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ABSTRACT
The persistence probability is a statistical index that has been proposed to detect one
or more communities embedded in a network. Even though its definition is straight-
forward, e.g, the probability that a random walker remains in a group of nodes, it has
been seldom applied possibly for the difficulty of developing an efficient algorithm to
calculate it. Here, we propose a new mathematical programming model to find the
community with the largest persistence probability. The model is integer fractional
programming, but it can be reduced to mixed-integer linear programming with an
appropriate variable substitution. Nevertheless, the problem can be solved in a rea-
sonable time for networks of small size only, therefore we developed some heuristic
procedures to approximate the optimal solution. First, we elaborated a randomized
greedy-ascent method, taking advantage of a peculiar data structure to generate fea-
sible solutions fast. After analyzing the greedy output and determining where the
optimal solution is eventually located, we implemented improving procedures based
on a local exchange, but applying different long term diversification principles, that
are based on variable neighborhood search and random restart. Next, we applied
the algorithms on simulated graphs that reproduce accurately the clustering char-
acteristics found in real networks to determine the reliability and the effectiveness
of our methodology. Finally, we applied our method to two real networks, compar-
ing our findings to what found by two well-known alternative community detection
procedures.
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1. Introduction

The analysis of real networks, as they emerged as a structural model in disciplines as
different as biology, economics, social sciences, engineering and so on, brought about a
growing and thriving interest in developing new tools and methods to uncover the net-
works hidden characteristics, such as their communities (Fortunato and Hric (2016)),
their core-periphery structure (Tang, Zhao, Liu, and Yan (2019)), their node centrality
(Das, Samanta, and Pal (2018)). From the greatly cited Girvan’s contribution (Gir-
van and Newman (2002)) community models and problems are often concerned on
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networks decomposition, that is, finding all the communities that form the network.
However, it can be the case that just one or few more communities are actually hidden
in the largest realm of unstructured connections between nodes having no peculiar
structure. Therefore, we focus here on the problem of finding one community embed-
ded in the largest networks, without explicitly requiring that the rest of the nodes
should be interpreted as communities. The first concept that has been used to identify
a community was the clique, that is, a subset of nodes forming a complete graph, see
Luce and Perry (1949). However, the clique is a concept that is too rigid to determine
a community, as some vertices could be part of the same community even though they
do not share a link. Therefore some variants on clique were proposed. For example,
the n-clique (connected vertices with minimum distance n) was suggested in Mokken
(1979) and, in the same paper, the n-clique is further restricted to define n-clans and
n-clubs. The k-plex, a group of nodes with peculiar connectivity constraint, is defined
in Seidman (1978); other generalizations appeared in the literature, among others the
quasi-clique Pattillo (2013), the s-defective clique, Yu (2006), the l-triangle k-club,
Almeida and Brs (2019). Moreover, combining edge density with the subgraph diame-
ter is useful to characterize subgraphs having the small-world property, as proposed in
Kim, Veremyev, Boginski, and Prokopyev (2020). Finally, a recent taxonomy of various
clique generalization for complex network analysis is provided in Pattillo, Youssef, and
Butenko (2013). Given these characterizations, a community is then identified as the
nodes subset for which one of the above generalized clique indexes is maximum, that
is, solving an optimization problem with integral variables. Since the clique problem
is NP-complete, exact optimization for quasi-clique problems is of practical use for
small-sized instances, while arge instances can be solved by heuristic procedure. Exact
methods relies on formulating the problem as mixed integer linear programming: see
the quasi-clique in Mahdavi Pajouh, Miao, and Balasundaram (2014), see the k-club
solution in Moradi and Balasundaram (2018); Veremyev and Boginski (2012), see the
k-plex in Balasundaram, Butenko, and Hicks (2011). Heuristic solution for quasi-clique
are calculated with variants of meta-heuristic, for example GRASP is used in Abello,
Resende, and Sudarsky (2002), Tabu-search is used in Djeddi, Haddadene, and Belacel
(2019); Zhou and Hao (2017), genetic/memetic algorithms are used in Pinto, Ribeiro,
Rosseti, and Plastino (2018); Zhou, Benlic, and Wu (2020), bee colony is used in
Peng, Wu, Wang, and Wu (2021). Relevant to our contributions are the application of
Variable Neighborhood search to modularity maximization and graph-connected clus-
tering Aloise, Caporossi, Hansen, Liberti, Perron, and Ruiz (2013); Benati, Puerto,
and Rodŕıguez-Ch́ıa (2017); Dami, Aloise, and Mladenovi (2019).

The above characterizations looked at the structure of the arcs within the com-
munity, but one could also consider that communities are not only composed of well
connected members, but are also separated by the rest of the graph. Therefore, con-
nections to external vertices should be considered as well. For example, combining
the out-degree and the in-degree of a community leads to the definitions of strong
and weak community, see Hu, Chen, Zhang, Li, Di, and Fan (2008); Radicchi, Castel-
lano, Cecconi, Loreto, and Paris (2004). The former definitions of community rely on
counting internal and external edges of a community, possibly requiring additional
structural properties in term of distances, cohesion and so on. However, it could be
argued that the real issue could be summarized in term of probabilities. Namely, the
vertices of a community should form a link between them with probability higher than
forming a link with an external node, see Fortunato and Hric (2016), page 7. Following
this approach, in this work we focus on a specific measure, the persistence probability,
that has been proposed to find one or more communities embedded in a network, see
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Piccardi (2011). Loosely speaking, given a subset of nodes, its persistence probability
is the probability that a random walker, located by chance in one of these nodes and
moving randomly across the links, will remain in another node of the subset. The
ratio is that this statistic should be able to detect community nodes as well connected
with each other to form a community: the highest the persistence, the highest fraction
of links are directed towards internal nodes to the detriment of the external ones.
The measure aroused some interest among scholars: for example, it has been used
in Della Rossa, Dercole, and Piccardi (2013) to detect the core-periphery structures
in many real networks such as the Karate Club, the co-authorship, the proteins and
the World Trade networks. Next, the persistence has been used to analyze the World
Trade network, Piccardi and Tajoli (2012), and to identifies the locali (the local mobs)
of the n’drangheta criminal networks in Calderoni, Brunetto, and Piccardi (2017).

The persistence probability has a clear and appealing definition and it is flexible
enough to be applied for both community detection and core-periphery analysis. How-
ever, its application is still undervalued, maybe due to the fact that computational
methods have not been developed yet, at least to the best of our knowledge. In this
contribution, we try to fill the gap and we propose a new mathematical programming
model to find the community with the largest persistence. It results in a fractional
programming model that can be converted to mixed-integer using standard variable
substitutions. Next, one of the difficulty of the model is imposing connectivity on
the community nodes, but we apply here the linear constraints that were effective in
a similar problem: the graph-connected clique, Benati et al. (2017). Unfortunately,
but predictability as the problem is NP-hard, the problem can be solved exactly only
when the network size is small, therefore we developed some heuristic procedures to
approximate the optimal solution. We had to consider that the arithmetic behind the
maximum persistence problem imposes that the correct community size k must be
known in advance, a case that rarely occurs in practice. Therefore, the implemen-
tation of a heuristic must consider that it should be able to provide the persistence
values for a whole range of parameters k in a single run. Then, looking at the peaks
of the persistence function, the correct value k could be guessed. For this purpose, we
elaborated on a randomized greedy-ascent method, proposed previously for a similar
problem in Benati, Ponce, Puerto, and Rodriguez-Chia (2022). After determining the
right value of k, the greedy outcome can be improved by local exchange and long-term
diversification strategies. Here, we adopt diversification based on variable neighbor-
hood search and random restart, but with some variation due to the problem structure.
Variable neighborhood search has been implemented of the reduction of the cluster to
its spanning tree, random restart is controlled by preliminary diversification.

We test the whole methodology, its accuracy and computational time, on graphs
simulated through the procedure proposed in Lancichinetti, Fortunato, and Radic-
chi (2008), as was done also in Piccardi (2011). This procedure simulates synthetic
networks with the same characteristics found in real networks, therefore they are a
severe and realistic benchmark. As it can be seen, the right size k is often correctly
determined after the greedy, and then the diversification heuristic improves the in-
cumbent solution (when possible) in a fast way and hidden communities embedded in
the network are detected. In the end, we apply our method to two real networks to
test its ability in identifying communities, comparing its results with what found by
two alternative methods, e.g., the Walktrap and the Louvain, see Blondel, Guillaume,
Lambiotte, and Lefebvre (2008); Pons and Latapy (2005), and we will see that the use
of the persistence complements well the findings of the other methods.

The paper is organized as follows. In Section 2 the definition of persistence prob-
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ability is formalized. In Section 3, finding the node subset with maximum persistent
is formulated as an optimization problem, that after some modification is turn into
mixed-integer linear programming. In Section 4, some heuristic algorithms are intro-
duced: the first is a greedy procedure with some randomized steps, able to calculate
the optimal persistence for subsets of varying size k, next the greedy results are im-
proved with the interchange heuristic and some version of long-term diversification.
In Section 5, computational tests are carried on to explain how to use the persistence
probability and what are the best algorithms to find it. Finally, in Section 6, some
empirical experiments on two real networks are explained. Conclusions follow (Section
7).

2. The Persistence probability

Let G = (V,E) be a simple, undirected and connected graph (or network) where V is
the set of nodes and E is the set of the edges (or links). Let n = |V | be the cardinality
of V . Consider a node subset VC ⊆ V and assume that the subgraph GC , induced 1

by VC is connected. Let EC be the edge set of the subgraph and eij = 1 if (i, j) ∈ E,
eij = 0 otherwise. In Piccardi (2011) and Della Rossa et al. (2013), the persistence
probability α(VC) is proposed as a measure of cohesiveness of subset VC . Formally,
α(VC) is defined as:

α(VC) =

∑
(i,j)∈EC

eij∑
i∈VC

∑
j∈V eij

, (1)

expressing the ratio between the number of links connecting nodes inside VC , e.g. the
internal links, and all the links emanating from VC , e.g. the internal plus the external
links.
Communities are defined as the node subsets with maximum persistence probability,
however, one should be careful. By definition, α(VC) takes value in [0, 1]. The extreme
cases refer to the situation in which VC is a singleton, e.g. α(VC) = 0, and VC = V ,
e.g. α(VC) = 1. As a result, the plain optimization of α(VC) is misleading, as no subset
can be better than the whole set V . Rather, best values of α(VC) can be calculated by
constraining the cardinality blue of the subset VC to a bound k and then determining
the community from the trade-off between k and α(VC).
An example about the use of the persistence is reported in Figure 1, where two subsets
V1 and V2 with different size are considered.

3. Integer programming problem formulation

Given the graph G = (V,E) previously defined, the aim of this section is to formulate
the maximization of the persistence probability α(VC) as mathematical programming
problem. In doing so, we unveil the community with the highest persistence probability
selecting k nodes from V to be included in VC under the constraint that the induced
subgraph GC is connected.
Problem variables are the boolean xi, i = 1, . . . , n, taking value 1 if i ∈ VC , 0 otherwise.

1The induced subgraph GC is the graph whose vertex set is VC and whose edge set consists of all the edges

in E that have both endpoints in GC .
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Figure 1.: Different persistence probabilities of the subsets V1 and V2 for a graph G.
The persistence probabilities are α(V1) = 4

5 and α(V2) = 3
4 , respectively.

Given the trade-off between size k and α(VC), the following constraint should be
imposed: ∑

i∈V
xi = k. (2)

Next, for any edge (i, j) ∈ E, let:

zij = xixj , ∀(i, j) ∈ E, (3)

and

wij = max{xi, xj}, ∀(i, j) ∈ E, (4)

so that zij = 1 if both nodes i and j are in the subset VC , whereas wij = 1 if at least
one of the nodes i and j belongs to VC . By using variables w and z, we rewrite the
persistence probability in Formula 1 as:

α(VC) =

∑
(i,j)∈E

zij∑
(i,j)∈E

wij

(5)

As the persistence must be calculated for connected GC only, we must impose the
connectivity. In Benati et al. (2022), a similar problem is addressed, that is finding the
optimal graph-connected clique. Here, we adopt one of the methods proposed there
to impose node connectivity: the flow-based approach and, for clarity sake, we briefly
describe such method.

The subgraph GC = (VC , EC) is connected if a node in VC , denoted as source node,
can send a unit of flow to any other node of VC through an auxiliary digraph GD =
(V,A), being A the set of arcs defined in a way that if (i, j) ∈ E, then (i, j), (j, i) ∈ A.
Variables fij for all pairs i, j = 1, . . . , n must be introduced, they will correspond to
the flow from node i to node j. For a given VC , the source is identified as the node j
with maximum index, that is j = max{i|xi = 1}. The flow leaves j to satisfy a demand
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of one unit flow from all the other nodes of the subset VC . To be GC connected, VC
must allow a feasible solution to these set of constraints:

∑
j∈V :(i,j)∈A

fij ≤ (k − 1)xi, ∀i∈ V (6)

∑
i∈V :(i,p)∈A

fip −
∑

i∈V :(p,i)∈A

fpi ≥ xp + (n− 2)(xj − 1), ∀p, j ∈ V : j > p, (7)

fij ≥ 0, ∀(i, j) ∈ A. (8)

Constraint (6) states an upper bound on the amount of flow leaving any node i ∈ V .
The right hand side can be positive or null. If i /∈ VC , then xi = 0 and no flow can
leave the node i. Conversely, if i ∈ VC and xi = 1, then the flow can be positive and
as large as to satisfy the flow demands from the other nodes of VC , so its maximum
value is bounded by the cardinality of the subset VC , k. Constraint (7) expresses a flow
conservation law. It is defined for all pairs of nodes j, p ∈ V , with j > p, as j can be
identified as the source. If both j and p are in VC then a unit flow must remain in p. If
j /∈ VC or p /∈ VC , then the constraint is not active. Note that if p is the source, there
is no j ∈ VC , such that j > p and the only constraint affecting its flow is Equation
(6). Finally, condition (8) states a non-negative constraint for the unit of flow.

Hence, the maximum persistence problem is defined as follows. It is an instance of
integer fractional programming, due to equation (5), and it is denoted as Problem P.

P : max
xi

∑
(i,j)∈E zij∑
(i,j)∈E wij

(9)

s.t. ∑
i∈V

xi = k, (10)

zij = xixj ∀i, j ∈ V, (11)

wij = max{xi, xj} ∀i, j ∈ V, (12)∑
j∈V :(i,j)∈A

fij ≤ (k − 1)xi ∀i ∈ V, (13)

∑
i∈V :(i,p)∈A

fip −
∑

i∈V :(p,i)∈A

fpi ≥ xp + (n− 2)(xj − 1), ∀p, j ∈ V : j > p,

(14)

fij ≥ 0, ∀(i, j) ∈ A, (15)

xi ∈ {0, 1}, ∀i ∈ V. (16)

The objective function in (9) expresses the persistence probability in terms of vari-
ables zij and wij defined in (3) and (4), which, in turn, are formally represented by
constraints (11) and (12), respectively. (10) is the constraint on the cardinality of
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VC . Constraints (13), (14), and (15) ensure that the subgraph GC is connected. The
variable xi is defined by constraint (16).

The problem P can be converted into a mixed-integer linear problem through
the Clique Partitioning problem inequalities and the Charnes-Cooper linearization,
(Charnes and Cooper, 1962).

An auxiliary variable u is introduced such that:

u =
1∑

(i,j)∈E wij
(17)

and set hij := u zij and lij := uwij for all (i, j) ∈ E. The Charnes-Cooper lineariza-
tion allows us to write the objective function in (9) as

∑
(i,j)∈E

hij . (18)

Variables zij and wij can be described by the linear constraints:

zij = xixj ⇐⇒


zij ≤ xi
zij ≤ xj
zij ≥ xi + xj − 1

∀i, j ∈ V

wij = max{xi, xj} ⇐⇒


wij ≥ xi
wij ≥ xj
wij ≤ xi + xj

∀i, j ∈ V.

As hij = u and lij = u only in cases in which zij = 1 and wij = 1 respectively, and
noting that u ≤ 1, then the quadratic terms are linearized as follows

hij = uzij ⇐⇒


hij ≤ u
hij ≤ zij
hij ≥ u− (1− zij)

∀(i, j) ∈ E

and

lij = uwij ⇐⇒


lij ≤ u
lij ≤ wij

lij ≥ u− (1− wij)

∀(i, j) ∈ E.

Note that if zij = 1 the inequalities are satisfied only for hij = u, whereas if zij = 0
then the inequalities are satisfied only for hij = 0, that is exactly the meaning of
hij = uzij (similar considerations are valid for lij).
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Hence, the linearized problem can be written as following:

P1 : max
u

∑
(i,j)∈E

hij (19)

s.t.∑
i∈V

xi = k. (20)

zij ≤ xi ∀(i, j) ∈ E (21)

zij ≤ xj ∀(i, j) ∈ E (22)

zij ≥ xi + xj − 1 ∀(i, j) ∈ E (23)

wij ≥ xi ∀(i, j) ∈ E (24)

wij ≥ xj ∀(i, j) ∈ E (25)

wij ≤ xi + xj ∀(i, j) ∈ E (26)

hij ≤ u, ∀(i, j) ∈ E (27)

hij ≤ zij , ∀(i, j) ∈ E (28)

hij ≥ u− (1− zij), ∀(i, j) ∈ E (29)

hij ≥ 0 (30)

lij ≤ u, ∀(i, j) ∈ E (31)

lij ≤ wij , ∀(i, j) ∈ E (32)

lij ≥ u− (1− wij), ∀(i, j) ∈ E (33)

lij ≥ 0, (34)∑
(i,j)∈E

lij = 1, (35)

∑
j∈V :(i,j)∈A

fij ≤ (k − 1)xi ∀i ∈ V, (36)

∑
i∈V :(i,p)∈A

fip −
∑

i∈V :(p,i)∈A

fpi ≥ xp + (n− 2)(xj − 1), ∀p, j ∈ V : j > p,

(37)

fij ≥ 0, ∀(i, j) ∈ A (38)

xi ∈ {0, 1}, ∀i ∈ V (39)

The objective function in (19) represents the persistence probability in terms of the
variable hij defined through the auxiliary variable u in (17). Constraints (21),(22),
and (23) reply the constraint (10) with the Clique Partitioning inequalities of zij . The
quadratic term lij is linearized by the constraints (31),(32), (33), and (34). Constraint
(35) writes in terms of equality the auxiliary variable u introduced in (17). Finally,
constraints (27),(28),(29), and (30) express the linearization of hij .
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4. Heuristic algorithms for the optimal persistent community

In this section we present some heuristic algorithms for finding the community with
maximum persistence probability. The algorithms that we introduce are (in order of
computational times):

• A randomized-greedy procedure called Random Shrink (RS).
• A merge procedure called Random Shrink Interchange (RSI).
• Two long-term heuristic search called Random Shrink Variable Neighborhood

Search (RSVNS) and Constrained Random Restart (CRR).

One practical difficulty of applying the persistent index to community detection is
that a user does not know in advance what is the size k of the optimal community.
Moreover, as we discussed previously, the persistent index tends to increase as the size
of a community increases as well, ranging from 0, when the community is a singleton,
to 1, when the community is composed of all nodes in V . As we will show in Section 5,
at least in some cases, there is a way to determine k, but only after that approximate
values of the persistence have been calculated for all k belonging to the set {kl, . . . , ku}.
Therefore, the first need of a user is a fast and reliable algorithm to calculate the per-
sistence blue probability for communities of size k in a range, and this is the purpose
of algorithm Random Shrink. Next, after determining k, the incumbent solution cal-
culated by Random Shrink can be improved replacing a node of a community with an
external one, using the interchange function. When the interchange function cannot
improve a solution, we say that the solution is a local optimum, and we call “basin
of attraction” the set of all communities that calculate the same local optimum when
interchange is applied. Of course, the interchange subroutine can be applied to many
starting solutions to find different local optima, but many strategies are possible and
the most effective depends on the problem. We test two of these strategies, one based
on variable neighbors and the other on random restart. In variable neighbors search
the best solution found is slightly perturbed to escape the local optimum and to con-
tinue the interchange in another basin of attraction, that is close to the previous one.
If the local optima are close to each other, and the optimal community is similar to
(e.g. it overlaps) other communities that are only locally optimal, this strategy can be
effective. Conversely, if local optima are distant, so that the optimal solution does not
overlap with other local optima, then it is more convenient to forget about them and
continue the search though random restart. Hopefully, the new starting solution is a
community of a complete different basin of attraction.

4.1. Random Shrink

In most application, the researcher does not know in advance the correct size k of
the community with the optimal persistence. Rather, as often happens with clustering
algorithms, optimization should consider various levels of k before deciding the best
one. It may be quite time expensive to engage the algorithms in a thorough calculation
of the optimal communities before knowing the exact value of k. Instead, it would be
convenient to be satisfied with approximate values of α calculated quickly, hence to
concentrate the computational resources after that k has been determined.

The Algorithm 1 that is presented below takes advantage from the fact that, for two
non-overlapping communities: 1) it takes linear computational time to check whether
their union is a connected subset; 2) it takes constant computational time to calculate
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the resulting value α. Hence, starting from a collection of non overlapping communities,
they can be progressively merged to find (almost) optimal α’s for a whole range of
k. Moreover, to enhance diversification, the process can be repeated many times with
different starting solutions with a cheap computational cost. The method has been
used before in Benati et al. (2022), where it was found to be an effective and reliable
tool to obtain a collection of almost optimal communities quickly.

In a general step of the algorithm, nodes of V are partitioned into groups C =
{C1, . . . , Cm}, with m ≤ n. Let be Cq, Cl ∈ C, the following quantities are given:

• E inq = #{edges with both end nodes in Cq};
• Eoutq = #{edges with one end node in Cq and the other end node not in Cq};
• Aql = #{edges with one end node in Cq and the other end node in Cl}.

Given those quantities, two clusters Cq and Cl can be merged if Aql ≥ 1, and next
it is easy to calculate the coefficient α(Cql) of the group Cql = Cq ∪ Cl:

α(Cql) =
E inq + E inl +Aql

E inq + E inl + Eoutq + Eoutl −Aql
(40)

So, values α(Cql) can be calculated for all q, l pairs and then the best one is selected.
Next, the partition C is updated by deleting Cq, Cl from it, but inserting Cql and the
process repeated until |C| = 1, that is, all subsets are merged. If a data structure
containing E inq , Eoutq ,Aql is available from the beginning, then data can be updated in
linear time whenever two subsets are merged.

The pseudo code of the Algorithm Random Shrink is presented in Algorithm 1.
Merging begins with clusters containing one node, see Line 4. While instructions lead
the choice of Cq and Cl: in first iterations, e.g, t ≤ max random step in Line 7, subsets
are chosen at random (Line 8), in order to diversify the search between different starts
to explore different basins of attraction. After that, the algorithm continues in a greedy
way, merging clusters that obtain the best local solution αk (updated in Line 11). When
some αk is an optimum, values αk are updated (Line 15). Of course, when some αk(Ck)
is updated, the corresponding optimal set Ck is updated as well (not reported in the
pseudocode). Finally, the process is repeated max start times, see Line 2, and the fact
that the first merging are random could guarantee a sufficient diversification of the
search.

When the Algorithm Random Shrink concludes, the researcher has at disposal per-
sistence values αk for a range of k’s, from which to select the best size k. How to select
k is explained in the computational tests section (Section 5).

4.2. Random Shrink Interchange

After selecting the community size k, computational resources can be invested to
improve the objective function αk. The Interchange function (Function 2) attempts to
maximize the α-value of a k-connected subset VC of V by replacing one node at a time
while keeping the connectivity. The function begins with the initial subset VC of V
containing the candidate nodes and continues to exchange an inner node h (h ∈ VC)
with an outer node h′ (h′ ∈ (V − VC)) to obtain a better α-solution (updated in
Line 3). When no more α-improvement can be found the function ends, see Line 7,
returning the current k-connected subset VC . The computational time of the function
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Algorithm 1: Random Shrink

Input: G = (V,E).
Result: VC = {C∗2 , . . . , C∗n−1} where C∗k (2 ≤ k ≤ n− 1) is a k-connected

subset of V .
Parameters: max start repetition numbers, max random step, number of

random choices.

1 αk = 0 for k = 2, . . . , n− 1
2 for s = 1, . . . ,max start do
3 αk = 0 for k = 2, . . . , n− 1

4 C0 = {{1}, . . . , {n}}
5 t = 0
6 while |Ct| > 1 do
7 if t ≤ max random step then
8 Select randomly Cq, Cl ∈ Ct, such that G[Cq ∪ Cl] is connected
9 α(Cql) = α(Cq ∪ Cl)

10 else
11 α(Cql) = max{α(Cq ∪ Cl)|Cq, Cl ∈ Ct, G[Cq ∪ Cl] connected }
12 Ct+1 = (Ct − Cq − Cl) ∪ Cql}
13 k = |Cql|: αk = max{α(Cql), αq}
14 t = t + 1

15 αk = max{αk, αk}, for k = 2, . . . , n− 1.

can be high, due to the fact that, while it is fast to check whether a candidate entering
node is connected to other nodes in VC , a candidate exiting node can leave VC only if
it will not break the connectivity, that must be checked by an appropriate subroutine.

Function 2: Interchange

1 Interchange(G, VC)
Input: G = (V,E), VC is a k-connected subset of V .
Result: a k-connected subset of V .

2 while True do

3 α(Ch
h′) = max{α(Cj

i )|∀i ∈ VC , j ∈ (V − VC) and Cj
i connected}

4 if α(VC) < α(Ch
h′) then

5 remove h from VC and add h′ to VC
6 else
7 return VC

We combine the algorithm Random Shrink with the Interchange function obtaining
a new algorithm that we will call Random Shrink Interchange described in Algorithm 3.

4.3. Random Shrink Variable Neighborhood Search

After the application of the Interchange function, a first optimal solution VC ⊂ V ,
|VC | = k has been determined. The Tree Variable Neighborhood Search function (Func-
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Algorithm 3: Random Shrink Interchange

Input: G = (V,E), k community size.
Result: C∗k (2 ≤ k ≤ n− 1) is a k-connected subset of V .
Parameters: max start repetition numbers, max random step, number of

random choices.

1 Let Ck be the k-connected subset of V resulting from the Algorithm 1 applied
to G

2 C∗k = Interchange(G,Ck)

tion 4) attempts to improve the α-value of VC by replacing a subset R of VC with a
random subset of nodes I taken from the neighbors of VC and obtaining a new solution
V ′C = (VC −R)∪ I. Next, the Interchange function is applied to V ′C , hopefully to find
a new local optimum. If VC is almost optimal, this way of diversifying the search can
be effective.

Calculating V ′C from VC can be computationally demanding as V ′C = (VC −R) ∪ I
must be connected, that is the reason why we implement a subroutine that exploits
the connectivity of a random spanning tree of GC . Specifically, R is obtained in the
following way. First, a random node v ∈ VC (Line 3) is selected and a random spanning
tree T = (VC , ET [GC ]) is constructed from the root v. Next, we determine the set L of
nodes that are leaves of T and select a random number h in the range h ∈ {2, . . . , |L|}.
Finally, the exiting nodes are a random set R ⊆ L, such that |R| = h. The way in
R is selected guarantees that the subgraph having vertices set VC −R and edges set
E[VC−R] is connected. The subset I ⊂ V such that |I| = h is selected at random from
the neighboring nodes (different from those belonging to the set R) of VC − R. The
subset of V so obtained is optimized with the Interchange function (Line 6). Finally,
the process is repeated max start times to obtain different starting solutions V ′C , see
Line 2.

Function 4: Tree Variable Neighborhood Search

1 VNS(G, VC)
Input: G = (V,E), VC is a k-connected subset of V .
Result: a k-connected subset of V .
Parameters: max start repetition numbers.

2 for s = 1, . . . ,max start do
3 select randomly a node v ∈ VC
4 select randomly a subset R ⊂ V build from the leaf of a random

spanning tree of v
5 select randomly a subset I from the neighbors of VC −R of the same

size of R
6 VC = Interchange(G, (VC −R) ∪ I)

7 if α(VC) < α(VC) then
8 replace VC with VC

9 return VC

We combine the algorithm Random Shrink Interchange with the Tree Variable
Neighborhood Search function obtaining a new algorithm that we will call Random

12



Shrink Variable Neighborhood Search described in Algorithm 5.

Algorithm 5: Random Shrink Variable Neighborhood Search

Input: G = (V,E), k community size.
Result: C∗k (2 ≤ k ≤ n− 1) is a k-connected subset of V .
Parameters: max start greedy repetition numbers greedy alg ,

max random step, number of random choices, max start vns
repetition numbers vns function .

1 Let Ck be the k-connected subset of V resulting from the Algorithm 3 applied
to G

2 C∗k = VNS(G,Ck)

4.4. Constrained Random Restart

Even though Random Shrink Variable Neighborhood Search algorithm is a flexible
tool to explore local optima that are close to the incumbent solution, still it could be
the case that the global optimum is much farther away and it can be detected only
selecting a completely different starting solution. As the Algorithm 5, Constrained
Random Restart algorithm tries to improve a set of starting solutions through the
Interchange function, but in this new algorithm the starting solutions are selected
at random. Still, as it is important to explore different basins of attraction, we have
included a distance constraint about how new starting solutions are selected. First, a
new starting node c must have a distance from the previously selected nodes (set P) of
at least min distance (Line 9) and then a new community is built at random around
c. When, due to distance constraints, c cannot be determined, a new VC is determined
from scratch and the process is repeated until a number of max start solutions is
attempted (Algorithm 6).

5. Computational experiments

All algorithms have been implemented in C++ language. The exact solution is calcu-
lated using the solver GuRoBi described in Gurobi Optimization, LLC (2022). The
simulations have been performed on an iMac Pro 3.2 GHz 8-Core Intel Xeon W with
32 GB of ram.

5.1. Integer Programming versus the random Shrink Algorithm

Here we compare the effectiveness of the integer programming problem formulation
(ILP) with the shrink heuristic. The former is an exact method whose solution time
will turn out prohibitively large as the problem size overcomes a certain threshold.
The latter is an approximate method in which the suboptimal solutions are calculated
fast time. The trade-off between accuracy and speed can be established as long as
the ILP can reach the solution in a reasonable time. For the following experiment, we
simulate a random graph with a hidden community. The random graph is obtained as
an Erdős-Rényi process with parameter p = 0.1. A subset of nodes of size k = d|V |/2e
forms a community, characterized by being another Erdős-Rényi graph with parameter
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Algorithm 6: Constrained Random Restart

Input: G = (V,E), k community size.
Result: V b

C a k-connected subset of V .
Parameters: D distance function, min distance minimum distance between

the starting node, max start repetition numbers.

1 it = 0
2 while it < max start do
3 randomly select a node c ∈ V
4 P = {c}
5 randomly built a k-connected subset VC of V

6 V b
C = Interchange(G,VC)

7 do
8 randomly select a node c ∈ V such that D(P, c) ≥ min distance
9 if c is found then

10 it = it+ 1
11 add c to P
12 randomly built a k-connected subset VC of V

13 VC = Interchange(G,VC)

14 if α(VC) > α(V b
C) then

15 V b
C = VC

16 end

17 else
18 break
19 end

20 while it < max start

21 end

14



pc = 0.3. The purpose of the experiment is to compare the trade-off between solution
quality and computational time for the ILP model and the Random Shrink heuristic.
Experiments have been run for n ∈ {25, 30, 35, 40}. The ILP model has been run with
the true value k = d|V |/2e. The RS heuristic has been run with parameters max start
= 1000 and max random step = |V |/3.

Computational results are reported in Tables 1 and 2. In particular, for each set
of graphs, tables report the objective functions of the ILP model and RS heuristic,
with the corresponding computational times. Additionally, for graphs of major size,
the objective function of the upper bound has been computed. In Table 1 we can see
how computational times increase as the number of nodes of V increase. We can see
that exact and heuristic objective functions are the same in almost all the problems.
The only exception is the fifth problem in the set of graphs with n = 35, in which the
approximate persistence is 0.7% less than the optimal, and the second problem in the
set of graphs with n = 40, in which the approximation is 0.6% less. It can be seen
that the RS computation times increase smoothly, from around 0.2 seconds to 0.5
seconds, making the method fully practical. Conversely, as expected, the ILP model
takes more time. Time is around 2 seconds for n = 25, 10 seconds for n = 30, and
next we see that it is greatly variable. For n = 35 we see that 8 problems are solved
in less than one minute, but one required more than 2 minutes, while for n = 40 we
observe 5 problems solved in less than one minute, but one required almost one hour.
This suggests that n = 40 is the threshold beyond which we observe the exponential
growth of computational times, therefore, to get the results of Table 2 we imposed
a time limit of 600 seconds. In this table it can be seen that exact (or truncated
exact) and heuristic persistence values are very close. In 12 instances they reach
the same solution, while in 6 cases ILP values are better than the RS, the converse
occurs 2 times. On average, the two methods are very close in term of the objective
function. Of course, they strongly differs for what concerns the computing times: in
5 instances for n = 45 and 8 instances for n = 50 the time limit of 10 minutes has
been overcome, while the heuristic always concluded in less than 1 second. Moreover,
not reported in Tables, it is worth to note that the RS heuristic terminates with
approximate persistence values αk for all k = 2, . . . , n − 1, values that could be
calculated by the ILP model only though separate runs for k. This test suggests that
the RS heuristic is a fast and reliable method to calculate persistence values for all
k = 2, . . . , n−1. The strategic value of this method is discussed in the following section.

5.2. Determining the correct community size k

In this section, we test the proposed algorithms of Section 4 on a family of simu-
lated networks that have been generated according to the methodology proposed in
Lancichinetti et al. (2008). That procedure generates synthetic networks that are as
close as possible to real networks, which are often characterized by a high variability
in the nodes degree. We simulate networks of n nodes so that each node degree is a
random value taken from a power law distribution with parameter γ, minimum and
maximum degree kmin and kmax, respectively, and average degree 〈k〉. Then, nodes
of the graph are partitioned into communities, using the mixing parameter µ ∈ (0, 1].
This parameter represents the fraction of edges that starting from a given node points
to nodes outside the community. Conversely, the complement 1− µ is the fraction of
edges outgoing from a node and pointing to nodes inside the community. The size of
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each community is a random value taken from a power law distribution with parameter
β, and it ranges between the minimum smin and the maximum smax. The procedure
partitions nodes of the network with each node being assigned to only one community.
We simulate N = 1000 graphs of size n ∈ {20, 25, 30, 40, 50, 100, 150, 200}. For each
graph, we set the mixing parameter µ = 10%, the average node degree 〈k〉 = 30%, and
smin and smax equal to 20% and 50%, respectively, parameters γ and β are set to 2 and
1, respectively, that are the lowest values of the intervals indicated in Lancichinetti
et al. (2008).

As we discussed earlier, the computation of the optimal persistence is flawed by the
mere fact that the index tends to increase just as the cardinality of the communities
increases. In particular, the value of α is close to zero, when communities are small and
connected with many other nodes outside the community, and it approaches to one,
when communities are composed of almost all the nodes of the network connected
mostly with nodes inside the community. An example is reported in Figure 2, that
depicts, for a simulated graph, the curve of the persistence αk as the community size
k increases. As it can be seen, the trend of the curve is almost increasing, providing an
evidence that the global maximum of the function cannot be the unique criterion to
select communities. Nevertheless, a closer inspection of the figure reveals that there are
some local maxima determined for intermediate value of k: as better motivated later,
we guess that they are the correct values of k that determine communities. Therefore,
it is important relying on a fast and accurate method for drawing histograms as in
Figure 2, that we will call persistence curve.
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Nodes Arcs fLP timeLP fH timeH

25 59 0.630 2.156 0.630 0.106
54 0.667 2.732 0.667 0.133
51 0.703 2.228 0.703 0.132
57 0.700 2.703 0.700 0.113
52 0.711 2.127 0.711 0.131
54 0.739 1.686 0.739 0.120
44 0.735 1.507 0.735 0.137
43 0.700 1.579 0.700 0.131
47 0.735 1.220 0.735 0.108
49 0.700 1.786 0.700 0.125

30 78 0.677 8.353 0.677 0.232
80 0.689 14.532 0.689 0.201
76 0.704 5.411 0.704 0.227
75 0.673 22.090 0.673 0.202
70 0.717 3.788 0.717 0.201
69 0.776 1.777 0.776 0.184
62 0.653 14.295 0.653 0.176
65 0.667 24.833 0.667 0.204
59 0.698 10.453 0.698 0.190
66 0.679 14.351 0.679 0.207

35 102 0.671 42.136 0.671 0.659
111 0.644 134.007 0.644 0.325
102 0.737 16.069 0.737 0.326
102 0.648 107.378 0.648 0.302
94 0.676 59.733 0.671 0.315
99 0.730 6.270 0.730 0.300
87 0.698 16.997 0.698 0.284
85 0.703 12.907 0.703 0.276
85 0.672 33.147 0.672 0.301
102 0.705 25.897 0.705 0.282

40 131 0.680 133.242 0.680 0.412
142 0.624 5000.075 0.620 0.782
126 0.703 44.065 0.703 0.350
140 0.673 333.786 0.673 0.345
126 0.709 37.604 0.709 0.357
134 0.651 380.774 0.651 0.388
109 0.667 115.943 0.667 0.420
114 0.678 51.680 0.678 0.375
109 0.693 46.568 0.693 0.346
132 0.704 36.186 0.704 0.335

Table 1.: Objective functions and com-
putation times of the ILP model and
the RS heuristic.

Nodes Arcs fLP timeLP fH timeH fUB

45 169 0.676 572.419 0.676 0.879 0.676
178 0.630 TL 0.630 0.547 0.764
167 0.733 109.914 0.733 0.493 0.733
174 0.703 303.744 0.697 0.528 0.703
171 0.710 229.366 0.698 0.503 0.710
169 0.620 TL 0.625 0.540 0.695
152 0.658 TL 0.656 0.543 0.700
144 0.681 TL 0.681 0.508 0.734
152 0.680 TL 0.667 0.569 0.750
164 0.676 249.637 0.676 0.735 0.676

mean 0.678 0.674 0.584 0.714

50 207 0.648 TL 0.648 0.728 0.730
205 0.624 TL 0.628 0.647 0.732
208 0.716 273.679 0.716 0.649 0.716
204 0.680 TL 0.680 0.602 0.737
202 0.683 TL 0.683 0.654 0.726
207 0.637 TL 0.630 0.592 0.724
197 0.621 TL 0.621 0.633 0.739
185 0.677 537.094 0.677 0.591 0.677
190 0.650 TL 0.650 0.628 0.898
210 0.695 TL 0.695 0.607 0.713

mean 0.663 0.663 0.633 0.739

Table 2.: Objective function, upper
bunds and computation times of the
ILP model and the RS heuristic, time
limit TL = 600.

Algorithm 1 has been developed for the purpose. It has been tested for graphs of
size ranging from n = 20 to n = 200. As already pointed out, for each size, 1000 graphs
have been generated and the algorithm is run, determining an approximate value of αk

for all k ≤ n. We set the number maxit equal to 100, 1000 and 10000 starting solutions
and we summarize computational results in Table 3. The left side of the table reports
the objective function (i.e., the persistence probability). It is measured as follows: for
each instance (and depending on the size n), we calculate the index2 fn =

∑n−1
k=2 αk,

then, we compute the average of fn on all the instances for each value of n.
The two central columns report the probability of improvement when the number of

starting solutions increases from 100 to 1000 and from 100 to 10000. It is measured, for

2In the sum we exclude the extreme cases k = 1 and k = n that correspond to trivial cases.
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Figure 2.: Example of persistence curve.

each instance of size n, as the relative frequency in which αk computed for maxit = 1000
(or for maxit = 10000, respectively) is greater than αk computed for maxit = 100.
Then, we calculate the average on all the instances for each value of n. It can be noticed
that, when maxit increases, the corresponding increase of the persistence probability
is quite marginal, always less than 1%. However, these results have to be read in the
light of the probability of improvement. This probability significantly increases as n
grows, for instance passing from 4% for n = 20 to 58% for n = 200 in the case in
which maxit passes from 100 to 1000.

Computational times are reported as average values in the right side of the table.
Even though they linearly increase, they could be severe when more starting solution
are allowed. For example, considering n = 200, solutions with maxit = 100 has been
obtained in 2 minutes, with maxit = 1000 in 20 minutes, with maxit = 10000 in
more than 3 hours (note that times are multiplied by 10). However, the purpose of
Algorithm 1 is to obtain a quick histogram of the αk values, and the table reveals that
reliable data can be obtained with maxit = 100.

From the analysis of a persistence curve, as the one reported in Figure 2, a re-
searcher can guess the correct community size k∗ as the one corresponding to a local
maximum. Actually, the persistence curve can contain more than one peak, because
the networks can contain more than one community or by mere numerical reasons. In
practical applications, we guess that some further substantive analyses may be carried
on the communities corresponding to each peak to establish whether they are realis-
tic clusters. Nevertheless, some indications can be inferred by using some automatic
procedure. In our tests, we apply two selection rules. Suppose that {k∗1, . . . , k∗l } is the
set of the sizes corresponding to the local maxima of the persistence curve. The first
rule is taking the smallest value k∗1, the second one is taking the median value k∗m
(with m = b(l+1)/2c). The experimental graphs simulated by the algorithm of Lanci-
chinetti et al. (2008) usually contain more than one community, so let {k1, . . . , kr} be
the set of sizes of the r simulated communities. Therefore, to check the effectiveness of
our procedure we control whether k∗i ∈ {k1, . . . , kr} with i = 1 or m. Computational
results are described in Table 4. There, in the first two columns and for the 1000

18



Persistence Probab. Times
aaaaaaaa
n

maxit 100 1000 10000 1000 10000 100 1000 10000

20 11.79 11.82 11.82 0.04 0.04 0.05 0.64 6.61
25 14.95 15.01 15.02 0.07 0.07 0.13 1.32 14.81
30 18.42 18.51 18.52 0.10 0.11 0.26 2.68 29.52
40 23.97 24.11 24.13 0.15 0.17 0.83 8.46 87.18
50 29.14 29.32 29.35 0.20 0.24 2.01 20.30 207.10
100 54.94 55.27 55.50 0.38 0.47 31.25 315.24 3175.45
150 81.52 82.10 82.40 0.49 0.60 152.96 1540.27 15277.62
200 105.93 106.80 107.24 0.58 0.69 480.37 4880.58 47114.58

Table 3.: Persistence mean and computational times Algorithm 1 depending on graph
size.

n p.k first p.k median p.k atleast p.k all

20 0.812 0.735 0.948 0.465
25 0.771 0.665 0.956 0.426
30 0.716 0.606 0.949 0.470
40 0.824 0.711 0.988 0.602
50 0.843 0.814 0.997 0.673
100 0.866 0.860 1 0.754
150 0.823 0.846 1 0.757
200 0.777 0.779 1 0.682

Table 4.: Probabilities of finding a correct value of community size k.
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graphs generated by each network size n, we have reported the relative frequency with
which it has been observed k∗i ∈ {k1, . . . , kr}. As it can be seen, for networks of small
dimension, k∗1 is better than k∗m, but the relation reverses for the largest networks.
Nevertheless, and in both cases, they are correct guesses for the large majority of the
instances. In more than 10% of the cases, k∗i , i = 1 or m are a wrong prediction,
but further substantive analyses show that (third column) almost always at least one
ki, i = 1, . . . , r is between the guessed ones k∗i , i = 1, . . . , l. Moreover, in the fourth col-
umn we report how many times all values ki, i = 1, . . . , r are contained in the guessed
set {k∗1, . . . , k∗l } and this probability significantly increases when the size n grows. To
summarize, most of the selected values k∗i corresponds to true community sizes ki and
our algorithm can reveal them.

5.3. Interchange heuristics

Our final tests regard the computational analysis of the interchange heuristics. Next
algorithm take as input the subset size k∗ and the subset VC determined by algorithm
Random Shrink, then VC is attempted to be improved first by the Interchange func-
tion, next by perturbing the optimal solution to restart the interchange from different
initial clusters. Tested procedures require a minimal amount of parameters: in the Tree
Variable Neighborhood Search function, the number of nodes that are replaced from
the incumbent solution is a random number between 2 and k. The numbers of initial
solution that are tested by Algorithm 5 and Algorithm 6 is 100. In Table 5 it can be
seen the comparison between the three heuristics. Results are average values on 1000
test problems, in times the use of Random Shrink is included. In the first group of
columns data about the plain Random Shrink Interchange are reported. In the first
column (P.BtRS: Probability Better than Random Shrink), we report the relative fre-
quency in which the Random Shrink Interchange could improve the Random Shrink
solution; it can be seen that it happens, but less frequently than what expected. In the
smallest sized problems, only 4% of the Random Shrink solutions were improved by the
Random Shrink Interchange. Frequency of improved solutions increases with problem
size; nevertheless, only 16% of the times the Random Shrink has been increased when
the network size is n = 200. As whole, these data points that the Random Shrink is an
effective heuristic. The second column (M.diff: mean difference), reports the relative
increase of the objective function calculated only for the cases in which an improve-
ment actually occurs. It can be seen that the improvement is more substantial on the
smallest problem size than for the largest, indicating that there are cases in which the
Random Shrink fails to find the optimal solution and that the improvement can be
substantial. The last column (Time) reports the computational times, in which it can
be seen that they are rather negligible, as the largest instances are solved in a few
more than one second.

We compare the restricted diversification, e.g., Random Shrink Variable Neighbor-
hood Search, in which starting solutions are generated close to the local optimum,
with the free diversification, e.g. Constrained Random Restart, in which starting solu-
tions are generated through consideration about their distance from previous analyzed
regions. Looking at the frequency in which the Random Shrink solution has been im-
proved, we can see that data are in favor of Constrained Random Restart, as they are
improved from 9% of the times when the network size is 50 to 22% when the network
size is 200 with respect to 6% to 18%. Solutions quality is better as well, improving of
some 13% in all problem size with respect to less 10%. The only comparison in favor
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of Random Shrink Variable Neighborhood Search is about times that are some half
the ones of Constrained Random Restart.

This is due to the fact that starting solutions generated closer to a local optimum are
close to an other local optimum as well, but this implies that the diversification strategy
is less effective. In summary, data are suggesting that the Constrained Random Restart
is the most effective method to improve the results of the Random Shrink.

n RSI 3 RSVNS 5 CRR 6
P.BtRS M.diff Time P.BtRS M.diff Time P.BtRS M.diff Time

50 0.04 0.07 0.02 0.06 0.10 0.05 0.09 0.12 0.31
100 0.10 0.03 0.15 0.13 0.04 0.72 0.16 0.14 2.85
150 0.14 0.02 0.46 0.16 0.04 2.69 0.20 0.13 10.02
200 0.16 0.01 1.14 0.18 0.03 11.30 0.22 0.13 28.60

Table 5.: Comparison between the number of times that a combined algorithm found
a better solution w.r.t. the Random Shrink algorithm.

6. Application to real data

In this section, we make some computational tests on two simple real networks to
verify the reliability of the persistence α to real applications, that is, if it can identify
homogeneous groups of nodes interpreted as communities. Considered networks are
the Zachary Karate Club (Zachary (1977)) and the political books (Krebs (2004)).
The Zakary karate club is the network of friendships between the members of a club
in a US university, while the political books is the network of co-purchased books
about US politics published around year 2004 and sold online by Amazon.com. Figure
3 represents the topology of these networks.
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(a) Karate Club network.
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(b) U.S. Political books network.

Figure 3.: Network topologies.

These networks are classical examples used in many papers to compare new com-

21



munity detection proposals with methods already existing in the literature. Indeed,
the two networks are quite different in terms of the number of nodes, average degree
and density. The latter allows us to test the efficiency and robustness of the method
and algorithms proposed in this work. Table 6 reports the basic characteristics of the
networks.

Network N. of nodes N. of edges Average degree Density

Karate Club 34 78 4.58 0.14
Political books 105 441 8.4 0.081

Table 6.: Network characteristics.

At first, we apply our methodology, e.g. Algorithm 1, to compute the peaks of the
persistence probability α and then we improve those results with Constrained Random
Restart. Finally, we compare our results with two well-known community detection
methods, i.e. Walktrap and Louvain method ((Pons and Latapy, 2005) and (Blondel
et al., 2008)). Similar to the idea of which the persistence probability the Walktrap
method assumes that a random walk on a graph tends to remain inside a community.
Conversely to the persistence probability, the community is detected using the specific
structural distance between vertices and then a hierarchical clustering algorithm is
applied. By analogy with the persistence probability, the Louvain method is based on
the maximisation of an index, the modularity score, but the community is detected
using spectral decomposition methods and not by optimization. These methods are
designed to make community detection, that is, finding a partition of nodes, and
therefore their output is composed of many communities, while our method is designed
to find just one community. Nevertheless, we can discuss the consistency of the results
obtained by the three methods.

Figure 4a reports the persistence probability (y-axis) varying k (x-axis) for the
Zachary karate club network (figure 3a). The curve shows that there is an evi-
dent peak of the persistence probability for k = 5 corresponding to subset VC =
{5, 6, 7, 11, 17}, in which α(VC) = 0.60. This value is well above the persistence of
communities of size 4 and 6 showing that those nodes form a well-separated clus-
ter. The Walktrap and the Louvain method (see Figures 4b and 4c), detect this
community as well: it is the group with orange color, a specific peripheral group
of friends densely connected, but with few links with the rest of graph. Next,
the persistence curve reveals a second local maximum, corresponding to the subset
V ′C = {3, 9, 10, 15, 16, 19, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34} of size k′ = 19.
With respect to the Walktrap communities, V ′C is the union of all the yellow nodes,
all the pink nodes, all the red nodes except node 14; with respect to the Louvain
communities, V ′C corresponds to all the red nodes, all the yellow nodes, and more-
over the green nodes 3 and 10. It is worth noting that we also found a group of 10
nodes (k̃ = 10 = n − (k + k′) in the persistence curve) that, even though it does not
correspond to a local peak, it is composed of the remaining nodes of the green commu-
nity, that is, excluding nodes 3 and 10. In conclusion, the persistence index revealed
communities similar to the other methods, possibly allowing some aggregation and
with some peripheral nodes resolved differently. Moreover, in this case, even though
the method purpose is not finding a partition, still the outcome can be interpreted as
such.

A similar representation is reported in Figure 5a for the network of the political
books (see Figure 3b). We can observe three main peaks of persistence probability,
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(a) Persistence curve
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(b) Walktrap algorithm
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(c) Louvain methodology

Figure 4.: Comparison of community detection methods and persistence probability
for Zachary karate club network.
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of values α(VC) = 0.43, α(VC) = 0.58 and α(VC) = 0.89, respectively, correspond-
ing to k = 5, k = 11 and k = 41. Two of these communities corresponds to two
communities determined by the Walktrap and Louvain methods as well. They are the
two communities with k = 11, coloured in green in Figures 5b and 5c, and k = 41,
coloured in red. For k = 5, the third community that we detected by the persis-
tence index is different from what has been found by the two methods. The Walktrap
method detects one community with the same size, k = 5, but different from the one
we found, while the Louvain detects nothing. Our methods detects the community
VC = {60, 61, 63, 64, 100} while the Walktrap detects VC = {1, 2, 3, 5, 6} (coloured in
pink), but it is interesting to observe that for k = 6 our method detects the similar
cluster VC = {1, 2, 3, 5, 6, 7}.

It is worth observing that there is a structural difference between the results of our
model and those of both the Walktrap and Louvain method. We do not require that all
nodes of the networks belongs to a community, while the latter models do: our method
is more flexible without loosing the property of analyzing the network as a whole, while
the strict partition could be a too restrictive condition, as it is fully realistic that data
reveal that some nodes of the graph are very cohesive between them. The rest of the
nodes could be too loosely connected to claim that they are forming exclusive cliques,
e.g. they do not show any relevant membership. This is exemplified by the small group
detected in the Karate Club, that, at a close inspection, reveals few links outside the
group, a property that is not shared by the rest of the nodes. Of course, we are not
claiming that what was found by the other methods is wrong, but it is exactly what
persistence probability does: it shows what communities are the most separated from
the rest of the graph. This property is further supported through the analysis of the
Political books. There, three different groups of books have been found: two of them
correspond to clusters also found by the two other methods. This suggests that they
are the two most customers’ segmentation found by the other methods. On the other
side, our method selected a third segment, or cluster, that for numerical reasons has
not been detected by the other two. Again, and as for the Karate club, this small
group could feature structural properties more consistent than what can be obtained
through strict node partitioning.

7. Conclusions

In this work we presented the integer programming formulation of the problem of
finding the node subset with maximum persistence probability and developed heuris-
tic algorithms as well. Next, we showed how this methodology helps in discovering
communities embedded in a real network by comparison of our findings with well-
known methods of community detection.

There are two main difficulties in applying the persistence index. The first is that
the optimal solution is hard to find. Actually, this is a problem shared by many other
network statistics, but further research about heuristic procedures is worthwhile. The
second difficulty is that the persistence index tends to increase with the subset size k
and determining the value of k that corresponds to a community can be problematic.
We overcome this issue by locating local peaks on the persistence curve, but further
research could be devoted to determine other empirical rule to determine the exact
value of k. Finally, our model is devoted to finding one community, but it can be used
as a subroutine for a graph partitioning model.
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(a) Persistence curve
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(b) Walktrap algorithm
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(c) Louvain methodology

Figure 5.: Comparison of community detection methods and persistence probability
for U.S. political books network.
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Benati, S., J. Puerto, and A. Rodŕıguez-Ch́ıa (2017). Clustering data that are graph connected.
European Journal of Operational Research 261 (1), 43–53.

Blondel, V. D., J.-L. Guillaume, R. Lambiotte, and E. Lefebvre (2008). Fast unfolding
of communities in large networks. Journal of Statistical Mechanics: Theory and Experi-
ment 2008 (10), P10008.

Calderoni, F., D. Brunetto, and C. Piccardi (2017). Communities in criminal networks: A case
study. Social Networks 48, 116–125.

Charnes, A. and W. W. Cooper (1962). Programming with linear fractional functionals. Naval
Research Logistics Quarterly 9 (3-4), 181–186.

Dami, D., D. Aloise, and N. Mladenovi (2019). Ascentdescent variable neighborhood decom-
position search for community detection by modularity maximization. Annals of Operations
Research 272 (1-2), 273–287.

Das, K., S. Samanta, and M. Pal (2018). Study on centrality measures in social networks: a
survey. Social Network Analysis and Mining 8, 1–11.

Della Rossa, F., F. Dercole, and C. Piccardi (2013). Profiling core-periphery network structure
by random walkers. Scientific Reports 3 (1), 1–8.

Djeddi, Y., H. Haddadene, and N. Belacel (2019). An extension of adaptive multi-start tabu
search for the maximum quasi-clique problem. Computers and Industrial Engineering 132,
280–292.

Fortunato, S. and D. Hric (2016). Community detection in networks: A user guide. Physics
Reports 659, 1–44.

Girvan, M. and M. E. Newman (2002). Community structure in social and biological networks.
Proceedings of the national academy of sciences 99 (12), 7821–7826.

Gurobi Optimization, LLC (2022). Gurobi Optimizer Reference Manual.
http://www.gurobi.com.

Hu, Y., H. Chen, P. Zhang, M. Li, Z. Di, and Y. Fan (2008). Comparative definition of com-
munity and corresponding identifying algorithm. Physical Review E - Statistical, Nonlinear,
and Soft Matter Physics 78 (2).

Kim, J., A. Veremyev, V. Boginski, and O. A. Prokopyev (2020). On the maximum small-world
subgraph problem. European Journal of Operational Research 280 (3), 818–831.

26



Krebs, V. (2004). Books about U.S. politics. Unpublished http://www.orgnet.com/.
Lancichinetti, A., S. Fortunato, and F. Radicchi (2008). Benchmark graphs for testing com-

munity detection algorithms. Physical Review E 78 (4), 046110.
Luce, R. and A. Perry (1949). A method of matrix analysis of group structure. Psychome-

trika 14 (2), 95–116.
Mahdavi Pajouh, F., Z. Miao, and B. Balasundaram (2014). A branch-and-bound approach

for maximum quasi-cliques. Annals of Operations Research 216 (1), 145–161.
Mokken, R. (1979). Cliques, clubs and clans. Quality & Quantity 13 (2), 161–173.
Moradi, E. and B. Balasundaram (2018). Finding a maximum k-club using the k-clique for-

mulation and canonical hypercube cuts. Optimization Letters 12 (8), 1947–1957.
Pattillo, J., N. Youssef, and S. Butenko (2013). On clique relaxation models in network analysis.

European Journal of Operational Research 226 (1), 9–18.
Pattillo, J., V.-A. B. S. B. V. (2013). On the maximum quasiclique problem. Discrete Applied

Mathematics 161, 244–257.
Peng, B., L. Wu, Y. Wang, and Q. Wu (2021). Solving maximum quasi-clique problem by a

hybrid artificial bee colony approach. Information Sciences 578, 214–235.
Piccardi, C. (2011). Finding and testing network communities by lumped markov chains. Plos

One 6 (11), e27028.
Piccardi, C. and L. Tajoli (2012). Existence and significance of communities in the world trade

web. Physical Review E 85, 066119.
Pinto, B., C. Ribeiro, I. Rosseti, and A. Plastino (2018). A biased random-key genetic algorithm

for the maximum quasi-clique problem. European Journal of Operational Research 271 (3),
849–865.

Pons, P. and M. Latapy (2005). Computing communities in large networks using random walks.
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