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Abstract

Application of mesoscale habitat models in gravel-bed rivers is increasingly common

for a variety of purposes, from ecological flow design, impact assessment and

conservation programmes. Integration with 2D hydraulic modelling offers the

potential for broader applicability of mesoscale habitat models, extending

applications to larger streams and nonwadable flow conditions, when on-the-ground

and in-stream surveys are challenging or even prohibitive. In this work, a novel fully

unsupervised procedure that allows the segmentation of the river channel area at a

given flow condition at a scale that is consistent with the mesoscale is presented.

Further, it defines an objective methodology to choose segmentation parameters and

thus an optimal segmentation, based on intrinsic spatial properties of the resulting

regions. Segmentation parameters are objectively selected by minimising a Global

Score, which is based on three metrics representing intrasegment homogeneity,

intersegment heterogeneity and an optimal range of segment numbers based on an

empirically defined mesoscale. Applications of the model are tested on two reaches

of the multithread Mareta and meandering Aurino Rivers in South Tyrol (NE, Italy).

Model outcomes are compared with ground mesohabitat surveys, and habitat

suitability is then assessed for three fish species (marble trout, grayling and European

bullhead). A high level of agreement is found when comparing model- and survey-

based habitat suitability estimates, with an overall value of R2 ¼0:91. The proposed

approach shows potential for application of the mesohabitat concept for large

gravel-bed rivers and nonwadable flow conditions. By allowing habitat estimates at

flow ranges that could not be surveyed in-stream, the approach facilitates

applicability of mesoscale habitat models to nonwadable conditions and large

streams. The workflow is river-independent and fully unsupervised, as it does not

require calibration or subjective choices of segmentation parameters.

Significance statement

Quantifying suitable habitat for riverine fauna is increasingly used for ecological flows

assessment, with the use of mesoscale habitat modelling approaches becoming more

common in the past few decades. Existing mesoscale habitat modelling approaches
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often rely on field surveys, which, however, become prohibitive at nonwadable flow

conditions and in large streams. Here we develop and test against field data a fully

unsupervised approach able to extract mesohabitats and their hydraulic characteris-

tics from the outputs of 2D hydraulic models. Compared with existing approaches,

our approach allows an automated segmentation of the wetted reach into mesoscale

units through the implementation of an unsupervised optimality step in which opti-

mal segmentation parameters are defined, and a final mesohabitat mosaic is selected.

The methodology makes it easier to expand the applicability of mesoscale habitat

modelling to a broader range of river sizes and conditions.
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ecohydraulics, hydromorphological unit, in-stream habitats, river morphology, unsupervised
segmentation

1 | INTRODUCTION

Habitat modelling is commonly used in rivers to predict spatial distri-

butions of aquatic species and biological responses to hydromorpho-

logical pressures. The spatial scale at which river habitat is modelled

discriminates between two major classes of habitat models. Tradi-

tional habitat models, such as the widely used PHABSIM (Ahmadi-

Nedushan et al., 2006; Bovee, 1982) characterise in-stream habitat

suitability at the ‘microscale’, which refers to small (�1m2 or lower)

river elements, with size of the order of flow depth or of the numeri-

cal cell of hydraulic models, having homogeneous hydraulic (water

depth and velocity) and substrate conditions. Over the past few

decades, the use of the ‘mesoscale’ in habitat modelling has become

more common, with a number of modelling framework in use, such as

the Mesohabitat Simulation Model (MesoHABSIM, Parasiewicz, 2007;

Vezza et al., 2014), MesoCASiMiR (Eisner et al., 2005) and the Meso-

habitat Evaluation Model (MEM, Hauer et al., 2009, 2011). Mesoscale

habitat models use a representation of the river in the form of meso-

scale patches (Wegscheider et al., 2020). The definition of the meso-

scale used within this manuscript considers it a size between the river

element (or microscale, 0.01–1 m), and the reach-scale (0.1–10 km), as

typically defined within hierarchical river system classifications

(Brierley & Fryirs, 2000; Frissell et al., 1986; Gurnell et al., 2016).

Many of the existing mesoscale approaches require mapping the

mesohabitat mosaic through field-based visual reconnaissance

(Borsányi et al., 2004; Eisner et al., 2005; Parasiewicz, 2007; Vezza

et al., 2014), while water depth and velocity are surveyed in-stream.

This works well for small streams and wadable conditions. Applica-

tions in large rivers or for high discharges are, however, more chal-

lenging. Furthermore, construction of reliable habitat-streamflow

rating curves can be time-consuming, as habitat surveys need to

homogeneously cover the range of the stream flow regime that is rel-

evant for the purpose of the habitat modelling application. Such range

normally includes low and middle flow conditions and lies well below

bedload initiating flows in coarse-bedded streams. Such challenges

can be overcome by the implementation of 2D hydraulic modelling

(as, e.g., done in Hauer et al., 2011; Parasiewicz et al., 2012; Wyrick

et al., 2014) that allow to simulate depth and flow patterns at differ-

ent discharges. Delineation of HMUs from the hydraulic description

of the reach is typically done using algorithm-based classification

approaches (Hauer et al., 2009; Legleiter & Goodchild, 2005;

Tamminga & Eaton, 2018; van Rooijen et al., 2021; Wallis et al., 2012;

Woodget et al., 2016; Wyrick et al., 2014). But the extraction of the

mesohabitat mosaic based on the outputs of 2D depth-averaged

hydraulic models still remains challenging, as no universal and trans-

ferable solution between river type, discharge and morphology could

be developed so far (Wegscheider et al., 2020), limiting therefore the

use of 2D hydraulic models in mesoscale habitat modelling and there-

fore its potential for broader applications.

Furthermore, a wide range of classification systems have been

developed to define mesohabitats, which makes it challenging to com-

pare existing studies with one another, and to define thresholds that

have a general applicability. These units are either characterised by

their physical (hydraulic and geomorphic) characteristics, such as phys-

ical biotopes (Padmore, 1998), surface flow types (Davis &

Barmuta, 1989) or geomorphic units (Bisson et al., 1982; Frissell et al.,

1986) or were defined by identifying substrate patches based on the

aquatic community they sustain, such as the functional habitats

(Harper et al., 1992). Loose links between these two descriptions have

been shown in, for example, Kemp et al. (1999) and Newson and

Newson (2000). In this work, we use the definition of mesohabitats

given by Belletti et al. (2017) for which mesohabitats correspond in

size and location to hydraulic or geomorphic units (Belletti et al.,

2017; Borsányi et al., 2004; Hauer et al., 2011; Parasiewicz, 2007;

Vezza et al., 2014), as they result from the interplay between mor-

phology and hydraulics and hence can be viewed as the building

blocks of the river channel morphology (Belletti et al., 2017; Frissell

et al., 1986).

Early attempts to define hydraulic thresholds to discriminate

between different HMUs found the Froude number among the most

suited variable (e.g. Jowett, 1993; Wadeson & Rowntree, 1998). Moir

and Pasternack (2008) found that the combined use of depth and
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velocity allowed to better discern between unit types, since consider-

able overlaps in hydraulic characteristics are usually found, and differ-

ent combinations of velocity and depth can result in similar Froude

number ranges (Clifford et al., 2006). This led, for example, to the

development of an objective depth-velocity-based classification sys-

tem (Wyrick et al., 2014), in which expert-based, river-specific thresh-

olds were defined. Since the aim of the classification was to identify

stage-independent geomorphic units, it was suggested to carefully

choose a reference flow, for which the hydraulics best represented

the underlying geomorphological forms.

To account for stage-dependent changes in HMU distributions, a

flow-dependent classification system applied to 2D hydraulic model-

ling outputs was presented in Hauer et al. (2009, 2011). In this

approach, scores are assigned to each simulated grid point based on

classes of depth, velocity and shear stress. Finally, each point is

assigned to a specific HMU type. Six different HMUs are classified.

The score classes are defined through expert-based knowledge,

requiring therefore a river-specific calibration. The approach pre-

sented by Hauer et al. has several advantages: First, it allows a direct

classification of the flow into a specific HMU type; second, once

river-dependent and expert-based thresholds have been set, the

implementation of the method is very straightforward, since each

hydraulic point can be assigned directly to a specific class. However,

defining the hydraulic thresholds can be quite subjective (e.g. Clifford

et al., 2006), and there might be a need to calibrate thresholds over a

range of discharges (e.g. Hauer et al., 2011), requiring to perform river

surveys over a longer time span. Finally, the resulting units and

patches might be quite fragmented, particularly in complex and het-

erogeneous flow environments, resulting in patches that might be

closer in size to the microscale.

To overcome the need to calibrate any parameter threshold and

to account for the fuzzy nature of boundaries among HMUs, Legleiter

and Goodchild (2005) used fuzzy-c-clustering to segment the river

flow into six classes. The resulting map yielded patches of flow

belonging to these classes, surrounded by uncertainty zones repre-

senting transitions between the patches. The same methodology was

used in, for example, Tamminga and Eaton (2018) to study the effects

of a large flood on the geomorphologic reshifting of the channel.

Shortcomings of the method are its sensitivity to data quality, since

the unsupervised definition of classes is highly dependent on the input

data. Furthermore, the number of classes needs to be defined a priori.

Although some validity indices (e.g. Arbelaitz et al., 2013) can be used,

the final result still depends on subjective choices by the operator.

By adding a spatial contiguity constraint to an agglomerative hier-

archical clustering algorithm, van Rooijen et al. (2021) showed that

the delineation of habitat patches could be improved compared with

standard applications of clustering algorithms. In particular, they found

that the extent of patches could be better delineated, the transition

between patches was smoother and that contiguous patches could be

better distinguished, particularly avoiding an overfragmentation of

units. While representing an improvement over previous clustering-

based approaches, it still requires the operator to choose the final

number of patches.

In recent years, new approaches to delineate the mosaic of HMUs

from airborne remote sensing surveys have been developed, using, for

example, RGB (Rivas Casado et al., 2015, 2017) or multispectral

(Demarchi et al., 2016) orthophotos to map in-stream mesohabitats.

While having a lot of potential in terms of speeding up river surveys

and allowing to survey nonwadeable conditions, some of the draw-

backs of field-based surveys remain. In particular, the need to repeat

surveys at a number of discharges throughout the year and to

acquire in-stream measurements of water depth and velocity within

each remotely mapped mesohabitat.

The present study addresses the above mentioned issues by pro-

posing a novel fully unsupervised procedure that allows the segmen-

tation of the river channel area at a given flow condition. Further, it

defines an objective methodology to choose segmentation parameters

and thus an optimal segmentation, based on intrinsic spatial properties

of the resulting regions. While the methodology does not attempt to

map and label specific HMU types (such as riffles, glides or pools), it is

aimed at finding an optimal segmentation of the wetted reach, mim-

icking a number of key features of a HMU mosaic from a spatial land-

scape perspective. The resulting units will be relatively homogeneous

in terms of hydraulic features, while being clearly distinguishable from

surrounding units and will have a scale which is consistent with the

mesoscale, which was empirically defined based on the classification

system proposed by Belletti et al. (2017).

The validity of the proposed methodology is evaluated by com-

paring habitat suitability estimates for target fish species resulting

from the segmentation with estimates based on ground-survey map-

ping of HMUs from two case studies in gravel-bed, Alpine Rivers. The

proposed unsupervised approach overcomes the need to calibrate

segmentation parameters, allowing potentially to apply the same

methodology to different river types, morphologies and discharges.

2 | MATERIALS AND METHODS

2.1 | Development of the methodology

The methodology focuses on a river subreach, considered representa-

tive of a morphologically homogeneous reach (sensu Rinaldi et al.,

2013). It analyses the spatially distributed outputs (depth and velocity)

of a 2D hydraulic model run on the target subreach, from which it

extracts a spatial distribution of mesohabitats and of their suitability

for a target species and life stage. It is based on a four-step workflow,

using the k-means clustering technique (Lloyd, 1982) to initially seg-

ment flow points into clusters. The two-dimensional flow velocity and

water depth field in the wet channel area is then polygonised into seg-

ments corresponding to the same clustering type, representing seg-

ment seeds, which are finally merged together through a region

growing algorithm, thus ensuring that all segments grow to a size that

is consistent with the mesoscale. In the final step, an optimal segmen-

tation of the channel flow is chosen, by minimising a Global Score

(GS). The GS is the average of three normalised metrics: the area-

weighted variance, a measure of intrasegment homogeneity;
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Moran's I, a measure of intersegment heterogeneity of the regions;

and the mesonumber, which defines a range of optimal region

numbers.

To avoid confusion with common morphologic terminology, the

following key definitions are implemented within this work. A ‘seg-
ment’ represents a unit resulting from the segmentation process. The

term ‘region’ is used in accordance with the region growing algorithm.

A ‘hydromorphologically based unit’ (or ‘mesohabitat’) is an area

defined by relatively homogeneous hydraulic conditions which are

defined by local morphological characteristics of the channel

(e.g. shape, bed slope and macroroughness elements), having a size-

consistent with the mesoscale and, although not equal to, have similar

characteristics to the geomorphic units defined in Belletti et al.

(2017). Each hydromorphologically based unit is composed by a set of

smaller ‘hydraulic units’ (sensu Belletti et al., 2017), which are

patches with homogeneous hydraulic conditions, smaller in size than

mesohabitats, resulting from the first segmentation step (following

steps 1 and 2 of the workflow) or during earlier region growing itera-

tions (step 3).

The four segmentation steps (Figure 1) to be performed on the

outputs of the hydraulic model are as follows: (1) k-means clustering

of computational cells where the hydraulic model computes depth

and velocity values, (2) polygonisation of hydraulic units resulting from

step 1, (3) region growing and (4) selection of segmentation parame-

ters, which define an optimal mosaic of hydromorphologically defined

segments.

A detailed description of each individual step is presented below.

2.1.1 | Step 1: K-means clustering

In this first step, the k-means clustering algorithm (Lloyd, 1982) is

implemented to clusterise flow data. Clustering algorithms are consid-

ered to be unsupervised grouping algorithms, which work only based

on a notion of similarity between the data. The k-means algorithm

works by minimising the variance, that is, the within-cluster sum of

squares, and maximising squared deviations between objects of differ-

ent clusters, that is, the between-cluster sum of squares. The algo-

rithm requires the choice of the number of clusters k, which can be

either set a priori through, for example, knowledge of the real number

of groups in the data or empirically validated a posteriori by compar-

ing different choices of k with internal or external validation indexes

(e.g. Arbelaitz et al., 2013). To improve performance and avoid local

optimal clusterisation, the algorithm is initialised using the k-means++

approach (Arthur & Vassilvitskii, 2007). The flow data, consisting of

depth and depth-averaged velocity values from the 2D hydraulic sim-

ulations, were normalised before clusterisation to have zero mean and

unit standard deviation. For the selected k value, the algorithm is

applied to the data set, and each cell of the computational domain of

the hydraulic model, with associated depth and velocity value, is

assigned to a cluster.

In this application focused on river habitat modelling, choosing

a hydromorphologically consistent number of clusters should

account for the reported diversity of HMUs, which vary depending

on the channel morphology (Belletti et al., 2017), for which the

order of magnitude is �10. To account for this diversity, initialisation

of the algorithm based on a broad range of k values is therefore

recommended.

2.1.2 | Step 2: Polygonisation of hydraulic units

The mesh used in the hydraulic model is first rasterised into a regular

grid of square cells of a meaningful size, chosen based on channel size

and its morphological complexity. Based on the results from step 1, a

cluster type is assigned to each raster tile. All contiguous tiles belong-

ing to the same cluster type are then merged together. Once the

merging is completed, the arising regions are polygonised. This second

step serves the creation of a first segmentation, which is solely based

on the clusterisation of step 1. Each segment is then used as seed for

the region growing algorithm implemented in the following step 3.

2.1.3 | Step 3: Region growing

To ensure that all units have a size that is consistent with the size of

mesohabitats in rivers (Belletti et al., 2017), a region merging algo-

rithm is applied, which iteratively merges contiguous units with each

other. This step is implemented to avoid the creation of too many

small units, which are not consistent with the mesoscale. Region

growing follows three main principles, which try to mimic the visual

recognition and classification of HMUs in the field: (1) small merges
F IGURE 1 Schematic representation of the mesohabitat
modelling workflow
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first, (2) smallest merges with largest and (3) similar merges with simi-

lar. At every iteration of the algorithm, a merging score is assigned to

any potential merge between each region with its rook-case

neighbouring regions. A first ranking is defined based on the first

principle, according to which the regions are given highest priority if

they are smaller in size. If more than one region has the same size,

all regions of same size are ranked again according to principles

2 and 3.

Principles 2 and 3 are computed in the form of a similarity matrix,

normalised in the range 0–1. The negative squared Euclidean distance

dðxi,xjÞ¼ xi�xj
�� ��2

2 is used to compute similarity between regions,

with xi and xj representing generic n-dimensional variables

(xi
!¼ðxi1,…,x1nÞ and xj

!¼ðxj1,…,xjnÞ), and h
!���
���
2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h21þ :::þhn2

q
defin-

ing the Euclidean norm of a generic n-dimensional vector

h
!¼ðh1,…,hnÞ. For the second criteria, this distance is computed on

the area of contiguous regions dðAi,AjÞ. To limit its range between

0 and 1, an exponential variant of the distance is used:

d2 ¼ expð1=dðAi,AjÞÞ. Similarity for criterion 3 is computed on the

average depth and velocity values (hi ¼ðdi,viÞ) of each region: dðhi,hjÞ.
To prioritise regions which are similar and limit the range between

0 and 1, the following variant of the distance is used:

d3 ¼1� dðhi ,hjÞ
minðdðhi ,hjÞÞ. A combined criterion is then computed as the prod-

uct of the two distances d¼ d2 �d3.
After each iteration, the lowest ranked region will be merged

to one of its neighbours, diminishing the overall number of seg-

ments from n to n�1. This procedure is then repeated, until the

whole reach is merged into one final segment. All intermediate seg-

mentation steps are saved, and will be evaluated for optimality in the

following step (4).

2.1.4 | Step 4: Segmentation parameter selection

Resulting from the first three steps, a matrix of segmentation combi-

nation arising from the initial clusterisations (for a range of k values)

and the final segment numbers (for a range of n values) is composed.

A total of k �n combinations are computed. A GS is used to rate each

segmentation combination and to select an optimal result. The GS is

computed as the sum of three scores: the weighted averaged variance

(v), a measure of intrasegment homogeneity; Moran's I (MI), a measure

of spatial autocorrelation, quantifying intersegment heterogeneity;

and the mesonumber (mn), an empirically based range of optimal seg-

ment number.

The weighted averaged variance (Espindola et al., 2006) is calcu-

lated as follows:

v¼
Pn

i¼1Ai �viPn
i¼1Ai

ð1Þ

where n is the total number of segments, Ai is the area and vi is the

variance of a variable (e.g. water depth or velocity) of each i-th seg-

ment. See Figure 2 for an illustration.

Moran's I (Fotheringham et al., 2000) is computed as follows:

MI¼ n
Pn

i¼1

Pn
j¼1wij yi�yð Þ yj�y

� �
Pn

i¼1 yi�yð Þ2
� � P

i≠ j

P
wij

� � ð2Þ

with wij the contiguity matrix of regions i and j, which is set to 1 for

regions that share a common boundary and 0 for nontouching

regions; yi represents the average value of a descriptive variable

(e.g. water depth) of each region and y the average for the analysed

reach of the same variable. Moran's I captures the degree of autocor-

relation between adjacent units and will define how much on average

each region is different from its neighbouring regions. Its value can

range between �1 (a perfectly dispersed pattern) and 1 (high spatial

correlation), with values close to 0 representing random patterns. See

Figure 2 for an illustration.

Finally, the mesonumber follows a log-normal distribution:

mn¼ lognormðμmn,σmnÞ ð3Þ

with the mean μmn and σmn, respectively, the logarithmic mean and

standard deviation of the optimal segment number for a given reach,

respectively. These values are empirically based (see Section 2.1.5 for

more details).

The individual measures of v,MI and mn are normalised to a com-

mon range from 0 to 1 according to the formula from Espindola et al.

(2006):

xnorm ¼ xmax�x
xmax�xmin

ð4Þ

in which xmax and xmin represent the maximum and minimum values

and x the variable to normalise. This defines the direction of optimisa-

tion as a minimisation of the scores.

The GS is then computed as the average of the three normalised

scores:

F IGURE 2 An illustration of weighted average variance and
Moran's I
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GS¼ vnormþ Inormþmnnormð Þ=3 ð5Þ

An optimal segmentation will be defined by small values of

Moran's I (i.e. neighbouring regions are dissimilar), with low intra-

segment variance (i.e. each region is internally homogeneous), and

a number of regions consistent with an empirically derived

mesoscale.

The GS here implemented used two indices (v and MI) that were

introduced in Espindola et al. (2006) and are commonly used in the

field of image segmentation (e.g. Kavzoglu et al., 2017; Räsänen et al.,

2013; Ventura et al., 2018). A third score, the optimal mesonumber

(mn), is instead ecohydraulically based, and was introduced to allow

selection based on a third criterion, which favours selection of seg-

mentations consistent with an empirically defined mesoscale

of HMUs.

2.1.5 | Empirically derived parameters for
segmentation

Both the area-weighted variance and Moran's I require to choose a

variable (or a set of variables) to compute the variance. To define

what variable is best suited for the implementation, the application

of the GS was tested for the hydraulic variables depth, velocity,

Froude number and the averaged variance of depth and velocity.

Following the definition of optimal segmentation, the variable that

most consistently minimised the GS for all case studies was chosen

for the segmentation workflow. To allow comparability between

GSs values from different rivers and discharges, the following nor-

malisation for v and MI was used, as suggested in Böck et al. (2017).

In the case of v, normalisation was computed according to the

equation: vnorm ¼ v=varðxreachÞ. Here varðxreachÞ represents the variance

for the variable x for the whole reach. In the case of Moran's I value,

the minimum and maximum values were set to the range allowed by

MI, �1 and 1.

Additionally, to define the distribution of the mesonumber

(Equation 3), two parameters (i.e. the logarithmic mean μmn and stan-

dard deviation σmn) need to be computed. These values are based on

empirical estimations of normalised sizes of surveyed HMUs, which

we define here as the mesosize:

ci ¼ Ai

W
2

ð6Þ

The mesosize ci represents the HMU area (Ai) normalised by the

square of the average channel widthW, which is computed as the lon-

gitudinally weighted average of the width of all channels in the reach

submerged by water. The log-normal distribution of mn (Equation 3) is

derived from the log-normal distribution of the empirically based

mesosizes ci , corresponding to the distribution of potential mesohabi-

tat numbers N, which can be estimated for any reach characterised by

the wetted channel area Areach and the channel width W following the

function:

Ni � 1
ci
�Areach

W
2

ð7Þ

Being ci log-normally distributed, the resulting Ni will also be log-

normally distributed. The parameters μmn and σmn that define the dis-

tribution of the mesonumber vary for every reach, since they depend

on the values of the reach-specific area (Areach) and of its average

width (W).

2.1.6 | From unsupervised mesohabitat extraction
to suitability

Following step 4, an optimal segmentation (i.e. a mosaic of hydromor-

phologically defined units) for each modelled discharge Q is obtained.

Application of a Habitat Suitability Model (HSM) to each mosaic

allows estimating habitat suitability for a given target species and life

stage at the mesoscale. By integrating estimates at different dis-

charges, a habitat-flow rating curves can be derived (Vezza et al.,

2014). It must be noted that only hydraulic habitat descriptions can

be derived using a 2D hydraulic model, which must be integrated with

further field or remote sensing-based mapping. Alternatively, simpli-

fied HSM which only account for hydraulic descriptors could be used.

2.2 | Application to case studies

2.2.1 | Study sites

To showcase the applicability of the presented methodology, the seg-

mentation procedure was tested on two gravel-bed rivers located in

the central north Italian Alpine area, in the region of South Tyrol, with

different hydromorphological characteristics and channel size

(Table 1). Both study reaches underwent recent river restoration pro-

jects, and in both of them, ground habitat surveys using the Meso-

HABSIM methodology were performed, thus providing a reference

against which to compare the outcomes of the proposed approach.

The River Mareta (also known under the German name Mareiter-

bach, Figure 3) has been heavily modified over the last century, by

TABLE 1 Hydromorphological characteristics of the study
reaches on the Mareta and Aurino Rivers

Feature Mareta River Aurino River

Catchment area 206.53 km2 607.86 km2

Elevation 939.59 m a.s.l. (at

hydrometric

station)

815.77 m a.s.l. (at

hydrometric

station)

Slope �1% �0:4%

Reach morphology Multithread Meandering

Average wet

channel width

(reach)

�15 m �26 m
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channelisation, construction of grade-control structures and intense

phases of gravel mining, which caused changes in the active channel

width and in its morphological pattern. Following works done in 2009,

in which these grade-control structures and bank protections have

been removed, a 3 km long reach located few kilometres upstream

the city of Vipiteno/Sterzing was restored to a braided morphology

(Zerbe et al., 2019). A 500 m subreach was selected as study reach.

The Aurino (also called Ahr River, Figure 3) mostly presents a sin-

gle thread, sinuous to meandering morphology, which is laterally fixed

by bank protection and levees. It has been partly restored starting

from 2003 (Campana et al., 2014; Zerbe et al., 2019), with actions

aimed mainly at improving riparian woodlands and fish habitats. A

750 m subreach upstream of the Gais municipality was selected as

study site.

A comparison of the selected case studies in terms of their hydro-

morphological characteristics can be seen in Table 1 and Figure 4.

2.2.2 | Field data collection

During the time span ranging from 2016 to 2018, the mosaic of

HMUs at varying discharges was repeatedly mapped at the study

reaches according to the MesoHABSIM methodology

(Parasiewicz, 2007; Vezza et al., 2014). A list of the main HMU types

with a short description can be found in Table 2.

HMUs were mapped on the Mareta River using a portable GIS

system connected to a TruPulse 360B laser rangefinder. The survey

was georeferenced using the GPS system of the Getac PS336, running

ESRI Arcpad 10.2.5. The HMU mosaic was recorded at three dis-

charges, from low to middle flows, at Q¼1:7, 3.4 and 10.4m3/s.

Due to the larger size of the river reach, the Leica GS16, a hand-

held GPS-RTK was used on the Aurino River, by moving along the

shore and delimiting the perimeters of each HMU. HMUs were

mapped at two discharges, at low to middle flows of Q¼7:5 and

10.45m3/s.

The survey discharges and their percentages of exceeded time

flow are highlighted on the Mareta and Aurino hydrographs and flow

duration curves in Figure 4.

2.2.3 | 2D hydraulic modelling

Detailed and high-resolution bathymetries of the river reach have

been acquired in December 2016 using a Airborne LiDAR Bathymetry

scanning technology by the company AirborneHydroMapping GmbH

(Innsbruck, AT). This work was carried out within the FHARMOR pro-

ject (Farò et al., 2018). The acquired points have been georeferenced,

classified and postprocessed to correct for refraction using Snell's law,

and finally, a uniform mesh with grid widths of 50 cm was obtained

(Baumgartner, 2020).

Hydraulic modelling of the studied reach was performed with the

hydrodynamic model HYDRO_AS-2D (Nuji�c & Hydrotec, 2017), which

numerically integrates the shallow water equations using a finite vol-

ume method. An optimal spatial distribution of roughness coefficients

(Strickler) was then found by calibrating the model minimising the

RMSE values between simulated and surveyed water levels at various

F IGURE 3 Maps of the case studies, two reaches of the Mareta and of the Ahr Rivers. The location of the region (Autonomous Province of
Bolzano / Bozen) within Italy and of the study reaches (blue dots) within the province is shown. The study reaches are highlighted in red. The map
shows also the hydrometric stations downstream of the study reaches (36750PG for the Mareta and 59450PG for the Aurino) that provided the
hydrological time series
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transects of the reach (measured every 10 m), by keeping a steady

inflow discharge as upper boundary condition. More information on

mesh generation, model set-up and its calibration can be found in

Baumgartner (2020).

2.2.4 | The simplified mesohabitat suitability model

Habitat suitability was estimated by means of simplified HSMs for the

considered species and life stages. Simplified suitability criteria were

based on water depth and flow velocity only, since the focus of this

study was the comparison of the suitability of the mesohabitat

mosaics predicted by the standard MesoHABSIM approach and the

habitat suitability of mesohabitats defined by the segmentation

procedure.

The implemented simplified models were constructed based on

literature-based information and field observations (Adamczyk et al.,

2019; Negro et al., 2021). In particular, the simplified models were

built by defining the threshold values of the hydraulic descriptors

that maximise the classification performance in terms of presence/

absence with the available data. Habitat suitability for the reach

(in m2) was then computed by adding the areas of all suitable

mesohabitats, with suitability defined when the model indicates

probability of presence.

Models were developed for the following target species (and life

stages), selected as representative of the chosen reaches, for the

Mareta River, adult and juvenile marble trout (Salmo marmoratus) and

adult European bullhead (Cottus gobio). For the Aurino River,

suitability was compared additionally for adult and juvenile grayling

(Thymallus thymallus).

Examples of the categorical mesohabitat suitability models for the

adult and juvenile grayling can be seen in Figure 5. Model description

for the other species and life stages can be found in the supporting

information.

TABLE 2 Description of main hydromorphological units, based on
the classification of Vezza et al. (2017) and Belletti et al. (2017)

HMU Description of hydromorphological characteristics

Backwater Slack areas along channel margins, caused by eddies

behind obstructions, or as part of a side channel.

Characterised by shallow and slow-flowing areas

Rapid Stretches of fast flowing water in high gradient reaches,

formed by boulders and large cobbles. Flow is

turbulent and characterised by higher air

concentration (white-water) or broken standing

waves (during low flows). Rapids are characterised by

a convex streambed shape.

Riffle Characterised by shallow and fast flow and uniform

sediment which rarely protrudes out of the flow. The

flow surface is undulating but unbroken.

Step Near-vertical drops in the channel bed spanning the

entire width. The flow is dominated by spill

resistance.

Glide Characterised by a regular longitudinal bed profile, with

a smooth or rippled water surface, flowing parallel to

the stream bed.

Pool Defined by a channel-spanning depression in the

channel bed. Pools are characterised by deep and

relatively slow velocity flows.

F IGURE 4 Hydrological characteristics of the study reaches on the Mareta (hydrometric station 36750PG in Vipiteno) and Aurino
(hydrometric station 59540PG in S. Giorgio) Rivers. Panel (a) depicts yearly hydrographs for the years of surveys (2016–2018), while on the
background the 95% variability band is shown (for the period 1986–2020). The dotted horizontal lines visualise the discharges in which the HMU
mosaics were surveyed. Panel (b) shows flow duration curves and the surveyed discharges highlighted with the percentage of exceeded time flow
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Note that in the MesoHABSIM approach, mesohabitats are evalu-

ated using a broader range of habitat descriptors (water depth, flow

velocity, substrate types and cover availability). Habitat evaluation

including only hydraulic descriptors was carried out with the aim of

comparing results from the standard and the proposed segmentation

procedures.

2.2.5 | Application of the segmentation workflow
on the case studies

Clusterisation in step 1 was run for k ranging from 4 to 18. The flow

simulated on the computational mesh of the hydraulic model was ras-

terised to a grid with square cells of 50 cm size (step 2) that was

equivalent to the node distance of the computation mesh. For each

clusterisation k, the range of segmentation steps from n¼5 to 40 seg-

ments was evaluated in step 4. The metrics weighted average variance

(v), Moran's I (MI), mesonumber (mn) and the resulting GS were com-

puted and optimal segmentations chosen as the combination of k

(cluster number) and n(segment number) which minimised the

GS. Habitat suitability was then estimated on this optimal mosaic of

units.

2.2.6 | Comparison between model-predicted and
survey-based mesohabitats

The validity of the proposed mesohabitat modelling methodology was

evaluated by comparing reach-scale presence/absence habitat suit-

ability estimates of target fish species from the resulting mesohabitat

mosaics with estimates based on ground-survey mapping of HMUs.

Resulting habitat-streamflow rating curves were compared for the

two reaches of the Mareta and Aurino Rivers. The comparison was

performed on the following: each individual curve (for each reach,

species and life stage), by grouping all curves from each reach and by

grouping all curves from both reaches. The coefficient of determina-

tion R2 and the mean absolute percentage error (MEPA) were

computed to assess the goodness of fit between the model- and the

survey-based habitat suitability estimations. Further, a qualitative

comparison of model- and survey-based habitat-streamflow rating

curves was performed, and shape and key features of the curves were

compared.

To ensure that differences in covered reach area did not affect

results and to render the results comparable, the modelled reach was

cropped to the same spatial extension as the surveyed mesohabitat

mosaic.

3 | RESULTS

The application of the proposed methodology is presented referring

to the case studies of the Aurino and Mareta Rivers. Data collected in

the field are first used to derive parameters needed for the segmenta-

tion workflow. After presenting the main outcomes of the key work-

flow steps, modelled habitat suitabilities and rating curves are

compared against those obtained from the mesohabsim ground

surveys.

3.1 | Choice of workflow parameters based on the
case studies

Figure 6 shows the surveyed HMU mosaics for the two study

reaches. The reaches are characterised by HMU types typical of

piedmont streams with single thread and transitional morphologies

(rapid, riffle, glide, pool, backwater and step), with side channels

activating at higher discharges. Further, overall channel wet area

and average wet channel width show a relevant increase with

increasing discharge. The channel width-normalized size distributions

of the HMUs (‘mesosize’ c) are in the range 0.17–8.67, with the

largest units, relative to the channel width, found in the Mareta at

the lowest discharge (Figure 7). Such distributions can be fitted to a

log-normal distribution, and their comparison shows that they can

be assumed statistically similar (ANOVA after logarithmic correction:

F IGURE 5 Categorical presence/absence biological models, for the juvenile and adult grayling (Thymallus thymallus). Variables used are water
depth (D) and flow velocity (V), expressed as % of unit area falling in the specified variable range
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Fð3,73Þ = 2.109, p¼0:106). Therefore, a pooled distribution composed

by all c values from both sites and all five flow conditions was created

to compute the parameters required for the segmentation workflow

(see also Section 2.1), yielding a logarithmic mean of μlog ¼0:114 and

a standard deviation of σlog ¼0:890 (Shapiro–Wilk normality test:

W¼0:987, p¼0:49).

In Figure 8, GSs computed for the surveyed mesohabitat mosaics

are shown. In this case, the GS is affected only by the average of v

and MI, since the mesonumber would yield the same value for each

surveyed mosaic. To allow a comparison between different dis-

charges, rivers and variables, the values of Moran's I have been nor-

malised using the range (�1, 1) as minimum and maximum values and

the values of the weighted average variance divided by the overall

reach variance. It appears that using flow velocity as the variable to

compute the GS consistently yields the lowest score values. The only

exception is found in the case of the Mareta reach at the lowest flow

Q¼1:7 m3/s, for which the GS computed using the Froude number

has a slightly lower value. For the above reasons, water velocity was

therefore chosen as the reference variable to compute the modelled

GSs from the mesohabitats extracted from the outputs of the hydrau-

lic model.

3.2 | Step-by-step results of the segmentation
workflow

Figure 9 shows an example of the flow clusterisation (step

1, Figure 9a) and of the resulting polygonised hydraulic units (step

2, Figure 9b) for the lowest discharge (Q¼1:7 m3/s) at the Mareta

River reach. With increasing number of clusters k (4, 10 and 18), the

resulting bivariate clusters in the velocity-depth parameter space are

smaller, resulting in increasingly fragmented mosaics of hydraulic

units. While at k¼4, a relative low number of very large units forms

(c¼0:07, cmax ¼4:15), often already with sizes close to the mesoscale,

at k¼18, the overall unit size is very small (c¼0:02, cmax ¼1:45).

After clusterisation and regionalisation of the initially segmented

patches, the region growing algorithm was applied. Examples of the

resulting segmentation, which is dependent on the initial clusterisa-

tion, can be seen in Figure 9c. Following an initial segmentation with

k¼10, the resulting mosaics with an overall number n of 10, 20 and

40 final regions are shown. Large seed units persist over a wider range

of region growing steps, since initially large regions will not be further

split; conversely, areas characterised by high fragmentation will merge

into uniformly distributed units and will therefore be less affected by

the initial segmentation.

Once all possible segmentations were run for the initially chosen

range of cluster numbers, GSs for every combination of n and k were

computed for every river reach and each simulated discharge.

Figure 10 shows an example of the resulting GS matrix for the Mareta

reach at low flow (Q¼1:7 m3/s). While the weighted-area variance v

decreases for smaller numbers of final segments, Moran's I increases

for small number of segments. The mesonumber follows a log-normal

distribution which favours the selection of a number of segments in

the range 15–30. The final GS is minimised for the combination of

kopt ¼12 and nopt ¼21.

From the mesohabitat mosaic extracted at every combination of

k and n, it is possible to obtain the corresponding habitat suitability

for the entire examined reach at the given discharge value by applying

the simplified mesohabitat model described in Section 2.2.4.

Figure 11 shows 2 examples of predicted habitat suitability matrices

for the adult and juvenile marble trout. The upper row in both matri-

ces above the horizontal black line represents the estimated habitat

F IGURE 6 Surveyed mesohabitats mosaics for the Mareta and Aurino Rivers

F IGURE 7 Distributions of normalised mesosize values c, for the
surveyed HMU mosaics in the Mareta and Aurino Rivers at different
discharges. ‘All’ refers to the distribution of all pooled c values
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suitability based on the initial segmentation resulting after Step 2. This

allows to visualise how the initial segmentation affects the further

iterations of the region growing algorithm in terms of habitat suitabil-

ity. When low k values were used, large initial hydraulic units formed,

which cannot be split in successive iterations, and the overall habitat

suitability remained more or less constant throughout all iterations,

only changing when the number of segments n becomes very low,

and the corresponding regions largely increased in size. When the

procedure was initialised by larger k values, the initially forming units

were smaller, and produced a milder effect on the final suitability.

Based on these results, to diminish the initial clusterisation imprint on

final patches and therefore on habitat suitabilities, we chose therefore

to restrict the k-range for the choice of the optimal combination

between 8 and 18.

3.3 | Comparison of habitat-flow rating curves

The segmentation procedure was applied for both reaches and all flow

conditions; optimal segmentation combinations of k and n yielding the

minimum GS in each case are summarised in Table 3. The correspond-

ing maps can be observed in Figure 12, in which a comparison with

the surveyed HMU mosaics is shown.

An example of a spatially explicit comparison between modelled

and surveyed habitat suitability maps for the adult European Bullhead

in the Mareta reach can be seen in Figure 13. Analogous comparison

maps for the other considered species can be seen in the supporting

information.

To assess the consistency of the results of the proposed work-

flow with commonly employed field survey approaches to assess

F IGURE 8 Comparison of Global Score values
computed on surveyed mesohabitats based on
different variables: depth, velocity, Froude number
and combined depth and velocity. Global Score
values are computed for the two study reaches,
for all surveyed discharges (Q¼1:7 m3/s,
Q¼3:2 m3/s and Q¼10:4 m3/s for the Mareta,
and Q¼7:5 m3/s and Q¼14:5 m3/s for the
Aurino River)

F IGURE 9 Examples of segmentation steps 1–3 based on the Mareta River reach at low flow (Q¼1:7 m3/s). (a) Examples of clusterisation
(step 1) and (b) resulting regionalisation (step 2) for different choices of number of clusters k (4, 10, 18). (c) Examples of segmentation after the
region growing algorithm is applied (step 3) for an initial clusterisation k¼10 and final segmentation numbers n of 10, 20 and 40. Random colours
are used to visualise the units
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mesohabitat suitability, habitat-streamflow rating curves for selected,

locally relevant fish species and life stages on two reaches of the Mar-

eta and the Aurino Rivers have been modelled and compared with the

ones resulting from the surveyed mesohabitats (Figure 14). A very

good overall agreement (R2 ¼0:91, MAPE = 27.6 %) between model

and survey-based estimates of suitable channel area for both reaches

and all species and life stages was found (Figure 15 and Table 4).

When comparing individual habitat-streamflow rating curves, the

curve with the lowest agreement corresponded to the juvenile marble

trout in the Mareta reach (R2 ¼0:76, MAPE = 53.2 %), while all other

curves had R2 values above 0.9. Suitability estimates of the modelled

F IGURE 10 Examples of the computed scores (v, MI and mn) and final Global Scores are shown, for the ranges of k¼8�18 and n¼6�40. A
different colour palette is used for the Global Score, to better highlight the differences in values. The scores were computed for the Mareta reach
at low flow (Q¼1:7 m3/s)

F IGURE 11 Examples of estimated habitat
suitability for each combination of k and n for the
juvenile (left) and adult (right) marble trout (in m2).
Results are shown for the ranges k¼4–18 and
n¼6–40. The coloured tiles above the horizontal
black line in the graph represent the estimated
suitability based on the initial segmentation
resulting in step 2. Mareta River at low flow
(Q¼1:7 m3/s). Two different colour palettes were
used, because of the different ranges of available
habitat between the two life stages

TABLE 3 Selection of the optimal parameters (number of clusters)
k and (number of segments) n for the modelled units

River Q (m3=s) Optimal k Optimal n

Mareta 1.7 12 21

3.2 12 11

10.4 17 16

Aurino 7.5 14 16

14.5 14 22

Note: The segmentation procedure was applied in two reaches from the

Mareta and Aurino rivers.
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mesohabitats are able to reproduce the magnitude and shape of the

curves. As it can be observed, depending on the species flow require-

ments, the habitat-streamflow rating curve can take different shapes.

Some reach a peak and then decrease afterwards for higher discharge

values (e.g. for the juvenile marble trout), while in other cases, the

curve grows monotonically, as seen for the grayling and the adult mar-

ble trout. The modelled curves are able to reproduce both these char-

acteristics. The modelled curve for, for example, the adult bullhead in

the Mareta reach well reproduces the magnitude of the estimated

suitability over all flow ranges, also reaching a peak at the discharge of

3.2 m3/s and decreasing at the highest discharge. Although the adult

and juvenile life stages of the marble trout have contrasting habitat

requirements, resulting in very different habitat-streamflow rating

curves, the shape of the curves is quite well reproduced in both river

reaches.

4 | DISCUSSION

Application of mesoscale habitat models is increasingly common for a

variety of purposes, from ecological flow design, impact assessment

and conservation programmes (Wegscheider et al., 2020). Integration

with 2D hydraulic modelling allows broader applicability of mesoscale

habitat models, extending applications to larger streams and non-

wadable flow conditions (Hauer et al., 2009; Wyrick et al., 2014),

when on-the-ground and in-stream surveys are challenging or even

prohibitive. However, current approaches of algorithm-based mesoha-

bitat modelling require either the definition of thresholds of hydraulic

parameters, such as depth, velocity, Froude number or shear stress

(e.g. Jowett, 1993; Hauer et al., 2009; Wyrick et al., 2014) or the

application of unsupervised clustering techniques (e.g. Legleiter &

Goodchild, 2005; Tamminga & Eaton, 2018; van Rooijen et al., 2021).

While the definition of thresholds is river-dependent, stage-

dependent and requires expert knowledge and ground surveys for cal-

ibration of the results (Hauer et al., 2009; Wyrick et al., 2014), the

implementation of unsupervised clustering techniques might over-

come some of these needs, but the results are still strongly dependent

on the choice of clustering algorithm, on data quality and particularly

on the choice of the number of classes used for clustering (Legleiter &

Goodchild, 2005; Tamminga & Eaton, 2018). Threshold- and

clustering-based approaches might result in an excessive fragmenta-

tion of units, particularly in complex morphologies and heterogeneous

F IGURE 12 Comparison
between the modelled (left) and
the surveyed (right) mesohabitat
mosaic for the Mareta reach and
the Aurino reach. On the left,
random colours are used to
visualise the modelled units, while
on the right, the HMUs are
represented

F IGURE 13 Comparison between
modelled (left) and surveyed (right) habitat
suitability maps for the adult European
bullhead at varying discharges in the
Mareta reach. Green regions indicate
probability of presence and red regions
probability of absence
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flows that is not consistent with a mesoscale ecological approach and

river habitat evaluation (Wolter et al., 2016). Implementing spatial

contiguity constraints can improve the automated delineation of river

mesohabitat patches, creating smoother distributions of patch charac-

teristics and less fragmented patches (van Rooijen et al., 2021). How-

ever, while improving on clustering-based approaches, the application

by van Rooijen et al. still requires defining the number of final seg-

ments characterising the habitat mosaic of the reach.

The methodology presented here builds up on existing

approaches, improving on some of their limitations. To avoid the need

of defining river-dependent and expert knowledge-based hydraulic

thresholds, the delineation of the mesohabitat mosaic is entirely

unsupervised, from the automatic delineation of mesohabitats to the

selection of segmentation parameters. While the results of the meso-

habitat delineation are still dependent on the quality of the modelled

flow field and on the choice of the implemented algorithms in step

1 (k-means clustering) and step 3 (region growing), the segmentation

parameters, and thus the final segmentation, will be objectively cho-

sen based on an optimality criteria, as defined by the GS (step 4). This

ensures that within the range of possible segmentations, only the one

that minimises an objectively defined GS is chosen as optimal. Com-

pared with parametric classification approaches, for which parameter

F IGURE 15 Comparison of surveyed and modelled suitable
channel areas. The regression line and the coefficient of
determination (R2) are represented

TABLE 4 Comparison of goodness-of-fit statistics for the
modelled habitat-streamflow rating curves against survey-based
estimates

Mareta Aurino

R2 MAPE (%) R2 MAPE (%)

Marble trout - adult 0.98 21.5 1.00 6.1

Marble trout - juven. 0.76 53.2 1.00 16.2

Eur. bullhead - adult 0.99 27.1 1.00 21.4

Grayling - adult 1.00 71.2

Grayling -juven 1.00 33.3

All species 0.92 30 0.93 25.3

All species + all rivers 0.91 27.6

Note: The comparison was done in terms of the coefficient of

determination (R2) and the mean absolute percentage error (MAPE). In ‘all
species’ all points from a reach were grouped, while in ‘all species + all

rivers’ (Figure 15), all points were grouped. Null values (0, 0) as seen in

Figure 14 have been excluded from the computation.

F IGURE 14 Comparison of habitat–streamflow rating curves for the two study reaches in the Mareta and Aurino Rivers, for the following
species/life stages: marble trout (adult and juven.) and European bullhead (adult) for Mareta and Aurino; grayling (adult and juven.) only for the
Aurino. Points (0, 0) have been added to each curve in this graph, under the assumption that the reach would be dry with vanishing discharge
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thresholds need to be defined for hydraulic variables such as Froude

number, velocity and depth (Hauer et al., 2009; Wyrick et al., 2014),

no calibration or expert knowledge is required in the presented

approach. To compute the GS, the only parameter that needs to be

defined empirically is the mesonumber, while the area-weighted vari-

ance and Moran's I are computed based on intrinsical spatial proper-

ties of the regions (Espindola et al., 2006). Computation of the

empirically defined mesosize logarithmic distribution parameters is

also objective and requires only surveyed maps of mesohabitats from

the same reach or reaches which are morphologically similar. This

ensures that the entire process of segmentation is fully unsupervised,

requiring no subjective choice by the operator in defining hydraulic

thresholds or segmentation parameters. Moreover, the implemented

region growing algorithm (step 3) ensures that the final size of seg-

ments is consistent with an empirically defined river mesoscale, avoid-

ing unnecessary fragmentation of hydraulic units, even in complex

morphologies with highly heterogeneous flows.

The validity of the methodology was assessed by comparing the

results with mesohabitat mosaics mapped according to the Meso-

HABSIM methodology, in terms of presence/absence habitat suitabil-

ity estimates for selected fish target species and life stages. Habitat

suitability was assessed for adult and juvenile marble trout, adult

European bullhead and adult and juvenile grayling. Modelled results at

the reach-scale agree consistently well with survey-based habitat suit-

ability estimates. Overall R2 values between model- and survey-based

results for all analysed species and life stages, and in both rivers, are

above 0.9 (with the exception of the juvenile grayling curve with a

value of 0.76), showing therefore the potential applicability of the

methodology for habitat modelling at the mesoscale.

The model tended to underestimate available suitable habitats in

the Mareta reach, while it overestimated their extent in the Aurino

reach. Some of the observed differences can be explained by differ-

ences between surveyed and modelled wetted channel area, which

were particularly pronounced in the Mareta at higher flows

(Figure 14). Differences in wetted channel area could be caused by

mapping uncertainties (Poole et al., 1997), which were performed by

using a handheld rtk-GPS or rangefinder and roughly mapping the

shape of the visually observed units. This could result in an overesti-

mation of HMU area due to irregular shapes or presence of large boul-

ders within the unit, which would add to the surveyed wet area while

remaining dry in the hydraulic model results. Furthermore, while very

shallow marginal channel areas have been included in the HMUs dur-

ing field surveys, a 5 cm threshold was applied to the 2D hydraulic

modelling results, which further diminished channel extent in marginal

shallow areas. It must also be noted that while transitions between

HMUs are fuzzy, the mapped mesohabitats are discrete, and hence,

the transitional area between units has to be subjectively assigned by

the operator to one unit or the other while surveying in the field. The

segmentation performed by the region growing algorithm is not con-

strained by the same mapping limitations of field surveys and is there-

fore better suited to render smooth transitions between units. This

can be observed in the differences in shapes between mapped and

modelled mesohabitats (Figure 12). The resulting units might

therefore better represent areas within the channel characterised by

homogeneous hydraulic conditions, and having distinct hydraulic char-

acteristics than neighbouring units (e.g. Figure S11 in supporting infor-

mation), compared with on-the-ground field surveys. The

methodology allows hence an objective and repeatable segmentation

of the reach into a mosaic of hydromorphologically based units at a

given discharge. Resulting habitat suitability maps are computed using

HSMs defined at a scale that is consistent with the scale of the

modelled units. Not surprisingly, there is a high degree of overlap of

suitable and unsuitable areas between modelled and surveyed units

(see, e.g., Figure 13 and Section S4 in the supporting information for

further analysis and examples). Resulting suitability maps can

potentially better describe suitable and unsuitable reach areas, due to

the model's ability to objectively differentiate hydromorphological

conditions within the reach (by, e.g., aggregating longer shallower

bank areas together), and allowing for smoother transitions between

contiguous units (by, e.g., separating midchannel areas characterised

by faster and deeper currents from lateral slower flowing areas). It

must be noted, however, that mesohabitat segmentation was done

using only hydraulic parameters, while HMUs are recognised in the

field also considering a wider range of hydromorphological character-

istics (Belletti et al., 2017), which might further explain differences in

shape between modelled and surveyed mesohabitats.

The two reaches in the Mareta and Aurino Rivers, although having

different hydromorphological characteristics, share similar mesoscale

size distributions (Figure 7). River systems are shaped across a multi-

tude of spatial and temporal scales (Belletti et al., 2017; Frissell et al.,

1986), which are hierarchically structured, with processes and forms

occurring at the lower scales being dependent on the morphological

dynamics of the higher scales and on the environmental boundary

conditions (e.g. valley slope, sediment size and riparian vegetation)

posed by the lower scales. Geomorphic units or HMUs in particular

scale with the channel width (Belletti et al., 2017; Frissell et al., 1986;

Gurnell et al., 2016). This might not be surprising, as many river chan-

nel forms have close association with channel geometry features such

as channel size. Examples include the length scale of alternate bars

(Adami et al., 2016; Tubino et al., 1999) and of meander bends

(Leopold & Wolman, 1960; Vermeulen et al., 2016). Further research

is needed to assess to which extent the characteristic scale range

observed in this study is universal or river and morphology dependent.

While one of the key advantages of the proposed methodology is

its ability to segment the flow of a river reach into mesoscale habitat

patterns through intrinsical properties of the arising regions, no real

classification of these regions into HMU types can be made. Classifying

these regions into, for example, riffles and pools would require a pos-

teriori classification by the operator. These makes the proposed meth-

odology inappropriate to study, for example, temporal and spatial

dynamics of HMUs, since no information on the amount and distribu-

tion of specific HMU types can be extracted. Further, segmentation of

the reach was based only on the hydraulic parameters water depth and

flow velocity, neglecting other hydrological and morphological variables

which are also commonly used to classify and distinguish between

mesohabitats, such as water surface elevation gradient, surface flow
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patterns, substrate character and channel form (Belletti et al., 2017;

Borsányi et al., 2004; Frissell et al., 1986; Gurnell et al., 2016;

Parasiewicz, 2007; Wegscheider et al., 2020). Although an optimal seg-

mentation can be objectively identified based on the GS, the methodol-

ogy does not ensure that a global optimal solution is found, since only

a combination of segmentation options arising from different initial

clusterisations and final number of segments is analysed and not the

entire parameter space range. To limit this issue, the proposed method-

ology is initialised multiple times, by setting a wider range of number of

clusters k (step 1), which allows creating different initial seed segmen-

tations (step 2). Future model developments could improve current

methodological limitations, by integrating more variables into the seg-

mentation process and testing different segmentation algorithms

(e.g. Anselin, 2005; Grubesic et al., 2014). In regard to habitat suitability

modelling presented in this work, only hydraulic parameters were used,

specifically flow depth and velocity. More comprehensive mesohabitat

models also require information on substrate-type distributions, pres-

ence/absence of covers and others (Parasiewicz, 2007; Vezza et al.,

2014). These parameters need to be integrated using other

approaches, for example, by surveys or remote sensing techniques.

Finally, a key methodological novelty of the presented approach

is the adaptation of methods commonly used in image segmentation

to the field of river ecohydraulics, which, however, do not seem to

have been used for ecohydraulics applications so far. In the ecological

field, image segmentation and segmentation quality assessment have

been, for example, implemented to map and classify sensitive marine

habitats (Ventura et al., 2018), boreal forest habitats (Räsänen et al.,

2013) and semi-urban landscapes (Kavzoglu et al., 2017). While the

first two indexes used to compute the GS, Moran's I and the weighted

averaged variance, are derived from the field of object-based image

segmentation (e.g. Espindola et al., 2006; Kavzoglu et al., 2017;

Räsänen et al., 2013; Ventura et al., 2018), the mesonumber was

introduced for the purpose of mesoscale habitat segmentation. This

index ensures that the final segmentation results are consistent in size

with the empirically defined mesoscale. Such scale will likely vary

depending on river morphology and mesohabitat classification system

used (Frissell et al., 1986; Gurnell et al., 2016; Rinaldi et al., 2013).

While having been developed and tested on gravel-bed rivers, the

methodology is flexible and has the potential to be adapted to suit the

needs of the user and be of value also for a wider range of river types

or mesoscale classification systems used (Belletti et al., 2017; Borsányi

et al., 2004; Frissell et al., 1986; Gurnell et al., 2016; Hauer et al.,

2009; Parasiewicz, 2007; Wegscheider et al., 2020; Wyrick et al.,

2014). In particular, these can be achieved through the implementa-

tion of the empirically defined mesosize distribution, which defines

the scale of the resulting modelled units.

5 | CONCLUSIONS

This study has shown the implementation of an unsupervised work-

flow to segment the spatial distribution of flow depth and velocity

obtained from two-dimensional depth-averaged hydraulic modelling

applied to quantify mesoscale habitat suitability in a river reach.

An optimal segmentation is defined objectively based on minimising a

GS, obtained as the average of three metrics that represent

(i) intrasegment homogeneity, (ii) intersegment heterogeneity of the

regions and (iii) an empirically based optimal number of segments

consistent with the mesoscale, that is, the scale of the so-called

hydromorphological units. The workflow is river-independent and

fully unsupervised, as it does not require calibration or subjective

choices of segmentation parameters. The validity of the methodology

to reconstruct habitat-streamflow rating curves that are at least

equivalent to those obtained from survey-based HMU mosaics has

been shown for two study reaches at morphologically distinct rivers,

the wandering Mareta and the meandering Aurino. An overall

agreement of R2 ¼0:91 is found for all analysed species and life

stages. The workflow can be applied in the context of large rivers and

nonwadable flow conditions and has the key advantage of broadening

the applicability of habitat models at the mesoscale.
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