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While the genetics of autism spectrum disorders (ASD) has been intensively studied, resulting in the identification of over 100
putative risk genes, the epigenetics of ASD has received less attention, and results have been inconsistent across studies. We aimed
to investigate the contribution of DNA methylation (DNAm) to the risk of ASD and identify candidate biomarkers arising from the
interaction of epigenetic mechanisms with genotype, gene expression, and cellular proportions. We performed DNAm differential
analysis using whole blood samples from 75 discordant sibling pairs of the Italian Autism Network collection and estimated their
cellular composition. We studied the correlation between DNAm and gene expression accounting for the potential effects of
different genotypes on DNAm. We showed that the proportion of NK cells was significantly reduced in ASD siblings suggesting an
imbalance in their immune system. We identified differentially methylated regions (DMRs) involved in neurogenesis and synaptic
organization. Among candidate loci for ASD, we detected a DMR mapping to CLECT1A (neighboring SHANKT) where DNAm and
gene expression were significantly and negatively correlated, independently from genotype effects. As reported in previous studies,
we confirmed the involvement of immune functions in the pathophysiology of ASD. Notwithstanding the complexity of the
disorder, suitable biomarkers such as CLECT1A and its neighbor SHANK1 can be discovered using integrative analyses even with

peripheral tissues.

Translational Psychiatry (2023)13:109; https://doi.org/10.1038/5s41398-023-02407-4

INTRODUCTION
Autism spectrum disorders (ASD) are diagnosed in children at a
young age if they exhibit difficulties in social interaction and
communication and have restricted interests and repetitive
behaviors [1, 2]. Affected children are ~1-2% of the population,
and the prevalence is at least three times higher in boys than in
girls [3]. Genetic studies have been instrumental in the discovery
of multiple types of risk variants and the gain of new insights into
the biology of ASD [4-7]. It has been acknowledged in several
studies that ASD liability likely depends on additive effects of
common and rare variants [8-11], and recent sequencing efforts
have led to the identification of over 100 putative ASD risk genes,
the majority of which are neuronally expressed [7]. Consistently,
post-mortem investigations on brain samples from ASD subjects
have revealed gene expression signatures associated with multi-
ple synaptic functions [5, 12-14], in addition to a dysregulation of
immune function genes, which has also been shown by
investigations conducted in blood [15-19]. However, like for other
complex disorders, genetic variants (including structural and
chromosomal variations) do not fully explain the heritability of
the disease, suggesting that the risk for the disease is not
exclusively driven by genetic variants [20, 21].

DNA methylation (DNAm) represents one of the potential
epigenetic mechanisms that may contribute to the risk of ASD due
to interactions with genetic elements during the development of

normal brain functions [22-26]. The interaction between ASD-
associated genes and DNAm occurs through changes in the
chromatin state driven by DNAm alterations that ultimately affect
the expression of neurodevelopmental genes. As an example,
Nguyen et al. provided strong evidence for epigenetic regulation
via differential DNAm of the activity of two genes (BCL-2 and
RORA) in the autistic brain, validating their methylation status of
BCL-2 and RORA in lymphoblastoid cells of discordant mono-
zygotic ASD twins and unaffected siblings [27]. Addressing the
relationship between DNAm and expression of disease-associated
genes is crucial for a full understanding of the etiology of
heterogeneous diseases, but for ASD this relationship has been
examined for a limited number of risk genes [28-31].

Genes may be up-or down-regulated as a response to
modifications of DNAm that are linked to environmental variables
and DNA sequence variations. Environmental variables such as
advanced paternal age and chemical exposures have been shown
to have strong effects on DNAm profile, and at the same time to
increase the risk for ASD diagnosis [28, 32, 33]. Genetic variants
may also influence DNAm levels through allele-specific methyla-
tion or methylation quantitative trait loci (mQTL), as it has been
shown by large-scale investigations conducted in blood [34-37]
and in brain [38, 39]. Of note, mQTLs have been found to be highly
correlated between independent brain and blood samples [40],
opening the possibility to learn about epigenetic mechanisms in
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the brain by studying peripheral tissues, and identifying biomar-
kers that reflect complex epigenetic interactions contributing to
ASD risk, which would be otherwise overlooked.

Diagnosis of ASD still relies on the fulfillment of descriptive
criteria, even though there is a strong motivation to develop
effective biomarkers that can be used for early diagnosis. Some of
the main candidate biomarkers for ASD have been identified
through differential DNAm analysis. The receptor of the oxytocin
hormone is one well-studied example. Its genomic region has
been found differentially methylated in several studies with ASD
and non-ASD controls, but the reported effects of DNAm on gene
expression and protein synthesis have not been consistent across
studies [41-43]. Differential DNA methylation analyses have been
conducted in post-mortem tissues from ASD subjects and
neurotypical controls, resulting in the identification of signatures
of DNAm alterations and multiple biological pathways involved
[44-46]. For biomarker discovery, brain tissues are less suitable
than peripheral ones as they are much less accessible, and they
also tend to be affected by post-mortem degradation. However, it
must be taken into account that epigenetic signatures tend to be
tissue-specific: interindividual variation in whole blood is not a
strong predictor of interindividual variation in the brain, although
DNA methylation in whole blood significantly co-varies with that
in the brain at some genomic loci, including loci relevant for
neurodevelopmental disorders [34, 47]. Therefore, whilst on the
one hand, peripheral tissues might represent a valid alternative to
brain tissues for detecting and developing effective biomarkers for
ASD, on the other hand, they contain only a small amount of
information that is shared with brain samples [48] and detecting
significant signals may require very large sample sizes [49].

Here, we examined methylation data from whole blood samples
of ASD discordant siblings that belonged to the Italian Autism
Network (ITAN) cohort. We aimed to detect regions of the genome
showing discordant levels of DNAm which correlated with the
expression of nearby genes. As this association between diagnosis,
DNAm, and gene expression is likely to be biased by demographic
factors [50], genetic variants [34], biological and non-biological
variables [46, 51, 52], we estimated the difference in DNAm
between ASD and non-ASD siblings, and also the correlation
between DNAm and gene expression conditionally on these
confounding factors. Finally, we investigated biological pathways
that were predicted to be significantly affected by the identified
DNAm alterations.

SUBJECTS AND METHODS

Subjects

For the ITAN collection, thirteen centers were involved after approval by
the Verona Hospital Ethical Review Board (study protocol AUT-SFKOOT,
CE1419) and by the Ethical Review Committees. More than 800 individuals
across 256 families were recruited and diagnosed with ASD with their
consent or the parents’ consent [53]. The diagnosis was performed by
experienced child psychiatrists that followed the DSM IV [54] and used
standard tools: Broader Phenotype Autism Symptom Scale (BPASS), Autism
Diagnostic Interview-Revised (ADI-R), Autism Diagnostic Observation
Schedule (ADOS), and Krug Asperger Disorder Index screening. Of the
ITAN collection, we selected 76 families having two siblings discordant for
ASD diagnosis, and the affected child between 4 and 18 years old. The
total number of subjects was 152 (Supplementary Table 1).

DNAm profiling

DNA was extracted from peripheral blood samples using the Puregene
Blood Kit (Gentra Systems, Minneapolis, MN, US), a modified salting-out
precipitation method, following the manufacturer’s instructions. Each DNA
sample was then checked for quality and quantity using NanoDrop ND
1000 spectrophotometer (Thermo Scientific, Wilmington, DE, US). Follow-
ing sample randomization, DNA methylation quantification was performed
at Life & Brain GmbH, Bonn, in two main steps. Firstly, DNA samples were
submitted to bisulfite conversion using the EZ-96 DNA Methylation-
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Lightning™ MagPrep protocol (Zymo Research, California, USA). This
protocol consisted of adding the ready-to-use Lightning Conversion
Reagent directly to the DNA coupled to a magnetic bead-based clean-up
method. Secondly, the methylation profile of the converted DNA was
determined across the human genome (hg19) using the Infinium
HumanMethylationEPIC (“EPIC") array by lllumina [55]. The DNA methyla-
tion data that support the findings of this study are available from the ITAN
Foundation (see https://www.fondazioneitan.org/en for details) upon
submission of an official request. Data are released only for research
purposes, upon assessment of a project proposal by the ITAN Scientific
Committee.

DNA array genotyping and transcriptome analysis

DNA samples were genotyped by the Autism Sequencing Consortium [56]
using lllumina GSA v2 arrays (~658,000 markers). Genotype data were
called using the genotyping command line interface of lllumina array
analysis platform. Transcriptome data were generated by Poly-A RNA
sequencing on lllumina RNASeq Platform as previously described [17].
Exome sequence data were also available as a result of a collaboration with
the Autism Sequencing Consortium [57].

EPIC array data processing

The analysis of the EPIC array data was developed from the pipeline
described in the ChAMP R package [58]. Raw IDAT files were imported and
checked for quality using the minfi R package [59]. The quality control
steps included default filters for probes with a detection P-value > 0.01 in
at least one sample, for probes with a bead count < 3 in at least 5% of
samples, for probes that were not found in CpG islands, for SNP-related
probes according to the general recommendations [60], for cross-reactive
probes [61, 62], for probes that aligned to multiple locations and finally, for
probes located in chromosome X and Y. For each probe that passed the
quality filters (i.e., CpG site), we calculated the Beta-value for each sample
by taking the ratio between the number of methylated cytosines and the
total number of cytosines at the specific CpG site. We then run BMIQ intra-
array normalization [63], which is an effective method for adjusting Beta-
values for bias introduced by the Infinium type 2 probe design [64]. We
visualized the similarity of samples based on the normalized Beta-values of
the 1,000 most variable probes using a multidimensional scaling plot, and
we removed outlier families from downstream analyses if the metadata
were incorrectly reported.

The contribution of batch effects to DNAm variation was determined
using singular value decomposition (SVD [65]), and we used ComBat [66]
to correct the Beta-values for technical features that showed a significant
association (P-value < 0.05) with the first 20 principal components of
DNAm variation. These batch effects were slide, plate, and array number,
and we ensured that the biological variable of interest (ASD vs. non-ASD)
was not confounded with these technical variables [67-69]. We also
applied control probe adjustment [70] to further reduce the effects of
technical biases on the methylation signal. This specific step involved the
use of signal intensities for the EPIC array control probes which were
representative of the efficiency of bisulfite conversion, and other aspects
related to the chemistry of methylation quantification. We performed a
principal component analysis in R [71] of these control probe intensities to
deal with the high correlation between them, and then we determined
whether there were significant batch effects of these principal components
using SVD.

Peripheral cell-type composition

We calculated cell-type composition for each sample from the Beta-values
using the RefbaseEWAS method implemented in ChAMP [72]. We first
assessed whether there was a significant difference in cell-type composi-
tion between ASD and non-ASD subjects using Dirichlet regression in R.
Then, we extracted the variation in cell-type composition that was not
partly explained by the diagnosis (i.e. the residuals of the Dirichlet
regression), and we used these residuals of cell-type composition as
covariates of a linear model to examine changes in DNAm that were not
driven by cell-type heterogeneity (see below).

Differential methylation

After filtering probes and samples for quality and correcting Beta-values
for batch effects and cell-type composition, the next step of the DNAm
pipeline was to identify differentially methylated probes (DMPs) using the
limma R package [73, 74] implemented in ChAMP. For each probe, a linear
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model was fitted to the distribution of Beta-values across samples, with
age, sex, family, and diagnosis as covariates. By including family in the
linear model, we also expected to capture most of the variation explained
by ethnicity because, for most samples, ethnicity was the same within
families and different between families. A moderated gene-wise variance
was then computed based on the empirical Bayes method [74] to test the
null hypothesis that a difference in fitted values between ASD and non-
ASD subjects was equal to zero. We called a CpG site a DMP if such a
difference had a Benjamini-Hochberg (BH) corrected P-value < 0.05.

To address the interactions between neighboring CpG sites and the net
effect that these sites have on associated gene(s), we determined the
methylation status of clusters of probes by running the DMRcate algorithm
[75] built in ChAMP. This algorithm identified differentially methylated
regions (DMRs) between ASD and non-ASD subjects by applying a
Gaussian smoothing to the moderated statistics of the limma output using
windows of 1000 bp (default setting). DMRcate does not require a priori
annotations of the genome for calling DMRs, and it does not combine
genomically nearby CpG sites based on the direction of DNAm. Because of
these two features of the algorithm, we were able firstly to study genomic
regions that either had (e.g., promoter) or did not have (e.g., intergenic)
explicit gene associations and, secondly, to analyze regulatory regions that
showed hypermethylated and hypomethylated probes in ASD cases
compared to non-ASD siblings (or vice versa). We used a quantile-quantile
(Q-Q) plot between observed DMP/DMR P-values and expected P values
under a uniform distribution of range [0,1] to check for spurious estimated
P-values.

To assess the accuracy of the identified DMRs to classify ASD subjects,
we first built a classifier model based on a Random Forest (RF) algorithm
using the R package randomForest [76] and fed it with the median DNAm
values of the DMRs. The model was trained and tested on 70% of the
samples using a 5-fold cross-validation that was repeated ten times (R
package caret [77]). The remaining 30% of the samples were used for
validating the model classifier performance to predict ASD diagnosis. To
avoid leakage of information from the test set into the training set, we
then run differential methylation analysis on 70% of the samples, and then
tested the ability of the identified DMRs to correctly classify the remaining
30% of the samples in terms of ASD diagnosis. The classifier was based on
a Random Forest (RF) algorithm using the R package randomForest, and
fed with the median DNAm values of the top 50 DMRs. A 5-cross-validation
procedure was repeated ten times as above.

Gene set enrichment

Both DMP and DMR datasets were analyzed for enriched gene sets to find
biological functions significantly affected by differential DNAm between
ASD and non-ASD subjects. We performed gene set enrichment analysis
(GSEA) using bioinformatic tools that were developed explicitly for either
DMPs or DMRs and that allowed us to correct gene sets P-values for the
different numbers of CpGs between genes (i.e., probe number bias [78]).

For DMPs, GSEA was performed using functional class scoring, which is
an approach implemented in the methylGSA R package [79]. Compared to
other GSEA methods such as over-representation analysis, functional class
scoring allowed us to rank all CpGs and not only DMPs by their P-values
and, thus, to use the entire list of CpG-associated genes for each gene set
to determine which biological functions were significantly influenced by
differential DNAm between ASD and non-ASD subjects. Gene sets and the
corresponding biological functions were extracted from widely used
databases (Gene Ontology, KEGG, and Reactome) and also from specialized
databases which were composed of genes implicated in psychiatric
disorders (Gandal et al. [80]. and SFARI Gene database [81]), genes highly
expressed in the human brain (The Human Protein Atlas [82]) and finally,
genes involved in synapse functions (SynGO [83]).

For DMRs, we used an empirical Bayes GSEA method implemented in
ChAMP [84] that has been developed to overcome the probe number bias
and to avoid using only CpGs below an arbitrary significance threshold
[85]. All CpGs of each DMR were mapped to genes, and these genes were
ranked by their overall level of differential DNAm. This list of ranked genes
was then examined for enriched biological pathways which were obtained
from widely used databases (Gene Ontology, KEGG, and Reactome).

Integration with gene expression and genotype data

To examine the potential effects that differential DNAm may have on
transcription activity and gene regulation, we integrated the DNAm profile
with gene expression data from the same set of samples [17] using the
ELMER R package (version 2.8.3) [86]. This type of analysis was performed
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in supervised mode. From the list of DMPs generated using limma (see
above), distal EPIC probes (at least 2 Kb far from transcriptional start sites)
were kept for the integration with gene expression data if the DNAm
difference at these probes was |0.03| between ASD and non-ASD subjects.
Each differentially methylated distal probe was then paired with the
closest ten upstream genes and the closest ten downstream genes. For
each probe-gene pair, we computed the inverse correlation between the
DNAm of the probe, and the expression of the gene and further analyzed
the difference in gene expression between ASD and non-ASD subjects
using the Mann-Whitney U test. We used the Benjamini-Hochberg
corrected P-values for detecting probe-gene pairs that may be potentially
associated with ASD diagnosis.

The correlation between DNAm and gene expression may also depend
on genetic components. To understand potential genetic effects on DNAm
and gene expression, we used the genotype data of our subjects and
integrated them with published data of independent DNAm quantitative
trait locus (mQTL) [34] and of cis-expression quantitative trait loci (eQTL)
[87]. First, we searched for cis-eQTL of the gene which was significantly
associated with the differentially methylated distal probe. Then, we
checked if such a genetic variant was also a mQTL. If a given SNP was a
mQTL and corresponded to our distal probe, we estimated its effect on
DNAm using a beta regression model [88] where the independent
variables were the diagnosis and the genotype of the subjects multiplied
by the Beta-value of the mQTL. Each linear model included two different
top-ranked mQTL which were estimated to be in linkage equilibrium using
LDlink [89].

Correlation between methylation in blood and in reference
brain datasets

We obtained data from the Image-CpG database [90] to assess to which
extent the methylation level within the identified DMRs could reflect brain
methylation. Blood-brain correlations parameters for EPIC lllumina EPIC
array were available as summary statistics. As described in Roberson-Nay
et al. [91] we computed the median rho correlation, together with the
minimum and maximum rho, for all CpGs included in each DMR.

RESULTS

Difference in cell-type composition

We estimated per-sample cell-type proportions from DNAm data
and analyzed these compositional data using Dirichlet regression
to determine whether there was a difference between ASD and
non-ASD subjects. We found no significant difference in estimated
cell-type composition, except for NK cells where the proportion
was significantly lower in ASD subjects compared to non-ASD
subjects (ASD =0.01, non-ASD = 0.04, P-value < 0.001) (Fig. 1;
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Fig. 1 Estimated cell-type proportions in ASD and non-ASD

subjects. Statistical significance was calculated using Dirichlet
regression and only the proportions of NK cells were significantly
different between ASD (green) and non-ASD (orange) subjects (***
meaning a P-value < 0.001). The error bars represent the standard
deviation.
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Supplementary Table 2). These differences in cell-type composi-
tion were consistent with the results of a previous study on ASD in
which the same subjects were analyzed using gene expression
data [17]. Even though we performed a DNAm-based cell-type
deconvolution method, our estimated proportions were corre-
lated (Pearson’s r > 0.25) with the proportions that were calculated
in the previous study where it was used an RNA-based
deconvolution algorithm (Supplementary Fig. 1a, b).

Identification of DMPs and DMRs

We examined EPIC methylation arrays of 76 discordant autistic
sibling pairs to understand the role of epigenetics in ASD. We
identified two outlier families using a multidimensional scaling
plot based on DNAm Beta-values (Supplementary Fig. 2), but we
discarded only one outlier family in which the sampling was not
performed on the same date for both siblings; in all the other
families, each pair was sampled on the same date. After removing
this outlier, the methylation profile of the 75 families was overall
homogeneous, and largely shared between discordant siblings of
the same family (Supplementary Fig. 3). Notably, one subject is
carrier of a 15911.2-13.1 duplication and three ASD subjects carry
a de novo protein truncating mutation in one of the 72 associated
genes identified by Fu et al. [57]. However, since all of them
clustered with the corresponding control sibling in the multi-
variate analysis (Supplementary Figs. 2, 3), we retained them in the
analysis. Family was, in fact, one of the factors that resulted to be
significantly associated with the first 20 principal components of
the SVD analysis. The other factors that explained a significant
variation in Beta-values were either involved with the array
processing (e.g., slide and control probes intensities) or with the
heterogeneity of cell types (e.g., granulocytes and B cells), and no
significant variation was explained by the diagnosis (Supplemen-
tary Fig. 4). However, after fitting a linear model to each probe’s
Beta-values to correct for family, age, sex, batch effects, control
probes intensities, and cell-type composition, we were able to
capture the portion of DNAm variation that was significantly
associated with the diagnosis (Supplementary Fig. 4).

For the differential methylation analysis between ASD and non-
ASD siblings, we used the adjusted Beta-values and we identified
37,643 DMPs across the genome with a BH corrected P-value < 0.05
and a range of Beta-values difference between —0.05 and 0.05
(Supplementary File 1; for the Q-Q plot, see Supplementary Fig. 5).
The data on single DMPs may not accurately reflect the interactions
between neighboring CpG sites and the net effect that these sites
have on associated gene(s). To overcome these limitations, we ran
the DMRcate algorithm [75] and identified 418 DMRs with Stouffer's
P-value < 0.05 that were located genome-wide, as expected from
the distribution of DMPs (Supplementary File 2). Of these DMPs and
DMRs, the top-ranked sites were determined to potentially affect
genes that have been reported to be involved in neurodevelop-
mental diseases such as TBX7 [92], SHANK2 [93], and TTC23 [94] (see
Fig. 2 and Supplementary Fig 6 which reports the location of the
DMRs relative to the genes discussed here). Notably, out of the
418 significant DMRs, only 26 has a statistically significant
difference when comparing males vs males (Stouffer's P-value <
0.05, see Supplementary File 2), and none of the neurodevelop-
mental related genes here discussed displays a significantly
different methylation in males vs females. To further address the
potential confounding effect of sex on diagnosis-related findings,
we additionally conducted an analysis stratified by sex (ie. a
separate analysis for males and females), see Supplementary File 3.
Consistently with the smaller sample size of females compared to
males, we detected fewer DMRs reaching statistical significance and
larger p-values in females (641 DMRs in females and 7570 DMRs in
males; 170 DMRs were shared between females and males).
However, we found a strong correlation (Pearson’s correlation 0.96,
P-value < 0.001) between male and female coefficients estimated
by sex-stratified DMP analysis, see Supplementary Fig 7.
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Fig. 2 Statistical significance of genome-wide differential methy-
lation between ASD and non-ASD subjects. Top-ranked DMP (red
point) of each top 2% DMR and its corresponding gene (text box).

To assess the accuracy of the identified DMRs to classify ASD
subjects, we then built classifier models based on a Random
Forest algorithm as described in Methods. The first model was fed
with the median DNAm values of the 418 DMRs identified by
differential methylation on the full cohort. Despite the small
differences in methylation between ASD and non-ASD siblings
(see the mean values of DNAm for each DMR in ASD and non-ASD
subjects and their distribution in Supplementary File 4) and the
potential p-value inflation, the overall model performance was
0.758 in terms of AUC. Since the performance of the first model
can be skewed away from the true performance due to leakage of
information from the test set into the training set, we performed a
second model based on DMRs differential methylation analysis on
70% of the samples, and then tested the ability of the identified
top 50 DMRs to correctly classify the remaining 30% of the
samples in terms of ASD diagnosis, as described in Methods. In
this case, the model performance was 0.72 (see Supplementary Fig
8). Among the newly identified DMRs, 42 had exactly the same
genomic position of the DMR identified with the full cohort
analysis. As expected, their mean difference between ASD and
control subjects correlated with their feature importance in the
RF-based classification (see Supplementary Fig 9). By restricting
the classifier to these 42 DMRs (and feeding the classifier with
their median DNAm values), the overall performance raised up
to 0.75.

Enriched biological processes in ASD

We performed GSEA to understand which biological processes
may have been altered by differential methylation between ASD
and non-ASD subjects. We extracted biological processes from a
total of seven databases (Gene Ontology, KEGG, Reactome, Gandal
et al. [80], SFARI Gene [81], The Human Protein Atlas [82], and
SynGO [83]), and identified 457 and 2,305 processes that were
significantly represented (FDR<0.05) by the list of genes
associated with DMPs and DMRs, respectively (Supplementary
File 5; Supplementary File 6). Of the top 1% significantly enriched
processes with the highest Normalized Enrichment Score, two
processes involved genes associated with synapse disassembly
and structure, three processes were associated with neurogenesis,
and one process involved learning genes. Finally, we found a
significant enrichment for SFARI ASD risk genes (Fig. 3). To further
corroborate the evidence of the enrichment of neurodevelop-
mental processes, we built a 2x2 contingency table with the
number of index DMPs and non-DMPs (at gene level) that are
associated with the top ranked neurodevelopmental processes
(displayed in blue in Fig. 3), and the number of DMPs and non-
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Synapse Disassembly -
Synapse Structure -
Non-Small Cell Lung Cancer -
Translation Factor Activity -
Solute:sodium Symporter Activity -
Multi-Organism Behavior -
Cardiac Muscle Cell Contraction -
Inositol Phosphate Metabolism -| 1.29
T Cell Differentiation In Thymus - 1.27
O-Glycan Processing - 1.31 FDR
Neuron Projection Regeneration - 1.32 0.04
Nerve Development - 1.26
Specific Granule Membrane - 1.31 I 0.03
Sodium lon Transmembrane Transporter Activity - 1.29
Response To Axon Injury - 1:3] 0.02
Regulation Of Ras Protein Signal Transduction - 1.26 0.01
Learning - 1.28
Inner Ear Morphogenesis - 1.29
Cortical Cytoskeleton - 1.28
Cortical Actin Cytoskeleton - 1.34
Cell-Cell Adherens Junction - 1.28
Adherens Junction Organization -| 1.26
Phosphatidylinositol Signaling System - 1.28
Melanogenesis - 1.28
Gastric Acid Secretion -| 1.31
ASD Risk Genes-  1.26
SFARI GO  KEGG SynGO

Organization

Fig.3 Top 1% enriched gene sets. Biological functions (y-axis) were
extracted from four databases (x-axis) and they were ranked by FDR
(red gradient) and Normalized Enrichment Score (values inside the
tiles). Of the top 1% functions, seven may have an important
contribution to the etiology of ASD (highlighted in blue).

Table 1. Probe-gene pair association using ELMER.

Hypermethylated Gene Distance FDR
cg17729891 C190rf48 193401 0.01
€g20315590 TSEN15 —1959694 0.01
cg17729891 CLEC11A 119026 0.04
cg10841563 GNAQ —2633643 0.01
cg10841563 KIF27 3171593 0.01
cg10841563 HNRNPK 3302978 0.01
cg05890377 MOB1A 21940 0.03

Hypermethylated (left) and hypomethylated (right) distal probes in ASD
subjects and putative target genes.

DMPs associated with other processes (see Supplementary Table
3. We then assessed whether DMPs were overrepresented for
neurodevelopment-related processes using a hypergeometric
distribution (one side Fisher’s exact test). The result confirms that
neurodevelopment-related processes are indeed enriched within
the DMPs (odds ratio = 2.96, P-value < 0.001).

Correlation between DNAm and gene expression
Differential methylation between different biological conditions
may contribute to phenotypic differences through changes in the
underlying gene expression. Here, we investigated whether ASD
and non-ASD siblings showed genes or genomic regions that
differed in the joint pattern of DNAm and gene expression using
ELMER analysis in supervised mode. We identified 346,224 probes
on EPIC arrays that were at least 2 kb away from a transcriptional
start site. Six of these distal probes were hypermethylated and ten
were hypomethylated in ASD subjects with FDR < 0.05 and Beta-
values difference >|0.03 | (Supplementary Fig. 10). We then
identified putative target genes for these differentially methylated
distal probes and found a significant association for three of the
hypermethylated probe-gene pairs and four of the hypomethy-
lated probe-gene pairs (Table 1). Notably, we identified significant
associations for CLECT1A and MOBI1A, genes known to be
associated with immune and mental disorders [95, 96].
Correlated DNAm and gene expression changes may be driven
by genetic variants influencing DNAm at the nearby target gene.
We identified two SNPs as candidate genetic variants for such an
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Fig. 4 Gene expression and DNAm of CLEC11A. Gene expression
(y-axis) was normalized and adjusted for batch effects and
demographic parameters [17]. Median DNAm (i-axis) was calculated
for the DMPs that were significantly associated with CLECT1A. Mean
(large and black circles) and 95% confidence intervals (black bars) of
CLEC11A expression and DNAm are shown for ASD (green; DNAm =
0.514 (0.511-0.517); DGE = —0.151 (—0.307-0.005)) and non-ASD
(orange; DNAm = 0.519 (0.516-0.522); DGE = 0.061 (—0.091-0.212))
siblings.

impact on DNAm of CLECT1A and MOBTA. We investigated the
effects of the SNPs genotype on the estimated differential DNAm
between ASD and non-ASD subjects, but only for MOBIA the
genotype contribution was strong enough to remove the
differential DNAm signal (Supplementary Table 4). For CLECTI1A,
we found that differential DNAm was not lost when taking into
account the presence of a mQTL. This strong signal for CLECT1A
was supported by both the DMR analysis in which the genomic
region involving CLECT1A was characterized as DMR (Fig. 2;
Supplementary File 2), and the estimated correlation between the
median DNAm across the four DMPs at 200-1500 bases upstream
of CLECTIA transcriptional start site and CLECTTA expression
(Pearson’s r=—0.39, P-value < 0.001; Fig. 4). Although the
difference in DNAm of CLECTIA between ASD and non-ASD
siblings was significant, gene expression was only marginally
different between the two groups (Fig. 4).

Finally, we exploited the dataset reported by Braun et al. [90] to
investigate the degree of correlation between blood and brain for
some of the identified DMRs, i.e. TTC23, TBX1, SHANK2 and
CLEC11A, by computing the Spearman correlation for all CpGs
included in each DMR. All four DMRs showed a trend for positive
correlation between blood and brain methylation, with TTC23
displaying a consistent trend across all CpGs (see Supplementary
Tab 5), suggesting the potential of using blood for detecting
changes which may be relevant in the brain.

DISCUSSION

Identifying robust biomarkers for ASD has been a challenging task.
This group of neurodevelopmental disorders is polygenic,
phenotypically heterogeneous, and influenced by both genetic
and environmental factors [97-100]. As there is no single common
genetic variant showing a strong predictive value for ASD
diagnosis [101, 102], candidate biomarkers have been searched
for outside the protein-coding sequences of genes such as in
enhancers and intergenic regions. In these regulatory regions,
biomarkers can be found by detecting changes in DNA methyla-
tion (DNAm) that may potentially affect gene functions [22-26].
However, although the contribution of DNAm to the risk of ASD
has been acknowledged, questions remain about the potential of
this type of epigenetic biomarkers to help in the development of
diagnostic and therapeutic approaches to ASD.
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Here, we analyzed the methylation profile of whole blood
samples from 75 sibling pairs with a discordant ASD diagnosis. We
aimed to analyze DNAm in subjects with ASD and detect
dysregulated genomic regions that may be involved in the
etiology of the disorder. In addition, we investigated possible
differences in cell-type proportions between ASD and non-ASD
siblings that might have been involved in the pathophysiology of
the disorder.

In our study, we analyzed the methylation profile of a subset of
the ITAN collection, the same subset previously examined at the
transcription level [17]. We estimated cell-type proportions using
DNAm array data of whole blood mixtures and showed a reduced
fraction of NK cells in ASD siblings. A similar reduction in NK cells
was also found using transcriptome data of the same cohort [17],
consistent with previous investigations reporting either a decrease
of NK cells [103] or a reduction of their activity [104-107]. NK cells
act against viral infections, representing an important defensive
mechanism of the innate immune system [108], and their
decreased level or activity would suggest a suboptimal function
of the immune system in ASD. In ASD children, immune pathways
are typically dysregulated, and the expression of genes that are
involved in the immune response has been found to be correlated
with changes of DNAm in their regulatory regions [109]. For
example, Nardone et al. [46]. found that hypomethylated sites
were associated with the overexpression of transcription factors
regulating the development of the microglia. It has also been
reported that the immune system of mothers of ASD cases
responded slowly to infections due to DNAm alterations at
regulatory regions of immune genes [110]. Such DNAm alterations
may be inherited, potentially contributing to the risk of ASD in
children of immunocompromised mothers. More recently, a
genome-wide methylation analysis in the blood of ASD subject
vs neurotypical controls has led to the identification of a putative
epigenetically distinct subset of children driven by altered blood
cell composition [111], further supporting the role of the immune
systems in the pathophysiology of ASD. Nevertheless, given the
known dynamic nature of the immune system and possible
variations in cell proportions and subsets reflecting hormonal
changes or environmental influences [112], the reduction in NK
cells observed might well be reflecting a transient state, and
would need to be confirmed in longitudinal studies.

Autism is a polygenic neurodevelopmental disorder and,
besides immune genes, there are other genes that have been
associated with ASD [5, 6, 8, 11, 19]. By comparing the genome-
wide methylation profile of ASD subjects versus their healthy
sibling controls, we identified hundreds of genes that were
differentially methylated after accounting for demographic data,
batch effects, and cell-type composition. In particular, 37,643
genomic sites (DMPs) and 418 regions (DMRs) were differentially
methylated between ASD and non-ASD siblings. We detected
DNAm alterations in TBX1, SHANK2, and TTC23, genes that have
been previously shown to be affected by epigenetic processes in
ASD and other neurodevelopmental diseases [92-94]. As
expected, genes that have a significant contribution to the risk
of ASD, such as TBX1, SHANK2, and TTC23, are regulated through
DNAm, suggesting that the etiology of ASD can be better
understood by also looking at DNAm alterations.

By conducting gene set enrichment analysis (GSEA), we showed
that identified DMPs were associated with biological processes
related to synapse functions and neurogenesis. Although neurode-
velopmental pathways are preferably studied using brain tissues, our
results support the potential for identifying epigenetic biomarkers of
neurodevelopment even in peripheral tissues [47, 48].

Differences in cellular composition, DNAm, and function of
neurodevelopmental pathways are expected to be associated with
differences in gene expression between affected subjects and
controls. Ultimately, the association between multiple mechanisms
may strongly depend on genetic variants that, for example, are

SPRINGER NATURE

responsible for differential DNAm and the regulation of gene
activity [113]. We integrated the methylation Beta-values of DMPs
of our samples with the corresponding gene expression and
genotype data to understand the potential relationship between
genetic and non-genetic components in ASD. We first calculated
the correlation between gene expression and DNAm, identifying a
significant and negative correlation between DNAm and expres-
sion at the DMR that was mapped to CLECT1A. We then combined
genotype data from the same samples and methylation eQTL data
and showed that the correlation was not driven by genotype
effects of candidate SNPs located in the same region.

In other studies, the region of CLEC11A has been identified as a
candidate locus for the etiology of neurodevelopmental disorders
due to its position nearby SHANKT, a gene strongly associated with
ASD [96]. SHANK family genes encode postsynaptic proteins that
are needed for functional electrochemical communication at the
level of synapses, and mutations in any of the three genes
(SHANK1, SHANK2, and SHANK3) have been reported to disrupt
neuronal activity [96, 114]. Different SHANK mutations have been
found in ASD individuals, including a deletion covering CLECT1A
and SHANKT in males with ASD [96, 115, 116]. In addition,
differential DNAm between ASD cases and controls has been
determined at the regulatory regions of SHANKT and SHANK3
[117, 118]. We could not detect DNAm changes that were
specifically associated with SHANKT nor SHANK3 because these
biomarkers are absent in the blood, but we did find a DMR
associated with the SHANK2 gene which is instead also expressed
in the blood [119], showing a trend for correlation with the
methylation level assessed in brain datasets.

Compared to studies based on brain tissues, our analysis using
whole blood samples was limited in its power to capture
neurodevelopmental genes and pathways, as we could only
examine those that were not exclusively regulated in the brain.
Still, we found differentially methylated sites in the blood that
were associated with genes involved in neurodevelopment and
ASD. We are aware that for some of these candidate genes
differential DNAm may reflect a correlation between ASD
diagnosis and some other variables that were not measured in
our study, and may be transient, thus further investigations would
be required to validate our findings. Nevertheless, our results
provide further support for the possibility of using peripheral
tissues to identify candidate epigenetic ASD biomarkers through
integrative analyses across genomic data, as in the case of the
CLEC11A-SHANK1 region. When validated, the methylation markers
might become a valuable asset to support early diagnosis,
particularly for non-syndromic or “idiopathic autism”, and assist
the identification of epigenetically distinct subtypes of autism
[111, 120], thus facilitating stratified therapies.
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