≤n−1

((
c+ i

c− i+ j

))
=

∏
1≤i<j≤n(j − i)∏n−1
i=1 (c− i+ n)!

n−1∏
i=1

(c+ i)!

(2i− 1)!

n−1∏
i=1

(2c+ i+ 1)i−1

The factors (j−i) are not divisible by p, whichever the values of i and j are. As
regards the factors (c+ i)!, they are product of integers not greater than (p−1)/2.
Consider finally the terms (2c + i + 1)i−1, for i not greater than n− 1. They are
defined as

(2c+ i+ 1)i−1 = (2c+ i+ 1) · (2c+ i+ 2) . . . (2c+ 2i− 1).

We note that

0 < 2c+ i+ 1 ≤ · · · ≤ 2c+ 2i− 1 ≤ p− 2.

Hence none of the (2c+ i+ 1)i−1 is divisible by p. We conclude that det(B) is not
divisible by p and the same holds for det(A). This implies that the n−1 equations
in (3.2.1) are linearly independent over F, hence zero is the only element in Fn
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satisfying them. But this implies that the coefficient λl = 0, in contradiction with
the fact that l is the length of the first constituent. �

The following holds

Lemma 3.2.2. Let l be the length of the first constituent. Suppose that q− (n−
2) ≤ l ≤ q + εn. Let k be a nonnegative integer.

If k is odd suppose that at least one among λ(k+1)q, . . . , λ(k+1)q+n is nonzero.
If k is even suppose that at least one among λ(k+1)q+1, . . . , λ(k+1)q+n is nonzero.
If k > 0, suppose that one of the following holds:

(1) for 0 ≤ h < k,

λl+hq 6= 0
λl+hq+n = · · · = λl+(h+1)q−1 = 0
λl+(h+1)q 6= 0;

(2) for 0 < h < k,

λl+hq−1 6= 0
λl+hq−1+n = · · · = λl+(h+1)q−2 = 0

and

λl+n = · · · = λl+q−2 = 0

λl+kq−1 6= 0.

Then, in case (1) or k = 0,

λl+kq+n = · · · = λl+(k+1)q−2 = 0,

while, in case (2),
λl+kq−1+n = · · · = λl+(k+1)q−3 = 0

Proof. Set c = l + kq, in case (1) or k = 0, or c = l + kq − 1 in case (2).
From Lemma 2.0.9 it follows that

λc+n = λc+n+1 = · · · = λc+ l−n−3
2

+n = 0.

Define r = max{(k + 1)q ≤ t ≤ (k + 1)q + n : λt 6= 0}. We want to prove by
induction on i that

λc+ l−n−3
2

+n+i = 0, for any 0 ≤ i ≤ q − 2− l − n− 3

2
− n

The base case has been already proved. Suppose to have proved that λc+ l−n−3
2

+n+t =

0, for some 0 ≤ t < q − 2 − l−n−3
2
− n. Define s = c + l−n−3

2
− r. We note that

s+ t+ 1 < l − 1− n, hence [
er, ene

s+t+1
1 en

]
= 0.

If s+ t is even,

0 =
[
er, ene

s+t+1
1 en

]
= 2λrλr+n+s+t+1e2n+r+s+t+1
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and we get λr+n+s+t+1 = 0.
If s+ t is odd and r even,

−λn+r+s+t+1e2n+r+s+t+1 =

=
[
en, ene

r+s+t+1
1

]
= (λn+r+s+t+1)e2n+r+s+t+1,

hence λn+r+s+t+1 = 0 and we are done. Here we used the fact that

r + s+ t+ 1 < (k + 1)q + (l − 2)

If s+ t is odd and r odd,

−λn+r+s+t+2e2n+r+s+t+2 =

=
[
en, ene

r+s+t+2
1

]
= (−(r + s+ t+ 2)λn+r+s+t+1 + λn+r+s+t+2)e2n+r+s+t+2,

At the same time,

0 =
[
er, ene

s+t+2
1 en

]
= λr(−(s+ t+ 2)λn+r+s+t+1 + 2λr+n+s+t+2 − (s+ t+ 2))e2n+r+s+t+2

Hence, [
-(r+s+t+2) 2

-(s+t+2) 2

] [
λn+r+s+t+1

λn+r+s+t+2

]
=

[
0
0

]
We remind that (k + 1)q ≤ r ≤ (k + 1)q + n and r can assume the value (k + 1)q
if and only if k is odd, namely r = (k + 1)q is even. In our case, r is odd, hence
r 6≡ 0 (mod p). Then, the matrix of coefficients of the system above has rank 2,
hence the unique solution of the system is λn+r+s+t+1 = λn+r+s+t+2 = 0.

�

Let q = ph for some positive integer h and q − (n − 2) ≤ l ≤ q + 1. Denote
by g(n, l) the number of graded Lie algebras of maximal class, up to a rescaling of
en, generated by two elements of weight 1 and n respectively and with the length
of the first constituent equal to l. The purpose of all the forthcoming results is to
prove that, under the assumption p > 4n:

g(n, l) ≤
{

1, if l = q + 1 or q − (n− 2)
2, if n > 3 and l = q or l = q + εn − 2i for some 1 ≤ i ≤ n−4+εn

2

For the time being we have proved that, if the length l of the first constituent
is such that q − (n− 2) ≤ l ≤ q + 1, then λl+n = · · · = λl+q−2 = 0. Consider now
the following:

−λl+qel+q = [en, ene
l+q−n
1 ] ≡

≡
(
−
(
l − n
l − n

)
λl −

(
l − n

l − n− 1

)
λl+q−1 + λl+q

)
el+q (mod p).

Hence, 0 ≡ −λl − (l − n)λl+q−1 + 2λl+q (mod p). Since λl 6≡ 0 (mod p) it is not
possible that both λl+q−1 and λl+q are congruent to zero modulo p. Then we have
two possible cases:
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(1) λl 6= 0, λl+n = · · · = λl+q−2 = 0 and λl+q−1 6≡ 0 (mod p)
(2) λl 6= 0, λl+n = · · · = λl+q−1 = 0 and λl+q 6≡ 0 (mod p).

We note that in case 1 also λl+(n−1) = 0. In fact,

0 = [el+(n−1), ene
q−2n
1 en]

= 2λl+(n−1)λl+q−1el+q−1+n.

Let c = l + q − 1 in case 1 and c = l + q in case 2. Then,

λc+n = · · · = λc+n+ l−n−3
2

= 0.

Suppose that

(3.2.2) λ2q = λ2q+1 = · · · = λc = · · · = λc+n+ l−n−3
2

= 0.

Define d = l − 1 in case 1 and d = l in case 2.
Suppose firstly that 2i− εn = −1. This means that i = 0 and εn = 1, namely

l = q + 1. In case 1 this implies λ2q 6= 0 and we are in contradiction with (3.2.2).
In case 2, we get λ2q = 0 and λ2q+1 6= 0 and we are still in contradiction with
(3.2.2).

Suppose now that 2i− εn = 0. This means that l = q. In case 1, we have that
λ2q−1 6= 0. At the same time, the following holds:

0 = [eq+(n−1), ene
q−1
1 ],

which implies that

0 =

(
q−1∑
j=0

(−1)j
(
q − 1

j

)
λq+(n−1)+j

)
e2q+2n−2

=

(
q − 1

q − 1− (n− 1)

)
λ2q−1e2q+2n−2.

Hence λ2q−1 = 0 and we are still in contradiction. In case 2, we have that λ2q 6= 0
and this is an absurd.

If 2i− εn > 0 consider the following relations:

[ed+n, ene
d
1] = 0
...

...
...(3.2.3) [

ed+n+2i−εn−1, ene
d+2i−εn−1
1

]
= 0

and, if d = l − 1, also [
ed+n+2i−εn , ene

d+2i−εn
1

]
= 0.

More explicitly, c = 2q + εn − 2i− 1 in case 1 and 2q + εn − 2i in case 2.
The relations above can be expanded as follows,(

d+r∑
j=0

(−1)j
(
d+ r

j

)
λd+n+r+j

)
e2d+2r+n for 0 ≤ r ≤ 2i− εn − 1
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and, for d = l − 1 and r = 2i− εn(
d+r∑
j=0

(−1)j
(
d+ r

j

)
λd+n+r+j

)
e2d+2r+n.

In case d = l − 1 the relations (3.2.3) give rise to the following linear system:
(
q+εn−2i−1

q−n

)
−
(
q+εn−2i−1
q−n+1

)
. . . (−1)εn

(
q+εn−2i−1
q−n−εn+2i

)(
q+εn−2i
q−n−1

)
−
(
q+εn−2i
q−n

)
. . . (−1)εn

(
q+εn−2i

q−n−εn+2i−1

)
...

...
...

...(
q−1

q−n−2i+εn

)
−
(

q−1
q−n−2i+εn+1

)
. . . (−1)εn

(
q−1
q−n

)
 · vT1 = 0,

where v1 = (λl+q−1, . . . , λ2q−1). Define A the matrix of coefficients of the system.
Then det(A) ≡ ± det(B), where

(3.2.4) B =

((
p+ εn − 2i− 2 + k

p− n− k + j

))
kj

for k, j = 1, . . . , 2i− εn + 1.

We evaluate det(B) by means of Corollary (1.3.4) as usual. For the sake of
clarity we denote by m = 2i− εn + 1. Following the notation of the Corollary, set
x = p− n and y = n+ εn − 2i− 2. Then,

det(B) =

∏
1≤k<j≤m(j − k)∏m
k=1(x− i+m)!

m∏
k=1

(x+ y + k)!

(y + 2k − 1)!

m∏
k=1

(2x+ y + k + 1)k−1.

Of course, the factors (j−k) are not divisible by p. As regards the terms (x+y+k)!,
we have that

(x+ y + k)! = (p+ εn − 2i− 2 + k)!

Such factorials are not divisible by p, since p + εn − 2i − 2 + k ≤ p − 1. Let us
analyse the terms (2x+ y + k + 1)k−1. We have that

(2x+ y + k + 1)k−1 = (2p− n+ εn − 2i− 2 + k + 1)k−1

= (2p− n+ εn − 2i− 1 + k) . . . (2p− n+ εn − 2i− 3 + 2k).

We note that (2p− n+ εn− 2i− 1 + k) < · · · < (2p− n+ εn− 2i− 3 + 2k). Now,

(2p− n+ εn − 2i− 1 + k) ≥ 2p− n− (n− 1) = 2p− 2n+ 1 > p.

Hence each of the factors above is greater than p. Now we prove that they are
also smaller than 2p. In fact,

(2p− n+ εn − 2i− 3 + 2k) ≤ 2p− n+ εn − 2i− 3 + 4i− 2εn + 2

= 2p− n+ 2i− εn − 1 ≤ 2p− n− 1 + n− 2

= 2p− 3.

Hence, det(B) is not divisible by p and the same holds for det(A). That means
that v1 = 0 and this is absurd.
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Consider now the case d = l. The relations (3.2.3) give rise to the system:
(
q+εn−2i
q−n

)
−
(
q+εn−2i
q−n+1

)
. . . (−1)εn−1

(
q+εn−2i

q−n−εn+2i−1

)(
q+εn−2i+1
q−n−1

)
−
(
q+εn−2i+1

q−n

)
. . . (−1)εn−1

(
q+εn−2i+1

q−n−εn+2i−2

)
...

...
...

...(
q−1

q−n−2i+εn+1

)
−
(

q−1
q−n−2i+εn+2

)
. . . (−1)εn−1

(
q−1
q−n

)
 · vT2 = 0,

where v2 = (λl+q, . . . , λ2q−1). With the same argument as before we get that
det(A) is not divisible by p, hence v2 = 0 and this is an absurd.

All considered, we deduce that it is not possible that

λ2q = λ2q+1 = · · · = λc = · · · = λc+n+ l−n−3
2

= 0.

This means that at least one among λ2q, λ2q+1, . . . , λ2q+n is different from zero.
Then, we can apply Lemma (3.2.2) and deduce that, in case 1,

λl+q−1+n = · · · = λl+2q−3 = 0,

while, in case 2,
λl+q+n = · · · = λl+2q−2 = 0.

In case 1, consider

−λ2q+l−1e2q+l+n−1 =

= [en, ene
2q+l−1−n
1 ]

=

(
2q+l−1−n∑

j=0

(−1)j
(

2q + l − 1− n
j

)
λn+j

)
e2q+l+n−1

≡
(
−
(

2q + l − 1− n
q + l − 1− n

)
λq+l−1 −

(
2q + l − 1− n
2q + l − 2− n

)
λ2q+l−2 + λ2q+l−1

)
e2q+l−1+n.

Hence,

(3.2.5) − 2λq+l−1 − (l − 1− n)λ2q+l−2 + 2λ2q+l−1 ≡ 0 (mod p).

Since λq+l−1 6≡ 0 (mod p), the coefficients λ2q+l−2 and λ2q+l−1 cannot be simulta-
neously zero modulo p.

Summing all up there are three cases, we are going to deal with.

(1) Case (l+q-1, l+2q-1).

λl+n−1 = · · · = λl+q−2 = 0

λl+q−1 6= 0

λl+q−1+n = · · · = λl+2q−2 = 0

λl+2q−1 6= 0.

(2) Case (l+q-1, l+2q-2).

λl+n−1 = · · · = λl+q−2 = 0

λl+q−1 6= 0

λl+q−1+n = · · · = λl+2q−3 = 0

λl+2q−2 6= 0.
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(3) Case (l+q, l+2q).

λl+n = · · · = λl+q−1 = 0

λl+q 6= 0

λl+q+n = · · · = λl+2q−2 = 0

3.2.1. Case (l+q-1, l+2q-1). From (3.2.5) we deduce that λl+q−1 = λl+2q−1.
Now we prove by induction on 0 ≤ j ≤ l + (n− 2)− q − 1 that

λl+n−2−j = λl+q+n−2−j.

Let j = 0. Then,

0 =
[
el+n−2, ene

2q−2n+1
1 en

]
=

= ((λl+n−2 − λl+q+n−2)λl+2q−1 − λl+n−2(λl+q−1 − λl+2q−1)) el+2q−1+n

= (λl+n−2 − λl+q+n−2)el+2q−1+n,

since λl+2q−1 6= 0 and λl+q−1 = λl+2q−1.
Suppose now to have proved, for a fixed integer j greater than zero, that

λl+n−2−i = λl+q+n−2−i, for 0 ≤ i ≤ j − 1 < l + n− 2− q − 1. Then,

0 =
[
el+n−2−j, ene

2q−2n+j+1
1 en

]
=

=

(
q−2n+j+1∑

k=0

(−1)k
(
q − 2n+ j + 1

k

)
(λl+n−2−j+k − λl+q+n−2−j+k)

)
λl+2q−1el+2q+n−1

±λl+n−2−j(λl+q−1 − λl+2q−1)el+2q+n−1

=

(
q−2n+j+1∑

k=0

(−1)k
(
q − 2n+ j + 1

k

)
(λl+n−2−j+k − λl+q+n−2−j+k)

)
λl+2q−1el+2q+n−1.

Since λl+n−2−j+k = λl+q+n−2−j+k, for k ≥ 1, we get λl+n−2−j = λl+q+n−2−j.
Hence, we have proved that

(3.2.6) λq+1 = λ2q+1, λq+2 = λ2q+2, . . . , λl+(n−2) = λl+(n−2)+q.

We remind that the length of the first constituent l is odd if and only if n is
even and that q − (n − 2) ≤ l ≤ q + 1. Since q is always odd, q − n is odd if
and only if n is even. All considered, it is easily seen that the length of the first
constituent can be expressed as

l = q + s+ εs − n, for some 1 ≤ s ≤ n.

We note also that l+n− 2 = q+ εs + s− 2 ≥ q+ s+εs

2
, unless s+ εs = 2, in which

case l = q − (n− 2). We will deal in a separate section with this case.
In addition to (3.2.6), we remind that

λl+(n−1) = · · · = λl+q−2 = 0(3.2.7)

λl+q−1+n = · · · = λl+2q−2 = 0
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Moreover, with he notation adopted,

λl+(n−2) = λq+s+εs−2

λl+q−1 = λ2q+s+εs−n−1

Consider now the following relations:

0 = [eq+1, ene
q+1−n
1 ]

0 = [eq+2, ene
q+2−n
1 ]

...
...

...(3.2.8)

0 = [eq+ s+εs
2
, ene

q+ s+εs
2
−n

1 ]

...
...

...

0 = [eq+n−1, ene
q−1
1 ]

They can be expanded as follows:

0 =
s+εs−3∑
j=0

(−1)j
(
q + 1− n

j

)
λq+1+je2q+2

0 =
s+εs−4∑
j=0

(−1)j
(
q + 2− n

j

)
λq+2+je2q+4

...
...

...(3.2.9)

0 =

q+ s+εs
2
−n∑

j=0

(−1)j
(
q + s+εs

2
− n

j

)
λq+ s+εs

2
+je2q+s+εs

...
...

...

0 =

q−1∑
j=0

(−1)j
(
q − 1

j

)
λq+n−1+je2q−2+n

Taking into consideration the fact that λl+q−1 6= 0, up to scaling en we can
assume that λl+q−1 = 1. The relations (3.2.8) give rise to a non-homogeneous
linear system, whose matrix of coefficients is square and its dimension is n − 1.
We note that, due to (3.2.7), the binomial coefficients really involved in (3.2.9)
are of the form

(1)
(
q+k−n

j

)
, for 1 ≤ k ≤ n− 1 and 0 ≤ j ≤ n− 2

(2)
(
q+k−n

j

)
, for 1 ≤ k ≤ n− 1 and q + s+ εs − 2n ≤ j ≤ q − 1.

By Lucas’ theorem, in case (1) we have(
q + k − n

j

)
≡
(
p+ k − n

j

)
≡
(

2p+ k − n
p+ j

)
(mod p)
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As regards the binomial coefficients of the second form, we note that we can rewrite
each j as

j = q − 2n+ j̃ where 2 ≤ j̃ ≤ 2n− 1

and then each binomial(
q + k − n

j

)
≡
(
p+ k − n
k + n− j̃

)
≡
(

2p+ k − n
p+ k + n− j̃

)
(mod p).

Let us define the vectors

u1 = [λ2q+s+εs−n, . . . , λ2q],

u2 = [λq+1, . . . , λq+s+εs−2],

v = [u1 | u2].

We note that v is a vector of length n− 1. We define also a vector w of length
n− 1, such that

wi =

(
2p− n+ i

p+ s+ εs − n− 2− i

)
, for 1 ≤ i ≤ n− 1.

We are now in a position to translate the relations (3.2.9) in the non-homogeneous
linear system

AvT = wT ,

where the matrix A is defined as

(3.2.10) A =

(
(−1)j

(
2p− n+ i

p+ s+ εs − n− 1− i+ j

))
ij

, for 1 ≤ i, j ≤ n− 1.

We want to prove that det(A) is nonzero. To do that we consider the matrix

B =

((
2p− n+ i

p+ s+ εs − n− 1− i+ j

))
ij

, for 1 ≤ i, j ≤ n− 1

having det(B) = ± det(A). In order to unravel a little the notation, we set

x = p+ s+ εs − n− 1

y = p− s− εs + 1.

Then,

det(B) =

∏
1≤i<j≤n−1(j − i)∏n−1

i=1 (x− i+ n− 1)!

n−1∏
i=1

(x+ y + i)!

(y + 2i− 1)!

n−1∏
i=1

(2x+ y + i+ 1)i−1.

We analyse the factors involved in the evaluation of det(B).

•
∏

1≤i<j≤n−1(j − i) is clearly not divisible by p.

•
∏n−1

i=1 (x− i+ n− 1)! can be divisible by p. In particular we expand each
(x− i+ n− 1)! We have that

(x− i+ n− 1)! = (p+ s+ εs − i− 2)!
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which is divisible by p if and only if i ≤ s+ εs− 2. We can conclude that

n−1∏
i=1

(x− i+ n− 1)! = ps+εs−2 ·m1,

for some integer m1 not divisible by p.
• As regards

∏n−1
i=1 (x+ y + i)!, we have that each

(x+ y + i)! = (2p− n+ i)! for some 1 ≤ i ≤ n− 1

is divisible by p (but not by higher powers of p). Hence,

n−1∏
i=1

(x+ y + i)! = pn−1 ·m2,

for some integer m2 not divisible by p.
•
∏n−1

i=1 (2x+ y + i+ 1)i−1 can be studied looking at each of the

(2x+y+i+1)i−1 = (3p+s+εs−2n+i)·(3p+s+εs−2n+i+1) . . . (3p+s+εs−2n+2i−2).

Being

2p < (3p+ s+ εs − 2n+ i) < · · · < (3p+ s+ εs − 2n+ 2i− 2) < 4p,

we have that each (2x + y + i + 1)i−1 is divisible by p if and only if
s + εs − 2n + 2i− 2 ≥ 0, or equivalently, i ≥ n + 1− s+εs

2
. We conclude

that
n−1∏
i=1

(2x+ y + i+ 1)i−1 = p
s+εs

2
−1 ·m3,

for some integer m3 not divisible by p.
• Finally we focus on

∏n−1
i=1 (y + 2i− 1)!. We have that

(y + 2i− 1)! = (p− s− εs + 2i)!

is divisible by p if and only if i ≥ s+εs

2
. Hence,

n−1∏
i=1

(y + 2i− 1)! = pn−
s+εs

2 m4,

for some integer m4 not divisible by p.

Summing all up,

det(B) =

∏
1≤i<j≤n−1(j − i)
ps+εs−2 ·m1

pn−1 ·m2

pn−
s+εs

2 m4

p
s+εs

2
−1 ·m3.

This infers that det(B) is not divisible by p and the same holds for det(A). Then,
the solution of our non-homogeneous system is

vj = (−1)j
(
n− 1

j

)
for 1 ≤ j ≤ n− 1.
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In fact,

n−1∑
j=0

(
n− 1

j

)(
2p− n+ i

p+ s+ εs − n− 2− i+ j

)
=

=

(
2p+ i− 1

p+ s+ εs − n− 2− i

)
≡
(

i− 1

p+ s+ εs − n− 2− i

)
≡ 0 (mod p)

since i− 1 ≤ n− 2 and n < p− 2n+ 1 ≤ p+ s+ εs − n− 2− i < p.

3.2.2. Case (l+q-1, l+2q-2). We will prove that

λl+n−1−i = λl+q+n−2−i, for 0 ≤ i ≤ l − q + (n− 2).(3.2.11)

Firstly we consider the following relations, only for i even such that 1 ≤ i ≤
l − q + n− 1:

0 = [el+q+(n−2)−i, ene
q−2n+i
1 en]

=

(
2λl+q+(n−2)−i +

∑
k≥1

(−1)k
(
q − 2n+ i

k

)
λl+q+(n−2)−i+k

)
el+2q−2+n(3.2.12)

and

0 = [el+(n−1)−i, ene
q−2n+i
1 en]

=

(
2λl+(n−1)−i +

∑
k≥1

(−1)k
(
q − 2n+ i

k

)
λl+(n−1)−i+k

)
el+q−1+n(3.2.13)

Consider now

0 = [el+n−2, ene
2q−2n
1 en]

=
(
2nλl+(n−1) − λl+q+n−2

)
λl+2q−2el+2q−2+n.

Since λl+(n−1) = 0, also λl+q+n−2 = 0.
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Take 1 ≤ i ≤ l − q + (n − 2) and suppose to have proved (3.2.11) for indices
smaller than i. If i is odd,

0 = [el+(n−1)−(i+1), ene
2q−2n+i
1 en]

=
(
2λl+(n−1)−(i+1) + (2n− i)λl+(n−1)−i+

+
∑
k≥2

(−1)k
(
q − 2n+ i

k

)
λl+(n−1)−(i+1)+k

)
el+2q−2+n

−

(
λl+q+(n−1)−(i+1) +

∑
k≥1

(−1)k
(
q − 2n+ i

k

)
λl+q+(n−1)−(i+1)+k

)
el+2q−2+n

=
(
2λl+(n−1)−(i+1) + (2n− i)λl+(n−1)−i − λl+q+(n−1)−(i+1)

)
el+2q−2+n

+

(∑
k≥2

(−1)k
((

q − 2n+ i

k

)
+

(
q − 2n+ i

k − 1

))
λl+(n−1)−(i+1)+k

)
el+2q−2+n

=
(
2λl+(n−1)−(i+1) + (2n− i)λl+(n−1)−i − λl+q+(n−1)−(i+1)

)
el+2q−2+n

+

(∑
k≥2

(−1)k
(
q − 2n+ i+ 1

k

)
λl+(n−1)−(i+1)+k

)
el+2q−2+n

= (λl+(n−1)−i − λl+q+(n−1)−(i+1))el+2q−2+n.

Hence λl+(n−1)−i = λl+q+(n−2)−i.
If i is even, we get from (3.2.12)

0 = 2λl+q+(n−2)−i +
∑
k≥1

(−1)k
(
q − 2n+ i

k

)
λl+q+(n−2)−i+k.

Since λl+q+(n−2)−i+k = λl+(n−1)−i+k, for 1 ≤ k ≤ q − 2n+ i,

0 = 2λl+q+(n−2)−i +
∑
k≥1

(−1)k
(
q − 2n+ i

k

)
λl+(n−1)−i+k.

At the same time,

0 = 2λl+(n−1)−i +
∑
k≥1

(−1)k
(
q − 2n+ i

k

)
λl+(n−1)−i+k.

Hence, λl+q+(n−2)−i = λl+(n−1)−i and we are done.
Suppose now that λl+q+(n−3) 6= 0. Up to scaling en, there is no loss of generality

in assuming that λl+q+(n−3) = 1. We remind that l > q − (n− 2), since it will be
useful in the following. Then,

0 = [el+q+(n−3), ene
q−2n+2
1 en]

= λl+q+(n−3) · (2λl+2q−1 + (2n− 2)λl+2q−2)el+2q−1+n.

Since λl+q+(n−3) 6= 0, it follows that λl+2q−1 = −(n− 1)λl+2q−2.
Now we prove by induction on

0 ≤ j ≤ l + (n− 3)− q
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that

(3.2.14) λl+q+(n−3)−j = (−1)j
(
n− 1

j

)
.

By hypothesis, the assertion is true for j = 0. Suppose that (3.2.14) is true for all
the integers j such that 0 ≤ j < k ≤ l + (n− 3)− q.

If k is odd,

0 = [el+q+(n−3)−k, ene
q+k−(2n−3)−2
1 en]

=

(
2λl+q+(n−3)−k −

∑
j≥1

(
q + k − (2n− 3)− 2

j

)(
n− 1

k − j

))
λl+2q−2el+2q−2+n

and, being λl+2q−2 6= 0, it is easily seen that λl+q+(n−3)−k must assume the value

−
(
n−1
k

)
. In fact,

λl+q+(n−3)−k −
∑
j≥1

(
q + k − (2n− 3)− 2

j

)(
n− 1

k − j

)
= −

∑
j≥0

(
q + k − (2n− 3)− 2

j

)(
n− 1

k − j

)
= −

(
q + k − n

k

)
= −

(
q + k − n
q − n

)
≡
(

n− 1

n− k − 1

)
≡

(
n− 1

k

)
= −λl+q+(n−3)−k.

If conversely k is even, consider the relation

[el+q+(n−3)−k, ene
q+k−(2n−3)−1
1 en] = 0.

It follows that(
λl+q+(n−3)−k +

∑
j≥1

(
q + k − (2n− 3)− 1

j

)(
n− 1

k − j

))
(−(n− 1))λl+2q−2(3.2.15)

= λl+q+(n−3)−k(q + k − (2n− 3)− 1 + (n− 1))λl+2q−2.

Since λl+2q−2 6= 0, we can cancel λl+2q−2 from both sides of (3.2.15) and deduce
that λl+q+(n−3)−k assume the value

(
n−1
k

)
. In fact, the left hand side of (3.2.15),

after the simplification just mentioned, becomes

−
(
q + k − n+ 1

k

)
(n− 1) ≡ −(k − n+ 1)(k − n) . . . (2− n)

k!
(n− 1).
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The right hand side can be rewritten as follows:

(
n− 1

k

)
(q + k − n+ 1) ≡ (n− 1)(n− 2) . . . (n− k)

k!
(k − n+ 1)

≡ (−1)k−1 (n− 1)(2− n) . . . (k − n)

k!
(k − n+ 1)

≡ −(k − n+ 1)(k − n) . . . (2− n)

k!
(n− 1),

being k even.
Hence, we have proved that

λ2q = (−1)l+(n−3)−q
(

n− 1

l + (n− 3)− q

)
= (−1)l+(n−3)−q

(
n− 1

q − l + 2

)
λ2q+1 = (−1)l+(n−4)−q

(
n− 1

l + (n− 4)− q

)
= (−1)l+(n−4)−q

(
n− 1

q − l + 3

)
...

...
...(3.2.16)

λl+q−1+(n−2) =

(
n− 1

0

)
=

(
n− 1

n− 1

)
.

Our next step is to determine the coefficients λl+q−1, . . . , λ2q−1. This will be
done employing partially an argument already seen before. We remind that the
length of the first constituent l can be expressed as

l = q + s+ εs − n, for some 1 ≤ s ≤ n.

Moreover, with this notation,

λl+(n−1) = λq+s+εs−1,

λl+q−1 = λ2q+s+εs−n−1.

Consider the relations

0 =
[
eq+s+εs−1, ene

q+s+εs−1−n
1

]
0 =

[
eq+s+εs , ene

q+s+εs−n
1

]
...

...
...

0 =
[
eq+n−1, ene

q−1
1

]
.
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We can expand these relations as follows

0 =

(∑
j≥0

(−1)j
(
q + s+ εs − 1− n

j

)
λq+s+εs−1+j

)
e2q+2s+2εs−2

0 =

(∑
j≥0

(−1)j
(
q + s+ εs − n

j

)
λq+s+εs+j

)
e2q+2s+2εs

...
...

...

0 =

(∑
j≥0

(−1)j
(
q − 1

j

)
λq+n−1+j

)
e2q−2+2n.

As a consequence the following non-homogeneous linear system holds.

0 =

q−s−εs∑
j=q−n−1

(−1)j
(
q + s+ εs − 1− n

j

)
λq+s+εs−1+j

+
∑

j≥q−s−εs+1

(−1)j
(
q + s+ εs − 1− n

j

)
λq+s+εs−1+j

0 =

q−s−εs−1∑
j=q−n−2

(−1)j
(
q + s+ εs − n

j

)
λq+s+εs+j(3.2.17)

+
∑

j≥q−s−εs

(−1)j
(
q + s+ εs − n

j

)
λq+s+εs+j

...
...

...

0 =

q−n∑
j=q−2n+s+εs−1

(−1)j
(
q − 1

j

)
λq+n−1+j

+
∑

j≥q−n+1

(−1)j
(
q − 1

j

)
λq+n−1+j.

Such a system is formed by n− (s+ εs) + 1 equations involving n+ 2− s− εs
indeterminates, namely λl+q−2, λl+q−1, . . . , λ2q−1. We have already determined the
values of λ2q, . . . , λl+q+(n−3).

The matrix of the coefficients associated with this system is

A =

(
(−1)q−n−k−1+j

(
q + s+ εs − 2− n+ k

q − n− 1− k + j

))
k=1,...,n−(s+εs)+1
j=1,...,n−(s+εs)+2

.

We consider the matrix obtained eliminating the first column, having determi-
nant equal to

(3.2.18) det

((
q + s+ εs − 1− n+ k

q − n− 1− k + j

))
k=1,...,n−(s+εs)+1
j=1,...,n−(s+εs)+1
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up to the sign. Such a determinant has been already evaluated (see (3.2.4)) and
is not equivalent to zero modulo p.

One solution of the non-homogeneous system (3.2.17) is

λl+q−2+j = (−1)n−1+j

(
n− 1

j

)
, for 0 ≤ j ≤ n− 1.

Now we determine the general solution of the associated homogeneous system,
whose matrix of coefficients is A. Shifting the index j, A can be rewritten as
follows:

A =

(
(−1)q−n−k+j

(
q + s+ εs − 2− n+ k

q − n− k + j

))
k=1,...,n−(s+εs)+1
j=0,...,n−(s+εs)+1

.

The general solution of the homogeneous system associated with A is

λl+q−2+r = (−1)r
(
n− (s+ εs) + 1

r

)
µ for 0 ≤ r ≤ n− (s+ εs) + 1,

where µ ∈ F can be arbitrarily chosen. The general solution of the non-homogeneous
system can be expressed as follows:

λl+q−2+r = (−1)n−1+r

(
n− 1

r

)
+ (−1)r

(
n− (s+ εs) + 1

r

)
µ, for 0 ≤ r ≤ n− 1.

We remind that in the algebra, we are dealing with, λl+q−2 = 0. This constraint
forces µ to assume the value (−1)n. In particular,

λl+q−1 = (−1)n(n− 1− (n− (s+ εs) + 1))

= (−1)n(s+ εs − 2),(3.2.19)

where 4 ≤ s+ ε ≤ n+ 1.
Now we remind that the coefficients λq+1 = λ2q, λq+2 = λ2q+1, . . . , λl+(n−2) =

λl+q+(n−1) have been explicitly determined (see (3.2.16)). Moreover λl+(n−1) =
· · · = λl+q−2 = 0. We note that, being λq+1, . . . , λl+q−2 assigned, also the coeffi-
cients λl, λl+1, . . . , λq are determined, since they can be obtained from the following
relations

0 =
[
eq, ene

q−n
1

]
0 =

[
eq−1, ene

q−1−n
1

]
...

...
...

0 =
[
el, ene

l−n
1

]
.

In Chapter 4 we will construct an algebra M generated by two elements e1

and en, whose length of the first constituent is equal to l, with the same values
for λq+1, . . . , λl+q−2. If n is odd λl = −

(
n−1−(q−l+1)

1

)
, otherwise λl =

(
n−1−(q−l+1)

1

)
.

Now we note that λl, λl+q−1, λl+q are related. In fact,

−λl+qel+q+n = [en, e
l+q−n
1 ]

= (−λl − (l + q − n)λl+q−1 + λl+q)el+q+n
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and

0 = [el+n−2, ene
q−2n+2
1 en]

= (λl+q + (n− 1)λl+q−1)λl+n−2el+q+n.

Taking into consideration the fact that λl+n−2 6= 0, we have that

0 = −λl − (l + q − n)λl+q−1 + 2λl+q

0 = λl+q + (n− 1)λl+q−1.

Hence, if n is odd, λl+q−1 = 1, otherwise λl+q−1 = −1. In any case we are in
contradiction with (3.2.19).

We remind that we got such a contradiction assuming that λl+q+(n−3) 6= 0.
Suppose now that λl+q+(n−3) = 0. This implies that λl+(n−2) = 0. We know that
at least one among λq+1, . . . , λq+(n−1) must be nonzero. Let l + (n − k) be the
greatest integer r ∈ {q+1, . . . , q+(n−1)} such that λr 6= 0. Since λl+q−1 6= 0 it is
a routine check to verify that k must be even. Moreover, being 1 ≤ k ≤ l−q+n−1,

we have that
[
ene

q−2n+k
1 en

]
= 0.

Consider

0 = [el+(n−k), ene
q−2n+k
1 en]

= λl+(n−k)(2λl+q + (2n− k)λl+q−1)el+q+n.

We deduce that

λl+q = −(n− k/2)λl+q−1, for some even integer k > 2.

Since λl+(n−k) 6= 0, up to scaling en there is no loss of generality in supposing
that λl+(n−k) = 1. We are going to prove that

(3.2.20) λl+(n−k)−i = (−1)i
(
n− k/2

i

)
, for 0 ≤ i ≤ l + (n− k)− q − 1.

Of course the assertion is true if i = 0. Suppose then to have proved 3.2.20 for all
the indices i such that 0 ≤ i < j ≤ l + (n− k)− q − 1.

If j is odd,

0 =
[
el+(n−k)−j, ene

q−(2n−k)+j−1
1 en

]

implies that

0 = 2λl+(n−k)−j −
∑
r≥1

(
q − 2n+ j + k − 1

r

)(
n− k/2
j − r

)
,
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hence the value of λl+(n−k)−j is uniquely determined, namely λl+(n−k)−j = −
(
n−k/2
j

)
.

In fact,

0 = λl+(n−k)−j −
∑
r≥1

(
q − 2n+ j + k − 1

r

)(
n− k/2
j − r

)
= −

∑
r≥0

(
q − 2n+ j + k − 1

r

)(
n− k/2
j − r

)
= −

(
q − n+ j + k/2− 1

j

)
= −

(
q − n+ j + k/2− 1

q − n+ k/2− 1

)
≡

(
n− k/2

j

)
.

Consider now

0 = [eq+1, eq+1] =
[
eq+1, ene

q+1−n
1

]
=

∑
i≥0

(
q + 1− n

i

)(
n− k/2

l + (n− k)− q − 1− i

)
=

(
q + 1− k/2

l − k

)
≡
(
p− k − 2 + 1

p+ εn − 2i− k

)
6≡ 0,

being l = q + εn − 2i, for some 0 ≤ i ≤ n+εn−2
2

. Hence we are in contradiction.
We can conclude that it is not possible that λl+q−1 6= 0 and λl+2q−2 6= 0.

3.2.3. Case (l+q, l+2q). We begin proving that also λl+2q−1 = 0. To do
that, consider

−λl+2q−1el+2q−1+n = [en, ene
l+2q−1−n
1 ]

=

l+2q−1−n∑
i=0

(
l + 2q − 1− n

i

)
λn+iel+2q−1+n

= λl+2q−1el+2q−1+n.

We deduce that λl+2q−1 = 0.
At the same time, λl+2q 6= 0. Suppose on the contrary that λl+2q = 0. Since

at least one among λq+1, . . . , λq+(n−1) is non-zero, we have that, for some k ∈
{1, . . . , n− 1} and λq+k ∈ F different from zero,

[
ene

q+k−n
1 en − λq+keneq+k1

]
= 0.
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We have that

0 =
[
el+q−k, ene

q+k−n
1 en − λq+keneq+k1

]
= [el+q−k, [ene

q+k−n
1 ], en]− [[el+q−k, en], [ene

q+k−n
1 ]]− [el+q−k, λq+kene

q+k
1 ]

=

(∑
i≥0

(−1)i
(
q + k − n

i

)
λl+q−k+i

)
λl+2qel+2q+n − (−1)kλl+qλq+kel+2q+n

= (−1)kλl+qλq+kel+2q−n,

being λl+2q = 0. Hence λl+q = 0 and we are in contradiction.
We know that at least one among λq+1, λq+2, . . . , λq+n must be non-zero. We

want to discard the possibility that

0 = λq+2 = · · · = λl+q−1,

0 6= λq+1.

If this is the case, consider

(3.2.21) 0 = [eq+1, ene
q−n+1
1 ].

Since the length of the first constituent is greater than q− (n−2), we deduce that
l ≥ q − n+ 4. Expanding (3.2.21) we obtain that

0 =

(∑
i≥0

(−1)i
(
q − n+ 1

i

)
λq+1+i

)
e2q+2.

We note that

q + 1 + i ≤ 2q − n+ 2 < 2q − n+ 4 ≤ l + q,

hence all λq+1+i = 0, for i greater than 0. But we get an absurd, because λq+1 6= 0.
Therefore for some 1 ≤ k ≤ l + n− (q + 2) we have that

0 = λl+n = · · · = λl+n−k+1

0 = λl+q+n = · · · = λl+q+n−k+1

and one of the following holds:

(1) λl+n−k = 0, λl+q+n−k 6= 0;

(2) λl+n−k 6= 0, λl+q+n−k 6= 0;

(3) λl+n−k 6= 0, λl+q+n−k = 0.

In any case we note that k must be odd. Suppose, on the contrary, that k is
even.

Consider, in case (1)

0 = [el+q+n−k, ene
q−2n+k
1 en]

= 2 · λl+q+n−k · λl+2qel+2q+n.

We deduce that λl+q+n−k or λl+2q = 0 and we are in contradiction.
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Similarly, consider in cases (2), (3)

0 = [el+n−k, ene
q−2n+k
1 en]

= 2 · λl+n−k · λl+qel+q+n.

We deduce that λl+n−k or λl+q = 0 and we are still in contradiction.
Now we analyse separately the three cases. We begin showing that case (1) is

impossible.
To do that, consider

0 = [el+(n−k), ene
2q−2n+k
1 en]

=
(
(λl+n−k − λl+q+(n−k))λl+2q − λl+(n−k)(λl+q − λl+2q)

)
el+2q+n.

Being λl+n−k = 0, we deduce that λl+q+(n−k)λl+2q = 0 and we get a contradiction.
Before dealing with cases (2) and (3) we prove two technical results.

Lemma 3.2.3. Suppose that there exists an odd integer k such that 1 ≤ k ≤
l + n− (q + 2) and that

λl+n = · · · = λl+n−k+1 = 0

λl+q+n = · · · = λl+q+n−k+1 = 0.

Finally, suppose that λl+n−k, λl+q+n−k 6= 0.
Then, λq+2 = λ2q+2, . . . , λl+(n−1) = λl+q+(n−1).

Lemma 3.2.4. Suppose that there exists an odd integer k such that 1 ≤ k ≤
l + n− (q + 2) and that

λl+n = · · · = λl+n−k+1 = 0

λl+q+n = · · · = λl+q+n−k+1 = 0.

Finally, suppose that λl+n−k 6= 0, while λl+q+n−k = 0.
Then, λ2q+1 = λ2q+2 = · · · = λl+q+(n−1) = 0.

Proof. (Lemma (3.2.3)) From

0 =

[
e l+2q+1+n

2
, ene

l+2q+1−n
2

1

]
we deduce that

(3.2.22) 0 =
l + 1− n

2
λl+q − λl+q+1 −

l + 1− n
2

λl+2q + λl+2q+1.

Moreover, from

0 = [el+(n−k), ene
q−2n+k+1
1 en](3.2.23)

0 = [el+q+(n−1), ene
q−2n+k+1
1 en](3.2.24)

we deduce that

0 = λl+q−1 + (n− (k + 1)/2)λl+q,(3.2.25)

0 = λl+2q−1 + (n− (k + 1)/2)λl+2q.(3.2.26)
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Combining (3.2.22) - (3.2.26) we have that

(3.2.27) λl+q = λl+2q and λl+q+1 = λl+2q+1.

The next step is to prove that

(3.2.28) λl+(n−k)−j = λl+q+(n−k)−j, for 0 ≤ j ≤ l + (n− k)− (q + 2).

Before proceeding we note that

[ene
q−2n+r+2
1 en] = 0, for 0 ≤ r ≤ l + (n− 1)− (q + 2),

because q − n+ r + 2 ≤ l − 1.
We begin proving that λl+(n−k) = λl+q+(n−k). Since

0 = [el+(n−k), ene
2q−2n+k
1 en]

=
(
(λl+(n−k) − λl+q+(n−k))λl+2q − λl+(n−k)(λl+q − λl+2q)

)
el+2q+n

and λl+q = λl+2q we deduce that λl+(n−k) = λl+q+(n−k).
Suppose now to have proved (3.2.28) for all the indices j < r, where r is a

positive integer not greater than l + (n− 1)− (q + 2). We distinguish two cases,
namely r odd or r even.

If r is odd,

0 = [el+(n−1)−r, ene
q−2n+r+1
1 en]

=

(
2λl+(n−1)−r +

∑
i≥1

(−1)i
(
q − 2n+ r + 1

i

)
λl+(n−1)−r+i

)
λl+qel+q+n

and

0 = [el+q+(n−1)−r, ene
q−2n+r+1
1 en]

=

(
2λl+q+(n−1)−r +

∑
i≥1

(−1)i
(
q − 2n+ r + 1

i

)
λl+q+(n−1)−r+i

)
λl+2qel+q+n.

Hence, λl+(n−1)−r = λl+q+(n−1)−r.
If r is even, from

0 = [el+(n−1)−r, ene
q−2n+r+2
1 en],

0 = [el+q+(n−1)−r, ene
q−2n+r+2
1 en]

we get that

0 = (2λl+q+1 + (2n− 2− r)λl+q)λl+(n−1)−r

+

(∑
i≥1

(−1)i
(
q − 2n+ r + 2

i

)
λl+(n−1)−r+i

)
λl+q+1,

0 = (2λl+2q+1 + (2n− 2− r)λl+2q)λl+q+(n−1)−r

+

(∑
i≥1

(−1)i
(
q − 2n+ r + 2

i

)
λl+q+(n−1)−r+i

)
λl+2q+1.
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Taking into consideration (3.2.25) - (3.2.28), the fact that k 6≡ 0 (mod p) and the
inductive hypothesis, we deduce that also in this case λl+(n−k)−r = λl+q+(n−k)−r.

�

Proof. (Lemma (3.2.4)) Since

0 = [el+n−k, ene
2q−2n+k
1 en]

= ((λl+n−k − λl+q+n−k)λl+2q − λl+n−k(λl+q − λl+2q)) el+2q+n

= λl+n−k(2λl+2q − λl+q)el+q+n
necessarily λl+q = 2λl+2q.

In order to prove the thesis, we must prove that

λl+q+n−k−j = 0 0 ≤ j ≤ l + n− (q + k + 2).

We proceed by induction. The base case is trivially true. Suppose to have proved
the assertion for all the indices j smaller than r, where r is a positive integer not
greater than l + n − (q + k + 2). As usual we distinguish the case r odd from r
even.

To start with, suppose that r is odd. Then,

0 = [el+q+n−k−r, ene
q−2n+k+r
1 en]

= 2λl+q+n−k−rλl+2qel+2q+n.

In the case r is even, we begin considering that

0 = [el+n−k−r, ene
q−2n+k+r
1 en]

=

(∑
i≥1

(−1)i
(
q − 2n+ k + r

i

)
λl+n−k−r+i

)
λl+qel+2q+n.

implies that

(3.2.29) 0 =
∑
i≥1

(−1)i
(
q − 2n+ k + r

i

)
λl+n−k−r+i.

Then,

0 = [el+n−k−r, ene
2q−2n+k+r
1 en]

=

(
λl+n−k−r +

∑
i≥1

(−1)i
(
q − 2n+ k + r

i

)
λl+n−k−r+i

)
λl+2qel+2q+n

−λl+n+q−k−rλl+2qel+2q+n

−λl+n−k−r(λl+q − λl+2q)el+2q+n

= (λl+n−k−r − λl+n+q−k−r − λl+n−k−r)λl+2qel+2q+n.

Being λl+2q 6= 0 we deduce that λl+n+q−k−r = 0 and we are done. �

Now we proceed proving cases (2) and (3).
Case (2). In this case the hypotheses of Lemma (3.2.3) are satisfied. We

remind that the length l of the first constituent is of the form

l = q + s+ εs − n, for some 1 ≤ s ≤ n,
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where 3 ≤ s ≤ n.
Suppose firstly that k = 1. Then λq+2 = λ2q+2, . . . , λl+(n−1) = λl+q+(n−1).
We will use an argument employed previously to prove that, if λl+q = µ, then

(3.2.30) λl+q+i = (−1)i
(
n− 1

i

)
µ, for 0 ≤ i ≤ n− 1.

Then we consider the following n− 2 relations:

0 = [eq+2, ene
q+2−n
1 ]

...
...

...(3.2.31)

0 = [eq+ s+εs
2
, ene

q+ s+εs
2
−n

1 ]

...
...

...

0 = [eq+n−1, ene
q−1
1 ]

We remind also that λl+q+1 = −(n− 1)λl+q.
Let us define the vectors

u1 = [λ2q+s+εs−n+2, . . . , λ2q+1],

u2 = [λq+2, . . . , λq+s+εs−1],

v = [u1 | u2]

and the vectors wi such defined:

wi =

(
2p− n+ 1 + i

p+ s+ εs − n− 1− i

)
λl+q −

(
2p− n+ 1 + i

p+ s+ εs − n− i

)
λl+q+1,

for 1 ≤ i ≤ n− 2.
Relations (3.2.31) give rise to the non-homogeneous linear system

AvT = wT ,

where

(3.2.32) A =

(
(−1)j

(
2p− n+ 1 + i

p+ s+ εs − n− i+ j

))
ij

, for 1 ≤ i, j ≤ n− 2.

We note that such a matrix is obtained from (3.2.10) eliminating the first row
and the first column. In the same way we proved that the determinant of the
matrix (3.2.10) is different from zero, it can be seen that also in this case det(A)
is non-zero.

We conclude that the solution of the non-homogeneous system is unique and
is

vj = (−1)j+1

(
n− 1

j + 1

)
µ for 1 ≤ j ≤ n− 2.

Hence,

λl+q+i = (−1)i
(
n− 1

i

)
µ for 0 ≤ 1 ≤ n− 1

and λq+2 = λ2q+2, . . . , λl+(n−1) = λl+q+(n−1).
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Then we can easily obtain the values of λq+1, . . . , λl by means of

0 = [eq+1, ene
q+1−n
1 ],

...
...

...

0 = [el, ene
l−n
1 ].

Now we consider the case k ≥ 3. Suppose that l + n− k < q + s+εs

2
.

We can now consider the following relations

0 = [eq+2, ene
q+2−n
1 ],

...
...

...

0 = [el+(n−k), ene
l+(n−k)−n
1 ].

Such relations give rise to a homogeneous linear system formed by l+(n−k)−q−1
equations. Since λl+(n−k)+1 = · · · = λl+q−1 = 0, such equations involve only the
l+(n−k)−q−1 parameters λq+2, . . . , λl+(n−k). Moreover, the equations are linearly
independent, being the system triangular. Hence, λq+2 = · · · = λl+n−k = 0 and
we are in contradiction.

Suppose now that l + (n− k) ≥ q + s+εs

2
and consider the relations

0 = [eq+2, ene
q+2−n
1 ]

...
...

...(3.2.33)

0 = [eq+ s+εs
2
, ene

q+ s+εs
2
−n

1 ]

...
...

...

0 = [eq+(n−k)+2, ene
q+(n−k)+2−n
1 ].

Define the vectors

u1 = [λ2q+s+εs−n, . . . , λ2q+1]

u2 = [λq+2, . . . , λl+(n−k)]

v = [u1 | u2].

Relations (3.2.33) give rise to the homogeneous linear system

AvT = 0,

where
(3.2.34)

A =

(
(−1)j

(
2p− n+ 1 + i

p+ s+ εs − n− 2− i+ j

))
ij

, for 1 ≤ i, j ≤ n− k + 1.

Such a determinant is easily seen to be different from zero, hence v = 0. But this
is absurd, since λl+(n−k) 6= 0.

Case (3) Since the hypotheses of Lemma (3.2.4) are satisfied, we have that
λ2q+1 = λ2q+2 = · · · = λl+q+(n−1) = 0. We remind that, with the notation previ-
ously adopted, l + (n− k) = q + s+ εs − k where 3 ≤ s+ εs ≤ n+ 1.
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Firstly we deal with the case s + εs = n + 1 or n, which means l = q + 1 or
l = q. We have that

0 = [el+(n−k), ene
q−2n+k+1
1 en]

= λl+(n−k) (λl+q+1 + (n− (k + 1)/2)λl+q) el+q+1+n.

If l = q + 1 it follows that λl+(n−k) = 0 and we are in contradiction. If l = q, we
get

λl+(n−k)λl+q = 0

and we are in contradiction, because neither λl+(n−k) = 0 nor λl+q = 0.
We deal now with the case 4 ≤ s+ εs ≤ n− 1. Consider the relations

0 = [eq+s+εs , ene
q+s+εs−n
1 ]

...
...

...(3.2.35)

0 = [eq+n−1, ene
q−1
1 ],

the vector

v = [λ2q+s+εs−n, . . . , λ2q]

and the associated homogeneous linear system

AvT = 0,

where the matrix A is such defined:

(3.2.36) A =

(
(−1)j

(
2p+ s+ εs − n− 1 + i

p− n− i+ j

))
1 ≤ i ≤ n− s− εs,

1 ≤ j ≤ n− s− εs + 1

The rank of A is n− s− εs. If we denote λl+q = µ, for some non-zero µ ∈ F,

vk = (−1)k
(
n− s− εs

k

)
µ for k = 0, . . . , n− s− εs.

In particular,
λl+q+1 = −(n− s− εs)λl+q.

At the same time, being

0 = [el+(n−k), ene
q−2n+k+1
1 en]

we have that λl+q+1 = −(n− (k+ 1)/2)λl+q, where 1 ≤ k ≤ s+ εs− 2 and we are
in contradiction.

For the time being we have proved the following intermediate result.

Lemma 3.2.5. Let L be a graded Lie algebra of maximal class generated by two
elements of weight 1 and n over a field F of characteristic p > 4n. Suppose that
the length of the first constituent is

l = ph + εn − 2i, for 0 ≤ i ≤ n+ εn − 4

2
and some positive integer h. Then, up to a rescaling of en, there are two possibil-
ities for L.
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• Case 1:

0 = λl+(n−1) = · · · = λl+q−2,

0 = λl+q−1+n = · · · = λl+2q−2

and

λl+q−1+i = (−1)i
(
n− 1

i

)
, for 0 ≤ i ≤ n− 1.

• Case 2:

0 = λl+n = · · · = λl+q−1,

0 = λl+q+n = · · · = λl+2q−1,

and

λl+q+i = (−1)i
(
n− 1

i

)
, for 0 ≤ i ≤ n− 1.

Moreover, in both cases, λq+1 = λ2q+1, . . . , λq+n = λ2q+n.

Corollary 3.2.6. Suppose that n is odd and that l = q + 1, where q = ph,
for some prime p and positive integer h. Let L be a graded Lie algebra of maximal
class with first constituent length l. Then, λq+n = 0 and L belongs to case 1.

Proof. Since [ene1en] = 0, we have that [eq, [ene1en]] = 0. This implies that
λq+1+n = 0. Now, consider

−λq+1+neq+2n+1 = [en, ene
q+1
1 ]

= (−λq+n + λq+n+1)eq+2n+1.

Hence, λq+n = 0 and we are done. �

Using Lemma 3.2.5 we prove the following.

Lemma 3.2.7. In the same hypotheses of Lemma 3.2.5 the following holds,
respectively for case 1 or 2.

• Case 1. For any positive integer h,

0 = λl+hq−1+n = · · · = λl+(h+1)q−2

and

λl+hq−1+i = (−1)i
(
n− 1

i

)
, for 0 ≤ i ≤ n− 1.

• Case 2. For any positive integer h,

0 = λl+hq+n = · · · = λl+(h+1)q−1

and

λl+hq+i = (−1)i
(
n− 1

i

)
, for 0 ≤ i ≤ n− 1.
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Proof. We prove this Lemma by induction on h. Of course the assertions are
true for h = 0 by Lemma 3.2.5. Suppose then that thesis is true for all integers
h smaller than a positive integer k. We set s = l + (k − 1)q − 2 in case 1, while
s = l+ (k − 1)q − 1 in case 2. In both cases, we have that λq+1, . . . , λq+(l−q+(n−2))

are non-zero. In case 2 also λl+(n−1) is non-zero. Such a fact means that

0 = [ene
q+1−n
1 en]− λq+1[ene

q+1
1 ],

...
...

...

0 = [ene
l−2
1 en]− λl+(n−2)[ene

l+n−2
1 ]

and, in case 2, also 0 = [ene
l−1
1 en]− λl+(n−1)[ene

l+n−1
1 ].

We prove that

(3.2.37) λs+i = λs+q+i, for 1 ≤ i ≤ l − q + (n− 2)

and, in case 2, also λs+l−q+(n−1) = λs+l+(n−1).
We have that, taken i such that 1 ≤ i ≤ l − q + (n− 1),

0 = [es, [ene
q+i−n
1 en]].

In fact,

[es, [ene
q+i−n
1 en]] = [es, ene

q+i−n
1 , en]− [es, en, ene

q+i−n
1 ]

= −

(
n−1∑
j=0

(
q + i− n
j + 1

)(
n− 1

j

))
λs+q+ies+q+i+n − 0

= −
(
q + i− 1

n

)
λs+q+ies+q+i+n

≡ −
(
i− 1

n

)
λs+q+ies+q+i+n (mod p)

≡ 0 (mod p),

being i ≤ n.
We proceed proving (3.2.37). Consider firstly i = 1. We have that

0 = [es, [ene
q+1−n
1 en]− λq+1[ene

q+1
1 ]]

= −λq+1(−λs+1 + λs+q+1)es+q+1+n.

Being λq+1 6= 0 we deduce that λs+1 = λs+q+1.
Suppose now to have proved (3.2.37) for all integers i such that 1 ≤ i < j ≤

l− q + (n− 2) in case 1 or such that 1 ≤ i < j ≤ l− q + (n− 1) in case 2. Then,

0 = [es, [ene
q+j−n
1 en]− λq+j[eneq+j1 ]]

= −λq+j

(
j∑
i=1

(−1)i(λs+i − λs+q+i)

)
es+q+j+n

and, being λq+j 6= 0, we have that λs+j = λs+q+j.
We remind that in both cases λl+q, . . . , λ2q−1 are non-zero and, in case 1, also

λl+q−1 6= 0.
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In case 1 consider the relations

0 = [el+(k−2)q+(n−1), ene
l+q−n−1
1 en − λl+q−1ene

l+q−1
1 ],

...
...

...

0 = [el+(k−2)q+(n−1), ene
2q−1−n
1 en − λ2q−1ene

2q−1
1 ].

We have that [el+(k−2)q+(n−1), ene
q+i
1 en] = 0, for l − n − 1 ≤ i ≤ q − n − 1. In

fact,

[el+(k−2)q+(n−1), ene
q+i
1 en] =

= [el+(k−2)q+(n−1), [ene
q+i
1 ], en]− [el+(k−2)q+(n−1), en, ene

q+i
1 ]

=

(
i∑

j=0

(−1)j
(
i

j

)
(λl+(k−2)q+(n−1)+j − λl+(k−1)q+(n−1)+j)

)
λl+(k−1)q+(2n−1)+iel+(k−1)q+3n−1+i

and we note that all the λ coefficients involved in the sum are zero by inductive
hypotheses. Hence,

(3.2.38) 0 = [el+(k−2)q+(n−1), ene
q+i
1 ],

for l − 1 ≤ i ≤ q − 1. Expanding each of these relations we get:

0 = (−1)q−n

(
i∑

j=q−n

(
i

j

)(
n− 1

j − q + n

))
−

(
i∑

j=q−n

(−1)j
(
i

j

)
λl+(k−1)q+n−1+j

)

= (−1)n+1

(
i+ n− 1

i+ n− q

)
−

(
i∑

j=q−n

(−1)j
(
i

j

)
λl+(k−1)q+n−1+j

)

≡ 0−

(
i∑

j=q−n

(−1)j
(
i

j

)
λl+(k−1)q+n−1+j

)
(mod p).

Our goal is to determine the values of λl+kq−1+j, for 0 ≤ j ≤ n − 1, or, with
the notation adopted,

λs+q+j, for 1 ≤ j ≤ n.

Indeed we have already determined the values of λs+q+j, for 1 ≤ j ≤ l−q+(n−2).
If l = q + 1 all λs+q+j are determined, except λs+q+n, which, for the moment, we
leave undetermined.

Suppose then that l < q + 1. We remind that l is of the form q + εn − 2f ,
where 0 ≤ f ≤ n−4+εn

2
. For the sake of clarity let us denote t = l − q + (n− 3).
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Relations (3.2.38) can be expanded as follows:

0 =
t∑

j=0

(
p+ εn − 2f − 1

p− n+ j

)(
n− 1

j

)
+

n−1∑
j=t+1

(−1)j
(
p+ εn − 2f − 1

p− n+ j

)
λs+q+1+j,

...
...

...

0 =
t∑

j=0

(
p− 1

p− n+ j

)(
n− 1

j

)
+

n−1∑
j=t+1

(−1)j
(

p− 1

p− n+ j

)
λs+q+1+j.

If we denote v = [λs+q+2+t, . . . , λs+q+n], such relations give rise to the non-homogeneous
linear system

AvT = −wT ,
where

w =

(
t∑

j=0

(
p+ εn − 2f − 1

p− n+ j

)(
n− 1

j

)
, . . . ,

t∑
j=0

(
p− 1

p− n+ j

)(
n− 1

j

))
and

A =

(
(−1)j

(
p+ εn − 2f − 1 + i

p− n+ j

))
ij

,

for 0 ≤ i ≤ 2f − εn and j = t + 1, . . . , n − 1. Being A in row echelon form, its
rank is 2f − εn + 1, while the length of v is m = 2f − εn + 2.

One solution of the non-homogeneous system is(
(−1)t+1

(
n− 1

t+ 1

)
, . . . , (−1)n−1

(
n− 1

n− 1

))
.

The null space of the matrix A has dimension 1 and is spanned by

c =

((
n− t− 2

0

)
,−
(
n− t− 2

1

)
, . . . , (−1)n−t

(
n− t− 2

n− t− 2

))
.

In fact, the generic row of A, for 0 ≤ i ≤ 2f − εn, is(
p+ εn − 2f − 1 + i

p+ εn − 2f − 2 + j

)
, for 0 ≤ j ≤ n− t− 2

and

AcT =
∑
j≥0

(
p+ εn − 2f − 1 + i

p+ εn − 2f − 2 + j

)(
2f − εn + 1

j

)
=

(
p+ i

i+ 1

)
≡ 0 (mod p).

Therefore the general solution of the non-homogeneous linear system can be
expressed as

λl+kq−1+j = (−1)j
((

n− 1

j

)
+ µ

(
n− t− 2

j − t− 1

))
, for 0 ≤ j ≤ n− 1,

for some µ ∈ F. Herein we note that, if µ 6= −1, then λl+kq−1+(n−1) 6= 0, otherwise
λl+kq−1+(n−1) = 0, while λl+kq−1+(n−2) 6= 0.
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In case 2 one can consider the relations

0 = [el+(k−2)q+n, ene
l+q−n
1 en − λl+qenel+q1 ],

...
...

...

0 = [el+(k−2)q+n, ene
2q−1−n
1 en − λ2q−1ene

2q−1
1 ].

Similarly to the case 1, we have that [el+(k−2)q+n, ene
q+i
1 en] = 0, for l−n ≤ i ≤

q − n− 1.
Hence,

(3.2.39) 0 = [el+(k−2)q+n, ene
q+i
1 ],

for l ≤ i ≤ q − 1. Expanding (3.2.39) for any i we get:

0 ≡

(
i∑

j=q−n

(−1)j
(
i

j

)
λl+(k−1)q+n+j

)
(mod p).

Even in this case we want to determine the values of λl+kq+j, for 0 ≤ j ≤ n−1,
or, with the notation adopted,

λs+q+j, for 1 ≤ j ≤ n.

Indeed we have already determined the values of λs+q+j, for 1 ≤ j ≤ l−q+(n−1).
If l = q + 1 all λs+q+j are determined.

Suppose then that l < q + 1. We remind that l is of the form q + εn − 2f ,
where 0 ≤ f ≤ n−4+εn

2
. Denote t = l − q + (n− 2).

Relations (3.2.39) can be expanded as follows:

0 =
t∑

j=0

(
p+ εn − 2f

p− n+ j

)(
n− 1

j

)
+

n−1∑
j=t+1

(−1)j
(
p+ εn − 2f

p− n+ j

)
λs+q+1+j,

...
...

...

0 =
t∑

j=0

(
p− 1

p− n+ j

)(
n− 1

j

)
+

n−1∑
j=t+1

(−1)j
(

p− 1

p− n+ j

)
λs+q+1+j.

If we denote v = [λs+q+2+t, . . . , λs+q+n], such relations give rise to the non-homogeneous
linear system

AvT = −wT ,
where

w =

(
t∑

j=0

(
p+ εn − 2f

p− n+ j

)(
n− 1

j

)
, . . . ,

t∑
j=0

(
p− 1

p− n+ j

)(
n− 1

j

))
and

A =

(
(−1)j

(
p+ εn − 2f + i

p− n+ j

))
ij

,

for 0 ≤ i ≤ 2f − εn − 1 and j = t+ 1, . . . , n− 1. The matrix A is in row echelon
form and has rank 2f − εn, while the length of v is m = 2f − εn + 1.
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One solution of the non-homogeneous system is(
(−1)t+1

(
n− 1

t+ 1

)
, . . . , (−1)n−1

(
n− 1

n− 1

))
.

As in case 1 the null space of the matrix A has dimension 1 and is spanned by

c =

((
n− t− 2

0

)
,−
(
n− t− 2

1

)
, . . . , (−1)n−t

(
n− t− 2

n− t− 2

))
.

Hence, the general solution of the non-homogeneous linear system can be ex-
pressed as

λl+kq+j = (−1)j
((

n− 1

j

)
+ µ

(
n− t− 2

j − t− 1

))
, for 0 ≤ j ≤ n− 1,

where µ ∈ F. In particular, if µ 6= −1, then λl+kq+(n−1) 6= 0, otherwise λl+kq+(n−1) =
0, while λl+kq+(n−2) 6= 0.

We have that in both cases at least one among λl+kq+(n−3), . . . , λl+kq+(n−1) is
non-zero. Since

l + kq + (n− 1) > l+ kq + (n− 3) ≥ (k + 1)q + εn − 2f + (n− 3) ≥ (k + 1)q + 1,

hypotheses of Lemma 3.2.2 are satisfied and we get that, in case 1

λl+kq+(n−1) = · · · = λl+(k+1)q−3 = 0,

while in case 2

λl+kq+n = · · · = λl+(k+1)q−2 = 0.

We want to prove that, in case 1, also λl+(k+1)q−2 = 0. Suppose, on the
contrary, that λl+(k+1)q−2 6= 0. Since

0 = [el+kq+(n−2), ene
q−2n
1 en]

= 2λl+kq+(n−2)λl+(k+1)q−2el+(k+1)q−2+n,

then λl+kq+(n−2) = 0. That implies, with the notation adopted above,

λl+kq+(n−3) = (−1)n−2(t+ 1).

Consider now the relation [ene
2q−2n+1
1 en] = 0. Then,

0 = [el+(k−1)q+(n−3), ene
2q−2n+1
1 en]

= (λl+(k−1)q+(n−3) + (2n− 1)λl+(k−1)q+(n−2) − λl+kq+(n−3))λl+(k+1)q−2el+(k+1)q−2+n

+λl+(k−1)q+(n−3)λl+(k+1)q−2el+(k+1)q−2+n

= (2λl+(k−1)q+(n−3) + (2n− 1)λl+(k−1)q+(n−2) − λl+kq+(n−3))λl+(k+1)q−2el+(k+1)q−2+n

Since 2λl+(k−1)q+(n−3) + (2n− 2)λl+(k−1)q+(n−2) = 0, we get that

(3.2.40) λl+(k−1)q+(n−2) = λl+kq+(n−3),

namely (−1)n−1 = (−1)n−2(t+1). Since t = l−q+(n−3) ≥ (n−3)− (n−4) = 1,
we get a contradiction.

Hence, λk+(k+1)q−2 = 0.
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In case 2, also λl+(k+1)q−1 = 0. Suppose, on the contrary, that λl+(k+1)q−1 6= 0.
Since

0 = [el+kq+(n−1), ene
q−2n
1 en]

= 2λl+kq+(n−1)λl+(k+1)q−1el+(k+1)q−1+n,

then λl+kq+(n−1) = 0. That implies, with the notation adopted above,

λl+kq+(n−2) = (−1)n−2(t+ 1).

Consider now the relation [ene
2q−2n+1
1 en] = 0. Then,

0 = [el+(k−1)q+(n−2), ene
2q−2n+1
1 en]

= (2λl+(k−1)q+(n−2) + (2n− 1)λl+(k−1)q+(n−1) − λl+kq+(n−2))λl+(k+1)q−1el+(k+1)q−1+n

Since 2λl+(k−1)q+(n−2) + (2n− 2)λl+(k−1)q+(n−1) = 0, we get that

(3.2.41) λl+(k−1)q+(n−1) = λl+kq+(n−2),

namely (−1)n−1 = (−1)n−2(t+ 1) and, as before, we get a contradiction.
Hence, λl+(k+1)q−1 = 0. �

All the results proved in this section can be summarized by the following.

Lemma 3.2.8. Let g(n, l) denote the number of graded Lie algebras of maximal
class generated by two elements of weights 1 and n over a field F of positive
characteristic p > 4n and with the length of the first constituent l. Let q = ph, for
some positive integer h. Then,

g(n, l) ≤
{

1, if l = q + 1
2, if n > 3 and l = q or l = q + εn − 2i for some 1 ≤ i ≤ n−4+εn

2

3.3. First constituent length q − (n− 2)

In this section we deal with one special case, namely the case of a graded Lie
algebra of maximal class, whose length of the first constituent is q − (n − 2). It
will be proved that, with the usual hypothesis that p > 4n, there exists and is
unique a graded Lie algebra of maximal class with such first constituent length.

According to Lemma (3.2.2), we have that

λq+2 = · · · = λ2q−n = 0.

Since at least one among λq+1, . . . , λq+n must be non-zero, in this particular
case λq+1 6= 0. This implies that λ2q−n+1 = 0, because

0 = [eq+1, ene
q−2n
1 en]

= 2λq+1λ2q−n+1e2q+1

and λq+1 6= 0.
Moreover,

0 = [eq+1, ene
q+1−n
1 ]

implies that λq+1 = (−1)n−1λ2q+2−n.
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Up to scaling en, we can suppose that [eq−n+2, en] = 2eq+2, namely λq−n+2 = 2.
That implies that λ2q−n+2 = 1. In fact,

−λ2q−n+2e2q+2 = [en, ene
2q−2n+2
1 ]

= (−λq−n+2 + λ2q−n+2)e2q+2.

We prove the following.

Lemma 3.3.1. Let k ≥ 2. Suppose that

λ(k−1)q+2 = · · · = λkq−n+1 = 0.

Then,

(3.3.1) λkq−n+2+j = (−1)j
(
n− 1

j

)
µ1 + (−1)j

(
n− 2

j − 1

)
µ2, for 0 ≤ j ≤ n− 1

and µ1, µ2 arbitrarily chosen in F.
Moreover,

(1) (n− 2)λkq−n+2 + λkq−n+3 + (−1)n−1λkq+1 = 0;

(2) (−1)n−1λkq−n+2 + λkq + (n− 2)λkq+1 = 0.

Proof. Consider the following n− 2 relations

0 = [e(k−1)q+2, ene
q−2n+2
1 en − 2ene

q−n+2
1 ]

...
...

...(3.3.2)

0 = [e(k−1)q+n−1, ene
q−2n+2
1 en − 2ene

q−n+2
1 ].

Since λ(k−1)q+2 = · · · = λkq−n+1 = 0,

0 = [e(k−1)q+2, ene
q−2n+2
1 en]

...
...

...

0 = [e(k−1)q+n−1, ene
q−2n+2
1 en].

Define the vector

(3.3.3) v = [λkq−n+2, . . . , λkq+1].

Relations (3.3.2) yield the homogeneous linear system

AvT = 0,

where

(3.3.4) A =

(
(−1)j

(
p+ 2− n

p− n− i+ j

))
, i = 1, . . . n− 2; j = 1, . . . , n.

In order to prove that A has rank n− 2, we compute the minor

det

(
(−1)j

(
p+ 2− n

p− n− i+ j

))
, i, j = 1, . . . , n− 2,
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which, up to the sign, is equal to the determinant of the matrix

(3.3.5) B =

((
p+ 2− n

p− n− i+ j

))
, i, j = 1, . . . , n− 2.

We can rely upon Lemma (1.3.5) and evaluate det(B). Using the notation of the
Lemma, we set a = p− n and b = 2. Then,

(3.3.6) det(B) =
n−2∏
i=1

p−n∏
j=1

2∏
k=1

i+ j + k − 1

i+ j + k − 2
.

Checking that such a determinant is non-zero is an easy matter, since

1 ≤ i+ j + k − 2 ≤ i+ j + k − 1 ≤ (n− 2) + (p− n) + 2− 1 = p− 1.

Then we have proved that the null space of A has dimension 2. The general
solution can be expressed as

vj = µ1uj + µ2wj, for 0 ≤ j ≤ n− 1 and µ1, µ2 ∈ F,

where

uj = (−1)j
(
n− 1

j

)
for 0 ≤ j ≤ n− 1,

while

wj = (−1)j
(
n− 2

j − 1

)
for 0 ≤ j ≤ n− 1.

From (3.3.1) the last two equalities follow immediately. �

We have already proved that λq+2 = · · · = λ2q−n+1 = 0. That means that,
setting k = 2, hypotheses of Lemma 3.3.1 are satisfied. Since λ2q−n+2 = 1, also
µ1 = 1, with the notation of Lemma. Hence,

λ2q−n+2+j = (−1)j
(
n− 1

j

)
+ (−1)j

(
n− 2

j − 1

)
µ, for 0 ≤ j ≤ n− 1

and µ ∈ F.
Now we proceed proving the following.

Lemma 3.3.2. Let k be an even integer greater than zero. Suppose that, for
2 ≤ h < k,

λhq−n+2+j = (−1)j
(
n− 1

j

)
, for 0 ≤ j ≤ n− 1

and that λkq−n+2 = 1. Suppose also that, for 1 ≤ h < k,

λhq+2 = · · · = λ(h+1)q−n+1 = 0.

Then,
(3.3.7)

λkq−n+2+j = (−1)j
(
n− 1

j

)
+ (−1)j

(
n− 2

j − 1

)
µ, for 0 ≤ j ≤ n− 1 and µ ∈ F.

Moreover
λkq+2 = · · · = λ(k+1)q−n+1 = 0.
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Proof. Since hypotheses of Lemma 3.3.1 are satisfied, we have that (3.3.7)
holds.

If λkq+1 = 0 then µ = −1 and λkq = (−1)n. Hence, whatever the value of λkq+1

is, hypotheses of Lemma 3.2.2 are satisfied. It follows that

λkq+2 = · · · = λ(k+1)q−n = 0.

In order to prove that also λ(k+1)q−n+1 = 0, consider

−λ(k+1)q−n+1e(k+1)q+1 = [en, e
(k+1)q−2n+1
1 ]

=

(k+1)q−2n+1∑
i=0

(−1)i
(

(k + 1)q − 2n+ 1

i

)
λn+i

 e(k+1)q+1

= λ(k+1)q−n+1e(k+1)q+1.

�

We prove now the following.

Lemma 3.3.3. Let f be a positive integer and k = 2f . Suppose that the hy-
potheses of Lemma 3.3.2 are satisfied. Then,

λkq−n+3 = −(n− 1)− µ
λkq = (−1)n((n− 1) + (n− 2)µ)

λkq+1 = (−1)n−1(1 + µ)

for some µ ∈ F such that µ 6= 1. Then, µ = 0 or, if f 6≡ 0 (mod p), µ = 2f−3
2f

.
Moreover,

λ(k+1)q−n+2 =
1

1− µ
,

λ(k+1)q−n+3 = 1− n

1− µ
.

Proof. Since hypotheses of Lemma 3.3.2 are satisfied we obtain λkq−n+3 =
−(n− 1)−µ, λkq = (−1)n((n− 1) + (n− 2)µ), λkq+1 = (−1)n−1(1 +µ). Moreover,

λkq+2 = · · · = λ(k+1)q−n+1 = 0.

Consider the following:

(3.3.8) [efq+ q+3
2
, ene

fq+ q+3
2
−n

1 ] = 0.

Expanding (3.3.8) we get:

(3.3.9) 0 =

f∑
i=0

(−1)i
(
f

i

)
[efq+ q+3

2
+iq, ene

q+3
2
−n

1 , efq−iq1 ].

Moreover,

[efq+ q+3
2

+iq, ene
q+3
2
−n

1 ] =

= (−1)
q+3
2
−n−1

((
1

2
− (n− 1)

)
λ(f+1+i)q−n+2 − λ(f+i+1)q−n+3

)
e(f+i+1)q+3.
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We remind that λ(f+1+i)q−n+2 = 1, for 0 ≤ i < f , and that λ(f+1+i)q−n+3 =
−(n− 1), for 0 ≤ i < f − 1. Hence, (3.3.8) can be rewritten as:

0 =

(
f−2∑
i=0

(
f

i

)
[efq+ q+3

2
+iq, ene

q+3
2
−n

1 , efq−iq1 ]

)
+

(
f∑

i=f−1

[efq+ q+3
2

+iq, ene
q+3
2
−n

1 , efq−iq1 ]

)

=

(
(−1)f+ q+3

2
−n−1 1

2
(f − 1)

)
e(k+1)q+3

+(−1)f−1+ q+3
2
−n−1f

(
1

2
− (n− 1) + (n− 1) + µ

)
e(k+1)q+3

+(−1)f+ q+3
2
−n−1

((
1

2
− (n− 1)

)
λl+(k+1)q−n+2 − λl+(k+1)q−n+3

)
e(k+1)q+3.

For the sake of clarity we will denote a = λl+(k+1)q−n+2 and b = λl+(k+1)q−n+3.
With this new notation, what we just got is:

(3.3.10) − 1

2
− fµ+

(
1

2
− (n− 1)

)
a− b = 0.

Consider now the following relations:

0 = [ekq, ene
q−2n+2
1 en − 2ene

q−n+2
1 ],(3.3.11)

0 = [ekq+1, ene
q−2n+2
1 en − 2ene

q−n+2
1 ].(3.3.12)

Expanding (3.3.11) we get

0 = ((λkq + (n− 1)λkq+1 + (−1)n)a− λkq + (−n+ 2)λkq+1)e(k+1)q+2

(−1)ne(k+1)q+2 = ((−1)n+1µ+ (−1)n)a · e(k+1)q+2.

Hence, 1− µ 6= 0, and we get

(3.3.13) a =
1

1− µ
.

Now, consider (3.3.12):

0 = 2(λkq+1b− λkq+1(−n+ 1)a− λkq+1 − (−1)n(−n+ 2)a− (−1)n+1b)e(k+1)q+3.

We deduce that

0 = (−1)n−1(1 + µ)b+ (−1)n(−n+ 1)(1 + µ)a+ (−1)n(1 + µ)

+(−1)n+1(−n+ 2)a+ (−1)nb

= −µb+ (−n+ 1)µa− a+ (1 + µ)

= −µb+ (−n+ 1)µ
1

1− µ
− 1

1− µ
+ (1 + µ)

= −µb+ µ
−n+ 1− µ

1− µ
.

Hence, provided that µ 6= 0,

(3.3.14) b = 1− n

1− µ
.
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Substituting (3.3.13) and (3.3.14) in (3.3.10) we obtain:

0 = −1

2
− fµ+

(
1

2
− (n− 1)

)
1

1− µ
− 1 +

n

1− µ

= −3

2
− fµ+

3

2

1

1− µ

=
µ(3− 2f + 2fµ)

1− µ
.

Hence, provided that f 6≡ 0 (mod p),

(3.3.15) µ ∈
{

0,
2f − 3

2f

}
.

�

Now we prove the following.

Lemma 3.3.4. Let f be a positive integer and k = 2f . Suppose that hypotheses
of Lemma 3.3.2 are satisfied.

Let r be a positive integer and suppose that, for 0 ≤ h < k + r,

λhq+2 = · · · = λ(h+1)q−n+1 = 0.

For 0 ≤ i < r, denote

ai = λ(k+i)q, bi = λ(k+i)q+1,
ci = λ(k+1+i)q−n+2, di = λ(k+1+i)q−n+3.

Then, provided that ai + (n− 1)bi + (−1)n 6= 0 and bi + (−1)n 6= 0,

ci =
ai + (n− 2)bi

ai + (n− 1)bi + (−1)n
,

di =
−(n− 2)ai − ((n− 2)2 − 1)bi

ai + (n− 1)bi + (−1)n
.

Proof. Consider the relation

(3.3.16) 0 = [e(k+i)q, ene
q−2n+2
1 en − 2ene

q−n+2
1 ].

As a consequence we have that

(ai + (n− 1)bi + (−1)n)ci = ai + (n− 2)bi,

hence

(3.3.17) ci =
ai + (n− 2)bi

ai + (n− 1)bi + (−1)n
.

Consider now the relation

(3.3.18) 0 = [e(k+1+i)q, ene
q−2n+2
1 en − 2ene

q−n+2
1 ].

We deduce that

bidi + bici(n− 1)− bi + (−1)n−1(−n+ 2)ci + (−1)ndi = 0.
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Hence,

di =
bi − (n− 1)bici + (−1)n(−n+ 2)ci

bi + (−1)n

=
(ai + (n− 1)bi + (−1)n)bi − (n− 1)aibi − (n− 2)(n− 1)b2

i+

(ai + (n− 1)bi + (−1)n)(bi + (−1)n)

+
(−1)n(−n+ 2)ai + (−1)n+1(n− 2)2bi
(ai + (n− 1)bi + (−1)n)(bi + (−1)n)

=
−(n− 2)ai(bi + (−1)n)− ((n− 2)2 − 1)bi(bi + (−1)n)

(ai + (n− 1)bi + (−1)n)(bi + (−1)n)
.

Finally we get

(3.3.19) di =
−(n− 2)ai − ((n− 2)2 − 1)bi

ai + (n− 1)bi + (−1)n
.

�

Our next step is proving the following.

Lemma 3.3.5. Suppose that hypotheses of Lemma 3.3.2 and 3.3.4 are satisfied.
With the notation of Lemma 3.3.4 suppose that

• ai + (n− 1)bi + (−1)n 6= 0,
• bi + (−1)n 6= 0

for 0 ≤ i < r.
If b0 6= 0, then

(1) ci 6= 0, for 0 ≤ i < r;

(2) bi = (−1)n
bi−1

ai−1 + (n− 1)bi−1 + (−1)n
, for 0 < i ≤ r;

(3) bi = (−1)n
b0

ib0 + (−1)n(i+ 1)
, for 0 ≤ i < r;

(4) ci = (−1)n
1

(i+ 1)b0 + (−1)n(i+ 2)
, for 0 ≤ i < r.

Proof. (1) We proceed by induction on i. Let i = 0. Since λkq−n+2 = 1, we
deduce from Lemma 3.3.1 that

a0 + (n− 2)b0 + (−1)n−1 = 0.

Being

c0 =
a0 + (n− 2)b0

a0 + (n− 1)b0 + (−1)n
,

we have that c0 6= 0.
Suppose to have proved that ci 6= 0, for 0 ≤ i < j, where j is an integer smaller

than r. From Lemma 3.3.1 we deduce that

aj + (n− 2)bj + (−1)n−1cj−1 = 0.
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Hence, being

cj =
aj + (n− 2)bj

aj + (n− 1)bj + (−1)n
= (−1)n

cj−1

aj + (n− 1)bj + (−1)n
,

also in this case cj 6= 0.
(2) From Lemma 3.3.1 we have that (n− 2)ci−1 + di−1 + (−1)n−1bi = 0. Using

formulas obtained for ci and di in Lemma 3.3.4 we have that

(n− 2)ai−1 + (n− 2)2bi−1 − (n− 2)ai−1 − ((n− 2)2 − 1)bi−1

ai−1 + (n− 1)bi−1 + (−1)n
+ (−1)n−1bi = 0.

It follows that

(3.3.20) bi = (−1)n
bi−1

ai−1 + (n− 1)bi−1 + (−1)n
.

(3)-(4) We prove both formulas for bi and ci by induction on i.
If i = 0, there is nothing to prove for b0. As regards c0, from Lemma 3.3.4 we

have that

c0 =
a0 + (n− 2)b0

a0 + (n− 1)b0 + (−1)n
=

(−1)n

b0 + 2(−1)n

and we are done.
If i = 1, we have that

b1 = (−1)n
b0

a0 + (n− 1)b0 + (−1)n

= (−1)n
b0

b0 + (−1)n2
.

From Lemma 3.3.4,

c1 =
a1 + (n− 2)b1

a1 + (n− 1)b1 + (−1)n
=

(−1)nc0

b1 + (−1)nc0 + (−1)n

= (−1)n
(−1)n

b0 + (−1)n2
· b0 + (−1)n2

(−1)nb0 + 1 + (−1)nb0 + 2

= (−1)n
1

2b0 + (−1)n3

Suppose to have proved the assertions for bi, ci for all i not greater than j , for
some 1 < j < r. Then, consider

aj−1 + (n− 1)bj−1 + (−1)n =

= bj−1 + (−1)ncj−2 + (−1)n

= (−1)n
b0

(j − 1)b0 + (−1)nj
+

1

(j − 1)b0 + (−1)nj
+ (−1)n

=
(−1)njb0 + (j + 1)

(j − 1)b0 + (−1)nj
.
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Now, using (2) and the inductive hypotheses

bj = (−1)n
bj−1

aj−1 + (n− 1)bj−1 + (−1)n

=
b0

(j − 1)b0 + (−1)nj

(j − 1)b0 + (−1)nj

(−1)njb0 + (j + 1)

= (−1)n
b0

jb0 + (−1)n(j + 1)
.

As regards cj, from Lemma 3.3.4 and inductive hypothesis

cj =
aj + (n− 2)bj

aj + (n− 1)bj + (−1)n

= (−1)ncj−1 · (−1)n
jb0 + (−1)n(j + 1)

(j + 1)b0 + (j + 2)

= (−1)n
1

jb0 + (−1)n(j + 1)
· jb0 + (−1)n(j + 1)

(j + 1)b0 + (j + 2)

= (−1)n
1

(j + 1)b0 + (j + 2)
.

�

Finally, consider the following technical Lemma.

Lemma 3.3.6. Let k be an integer greater or equal to 2 and suppose that, for
1 ≤ h < k,

λq−n+2, λq+1 6= 0,

λhq+2 = . . . λ(h+1)q−n+1 = 0,

λ(h+1)q−n+2, λ(h+1)q+1 6= 0.

Then,
λkq+2 = · · · = λ(k+1)q−n+1 = 0.

Proof. Indeed, this result follows easily from Lemma 3.2.2. In fact, being the
hypotheses of Lemma 3.2.2 satisfied with l = q − n+ 2, we have that

λkq+2 = · · · = λ(k+1)q−n = 0.

Then, from
0 = [ekq+1, ene

q−2n
1 en]

it follows that λkq+1λ(k+1)q−n+1 = 0, hence λ(k+1)q−n+1 = 0. �

We remind that in this section we are dealing with a graded Lie algebra of
maximal class, whose length of the first constituent is q−n+ 2, where q = ph, for
some prime p > 4n and h > 0. Up to scaling en we can suppose that λq−n+2 = 2.
We have already proved, at the beginning of the section, that

λq+2 = · · · = λ2q−n+1 = 0
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and that λ2q−n+2 = 1.
Suppose now to have proved that, for some positive integer f and k = 2f ,

(3.3.21) λhq−n+2+j = (−1)j
(
n− 1

j

)
, for 2 ≤ h < k and 0 ≤ j ≤ n− 1

and that, for 1 ≤ h < k,

λhq+2 = · · · = λ(h+1)q−n+1 = 0.

Then, according to Lemma 3.3.2,

(3.3.22) λkq−n+2+j = (−1)j
(
n− 1

j

)
+ (−1)j

(
n− 2

j − 1

)
µ, for 0 ≤ j ≤ n− 1

and some µ ∈ F . Indeed, being hypotheses of Lemma 3.3.2 and 3.3.3 satisfied,
there are at most two possible values for µ, namely

(1) Case 1: µ = 0.
(2) Case 2: µ = 2f−3

2f
, provided that f 6≡ 0 (mod p).

We will deal separately with these two cases.

Case 1: µ = 0. Being µ = 0,

(3.3.23) λkq−n+2+j = (−1)j
(
n− 1

j

)
, for 0 ≤ j ≤ n− 1.

In particular λkq+1 6= 0. From Lemma 3.2.2 it follows that

λkq+2 = · · · = λ(k+1)q−n = 0.

Then, being [ekq+1, ene
q−2n
1 en] = 0, it follows that λkq+1λ(k+1)q−n+1 = 0, hence

λ(k+1)q−n+1 = 0.

Since [ekq, ene
q−2n+2
1 en − 2ene

q−n+2
1 ] = 0, we have that

λ(k+1)q−n+2 =
λkq + (n− 2)λkq+1

λkq + (n− 1)λkq+1 + (−1)n
=

(−1)n−2

(−1)n
= 1.

According to Lemma 2.0.9,

λkq+2 = · · · = λkq+2+n = 0.

Now, consider the following n− 1 relations:

0 = [e (k+1)q+3
2

, ene
(k+1)q+3

2
−n

1 ]

...
...

...

0 = [e (k+1)q+3
2

+i
, ene

(k+1)q+3
2

−(n−i)
1 ]

...
...

...

0 = [e (k+1)q+3
2

+(n−2)
, ene

(k+1)q+3
2

−2

1 ].
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Expanding the i-th relation, for some 0 ≤ i ≤ n− 2, we get

0 =

(
f∑
h=0

(−1)h
(
f

h

) 2i+1∑
j=0

(−1)j
( q−1

2
+ 2− n+ i

q−1
2

+ 2− n− 1− i+ j

)
λ(f+1+h)q−n+2+j

)

≡

(
f∑
h=0

(−1)h
(
f

h

) 2i+1∑
j=0

(−1)j
( p−1

2
+ 2− n+ i

p−1
2

+ 2− n− 1− i+ j

)
λ(f+1+h)q−n+2+j

)
,

applying Lucas’ theorem and taking into consideration the fact that p > 4n.
Since, for 0 ≤ h < f ,

λ(f+1+h)q−n+2+j = (−1)j
(
n− 1

j

)
,

the expansion above reduces to:

2i+1∑
j=0

(−1)j
( p−1

2
+ 2− n+ i

p−1
2

+ 2− n− 1− i+ j

)
λ(k+1)q−n+2+j

=
2i+1∑
j=0

( p−1
2

+ 2− n+ i
p−1

2
+ 2− n− 1− i+ j

)(
n− 1

j

)
.

We remind that λ(k+1)q−n+2 = 1. In order to unravel a little the notation, denote
xj = λ(k+1)q−n+2+j, for 1 ≤ j ≤ n− 1, and x = [x1, . . . , xn−1]. Finally, denote

yi =
2i+1∑
j=1

( p−1
2

+ 2− n+ i
p−1

2
+ 2− n− 1− i+ j

)(
n− 1

j

)
.

We can construct the non-homogeneous linear system AxT = y, where

A =

(
(−1)j

( p−1
2

+ 1− n+ i
p−1

2
+ 2− n− i+ j

))
ij

, for 1 ≤ i, j ≤ n− 1.

Since we are interested in the determinant evaluation of A, we consider the matrix

(3.3.24) B =

(( p−1
2

+ 1− n+ i
p−1

2
+ 2− n− i+ j

))
ij

, for 1 ≤ i, j ≤ n− 1,

having the same determinant of A up to the sign.
In order to evaluate det(B) we rely upon Corollary 1.3.4. We have that

det(B) =

∏
1≤i<j≤n−1(j − i)∏n−1
i=1

(
p−1

2
+ 1− i

) · n−1∏
i=1

(
p−1

2
− n+ i

)
!

(2i− 2)!

n−1∏
i=1

(p+ 3− 2n+ i)i−1 .

It is easily verified that det(B) 6≡ 0 (mod p). In fact, for each 1 ≤ i < j ≤ n−1,
the difference 1 < j − i < n− 1 < p. Then, since p > 4n,

n+ 1 ≤ p− 1

2
− n+ i ≤ p− 1

2
.
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Hence,
n−1∏
i=1

(
p− 1

2
− n+ i

)
!

is not divisible by p.
Finally, consider

(p+ 3− 2n+ i)i−1 = (p+ 3− 2n+ i) . . . (p+ 1− 2n+ 2i).

Since,

1 < (p+ 3− 2n+ i) < · · · < (p+ 1− 2n+ 2i) ≤ (p− 1),

we have that also

n−1∏
i=1

(p+ 3− 2n+ i)i−1 6≡ 0 (mod p).

We can conclude that det(B) 6= 0 and the same holds for det(A). Hence, the
non-homogeneous system AxT = y has exactly one solution. Summing all up, we
have that

λ(k+1)q−n+2+j = (−1)j
(
n− 1

j

)
, for 0 ≤ j ≤ n− 1.

In particular, being λ(k+1)q+1 6= 0, we can apply Lemma 3.3.6 and get that

λ(k+1)q+2 = · · · = λ(k+2)q−n+1 = 0.

Finally, with the same argument used before, we get that λ(k+1)q−n+2 = 1.

Case 2: µ =
2f − 3

2f
. We suppose that 1 + µ 6= 0. We will deal with this case

later. Set a0 = λkq and b0 = λkq+1. Since 1 + µ 6= 0, we have that b0 6= 0.
Set i = 0 and consider the following iterative procedure.

Step 1. Being hypotheses of Lemma 3.3.6 satisfied, λ(k+i)q = · · · = λ(k+1+i)q−n+1 =
0.
• If ai+(n−1)bi+(−1)n 6= 0 and bi+(−1)n 6= 0, according to Lemma

3.3.4, set

ci =
ai + (n− 2)bi

ai + (n− 1)bi + (−1)n

di =
−(n− 2)ai − ((n− 2)2 − 1)bi

ai + (n− 1)bi + (−1)n
.

• Otherwise break the iteration.
Step 2. Set i = i+ 1. Since (−1)n−1bi + (n− 2)ci−1 + di−1 = 0, we have that

(−1)nbi =
bi−1

ai−1 + (n− 1)bi−1 + (−1)n
6= 0.

Hence, bi = λ(k+i)q+1 6= 0. Go to step 1.
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A priori, such a procedure could run indefinitely. We want to prove that after
some iterations it will be interrupted because one of the two conditions in Step 1
has not been verified.

Suppose that, for some positive integer j,

ai + (n− 1)bi + (−1)n 6= 0 for 0 ≤ i < j,

bi + (−1)n 6= 0 for 0 ≤ i < j,

bj + (−1)n = 0.

Since

bj = (−1)n
b0

jb0 + (−1)n(j + 1)

and bj = (−1)n−1, we have that

(j + 1)b0 = (−1)n−1(j + 1).

That implies that either j ≡ −1 (mod p) or b0 = (−1)n−1. The second case is
impossible, since we have supposed at the beginning that b0 6= (−1)n−1. Hence j ≡
−1 (mod p). That means in particular that bi + (−1)n 6= 0 for i = 0, 1, . . . , p− 2.
We prove now that, for some i < p− 1,

ai + (n− 1)bi + (−1)n = 0,

in contradiction with our initial hypotheses. To do that, consider

ai + (n− 1)bi + (−1)n = bi + (−1)n + (−1)nci−1

=
(−1)n(i+ 1)b0 + (i+ 2)

ib0 + (−1)n(i+ 1)
.

We have that ai + (n− 1)bi + (−1)n = 0 if and only if (−1)n(i+ 1)b0 + (i+ 2) = 0,
namely

i = −(−1)nb0 + 2

(−1)nb0 + 1
= −1− 1

(−1)nb0 + 1
6≡ −1 (mod p).

Hence, for some 0 ≤ i ≤ p − 2, we have that ai + (n − 1)bi + (−1)n = 0, in
contradiction with our initial hypotheses.

At the same time, we have proved that bi+(−1)n 6= 0, for all integers i such that
0 ≤ i ≤ p−2, while, for some 0 ≤ j ≤ p−2, the relation aj+(n−1)bj+(−1)n = 0.
But also in this case we have a contradiction. In fact, with the usual notation,

(3.3.25) (aj + (n− 1)bj + (−1)n)cj = aj + (n− 2)bj.

Hence, aj + (n− 2)bj = 0. But, aj + (n− 2)bj = (−1)ncj−1 6= 0.
We conclude that, provided that 1 + µ 6= 0, we cannot have an infinite dimen-

sional graded Lie algebra of maximal class.
Consider now the possibility that 1 + µ = 0. Firstly we note that f 6= 1. In

fact, if f = 1, then µ = −1/2 6≡ −1 (mod p).
Then,

λkq−n+2+i = (−1)i
(
n− 2

i

)
, for 0 ≤ i ≤ n− 2,
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while λkq+1 = 0. According to Lemma 3.2.2,

λkq+2 = · · · = λ(k+1)q−n = 0.

It is easily seen that also λ(k+1)q−n+1 = 0. In fact,

−λ(k+1)q−n+1e(k+1)q+1 = [en, ene
(k+1)q−2n+1
1 ]

=
k∑

h=0

(−1)h
(
k

h

)(q−2n+1∑
i=0

(−1)i
(
q − 2n+ 1

i

)
λhq+n+i

)
e(k+1)q+1

= λ(k+1)q−n+1e(k+1)q+1.

Therefore, λ(k+1)q−n+1 = 0.

Now, consider the relation [ekq, ene
q−2n+2
1 en−2ene

q−n+2
1 ] = 0. As a consequence,

(λkq + (−1)n)λ(k+1)q−n+2 = λkq.

Being λkq = (−1)n, we deduce that λ(k+1)q−n+2 = 1/2. Since [e(k+1)q−n+1, ene1en] =

0, it follows that λ(k+1)q+2 = 0. Moreover, from [ekq+1, ene
q−n+1
1 en+(−1)nene

q+1
1 ] =

0, we deduce that

0 = [ekq+1, [ene
q−n+1
1 ], en]− [ekq+1, en, [ene

q−n+1
1 ]] + (−1)n[ekq+1, ene

q+1
1 ]

= (−1)n+qλ(k+1)q+1e(k+1)q+2+n.

Hence, λ(k+1)q+1 = 0. According to Lemma 3.3.1,

λ(k+1)q−n+2+i = (−1)i · 1

2

(
n− 2

i

)
, for 0 ≤ i ≤ n− 2.

Since [ene
hq−n+1
1 en + (−1)nene

hq+1
1 ] = 0, for 1 ≤ h < k and k ≥ 4, in particular we

have that [ene
2q−n+1
1 en + (−1)nene

2q+1
1 ] = 0. Consider the following:

0 = [e(k−1)q+1, [ene
2q−n+1
1 en + (−1)nene

2q+1
1 ]]

= [e(k−1)q+1, ene
2q−n+1
1 , en]− [e(k−1)q+1, en, ene

2q−n+1
1 ] + (−1)n[e(k−1)q+1, ene

2q+1
1 ]

=

(
2q−n+1∑
i=0

(−1)i
(

2q − n+ 1

i

)
λ(k−1)q+1+i

)
λ(k+1)q+2e(k+1)q+n+2

−λ(k−1)q+1

(
n−1∑
i=0

(
q − n+ 1

q − 2n+ 1 + i

)(
n− 2

i

))
e(k+1)q+n+2

+λ(k−1)q+1

n−1∑
i=0

(
q − n+ 1

q − 2n+ 1 + i

)
· 1

2
·
(
n− 2

i

)
e(k+1)q+n+2 + (−1)nλ(k−1)q+1e(k+1)q+n+2

= (−(−1)n−1

(
q − 1

n

)
+ (−1)n−1 1

2

(
q − 1

n

)
− 1)e(k+1)q+n+2 = −1

2
e(k+1)q+n+2.

Therefore also in this case we have a contradiction.
All what we have proved through this section can be summarized in the fol-

lowing.
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Lemma 3.3.7. Let L be a graded Lie algebra of maximal class generated by two
elements of weight 1 and n over a field F of characteristic p > 4n, whose first
constituent length is l = q− n+ 2. Suppose, up to scaling en, that [el, en] = 2el+n.
For k ≥ n, denote [ek, en] = λkek+n. Then,

λk = 0 for n ≤ k < l,
λhq−n+2+j = (−1)j

(
n−1
j

)
for h ≥ 2 and 0 ≤ j ≤ n− 1,

λhq+2 = · · · = λ(h+1)q−n+1 = 0 for h ≥ 1

and λl, . . . , λq+1 are uniquely determined by means of the relations

0 = [ek, ek], for l ≤ k ≤ q + 1.

Proof. The proof of this Lemma is straightforward using all the facts proved
through this section. Supposing that λl = 2, we have proved that λq+2, . . . , λ2q−n+1 =
0 and that λ2q−n+2 = 1. Then, by means of the relations [ek, ek] = 0, for
l ≤ k ≤ q + 1, the coefficients λk are uniquely determined.

Now we prove the assertions about the coefficients λhq−n+2+j and λhq+2, . . . ,
λ(h+1)q−n+1, for h ≥ 2 and 0 ≤ j ≤ n − 1. We proceed by induction on h = 2f .
Take f = 1. Since hypotheses of Lemma 3.3.2 hold for k = 2,

λ2q−n+2+j = (−1)j
(
n− 1

j

)
+ (−1)j

(
n− 2

j − 1

)
µ for 0 ≤ j ≤ n− 1,

where µ = 0 or µ =
2f − 3

2f
, if f 6≡ 0 (mod p) (see Lemma 3.3.3). If µ = 0, we

proved that

λhq−n+2+j = λ(h+1)q−n+2+j =

(
n− 1

j

)
for 0 ≤ j ≤ n− 1,

λhq+2 = · · · = λ(h+1)q−n+1 = 0,

λ(h+1)q+2 = · · · = λ(h+2)q−n+1 = 0,

λ(h+2)q−n+2 = 1.

If µ =
2f − 3

2f
, we come to a contradiction.

As regards the inductive step, let f > 1 and suppose to have proved the
assertions for h smaller than 2f . Then, setting h = 2f , it is possible to repeat
verbatim the proof above replacing f = 1 with the current value of f . �

Hence, in the initial hypotheses of this section, we proved that there exists at
most one graded Lie algebra of maximal class.





CHAPTER 4

Construction of the Lie algebras

In Chapter 3 we defined g(n, l) as the number of graded Lie algebras of maximal
class over a field F of odd characteristic p > 4n with first constituent length equal
to l, up to a rescaling of en. What we got is that

g(n, l) ≤
{

1, if l = q + 1 or q − (n− 2)
2, if n > 3 and l = q or l = q + εn − 2i for some 1 ≤ i ≤ n−4

2
,

where q = ph for some positive integer h and

εn =

{
0 if n is even
1 if n is odd.

In the following we show that the upper bounds for g(n, l) are reached for any
choice of l contemplated above.

In the following Section of this Chapter, the reader can find the explicit con-
struction of the following:

(1) g1(p, h, n), a graded Lie algebra of maximal class over a field of odd char-
acteristic p > 2n and odd n with first constituent length equal to ph + 1,
for some positive integer h;

(2) g2(p, h, n), a graded Lie algebra of maximal class over a field of odd char-
acteristic p > 2n and even n with first constituent length equal to q = ph,
for some positive integer h.

If n = 2 we have only to consider the case l = ph−(n−2) = ph. Since g2(p, h, n)
is a graded Lie algebra of maximal class with l = ph, we have that g(n, l) = 1.

If n = 3 we have only to consider the cases l = ph + 1 or l = ph − (n− 2). For
the moment consider the case l = ph + 1. We have that g1(p, h, n) is a graded Lie
algebra of maximal class with l = ph+1, hence g(n, l) = 1. The case l = ph−(n−2)
will be dealt with at the end of this section.

Consider now an odd integer n ≥ 5. Even in this case g(n, ph+1) = 1, for each

positive integer h. Let 1 ≤ i ≤ n+ εn − 4

2
and l = q + 1− 2i, where q = ph. We

want to prove that g(n, l) = 2. We consider g1(p, h,m), where m = n − 2i, and,
in it, the subalgebra generated by the elements e1, en = [em, e

2i
1 ]. This is a graded

Lie algebra of maximal class, generated in weights 1 and n, with first constituent
length equal to l. Looking at the multiplication table of g1, we have that

[eq−2i+n, en] = [eq+(n−2i), eme
2i
1 ] = 0,

being [ek, em] = 0, for q + (n− 2i) ≤ k ≤ n.
We can also consider g2(p, h,m), where m = n+1−2i, and, in it, the subalgebra

generated by the elements e1, en = [em, e
2i−1
1 ]. This is a graded Lie algebra of

83
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maximal class, generated in weights 1 and n, with first constituent length equal
to l. As before, we look at the multiplication table of g2. Here we see that

[eq−2i+n, en] = [eq+(n−2i), eme
2i−1
1 ] 6= 0,

because [eq+(n−2i), em] 6= 0, while [ek, em] = 0, for q − 2i+ n+ 1 ≤ k ≤ q + n− 1.

Consider now an even integer n ≥ 4. Let 0 ≤ i ≤ n− 4

2
and l = q − 2i, where

q = ph for some positive integer h. We want to prove that g(n, l) = 2.
Take g1(p, h,m), where m = n − 2i − 1, and, in it, the subalgebra generated

by e1, en = [em, e
2i+1
1 ]. This is a graded Lie algebra of maximal class, generated in

weights 1 and n, with first constituent length equal to l. We have that

[eq+(n−2i−1), eme
2i+1
1 ] = 0,

because [ek, em] = 0, for q + (n− 2i− 1) ≤ k ≤ q + n.
Now consider g2(p, h,m), wherem = n−2i, and, in it, the subalgebra generated

by e1, en = [em, e
2i
1 ]. This is a graded Lie algebra of maximal class, generated in

weights 1 and n, with first constituent length equal to l. We have that

[eq+(n−2i−1), eme
2i
1 ] 6= 0,

because [eq+(n−2i−1), em] 6= 0, while [ek, em] = 0, for q + (n− 2i) ≤ k ≤ q + n− 1.
Finally, consider the case l = q − (n − 2), where q = ph, for some positive

integer h. We want to prove that g(n, l) = 1. Take into consideration the algebra
g2(p, h, 2) and in it the subalgebra generated by the two elements e1, en = [e2, e

n−2
1 ].

Such an algebra is of maximal class and has first constituent length equal to
q − (n− 2), hence gets the job done.

4.1. Lie algebra with first constituent length q or q + 1

Let q = ph, for some positive integer h. In this section we give a construction
of the Lie algebra generated by two elements of weight 1 and n with the first
constituent of length q, if n is even, or q + 1, if n is odd. In both cases p > 2n.

Let V be a vector space of dimension q over the field Fp(t) of rational functions
over the field Fp with p elements. We grade V over the cyclic group of order q,

V = 〈v0〉 ⊕ 〈v1〉 ⊕ · · · ⊕ 〈vq−1〉.
Let D and E be endomorphisms of V defined as follows:

E =

{
vi 7→ vi+1 if i 6= q − 1
vq−1 7→ tv0.

D =

 vi 7→ (−1)i+1
(
n−1
i+1

)
vi+n if 0 ≤ i ≤ n− 2

vi 7→ 0 if n− 1 ≤ i ≤ q − 2
vq−1 7→ tvn−1

Consider the Lie algebra M spanned by D and E in the endomorphism algebra
of V . In M , the endomorphism D and E have weights respectively n and 1.

Now we prove that, for every 0 ≤ j < q,

(4.1.1) vj[DE
mD] = 0, for 0 ≤ m ≤ q − n− 1.
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Suppose first that 0 ≤ j ≤ n−1 and that m+n+ j < q−1. In this case, [DEmD]
is a linear combination of monomials of the form EαDEβD and DEαDEβ, being
α + β = m. Then, vjE

αDEβ = c · vj+m+n and vjDE
α = d · vj+n+α, for some

c, d ∈ Fp. Hence we conclude that vj[DE
mD] = 0.

Now we deal with the case q − 1 ≤ m+ n+ j(< 2q).

vj[DE
mD] =

=

((
j+m∑
k=j

(−1)j+1

(
n− 1

k + 1

)(
m

k − j

))
· (−1)j+m+n ·

(
n− 1

m+ n+ j + 1− q

)

− (−1)j+1

(
n− 1

j + 1

)
·
j+n+m∑
k=j+n

(−1)j+n−q+1

(
n− 1

k − q + 1

)(
m

k − (j + n)

))
tvj+m+2n

= (−1)m+(n+1)

((
m∑
k=0

(
n− 1

k + 1 + j

)(
m

k

))
·
(

n− 1

m+ n+ j + 1− q

)

− (−1)n+1

(
n− 1

j + 1

)
·
m∑
k=0

(
n− 1

j + n+ k − q + 1

)(
m

k

))
tvj+m+2n

=

(
(−1)m+(n−1)

(
n+m− 1

m+ j + 1

)(
n− 1

q − 1− (j +m+ 1)

)
−(−1)n+1

(
n− 1

j + 1

)(
m+ n− 1

q − 1− (j + 1)

))
tvj+m+2n

=

(
(−1)j+1

(
n+m− 1

m+ j + 1

)(
m+ j + 1

q − 1− (n− 1)

)
−(−1)m+(j+1)

(
n− 1

j + 1

)(
j + 1

q − 1− (m+ n− 1)

))
tvj+m+2n

= (−1)j+1

((
n+m− 1

q − 1− (n− 1)

)(
2n+m− 1− q
m+ j + 1− q + n

)
+(−1)m+1

(
n− 1

q − 1− (m+ n− 1)

)(
2n+m− 1− q
m+ j + 1− q + n

))
tvj+m+2n

= (−1)j+1

(
2n+m− 1− q
m+ j + 1− q + n

)(
n+m− 1

q − 1− (n− 1)

)(
1 + (−1)m+1(−1)m

)
.

= 0.

This proves (4.1.1) for vj such that 0 ≤ j ≤ n− 1.
To complete our proof we consider the case n ≤ j ≤ q−1. For the moment we

exclude the case j = q− 1. As considered before, [DEmD] is a linear combination
of monomials of the form EαDEβD and DEαDEβ, being α + β = m. Since
n ≤ j ≤ q − 2, we have that vjD = 0 and vjDE

αDEβ = 0.
Consider now the monomials EαDEβD. If vjE

αD = 0 we are done. So,
suppose that vjE

αD 6= 0. Hence vjE
αD = c · tvk for some c ∈ Fp and k ≥ n− 1.

Therefore vjE
αDEβ = d ·vk, where d ∈ Fp and k = j+n+m−q. Now we observe
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that n− 1 ≤ j + n+m− q ≤ q− 2 + n+ q− n− 1− q ≤ q− 3. That means that
vkD = 0 and this proves our assertion.

As regards j = q − 1, we have that vjE
αDEβ = c · tvm+n−1, for some c ∈ Fp.

As before, n−1 ≤ m+n−1 ≤ q−2, hence vjE
αDEβD = 0, whenever α+β = m

and 0 ≤ m ≤ q − n− 1. Similarly we conclude that vjDE
αDEβ = 0.

Now we proceed proving that

[DEq−n] = (−1)n−1t · 1.
We distinguish two cases. Supposing that 0 ≤ j ≤ n− 2,

vj[DE
q−n] =

(
n−1∑
k=j

(−1)k+1

(
n− 1

k + 1

)
(−1)k−j

(
q − n
k − j

))
tvj

= (−1)j+1

(
q − 1

n− j − 2

)
tvj ≡ (−1)n−1tvj (mod p).

Finally, suppose that n− 1 ≤ j ≤ q − 1. Then,

vj[DE
q−n] =

(
j+q−n∑
k=j

(−1)k
(

n− 1

k − (q − 1)

)
(−1)k−j

(
q − n
k − j

))
tvj

= (−1)j

(
q−n∑
k=0

(
n− 1

k + j − (q − 1)

)(
q − n
k

))
tvj

= (−1)j
(

q − 1

j − n+ 1

)
tvj ≡ (−1)n−1tvj (mod p).

Hence, all the [DEi] are non-zero, for 0 ≤ i ≤ q−n and are linearly independent
over Fp, because have distinct weights n, . . . , q. Moreover, [DEmD] = 0, for
0 ≤ m ≤ q − n− 1. Therefore,

M = 〈E, [DEi] : 0 ≤ i ≤ q − n〉
is a (q − n+ 2)-dimensional Lie algebra.

Now consider the semidirect product V + End(V ) and in it the Lie Algebra L
over Fp generated by

e1 = E, en =
vn−1

t
+D.

For n < i ≤ q let

ei = [ei−1, e1] =
vi−1

t
+ [DEi−n].

If we take i = q we have that

eq =
vq−1

t
+ [DEq−n] =

vq−1

t
+ (−1)n−1t · 1.

Moreover, eq+1 = v0 and, for 0 ≤ r ≤ q − 1 and k ≥ 1

ekq+r+1 = tk−1vr.

Since [DEmD] = 0, for 0 ≤ m ≤ q − n− 1, we conclude that

[ei, en] = 0, for n ≤ i < q.
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Finally, consider the case i = q. Then,

[eq, en] =
vq−1

t
D + (−1)nt

vn−1

t
= (1 + (−1)n)eq+n.

Then,

[eq, en] =

{
0 if n is odd,
2eq+n otherwise.

In general, if 0 ≤ r ≤ n− 2 and k ≥ 1,

[ekq+r+1, en] =
[
tk−1vr,

vn−1

t
+D

]
= (−1)r+1

(
n− 1

r + 1

)
tk−1vr+n

= (−1)r+1

(
n− 1

r + 1

)
ekq+r+n+1,

while, for n− 1 ≤ r < q − 1 and k ≥ 1,

[ekq+r+1, en] = 0.

Finally, if r = q − 1 and k ≥ 1,

[e(k+1)q, en] = tkvn−1 = e(k+1)q+n.

We have defined two graded Lie algebras of maximal class, respectively for n
even and odd:

(1) If n is even,

[ei, en] =


0 for i = n . . . q − 1
2ei+n for i = q
(−1)r

(
n−1
r

)
ei+n if i = kq + r, for r = 1, . . . , n− 1 and k ≥ 1

0 if i = kq + r, r = n, . . . , q − 1 and k ≥ 1
1 if i = kq and k ≥ 2.

(2) If n is odd,

[ei, en] =


0 for i = n . . . q
(−1)r

(
n−1
r

)
ei+n if i = kq + r, for r = 1, . . . , n− 1 and k ≥ 1

0 if i = kq + r, r = n, . . . , q − 1 and k ≥ 1
1 if i = kq and k ≥ 2.

Note in passing that both the algebras above are ultimately periodic. There-
fore, they are also soluble, namely [er, es] = 0, for r, s > q + n. In fact, write
s− n = aq + b for some 0 ≤ b < q and positive integer a. Then,

[er, es] = [er, ene
aq+b
1 ]

=
a∑

h=0

(−1)h
(
a

h

) b∑
j=0

(−1)j
(
b

j

)
[er+hq+j, en, e

(a−h)q+b−j
1 ] = 0,

since [er+j, en] = [er+hq+j, en], for any 0 ≤ h ≤ a and 0 ≤ j ≤ b.
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