

UNIVERSITY
OF TRENTO

 DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

MODELS OF INTERACTION AS A GROUNDING FOR PEER
TO PEER KNOWLEDGE SHARING

David Robertson, Adam Barker, Paolo Besana, Alan Bundy,
Yun Heh Chen-Burge1, David Dupplaw, Fausto Giunchiglia, Frank van
Harmelen, Fadzil Hassan, Spyros Kotoulas, David Lambert, Guo Li,
Jarred McGinnis, Fiona McNeill1, Nardine Osman, Adrian Perreau de
Pinninck, Ronny Siebes, Carles Sierra, and Chris Walton

June 2007

Technical Report # DIT-07-040

.

Models of Interaction as a Grounding for Peer to Peer
Knowledge Sharing

David Robertson1, Adam Barker1, Paolo Besana1, Alan Bundy1,
Yun Heh Chen-Burger1, David Dupplaw2, Fausto Giunchiglia3, Frank van Harmelen4,

Fadzil Hassan1, Spyros Kotoulas4, David Lambert1, Guo Li1, Jarred McGinnis1,
Fiona McNeill1, Nardine Osman1, Adrian Perreau de Pinninck5, Ronny Siebes4,

Carles Sierra5, and Chris Walton1

1 Informatics, University of Edinburgh, UK
2 Electronics and Computer Science, University of Southampton, UK

3 Information and Communication Technology, University of Trento, Italy
4 Mathematics and Computer Science, Free University, Amsterdam, Netherlands

5 Artificial Intelligence Research Institute, Barcelona, Spain

Abstract. Most current attempts to achieve reliable knowledge sharing on a large
scale have relied on pre-engineering of content and supply services. This, like
traditional knowledge engineering, does not by itself scale to large, open, peer
to peer systems because the cost of being precise about the absolute semantics
of services and their knowledge rises rapidly as more services participate. We
describe how to break out of this deadlock by focusing on semantics related to
interaction and using this to avoid dependency ona priori semantic agreement;
instead making semantic commitments incrementally at run time. Our method
is based on interaction models that are mobile in the sense that they may be
transferred to other components, this being a mechanism forservice composition
and for coalition formation. By shifting the emphasis to interaction (the details of
which may be hidden from users) we can obtain knowledge sharing of sufficient
quality for sustainable communities of practice without the barrier of complex
meta-data provision prior to community formation.

1 Introduction

At the core of this paper is an unusual view of the semantics ofWeb service coordi-
nation. When discussing semantics it is necessary to groundour definitions in some
domain in order to decide whether our formal machinery performs appropriate infer-
ence. Normally this grounding is assumed to be in the Web services themselves, so
formal specification focuses on individual services. It seems natural then to assume that
having defined the semantics of services precisely we can combine them freely as long
as our means of combination preserves the local semantics ofthose services. This as-
sumption is ill founded for large scale systems because, when we combine services, we
normally share information (by connecting inputs to outputs) and this raises the issue
of whether the semantics of information provided by a service is preserved by another
service obtaining that information. Universal standardisation of semantics across ser-
vices appears impractical on a large scale; partly because broad ontological consensus

2

is difficult to achieve but also because the semantics of service interfaces derives from
the complex semantics of the programs providing those services.

We explore an alternative approach, where services share explicit knowledge of the
interactions in which they are engaged and these models of interaction are used oper-
ationally as the anchor for describing the semantics of the interaction. By shifting our
view in this way we change the boundaries of the semantic problem. Instead of requir-
ing a universal semantics across services we require only that semantics is consistent
(separately) for each instance of an interaction. This is analogous to the use in human
affairs of contracts, which are devices for standardising and sharing just those aspects
of semantics necessary for the integrity of specific interactions.

In what follows we focus on interaction and we use models of the salient features of
required interactions in order to provide a context for knowledge sharing. We are able
to exchange interaction models (and associated contextualknowledge) between peers6

that may not have collaborated before, with the context being extended and adapted as
interaction proceeds. This changes the way in which key elements of distributed knowl-
edge sharing, such as ontology alignment, are approached because semantic commit-
ments made for the purposes of interaction are not necessarily commitments to which
individual peers must adhere beyond the confines of a specificinteraction. Different
types of interaction require different commitments, and different levels of integrity in
maintaining these.

1.1 A Scenario

To ground our discussion, we give a scenario to which we shallreturn throughout this
paper:

Sarah works for a high-precision camera manufacturing company and is re-
sponsible for periodic procurement for market research. Her job includes iden-
tifying competitors’ newest products as they come onto the market and pur-
chasing them for internal analysis. She knows which types ofcamera she needs,
but, to save money, may vary the ways she purchases them. She isn’t always
sure what is the best way to purchase these cameras, but via recommendation
service she learns of an Internet shop; an auction service (where she sets initial
and maximum prices and the auction service finds a supplier bycompetitive
bidding) and a purchasing service direct from the manufacturer (which allows
some configuration of the order to take place on-line). Each of these three ser-
vices has a different way of describing what they do but the system she uses to
access the services can supply the translation necessary tosee each of the three
interactions through. She tries all three automatically; compares the prices of-
fered; checks that she is comfortable with the way in which the interaction was
performed for her; then buys from the one she prefers.

Sarah will have encountered, in the scenario above, severalissues that will be ex-
plored later in this paper. Her ontology for describing a camera purchase had to be

6 We use the term “peer” above to emphasise the independence ofthe services involved, rather
than to suggest any specific peer-to-peer architecture.

3

matched to those of available services (Section 3). Her recommendation service had
to know which services might best be able to interact and enable them to do so (Sec-
tions 2 and 4). When they interact the contextual knowledge needed to interact reli-
ably should propagate to the appropriate services as part ofthe interaction (Section 5).
When the services are being coordinated then it might be necessary to reconcile their
various constraints in order to avoid breaking the collaboration (Section 6). Before she
started, Sarah might have wanted to be reassured that the interaction conforms to the
requirements of her business process (Section 7) and that her interaction was reliable
(Section 8).

1.2 Structure of This Paper and its Link to Computation

Central to this paper is the idea that models of interaction can be specified indepen-
dently of services but used operationally to coordinate specific services. In Section 2
we describe a compact language for this purpose. The mechanisms needed to make the
language operational in a peer to peer setting are sufficiently compact that they can
specified in totality in this paper; and they are sufficientlyclose to an encoding in a
declarative language that a Prolog interpreter can be obtained by a simple syntactic
translation of the specification in Section 2. Similarly, the interaction model examples
of Figures 2, 3, 4, 9 and 13 translate directly to their operational versions. Together,
this makes it practical for the reader to understand and testat coding level the core
mechanisms specified in this paper. This style of compact, complete, executable speci-
fication (made easy for programmers to pick up) is in the tradition of lightweight formal
methods [26, 48].

Our lightweight language allows us to demonstrate how an interaction oriented view
of semantics allows us to tackle traditional semantic web problems in unusual ways.
Space prohibits us from presenting these in complete, executable detail but for each
method there exists a detailed paper (see below), so it is sufficient to provide a compact
formal reconstruction of these in a uniform style. Then, in Section 9, we summarise an
implemented system for peer to peer knowledge sharing that embodies many of these
ideas. The issues addressed are:

Dynamic ontology mapping (Section 3): necessary because we cannot rely solely on
a priori ontology mapping. Details in [8].

Coalition formation (Section 4): necessary because the semantics of an interaction is
sensitive to the choice of which peers participate in the interaction. Details in [46].

Maintaining interaction context (Section 5): necessary because interaction models
represent contracts between peers and the semantics of the interaction depends on
contextual information accompanying these contracts. Details in [47].

Making interactions less brittle (Section 6): necessary because peers are not as pre-
dictable or stable as subroutines in a programming languageso it is useful to have
mechanisms to avoid this or reduce its impact. Details in [23, 36].

Satisfying requirements on the interaction process(Section 7): necessary because on
the Internet languages for relating requirements (particularly business requirements)
to services are becoming established, so interaction models should connect to these
rather than compete with them. Details in [32].

4

Building interaction models more reliably (Section 8): necessary because the design
of interaction models is of similar engineering complexityto the design of pro-
grams, hence we need analogous robust mechanisms to reduce error in design. De-
tails in [42, 55].

The aim of this paper is to describe an alternative view of interaction between peers
that share knowledge. What a “peer” might be is understood differently in different
communities (in multi-agent systems a peer is an agent; in a semantic web a peer is
a program supplying a service) and is supported on differentinfrastructures (in multi-
agent systems via performative based message passing; in Web service architectures by
connecting to WSDL interfaces). Our specification languagethough computational, is
more compact than specification languages that have grown within those communities
and infrastructures but it can be related back to them, as we discuss in Section 10. We
have also applied our methods direclty in business modelling [33] and in e-Science
[5, 57].

2 Interaction Modelling

In this section we describe a basic language for modelling interactions. Our use of
this language in the current section will be for specification of interactions but in the
sections that follow it will be used for executing interactions. We do not claim that this
language, as it stands, is ideally suited to deployment in the current Web services arena
- on the contrary, we would expect it to be adapted to whateverspecification standards
emerge (the most stable currently being RDF and OWL, see Section 10) and linked to
appropriate forms of service invocation (for example, we have used WSDL). The aim of
this paper is to present the essentials of our interaction oriented method in as compact
a form as possible.

2.1 A Lightweight Coordination Calculus

Our aim in this section is to define a language that is as simpleas possible while also
being able to describe interactions like the one in our scenario of Section 1.1. It is built
upon a few simple principles:

– Interactions can be defined as a collection of (separate) definitions for the roles of
each peer in the interaction.

– To undertake their roles, peers follow a sequence of activities.
– The most primitive activity is to send or receive a message.
– Peers may change role (recursively) as an activity.
– Constraints may be defined on activities or role changes.

Figure 1 defines the syntax of the Lightweight Coordination Calculus (LCC). An
interaction model in LCC is a set of clauses, each of which defines how a role in the
interaction must be performed. Roles are described by the type of role and an identifier
for the individual peer undertaking that role. The definition of performance of a role
is constructed using combinations of the sequence operator(‘ then’) or choice operator

5

(‘or’) to connect messages and changes of role. Messages are either outgoing to another
peer in a given role (‘⇒’) or incoming from another peer in a given role (‘⇐’). Message
input/output or change of role can be governed by a constraint defined using the nor-
mal logical operators for conjunction, disjunction and negation. Notice that there is no
commitment to the system of logic through which constraintsare solved - so different
peers might operate different constraint solvers (including human intervention).

Model := {Clause, . . .}
Clause := Role :: Def

Role := a(Type, Id)
Def := Role |Message | Def then Def | Def or Def

Message := M ⇒ Role |M ⇒ Role← C |M ⇐ Role | C ←M ⇐ Role

C := Constant | P (Term, . . .) | ¬C | C ∧ C | C ∨ C

Type := Term

Id := Constant | V ariable

M := Term

Term := Constant | V ariable | P (Term, . . .)
Constant := lower case character sequence or number
V ariable := upper case character sequence or number

Fig. 1. LCC syntax

2.2 Return to Scenario

To demonstrate how LCC is used, we describe the three interaction models of our sce-
nario from Section 1.1. Figure 2 gives the first of these: a basic shopping service. This
contains two clauses: the first defining the interaction fromthe viewpoint of the buyer;
the second from the role of the shopkeeper. Only two roles areinvolved in this interac-
tion so it is easy to see the symmetry between messages sent byone peer and received
by the other. The interaction simply involves the buyer asking the shopkeeper if it has
the item,X , then the shopkeeper sending the price,P , then the buyer offering to buy at
that price and the shopkeeper confirming the sale.

The constraints in the interaction model of Figure 2 -need(X), shop(S), afford(X, P)
and in stock(X, P) - must be satisfied by the peers in the role to which the con-
straint is attached (for example the buyer must satisfy theafford constraint). We write
known(A, C) to denote that the peer with identifierA knows the axiomC. LCC is not
predicated on a specific constraint language (in fact we shall encounter two constraint
languages in this paper) but a common choice of constraint representation in program-
ming is Horn clauses, so we follow this conventional path. Bysupplying Horn clause
axioms in this way we can describe peer knowledge sufficient to complete the inter-
action model. For instance, if we have a buyer,b, and a shopkeeper,s, that know the
following:

6

a(buyer,B) ::
ask(X) ⇒ a(shopkeeper,S)← need(X) and shop(S) then

price(X,P) ⇐ a(shopkeeper,S) then

buy(X, P) ⇒ a(shopkeeper,S)← afford(X, P) then

sold(X, P) ⇐ a(shopkeeper,S)

a(shopkeeper,S) ::
ask(X) ⇐ a(buyer,B) then

price(X,P) ⇒ a(buyer,B)← in stock(X, P) then

buy(X, P) ⇐ a(buyer,B) then

sold(X, P) ⇒ a(buyer,B)

Fig. 2. Shop interaction model

known(b, need(canonS500))
known(b, shop(s))
known(b, afford(canonS500, P)← P ≤ 250)
known(s, in stock(canonS500, 249))

then the sequence of messages in Table 1 satisfies the interaction model.

Recipient Message Sender
a(shopkeeper,s) ask(canonS500) a(buyer,b))

a(buyer,b) price(canonS500,249) a(shopkeeper,s))
a(shopkeeper,s) buy(canonS500,249) a(buyer,b))

a(buyer,b) sold(canonS500,249) a(shopkeeper,s))

Table 1.Message sequence satisfying interaction model of Figure 2

Figure 3 gives the second scenario in which a peer,S, seeking a vendor for an item,
X , sends a message to an auctioneer,A, stating thatS requiresX and wants the auction
for it to start at purchase valueI and stop if the purchase value exceeds maximum value
M with the bid value increasing in increments ofI. On receiving this requirement the
auctioneer assumes the role of a caller for bids from the set of vendors,V s, that it
recognises and, if the call results in a bid to sell the item atsome price,P , then the
auctioneer offers that price to the seeker who clinches the deal with the vendor and gets
its agreement - otherwise the auctioneer signals that no offer was obtained. The role of
caller (assumed by the auctioneer) involves two recursions. The first recursion is over
the value set by the seeker: the caller starts with the initial value,L, and changes role
to a notifier for the vendor peers inV s that they have a potential sale of an item of type
X at valueL. If a vendor,V , is obtained by the notifier then the offered price,P , is set
to L; if not the price is incremented by the given amount,I, and the role recurses. The

7

second recursion is within the notifier which tells each vendor, V , in V s that itemX

is needed at current offer price,C; then receives a message fromV either offering to
supply or declining.

a(seeker,S) ::
require(X, L, M, I) ⇒ a(auctioneer,A)← need(X,L, M, I) and auction house(A) then
0

@

offer(V, X, P) ⇐ a(auctioneer,A) then

clinch(X, P) ⇒ a(vendor, V) then

agreed(X,P) ⇐ a(vendor, V)

1

A or

no offer(X) ⇐ a(auctioneer, A)

a(auctioneer,A) ::
require(X, L, M, I) ⇐ a(seeker,S) then

a(caller(V s, X, L, M, I, V, P),A)← vendors(V s) then
„

offer(V, X, P) ⇒ a(seeker,S)← not(P = failed) or

no offer(X) ⇒ a(seeker,S)← P = failed

«

a(caller(V s, X, L, M, I, V, P), A) ::
a(notifier(V s, X, L, Ps),A) then
0

@

null ← s(V) ∈ Ps and P = L or

null ← L > M and P = failed or

a(caller(V s, X, Ln, M, I, V, P), A)← not(s(V) ∈ Ps) and Ln = L + I and Ln ≤ M

1

A

a(notifier(V s, X, C, Ps),A) ::
0

B

B

@

need(X, C) ⇒ a(vendor, V)← V s = [V |V r] then
„

Ps = [s(V)|Pr]← supply(X,C) ⇐ a(vendor, V) or

Ps = Pr ← decline(X, C) ⇐ a(vendor, V)

«

then

a(notifier(V r, X, C, Pr),A)

1

C

C

A

or

null ← V s = [] and Ps = []

a(vendor, V) ::
0

B

B

@

need(X, C) ⇐ a(notifier(V s, X, C, Ps),A) then
„

supply(X,C) ⇒ a(notifier(V s, X, C, Ps), A)← sell(X,C) or

decline(X, C) ⇒ a(notifier(V s, X, C, Ps),A)← not(sell(X, C))

«

then

a(vendor, V)

1

C

C

A

or

(clinch(X, P) ⇐ a(seeker,S) then

agreed(X,P) ⇒ a(seeker,S))

Fig. 3. Auction interaction model

Now in order to satisfy the interaction model we define the following example
knowledge possessed by seeker,b, auctioneer,a, and two vendors,v1 andv2:

8

known(b, need(canonS500, 100, 200, 10))
known(b, auction house(a))
known(a, vendors([v1, v2]))
known(v1, sell(canonS500, 110))
known(v2, sell(canonS500, 170))

and then the sequence of messages in Table 2 satisfies the interaction model.

Recipient Message Sender
a(auctioneer, a) require(canonS500, 100, 200, 10) a(seeker, b)
a(vendor, v1) need(canonS500, 100) a(notifier([v1, v2], canonS500, 100, P s1), a)

a(notifier([v1, v2], canonS500, 100, P s1), a) decline(canonS500, 100) a(vendor, v1)
a(vendor, v2) need(canonS500, 100) a(notifier([v2], canonS500, 100, P s1), a)

a(notifier([v2], canonS500, 100, P s1), a) decline(canonS500, 100) a(vendor, v2))
a(vendor, v1) need(canonS500, 110) a(notifier([v1, v2], canonS500, 110, P s2), a)

a(notifier([v1, v2], canonS500, 110, P s2), a) supply(canonS500, 110) a(vendor, v1)
a(vendor, v2) need(canonS500, 110) a(notifier([v2], canonS500, 110, P s3), a)

a(notifier([v2], canonS500, 110, P s3), a) decline(canonS500, 110) a(vendor, v2)
a(seeker, b) offer(v1, canonS500, 110) a(auctioneer, a)

a(vendor, v1) clinch(canonS500, 110) a(seeker, b)
a(seeker, b) agreed(canonS500, 110) a(vendor, v1)

Table 2.Message sequence satisfying interaction model of Figure 3

Figure 4 gives the third scenario in which a peer that wants tobe a customer of a
manufacturer asks to buy an item of typeX from the manufacturer, then enters into a
negotiation with the manufacturer about the attributes required to configure the item to
the customer’s requirements. The negotiation is simply a recursive dialogue between
manufacturer and customer with, for each attribute (A) in the set of attributes (As), the
manufacturer offering the available attribute and the customer accepting it. When all
the attributes have been accepted in this way, there is a finalinterchange committing the
customer to the accepted attribute set,Aa, for X .

In order to satisfy this interaction model we define the following example of knowl-
edge possessed by customer,b, and manufacturer,m:

known(b, need(canonS500))
known(b, sells(canonS500, m))
known(b, acceptable(memory(M))←M ≥ 32)
known(b, acceptable(price(M, P))← P ≤ 250)
known(m, attributes(canonS500, [memory(M), price(M, P)]))
known(m, available(memory(32)))
known(m, available(memory(64)))
known(m, available(memory(128)))
known(m, available(price(M, P))← P = 180 + M)

9

a(customer,C) ::
ask(buy(X)) ⇒ a(manufacturer,M)← need(X) and sells(X,M) then

a(n cus(X, M, []), C)

a(n cus(X, M, Aa), C) ::
0

@

offer(A) ⇐ a(n man(X, C,), M) then

accept(A) ⇒ a(n man(X,C,), M)← acceptable(A) then

a(n cus(X, M, [att(A)|Aa]), C)

1

A or

0

@

ask(commit) ⇐ a(n man(X, C,), M) then

tell(commit(Aa)) ⇒ a(n man(X, C,), M) then

tell(sold(Aa)) ⇐ a(n man(X,C,), M)

1

A

a(manufacturer,M) ::
ask(buy(X)) ⇐ a(customer,C) then

a(n man(X, C, As),M)← attributes(X,As)

a(n man(X, C, As),M) ::
0

@

offer(A) ⇒ a(n cus(X, M,), C)← As = [A|T] and available(A) then

accept(A) ⇐ a(n cus(X, M,), C) then

a(n man(X, C, T),M)

1

A or

0

@

ask(commit) ⇒ a(n cus(X, M,), C)← As = [] then

tell(commit(As)) ⇐ a(n cus(X, M,), C) then

tell(sold(As)) ⇒ a(n cus(X, M,), C)

1

A

Fig. 4.Manufacturer interaction model

10

and then the sequence of messages in Table 3 satisfies the interaction model.

Recipient Message Sender
a(manufacturer,m) ask(buy(canonS500)) a(customer, b)

a(n cus(canonS500, m,Aa1), b) offer(memory(32)) a(n man(canonS500, b,

»

memory(32),
price(32, P)

–

), m)

a(n man(canonS500, b, As1), m) accept(memory(32)) a(n cus(canonS500, m, []), b)
a(n cus(canonS500, m,Aa2), b) offer(price(32, 212)) a(n man(canonS500, b, [price(32, 212)]), m)
a(n man(canonS500, b, As2), m) accept(price(32, 212)) a(n cus(canonS500, m, [att(memory(32))]), b)
a(n cus(canonS500, m,Aa3), b) ask(commit) a(n man(canonS500, b, []), m)

a(n man(canonS500, b, As3), m) tell(commit(

»

att(price(32, 212)),
att(memory(32))

–

)) a(n cus(canonS500, m,

»

att(price(32, 212)),
att(memory(32))

–

), b)

Table 3.Message sequence satisfying interaction model of Figure 4

Note the duality in our understanding of the interaction models we have described
in this section. The interaction models of figures 2, 3 and 4 are programs because they
use the data structures and recursive computation of traditional (logic) programming
languages. They also are distributed process descriptionsbecause their purpose is to
constrain the sequences of messages passed between peers and the clauses of interaction
models constrain processes on (possibly) different physical machines.

2.3 Executing Interaction Models

LCC is a specification language but it is also executable and,as is normal for declarative
languages, it admits many different models of computation.Our choice of computation
method, however, has important engineering implications.To demonstrate this, consider
the following three computation methods:

Interaction model run on a single peer : With this method there is no distribution of
the model to peers. Instead, the model is run on a single peer (acting as a server).
This is the style of execution often used with, for example, executable business
process modelling languages such as BPEL4WS. It is not peer to peer because
it is rigidly centralised but we have used LCC in this way to coordinate systems
composed from traditional Web services offering only WSDL interfaces ([57]).

Interaction model clauses distributed across peers: Each clause in an LCC interac-
tion model is independent of the others so as peers assume different roles in an
interaction they can choose the appropriate clause from themodel and run with
it. Synchronisation is through message passing only, so clauses can be chosen and
used by peers independently as long as there is a mechanism for knowing from
which interaction model each clause has been derived. This is a peer to peer so-
lution because all peers have the same clause interpretation abilities. It allows the
interaction model to be distributed across peers but, sinceit is distributed by clause,
it is not always possible to reconstruct the global state of the interaction model (as

11

we can when confined to a single peer), since this would mean synchronising the
union of its distributed clauses. Reconstructing the global state is not necessary for
many applications but, where it is, there is another peer to peer option.

Interaction model transported with messages: In this style of deployment we dis-
tribute the interaction model clauses as above but each peerthat receives a message
containing an interaction model, having selected and used an appropriate clause,
replaces it with the interaction model and transmits it withthe message to the next
peer in the interaction. This keeps the current state of the interaction together but
assumes a linear style of interaction in which exactly one message is in transit at
any instant - in other words the interaction consists of a chain of messages totally
ordered over time. Many common service interactions are of this form, or can be
constructed from chains of this form.

In the remainder of this paper we shall adopt the linear modelof computation in
which global state is transmitted with messages, because this is simpler to discuss.
Many of the concepts we introduce also apply to non-linear interactions without global
state.

Figure 5 describes informally the main components of interaction between peers.
Later, Figure 6 gives a precise definition, using a linear computation model, that is con-
sistent with the informal description. Ellipses in Figure 5are processes; rectangles are
data; and arcs denote the main inputs and outputs of processes. The large circle in the
diagram encloses the components effecting local state of the peer with respect to the
interaction, which interacts with the internal state of thepeer via constraints specified
in the interaction model. The only means of peer communication is by message pass-
ing and we assume a mechanism (specific to the message passinginfrastructure) for
decoding from any message appropriate information describing the interaction model
associated with that message (see Section 2.4 for an exampleof this sort of mecha-
nism). To know its obligations within the interaction the peer must identify the role it
is to perform and (by choosing the appropriate clause) find the current model for that
role. It then must attempt to discharge any obligations set by that model, which it does
by identifying those constraints the model places at the current time and, if possible,
satisfying them. In the process it may accept messages sent to it by other peers and send
messages out to peers. Each message sent out must be routed toan appropriate peer,
and the choice of recipient peer may be determined by the sender directly (if our infras-
tructure requires strictly point to point communication between peers) or entrusted to a
message router (if a routing infrastructure such as JXTA is used).

The overview of Figure 5 is high level, so it makes no commitment to how messages
are structured or how the obligations of interactions are discharged. To make these
commitments we must be more specific about computation, which is the topic of our
next section.

2.4 A Basic, Linear Computation Method For Interaction Models

To be precise in our analysis of the interaction between peers we introduce, in Fig-
ure 6, a formal definition of the linear computation introduced in the previous section.

12

Discharge
current obligations

of role

Constraints

Route messageReceive message

Model of current role

Select role

Interaction model

Internal process
controlled by peer

interaction
model

Encode

interaction
Decode

model

Messages
to peersfrom peers

Messages

Fig. 5. Conceptual model of local state change of a peer

Although this assumes a shared interaction model (transmitted via messages), each tran-
sition is performed by a specific peer using only the part of the interaction visible to that
peer. A sequence of transitions is initiated by a single peerwith some goal to achieve
and the sequence terminates successfully only when that peer can infer from its local
knowledge of the interaction that it has obtained that goal.

Expressions 1 and 2 in Figure 6 generate transition sequences. Expression 3 in Fig-
ure 6 describes the general form of any such sequence. Following through expression 3
for a peerp1 attempting to establish goalGp1, it begins with the selection byp1 of an

interaction model (Ω
p1

∋ S1); then selection of the local state pertaining top1 from the

shared model (S1

s

⊇ Sp1); then a transition of the local state forp1 according to the

model (Sp1

M1,S1,M2
−−−−−−→ S′p1); then merging of the ensuing local state with the shared

state to produce a new shared interaction state (S′p1

s
∪ S1 = S2); then repeating the

transitions until reaching a final state in which the required goal can be derived using
p1’s local knowledge (kp1(Sf) ⊢ Gp1).

Having defined, in Figure 6, a formal model of interaction, wedescribe in Sec-
tions 2.5 to 2.8 how this connects to the LCC language that we introduces in Section 2.1.
The operations that our language must support in order to conform to Figure 6 are given
as part of each section heading.

13

σ(p,Gp) ↔ Ω
p

∋ S ∧ i(S , φ,Sf) ∧ kp(Sf) ⊢ Gp (1)

i(S , Mi,Sf) ↔ S = Sf ∨

0

B

B

B

@

S
s

⊇ Sp ∧

Sp
Mi,S,Mn
−−−−−−→ S ′

p ∧

S ′
p

s
∪ S = S ′ ∧

i(S ′, Mn,Sf)

1

C

C

C

A

(2)

where:

– p is a unique identifier for a peer.
– Gp is a goal that peerP wants to achieve.
– S , is a state of interaction which contains the interaction model used to coordinate peers; the

knowledge shared by peers participating in the interaction; and a description of their current
progress in pursuing the interaction.Ω is the set of all the available initial interaction states.

Ω
p

∋ S selects an initial interaction state,S , for peerP from Ω.
– M is the current set of messages sent by peers. The empty set of messages isφ.
– σ(P, Gp) is true when goalGp is attained by peerP .
– i(S ,M1,Sf) is true when a sequence of interactions allows stateSf to be derived fromS

given an initial set of messagesM1.
– kp(S) is a function giving the knowledge visible to peerP contained in stateS .

– S
s

⊇ Sp selects the state,Sp, pertaining specifically to peerP from the interaction stateS .

– Sp
Mi,S,Mn
−−−−−−→ S ′

p is a transition of the state of peerP to a new state,S ′
p, given the current

set of inter-peer messages,Mi, and producing the new set of messagesMn.

– Sp

s
∪ S is a function that merges the state,Sp, specific to peerP with interaction stateS

(replacing any earlier interaction state for peerP).

Every successful, terminating interaction satisfyingσ(p1, Gp1) can then be described by the
following sequence of relations (obtained by expanding the’ i’ relation within expression 1 using
expression 2):

Ω
p1
∋ S1

s

⊇ Sp1
M1,S1,M2−−−−−−−→ S ′

p1

s
∪ S1 = S2

s

⊇ Sp2
M2,S2,M3−−−−−−−→ S ′

p2

s
∪ S2 = S3 . . . kp1(Sf) ⊢ Gp1

(3)

Fig. 6.Formal model of linearised peer interaction

14

2.5 Initial Interaction State: Ω
p

∋ S

For a peer,p, to initiate an interaction it must select an appropriate initial state,S, from
the set of possible such initial states,Ω. In Section 2.1 we have given a way to describe
S, based on interaction models. This, however, allows infinitely many possible elements
of Ω to be constructed in theory (through manual coding, synthesis, etc. In practise,
these interaction models are (like traditional programs) built or borrowed for specific
tasks of use top, so Ω might come from a local library. In an open system, where
knowing of the existence of helpful interaction models is anissue, then the contents of
Ω may not fully be known top and mechanisms of discovery are required, as we discuss
in Section 4. Automated synthesis of some elements ofΩ is discussed in Section 6.

Given some way of (partially) populatingΩ, there remains the issue forp of choos-
ing which initial state to use. This is determined by some choice made byp based on
the interaction model,Pg, and shared knowledge,K, components of the initial states
(recall that in LCC the initial state is a term of the formm(φ,Pg, K)). We denote
this choice asc(p,Pg, K) in the expression below but do not define the mechanism by
which that choice is made, since it varies according to application - anything from a
fully automated choice to a decision made by a human operator.

Ω
p

∋ S ↔ S ∈ Ω ∧ S = m(φ,Pg, K) ∧ c(p,Pg, K) (4)

2.6 State Selection by a peer:S
s

⊇ Sp

Given that in LCC the state of interaction always is expressed as a term of the form
m(Ps,Pg, K), the selection of the current state for a peer,p, simply requires the selec-
tion of the appropriate clause,a(R, p) :: D, defining (inD) the interaction stare forp
when performing roleR.

S
s

⊇ Sp ↔ ∃R, D.(Sp ∈ S ∧ Sp = a(R, p) :: D) (5)

2.7 State Transition by a peer:Sp

Mi,S,Mn

−−−−−−→ S′

p

Recall that, from Section 2.6 we can know the state of a specific role in the interaction
by selecting the appropriate clause. This clause gives usSp and we now explain how to
advance the state associated with this role to the new version of that clause,S ′p, given
an input message set,Mi, and producing a new message set,Mn, which contains those
messages fromMi that have not been processed plus additional messages addedby the
state transition. Since we shall need a sequence of transitions to the clause forSp we
useCi to denote the start of that sequence andCj the end. The rewrite rules of Figure 7
are applied to give the transition sequence of expression 6.

15

Ci
Mi,S,Mn
−−−−−−→ Cj ↔ ∃R, D.(Ci = a(R, p) :: D) ∧













Ci

Ri,Mi,Mi+1,S,Oi

−−−−−−−−−−−→ Ci+1 ∧

Ci+1

Ri,Mi+1,Mi+2,S,Oi+1

−−−−−−−−−−−−−−→ Ci+2 ∧
. . .

Cj−1

Ri,Mj−1,Mj ,S,Oj

−−−−−−−−−−−−→ Cj













∧

Mn = Mj ∪Oj

(6)

R :: B
Ri,Mi,Mo,S,O
−−−−−−−−−−→ A :: E if B

R,Mi,Mo,S,O
−−−−−−−−−→ E

A1 or A2
Ri,Mi,Mo,S,O
−−−−−−−−−−→ E if ¬closed(A2) ∧

A1
Ri,Mi,Mo,S,O
−−−−−−−−−−→ E

A1 or A2
Ri,Mi,Mo,S,O
−−−−−−−−−−→ E if ¬closed(A1) ∧

A2
Ri,Mi,Mo,S,O
−−−−−−−−−−→ E

A1 then A2
Ri,Mi,Mo,S,O
−−−−−−−−−−→ E then A2 if A1

Ri,Mi,Mo,S,O
−−−−−−−−−−→ E

A1 then A2
Ri,Mi,Mo,S,O
−−−−−−−−−−→ A1 then E if closed(A1) ∧

A2
Ri,Mi,Mo,S,O
−−−−−−−−−−→ E

C ← M ⇐ A
Ri,Mi,Mi−{m(Ri,M ⇐ A)},S,∅
−−−−−−−−−−−−−−−−−−−−−→ c(M ⇐ A) if m(Ri, M ⇐ A) ∈Mi ∧

satisfy(C)

M ⇒ A ← C
Ri,Mi,Mo,S,{m(Ri,M ⇒ A)}
−−−−−−−−−−−−−−−−−−−→ c(M ⇒ A) if satisfied(S , C)

null ← C
Ri,Mi,Mo,S,∅
−−−−−−−−−→ c(null) if satisfied(S , C)

a(R, I) ← C
Ri,Mi,Mo,S,∅
−−−−−−−−−→ a(R, I) :: B if clause(S , a(R, I) :: B) ∧

satisfied(S ,C)

An interaction model term is decided to be closed as follows:

closed(c(X))
closed(A then B) ← closed(A) ∧ closed(B)
closed(X :: D) ← closed(D)

(7)

satisfied(S ,C) is true if constraintC is satisfiable given the peer’s current state of knowledge.
clause(S ,X) is true if clauseX appears in the interaction modelS , as defined in Figure 1.

Fig. 7. Rewrite rules for expansion of an interaction model clause

2.8 Merging Interaction State:Sp

s
∪ S = S′

The interaction state,S, is a term of the formm(Ps,Pg, K) and the state relevant to an
individual peer,Sp, always is a LCC clause of the forma(R, p) :: D. MergingSp with
S therefore is done simply by replacing inS the (now obsolete) clause in whichp plays
roleR with its extended versionSp.

16

(a(R, p) :: D)
s
∪ S = (S

s
− {a(R, p) :: D′)}) ∪ {a(R, p) :: D)} (8)

2.9 Interaction-Specific Knowledge:kp(S) ⊢ Gp

Shared knowledge in LCC is maintained in the set of axioms,K, in the interaction state
m(Ps,Pg, K) so a peer’s goal,Gp, can be satisfied if it is satisfiable fromK or through
the peer’s own internal satisfiability mechanisms. This corresponds to thesatisfied

relation introduced with the rewrite rules of Figure 7.

kp(S) ⊢ Gp ↔ satisfied(S, Gp) (9)

This completes our operational specification for LCC combined with the style of
linear deployment given in Figure 6. In an ideal world (in which all peers were aware
of each other; conformed to the same ontology and cooperatedperfectly to obtain de-
sired interactions) we would now simply deploy this system by implementing it for
an appropriate message passing infrastructure. The Internet, however, presents many
obstacles to so doing. In the remainder of this paper we consider how some of these
obstacles may be overcome. An important point throughout isthat, by anchoring our
solutions in a peer to peer architecture with a strong notionof modelling of interaction,
it is technically possible to tackle these obstacles using well known methods that do not
necessarily require huge investments up-front from the Webcommunity.

3 Dynamic Ontology Matching

We defined, in Section 2.4, a mechanism by which a peer may makea state transition,

Sp
Mi,S,Mn
−−−−−−→ S′p but we assumed when doing this that the terminology used in the

message set,Mi, is consistent with the terminology actually used by the host peer,p. In
an open system (where there is no restriction on the terminology used by each peer) this
need not be true. When a message is created concepts in the sender’s representation of
the domain are mapped to the terms that compose the message, conforming to the syntax
of that language. Then the receiver must map the terms in the message to the concepts in
its own representation, helped by the syntax rules that structure the message. If the terms
are mapped to equivalent concepts by the sender and by the receiver peers, then the
understanding is correct. A misunderstanding happens if a term is mapped to different
concepts by the sender and the receiver, while the interaction may fail spuriously if the
receiver does not succeed in mapping a term that should correspond.

To avoid such misunderstandings we have two means of control: adapt the peer’s
state,Sp or map between terms inSp andMi. Mappings are normally viewed as a more
modular form of control because they allow the ontological alignment of interaction to
remain distinct from whatever inference is performed locally by a peer. Indeed, much
of traditional ontology mapping is supposed to be done on ontology representations
independent of interactions and prior to those ontologies being used [19, 28]. The prob-
lem with thisa priori approach is that mapping cannot be determined separately from
interaction state unless it is possible to predict all the states of all the peers in all po-
tential interactions. This is demonstrated by examining our example interaction models

17

in Figures 2 to 4, all of which contain constraints that an appropriate peer must satisfy
in order to change its state in the interaction. For example,the peer adopting the buyer
role in Figure 2 must satisfy the constraintneed(X) and shop(S) in order to send the
first message,ask(X) to shopkeeperS. The identity ofX is determined by the current
state of the buyer but the ontology used has to match that of the shopkeeper. We can
only judge whether a mapping of terms was needed forX if we know the buyer’s and
seller’s constraint solving choices, which normally are part of the private, internal state
of each peer. Therefore, we cannot expect reliable ontological mapping in open systems
(in which peer state is not known and interaction models are not fixed) without some
form of dynamic mapping to keep ontology alignment on track in situations that were
not predicted prior to interaction.

It is straightforward to insert an ontology mapping step into our conceptual model
of interaction from Section 2.4 by adapting expressions 1 and 2 to give expressions 10
and 11 respectively. Expression 10 is obtained by defining interaction models in the
setΩ with an accompanying set,O, of ontological constraints (which may be empty).
These constraints are carried along withS into the interaction, producing as a conse-
quence some final set of constraints,Of . Expression 11 applies state transitions for
each peer,Sp, but requires that a mapping relation,map(Mi, Oi,Sp, M

′
i , On), applies

between the current message set,Mi, and the message set,M ′
i , used in applying the

appropriate state transition. This mapping can adapt the ontological constraints from
the current set,Oi, to the new set,On.

σ(p, Gp) ↔ Ω
p
∋ 〈S, O〉 ∧ i(S, φ, O,Sf , Of) ∧ kp(Sf) ⊢ Gp (10)

i(S, Mi, Oi,Sf , Of) ↔ S = Sf ∨

















S
s

⊇ Sp ∧
map(Mi, Oi,Sp, M

′
i , On) ∧

Sp

M ′

i ,S,Mn

−−−−−−→ S′p ∧

S′p
s
∪ S = S′ ∧

i(S′, Mn, On,Sf , Of)

















(11)

The purpose of themap relation is to define a set of axioms that enable the on-
tology used in the messages,Mi, to connect to the ontology used inSp. For exam-
ple, in Section 2.2 the shopkeeper,s, using the interaction model of Figure 2 must
receive from the buyer,b, a message of the formask(X). Suppose that the message
actually sent byb was in factrequire(canonS500) becauseb used a different ontol-
ogy. We then want themap relation at to add information sufficient forS to conclude
require(canonS500) → ask(canonS500). Although this might seem an elementary
example it introduces a number of key points:

– There is no need, as far as a specific interaction is concerned, to provide a mapping
any more general than for a specific object. We do not care whetherrequire(X)→
ask(X) holds for any object other thancanonS500 or for any peer other thans be-
cause only that object matters for this part of the interaction. This form of mapping

18

will therefore tend, on each occasion, to be much more specific than generalised
mappings between ontologies.

– We would not want to insist thats accept a general∀X.require(X) → ask(X)
axiom because, in general, we don’t necessarily ask for all the things we require
(nor, incidentally, do we always require the things we ask about).

– The word “require” is used in many different ways in English depending on the
interaction. For instance a message of the formrequire(faster service) places
a very different meaning (one that is not anticipated by our example interaction
model) onrequire than our earlier requirement for a specific type of camera. We
could attempt to accommodate such distinctions in a genericontology mapping but
this would require intricate forms of engineering (and social consensus) to produce
“the correct” disambiguation. Wordnet defines seven sensesof the word “ask” and
four senses of the word “require” so we we would need to consider at least all the
combinations of these senses in order to ensure disambiguation when the words
interact; then follow these through into the ontological definitions. To address just
one of these combinations we would have to extend the mappingdefinitions to
have at least two different classes ofrequire, each applying to different classes
of object - one a form of merchandise; the other a from of functional requirement
- then we would need to specify (disjoint) classes of merchandise and functional
requirements. This becomes prohibitively expense when we have to, simultane-
ously, consider all the other word-sense combinations and we can never exclude
the possibility that someone invents a valid form of interaction that breaches our
“consensus”.

The above are reasons why the strong notion of global sets of pre-defined ontology
mappings do not appear attractive for open peer to peer systems, except in limited cases
where there is a stable consensus on ontology (for example when we are federating a
collection of well known databases using database schema).What, then, is the least that
our interaction models require?

Returning to our example, we want themap relation when applied by seller,s,
interacting with buyer,b, as follows:

map({m(a(shopkeeper, s), require(canonS500) ⇐ a(buyer, b))},
{},
a(shopkeeper, s) ::

ask(X) ⇐ a(buyer, B) then

price(X, P) ⇒ a(buyer, B)← in stock(X, P) then

buy(X, P) ⇐ a(buyer, B) then

sold(X, P) ⇒ a(buyer, B)
M ′

i ,

On)

to give the bindings:

M ′
i = {m(a(shopkeeper, s), ask(canonS500) ⇐ a(buyer, b))}

On = {require(canonS500)@a(buyer, b)→ ask(canonS500)@a(shopkeeper, s)}

19

where the expressionT@A denotes that propositionT is true for the peerA. Ob-
taining this result needs at least three steps of reasoning:

Detection of mapping need: It is necessary to identify in the LCC clause describing
the current state of the seller,s, the transition step for which mapping may imme-
diately be required. In the example above this is the first step in enactment of the
seller role, since no part of the clause has been closed. Targets formapping are
then any terms in this step which do not have matching terms inthe message set.
The mapping need in the example is thus forask(X).

Hypothesis of mappings : Knowing where mappings are immediately needed, the is-
sue then is whether plausible mappings may be hypothesised.In our example (since
there is only one message available to theseller) we need to decide whether
require(canonS500) should map toask(X). There is no unique, optimal algo-
rithm for this; we present an evidence-based approach belowbut other methods
(such as statistical methods) are possible.

Description of mappings : Mappings may, in general, be in different forms. For in-
stance, two terms (T1 andT2) may map via equivalence (T1 ↔ T2 or subsumption
(T1 → T2 or T1 ← T2.) This becomes a complex issue when attempting to map
two ontologies exhaustively and definitively but for the purposes of a single in-
teraction we are content with the simplest mapping that allows the interaction to
continue. The simplest hypothesis is that the term in the message received allows
us to imply the term we need - in our running examplerequire(canonS500) →
ask(canonS500).

The most difficult step of the three above is hypothesising a mapping. For this we
need background information upon which to judge the plausibility of our hypothesis.
Several sources of such information commonly are available:

Standard word usage : We could use a reference such as Wordnet to detect similar
words (such asrequire andask in our example). A similarity detected via Wordnet
would raise our confidence in a mapping.

Past experience: If we have interactions that have been successful in the past using
particular sets of mappings we may be inclined to use these again (more on this
subject in Section 4). In this way earlier successes raise our confidence in a mapping
while failures reduce it.

Type hierarchies for peers and interactions : Any message passing event involves
three elements: the peer sending the message; the peer receiving it and the inter-
action model in which they are involved. Any or all of these elements may possess
ontological information influencing a mapping hypothesis.A mapping might be
implied by one or more of the ontologies, raising our confidence in it, or it might
be inconsistent with the ontologies, lowering our confidence.

Human operators : In some circumstances it may be necessary for a human to de-
cide whether a hypothesised mapping is valid. This choice might be informed by
evidence from any or all of the sources above.

Notice that all of the sources of evidence above are unreliable: standard word usage
doesn’t always cover a specific circumstance; past experience may no longer apply; type

20

hierarchies aren’t necessarily complete or compatible between peers; human operators
make errors. Our method does not depend on the usefulness of any of these methods,
however. One can program interactions without ontologicalmapping but those interac-
tions then will need perfect matches between terms (like normal programs). Ontological
mapping permits more terms to match during interaction and the major programming
concern is whether this “looseness” can be controlled in appropriate programming set-
tings. Some settings require no looseness - only a perfect match will do. Other set-
tings, in which we know in advance the ontologies used in an application but do not
know which peers will be involved, allow us to define a sufficient set of mappings (O
in expression 10) along with the initial interaction model.More open settings require
the mapping relation (map in expression 11) to hypothesise mappings that extend the
ontological “safe envelope” maintained around the interaction (relatingOi to On in
expression 11).

4 Coalition Formation

Interaction states change via the state changes of individual peers - giving theSpN

sequence in expression 3 of Figure 6. Crucial to the success of the interaction is the
choice ofpN at each step. For interactions involving finite numbers of peers for which
the identity is known in advance there is no coalition formation problem: the LCC in-
teraction model simply is executed with the given peers. Notice that the examples of
Figures 2, 3 and 4 are like this - we were careful to define constraints that required the
peers contacting others to determine precisely which thoseare (for example in Figure 2
theshop(S) constraint determines which shop is contacted). It is more common, how-
ever, for the choice of individual peers not to be prescribedby the interaction model
- for example in the interaction model of Figure 2 what happens if the buyer doesn’t
know which shop might be appropriate? In open systems, a peeris often unaware of the
existence and capabilities of other peers in its world. Whenone peer must collaborate
with another to achieve some goal, a mechanism must exist to enable the discovery of
other peers and their abilities.

This problem is well known, an early instance appearing in the Contract Net sys-
tem [51]. It remains a crucial issue in the deployment of agent-like systems [15, 30, 59],
and is resurfacing as a fundamental problem in newer endeavours like the Semantic
Web and Grid computing, a recent example being the Web Services Choreography Def-
inition Language (WSCDL) [29]. The most popular response to this problem has been
to focus on specialised agents, often called “middle agents” [15, 30] or “matchmak-
ers”. The first multi-agent systems to offer explicit matchmakers wereABSI, COINS,
andSHADE. These set the mould for the majority of subsequent work on matchmak-
ing, by defining two common features: matching based on similarity measures between
atomic client requests and advertised provider services; and a consideration of purely
two-party interaction.OWL-S [35] and many other matchmaking architectures presume
a universe where a client wishes to fulfil some goal that can beachieved by a single
service provider (which may interact with other services atits own discretion). Finding
collaborators for multi-party web-service interactions is discussed in [62]. Our use of

21

performance histories is predated by a similar approach found in [63], although that
only examines the case of two-party interactions.

Our aim in this section is to show how the interaction models used in LCC support
matchmaking based on data from previous interactions. Suppose that in our running
example we decide to automate the purchase of a list of products. We define a LCC
interaction model consisting of expressions 12 and 13 belowplus the original clauses
from Figures 2, 3 and 4.

a(purchaser(L), A) :: (a(buy item(X), A)← L = [H |T] then a(purchaser(T), A)) or

null← L = []
(12)

a(buy item(X), A) :: (a(buyer(X), A) or a(seeker(X), A) or a(customer(X), A))
(13)

Let us further suppose that the constraints used to identifythe vendors in each of
the original interaction models (shop(S) in Figure 2,auction house(A) in Figure 3
andsells(X, M) in Figure 4) are removed. If we now wish to buy three differenttypes
of camera by performing the role of
a(purchaser([canonS500, olympusE300, canonEOS1]), b) then we have three pur-
chases to make and it will be necessary, when performing the role of buyer for each
item, to choose one of the three available forms of buying model with appropriate
choices of vendors. For example, we might satisfy our interaction model with the se-
quence of roles given below:

a(purchaser([canonS500, olympusE300, canonEOS1]), b)
a(buy item(canonS500), b)
a(buyer(canonS500), b))
Message sequence given in Table 1 when interacting witha(shopkeeper, s)
a(purchaser([olympusE300, canonEOS1]), b)
a(buy item(olympusE300), b)
a(seeker(olympusE300), b))
Message sequence given in Table 2 when interacting witha(auctioneer, a)
a(purchaser([canonEOS1]), b)
a(buy item(canonEOS1), b)
a(customer(canonEOS1), b))
Message sequence given in Table 3 when interacting witha(manufacturer, m)
a(purchaser([]), b)

in which case our interaction will have involved the set of peers{b, s, a, m}, but the
sequence above is only one of many sequences we might have chosen for this set of
peers. We might have chosen different roles (e.g.by buying thecanonS500 at auction
rather than at a shop) or different peers for the same roles (e.g.maybe peerm could
take the role of a shopkeeper as well as or instead of its role as a manufacturer). We
might have chosen to interact with only one peer in the same role each time (e.g.by
shopping for all the cameras with peers). The best choices of roles and peers are likely

22

to depend on factors not expressed in the interaction model -for example, peera might
be unreliable; or peers might give better service to some using it more frequently; or
peerss andm may conspire (through separate communication channels) not to supply
the same sources.

The task of a matchmaker is, by tackling problems like those above, to make the
right choices of peer identifiers and roles as an interactionmodel unfolds over time.
Given that the things that make or break an interaction oftenare task/domain specific in
ways that cannot be analysed in detail, matchmaking algorithms may have to rely a great
deal on empirical data describing successes or failures of previous interactions. This is
analogous to the situation on the conventional Worldwide Web, where mass browsing
behaviours continually influence the ranking of pages. Imagine, instead, that we want
to rank choices of peers to involve in appropriate roles at a given stage of an interaction
model’s execution. Figure 8 defines a basic matchmaker capable of performing this
task. A more extensive discussion (and more sophisticated matchmaking based on this
principle) appears in [31].

The matchmaker of Figure 8 is an extension of the clause expansion rewrite rules
of Figure 7. To each rewrite rule is added a parameter,∆, that contains the set of
peers that have been involved in closed parts of the clause, prior to the rewrite cur-
rently being applied (the predicateclosed of arity 2 collects the appropriate peers, fol-
lowing the closed part of a clause similarly toclosed of arity 1 which we defined in
Figure 7). The set,∆, is needed in the seventh rewrite rule which deals with send-
ing a message out from the peer. At this point the identity of the peer,A, may not
be known so the predicatecoalesce(∆, A) ensures that an identifier is assigned. Ex-
pression 15 attempts to find an identifier for the peer if its identifier, X , is a vari-
able. It does this by selecting the best option from a set of candidates, each of the
form (X ′, Pp, Pn, N) where:X ′ is an identifier;Pp is the proportion of previous in-
teractions in whichX ′ was part of a successful coalition with at least some of the
peers in∆; Pn is the proportion of such interactions where the coalition was unsuc-
cessful; andN is the total number of appropriate coalitions. The selection function,
sel, could take different forms depending on the application but typically would at-
tempt to maximisePp while minimisingPn. Expression 16 generates values forPp

andPn for each appropriate instance,A of a peer, based on cached records of inter-
action events. An interaction event is recorded in the formevent(a(R, X), E) where
a(R, X) records the role and identifier of the peer andE is a unique identifier for the
event. For instance, in our earlier shopping example there would be a unique event
identifier for the sequence of roles undertaken and anevent definition for each role
associated with that event (so if the event identifier wase243 then there would be
anevent(a(purchaser([canonS500, olympusE300, canonEOS1]), b), e243)and so
on).

To demonstrate matchmaking in this event-driven style, suppose that our automated
camera purchaser is following the interaction model given in expression 12 and has
already performed the part of the interaction needed to buy the first camera in our list
(thecanonS500) from a peer,s, using the interaction model of Figure 2. The state of
the interaction (described as a partially expanded model inthe LCC style) is given in
expression 18 below.

23

R :: B
Ri,Mi,Mo,S,O,∆
−−−−−−−−−−−→ A :: E if B

R,Mi,Mo,S,O,{R}∪∆
−−−−−−−−−−−−−−→ E

A1 or A2
Ri,Mi,Mo,S,O,∆
−−−−−−−−−−−→ E if ¬closed(A2) ∧

A1
Ri,Mi,Mo,S,O,∆
−−−−−−−−−−−→ E

A1 or A2
Ri,Mi,Mo,S,O,∆
−−−−−−−−−−−→ E if ¬closed(A1) ∧

A2
Ri,Mi,Mo,S,O,∆
−−−−−−−−−−−→ E

A1 then A2
Ri,Mi,Mo,S,O,∆
−−−−−−−−−−−→ E then A2 if A1

Ri,Mi,Mo,S,O,∆
−−−−−−−−−−−→ E

A1 then A2
Ri,Mi,Mo,S,O,∆
−−−−−−−−−−−→ A1 then E if closed(A1, ∆1) ∧

A2
Ri,Mi,Mo,S,O,∆∪∆1−−−−−−−−−−−−−−→ E

C ← M ⇐ A
Ri,Mi,Mi−{m(Ri,M ⇐ A)},S,∅,∆
−−−−−−−−−−−−−−−−−−−−−−−→ c(M ⇐ A) if m(Ri, M ⇐ A) ∈Mi ∧

satisfy(C)

M ⇒ A ← C
Ri,Mi,Mo,S,{m(Ri,M ⇒ A)},∆
−−−−−−−−−−−−−−−−−−−−−→ c(M ⇒ A) if satisfied(S ,C) ∧

coalesce(∆, A)

null ← C
Ri,Mi,Mo,S,∅,∆
−−−−−−−−−−−→ c(null) if satisfied(S , C)

a(R, I) ← C
Ri,Mi,Mo,S,∅,∆
−−−−−−−−−−−→ a(R, I) :: B if clause(S , a(R, I) :: B) ∧

satisfied(S ,C)

closed(c(M ⇐ A), {A})
closed(c(M ⇒ A), {A})
closed(A then B, ∆1 ∪∆2) ← closed(A, ∆1) ∧ closed(B, ∆2)
closed(X :: D, ∆) ← closed(D, ∆)

(14)

coalesce(∆, a(R,X)) ← ¬var(X) ∨
(var(X) ∧ X = sel({(X ′, Pp, Pn, N)|coalition(∆, a(R,X ′), Pp, Pn, N)})

(15)

coalition(∆, A, Pp, Pn, N) ← Pp = card({E|(event(A,E) ∧ success(E) ∧ co(∆,E)}))
card({E|co(∆,E)})

Pn = card({E|(event(A,E) ∧ failure(E) ∧ co(∆,E)}))
card({E|co(∆,E)})

N = card({E|co(∆, E)})

(16)

co(∆, E)← (∃A.A ∈ ∆ ∧ event(A,E) ∧ ¬(∃R,X, X
′
.a(R, X) ∈ ∆ ∧ event(a(R,X

′), E) ∧ X 6= X
′)

(17)
Where:∆ is a set of the peers (a(R,X)) appearing in the clause along the path of rewrites

(above).
var(X) is true whenX is a variable.
card(S) returns the cardinality of setS.
sel(Sx) returns a peer identifier,X, from an element,(X, Pp, Pn), of Sx selected ac-
cording to the values ofPp andPn

See Figure 7 for definitions of other terms.

Fig. 8.A basic event-based matchmaker

24

a(purchaser([canonS500, olympusE300, canonEOS1]), b) ::
a(buy item(canonS500), b) ::

a(buyer(canonS500), b) then

ask(canonS500) ⇒ a(shopkeeper, s) then

price(canonS500, 249) ⇐ a(shopkeeper, s) then

buy(canonS500, 249) ⇒ a(shopkeeper, s) then

sold(canonS500, 249) ⇐ a(shopkeeper, s)
a(purchaser([olympusE300, canonEOS1]), b) ::

a(buy item(olympusE300), b) ::
(a(buyer(olympusE300), b) or a(seeker(olympusE300), b) or a(customer(olympusE300), b))

(18)
The choice at the end of expression 18 means that ourpurchaser peer now has to

choose whether to become abuyer peer again or to be aseeker or a customer. This
will require it to choose a model from either Figure 2, Figure3 or Figure 4. This, in turn,
will require it to identify either ashopkeeper, anauctioneer or amanufacturer (re-
spectively) with which to interact when following its chosen interaction model. Suppose
that our purchaser has access to the following results of previous interactions:

event(a(buyer(olympusE300), b), e1) event(a(shopkeeper, s1), e1) failure(e1)
event(a(seeker(olympusE300), b), e2) event(a(auctioneer, a1), e2) success(e2)
event(a(customer(olympusE300), b), e3) event(a(manufacturer, m1), e3) success(e3)
event(a(seeker(olympusE300), b), e4) event(a(auctioneer, a1), e4) failure(e4)
event(a(buyer(canonEOS1), b), e5) event(a(shopkeeper, s1), e5) success(e5)

(19)
Applying the method described in Figure 8, the contextual set of peers,∆, from

expression 18 is:

{a(purchaser([canonS500, olympusE300, canonEOS1]), b)
a(buy item(canonS500), b)
a(buyer(canonS500), b)
a(shopkeeper, s)
a(purchaser([olympusE300, canonEOS1]), b)
a(buy item(olympusE300), b) }

and we can generate the following instances forcoalition(∆, A, Pp, Pn) via ex-
pression 16 of Figure 8:

For a(buyer(olympusE300), b) : coalition(∆, a(shopkeeper, s1), e1, 0, 1, 1)
For a(seeker(olympusE300), b) : coalition(∆, a(auctioneer, a1), 0.5, 0.5, 2)
For a(customer(olympusE300), b) : coalition(∆, a(manufacturer, m1), 1, 0, 1)

Our selection function (sel in expression 15 of Figure 8) must then choose which
of the three options above is more likely to give a successfuloutcome. This is not
clear cut because sample sizes vary as well as the proportionof successes to failures.

25

It is possible, however, to rate the auctioneer or the manufacturer as the most likely to
succeed, given the earlier events.

5 Maintaining an Interaction Context

When many peers interact we must make sure that the knowledgethey share is con-
sistent to the extent necessary for reliable interaction. This does not of course, require
consistency across the totality of knowledge possessed by the peers - only the knowl-
edge germane to the interaction. The general problem of attaining consistent common
knowledge is known to be intractable (see for example [22]) so the engineering aim
is to avoid, reduce or tolerate this theoretical worst case.The interaction model used
in LCC identifies the points of contact between peers’ knowledge and the interaction -
these are the constraints associated with messages and roles. The knowledge to which
these connections are made can be from two sources:

Devolved to the appropriate peers: so that the choice of which axioms and inference
procedures are used to satisfy a constraint is an issue that is private and internal to
the peer concerned. In this case there is no way of knowing whether one peer’s
constraint solving knowledge is consistent with another peer’s internal knowledge.

Retained with the LCC interaction model : so the axioms used to satisfy a constraint
are visible at the same level as the interaction model and theinference procedures
may also be standardised and retained with the model. In thiscase we can identify
the knowledge relevant to the interaction and, if an appropriate consistency check-
ing mechanism is available, we can apply it as we would to a traditional knowledge
base.

In practise it is necessary to balance retention of knowledge with an interaction
model (and the control that permits) against devolution to private peers (with the auton-
omy that allows). The way an engineer decides on this balanceis, as usual, by study-
ing the domain of application. Where it is essential that constraints are satisfied in a
standardised way then axioms and inference methods are retained with the interaction
model. Where it is essential that peers autonomously satisfy constraints then they must
be given that responsibility. What makes this more subtle than traditional software en-
gineering is that axioms retained by the interaction model can be used to supply knowl-
edge hitherto unavailable to the (otherwise autonomous) peers using the model. The
remainder of this section demonstrates this using a standard example.

A classic logical puzzle involves a standardised form of interaction between a group
of people, each of which has an attribute which cannot be determined except by observ-
ing the behaviour of the others. This puzzle appears in different variants (including the
“cheating husbands”, “cheating wives” and “wise men” puzzles) but here we use the
“muddy children” variant attributed to [6]. A paraphrased version of the puzzle is this:

A number of daughters have got mud on their foreheads. No child can see the
mud on her own forehead but each can see all the others’ foreheads. Their
father tells them that at least one of them is muddy. He then asks them, repeat-
edly, whether any of them (without conversing) can prove that she is muddy.
Assuming these children are clever logical reasoners, whathappens?

26

The answer is that the children who are muddy will be able to prove this is so after
the father has repeated the questionn − 1 times, wheren is the number of muddy
children. The proof of this is inductive: forn = 1 the muddy child sees everyone else
is clean so knows she is muddy; forn = 2 the first time the question is asked the
muddy children can see(n− 1) = 1 other muddy child and, from the fact that no other
child answered “yes”, knows that she also must be muddy so answers “yes” next time;
similarly for eachn > 2.

The important features of this example for our purposes are that: the interaction
is essential to the peers acquiring the appropriate knowledge; the interaction must be
synchronised (otherwise the inductive proof doesn’t hold); and, once the “trick” of in-
duction on the number of cycles of questioning is understood, the mechanism allowing
each peer to decide depends only on remembering the number ofcycles. Figure 9 gives
a LCC interaction model that allows a group of peers to solve the muddy children puz-
zle. Notice that it is not our intention to unravel the semantics of such problems (as has
been done in, for example, [22]). Our aim is to show how to solve this problem simply.

To demonstrate how the interaction model of Figure 9 works, suppose that we have
two peers,a1 anda2, and thata1 knowsis muddy(a2) whilea2 knowsis muddy(a1).
This knowledge is private to the peers concerned, and neither peer knows that it is itself
muddy. In order to work out whether they are muddy, one of the peers (let us choosea1)
must assume the role ofcoordinator(Cs, N) whereCs = {k(a1, unknown), k(a2, unknown)}
is the set of peers with their initial knowledge about their muddiness andN = 1 is the
cycle number. This is analogous to the role of the father in the original puzzle and it
could be performed by a third peer rather than bya1 or a2 but here we choose to let
a1 be both coordinator and child. The coordinator role is recursive overN ; on each
cycle performing a round of polling for each child to find out its current answer. Each
child has the obligation to reply when polled - its answer being eithermuddy, clean or
unknown depending on whether it can satisfy axiom 23, 24 or 25. These are examples
of axioms that it makes sense to retain with the interaction model because it is critical
that all peers make this calculation in the same way and it is not guaranteed that each
peer would possess the appropriate knowledge. By contrast the knowledge about which
peers are known by a given peer to be muddy is assumed to be private to that peer so
that is not retained with the model.

Interaction models do not solve the general problem of attaining common knowl-
edge in a distributed system - no method appears capable of that. They do, however, give
a way of identifying knowledge that must be shared and provide a basis for partitioning
shared and private constraint solving knowledge.

6 Making Interactions Less Brittle

One of the ways in which our method differs from traditional programming is that ex-
ecution of the clauses of an interaction model can happen across different machines,
therefore satisfaction of constraints associated with a particular role in an interaction
model is done in ignorance of constraints imposed by other peers in the interaction.
Often a peer has a choice about how it satisfies constraints (binding interaction model
variables in so doing) and if it makes the wrong choice relative to other peers’ con-

27

a(coordinator(Cs,N), X) ::
„

a(collector(Cs, Cs, N, Cs′), X) ← not(all known(Cs′)) then

a(coordinator(Cs′, N1), X) ← N1 = N + 1

«

or

null ← all known(Cs′)

(20)

a(collector(Cs, Rs,N, Cs′), X) ::
0

@

poll(N, Rs) ⇒ a(child, Y) ← select(k(Y,Rp), Cs, Cr) then

Cs′ = {k(Y, R)} ∪ Cr′ ← reply(R) ⇐ a(child, Y) then

a(collector(Cr, Rs,N, Cr′), X)

1

A or

null ← Cs = [] and Cs′ = []

(21)

a(child, X) ::
poll(N, Rs) ⇐ a(collector(Cs, Rs,N, Cs′), X) then
0

@

reply(muddy) ⇒ a(collector(Cs, Rs,N, Cs′), X) ← muddy(N,Rs) or

reply(clean) ⇒ a(collector(Cs, Rs,N, Cs′), X) ← clean(N, Rs) or

reply(unknown) ⇒ a(collector(Cs, Rs, N, Cs′), X) ← unknown(N, Rs)

1

A then

a(child, X)
(22)

muddy(N,Rs) ← Nk = card({Y |k(Y, muddy) ∈ Rs}) and

Nm = card({Y ′|is muddy(Y ′)}) and

Nk = 0 and N ≥ Nm

(23)

clean(N, Rs) ← Nk = card({Y |k(Y, muddy) ∈ Rs}) and

Nk > 0
(24)

unknown(N, Rs) ← Nk = card({Y |k(Y, muddy) ∈ Rs}) and

Nm = card({Y ′|is muddy(Y ′)}) and

Nk = 0 and N < Nm

(25)

Where:all known(Cs) denotes that each element ofCs is known to be either muddy or clean.
muddy(N,Rs) is true if the peer is muddy at cycleN given the previous response setRs.
clean(N, Rs) is true if the peer is clean.
unknown(N, Rs) is true if the peer can’t yet decide whether it is muddy or clean.
is muddy(Y) denotes that the peer knows (another) peerY to be muddy.
card(S) returns the cardinality of setS.

Fig. 9. A muddy children LCC model

28

straints then the interaction as a whole may fail. In this sense, interaction models can
be more “brittle” than conventional programs. Since the messages physically sent dur-
ing the interaction cannot be un-sent, the only way of bringing the interaction back on
track is to reason about the interaction model. It is essential, however, that such rea-
soning does not invalidate the interaction model - in other words it should only make a
given interaction model more likely to succeed as intended,not change the declarative
meaning of the model. We shall consider two ways of doing this:

Allowing peers to set constraint ranges, rather than specific values, for variables shared
in the interaction model - thus avoiding unnecessary early commitment.

Task/domain-specific adaptationof the interaction model during the process of inter-
action, making limited forms of “model patching” possible.

Before discussing these we study in a little more depth the programming issues
raised by committed choice in LCC interaction models. Our interaction models allow
choice via theor operators in model clauses (see Figure 1). For example, the clause:

a(r1, X) :: (m1 ⇒ a(r2, Y) then D1) or (m2 ⇒ a(r2, Y)) then D2)

whereD1 andD2 are some further definitions necessary forX to complete roler1,
allowsX to choose the state sequence commencingm1 ⇒ a(r2, Y) or the sequence
commencingm2 ⇒ a(r2, Y). In some conventional logic programming languages
(such as Prolog) this choice is not a commitment - if one of theoptions chosen fails
then we may still complete the role by backtracking; rollingback the state of the clause
to where it was before the choice was made, and choosing the alternative option. This
is not possible in our situation because interacting peers may have (privately) altered
their internal state, so for examplea(r2, Y) might have made some private internal
commitments in response to messagem1 that are not observable bya(r1, X), which
means that simply rolling back the state of the interaction model does not necessarily
bring the interaction back to an identical state. Our choices are therefore committed
choices. To make this issue concrete, let us return to our running example.

We can visualise a the possible sequences of messages sent orreceived when per-
forming a role in interaction as a graph, an example of which is given in Figure 10
for the manufacturer’s interaction model from Figure 4. Twopeers are involved in this
model, the customer and manufacturer. The dialogue tree of the customer is given in
Figure 10(a). Nodes in the figure are states in the interaction (from the perspective of
the customer). Solid arcs in the figure represent successfulsteps in the execution of the
interaction model while the dashed arrow (from node 3) represents a possible failure
that could occur if the customer could not accept the offerA proposed by the manufac-
turer. If that happens then our basic interaction model expansion mechanism, defined in
Figure 7, will be unable to complete the interaction becausefrom node 2 the only state
other than the failing state (3) is node 5 but to reach it requires a different message to
be received than the one actually received.

One proposed solution is to allow the peers to backtrack and try different offers.
The interaction model should then be modified to allow the action of sending/receiving

29

1

2

3

4

5

6

7

(a) Original customer’s protocol

1

2

53

4 6

7

(b) Modified customer’s protocol

ask(buy(X)))ask(
ommit)(tell(
ommit(Aa)))tell(sold(As))(
a(n man(X,C,),M)o�er(A)(a(n man(X,C,),M)a

ept(A))a(n man(X,C,),M) a(n man(X,C,),M)a(n man(X,C,),M)

a(manufa
turer,M) ask(buy(X)))a(manufa
turer,M)ask(
ommit)(a(n man(X,C,),M)tell(
ommit(Aa)))a(n man(X,C,),M)a

ept(A))a(n man(X,C,),M) a(n man(X,C,),M)tell(sold(As))(
o�er(A)(a(n man(X,C,),M)

Fig. 10.Customer’s dialogue tree of the manufacturer scenario

different offers possible. On the customer’s side, the modification is represented in Fig-
ure 10(b). When the customer’s model is at state 2, the customer can either receive an
offer, or receive a message asking it to commit, or it can remain at state 2. This third and
final option is added so that if any constraint failure occursanywhere along the first two
paths and the customer backtracks, then it will be able to receive anotheroffermessage.
The following is the modified customer’s interaction model.A parallel modification
would be required to the manufacturer’s model.

a(n cus(X, M, Aa), C) ::




offer(A) ⇐ a(n man(X, C,), M) then

accept(A) ⇒ a(n man(X, C,), M)← acceptable(A) then

a(n cus(X, M, [att(A)|Aa]), C)



 or





ask(commit) ⇐ a(n man(X, C,), M) then

tell(commit(Aa)) ⇒ a(n man(X, C,), M)← acceptable(A) then

tell(sold(Aa)) ⇐ a(n man(X, C,), M)



 or

a(n cus(X, M, Aa), C)

This is a pragmatic fix but it makes the interaction model morecomplex (hence
harder to read and design) and it also changes the semantics of the model, since we have
introduced an additional recursive option for then cus role that requires no interaction.
Our only reason for changing the model in this way is to re-gain flexibility lost because
of committed choice.

One way of regaining a form of backtracking for our interaction models is described
in [41]. This involves an extension to the labelling used to denote closure of explored
parts of the model, so that we can label parts of it as failed, then extending the model ex-
pansion rules (from Figure 7) to force (via failure messages) re-opening of previously

30

closed sequences in the model when failure is detected. Although this gives a partial
solution to the problem of backtracking, it does not addressthe problem that (invisible
from the level of the interaction model) individual peers may have made internal com-
mitments that prevent them “rolling back” their state to be consistent with backtracking
at the model level. For this reason, it is interesting to explore (in Sections 6.1 and 6.2)
ways of adding flexibility to interaction models without backtracking.

6.1 Brittleness Through Variable Binding: Constraint Relaxation

The LCC language ensures coherent interaction between peers by imposing constraints
relating to the message they send and receive in their chosenroles. The clauses of an
interaction model are arranged so that, although the constraints on each role are inde-
pendent of others, the ensemble of clauses operates to give the desired overall behaviour.
For instance, the manufacturer interaction model of Figure4 places two constraints on
each attributeA in the set of attributesAs: the first (available(A)) is a condition on
the peer in the role of negotiating manufacturer sending themessageoffer(A), and
second (acceptable(A)) is a condition on the peer in the role of negotiating customer
sending the messageaccept(A) in reply. By (separately) satisfyingavailable(A) and
acceptable(A) the peers mutually constrain the attributeA.

In [23] we described how the basic clause expansion mechanism of LCC has been
extended to preserve the ranges of finite-domain on variables. This allows peers to re-
strict rather than simply instantiate these constraints when interacting, thus allowing a
less rigid interaction. For instance, applying this to our initial example of mutual finite-
domain constraints in Figure 4, if the range of values permitted by the manufacturer
for A by available(A) is {32, 64, 128}, while the range of values permitted by the cus-
tomer forA byacceptable(A) is{greater than 32}, then were we to use finite-domain
constraint solver, a constraint space of{64, 128} is obtained – a range that would be
attached to the variable returned in theaccept(X) message.

An important aspect of the interaction model between the manufacturer and cus-
tomer roles defined in Figure 4 is the message passing that communicates the attributes
of the digital camera to be purchased. This dialogue can continue only as long as there
exists a match between the finite-domain ranges of attributevalues offered by the nego-
tiating manufacturer with those required by the negotiating customer. To illustrate this
point, consider the following example.

Assuming that the customer agreed to accept a memory size of64, then the follow-
ing statements describe the knowledge and constraints private to the manufacturer and
customer respectively, concerning the price of the digitalcamera to be negotiated:

Manufacturer : available(price(P))← P = 244
Customer : acceptable(price(P))← P ≤ 250

Upon negotiating these mutual constraints via the defined interaction model, the
value for price that meets the manufacturer’s offer, and also the customer’s require-
ment will be in the range:244 ≤ price(P) ≤ 250. Depending on the peer’s strategies
(e.g. choosing the maximum value within the agreed range,etc.), the final price can
be assigned to a value within this agreed range. To support this we need a means of
propagating constraint ranges across the interaction.

31

Similarly to our construction of expressions 1 and 2, for ontology mapping in Sec-
tion 3, it is straightforward to propagate range constraints through our state transitions
by (in expression 26) identifying the initial set,V , of variables (each with its range
constraint) in the initial state,S and then threading this set of variable ranges through
the state transition sequence (expression 27). Prior to each transition step the relation
apply ranges(Vi,Sp, S

′
p) applies the range constraints,Vi, to the corresponding vari-

ables in the peer stateSp to give the range restricted stateS′
p. After each transition

step the relationupdate ranges(S′′p , Vi, Vn) identifies each variable inVi that has been
restricted in the new peer stateS′′p and adds the new range restrictions to produceVn.

σ(p, Gp) ↔ Ω
p
∋ 〈S, V 〉 ∧ i(S, φ, V,Sf , Vf) ∧ kp(Sf) ⊢ Gp (26)

i(S, Mi, Vi,Sf , Vf) ↔ S = Sf ∨





















S
s

⊇ Sp ∧
apply ranges(Vi,Sp, S

′
p) ∧

S′p
M ′

i ,S,Mn

−−−−−−→ S′′p ∧
update ranges(S′′p , Vi, Vn) ∧

S′′p
s
∪ S = S′ ∧

i(S′, Mn, Vn,Sf , Vf)





















(27)

Simply propagating variable range constraints defends against only limited forms of
brittleness, however. Suppose that, instead of allowing memory size to be in the range
{64, 128}, the customer required a memory size of128, then the following, consequent
local constraints on price would break the interaction model:

Manufacturer : available(price(P))← P = 308
Customer : acceptable(price(P))← P ≤ 250

In this situation, no match is found between the customer’s expected price and the
one that can be offered by the manufacturer. Rather than terminating the dialogue at this
stage, we might reduce brittleness of this nature by including a constraint relaxation
mechanism that allows manufacturer and customer to negotiate further by relaxing the
specified mutual constraint on the value of the attribute. This issue is explored more
fully in [24] so we do not expand on the theme here. Constraintrelaxation only is pos-
sible, however, if the peers participating in the interaction are cognitively and socially
flexible to the degree they can identify and fully or partially satisfy the constraints with
which they are confronted. Such peers must be able to reason about their constraints and
involve other peers in this reasoning process. Interactionmodels (like those of LCC)
provide a framework for individual peers to analyse the constraints pertinent to them
and to propagate constraints across the interaction.

6.2 Brittleness Through Inflexible Sequencing: Interaction Model Adaptation

When tackling the brittleness problem in Section 6.1 the issue is to ensure that a given,
fixed interaction model has more chance of concluding successfully. LCC models also

32

break, however, when their designers have not predicted an interaction that needs to
occur. Consider for example the model of Figure 2 in which a buyer asks for some
item; receives a price; offers to buy the item; and its sale isconfirmed. This is one way
of purchasing but we could imagine more complex situations -for instance when the
shopkeeper does not have exactly the requested item for salebut offers an alternative
product. We could, of course, write a new model to cover this eventuality but this will
lead us either to write many models (and still have the task ofpredicting the right
one to use) or to write complex models that are costly to design and hard to test for
errors. One way to reduce this problem is to allow limited forms of task/domain-specific
synthesis of models, with the synthesised components beingused according to need in
the interaction.

Automated synthesis of LCC models has many similarities to traditional synthesis
of relational/functional programs and to process/plan synthesis. It is not possible here to
survey this large and diverse area. Instead we use an important lesson from traditional
methods: that the problem of synthesis is greatly simplifiedwhen we limit ourselves to
specific tasks and domains. This narrowing of focus is natural for interaction models
which are devised with a task and domain in mind. To demonstrate this we develop an
example based on the interaction model of Figure 2.

In order to synthesise models similar to those of Figure 2 we need to have some
specification of our functional requirements. To make synthesis straightforward, we
shall describe these in a domain-specific language close to the original model (remem-
ber we only want to add some limited flexibility, not solve thegeneral problem of model
synthesis). In our language we have chosen to use five domain-specific terms that de-
scribe the type of interaction of message passing events in the model (listed at bottom
of Figure 11). We then specify how these may be combined, starting from an initial
request and describing how this can be extended via rewrites that addadditional mes-
sage passing behaviours. The syntax of the rewrites is described in Figure 11 but the
intuition is that each rewrite extends some existing segment of message passing specifi-
cation with an additional behaviour that may occur in futurefrom the existing segment
(the normal3 modal operator is used to denote an expression that must be true at some
future time). For example, the second rewrite of Figure 11 says that a request from peer
A1 to peerA2 can be extended with a subsequent description ofX sent byA2 to A1.
The operators

∗
⇒ and

∗
⇐ , used to indicate the direction of message passing between

peers, can be refined into the LCC message passing operators for individual peers using
the two rules in the centre of Figure 11. Using all of these refinement rules, we can
synthesise specifications of interaction model behaviour such as:

t(request(X), A1
∗
⇒ A2) ∧

3

















t(alternative(X, Y), A1
∗
⇐ A2) ∧

3











t(request(Y), A1
∗
⇒ A2) ∧

3







t(describe(Y, D), A1
∗
⇐ A2) ∧

3

(

t(propose(Y, P), A1
∗
⇒ A2) ∧

3

(

t(confirm(Y, P), A1
∗
⇐ A2)

)

)

































(28)

33

−→ t(request(X),A1
∗
⇒ A2)

t(request(X),A1
∗
⇒ A2) −→ t(request(X),A1

∗
⇒ A2) ∧

3t(describe(X,D), A1
∗
⇐ A2)

t(request(X),A1
∗
⇒ A2) −→ t(request(X),A1

∗
⇒ A2) ∧

3t(alternative(X,Y), A1
∗
⇐ A2)

t(alternative(X,Y), A1
∗
⇐ A2) −→ t(alternative(X,Y), A1

∗
⇐ A2) ∧

3t(request(Y), A1
∗
⇒ A2)

t(describe(X,D), A1
∗
⇐ A2) −→ t(describe(X,D), A1

∗
⇐ A2) ∧

3t(propose(X,P),A1
∗
⇒ A2)

t(describe(X,D), A1
∗
⇐ A2) −→ t(describe(X,D), A1

∗
⇐ A2) ∧

3t(describe(X,D′), A1
∗
⇐ A2)

t(propose(X,P), A1
∗
⇒ A2) −→ t(propose(X,P), A1

∗
⇒ A2) ∧

3t(confirm(X, P),A1
∗
⇐ A2)

t(T, A1
∗
⇒ A2) −→ (m(A1, T ⇒ A2) ∧m(A2, T ⇐ A1))

t(T, A1
∗
⇐ A2) −→ (m(A1, T ⇐ A2 ∧m(A2, T ⇒ A1))

Where:T1 −→ T2 gives a permitted refinement of termT1 to termT2.
3P denotes that expressionP will be true at some future time.
t(E,D) specifies a message interchange of typeE between two peers, whereD is
either of the formA1

∗
⇒ A2, denoting a message sent fromA1 to A2 or of the form

A1
∗
⇐ A2, denoting a message sent fromA2 to A1.

Domain terms:alternative(X,Y) whenY is a product offered as a substitute forX.
confirm(X, P) when the transaction is confirmed forX at priceP .
describe(X,D) whenD describesX.
propose(X,P) when priceP is suggested forX.
request(X) when a product of typeX is requested.

Fig. 11.Rewrites for synthesis of a restricted, task-specific specification

34

If we then add additional refinements from the general domainterms of Figure 11
to the more specific terms used in the interaction model of Figure 2 as follows:

request(X) −→ ask(X)
describe(X, D) −→ price(X, D)
propose(X, P) −→ buy(X, P)

confirm(X, P) −→ sold(X, P)
alternative(X, Y) −→ similar product(X, Y)

then we can further refine the specification of expression 28 using these and the
refinements message passing from Figure 11 to give the specification:

(m(A1, ask(X) ⇒ A2) ∧ m(A2, ask(X) ⇐ A1)) ∧

3













(m(A1, similar product(X, Y) ⇐ A2) ∧ m(A2, similar product(X, Y) ⇒ A1)) ∧

3









(m(A1, ask(Y) ⇒ A2) ∧ m(A2, ask(Y) ⇐ A1)) ∧

3





(m(A1, price(Y, D) ⇐ A2) ∧ m(A2, price(Y, D) ⇒ A1)) ∧

3

(

(m(A1, buy(Y, P) ⇒ A2) ∧ m(A2, buy(Y, P) ⇐ A1)) ∧
3
(

(m(A1, sold(Y, P) ⇐ A2) ∧ m(A2, sold(Y, P) ⇒ A1))
)

)

























(29)
Since the specification above describes a sequence of pairs of messages exchanged

between peersA1 andA2 it is straightforward to “unzip” this sequence into the send
and receive components of each exchange, providing the definition for a LCC model.

A1 ::
ask(X) ⇒ A2 then

similar product(X, Y) ⇐ A2 then

ask(Y) ⇒ A2 then

price(Y, D) ⇐ A2 then

buy(Y, P) ⇒ A2 then

sold(Y, P) ⇐ A2

A2 ::
ask(X) ⇐ A1 then

similar product(X, Y) ⇒ A1 then

ask(Y) ⇐ A1 then

price(Y, D) ⇒ A1 then

buy(Y, P) ⇐ A1 then

sold(Y, P) ⇒ A1

To arrive at this interaction model we have made numerous assumptions in order to
make the task of synthesis easy. We assumed a narrow domain sothat we had a small
range of specifications to deal with, thus simplifying the task of writing the message
passing specification. We assumed that only two peers were involved, simplifying both
the specification and its refinement. We assumed a total ordering on the messages in-
terchanged (with no interleaving between interchanges) giving an easy translation from
temporal message sequence to interaction model. We would not, of course, expect these
assumptions to hold for every domain - they are merely an example of assumptions that

35

can usefully be made to simplify engineering in one specific domain. The hope for prac-
tical application of synthesis methods is that domains amenable to similar treatments
occur commonly in practise.

7 Satisfying Requirements on the Interaction Process

Interaction models, like traditional programs, are written in order to control computa-
tions that satisfy requirements in some domain of application. In our scenario of Sec-
tion 1.1, for example, Sarah has various interaction requirements: she wants by the end
to purchase a camera; before then she wants to know the price of that camera; and ide-
ally she would like the lowest price possible. These are all functional requirements (they
can be judged with respect to the computation itself) and we shall confine ourselves to
this class of requirements although we recognise that, as for traditional programs, non-
functional requirements also are important (for example, Sarah might want to increase
her stature in her company by buying cheap cameras but our interaction model says
nothing about company politics).

There are many ways in which to express requirements but we shall focus on process-
based requirements modelling, in particular business process modelling, because this is
(arguably) the most popular style of requirements description for Web services. There
are two ways of viewing these sorts of models:

– As specifications for the temporal requirements that must besatisfied by a business
process when it is performed. In this case the business process model need not be
executable.

– As a structure that may be interpreted in order to perform thebusiness process.
In this case there must exist an interpretation mechanism todrive the necessary
computations from the business process model.

We demonstrate these views using an elementary process modelling language. Real
process modelling languages (for example BPEL4WS [3]) are more complex but similar
principles apply to them (see [32] for details of our methodsapplied to BPEL4WS).
In our elementary language we shall assume that only two (given) peers interact to
implement a process and that the process is described using aset of actions of the form
activity(I, X, Cp, Cr), whereI identifies the peer that performs the activity;X is a
descriptive name for the activity;Cp is the set of axioms forming a precondition for the
activity; andCr is the set of axioms established as a consequence of the activity. The
expressionprocess({I, I ′}, A) relates the two peer identifiersI andI ′ with the set of
activitiesA. Figure 12 gives a process model which one might write for theshopping
model that we introduced in Figure 2 of Section 2.2. The diagram at the top of the
figure depicts the process: boxes are activities with preconditions to the left of each box
and postconditions to the right. Theprocess definition appears underneath, with the
meaning of terms contained in activities being understood analogously to the meaning
of messages and constraints in the model of Figure 2.

From the process model in Figure 12 we can infer some of the temporal constraints
on interaction models enacting the business process - for instance: that for items needed

36

enquire_price buy_item

need(X)

ask(X)

in_stock(X,P)

price(X,P)

ask(X)

sell_itemdetermine_price

offer_to_buy(X,P)

sold(X,P)in_stock(X,P)

offer_to_buy(X,P)

price(X,P)

afford(X,P)

Buyer: B

Seller: S

process({B,S},
{activity(B, enquire price, {need(X)}, {ask(X)}),

activity(B, buy item, {price(X, P), afford(X, P)}, {offer to buy(X,P)}),
activity(S, determine price, {ask(X), in stock(X, P)}, {price(X, P)}),
activity(S, sell item, {offer to buy(X,P), in stock(X, P)}, {sold(X, P)}) })

(30)

Fig. 12.Elementary process model for the shopping service

that are in stock we eventually know a price; or that if an itemcan be afforded then it is
sold.

need(X) ∧ shop(S) ∧ in stock(X, P)→ 3price(X, P)
afford(X, P)→ 3sold(X, P)

Perhaps the most obvious engineering strategy is now to testinteraction models
to see if they satisfy temporal requirements like those above - raising confidence that
those models passing such tests are compliant with the required business process. For
example, we could test whether the model of Figure 2 satisfiesthe temporal require-
ments given above. This is traditional requirements engineering re-applied so we shall
not dwell on it here. There is, however, a more novel approachto ensuring compliance
with business process models: write an interpreter for the models in the LCC language
itself.

Figure 13 gives an interpreter for our elementary process modelling language. The
key feature of this interaction model is that it takes as an argument (ininitiator(P) of
expression 31) an entire process model,P (in our running example, this is the process
definition of Figure 12). The model of expressions 31 to 33 then refers toP in order to
determine the messages sent between the two peers involved.This approach is similar
to meta-interpretation in logic programming languages, except in this case the meta-
interpretation is being done by the interaction model.

37

a(initiator(P), I) :: interpret(P,K) ⇒ A← step(I,P, φ, K)) then

a(interpreter, I)
(31)

a(interpreter, I) :: step(I,P, K, Kn)← interpret(P,K) ⇐ a(R, I ′) then

interpret(P,Kn) ⇒ a(interpreter, I ′)← then

a(interpreter, I)

(32)

step(I, process(S,A), K, K∪Cr)← I ∈ S ∧ activity(I,X, Cp, Cr) ∈ A ∧ satisfy(Cp,K)
(33)

Where:P is a process definition of the formprocess(S,A).
S is a set of peer identifiers.
A is a set of activity definitions of the formactivity(I,X, Cp, Cr).
I is a peer identifier.
X is the name of the activity.
Cp is the set of axioms forming a precondition for the activity.
Cr is the set of axioms established as a consequence of the activity.
step(I,P, K, Kn) defines a single step in the execution of a process,P , by peerI
given shared knowledgeK and generating the extended knowledge setKn.
φ is the empty set of initial shared knowledge.
satisfy(Cp,K) is true when the conjunctive set of propositions,Cp is satisfiable from
shared knowledgeK.

Fig. 13.A LCC interaction model used to define an interpreter for process models in the notation
of Figure 12

38

By approaching the coordination problem in this way we allowlanguages used in
domains of application to be interpreted directly, rather than having to translate them
into equivalent LCC code. This makes it easier to gain confidence (through proof, test-
ing or inspection) that the requirements associated with the domain model are satisfied.
It also makes it easier to trace problems in interaction backto the domain model.

8 Building Interaction Models More Reliably

Normally people do not want, having chosen an interaction model, to find at some sub-
sequent point in the interaction that the goal it was supposed to achieve is not attainable,
or the way in which it is obtained is inappropriate to the problem in hand. To prevent
this we need some explicit description of what the interaction model is (and that we
have with LCC) combined with analytical tools that check whether it has the proper-
ties we desire. Put more formally, if we have an interaction model (such as the one in
Figure 2) we wish to know whether a given form of enactment (such as the one defined
in expressions 1 and 2) will generate at least one sequence (for example in the form
shown in expression 3) such that each desired property holdsand no sequence in which
an undesirable property holds.

There are many different ways in which the correct outcome may fail to be reached.
For convenience, we will overlook the possibility of the participants failing to obey the
interaction model. We will also ignore issues of fault-tolerance, such as the failure of
participants, network failures, or lost messages. These issues are outside the scope of
the paper. Instead, we will focus on the case where the interaction model is correctly
followed, but the desired outcome is not reached. In this case, the problem lies in spec-
ification of the interaction model, and not in the implementation of the external peers.

The design of an interaction model to solve a particular goalis a non-trivial task.
The key difficulty lies in the nature of the peers being coordinated. The process of coor-
dinating the external peers requires us to specify a complexconcurrent system, involv-
ing the interactions of asynchronous entities. Concurrency introducesnon-determinism
into the system which gives rise to a large number of potential problems, such as syn-
chronisation, fairness, and deadlocks. It is difficult, even for an experienced designer,
to obtain a good intuition for the behaviour of a concurrent interaction model, primarily
due to the large number of possible interleavings which can occur. Traditional debug-
ging and simulation techniques cannot readily explore all of the possible behaviours of
such systems, and therefore significant problems can remainundiscovered.

The prediction of the outcome in the presence of concurrencyis typically accom-
plished by the application of formal verification techniques to the specification. In par-
ticular, the use of formalmodel-checkingtechniques [12] appears to hold a great deal
of promise in the verification of interaction models. The appeal of model-checking is
that it is an automated process, unlike theorem proving, though most model-checking
is limited to finite-state systems. A model checker normallyperforms an exhaustive
search of the state space of a system to determine if a particular property holds. Given
sufficient resources, the procedure will always terminate with a yes/no answer. Model
checking has been applied with considerable success in the verification of concurrent

39

hardware systems, and it is increasingly being used as a toolfor verifying concurrent
software systems, including multi-agent systems [7, 9, 60].

It should be noted that the issues of outcome prediction are not simply an artifact of
the use of complex interaction specifications, such as LCC models. Rather, the source of
these problems is the need to coordinate complex asynchronous entities. In particular,
the issues that we have highlighted occur even when our interactions are specified by
simple linear plans. With asynchronous processes, the linear plans will be evaluated
concurrently, and the individual plan actions will be interleaved. We will now sketch
how the problems which arise in such concurrent systems can be detected by the use of
model checking techniques.

We have used the SPIN model checker [25] as the basis for our verification. This
model checker has been in development for many years and includes a large number
of techniques for improving the efficiency of the model checking, e.g. partial-order re-
duction, and state-space compression. SPIN accepts designspecifications in its own
languagePROMELA (PROcess MEta-LAnguage), and verifies correctness claims spec-
ified as Linear Temporal Logic (LTL) formula.

To perform model checking on the specification, we require anencoding of the
specification into a form suitable for model checking. In [54] we define an encoding
of the MAP agent interaction language, which is similar to LCC, into PROMELA. A
similar technique has been defined for the AgentSpeak language [9]. In AgentSpeak,
coordination is specified using the Belief-Desire-Intention (BDI) model. To illustrate
the encoding process here, we sketch a translation from LCC into a state-based model
in Figure 14. This figure illustrates the encoding of the mainlanguage constructs of
LCC. Thee label signifies an empty state, and! denotes logical negation. The encoding
process is applied recursively to an LCC model. The outcome will be a state graph for
each role in the model.

A::B

A B

A or B

a(R, X) A then B

A

M => X <− C C <− M <= X

A

e

B

e

M<=X

e

e

a(R, X)

e

M=>X

B

C

!C

C

!C

Fig. 14.State Space Encoding.

40

The key feature of the encoding process for LCC is the treatment of the constraints.
We make the observation that the purpose of a constraint is toimpose a true/false de-
cision on a model, and the purpose of the model checking process is to detect errors in
the model and not in the constraints. Thus, based on these observations we can replace
a constraint with a pair of states, one of which signifies thatthe constraint is true, and
the other false. The exhaustive nature of the model checkingprocess will mean that all
possible behaviours of the interaction model will be explored. In other words, the model
checker will explore all consequences for the model where the constraint was true, and
all consequences where the constraint was false. Thus, we donot need to evaluate the
actual constraints during the model checking process.

To illustrate the model checking process, we present a state-space encoding of the
shop model in Figure 15. We have removed the redundantestates from the graphs, and
we have abbreviatedshopkeeperto shop. The state space defines all possible behaviours
of the model. In this case, the model is linear, and we can examine the state space by
hand. However, models that contain iteration and choice will rapidly expand the state
space, and formal model checking is required. We can clearlysee that the model leaves
some behaviours undefined, indicated by the remaininge states in the graphs. These
states occur as the shop model does not define what should be done when a constraint
cannot be satisfied. For example, if the buyer cannot afford the item, the model will
terminate prematurely. In many cases, we will want to avoid this possibility, and so we
would amend the model with additional behaviours and recheck the state space.

Our initial model checking experiments with LCC have focused principally on the
terminationof the interaction models. This is an important consideration in the de-
sign of models, as we do not normally want to define models thatcannot conclude.
Non-termination can occur as a result of many different issues such as deadlocks, live-
locks, infinite recursion, and message synchronisation errors. Furthermore, we may also
wish to ensure that models do not simply terminate due to failure within the model,
as in our shop example. The termination condition is the moststraightforward to ver-
ify by model checking. Given that progress is a requirement in almost every con-
current system, the SPIN model checker automatically verifies this property by de-
fault. The termination condition states that every processeventually reaches a valid
end state. This can be expressed as the following LTL formula, whereend1 is the
end state for the first process, andend2 is the end state for the second process, etc:
2(3(end1 ∧ end2 ∧ end3 ∧ · · ·)). For our shop example, we may define the
property2(3(sold(X, P))) to ensure that the item is always sold to the buyer.

One of the main pragmatic issues associated with model checking is producing a
state space that is sufficiently small to be checking with theavailable resources. Hence,
it frequently is necessary to use abstraction techniques, such as we have done for the
constraints, and to make simplifying assumptions. Other researchers have also consid-
ered this problem. For example, [10] proposes a program-slicing technique to improve
the efficiency of the model checking process. Model checkingis also restricted to finite
models, and therefore we must ensure that our models are bounded. Nonetheless, our
initial experiments with this approach have proved promising [56].

The encoding which we have outlined here is designed to perform automaticcheck-
ing of LCC models. This makes the system suitable for use by non-experts who do

41

a(shop,S)

a(buyer,B)

<=a(shop,S)
price(X,P)

a(shop,S)

<=a(shop,S)

e

e

and shop(S))and shop(S)
need(X) !(need(X)

afford(X,P) !afford(X,P)

ask(X)=>

buy(X)=>

sold(X,P)

a(shop,S)

a(buyer,B)

price(X,P)
=>a(buyer,B)

a(buyer,B)

=>a(buyer,B)

e

in_stock(X,P) !in_stock(X,P)

ask(X)<=

sold(X,P)

buy(X)<=

Fig. 15.Shop Model States.

not need to understand the model checking process. However,our approach places re-
strictions on the kinds of properties of the models that we can check. In particular, we
cannot automatically verify properties which are specific to the domain of the model.
For example, to verify that the highest bidder always wins inan auction model. Our
current research is aimed at extending the range of properties that can be checked with
model checking. For this, we need to retain the constraints in the model, and we must
define additional formulae over these constraints. This should result in a greater ability
to predict the outcome of our LCC models.

9 Implementation: the Current OpenKnowledge System

The ideas described in Sections 3 to 8 are part of the foundation for the OpenKnowl-
edge peer to peer knowledge sharing system, for which a prototype has been built. By
building the OpenKnowledge system[14, 50], we aim to demonstrate that sharing in-
teraction models at very low cost to consumers and suppliersis possible. The novelty
of the OK system lies in (1) the interaction centric approach, where interactions are

42

published and efficiently stored in a P2P network, (2) decoupling interactions and roles
from the services that execute these roles, and (3) a distributed way of finding coor-
dinators that coordinate IMs. Within the design of the system we try to address the
(unavoidable) tasks of ontology mapping, query routing, reputation management, dy-
namic peer recruitment etc. This system is completely distributed using P2P technology
(not discussed here).

Each peer that participates in the OK system must run a piece of code that we call the
OpenKnowledge Kernel[13] enabling the basic functionality of finding these interaction
models and the code or peers to run the services implementingthe roles in the IMs. We
call these servicesOK components (OKCs). The IMs together with the OKCs and/or the
peers running the OKCs are efficiently stored and retrieved in a P2P network which we
call theOK Discovery service. Additionally, due to the fact that the tasks are formally
described, the OK system offers the functionality to selecta peer to coordinate a task
by executing the IM, selecting peers running the desired OKCs to fulfill a role and
recruiting alternative peers in case of failure. The users of the OK-system canpublish
IMs, write interfaces to services, and subscribe these interfaces to play roles in the IMs.
The system helps these users by providing tools to ease re-use of existing IMs or by
helping connect two services via mappings in case the outputof one does not match the
input of the other. A reputation management mechanism is under development to help
the user in selecting IMs, OKCs, Coordinators and peers running OKCs.

The first prototype provides the basic user interface shown in Figure 16) with the
following functionality: (1) using the GUI, a user can wrap apiece of JAVA code into
an OKC, (2) a user can share it by publishing it to the (distributed) discovery service,
(3) a user search for interaction models by typing keywords (note that IMs are currently
annotated by keywords), (4) a user can decide to subscribe toan OKC, meaning that
it listens to function calls implementing the role for the linked IM, and finally (5) the
discovery service selects a Coordinator to execute the IM when all roles are initiated by
peers (the coordinator first will ask all peers with whom theywant to play the interac-
tion, after that it selects the optimal solution and if possible starts the interaction). New
peers can subscribe for a running interaction, and in case offailing peers, they may be
selected to take over. Figure 17 summarizes the architecture of the OK system.

To relate the possibilities of the system to sections in the system, we again use the
scenario from Section 1.1.

– Ontology matching
Her ontology for describing a camera purchase had to be matched to those of avail-
able services which is described in Section 3.
The matching service implements this requirement by (1) mapping via ontologies
terms from her query with the (currently term) descriptionsof the interaction mod-
els and (2) mapping the capabilities of the peers with the role descriptions in the
IMs.

– Recommendations
Her recommendation service had to know which services mightbest be able to in-
teract and enable them to do so (Sections 2 and 4).
For this we implemented the Discovery Service which efficiently stores OKCs,
IMs, peer subscriptions to OKCs and Coordinators. Togetherwith the Mapping

43

Fig. 16.Part of the Open Knowledge GUI

Fig. 17.Open Knowledge Architecture

44

Service and the Reputation strategies, the results can be ranked in order to facili-
tate the recommendation service. The peers that want to perform some tasks, such
as buying a book or selling them, search for published interaction models for the
task, and then advertise their intention of interpreting one of its roles to the dis-
covery service for the specific task. For example, a bookseller will subscribe to
perform the role of vendor in a purchase interaction, specifying that the topic is
“books,novels,texts”, while a peer searching a book will subscribe as customer, for
a task described similarly (for example, just “book”). Whenall the roles are filled,
the discovery service matches the peers that subscribed forthe same or similar tasks
(for example, “books,novels,texts” and “book”).

– Coordination
When they interact the contextual knowledge needed to interact reliably should
propagate to the appropriate services as part of the interaction (Section 5).
When the discovery service has enough subscriptions for an interaction model, it
selects a coordinator to execute the IM. The coordinator sends a message to each
subscribed peer containing relevant contextual information about the other peers.
In this way, peers can communicate back to the coordinator their preferences about
with whom they want to interact and not. Once all the roles in the IM are fulfilled
by OKCs, the coordinator starts parsing the LCC in a centralised manner. When
a constraint is encountered while parsing, the coordinatorsends a message to the
OKC fulfilling the role that must solve the constraint. This message contains the
information associated to the constraint, and the interaction state. Upon receiving
the constraint solving request message from the coordinator, the OKC will execute
the code that solves the given constraint and return a message to the coordinator
with the modified state. This process goes on repeatedly until the IM terminates.

– Dynamic recruitment
When the services are being coordinated then it might be necessary to reconcile
their various constraints in order to avoid breaking the collaboration (Section 6).
It could happen that some peers fail or don’t meet the expectations of Sarah, then
either automatically or manually some other peers can be selected that (either at the
beginning or during the interaction) have subscribed to theroles for which another
peer needs to be found. Eventually, the discovery service acknowledges the coor-
dinator of the running interaction with new peers. Also, during the interaction, the
discovery service may be queried to return peers that subscribed to the role however
with other constraints.

– Feedback round
Before she started, Sarah might have wanted to be reassured that the interaction
conforms to the requirements of her business process (Section 7) and that her in-
teraction was reliable (Section 8).
As stated previously, before any interaction starts, the coordinator sends a message
to each individual peer with the credentials and constraints of the other peers that
want to play a role in the interaction. In this way the user cancheck which ones suit
the desired characteristics.

Summarizing, the OK-system tries to implement the methodology described in this
paper. Currently we have a first version running, providing the basic functionality as

45

described above (user interface, code wrapping, publishing of OKCs and IMs together
with efficient and fully distributed storage and retrieval,coordinator selection and exe-
cution of the IMs. What is still missing and where we currently are working on, is the
mapping mechanisms, reputation mechanisms and dynamic recruitment of peers.

10 Related Views of Coordination

The need for coordination is prevalent and the drive for large, complex, distributed sys-
tems maintains a pressure to improve the way in which coordination is programmed.
The focus of our review below is on methods that can (without too much stretch of
the imagination) be considered programming, so for examplewe ignore methods which
have been used to specify interaction-related problems butfor which no means of prac-
tical computation has been provided. By the same token we do not focus upon explo-
rations of relevant foundational theories of interaction and coordination - for example
those originating in theoretical computing science (such as [20, 38, 53, 58]), planning
(such as [21]) and multi-agent systems theory (such as [52, 61]). Even with this limit
there remain many related approaches so our review describes categories of system with
illustrative examples selected from the many available.

10.1 Restricted Languages and Specialist Infrastructures

We have presented a generic language for coordination. By choosing a more specific
language in which to express desired patterns of coordination, however, it may be pos-
sible to build tools that exploit those language restrictions in order to build a limited
variety of interactions with less effort. This follows the tradition of domain specific
synthesis of traditional programs (such as [49] in ecological modelling; [34] in astro-
physics) and in visual languages used to describe the structure of process and workflow
systems.

Examples of this in an Internet setting are workflow editing and enactment systems
to support scientific computing over large data sets - for instance the Taverna [40] and
Kepler [2] workflow systems. These systems aim to support scientists (who have little
knowledge of the intricacies of computing on computationalgrid architectures) with
a high level visual language for designing experiments expressed as workflows, and
then executing these in a manner that allows the sorts of provenance attribution and
runtime monitoring that their communities of scientists demand. These systems are
effective because they constrain the task and domain. Neither Kepler nor Taverna is
intended as a programming language - they are languages for Grid service connection
and provide graphical interfaces for this purpose. Although it is possible to invent a
visual language that can be generically used for specifyinglogic-based programs (see
[1] for an example) there is no evidence that a generic visualisation is easier for human
communities of practise to understand than the mathematical representation from which
it originated - hence to need to specialise by task and/or domain.

46

10.2 Coordination Via Finite State Models

Throughout this paper we have taken a view of computation that emphasises process
rather than state. There is, however, a strong interaction between process and state so
there are deep similarities between LCC and interaction models described by finite state
machines. An example is the Islander system [16]. The framework for describing agent
interactions in Islander relies upon a (finite) set of state identifiers representing the pos-
sible stages in the interaction. Agents operating within this framework must be allocated
roles and may enter or leave states depending on the locutions (via message passing)
that they have performed. In order to structure the description, states are grouped into
scenes. An institution is then defined by a set of scenes and a set of connections be-
tween scenes with constraints determining whether agents may move across these con-
nections. A scene is defined as a collection of the following sets: roles; state identifiers;
an initial state identifier; final state identifiers; access state identifiers for each role; exit
state identifiers for each role; and cardinality constraints on agents per role.

Systems like Islander have been used in what is essentially aclient-server mode,
where interacting peers must connect through a central server that enforces whatever
synchronisation and sequencing the chosen interaction model requires. This is a very
different way of using interaction models from that described using LCC but there is
nothing to prevent state machine models from being used withthe LCC style of deploy-
ment (or vice versa). A more fundamental difference is in theway models are described
which, for LCC, is in the style of a declarative programming language.

10.3 Coordination Controlled by Local Constraints

Policy languages, such as those described in [27], are a means of specifying require-
ments imposed locally by a peer as conditions for interacting with other peers in differ-
ent contexts. Such specifications are useful because they provide a way of determining
some of the constraints on interaction in advance of actually interacting. Re-interpreted
from our viewpoint, this sets constraints locally that could interact with the global con-
straints set by an interaction model, affecting the likelihood that it would succeed. In this
view, policies are complementary to our approach but they offer an additional opportu-
nity (and problem) not discussed elsewhere in this paper. Policies allow the possibility
of making better guesses about the appropriateness of peersto perform roles required
by interaction models but, to take advantage of this, it is necessary to have rapid and
automatic ways of checking the satisfiability of local constraints with respect to (par-
tially complete) interaction models. In [42] we describe early, encouraging results in
applying a form of model checking to this problem.

10.4 Coordination via Shared Task or Service Specifications

In this paper we have assumed that entire interaction modelscan be shared and this is
the basis for coordination between peers as well as other features, such as matchmaking,
desirable in open peer-to-peer environments. An alternative view, promoted by specifi-
cation languages such as WSMO [18] and automated by systems such as IRS [39], is
that only task specifications should be shared between peers. These task specifications

47

differ from interaction models in that they do not describe the course of the interaction,
only the outcome that is desired by the peer posting the task.It is then necessary for
tasks posted by peers to be connected to other peers capable of perhaps performing
those tasks. This is facilitated by special purpose components known as mediators, that
relate task specifications to problem solver specificationsposted by peers that wish to
perform tasks. Programming of interactions independentlyof peers (our focus in this
paper) is not the aim of this sort of system, in which control of interaction remains local
to each peer. Instead, standardisation of task and problem solver specifications (using a
specification language originating in UPML [17]) is used to make tasks more flexibly
shared.

OWL-S is a domain-independentOWL ontology for describing web services such
that they can be reasoned about by users and middleware. With[35], a service is spec-
ified by three facets: the serviceprofile, servicemodelmodel, and servicegrounding.
The profile specifies what the service does and who provides it. The functionality is
described by typing inputs and outputs of the service, usingconcepts in some domain-
specific ontology external toOWL-S, the intention being that the ontology can be used
to find those services most closely resembling the requestedone. For instance, a pho-
tographer looking to buy a new 35mmSLR film camera might happily accept a digital
35mmSLR (closely related in the ontology), but would be less satisfied to be given a
35mm point-and-shoot film camera, which would be ontologically more distant. The
service model describes how the service operates, by means of atomic processes and a
workflow-like language to combine those processes into composite ones. The grounding
describes how to map from this high-level description to thelow-level implementation,
that is, how to invoke the service.

OWL-S is a language so does not, itself, specify any matchmaking process or in-
frastructure: service discovery and matchmaker querying,while enabled by design, are
not defined. Others, however, have built inference systems that useOWL-S. Perhaps the
best known matchmaker system is Semantic MatchMaker [45]. Here, service discov-
ery is achieved by insertingOWL-S descriptions into user-defined fields in theUDDI

record [43]. A semantic matchmaker is responsible for interpreting this to find matches
between clients and providers. More troublesome is the lackof provision in OWL-S

for changing or replacing the executing process. To resolvethis ‘broker paradox’ [44],
Semantic MatchMaker introduces an ‘exec’ primitive to indicate that a new, brokered,
process should be substituted in place of the executing one which negotiated the match-
making. The broker paradox is not a problem inLCC, since we can dynamically alter
the current interaction model, or instruct a participant toexecute a new one.

10.5 Coordination as Logic Programming

LCC can be viewed as an unusual from of logic programming in which the subgoals
of clauses are message passing subgoals or role changes. This, we believe, is a strength
of the approach because there exists a large body of engineers trained in this form of
computational logic. Other efforts, however, have produced different solutions to co-
ordination that also draw inspitation from logic programming. The Go! language [11],
for example, provides a multi-threaded environment in which agents are coordinated
via a shared memory store of beliefs, desires and intentions. This is a form of agent

48

oriented programming, using a standardised architecture,and therefore local agent be-
liefs (rather than interaction models as in LCC) are the anchor point for coordination.
Perhaps closer to LCC is the work being done on modelling multi-agent coordination
using logic programs, for example in [4] where the Event Calculus is used to specify
and analyse social constraints between agents (the motivation for this being similar to
that of [37]). For a logic programming view of LCC see [47].

11 Conclusion: What is the Simplest Thing That Could Possibly
Work?

In Section 3 to 7 we discussed six problems encountered when automated reasoning
systems must interact in large, open, distributed systems.These problems are: ontology
alignment; coalition formation; outcome prediction; maintaining shared knowledge; re-
specting local constraints; and relating interaction to process requirements. Our contri-
bution is to provide a novel integrative view across all these problems by turning control
of interaction into a declarative programming problem, thus bringing it within scope of
the existing tools and techniques. This is not to say that anyof our six problems are en-
tirely solved in this way (they are, arguably, too general tobe solved definitively) but by
making models of interaction explicit, via the LCC languageof Section 2.1, we are able
to tackle aspects of each of the problems that are difficult toaddress using conventional
declarative or agent oriented programming.

What is the simplest thing that could possibly work? The LCC language of Sec-
tion 2 is pared down to a minimal set of concepts that we have argued are essential to
describe intearctions in an executable form. Ontology matching using the interaction-
specific method described in Section 3 need not involve more than each individual peer
maintaining lists of matches between expressions that are useful specifically for the in-
teractions in which it is engaged. The event based matchmaker of Section 4 relies on
counting successes and failures generated from the underlying interaction mechanism
so this is no more complex from a user’s point of view than pageranking in the current
Web. Interaction context is maintained, in Section 5, by using parameters to roles in
the interaction model. Getting this right can be a sophisticated task for the designer of
an interaction model but those using interaction models need not be aware of this so-
phistication (just like the muddy children in our example needn’t have been aware that
the interaction model in which they were involved was constructed in a devious way).
One simple reaction to brittleness of interaction (our topic in Section 6) is to endure
it as a fact of life in the same way as we tolerate brittleness in conventional Web ser-
vices. If this proves too brittle, however, our declarativestyle of modelling allows us
to increase flexibility in some respects (via constraint handling and adaptation) without
requiring individual peers to become significantly more sophisticated. All of the meth-
ods described in these sections could be made more complex asneeds demand but none
of them require great sophistication from individual usersof the peer to peer system.

Simplicity may also be achieved through familiarity, and here the issue is whether
those who wish to describe (rather than only use) interactions would adopt any language
other than the one with which they are already familiar. Section 7 demonstrates one
way of bridging this gap by write interpreters for the community-specific languages

49

in LCC. Writing each interpreter is complex, but done only once, while using it is
then simple. Furthermore, some of the complexity of model design can be reduced by
applying traditional methods of formal verification to interaction models, as we describe
in section 8.

Acknowledgements

This work was supported by the UK EPSRC Advanced Knowledge Technologies Inter-
disciplinary Research Collaboration (GR/N15754/01) and by the EU OpenKnowledge
project (FP6-027253).

References

1. J. Agusti, J. Puigsegur, and D. Robertson. A visual syntaxfor logic and logic programming.
Journal of Visual Languages and Computing, 9, 1998.

2. I. Altintas, A. Birnbaum, K. Baldridge, W. Sudholt, M. Miller, C. Amoreira, Y. Potier, and
B. Ludaescher. A framework for the design and reuse of grid workflows. In P. Herrero,
M. Perez, and V. Robles, editors,International Workshop on Scientific Aspects of Grid Com-
puting, pages 120–133. Springer-Verlag, Lecture Notes in Computer Science 3458, 2005.

3. A. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D. Roller,
D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business process execution language
for web services, version 1.1, 2003.

4. A. Artikis, J. Pitt, and M. Sergot. Animated specifications of computational societies. In
C. Castelfranchi and W. Lewis Johnson, editors,Proceedings of the 1st International Joint
Conference on Autonomous Agents and MultiAgent Systems, pages 1053–1061, Bologna,
Italy, July 15–19 2002. Association for Computing Machinery.

5. A. Barker and R. Mann. Integration of multiagent systems to AstroGrid. InProceedings of
Astronomical Data Analysis Software and Systems XV, European Space Astronomy Centre,
Spain, 2005.

6. J. Barwise. Scenes and other situations.Journal of Philosophy, 78(7):369–397, 1981.
7. M. Benerecetti, F. Giunchiglia, and L Serafini. Model checking multiagent systems.Journal

of Logic and Computation, 8(3):401–423, 1998.
8. P. Besana, D. Robertson, and M. rovatsos. Exploiting interaction contexts in p2p ontology

mapping. In2nd International Workshop on Peer to Peer Knowledge Management, San
Diego, California, USA, July 2005. CEUR Workshop Proceedings, ISSN 1613-0073, online
CEUR-WS.org/Vol-139/2.pdf.

9. R.H. Bordini, M. Fisher, C. Pardavila, and M. Wooldridge.Model checking agentspeak. In
Proceedings of the Second International Conference on Autonomous Agents and Multiagent
Systems, Melbourne, Australia, 2003. ACM Press.

10. R.H. Bordini, m. Fisher, W. Visser, and M. Wooldridge. State-space reduction techniques
in agent verification. InProceedings of the Third International Conference on Autonomous
Agents and Multiagent Systems, pages 896–903, New York, USA, 2004. ACM Press.

11. K. L. Clark and F. G. McCabe. Go! for multi-threaded deliberative agents. In J. A. Leite,
A. Omicini, L. Sterling, and P. Torroni, editors,Declarative Agent Languages and Tech-
nologies, First International Workshop, DALT 2003. Melbourne, Victoria, July 15th, 2003.
Workshop Notes, pages 17–32, 2003.

12. E.M. Clarke, O. Grumberg, and D.A. Peled.Model Checking. MIT Press, 1999.

50

13. Adrian Perreau de Pinninck, David Dupplaw, Spyros Kotoulas, and Ronny Siebes. The
openknowledge kernel. InProceedings of the IX CESSE conference, Vienna, Austria, 2007.

14. Adrian Perreau de Pinninck, David Dupplaw, Spyros Kotoulas, Ronny Siebes, David Rober-
son, and Frank van Harmelen. The architecture of the open-knowledge system. Technical
report, Open-knowledge consortium, 2006.

15. K. Decker, K. Sycara, and M. Williamson. Middle-agents for the internet. InProceedings of
the 15th International Joint Conference on Artificial Intelligence, Nagoya, Japan, 1997.

16. M. Esteva, D. de la Cruz, and C. Sierra. Islander: an electronic institutions editor. InPro-
ceedings of the 1st International Joint Conference on Autonomous Agents and MultiAgent
Systems, pages 1045–1052, 2002.

17. D. Fensel, R. Benjamins, E. Motta, and R. Wielinga. A framework for knowledge system
reuse. InProceedings of the International Joint Conference on Artificial Intelligence, Stock-
holm, Sweden, 1999.

18. D. Fensel and C Bussler. The web service modellign framework. Electronic commerce:
Research and applications, 1:113–137, 2002.

19. F. Giunchiglia, P. Shvaiko, and M. Yatskevich. S-match:an algorithm and an implementation
of semantic match. InProceedings of the European Semantic Web Symposium, pages 61–75,
2004.

20. D. Goldin, S. Smolka, P. Attie, and E. Sonderegger. Turing machines, transition systems and
interaction.Information and Computation, 194(2), 2004.

21. B. Grosz and S. Kraus. Collaborative plans for complex group action.Artificial Intelligence,
2, 1986.

22. J. Y. Halpen and Y. Moses. Knowledge and common knowledgein a distributed environment.
Journal of the ACM, 37(3):549–587, 1990.

23. F. Hassan and D Robertson. Constraint relaxation to reduce brittleness of distributed agent
ppotocols. InProceedings of the ECAI Workshop on Coordination in Emergent Agent Soci-
eties, Valencia, Spain, 2004.

24. F. Hassan, D Robertson, and C. Walton. Addressing constraint failures in an agent interaction
protocol. InProceedings of the 8th Pacific Rim International Workshop onMulti-Agent
Systems, Kuala Lumpur, Malasia, 2005.

25. G. J. Holzmann.The SPIN Model Checker: Primer and Reference Manual. Addison Wesley,
2003.

26. D. Jackson and J. Wing. Lightweight formal methods.IEEE Computer, April, 1996.
27. L. Kagal, T. Finin, and A. Joshi. A policy language for pervasive systems. InFourth IEEE

International Workshop on Policies for Distributed Systems and Networks, 2003.
28. Y. Kalfoglou and M Schorlemmer. Ontology mapping: the state of the art. Knowledge

Engineering Review, 2003.
29. N. Kavantzas, D. Burdett, G. Ritzinger, and Y. Lafon. Webservices choreography description

language version 1.0, 2004. W3C Working Draft 12 October 2004.
30. m. Klusch and K. Sycara. Brokering and matchmaking for coordination of agent societies:

a survey. InCoordination of Internet agents: models, technologies, and applications, pages
197–224. Springer-Verlag, 2001.

31. D. Lambert and D. Robertson. Matchmaking and brokering multi-party interactions using
historical performance data. InFourth International Joint Conference on Autonomous Agents
and Multi-agent Systems, 2005.

32. G. Li, J. Chen-Burger, and D Robertson. Mapping a business process model to a semantic
web services model. InProceedings of the IEEE International Conference on Web Services,
San Diego, 2004.

33. G. Li, D Robertson, and J. Chen-Burger. A novel approach for enacting distributed business
workflow on a peer-to-peer platform. InProceedings of the IEEE Conference on E-Business
Engineering, Beijing, 2005.

51

34. M. Lowry, A. Philpot, T. Pressburger, and I. Underwood. Aformal approach to domain-
oriented software design environments. InProceedings of the 9th Knowledge-Based Soft-
ware Engineering Conference, Monterey, California, pages 48–57, 1994.

35. D. Martin, m. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIlraith, S. Narayanan,
M. Paolucci, B. Parsia, T. Payne, E. Sirin, N. Srinivasan, and K. Sycara.OWL-S 1.1, 2004.

36. J. McGinnis and D. Robertson. Realising agent dialogueswith distributed protocols. In
Developments in Agent Communication: Proceedings of the Autonomous Agents and Multi-
agent Systems Workshop on Agent Communication, volume 3396. Springer Verlag Lecture
Notes in Artificial Intelligence, 2004.

37. S. McIlraith and T. Son. Adapting golog for composition of semantic web services. In
Proceedings of the Eighth International Conference on Knowledge Representation and Rea-
soning, pages 482–493, 2002.

38. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, part I/II.Information
and Computation, 100(1):1–77, 1992.

39. E. Motta, J. Domingue, L. Cabral, and M. Gaspari. Irs-ii:A framework and infrastructure
for semantic web services. InProceedings of the Second International Semantic Web Con-
ference, Florida, USA, 2003.

40. T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver, K. Glover,
M. Pocock, A. Wipat, and P. Li. Taverna: a tool for the composition and enactment of
bioinformatics workflows.Bioinformatics, 20(17):3045–3054, 2004.

41. N. Osman.Addressing Constraint Failures in Distributed Dialogue Protocols. PhD thesis,
School of Informatics, University of Edinburgh, 2003. MSc Thesis.

42. N. Osman, D. Robertson, and C. Walton. Run-time model checking of interaction and deontic
models for multi-agent systems. InProceedings of the Third European Workshop on Multi-
agent Systems, Brussels, Belgium, 2005.

43. M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Importing the semantic web in UDDI,
2002.

44. m. Paolucci, J. Soudry, N. Srinivasan, and K. Sycara. A broker for OWL-S web services. In
Proceedings of the 2004 AAAI Spring Symposium on Semantic Web Services, 2004.

45. M. Paulucci, T. Kawamura, T.R. Payne, and K. Sycara. Semantic matching of web services
capabilities. InProceedings of the International Semantic Web Conference, 2002.

46. D. Robertson. A lightweight coordination calculus for agent social norms. InProceedings
of Declarative Agent Languages and Technologies workshop at AAMAS, New York, USA,
2004.

47. D. Robertson. Multi-agent coordination as distributedlogic programming. InInternational
Conference on Logic Programming, Sant-Malo, France, 2004.

48. D. Robertson and J. Agusti.Software Blueprints: Lightweight Uses of Logic in Conceptual
Modelling. Addison Wesley/ACM Press, 1999. ISBN 0201398192.

49. D. Robertson, A. Bundy, R. Muetzelfeldt, M. Haggith, andM Uschold. Eco-Logic: Logic-
Based Approaches to Ecological Modelling. MIT Press (Logic Programming Series), 1991.
ISBN 0-262-18143-6.

50. Ronny Siebes, David Dupplaw, Spyros Kotoulas, Adrian Perreau de Pinninck, David Rober-
son, and Frank van Harmelen. The functional description of the open-knowledge system.
Technical report, Open-knowledge consortium, 2006.

51. R.G. Smith. The contract net protocol: high-level communication and control in a distributed
problem solver. InDistributed Artificial Intelligence, pages 357–366. Morgan Kaufmann
Publishers Inc., 1988.

52. W. van der Hoek and M. Wooldridge. On the logic of cooperation and propositional control.
Artificial Intelligence, 164(1-2), 2005.

52

53. J. van Leeuwen and J Wiedermann. A computational model ofinteraction in embedded sys-
tems. Technical Report UU-CS-02-2001, Dept. of Computer Science, University of Utrecht,
2001.

54. C. Walton. Model checking agent dialogues. InProceedings of the 2004 Workshop on
Declarative Agent Languages and Technologies, New York, USA, 2004.

55. C. Walton. Model checking multi-agent web services. InProceedings of AAAI Spring Sym-
posium on Semantic Web Services, California, USA, 2004.

56. C. Walton. Model checking multi-agent web services. InProceedings of the AAAI Spring
Symposium on Semantic Web Services, Stanford, USA, 2004. AAAI.

57. C. Walton and A Barker. An agent-based e-science experiment builder. InProceedings of the
1st International Workshop on Semantic Intelligent Middleware for the Web and the Grid,
Valencia, Spain, Aug 2004.

58. P. Wegner. Why interaction is more powerful than algorithms.Communications of the ACM,
40(5), 1997.

59. H. Wong and K. Sycara. A taxonomy of middle-agents for theinternet. InProceedings of
the International Conference on Multi-agent Systems, 2000.

60. M. Wooldridge, M. Fisher, m.P. Huget, and S. Parsons. Model checking multiagent systems
with MABLE. In Proceedings of the First International Conference on Autonomous Agents
and Multiagent Systems, Bologna, Italy, 2002.

61. M. Wooldridge and N.R. Jennings. The cooperative problem solving process.Journal of
Logic and Computation, 9(4), 1999.

62. L. Zeng, B. Benatallah, M Dumas, J. Kalagnanam, and Q Sheng. Quality driven web services
composition. InProceedings of the twelfth international conference on World Wide Web,
pages 411–421. ACM Press, 2003.

63. Z. Zhang and C. Zhang. An improvement to matchmaking algorithms for middle agents. In
Proceedings of the first international joint conference on Autonomous agents and multiagent
systems, pages 1340–1347. ACM Press, 2002.

