DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo — Trento (ltaly), Via Sommarive 14
http://www.dit.unitn.it

MODELS OF INTERACTION AS A GROUNDING FOR PEER
TO PEER KNOWLEDGE SHARING

David Robertson, Adam Barker, Paolo Besana, Alan Bundy,

Yun Heh Chen-Burgel, David Dupplaw, Fausto Giunchiglia, Frank van
Harmelen, Fadzil Hassan, Spyros Kotoulas, David Lambert, Guo Li,
Jarred McGinnis, Fiona McNeilll, Nardine Osman, Adrian Perreau de
Pinninck, Ronny Siebes, Carles Sierra, and Chris Walton

June 2007

Technical Report # DIT-07-040

Models of Interaction as a Grounding for Peer to Peer
Knowledge Sharing

David Robertsoh Adam Barket, Paolo Besana Alan Bundy,

Yun Heh Chen-Burger David Dupplaw, Fausto Giunchigli Frank van Harmeleh
Fadzil Hassah Spyros Kotoulas David Lambert, Guo Li', Jarred McGinni,
Fiona McNeill, Nardine Osmah Adrian Perreau de PinninekRonny Siebes

Carles Sierrd and Chris Waltoh

1 Informatics, University of Edinburgh, UK
2 Electronics and Computer Science, University of Southampt/K
3 Information and Communication Technology, University oéfito, Italy
4 Mathematics and Computer Science, Free University, Ardatar Netherlands
5 Artificial Intelligence Research Institute, Barcelonaafp

Abstract. Most current attempts to achieve reliable knowledge shanina large
scale have relied on pre-engineering of content and sumgljices. This, like
traditional knowledge engineering, does not by itself sdal large, open, peer
to peer systems because the cost of being precise aboutgbki@bsemantics
of services and their knowledge rises rapidly as more sesvjgarticipate. We
describe how to break out of this deadlock by focusing on sgicgrelated to
interaction and using this to avoid dependencyagpriori semantic agreement;
instead making semantic commitments incrementally at ime.tOur method
is based on interaction models that are mobile in the serwtettey may be
transferred to other components, this being a mechanissefoice composition
and for coalition formation. By shifting the emphasis tceirtction (the details of
which may be hidden from users) we can obtain knowledge safi sufficient
quality for sustainable communities of practice without tharrier of complex
meta-data provision prior to community formation.

1 Introduction

At the core of this paper is an unusual view of the semantid#/elh service coordi-
nation. When discussing semantics it is necessary to groundefinitions in some
domain in order to decide whether our formal machinery pem®appropriate infer-
ence. Normally this grounding is assumed to be in the Webicswthemselves, so
formal specification focuses on individual services. Itss@atural then to assume that
having defined the semantics of services precisely we camicathem freely as long
as our means of combination preserves the local semantit®sé services. This as-
sumption is ill founded for large scale systems becausenwtecombine services, we
normally share information (by connecting inputs to oug)@nd this raises the issue
of whether the semantics of information provided by a serigcpreserved by another
service obtaining that information. Universal standaatiem of semantics across ser-
vices appears impractical on a large scale; partly becawsallontological consensus

is difficult to achieve but also because the semantics oicemterfaces derives from
the complex semantics of the programs providing those cesvi

We explore an alternative approach, where services shateigknowledge of the
interactions in which they are engaged and these modeldertiction are used oper-
ationally as the anchor for describing the semantics ofkeraction. By shifting our
view in this way we change the boundaries of the semanticlpnolnstead of requir-
ing a universal semantics across services we require oatystmantics is consistent
(separately) for each instance of an interaction. This @agous to the use in human
affairs of contracts, which are devices for standardising sharing just those aspects
of semantics necessary for the integrity of specific intéoas.

In what follows we focus on interaction and we use models eftiient features of
required interactions in order to provide a context for kienige sharing. We are able
to exchange interaction models (and associated contextoalledge) between peérs
that may not have collaborated before, with the contextdeittended and adapted as
interaction proceeds. This changes the way in which key etesof distributed knowl-
edge sharing, such as ontology alignment, are approactuadibe semantic commit-
ments made for the purposes of interaction are not necssammitments to which
individual peers must adhere beyond the confines of a spéciécaction. Different
types of interaction require different commitments, anifiedént levels of integrity in
maintaining these.

1.1 A Scenario

To ground our discussion, we give a scenario to which we shaltn throughout this
paper:

Sarah works for a high-precision camera manufacturing @am@and is re-
sponsible for periodic procurement for market researchi jéteincludes iden-
tifying competitors’ newest products as they come onto tleket and pur-
chasing them for internal analysis. She knows which typesofera she needs,
but, to save money, may vary the ways she purchases themsishalways
sure what is the best way to purchase these cameras, butceianeendation
service she learns of an Internet shop; an auction servicergshe sets initial
and maximum prices and the auction service finds a supplieobypetitive
bidding) and a purchasing service direct from the manufactfwhich allows
some configuration of the order to take place on-line). Ed¢hease three ser-
vices has a different way of describing what they do but ttetesy she uses to
access the services can supply the translation necesssey tach of the three
interactions through. She tries all three automaticalympares the prices of-
fered; checks that she is comfortable with the way in whiehittberaction was
performed for her; then buys from the one she prefers.

Sarah will have encountered, in the scenario above, seigstas that will be ex-
plored later in this paper. Her ontology for describing a eampurchase had to be

5 We use the term “peer” above to emphasise the independeribe sérvices involved, rather
than to suggest any specific peer-to-peer architecture.

matched to those of available services (Section 3). Hermeoendation service had
to know which services might best be able to interact and lerthlem to do so (Sec-
tions 2 and 4). When they interact the contextual knowledggderd to interact reli-
ably should propagate to the appropriate services as p#reahteraction (Section 5).
When the services are being coordinated then it might bessacg to reconcile their
various constraints in order to avoid breaking the collation (Section 6). Before she
started, Sarah might have wanted to be reassured that #radétibn conforms to the
requirements of her business process (Section 7) and thattkeaction was reliable
(Section 8).

1.2 Structure of This Paper and its Link to Computation

Central to this paper is the idea that models of interactiam loe specified indepen-
dently of services but used operationally to coordinatecifigeservices. In Section 2
we describe a compact language for this purpose. The meshameeded to make the
language operational in a peer to peer setting are suffigienotpact that they can
specified in totality in this paper; and they are sufficielgse to an encoding in a
declarative language that a Prolog interpreter can be rdxdaby a simple syntactic
translation of the specification in Section 2. Similarlye thteraction model examples
of Figures 2, 3, 4, 9 and 13 translate directly to their operat versions. Together,
this makes it practical for the reader to understand andaesbding level the core
mechanisms specified in this paper. This style of compaotpbete, executable speci-
fication (made easy for programmers to pick up) is in the tialiof lightweight formal
methods [26, 48].

Our lightweight language allows us to demonstrate how arattion oriented view
of semantics allows us to tackle traditional semantic wedbl@ms in unusual ways.
Space prohibits us from presenting these in complete, ¢xbleudetail but for each
method there exists a detailed paper (see below), so itfisisuit to provide a compact
formal reconstruction of these in a uniform style. Then, @cn 9, we summarise an
implemented system for peer to peer knowledge sharing thabdies many of these
ideas. The issues addressed are:

Dynamic ontology mapping (Section 3): necessary because we cannot rely solely on
a priori ontology mapping. Details in [8].

Coalition formation (Section 4): necessary because the semantics of an inoerést
sensitive to the choice of which peers participate in theraattion. Details in [46].
Maintaining interaction context (Section 5): necessary because interaction models
represent contracts between peers and the semantics oftéhadtion depends on

contextual information accompanying these contractsaildah [47].

Making interactions less brittle (Section 6): necessary because peers are not as pre-
dictable or stable as subroutines in a programming langsagfeis useful to have
mechanisms to avoid this or reduce its impact. Details in 383

Satisfying requirements on the interaction procesg(Section 7): necessary because on
the Internetlanguages for relating requirements (padeitybusiness requirements)
to services are becoming established, so interaction rastieluld connect to these
rather than compete with them. Details in [32].

Building interaction models more reliably (Section 8): necessary because the design
of interaction models is of similar engineering complexitythe design of pro-
grams, hence we need analogous robust mechanisms to redude éesign. De-
tails in [42, 55].

The aim of this paper is to describe an alternative view adriamttion between peers
that share knowledge. What a “peer” might be is understoffdrdntly in different
communities (in multi-agent systems a peer is an agent; en@astic web a peer is
a program supplying a service) and is supported on diffardrastructures (in multi-
agent systems via performative based message passingbisefiéce architectures by
connecting to WSDL interfaces). Our specification languidigeigh computational, is
more compact than specification languages that have grottrinwhose communities
and infrastructures but it can be related back to them, asiseeiss in Section 10. We
have also applied our methods direclty in business modg[&3] and in e-Science
[5,57].

2 Interaction Modelling

In this section we describe a basic language for modellingractions. Our use of
this language in the current section will be for specificatad interactions but in the
sections that follow it will be used for executing interacts. We do not claim that this
language, as it stands, is ideally suited to deploymentdrcthrent Web services arena
- on the contrary, we would expect it to be adapted to whatspecification standards
emerge (the most stable currently being RDF and OWL, seedbebd) and linked to
appropriate forms of service invocation (for example, weehased WSDL). The aim of
this paper is to present the essentials of our interacti@nted method in as compact
a form as possible.

2.1 A Lightweight Coordination Calculus

Our aim in this section is to define a language that is as siaplgossible while also
being able to describe interactions like the one in our séeé Section 1.1. It is built
upon a few simple principles:

— Interactions can be defined as a collection of (separate)itiefis for the roles of
each peer in the interaction.

— To undertake their roles, peers follow a sequence of aietsit

— The most primitive activity is to send or receive a message.

— Peers may change role (recursively) as an activity.

— Constraints may be defined on activities or role changes.

Figure 1 defines the syntax of the Lightweight Coordinati@icGlus (LCC). An
interaction model in LCC is a set of clauses, each of whichndsfhow a role in the
interaction must be performed. Roles are described by e dyrole and an identifier
for the individual peer undertaking that role. The definitiof performance of a role
is constructed using combinations of the sequence opdtatern’) or choice operator

(‘or") to connect messages and changes of role. Messages aemitgoing to another
peerin a given role &) orincoming from another peer in a given rolest’). Message
input/output or change of role can be governed by a constdafined using the nor-
mal logical operators for conjunction, disjunction and agn. Notice that there is no
commitment to the system of logic through which constraamssolved - so different
peers might operate different constraint solvers (inaigdiuman intervention).

Model := {Clause, ...}
Clause := Role :: Def
Role := a(Type, Id)
Def := Role | Message | Def then Def | Def or Def
Message := M = Role| M = Role — C | M < Role|C «— M < Role
C := Constant | P(Term,...) | ~C|CAC|CVC
Type := Term
Id := Constant | Variable
M :=Term
Term := Constant | Variable | P(Term,...)
Constant := lower case character sequence or number
Variable := upper case character sequence or number

Fig. 1. LCC syntax

2.2 Return to Scenario

To demonstrate how LCC is used, we describe the three intenamodels of our sce-
nario from Section 1.1. Figure 2 gives the first of these: adstsopping service. This
contains two clauses: the first defining the interaction ftbeviewpoint of the buyer;
the second from the role of the shopkeeper. Only two rolegamdved in this interac-
tion so it is easy to see the symmetry between messages senelpeer and received
by the other. The interaction simply involves the buyer agkhe shopkeeper if it has
the item, X, then the shopkeeper sending the prieethen the buyer offering to buy at
that price and the shopkeeper confirming the sale.

The constraints in the interaction model of Figureed(X), shop(S), af ford(X, P)
andin_stock(X, P) - must be satisfied by the peers in the role to which the con-
straint is attached (for example the buyer must satisfyithford constraint). We write
known(A, C) to denote that the peer with identifidrknows the axionC'. LCC is not
predicated on a specific constraint language (in fact wd shabunter two constraint
languages in this paper) but a common choice of constrgimésentation in program-
ming is Horn clauses, so we follow this conventional path.sBpplying Horn clause
axioms in this way we can describe peer knowledge sufficemoimplete the inter-
action model. For instance, if we have a buyerand a shopkeepet, that know the
following:

a(buyer, B) ::
ask(X) = a(shopkeeper,S) «— need(X) and shop(S) then
price(X, P) < a(shopkeeper,S) then
buy(X, P) = a(shopkeeper,S) «— af ford(X, P) then
sold(X, P) < a(shopkeeper,S)

a(shopkeeper, S) ::
ask(X) < a(buyer, B) then
price(X, P) = a(buyer, B) « in_stock(X, P) then
buy(X, P) < a(buyer, B) then
sold(X,P) = a(buyer, B)

Fig. 2. Shop interaction model

known(b, need(canonS500))

known(b, shop(s))

known(b, af ford(canonS500, P) — P < 250)
kEnown(s, in_stock(canonS500,249))

then the sequence of messages in Table 1 satisfies the tidanaodel.

Recipient Message Sender
a(shopkeeper,s) ask(canonS500) a(buyer,b))
a(buyer,b) price(canonS500,249) a(shopkeeper,s))
a(shopkeeper,s) buy(canonS500,249) a(buyer, p))
a(buyer,b) sold(canonS500,249) a(shopkeeper,s))

Table 1. Message sequence satisfying interaction model of Figure 2

Figure 3 gives the second scenario in which a pgeseeking a vendor for an item,
X, sends a message to an auctiondestating thatS requiresX and wants the auction
for it to start at purchase valdeand stop if the purchase value exceeds maximum value
M with the bid value increasing in increments ofOn receiving this requirement the
auctioneer assumes the role of a caller for bids from the kgeondors,V's, that it
recognises and, if the call results in a bid to sell the itersamhe price,P, then the
auctioneer offers that price to the seeker who clinches ¢a\wlith the vendor and gets
its agreement - otherwise the auctioneer signals that ro wffis obtained. The role of
caller (assumed by the auctioneer) involves two recursidhs first recursion is over
the value set by the seeker: the caller starts with the iniibue, L, and changes role
to a natifier for the vendor peers iris that they have a potential sale of an item of type
X atvalueL. If avendor,V, is obtained by the notifier then the offered pri¢g,is set
to L; if not the price is incremented by the given amountand the role recurses. The

second recursion is within the notifier which tells each vamf, in Vs that item X
is needed at current offer pricé€;; then receives a message frdmeither offering to
supply or declining.

a(seeker, S) ::
require(X, L, M,I) = a(auctioneer, A) «— need(X, L, M,I) and auction_house(A) then
of fer(V,X,P) < a(auctioneer, A) then
clinch(X, P) = a(vendor, V') then or
agreed(X,P) < a(vendor,V)
no_of fer(X) < a(auctioneer, A)

a(auctioneer, A) ::
require(X, L, M,I) < a(seeker,S) then
a(caller(Vs,X,L,M,I,V,P),A) «— vendors(Vs) then
of fer(V,X,P) = a(seeker,S) «— not(P = failed) or
<no_offer(X) = a(seeker,S) — P = failed)

a(caller(Vs, X, L,M,I,V, P), A) ::
a(notifier(Vs, X, L, Ps), A) then
null — s(V) € Psand P = L or
null — L > M and P = failed or
a(caller(Vs, X, Ln, M,I,V,P),A) — not(s(V) € Ps)and Ln = L+ 1 and Ln < M

a(notifier(Vs,X,C, Ps), A) ::
need(X,C) = a(vendor,V) «— Vs = [V|Vr] then
Ps = [s(V)|Pr] « supply(X,C) < a(vendor,V) or
Ps = Pr « decline(X,C) < a(vendor,V)
a(notifier(Vr,X,C, Pr), A)
null «— Vs =[] and Ps = |

) then or

a(vendor,V) ::
need(X,C) <
supply (X, C)
(decline(X, C)
a(vendor,V
(clinch(X, P)
agreed(X, P)

a(notifier(Vs, X, C, Ps), A) then
= a(notifier(Vs, X,C, Ps), A) « sell(X,C) or h

= a(notifier(Vs, X,C, Ps),A) «— not(sell(X,C)) e er
a(seeker, S) then
a(seeker, S))

4

Fig. 3. Auction interaction model

Now in order to satisfy the interaction model we define thdofeing example
knowledge possessed by seekeguctioneerg, and two vendorg;1 andv2:

known(b, need(canon.S500, 100, 200, 10))
known(b, auction_house(a))

known(a, vendors([vl, v2]))

known(v1, sell(canonS500,110))
known(v2, sell(canonS500, 170))

and then the sequence of messages in Table 2 satisfies tfzefitie model.

Recipient Message Sender
a(auctioneer, a) require(canonS500, 100, 200, 10) a(seeker,b)
a(vendor,vl) need(canonS500, 100) a(notifier([vl, v2], canonS500, 100, Psl),a)
a(notifier([vl, v2], canonS500, 100, Psl),a) decline(canonS500, 100) a(vendor, vl)
a(vendor,v2) need(canonS500, 100) a(notifier([v2], canonS500, 100, Psl),a)
a(notifier([v2], canonS500, 100, Psl), a) decline(canonS500, 100) a(vendor,v2))
a(vendor,vl) need(canonS500, 110) a(notifier([vl, v2], canonS500, 110, Ps2),a)
a(notifier([vl, v2], canonS500, 110, Ps2),a) supply(canon.S500, 110) a(vendor,vl)
a(vendor,v2) need(canonS500, 110) a(notifier([v2], canonS500, 110, Ps3), a)
a(notifier([v2], canonS500, 110, Ps3), a) decline(canonS500, 110) a(vendor,v2)
a(seeker,b) of fer(vl, canonS500, 110) a(auctioneer, a)
a(vendor,vl) clinch(canonS500, 110) a(seeker,b)
a(seeker,b) agreed(canonS500,110) a(vendor,vl)

Table 2. Message sequence satisfying interaction model of Figure 3

Figure 4 gives the third scenario in which a peer that wantseta customer of a
manufacturer asks to buy an item of tyefrom the manufacturer, then enters into a
negotiation with the manufacturer about the attributesiiregl to configure the item to
the customer’s requirements. The negotiation is simplycansve dialogue between
manufacturer and customer with, for each attributgif the set of attributes4s), the
manufacturer offering the available attribute and the @ustr accepting it. When all
the attributes have been accepted in this way, there is arfiteathange committing the
customer to the accepted attribute s&i, for X.

In order to satisfy this interaction model we define the fellog example of knowl-
edge possessed by custonbegnd manufacturer;:

known(b, need(canon5500))

known(b, sells(canonS500,m))

known(b, acceptable(memory(M)) — M > 32)

known(b, acceptable(price(M, P)) «— P < 250)

known(m, attributes(canonS500, [memory(M), price(M, P)]))
known(m, available(memory(32)))

known(m, available(memory(64)))

known(m, available(memory(128)))

known(m, available(price(M, P)) «— P =180+ M)

a(customer,C) ::
ask(buy(X)) = a(manufacturer, M) < need(X) and sells(X, M) then
an_cus(X, M, [}),C)

a(n-cus(X, M, Aa),
of fer(4)
accept(A)

X

a(n_cus(

n-man(X,C,_), M) < acceptable(A) then

C) =
< a(n-man(X,C,_), M) then
= qf) or
M, [att(A)[Aa]), C)

=

)

ask(commit) a(n-man(X,C,_), M) then
tell(commit(Aa)) = a(n-man(X,C,_), M) then
tell(sold(Aa)) < a(n-man(X,C,_), M)

a(manufacturer, M) :
ask(buy(X)) < a(customer,C) then
a(n-man(X, C, As), M) «— attributes(X, As)

a(n-man(X,C, As), M) ::
of fer(A) = a(n-cus(X,M,_),C) «— As = [A|T] and available(A) then
accept(A) < a(n_cus(X, M, _),C) then or
a(n-man(X,C,T), M)
ask(commit) = a(n_cus(X,M,_),C) — As =[] then
tell(commit(As)) < a(n_cus(X,M,_),C) then
tell(sold(As)) = a(n-cus(X,M,_),C)

Fig. 4. Manufacturer interaction model

10

and then the sequence of messages in Table 3 satisfies ttzefite model.

Recipient Message Sender
a(manufacturer,m) ask(buy(canonS500)) a(customer, b)
a(n_cus(canonS500, m, Aal), b) of fer(memory(32)) a(n-man(canonS500, b {memory(32),]) m)
- T ’ B »7 | price(32,P) |77

a(n-man(canonS500, b, Asl), m) accept(memory(32)) a(n_cus(canonS500,m, []),b)
a(n_cus(canonS500, m, Aa2),b) of fer(price(32,212)) a(n-man(canonS500, b, [price(32,212)]), m)
a(n-man(canonS500, b, As2),m) accept(price(32,212)) a(n_cus(canonS500, m, [att(memory(32))]), b)
a(n_cus(canonS500, m, Aa3),b) ask(commit) a(n_man(canonS500, b, []), m)

att(price(32,212)),

a(n-man(canonS500, b, As3), m) tell(commit(att(memory(32))

)) a(n_cus(canonS500, m, {att(price(32,212)),w)7b)

att(memory(32))

Table 3. Message sequence satisfying interaction model of Figure 4

Note the duality in our understanding of the interaction elsdve have described
in this section. The interaction models of figures 2, 3 andedpaiograms because they
use the data structures and recursive computation of imadit(logic) programming
languages. They also are distributed process descriptieosuse their purpose is to
constrain the sequences of messages passed between pdbes@auses of interaction
models constrain processes on (possibly) different paysiachines.

2.3 Executing Interaction Models

LCC is a specification language but it is also executableasi$, normal for declarative
languages, it admits many different models of computatiur.choice of computation
method, however, has important engineering implicatidaslemonstrate this, consider
the following three computation methods:

Interaction model run on a single peer : With this method there is no distribution of
the model to peers. Instead, the model is run on a single peéng as a server).
This is the style of execution often used with, for examplecaitable business
process modelling languages such as BPEL4AWS. It is not pepeér because
it is rigidly centralised but we have used LCC in this way t@inate systems
composed from traditional Web services offering only WSbteifaces ([57]).

Interaction model clauses distributed across peers Each clause in an LCC interac-
tion model is independent of the others so as peers assufeeedif roles in an
interaction they can choose the appropriate clause frommtbéel and run with
it. Synchronisation is through message passing only, stselcan be chosen and
used by peers independently as long as there is a mechanidmdaing from
which interaction model each clause has been derived. Shaspeer to peer so-
lution because all peers have the same clause interpretibties. It allows the
interaction model to be distributed across peers but, striedistributed by clause,
it is not always possible to reconstruct the global statdefibteraction model (as

11

we can when confined to a single peer), since this would meachsgnising the
union of its distributed clauses. Reconstructing the dletsde is not necessary for
many applications but, where it is, there is another peeety pption.

Interaction model transported with messages: In this style of deployment we dis-
tribute the interaction model clauses as above but eachip&aeceives a message
containing an interaction model, having selected and usegparopriate clause,
replaces it with the interaction model and transmits it wifitt message to the next
peer in the interaction. This keeps the current state ofriteraction together but
assumes a linear style of interaction in which exactly onegage is in transit at
any instant - in other words the interaction consists of @rcbbimessages totally
ordered over time. Many common service interactions ardisfform, or can be
constructed from chains of this form.

In the remainder of this paper we shall adopt the linear moélebmputation in
which global state is transmitted with messages, becausasttsimpler to discuss.
Many of the concepts we introduce also apply to non-line@ractions without global
state.

Figure 5 describes informally the main components of irtééoa between peers.
Later, Figure 6 gives a precise definition, using a linear potation model, that is con-
sistent with the informal description. Ellipses in Figurarg processes; rectangles are
data; and arcs denote the main inputs and outputs of prac€eBse large circle in the
diagram encloses the components effecting local stateeopéter with respect to the
interaction, which interacts with the internal state of gfeer via constraints specified
in the interaction model. The only means of peer commurooat by message pass-
ing and we assume a mechanism (specific to the message padsastructure) for
decoding from any message appropriate information desgritne interaction model
associated with that message (see Section 2.4 for an exahfie sort of mecha-
nism). To know its obligations within the interaction theepenust identify the role it
is to perform and (by choosing the appropriate clause) fiedctivrent model for that
role. It then must attempt to discharge any obligations gehat model, which it does
by identifying those constraints the model places at theeciitime and, if possible,
satisfying them. In the process it may accept messagessbitother peers and send
messages out to peers. Each message sent out must be roatedgpropriate peer,
and the choice of recipient peer may be determined by thesselir@ctly (if our infras-
tructure requires strictly point to point communicatioriseen peers) or entrusted to a
message router (if a routing infrastructure such as IXTAsel).

The overview of Figure 5 is high level, so it makes no committie how messages
are structured or how the obligations of interactions asltirged. To make these
commitments we must be more specific about computation,hwisithe topic of our
next section.

2.4 A Basic, Linear Computation Method For Interaction Models

To be precise in our analysis of the interaction betweengeer introduce, in Fig-
ure 6, a formal definition of the linear computation introdddn the previous section.

12

Interaction model

Select role
Encode
interaction
Model of current role model

Messages Discharge Messages

from peers current obligations to peers
of role

Constraints

Internal process
controlled by peer

Fig. 5. Conceptual model of local state change of a peer

Decode
interaction
model

Receive message Route message

Although this assumes a shared interaction model (tratestinita messages), each tran-
sition is performed by a specific peer using only the part efittteraction visible to that
peer. A sequence of transitions is initiated by a single pétr some goal to achieve
and the sequence terminates successfully only when thatpadnfer from its local
knowledge of the interaction that it has obtained that goal.

Expressions 1 and 2 in Figure 6 generate transition seqaeBgpression 3 in Fig-
ure 6 describes the general form of any such sequence. kofjahwrough expression 3
for a peerpl attempting to establish goél,;, it begins with the selection byl of an

1
interaction model {2 5 &1); then selection of the local state pertainingfiofrom the
S
shared model§; 2 S,1); then a transition of the local state fpt according to the

model (S, Sl S/,); then merging of the ensuing local state with the shared

state to produce a new shared interaction st&fe @ S1 = &2); then repeating the
transitions until reaching a final state in which the reqdigeal can be derived using
pl’s local knowledgek,: (Sy) - Gp1).

Having defined, in Figure 6, a formal model of interaction, @ascribe in Sec-
tions 2.5to 2.8 how this connects to the LCC language thattweduces in Section 2.1.
The operations that our language must support in order ttbcaorto Figure 6 are given
as part of each section heading.

13

o(p.Gy) = 258 Ni(S,6,87) A ky(S) Gy €
SO, A
M;,S,My ’
i(S, Mi,S;) = S=8;v | Sp A @)
SuUS=8A
i(S', Mo, Sy)

where:

p is a unique identifier for a peer.

— G, is a goal that peeP wants to achieve.

— &8, is a state of interaction which contains the interactiomelased to coordinate peers; the
knowledge shared by peers participating in the interactond a description of their current
progress in pursuing the interactiafi.is the set of all the available initial interaction states.

2 5 S selects an initial interaction stat8, for peerP from (2.

— M is the current set of messages sent by peers. The empty sesstges ig.

— o(P,Gyp) is true when goal7, is attained by peeP.

— (S, M1, Sy) is true when a sequence of interactions allows sfgtéo be derived fromS
given an initial set of messagés; .

— kp(S) is a function giving the knowledge visible to peRrcontained in states.

-8 j S, selects the state,, pertaining specifically to ped? from the interaction stat§.

-Sp Mi,5,Mn S]’J is a transition of the state of peétto a new stateS), given the current
set of inter-peer messagéd¥,;, and producing the new set of messagés.

-Sp U S is a function that merges the stat®,, specific to peelP with interaction stateS
(replacing any earlier interaction state for pder.

Every successful, terminating interaction satisfyingp1, Gp1) can then be described by the
following sequence of relations (obtained by expanding theelation within expression 1 using
expression 2):

Mq,81,M> Moy ,85,M3
_ —_—

Sy U8 =8s...kpi(Ss) F Gy
(3)

1 s s s
5828, S 08 =828

Fig. 6. Formal model of linearised peer interaction

14
. . P
2.5 Initial Interaction State: 2 > S

For a peerp, to initiate an interaction it must select an appropriaigsihstate,S, from

the set of possible such initial statés, In Section 2.1 we have given a way to describe

S, based on interaction models. This, however, allows irdipitnany possible elements

of £2 to be constructed in theory (through manual coding, symhet. In practise,

these interaction models are (like traditional programslt lor borrowed for specific

tasks of use t@, so 2 might come from a local library. In an open system, where

knowing of the existence of helpful interaction models iSssue, then the contents of

£2 may not fully be known t@ and mechanisms of discovery are required, as we discuss

in Section 4. Automated synthesis of some element3 &f discussed in Section 6.
Given some way of (partially) populating, there remains the issue fpiof choos-

ing which initial state to use. This is determined by somei@ghomade by based on

the interaction modelP,, and shared knowledgés, components of the initial states

(recall that in LCC the initial state is a term of the fomm(¢, Py, K)). We denote

this choice ag(p, Py, K) in the expression below but do not define the mechanism by

which that choice is made, since it varies according to apptin - anything from a

fully automated choice to a decision made by a human operator

058 « S NS=m(6,Py,K) A clp, Py, K) (4)

2.6 State Selection by a peerS i) S,

Given that in LCC the state of interaction always is exprdsse a term of the form
m(Ps, Py, K), the selection of the current state for a pgesimply requires the selec-
tion of the appropriate clause(R,p) :: D, defining (in D) the interaction stare fqr
when performing roleR.

§28, « 3IRD.(S, €8 NS, =a(R,p): D) 5)
2.7 State Transition by a peer:S, M:, S, Mn S,

Recall that, from Section 2.6 we can know the state of a speacil in the interaction
by selecting the appropriate clause. This clause gives, @hd we now explain how to
advance the state associated with this role to the new veddithat clauses,, given
an input message setf;, and producing a new message 94t,, which contains those
messages from/; that have not been processed plus additional messages tayltresd
state transition. Since we shall need a sequence of tramsitd the clause faf, we
useC; to denote the start of that sequence éhdhe end. The rewrite rules of Figure 7
are applied to give the transition sequence of expression 6.

15

M??)S7Mn

C; C; < 3R,D.(C; = a(R,p) :: D) A (6)
R;,M; ,M;+1,S,0;
C; T G A
Ri,M;t1,M;42,5,0;
Cit1 S dbar = Cita N A
Ri,M;_1,M;,S,0;
Cjo1 ———"
My, = M; U O
R p RuMMeSO. o if B RMi,Mo,S.0 -
Aq or Az FiMi Mo, 8,0, FE if —closed(Asz) A
A, BiMiMoSO o
Aq or As FuMiMo,5,0, FE if —closed(Ar) A
A, RiMiMoSO o
Ay then Ay ZMiMoS O pypen A, if Ay LMo MoS0, -
A then Az FiMi Mo, 8,0, Aq then E if closed(A1) A
A, FiMiMoSO o
C e M < g ZMeMidmBEM < DVS0 Ar o AYif m(Ri, M < A) € M A
satisfy(C)
M = A ¢ BMMoSimEM= D)y o A) if satisfied(S, C)
Ry, M;,My,S,0 . L
null — C —————"> c(null) if satisfied(S,C)
Ry, M;,My,S,0 .
a(R,I) « C ———" a(R,I): B if clause(S,a(R,I):: B) A
satis fied(S,C)
An interaction model term is decided to be closed as follows:
closed(c(X))
closed(A then B) «— closed(A) A closed(B) (7)

closed(X :: D) «— closed(D)

satisfied(S, C) is true if constrainC is satisfiable given the peer’s current state of knowledge.
clause(S, X) is true if clauseX appears in the interaction modg] as defined in Figure 1.

Fig. 7. Rewrite rules for expansion of an interaction model clause

2.8 Merging Interaction State: S, Os=s

The interaction state§, is a term of the formm (Ps, P,, K) and the state relevant to an
individual peerS,, always is a LCC clause of the fora{R, p) :: D. MergingS,, with

S therefore is done simply by replacingdhthe (now obsolete) clause in whigtplays
role R with its extended versios,,.

16

(a(R,p) = D) US = (S = {a(R,p) = D')}) U{a(R,p) :: D)} (8)

2.9 Interaction-Specific Knowledgek,(S) F G,

Shared knowledge in LCC is maintained in the set of axialfidan the interaction state
m(Ps, Py, K) s0 a peer’s goaly,, can be satisfied if it is satisfiable frofi or through
the peer’s own internal satisfiability mechanisms. Thisegponds to thaatisfied
relation introduced with the rewrite rules of Figure 7.

kp(S) F G, — satisfied(S,Gp) 9)

This completes our operational specification for LCC coredimvith the style of
linear deployment given in Figure 6. In an ideal world (in ainiall peers were aware
of each other; conformed to the same ontology and coopepatédctly to obtain de-
sired interactions) we would now simply deploy this systeynitaplementing it for
an appropriate message passing infrastructure. The bttdmowever, presents many
obstacles to so doing. In the remainder of this paper we densiow some of these
obstacles may be overcome. An important point throughotitas, by anchoring our
solutions in a peer to peer architecture with a strong natianodelling of interaction,
it is technically possible to tackle these obstacles usielljkmown methods that do not
necessarily require huge investments up-front from the ¥éghmunity.

3 Dynamic Ontology Matching

We defined, in Section 2.4, a mechanism by which a peer may matage transition,

Sp M5, M, S, but we assumed when doing this that the terminology usedein th
message sell;, is consistent with the terminology actually used by thet pegr,p. In

an open system (where there is no restriction on the terogyalised by each peer) this
need not be true. When a message is created concepts in thex'seapresentation of
the domain are mapped to the terms that compose the messafgneing to the syntax
of that language. Then the receiver must map the terms in &éssage to the conceptsin
its own representation, helped by the syntax rules thattstre the message. If the terms
are mapped to equivalent concepts by the sender and by thwaepeers, then the
understanding is correct. A misunderstanding happensdira ts mapped to different
concepts by the sender and the receiver, while the interaatiay fail spuriously if the
receiver does not succeed in mapping a term that shouldsporel.

To avoid such misunderstandings we have two means of coattapt the peer’s
state S, or map between terms i, and/;. Mappings are normally viewed as a more
modular form of control because they allow the ontologidigiranent of interaction to
remain distinct from whatever inference is performed lbchly a peer. Indeed, much
of traditional ontology mapping is supposed to be done omwlogy representations
independent of interactions and prior to those ontologédsdused [19, 28]. The prob-
lem with thisa priori approach is that mapping cannot be determined separataty fr
interaction state unless it is possible to predict all tlaest of all the peers in all po-
tential interactions. This is demonstrated by examiningaxample interaction models

17

in Figures 2 to 4, all of which contain constraints that anrappate peer must satisfy
in order to change its state in the interaction. For exantpkpeer adopting the buyer
role in Figure 2 must satisfy the constraitted(X) and shop(S) in order to send the
first messages;sk(X) to shopkeepe$. The identity ofX is determined by the current
state of the buyer but the ontology used has to match thateo$liopkeeper. We can
only judge whether a mapping of terms was neededXfaf we know the buyer’s and
seller’s constraint solving choices, which normally aretpéthe private, internal state
of each peer. Therefore, we cannot expect reliable ontcébgiapping in open systems
(in which peer state is not known and interaction models atefired) without some
form of dynamic mapping to keep ontology alignment on tratkituations that were
not predicted prior to interaction.

It is straightforward to insert an ontology mapping stemiatir conceptual model
of interaction from Section 2.4 by adapting expressionsd &to give expressions 10
and 11 respectively. Expression 10 is obtained by definitgraction models in the
setf? with an accompanying sef), of ontological constraints (which may be empty).
These constraints are carried along withinto the interaction, producing as a conse-
guence some final set of constraint®;. Expression 11 applies state transitions for
each peersS,, but requires that a mapping relationap(M;, O;, Sp, M, O,,), applies
between the current message g, and the message sétf/, used in applying the
appropriate state transition. This mapping can adapt thelagical constraints from
the current set));, to the new set),,.

o(p,Gp) Q§<S,O> A i(S,0,0,87,0f) N kp(Sp) G, (10)

§28, A
map(M;, O;, Sp, M, 0y,) A
i(8,M;,0,81,05) = S=8 v [g, WS o (11)

SU8=8n
i(S', My, 0, 87,05)

The purpose of thenap relation is to define a set of axioms that enable the on-
tology used in the messagey;, to connect to the ontology used &),. For exam-
ple, in Section 2.2 the shopkeeper,using the interaction model of Figure 2 must
receive from the buyeh, a message of the formsk(X). Suppose that the message
actually sent by was in factrequire(canonS500) becauseé used a different ontol-
ogy. We then want thexap relation at to add information sufficient féf to conclude
require(canonS500) — ask(canonS500). Although this might seem an elementary
example it introduces a number of key points:

— There is no need, as far as a specific interaction is concgimedovide a mapping
any more general than for a specific object. We do not carehehetquire(X) —
ask(X) holds for any object other thamnon.S500 or for any peer other thanbe-
cause only that object matters for this part of the intecactihis form of mapping

18

will therefore tend, on each occasion, to be much more spetifin generalised
mappings between ontologies.

— We would not want to insist that accept a generdlX.require(X) — ask(X)
axiom because, in general, we don’t necessarily ask fohallthings we require
(nor, incidentally, do we always require the things we astdp

— The word “require” is used in many different ways in Englisbpénding on the
interaction. For instance a message of the ferquire(faster_service) places
a very different meaning (one that is not anticipated by owmneple interaction

model) onrequire than our earlier requirement for a specific type of camera. We

could attempt to accommodate such distinctions in a genat@ogy mapping but
this would require intricate forms of engineering (and sbconsensus) to produce
“the correct” disambiguation. Wordnet defines seven seoft® word “ask” and
four senses of the word “require” so we we would need to cansadl least all the
combinations of these senses in order to ensure disamiiguahen the words
interact; then follow these through into the ontologicdimiéons. To address just
one of these combinations we would have to extend the mapgefigitions to
have at least two different classesefyuire, each applying to different classes
of object - one a form of merchandise; the other a from of fiomztl requirement
- then we would need to specify (disjoint) classes of merdismand functional
requirements. This becomes prohibitively expense when awe tho, simultane-
ously, consider all the other word-sense combinations aaa¢tan never exclude
the possibility that someone invents a valid form of intéi@acthat breaches our
‘consensus”.

The above are reasons why the strong notion of global seteedgfined ontology
mappings do not appear attractive for open peer to peemagstxcept in limited cases
where there is a stable consensus on ontology (for exampde wie are federating a
collection of well known databases using database schéfitegt, then, is the least that
our interaction models require?

Returning to our example, we want theap relation when applied by selles,
interacting with buyer, as follows:

map({m(a(shopkeeper, s), require(canonS500) < a(buyer,b))},
{,
a(shopkeeper, s) ::
ask(X) < a(buyer, B) then
price(X, P) = a(buyer, B) <« in_stock(X, P) then
buy(X, P) < a(buyer, B) then
sold(X,P) = a(buyer, B)
M!
On)

to give the bindings:

M! = {m(a(shopkeeper, s), ask(canonS500) < a(buyer,b))}
O,, = {require(canonS500)Qa(buyer,b) — ask(canonS500)Qa(shopkeeper, s)}

19

where the expressiofi@ A denotes that propositidfi is true for the peer. Ob-
taining this result needs at least three steps of reasoning:

Detection of mapping need: It is necessary to identify in the LCC clause describing
the current state of the sellex, the transition step for which mapping may imme-
diately be required. In the example above this is the firgi steenactment of the
seller role, since no part of the clause has been closed. Targetadpping are
then any terms in this step which do not have matching ternisdrmessage set.
The mapping need in the example is thusdek(X).

Hypothesis of mappings: Knowing where mappings are immediately needed, the is-
sue then is whether plausible mappings may be hypothesisedr example (since
there is only one message available to #Haéer) we need to decide whether
require(canonS500) should map taxsk(X). There is no unique, optimal algo-
rithm for this; we present an evidence-based approach bbidvother methods
(such as statistical methods) are possible.

Description of mappings : Mappings may, in general, be in different forms. For in-
stance, two termsi(; and7>) may map via equivalenc{ < T or subsumption
(Ty — T, orTy « Tv.) This becomes a complex issue when attempting to map
two ontologies exhaustively and definitively but for the poses of a single in-
teraction we are content with the simplest mapping thatallthe interaction to
continue. The simplest hypothesis is that the term in thesagesreceived allows
us to imply the term we need - in our running exampteuire(canonS500) —
ask(canonS500).

The most difficult step of the three above is hypothesisinggaping. For this we
need background information upon which to judge the plalisitof our hypothesis.
Several sources of such information commonly are available

Standard word usage : We could use a reference such as Wordnet to detect similar
words (such asequire andask in our example). A similarity detected via Wordnet
would raise our confidence in a mapping.

Past experience: If we have interactions that have been successful in theysasg
particular sets of mappings we may be inclined to use theamdmore on this
subjectin Section 4). In this way earlier successes raiseanfidence in a mapping
while failures reduce it.

Type hierarchies for peers and interactions: Any message passing event involves
three elements: the peer sending the message; the peaiimgdeiand the inter-
action model in which they are involved. Any or all of theserekénts may possess
ontological information influencing a mapping hypothegismapping might be
implied by one or more of the ontologies, raising our confikem it, or it might
be inconsistent with the ontologies, lowering our confidenc

Human operators : In some circumstances it may be necessary for a human to de-
cide whether a hypothesised mapping is valid. This choigghtrthie informed by
evidence from any or all of the sources above.

Notice that all of the sources of evidence above are unietistandard word usage
doesn’talways cover a specific circumstance; past expegigray no longer apply; type

20

hierarchies aren’t necessarily complete or compatibleveen peers; human operators
make errors. Our method does not depend on the usefulnesy off ghese methods,
however. One can program interactions without ontologitapping but those interac-
tions then will need perfect matches between terms (likenabprograms). Ontological
mapping permits more terms to match during interaction d&ednbajor programming
concern is whether this “looseness” can be controlled in@gmjate programming set-
tings. Some settings require no looseness - only a perfetthnvaill do. Other set-
tings, in which we know in advance the ontologies used in aiiegtion but do not
know which peers will be involved, allow us to define a suffitieet of mappings®d

in expression 10) along with the initial interaction moddbre open settings require
the mapping relationrfap in expression 11) to hypothesise mappings that extend the
ontological “safe envelope” maintained around the intéoac(relatingO; to O,, in
expression 11).

4 Coalition Formation

Interaction states change via the state changes of indiVioeers - giving theS,x
sequence in expression 3 of Figure 6. Crucial to the sucdedgdnteraction is the
choice ofp NV at each step. For interactions involving finite numbers @rpéor which
the identity is known in advance there is no coalition forimafproblem: the LCC in-
teraction model simply is executed with the given peersideathat the examples of
Figures 2, 3 and 4 are like this - we were careful to define camgs that required the
peers contacting others to determine precisely which thoséfor example in Figure 2
the shop(S) constraint determines which shop is contacted). It is moreraon, how-
ever, for the choice of individual peers not to be prescribgdhe interaction model
- for example in the interaction model of Figure 2 what hapgpiéithe buyer doesn’t
know which shop might be appropriate? In open systems, aipeéien unaware of the
existence and capabilities of other peers in its world. Wbea peer must collaborate
with another to achieve some goal, a mechanism must existable the discovery of
other peers and their abilities.

This problem is well known, an early instance appearing & @wontract Net sys-
tem [51]. It remains a crucial issue in the deployment of &djge systems [15, 30, 59],
and is resurfacing as a fundamental problem in newer endesike the Semantic
Web and Grid computing, a recent example being the Web Sy @horeography Def-
inition Language \WscoL) [29]. The most popular response to this problem has been
to focus on specialised agents, often called “middle agd¢mhg 30] or “matchmak-
ers”. The first multi-agent systems to offer explicit mataim@rs wereaBsli, COINS,
and SHADE. These set the mould for the majority of subsequent work otchmaak-
ing, by defining two common features: matching based on aiityilmeasures between
atomic client requests and advertised provider servioaed;zaconsideration of purely
two-party interactionowL-s [35] and many other matchmaking architectures presume
a universe where a client wishes to fulfil some goal that caadigeved by a single
service provider (which may interact with other servicegsabwn discretion). Finding
collaborators for multi-party web-service interactiosgliscussed in [62]. Our use of

21

performance histories is predated by a similar approachddn [63], although that
only examines the case of two-party interactions.

Our aim in this section is to show how the interaction modelsclin LCC support
matchmaking based on data from previous interactions. @&efghat in our running
example we decide to automate the purchase of a list of ptedie define a LCC
interaction model consisting of expressions 12 and 13 below the original clauses
from Figures 2, 3 and 4.

a(purchaser(L), A) :: (a(buy_item(X), A) «— L = [H|T] then a(purchaser(T), A)) or
null — L = |]
12)

a(buy_item(X), A) :: (a(buyer(X), A) or a(seeker(X), A) or a(customer(X), A))
(13)
Let us further suppose that the constraints used to idetitédyendors in each of
the original interaction modelsskop(S) in Figure 2,auction_house(A) in Figure 3
andsells(X, M) in Figure 4) are removed. If we now wish to buy three differgpies
of camera by performing the role of
a(purchaser([canonS500, olympusE300, canon EOS1]), b) then we have three pur-
chases to make and it will be necessary, when performingaleeof buyer for each
item, to choose one of the three available forms of buying ehedth appropriate
choices of vendors. For example, we might satisfy our irttisa model with the se-
quence of roles given below:

a(purchaser([canonS500, olympusE300, canonEOS1]),b)
a(buy_item(canonS500), b)

a(buyer(canonS500), b))

Message sequence given in Table 1 when interactingayithopkeeper, s)
a(purchaser([olympusE300, canon EOS1]),b)
a(buy_-item(olympusE300),b)

a(seeker(olympusE300), b))

Message sequence given in Table 2 when interactingagithctioneer, a)
a(purchaser([canonEOS1]),b)

a(buy_item(canonEOS1),b)

a(customer(canonEOS1),b))

Message sequence given in Table 3 when interactinga(ithunu f acturer, m)
a(purchaser([]),b)

in which case our interaction will have involved the set oéisgb, s, a, m}, but the
sequence above is only one of many sequences we might hasercfar this set of
peers. We might have chosen different roleg(by buying thecanonS500 at auction
rather than at a shop) or different peers for the same r@gsrbaybe peermn could
take the role of a shopkeeper as well as or instead of its ke manufacturer). We
might have chosen to interact with only one peer in the sarteeaach time €.g9.by
shopping for all the cameras with pegr The best choices of roles and peers are likely

22

to depend on factors not expressed in the interaction mddekexample, pees might

be unreliable; or peer might give better service to some using it more frequentty; o
peerss andm may conspire (through separate communication channeisprsupply
the same sources.

The task of a matchmaker is, by tackling problems like thdsava, to make the
right choices of peer identifiers and roles as an interaatimalel unfolds over time.
Given that the things that make or break an interaction adtertask/domain specific in
ways that cannot be analysed in detail, matchmaking algostmay have to rely a great
deal on empirical data describing successes or failuressviqus interactions. This is
analogous to the situation on the conventional Worldwidé Wehere mass browsing
behaviours continually influence the ranking of pages. imagnstead, that we want
to rank choices of peers to involve in appropriate roles avargstage of an interaction
model's execution. Figure 8 defines a basic matchmaker teypditperforming this
task. A more extensive discussion (and more sophisticatgdhmaking based on this
principle) appears in [31].

The matchmaker of Figure 8 is an extension of the clause expamnewrite rules
of Figure 7. To each rewrite rule is added a parameterthat contains the set of
peers that have been involved in closed parts of the claug®,tp the rewrite cur-
rently being applied (the predicatévsed of arity 2 collects the appropriate peers, fol-
lowing the closed part of a clause similarly ¢twsed of arity 1 which we defined in
Figure 7). The setA, is needed in the seventh rewrite rule which deals with send-
ing a message out from the peer. At this point the identityhef peer,A, may not
be known so the predicat@alesce(A, A) ensures that an identifier is assigned. Ex-
pression 15 attempts to find an identifier for the peer if itsnidfier, X, is a vari-
able. It does this by selecting the best option from a set oflickates, each of the
form (X', P,, P,, N) where: X' is an identifier; P, is the proportion of previous in-
teractions in whichX’ was part of a successful coalition with at least some of the
peers inA; P, is the proportion of such interactions where the coaliticaswinsuc-
cessful; andV is the total number of appropriate coalitions. The selecfimnction,
sel, could take different forms depending on the application tigpically would at-
tempt to maximiseP, while minimising P,. Expression 16 generates values fey
and P,, for each appropriate instancd, of a peer, based on cached records of inter-
action events. An interaction event is recorded in the fetrnt(a(R, X), E') where
a(R, X) records the role and identifier of the peer afids a unique identifier for the
event. For instance, in our earlier shopping example theyeldvbe a unique event
identifier for the sequence of roles undertaken anaw@mt definition for each role
associated with that event (so if the event identifier wa$3 then there would be
anevent(a(purchaser([canonS500, olympusE300, canon EOS1]),b), e243) and so
on).

To demonstrate matchmaking in this event-driven stylepssp that our automated
camera purchaser is following the interaction model giverexpression 12 and has
already performed the part of the interaction needed to bayfitst camera in our list
(the canonS500) from a peergs, using the interaction model of Figure 2. The state of
the interaction (described as a partially expanded modierLCC style) is given in
expression 18 below.

23

R;,M;,M,,5,0,A R,M;,M,,S,0,{R}UA
o

R: B A E if B E
Aq or As FoMiMo,5,0,4, FE if —closed(Az) A
A4, RoMiMo50.4 o
Aq or Az B MiMo,5,0,4, F if —closed(A1) A
A, BoMiMo5.0.45 o
Ay then Ay ZoMiMeSOA by on A, if Ay i My, Mo,5,0,4 0 @
A1 then Az FoMiMo,5,0,4, Aq then E if closed(A1, A1) A
A, RiMiMo 50,4041 o
C e M« A DMt M < A}S0A - yr = A)if m(Ri, M < A)€ M; A
satisfy(C)
M = A ¢ ZeMeMoSimBOM= DVA -y o A) if satisfied(S,C) A
coalesce(A, A)
null — ¢ BpMoMeS0a, c(null) if satisfied(S,C)
a(R,I) — C BoMi, Mo 50,4, a(R,I):: B if clause(S,a(R,I):: B) A
satis fied(S,C)
closed(c(M < A),{A})
closed(c(M = A),{A}) (14)
closed(A the B, Ay U Az) «— closed(A, A1) A closed(B, Asz)
closed(X :: D,) «— closed(D, A)

coalesce(A,a(R, X)) «— -war(X)V
(var(X) A X = sel({(X', Py, Pn, N)|coalition(A, a(R,X"), Py, Pn, N)})
(15)

., card({E t(AE success(FE AE
coalition(A, A, Py, Py, N) «— P, = <© a ‘(e”e"fard&g\cé‘{f}f})) A co(4,E)}) (16)

P = card({E|(event(A,E) A failure(E) A co(A,E)}))
n - card({E|co(A,E)})
N = card({E|co(A, E)})

co(A,E) «— (3A.A € A A event(A, E) A =(3R, X, X' .a(R, X) € A A event(a(R,X'),E) AN X # X')
a7
Where: A is a set of the peers:(R, X)) appearing in the clause along the path of rewrites
(above).
var(X) is true whenX is a variable.
card(S) returns the cardinality of sef.
sel(Sz) returns a peer identifiel, from an element(X, P,, Pn), of S, selected ac-
cording to the values aP, and P,,
See Figure 7 for definitions of other terms.

Fig. 8. A basic event-based matchmaker

24

a(purchaser([canonS500, olympusE300, canon EOS1]),b) ::
a(buy_item(canon.S500), b) ::
a(buyer(canonS500),b) then
ask(canonS500) = a(shopkeeper, s) then
price(canonS500,249) < a(shopkeeper, s) then
buy(canonS500,249) = a(shopkeeper, s) then
sold(canonS500,249) < a(shopkeeper, s)
a(purchaser([olympusE300, canonEOS1]),b) ::
a(buy_item(olympusE300),b) ::
(a(buyer(olympusE300), b) or a(seeker(olympusE300),b) or a(customer(olympusE300),b))
(18)
The choice at the end of expression 18 means thapouthaser peer now has to
choose whether to becoméayer peer again or to be seeker or acustomer. This
will require it to choose a model from either Figure 2, Fig8rer Figure 4. This, in turn,
will require it to identify either ashopkeeper, anauctioneer or amanu facturer (re-
spectively) with which to interact when following its chosateraction model. Suppose
that our purchaser has access to the following results eiqus interactions:

event(a(buyer(olympusE300),b),el) event(a(shopkeeper, s1), el) failure(el)
event(a(seeker(olympusE300),b), e2) event(a(auctioneer,al), e2) success(e2)
event(a(customer(olympusE300),b), e3) event(a(manufacturer,ml), e3) success(e3)
event(a(seeker(olympusE300),b), ed) event(a(auctioneer,al), e4) failure(ed)
event(a(buyer(canonEOS1),b), e5) event(a(shopkeeper, s1), e5) success(eb)

(19)
Applying the method described in Figure 8, the contextutlo$geers,A, from
expression 18 is:

{ a(purchaser([canonS500, olympusE300, canon EOS1]),b)
a(buy_item(canon.S500), b)
a(buyer(canonS500), b)
a(shopkeeper, s)
a(purchaser([olympusE300, canonEOS1]),b)
a(buy_item(olympusFE300),b) }

and we can generate the following instancesdatlition(A, A, P,, P,,) via ex-
pression 16 of Figure 8:

For a(buyer(olympusE300),b) : coalition(A, a(shopkeeper, s1),e1,0,1,1)
For a(seeker(olympusE300),b) : coalition(A, a(auctioneer,al),0.5,0.5,2)
For a(customer(olympusE300),b) : coalition(A, a(manufacturer,ml),1,0,1)

Our selection functionse! in expression 15 of Figure 8) must then choose which
of the three options above is more likely to give a successfitome. This is not
clear cut because sample sizes vary as well as the propaitisunccesses to failures.

25

It is possible, however, to rate the auctioneer or the mantufar as the most likely to
succeed, given the earlier events.

5 Maintaining an Interaction Context

When many peers interact we must make sure that the knowkbdgeshare is con-

sistent to the extent necessary for reliable interactidris @oes not of course, require
consistency across the totality of knowledge possessetépders - only the knowl-

edge germane to the interaction. The general problem dhattaconsistent common

knowledge is known to be intractable (see for example [2@]}h& engineering aim

is to avoid, reduce or tolerate this theoretical worst ca$e interaction model used
in LCC identifies the points of contact between peers’ knogéand the interaction -

these are the constraints associated with messages asdTbieknowledge to which

these connections are made can be from two sources:

Devolved to the appropriate peers: so that the choice of which axioms and inference
procedures are used to satisfy a constraint is an issuestpatate and internal to
the peer concerned. In this case there is no way of knowingheh@ne peer’s
constraint solving knowledge is consistent with anoth@rjsenternal knowledge.

Retained with the LCC interaction model : so the axioms used to satisfy a constraint
are visible at the same level as the interaction model anihfeeence procedures
may also be standardised and retained with the model. Ircéisis we can identify
the knowledge relevant to the interaction and, if an appad@iconsistency check-
ing mechanism is available, we can apply it as we would todittcmal knowledge
base.

In practise it is necessary to balance retention of knowdeddh an interaction
model (and the control that permits) against devolutiorriegpe peers (with the auton-
omy that allows). The way an engineer decides on this balen@s usual, by study-
ing the domain of application. Where it is essential thatst@ints are satisfied in a
standardised way then axioms and inference methods aieaétaith the interaction
model. Where it is essential that peers autonomously gattsistraints then they must
be given that responsibility. What makes this more subtm tihaditional software en-
gineering is that axioms retained by the interaction modallee used to supply knowl-
edge hitherto unavailable to the (otherwise autonomousjspasing the model. The
remainder of this section demonstrates this using a stdred@mple.

A classic logical puzzle involves a standardised form aiiattion between a group
of people, each of which has an attribute which cannot beméted except by observ-
ing the behaviour of the others. This puzzle appears inmdiffevariants (including the
“cheating husbands”, “cheating wives” and “wise men” pes}lbut here we use the
“muddy children” variant attributed to [6]. A paraphrasestsion of the puzzle is this:

A number of daughters have got mud on their foreheads. Nd claih see the
mud on her own forehead but each can see all the others’ fadsh&heir
father tells them that at least one of them is muddy. He thks th&m, repeat-
edly, whether any of them (without conversing) can prove #iee is muddy.
Assuming these children are clever logical reasoners, Wwapens?

26

The answer is that the children who are muddy will be able tw@this is so after
the father has repeated the question- 1 times, wheren is the number of muddy
children. The proof of this is inductive: for = 1 the muddy child sees everyone else
is clean so knows she is muddy; far = 2 the first time the question is asked the
muddy children can se@ — 1) = 1 other muddy child and, from the fact that no other
child answered “yes”, knows that she also must be muddy seemsyes” next time;
similarly for eachn > 2.

The important features of this example for our purposes laa& the interaction
is essential to the peers acquiring the appropriate knayegthe interaction must be
synchronised (otherwise the inductive proof doesn’t hiadahd, once the “trick” of in-
duction on the number of cycles of questioning is understdamechanism allowing
each peer to decide depends only on remembering the numbsgeles. Figure 9 gives
a LCC interaction model that allows a group of peers to sdieentuddy children puz-
zle. Notice that it is not our intention to unravel the sen@nof such problems (as has
been done in, for example, [22]). Our aim is to show how to sdhis problem simply.

To demonstrate how the interaction model of Figure 9 wonlkkppsse that we have
two peersql anda2, and thatil knowsis_muddy(a2) while a2 knowsis_muddy(al).
This knowledge is private to the peers concerned, and nmgither knows that it is itself
muddy. In order to work out whether they are muddy, one of #erg (let us choosdl)
must assume the role abordinator(C's, N) whereC's = {k(al, unknown), k(a2, unknown)}
is the set of peers with their initial knowledge about theurddiness andv = 1 is the
cycle number. This is analogous to the role of the father éndtiginal puzzle and it
could be performed by a third peer rather thanddyor a2 but here we choose to let
al be both coordinator and child. The coordinator role is remer overN; on each
cycle performing a round of polling for each child to find otg current answer. Each
child has the obligation to reply when polled - its answenbetithermuddy, clean or
unknown depending on whether it can satisfy axiom 23, 24 or 25. Thesexamples
of axioms that it makes sense to retain with the interactiodehbecause it is critical
that all peers make this calculation in the same way and ibigynaranteed that each
peer would possess the appropriate knowledge. By contragitowledge about which
peers are known by a given peer to be muddy is assumed to lmeptovthat peer so
that is not retained with the model.

Interaction models do not solve the general problem of r@tigicommon knowl-
edge in a distributed system - no method appears capablatoTtiey do, however, give
a way of identifying knowledge that must be shared and pesaitiasis for partitioning
shared and private constraint solving knowledge.

6 Making Interactions Less Brittle

One of the ways in which our method differs from traditionedgramming is that ex-
ecution of the clauses of an interaction model can happeysadifferent machines,
therefore satisfaction of constraints associated withréiquéar role in an interaction
model is done in ignorance of constraints imposed by otherspm the interaction.
Often a peer has a choice about how it satisfies constraiimgi(ly interaction model
variables in so doing) and if it makes the wrong choice re¢atd other peers’ con-

27

a(coordinator(Cs,N), X) ::

a(collector(Cs,Cs, N,Cs"), X) « not(all_known(Cs')) then
(a(coordinator(C’s'7 N1),X) « N1=N+1) or (20)
null «— all_known(Cs')
a(collector(Cs, Rs,N,Cs'), X) =:
poll(N, Rs) = a(child,Y) « select(k(Y,Rp),Cs,Cr) then
Cs' ={k(Y,R)} UCr" «— reply(R) < a(child,Y) then or (21)
a(collector(Cr, Rs, N, Cr'), X)

null «— Cs=1[and Cs' =]

a(child, X) ::
poll(N, Rs) < a(collector(Cs,Rs, N,Cs"), X) then
reply(muddy) = a(collector(C's,Rs,N,Cs'),X) <« muddy(N,Rs) or
reply(clean) = a(collector(Cs, Rs,N,Cs'),X) « clean(N, Rs) or then
reply(unknown) = a(collector(Cs, Rs,N,Cs'),X) «— unknown(N, Rs)

a(child, X)
(22)
muddy(N, Rs) «— Nk = card{Y|k(Y, muddy) € Rs}) and (23)
Nm = card({Y’|is-muddy(Y")}) and
Nk=0and N > Nm
clean(N, Rs) «— Nk = card({Y|k(Y, muddy) € Rs}) and (24)
Nk >0
unknown(N, Rs) «— Nk = card({Y |k(Y, muddy) € Rs}) and (25)

Nm = card({Y"|is-muddy(Y")}) and
NE=0and N < Nm

Where:all_known(C's) denotes that each element®@$ is known to be either muddy or clean.
muddy(N, Rs) is true if the peer is muddy at cycl¥ given the previous response get.
clean(N, Rs) is true if the peer is clean.
unknown(N, Rs) is true if the peer can't yet decide whether it is muddy or clea
1s-muddy(Y") denotes that the peer knows (another) @éeo be muddy.
card(S) returns the cardinality of sef.

Fig. 9. A muddy children LCC model

28

straints then the interaction as a whole may fail. In thisseeimteraction models can
be more “brittle” than conventional programs. Since the sages physically sent dur-
ing the interaction cannot be un-sent, the only way of brigghe interaction back on
track is to reason about the interaction model. It is esakrtbwever, that such rea-
soning does not invalidate the interaction model - in otherds it should only make a
given interaction model more likely to succeed as intendetichange the declarative
meaning of the model. We shall consider two ways of doing this

Allowing peers to set constraint ranges, rather than specific values, for variables shared
in the interaction model - thus avoiding unnecessary eanygraitment.

Task/domain-specific adaptationof the interaction model during the process of inter-
action, making limited forms of “model patching” possible.

Before discussing these we study in a little more depth tlognamming issues
raised by committed choice in LCC interaction models. Oteraction models allow
choice via theor operators in model clauses (see Figure 1). For example|dhse:

a(rl, X) :: (ml = a(r2,Y) then D1) or (m2 = a(r2,Y)) then D3)

whereD; andD- are some further definitions necessary oto complete role1,
allows X to choose the state sequence commengitig=- a(r2,Y’) or the sequence
commencingn2 = a(r2,Y). In some conventional logic programming languages
(such as Prolog) this choice is not a commitment - if one ofdpions chosen fails
then we may still complete the role by backtracking; rollvark the state of the clause
to where it was before the choice was made, and choosingtéraative option. This
is not possible in our situation because interacting peexg Inave (privately) altered
their internal state, so for examplgr2,Y’) might have made some private internal
commitments in response to message that are not observable kyr1, X), which
means that simply rolling back the state of the interactiadel does not necessarily
bring the interaction back to an identical state. Our choiae therefore committed
choices. To make this issue concrete, let us return to ounimgrexample.

We can visualise a the possible sequences of messages seo¢ived when per-
forming a role in interaction as a graph, an example of whglgiven in Figure 10
for the manufacturer’s interaction model from Figure 4. Tpaers are involved in this
model, the customer and manufacturer. The dialogue trebeo€tistomer is given in
Figure 10(a). Nodes in the figure are states in the intera¢from the perspective of
the customer). Solid arcs in the figure represent succest&ps in the execution of the
interaction model while the dashed arrow (from node 3) repmnés a possible failure
that could occur if the customer could not accept the off@roposed by the manufac-
turer. If that happens then our basic interaction model egjpen mechanism, defined in
Figure 7, will be unable to complete the interaction becdrma node 2 the only state
other than the failing state (3) is node 5 but to reach it nexgua different message to
be received than the one actually received.

One proposed solution is to allow the peers to backtrack andifferent offers.
The interaction model should then be modified to allow theaaif sending/receiving

29

ask(buy(X))=

a(manufacturer, M)

ask(buy(X))=

a(manufacturer, M)

offer(A)«=
a(n-man(X,C,_),M)

ask(commit)<=

offer(A)«=
a(n_man(X,C,.),M)

a(n_man(X,C,.),M)

ask(commit) <=
a(n_man(X,C,_),M)

| accept(A)= tell(commit(Aa))=
' a(n_man(X,C,.),M)\, a(n_man(X,C,_),M)

tell(sold(As))«<=
a(n-man(X,C,-),M)

@ @

(a) Original customer’s protocol (b) Modified customer’s protocol

tell(commit(Aa))=
a(n-man(X,C,.),M)

tell(sold(As))<=
a(n-man(X,C,-),M)

Fig. 10.Customer’s dialogue tree of the manufacturer scenario

different offers possible. On the customer’s side, the tixcation is represented in Fig-
ure 10(b). When the customer’'s model is at state 2, the custoan either receive an
offer, or receive a message asking it to commit, or it can iembstate 2. This third and
final option is added so that if any constraint failure ocamgwhere along the first two
paths and the customer backtracks, then it will be able eive@notheoffer message.
The following is the modified customer’s interaction modglparallel modification
would be required to the manufacturer's model.

a(n_cus(X, M, Aa),C) ::

of fer(A) a(n-man(X,C,_), M) then

accept(A) = a(n-man(X,C,_), M) «— acceptable(A) then | or
a(n_cus(X, M, [att(A)|Aa]),C)

ask(commit) < a(n-man(X,C,_), M) then
tell(commit(Aa)) = a(n-man(X,C,), M) «— acceptable(A) then | or
tell(sold(Aa)) < a(n-man(X,C,_), M)

a(n_cus(X, M, Aa),C)

This is a pragmatic fix but it makes the interaction model mmyeplex (hence
harder to read and design) and it also changes the semafttiesroodel, since we have
introduced an additional recursive option for thexus role that requires no interaction.
Our only reason for changing the model in this way is to readigixibility lost because
of committed choice.

One way of regaining a form of backtracking for our interantmodels is described
in [41]. This involves an extension to the labelling used émate closure of explored
parts of the model, so that we can label parts of it as failezh extending the model ex-
pansion rules (from Figure 7) to force (via failure messagespening of previously

30

closed sequences in the model when failure is detectedodédtih this gives a partial
solution to the problem of backtracking, it does not addtkeesproblem that (invisible
from the level of the interaction model) individual peersynii@ve made internal com-
mitments that prevent them “rolling back” their state to besistent with backtracking
at the model level. For this reason, it is interesting to explin Sections 6.1 and 6.2)
ways of adding flexibility to interaction models without lké&m@acking.

6.1 Brittleness Through Variable Binding: Constraint Relaxation

The LCC language ensures coherent interaction between pgémposing constraints
relating to the message they send and receive in their chotesn The clauses of an
interaction model are arranged so that, although the caingéron each role are inde-
pendent of others, the ensemble of clauses operates tdegidesired overall behaviour.
For instance, the manufacturer interaction model of Figuptaces two constraints on
each attributed in the set of attributests: the first @uailable(A)) is a condition on
the peer in the role of negotiating manufacturer sendingntlessage f fer(A), and
second ¢cceptable(A)) is a condition on the peer in the role of negotiating custome
sending the messagecept(A) in reply. By (separately) satisfyingvailable(A) and
acceptable(A) the peers mutually constrain the attribute

In [23] we described how the basic clause expansion meamasfi$. CC has been
extended to preserve the ranges of finite-domain on vasables allows peers to re-
strict rather than simply instantiate these constrainteminteracting, thus allowing a
less rigid interaction. For instance, applying this to autial example of mutual finite-
domain constraints in Figure 4, if the range of values pdadiby the manufacturer
for A by available(A) is {32, 64, 128}, while the range of values permitted by the cus-
tomer forA by acceptable(A) is {greater than 32}, then were we to use finite-domain
constraint solver, a constraint space{6fl, 128} is obtained — a range that would be
attached to the variable returned in theept(X) message.

An important aspect of the interaction model between theufeaturer and cus-
tomer roles defined in Figure 4 is the message passing thahooinates the attributes
of the digital camera to be purchased. This dialogue carirmombnly as long as there
exists a match between the finite-domain ranges of attrimltees offered by the nego-
tiating manufacturer with those required by the negot@tinstomer. To illustrate this
point, consider the following example.

Assuming that the customer agreed to accept a memory sizg tifen the follow-
ing statements describe the knowledge and constraintatprie the manufacturer and
customer respectively, concerning the price of the digitathera to be negotiated:

Manufacturer : available(price(P)) «— P = 244
Customer : acceptable(price(P)) «— P < 250

Upon negotiating these mutual constraints via the defingztantion model, the
value for price that meets the manufacturer’s offer, and #h& customer’s require-
ment will be in the range244 < price(P) < 250. Depending on the peer’s strategies
(e.g. choosing the maximum value within the agreed rap®), the final price can
be assigned to a value within this agreed range. To suppisrisb need a means of
propagating constraint ranges across the interaction.

31

Similarly to our construction of expressions 1 and 2, foradogy mapping in Sec-
tion 3, it is straightforward to propagate range constgathtough our state transitions
by (in expression 26) identifying the initial sét;, of variables (each with its range
constraint) in the initial state§ and then threading this set of variable ranges through
the state transition sequence (expression 27). Prior to #ansition step the relation
apply-ranges(V;, Sy, S;,) applies the range constraints, to the corresponding vari-
ables in the peer stat§, to give the range restricted stat. After each transition
step the relatiompdate_mnges(sg, V;, V,,) identifies each variable i; that has been
restricted in the new peer sta&/ and adds the new range restrictions to prodiice

o(p,G,) — R5(S,V) NS, 6, V.S Vi) A ky(Sp) G, (26)

$2S8, A
apply ranges(V;, Sp, S,) A
, M.SM, ,
i8S, M, Vi, 85, Vs) = S=8 v | S Sp A 27)
update_ranges(S,, Vi, Vu) A
S/US=8"A
i(Slv My, Vy, Sfa Vf)

Simply propagating variable range constraints defendmaganly limited forms of
brittleness, however. Suppose that, instead of allowinmaorg size to be in the range
{64, 128}, the customer required a memory sizel@8, then the following, consequent
local constraints on price would break the interaction nhode

Manufacturer : available(price(P)) «— P = 308
Customer : acceptable(price(P)) «— P < 250

In this situation, no match is found between the customeieeted price and the
one that can be offered by the manufacturer. Rather thanrtatimg the dialogue at this
stage, we might reduce brittleness of this nature by indgdi constraint relaxation
mechanism that allows manufacturer and customer to nagdtigther by relaxing the
specified mutual constraint on the value of the attributas T¢sue is explored more
fully in [24] so we do not expand on the theme here. Constrailaixation only is pos-
sible, however, if the peers participating in the interactare cognitively and socially
flexible to the degree they can identify and fully or partiadatisfy the constraints with
which they are confronted. Such peers must be able to redsut their constraints and
involve other peers in this reasoning process. Interagtiodels (like those of LCC)
provide a framework for individual peers to analyse the ¢@iists pertinent to them
and to propagate constraints across the interaction.

6.2 Brittleness Through Inflexible Sequencing: Interactim Model Adaptation

When tackling the brittleness problem in Section 6.1 thedss to ensure that a given,
fixed interaction model has more chance of concluding ssfalys LCC models also

32

break, however, when their designers have not predicteahianaiction that needs to
occur. Consider for example the model of Figure 2 in which genasks for some
item; receives a price; offers to buy the item; and its satigfirmed. This is one way
of purchasing but we could imagine more complex situatiofts instance when the
shopkeeper does not have exactly the requested item fobsatfers an alternative
product. We could, of course, write a new model to cover thienéuality but this will
lead us either to write many models (and still have the taskreflicting the right
one to use) or to write complex models that are costly to ceaigd hard to test for
errors. One way to reduce this problem is to allow limitediisrof task/domain-specific
synthesis of models, with the synthesised components lisieg according to need in
the interaction.

Automated synthesis of LCC models has many similaritiesaditional synthesis
of relational/functional programs and to process/plartsgsis. It is not possible here to
survey this large and diverse area. Instead we use an inmpéetson from traditional
methods: that the problem of synthesis is greatly simplifibén we limit ourselves to
specific tasks and domains. This narrowing of focus is naforainteraction models
which are devised with a task and domain in mind. To demotesthés we develop an
example based on the interaction model of Figure 2.

In order to synthesise models similar to those of Figure 2 eednto have some
specification of our functional requirements. To make sgath straightforward, we
shall describe these in a domain-specific language closetortginal model (remem-
ber we only want to add some limited flexibility, not solve tieneral problem of model
synthesis). In our language we have chosen to use five dospaiific terms that de-
scribe the type of interaction of message passing evenkteimbdel (listed at bottom
of Figure 11). We then specify how these may be combinediirsgairom an initial
request and describing how this can be extended via rewrites thatdddional mes-
sage passing behaviours. The syntax of the rewrites isidescin Figure 11 but the
intuition is that each rewrite extends some existing segmiEmessage passing specifi-
cation with an additional behaviour that may occur in futitoen the existing segment
(the normak> modal operator is used to denote an expression that musidattsome
future time). For example, the second rewrite of Figure Jsdhat a request from peer
Al to peerA2 can be extended with a subsequent descriptioF agient byA2 to Al.

The operators= and < , used to indicate the direction of message passing between

peers, can be refined into the LCC message passing ope@tordif/idual peers using
the two rules in the centre of Figure 11. Using all of thesenesfient rules, we can
synthesise specifications of interaction model behaviodh &is:

t(request(X), Al = A2) A
t(alternative(X,Y), Al & A2) A
t(request(Y), Al = A2) A
O t(describe(Y, D), Al & A2) A
© O t(propose(Y, P), Al = A2) A
© <<> (t(confirm(Y, P), Al & A2))>

(28)

33

— t(request(X), Al = A2)

t(request(X),Al = A2) —
t(request(X),Al = A2) —
t(alternative(X,Y), Al & A2) —
t(describe(X, D), Al < A2) —
t(describe(X, D), Al & A2) —
t(propose(X, P), Al = A2) —

HT, Al = A2) — (m(ALT
HT, Al &£ A2) — (m(ALT

t(request(X), Al = A2) A
Ot(describe(X, D), Al & A2)
t(request(X), Al = A2) A
Ot(alternative(X,Y), Al & A2)
t(alternative(X,Y), Al & A2) A
Ot(request(Y), Al = A2)
t(describe(X, D), Al & A2) A
Ot(propose(X, P), Al = A2)
t(describe(X, D), Al & A2) A
Ot(describe(X,D'), Al & A2)
t(propose(X, P), Al = A2) A
Ot(confirm(X, P),Al & A2)

= A2) Am(A2,T <« Al))
< A2 Am(A2,T = Al))

Where:T1 — T2 gives a permitted refinement of teffil to termT'2.
<P denotes that expressidnwill be true at some future time.
t(E, D) specifies a message interchange of typdetween two peers, whe® is
either of the formA1 = A2, denoting a message sent frofn to A2 or of the form
Al & A2, denoting a message sent frof to A1l.

Domain termsulternative(X,Y) whenY is a product offered as a substitute for
con firm(X, P) when the transaction is confirmed far at price P.
describe(X, D) whenD describesX.
propose(X, P) when priceP is suggested foX .
request(X) when a product of typ& is requested.

Fig. 11. Rewrites for synthesis of a restricted, task-specific dfpation

34

If we then add additional refinements from the general dorteaims of Figure 11
to the more specific terms used in the interaction model afifei@ as follows:

request(X) — ask(X)
descmbe(X D) — price(X, D)
propose(X, P) — buy(X, P)
confirm(P) — sold(X, P)
alternative(X,Y) — similar_product(X,Y)

then we can further refine the specification of expression 28guthese and the
refinements message passing from Figure 11 to give the gaditifi:

(m(Al,ask(X) = A2) A m(A2,ask(X) <« Al)) A
(m(AL, similar_product(X,Y) < A2) N m(A2, similar_product(X,Y) = Al)) A
(m(Alyask(Y) = A2) A m(A2,ask(Y) < Al)) A
<& o (m(Al,price(Y,D) < A2) A m(A2,price(Y,D) = Al)) A
<& o (m(ALl,buy(Y, P) = A2) A m(A2,buy(Y,P) < Al)) A
(O ((m(Al,s0ld(Y,P) < A2) A m(A2,sold(Y,P) = Al)))>
(29)

Since the specification above describes a sequence of pamsssages exchanged
between peergll and A2 it is straightforward to “unzip” this sequence into the send
and receive components of each exchange, providing theteafifor a LCC model.

Al =
ask(X) = A2then
similar_product(X,Y) < A2 then
ask(Y) = A2 then
price(Y,D) < A2 then
buy(Y,P) = A2 then
sold(Y,P) < A2

A2
ask(X) < Al then
similar_product(X,Y) = Al then
ask(Y) < Al then
price(Y,D) = Al then
buy(Y,P) < Al then
sold(Y,P) = Al

To arrive at this interaction model we have made numerousagtons in order to
make the task of synthesis easy. We assumed a narrow domtiatsee had a small
range of specifications to deal with, thus simplifying thektaf writing the message
passing specification. We assumed that only two peers weoévad, simplifying both
the specification and its refinement. We assumed a totalioglen the messages in-
terchanged (with no interleaving between interchanges)gian easy translation from
temporal message sequence to interaction model. We wotjldfremurse, expect these
assumptions to hold for every domain - they are merely an k@aof assumptions that

35

can usefully be made to simplify engineering in one speciimdin. The hope for prac-
tical application of synthesis methods is that domains ahlento similar treatments
occur commonly in practise.

7 Satisfying Requirements on the Interaction Process

Interaction models, like traditional programs, are writte order to control computa-
tions that satisfy requirements in some domain of applicatin our scenario of Sec-
tion 1.1, for example, Sarah has various interaction reguoénts: she wants by the end
to purchase a camera; before then she wants to know the fitlcat@amera; and ide-
ally she would like the lowest price possible. These areualtfional requirements (they
can be judged with respect to the computation itself) andivedl sonfine ourselves to
this class of requirements although we recognise that,rasa@itional programs, non-
functional requirements also are important (for exampbra might want to increase
her stature in her company by buying cheap cameras but ocenaittton model says
nothing about company politics).

There are many ways in which to express requirements but alefebus on process-
based requirements modelling, in particular businessge®modelling, because this is
(arguably) the most popular style of requirements desorigior Web services. There
are two ways of viewing these sorts of models:

— As specifications for the temporal requirements that musglisfied by a business
process when it is performed. In this case the business gganedel need not be
executable.

— As a structure that may be interpreted in order to performkhsiness process.
In this case there must exist an interpretation mechanisdrit@ the necessary
computations from the business process model.

We demonstrate these views using an elementary procesdlimgdenguage. Real
process modelling languages (for example BPEL4WS [3]) aneroomplex but similar
principles apply to them (see [32] for details of our methagglied to BPEL4WS).
In our elementary language we shall assume that only twa(gipeers interact to
implement a process and that the process is described usgtgpéactions of the form
activity(I, X, Cp, Cr), wherel identifies the peer that performs the activity;is a
descriptive name for the activity;p is the set of axioms forming a precondition for the
activity; andC'r is the set of axioms established as a consequence of théyadive
expressiomrocess({I,1I'}, A) relates the two peer identifiefsand I’ with the set of
activities A. Figure 12 gives a process model which one might write forsthepping
model that we introduced in Figure 2 of Section 2.2. The diagat the top of the
figure depicts the process: boxes are activities with préitimms to the left of each box
and postconditions to the right. Theocess definition appears underneath, with the
meaning of terms contained in activities being understawdagously to the meaning
of messages and constraints in the model of Figure 2.

From the process model in Figure 12 we can infer some of thpdeahconstraints
on interaction models enacting the business process -gtarice: that for items needed

36

Buyer: B

enquire_price — buy_item

need(X) ask(X) price(X,P) offer_to_buy(X,P)
afford(X,P)

Seller: S

determinefprice—ﬁ sell_item
ask(X) price(X,P) in_g)&P) sold(X,P)

in_stock(X,P) offer_to_buy(X,P)
process({B, S},
{ activity(B, enquire_price, {need(X)}, {ask(X)}),
activity(B, buy_item, {price(X, P),af ford(X, P)}, {of fer_to-buy(X, P)}),
activity(S, determine_price, {ask(X),in_stock(X, P)}, {price(X, P)}),
activity(S, sell_item, {of fer_to_buy(X, P),in_stock(X, P)}, {sold(X,P)}) })

(30)

Fig. 12.Elementary process model for the shopping service

that are in stock we eventually know a price; or that if an itean be afforded then it is
sold.

need(X) A shop(S) A in_stock(X, P) — <price(X, P)
afford(X,P) — <sold(X, P)

Perhaps the most obvious engineering strategy is now tartesaction models
to see if they satisfy temporal requirements like those abaaising confidence that
those models passing such tests are compliant with thersshbiuisiness process. For
example, we could test whether the model of Figure 2 satisfiesemporal require-
ments given above. This is traditional requirements eraging re-applied so we shall
not dwell on it here. There is, however, a more novel apprda@mnsuring compliance
with business process models: write an interpreter for tbdets in the LCC language
itself.

Figure 13 gives an interpreter for our elementary procesdetiog language. The
key feature of this interaction model is that it takes as @uerent (ininitiator(P) of
expression 31) an entire process modeljin our running example, this is the process
definition of Figure 12). The model of expressions 31 to 3dtleders toP in order to
determine the messages sent between the two peers invélisdapproach is similar
to meta-interpretation in logic programming languagesegt in this case the meta-
interpretation is being done by the interaction model.

37

a(initiator(P),I) :: interpret(P,K) = A « step(I,P,¢,K)) then (31)
a(interpreter,I)

a(interpreter,I) :: step(I, P, K, Kn) < interpret(P,K) < a(R,I') then (32)
interpret(P,Kn) = a(interpreter,I') «— then
a(interpreter,I)

step(I,process(S, A), K, KUCr) «— I € S A activity(I, X,Cp,Cr) € A A satisfy(Cp, K)
(33)

Where: P is a process definition of the forprocess(S, A).

S is a set of peer identifiers.

A is a set of activity definitions of the formctivity(I, X, Cp, Cr).

I is a peer identifier.

X is the name of the activity.

Cp is the set of axioms forming a precondition for the activity.

Crr is the set of axioms established as a consequence of thiyactiv

step(I, P, K, Kn) defines a single step in the execution of a procésshy peerl

given shared knowledg& and generating the extended knowledgefset

¢ is the empty set of initial shared knowledge.

satis fy(Cp, K) is true when the conjunctive set of propositio$; is satisfiable from

shared knowledgé .

Fig. 13.A LCC interaction model used to define an interpreter for pgzcmodels in the notation
of Figure 12

38

By approaching the coordination problem in this way we allamguages used in
domains of application to be interpreted directly, rathear having to translate them
into equivalent LCC code. This makes it easier to gain confidgthrough proof, test-
ing or inspection) that the requirements associated wahdttmain model are satisfied.
It also makes it easier to trace problems in interaction ha¢ke domain model.

8 Building Interaction Models More Reliably

Normally people do not want, having chosen an interactiodehdo find at some sub-
sequent point in the interaction that the goal it was supgptisachieve is not attainable,
or the way in which it is obtained is inappropriate to the pgenivin hand. To prevent
this we need some explicit description of what the inteactinodel is (and that we
have with LCC) combined with analytical tools that check hiee it has the proper-
ties we desire. Put more formally, if we have an interactiayded (such as the one in
Figure 2) we wish to know whether a given form of enactmentliisas the one defined
in expressions 1 and 2) will generate at least one sequeacexXample in the form
shown in expression 3) such that each desired property aoldso sequence in which
an undesirable property holds.

There are many different ways in which the correct outcoms fato be reached.
For convenience, we will overlook the possibility of the fi@pants failing to obey the
interaction model. We will also ignore issues of fault-talece, such as the failure of
participants, network failures, or lost messages. Theseesare outside the scope of
the paper. Instead, we will focus on the case where the ittieramodel is correctly
followed, but the desired outcome is not reached. In thie dfte problem lies in spec-
ification of the interaction model, and not in the implemdiotaof the external peers.

The design of an interaction model to solve a particular g@al non-trivial task.
The key difficulty lies in the nature of the peers being coeatiéd. The process of coor-
dinating the external peers requires us to specify a comggegurrent system, involv-
ing the interactions of asynchronous entities. Concugrémcoduceson-determinism
into the system which gives rise to a large number of potept@blems, such as syn-
chronisation, fairness, and deadlocks. It is difficult,refer an experienced designer,
to obtain a good intuition for the behaviour of a concurret¢iaction model, primarily
due to the large number of possible interleavings which aauo Traditional debug-
ging and simulation techniques cannot readily explorefathe possible behaviours of
such systems, and therefore significant problems can remmgiiscovered.

The prediction of the outcome in the presence of concurréntypically accom-
plished by the application of formal verification technigue the specification. In par-
ticular, the use of formamodel-checkingechniques [12] appears to hold a great deal
of promise in the verification of interaction models. The eplpof model-checking is
that it is an automated process, unlike theorem provingyghanost model-checking
is limited to finite-state systems. A model checker normakyforms an exhaustive
search of the state space of a system to determine if a partjpoperty holds. Given
sufficient resources, the procedure will always terminaté & yes/no answer. Model
checking has been applied with considerable success inetfification of concurrent

39

hardware systems, and it is increasingly being used as ddowgkrifying concurrent
software systems, including multi-agent systems [7, 9, 60]

It should be noted that the issues of outcome predictionatrsimply an artifact of
the use of complex interaction specifications, such as LC@atsoRather, the source of
these problems is the need to coordinate complex asynchsattities. In particular,
the issues that we have highlighted occur even when ouraiciiens are specified by
simple linear plans. With asynchronous processes, thadipians will be evaluated
concurrently, and the individual plan actions will be inéawed. We will now sketch
how the problems which arise in such concurrent systems ealetected by the use of
model checking techniques.

We have used the SPIN model checker [25] as the basis for aificagon. This
model checker has been in development for many years anadiesla large number
of techniques for improving the efficiency of the model chagke.g. partial-order re-
duction, and state-space compression. SPIN accepts dgsagifications in its own
language°PROMELA (PROcess MEta-LAnguage), and verifies correctness clgmes-s
ified as Linear Temporal Logic (LTL) formula.

To perform model checking on the specification, we requireeacoding of the
specification into a form suitable for model checking. In][84 define an encoding
of the MAP agent interaction language, which is similar tod,Gnto PROMELA. A
similar technique has been defined for the AgentSpeak laygg[8]. In AgentSpeak,
coordination is specified using the Belief-Desire-Intent{BDI) model. To illustrate
the encoding process here, we sketch a translation from Ib@Cai state-based model
in Figure 14. This figure illustrates the encoding of the maimguage constructs of
LCC. Theelabel signifies an empty state, ahdenotes logical negation. The encoding
process is applied recursively to an LCC model. The outcoitidoeva state graph for
each role in the model.

A:B a(R, X) Athen B

AorB M=>X<-C C<-M<=X

g
Ly

Fig. 14. State Space Encoding.

40

The key feature of the encoding process for LCC is the treatimigthe constraints.
We make the observation that the purpose of a constraintimgose a true/false de-
cision on a model, and the purpose of the model checking psisdo detect errors in
the model and not in the constraints. Thus, based on thesewvaltions we can replace
a constraint with a pair of states, one of which signifies thatconstraint is true, and
the other false. The exhaustive nature of the model chegkincess will mean that all
possible behaviours of the interaction model will be exgtbin other words, the model
checker will explore all consequences for the model whesectinstraint was true, and
all consequences where the constraint was false. Thus, wetdweed to evaluate the
actual constraints during the model checking process.

To illustrate the model checking process, we present a-sfaiee encoding of the
shop model in Figure 15. We have removed the redunelatattes from the graphs, and
we have abbreviateshopkeepeto shop The state space defines all possible behaviours
of the model. In this case, the model is linear, and we can @eathe state space by
hand. However, models that contain iteration and choickraydidly expand the state
space, and formal model checking is required. We can clsadythat the model leaves
some behaviours undefined, indicated by the remairistates in the graphs. These
states occur as the shop model does not define what shoulchkendeen a constraint
cannot be satisfied. For example, if the buyer cannot affoeditem, the model will
terminate prematurely. In many cases, we will want to avbis possibility, and so we
would amend the model with additional behaviours and rekchiee state space.

Our initial model checking experiments with LCC have foalipeincipally on the
terminationof the interaction models. This is an important considerain the de-
sign of models, as we do not normally want to define models ¢hahot conclude.
Non-termination can occur as a result of many differentésssuch as deadlocks, live-
locks, infinite recursion, and message synchronisati@r&rFurthermore, we may also
wish to ensure that models do not simply terminate due tairiwithin the model,
as in our shop example. The termination condition is the rmaightforward to ver-
ify by model checking. Given that progress is a requiremenalimost every con-
current system, the SPIN model checker automatically esrifhis property by de-
fault. The termination condition states that every proasntually reaches a valid
end state. This can be expressed as the following LTL formukereendl is the
end state for the first process, aedd?2 is the end state for the second process, etc:
O(O(endl A end2 A end3 A ---)). Forour shop example, we may define the
propertyd(<(sold(X, P))) to ensure that the item is always sold to the buyer.

One of the main pragmatic issues associated with model a@fgpdk producing a
state space that is sufficiently small to be checking withetreglable resources. Hence,
it frequently is necessary to use abstraction technique as we have done for the
constraints, and to make simplifying assumptions. Othegaechers have also consid-
ered this problem. For example, [10] proposes a progracmglitechnique to improve
the efficiency of the model checking process. Model checldradso restricted to finite
models, and therefore we must ensure that our models aredbduilonetheless, our
initial experiments with this approach have proved pronggb6].

The encoding which we have outlined here is designed to padiatomaticcheck-
ing of LCC models. This makes the system suitable for use byexperts who do

41

a(buyer,B)

ask(X)<=
a(buyer,B)

\!in_stock(X,P

need(X)
and shop(S)

I(need(X)]
\fnd shop(S)) in_stock(X,P)

price(X,P)
=>a(buyer,B

price(X,P)
<=a(shop,S

\\!aﬁord(X,P)

afford(X,P)

buy(X)<=
a(buyer,B)

sold(X,P)
<=a(shop,S

sold(X,P)
>a(buyer,B,

Fig. 15. Shop Model States.

not need to understand the model checking process. Howaweapproach places re-
strictions on the kinds of properties of the models that we dzeck. In particular, we

cannot automatically verify properties which are specificite domain of the model.

For example, to verify that the highest bidder always winginauction model. Our

current research is aimed at extending the range of pr@setiat can be checked with
model checking. For this, we need to retain the constramthe model, and we must
define additional formulae over these constraints. Thisish@sult in a greater ability

to predict the outcome of our LCC models.

9 Implementation: the Current OpenKnowledge System

The ideas described in Sections 3 to 8 are part of the foumdé&dr the OpenKnowl-
edge peer to peer knowledge sharing system, for which afypedias been built. By
building the OpenKnowledge system[14,50], we aim to derratesthat sharing in-
teraction models at very low cost to consumers and suppiguessible. The novelty
of the OK system lies in (1) the interaction centric approaghere interactions are

42

published and efficiently stored in a P2P network, (2) detingjinteractions and roles
from the services that execute these roles, and (3) a digtdbway of finding coor-
dinators that coordinate IMs. Within the design of the systge try to address the
(unavoidable) tasks of ontology mapping, query routingutation management, dy-
namic peer recruitment etc. This system is completelyidisted using P2P technology
(not discussed here).

Each peer that participates in the OK system must run a pfexse that we call the
OpenKnowledge Kerndl3] enabling the basic functionality of finding these iatetion
models and the code or peers to run the services implemehténmgles in the IMs. We
call these service®K components (OKCs) he IMs together with the OKCs and/or the
peers running the OKCs are efficiently stored and retriemed®2P network which we
call theOK Discovery serviceAdditionally, due to the fact that the tasks are formally
described, the OK system offers the functionality to setepter to coordinate a task
by executing the IM, selecting peers running the desired ©KLfulfill a role and
recruiting alternative peers in case of failure. The uséth® OK-system capublish
IMs, write interfaces to services, and subscribe thesefates to play roles in the IMs.
The system helps these users by providing tools to easeerefusxisting IMs or by
helping connect two services via mappings in case the ooffrte does not match the
input of the other. A reputation management mechanism igudevelopment to help
the user in selecting IMs, OKCs, Coordinators and peersingn@KCs.

The first prototype provides the basic user interface shawigure 16) with the
following functionality: (1) using the GUI, a user can wrajpiace of JAVA code into
an OKC, (2) a user can share it by publishing it to the (disted) discovery service,
(3) a user search for interaction models by typing keywondsgd that IMs are currently
annotated by keywords), (4) a user can decide to subscriaa ©KC, meaning that
it listens to function calls implementing the role for theKed IM, and finally (5) the
discovery service selects a Coordinator to execute the Il roles are initiated by
peers (the coordinator first will ask all peers with whom tlegnt to play the interac-
tion, after that it selects the optimal solution and if pbisstarts the interaction). New
peers can subscribe for a running interaction, and in ca&glofg peers, they may be
selected to take over. Figure 17 summarizes the archieofithe OK system.

To relate the possibilities of the system to sections in ffstesn, we again use the
scenario from Section 1.1.

— Ontology matching
Her ontology for describing a camera purchase had to be net¢h those of avail-
able services which is described in Section 3
The matching service implements this requirement by (1) pivapvia ontologies
terms from her query with the (currently term) descriptiofishe interaction mod-
els and (2) mapping the capabilities of the peers with the dalscriptions in the
IMs.

— Recommendations
Her recommendation service had to know which services rbiggttbe able to in-
teract and enable them to do so (Sections 2 and 4)
For this we implemented the Discovery Service which effitiestores OKCs,
IMs, peer subscriptions to OKCs and Coordinators. Togettitr the Mapping

43

Openknowledge

__ood

File Tools Help

Search Terms: |ovac|e

| searen |

OOPEN

Local Components
Subscribed Roles

[

~ Favourite Searches

Subseription Keywords

Subscribe to Role

Share Component

Search Results

] Description
U3008/0U79GOITSL
RaSRxfLriXafxPr+SN9QY

address_collector
address_finder
expert_finder
expert_locator
expert_locator_start

| searchror okcs

Narme I

Description

expertioracle|search

Search For Implementations

Create New OKC For Role Download

Model View

Fig. 16. Part of the Open Knowledge GUI

Interpreter

uses

Coordinator

<——— coordinates —>> ' # ‘

Interaction
Model
C AN
interprets E
<
]
7 w
Peer stores contains
Role
/B\
e ™ A
isa plays

managi

—
OK
Component

Fig. 17.Open Knowledge Architecture

44

Service and the Reputation strategies, the results cannizedan order to facili-
tate the recommendation service. The peers that want torpegome tasks, such
as buying a book or selling them, search for published icteya models for the
task, and then advertise their intention of interpreting of its roles to the dis-
covery service for the specific task. For example, a boogselill subscribe to
perform the role of vendor in a purchase interaction, speuif that the topic is
“books,novels,texts”, while a peer searching a book willstribe as customer, for
a task described similarly (for example, just “book”). Wtedhthe roles are filled,
the discovery service matches the peers that subscribéitfeame or similar tasks
(for example, “books,novels,texts” and “book”).

Coordination

When they interact the contextual knowledge needed toaictteeliably should
propagate to the appropriate services as part of the inteoac(Section 5).

When the discovery service has enough subscriptions fontanaiction model, it
selects a coordinator to execute the IM. The coordinatods@nmessage to each
subscribed peer containing relevant contextual inforoma¢ibout the other peers.
In this way, peers can communicate back to the coordinagir pineferences about
with whom they want to interact and not. Once all the roleshim M are fulfilled
by OKCs, the coordinator starts parsing the LCC in a cesedlimanner. When
a constraint is encountered while parsing, the coordine¢ods a message to the
OKC fulfilling the role that must solve the constraint. Thiggsage contains the
information associated to the constraint, and the interactate. Upon receiving
the constraint solving request message from the coordirtheOKC will execute
the code that solves the given constraint and return a megsatye coordinator
with the modified state. This process goes on repeatedlitbatiM terminates.
Dynamic recruitment

When the services are being coordinated then it might bessacg to reconcile
their various constraints in order to avoid breaking thelabbration (Section 6)

It could happen that some peers fail or don't meet the exfieosof Sarah, then
either automatically or manually some other peers can leeteal that (either at the
beginning or during the interaction) have subscribed taties for which another
peer needs to be found. Eventually, the discovery servikrawvdedges the coor-
dinator of the running interaction with new peers. Also,idgrthe interaction, the
discovery service may be queried to return peers that siliestio the role however
with other constraints.

Feedback round

Before she started, Sarah might have wanted to be reasshatdhe interaction
conforms to the requirements of her business process @&ectiand that her in-
teraction was reliable (Section 8)

As stated previously, before any interaction starts, thedioator sends a message
to each individual peer with the credentials and constsaifithe other peers that
want to play a role in the interaction. In this way the user ciagck which ones suit
the desired characteristics.

Summarizing, the OK-system tries to implement the methaglptiescribed in this

paper. Currently we have a first version running, providing basic functionality as

45

described above (user interface, code wrapping, publisbifOKCs and IMs together
with efficient and fully distributed storage and retrievaordinator selection and exe-
cution of the IMs. What is still missing and where we currgrate working on, is the
mapping mechanisms, reputation mechanisms and dynanmnigtreent of peers.

10 Related Views of Coordination

The need for coordination is prevalent and the drive fordampmplex, distributed sys-
tems maintains a pressure to improve the way in which coatitin is programmed.
The focus of our review below is on methods that can (withootmuch stretch of
the imagination) be considered programming, so for examplegnore methods which
have been used to specify interaction-related problem&buthich no means of prac-
tical computation has been provided. By the same token weotlfoous upon explo-
rations of relevant foundational theories of interactiowl @oordination - for example
those originating in theoretical computing science (sugli28, 38, 53, 58]), planning
(such as [21]) and multi-agent systems theory (such as [3R,Bven with this limit
there remain many related approaches so our review desaithegories of system with
illustrative examples selected from the many available.

10.1 Restricted Languages and Specialist Infrastructures

We have presented a generic language for coordination. Bgsihg a more specific
language in which to express desired patterns of coordingiowever, it may be pos-
sible to build tools that exploit those language restritsian order to build a limited

variety of interactions with less effort. This follows theadition of domain specific
synthesis of traditional programs (such as [49] in ecolalgicodelling; [34] in astro-

physics) and in visual languages used to describe the stauaf process and workflow
systems.

Examples of this in an Internet setting are workflow editing @nactment systems
to support scientific computing over large data sets - faminse the Taverna [40] and
Kepler [2] workflow systems. These systems aim to suppoegisits (who have little
knowledge of the intricacies of computing on computatiograd architectures) with
a high level visual language for designing experiments esged as workflows, and
then executing these in a manner that allows the sorts ofegmanwvce attribution and
runtime monitoring that their communities of scientiststdmd. These systems are
effective because they constrain the task and domain. &eikpler nor Taverna is
intended as a programming language - they are languagegitbs&vice connection
and provide graphical interfaces for this purpose. Althoitgis possible to invent a
visual language that can be generically used for specifiggg-based programs (see
[1] for an example) there is no evidence that a generic visatibn is easier for human
communities of practise to understand than the mathenhatigeesentation from which
it originated - hence to need to specialise by task and/orailom

46

10.2 Coordination Via Finite State Models

Throughout this paper we have taken a view of computationghghasises process
rather than state. There is, however, a strong interactéwdsen process and state so
there are deep similarities between LCC and interactionatsadkescribed by finite state
machines. An example is the Islander system [16]. The fraonefor describing agent
interactions in Islander relies upon a (finite) set of stdtmtifiers representing the pos-
sible stages in the interaction. Agents operating withisftamework must be allocated
roles and may enter or leave states depending on the losutien message passing)
that they have performed. In order to structure the desonpstates are grouped into
scenes. An institution is then defined by a set of scenes aetl @ sonnections be-
tween scenes with constraints determining whether ageaysmnove across these con-
nections. A scene is defined as a collection of the followitg:goles; state identifiers;
an initial state identifier; final state identifiers; accessesidentifiers for each role; exit
state identifiers for each role; and cardinality constsaont agents per role.

Systems like Islander have been used in what is essentialligiat-server mode,
where interacting peers must connect through a centraéséimat enforces whatever
synchronisation and sequencing the chosen interactiorehtedquires. This is a very
different way of using interaction models from that desedhlusing LCC but there is
nothing to prevent state machine models from being usedthéth CC style of deploy-
ment (or vice versa). A more fundamental difference is intag models are described
which, for LCC, is in the style of a declarative programmiagduage.

10.3 Coordination Controlled by Local Constraints

Policy languages, such as those described in [27], are asvdaspecifying require-
ments imposed locally by a peer as conditions for intergatiith other peers in differ-
ent contexts. Such specifications are useful because theidpra way of determining
some of the constraints on interaction in advance of agtiratitracting. Re-interpreted
from our viewpoint, this sets constraints locally that abimteract with the global con-
straints set by an interaction model, affecting the likedit that it would succeed. In this
view, policies are complementary to our approach but thésr@in additional opportu-
nity (and problem) not discussed elsewhere in this papéiciB® allow the possibility
of making better guesses about the appropriateness of {wepesform roles required
by interaction models but, to take advantage of this, it iseseary to have rapid and
automatic ways of checking the satisfiability of local coastts with respect to (par-
tially complete) interaction models. In [42] we describelgaencouraging results in
applying a form of model checking to this problem.

10.4 Coordination via Shared Task or Service Specifications

In this paper we have assumed that entire interaction madelde shared and this is
the basis for coordination between peers as well as otherrfess such as matchmaking,
desirable in open peer-to-peer environments. An altareatew, promoted by specifi-
cation languages such as WSMO [18] and automated by systehsas IRS [39], is
that only task specifications should be shared between .pEeese task specifications

47

differ from interaction models in that they do not describe tourse of the interaction,
only the outcome that is desired by the peer posting the tagkthen necessary for

tasks posted by peers to be connected to other peers caggidehaps performing

those tasks. This is facilitated by special purpose compisriarown as mediators, that
relate task specifications to problem solver specificatfposted by peers that wish to
perform tasks. Programming of interactions independeuitigeers (our focus in this

paper) is not the aim of this sort of system, in which contfohteraction remains local

to each peer. Instead, standardisation of task and prolbkmrspecifications (using a
specification language originating in UPML [17]) is used taka tasks more flexibly

shared.

OWL-S is a domain-independemwL ontology for describing web services such
that they can be reasoned about by users and middleware[38itha service is spec-
ified by three facets: the servigeofile, servicemodelmodel, and servicgrounding
The profile specifies what the service does and who providdhi functionality is
described by typing inputs and outputs of the service, usorgepts in some domain-
specific ontology external towL-s, the intention being that the ontology can be used
to find those services most closely resembling the requestedFor instance, a pho-
tographer looking to buy a new 35msnR film camera might happily accept a digital
35mmsLR (closely related in the ontology), but would be less satisf@be given a
35mm point-and-shoot film camera, which would be ontoldgiamore distant. The
service model describes how the service operates, by méatsmic processes and a
workflow-like language to combine those processes into asitgones. The grounding
describes how to map from this high-level description toltvelevel implementation,
that is, how to invoke the service.

OWL-S is a language so does not, itself, specify any matchmakioggss or in-
frastructure: service discovery and matchmaker queryirgle enabled by design, are
not defined. Others, however, have built inference systeatatseowL-S. Perhaps the
best known matchmaker system is Semantic MatchMaker [4&ie Hservice discov-
ery is achieved by insertingwL-s descriptions into user-defined fields in thebi
record [43]. A semantic matchmaker is responsible for jprieting this to find matches
between clients and providers. More troublesome is the tdgbrovision in owL-S
for changing or replacing the executing process. To resthiige’broker paradox’ [44],
Semantic MatchMaker introduces an ‘exec’ primitive to tate that a new, brokered,
process should be substituted in place of the executing dichwmegotiated the match-
making. The broker paradox is not a problemioc, since we can dynamically alter
the current interaction model, or instruct a participanéxecute a new one.

10.5 Coordination as Logic Programming

LCC can be viewed as an unusual from of logic programming iictvthe subgoals
of clauses are message passing subgoals or role changgsw€hielieve, is a strength
of the approach because there exists a large body of engitraéred in this form of
computational logic. Other efforts, however, have produdgferent solutions to co-
ordination that also draw inspitation from logic progranmani The Go! language [11],
for example, provides a multi-threaded environment in \whagents are coordinated
via a shared memory store of beliefs, desires and intentiblnis is a form of agent

48

oriented programming, using a standardised architecture therefore local agent be-
liefs (rather than interaction models as in LCC) are the angloint for coordination.
Perhaps closer to LCC is the work being done on modellingiragknt coordination
using logic programs, for example in [4] where the Event Ghls is used to specify
and analyse social constraints between agents (the motivat this being similar to
that of [37]). For a logic programming view of LCC see [47].

11 Conclusion: What is the Simplest Thing That Could Possilyl
Work?

In Section 3 to 7 we discussed six problems encountered whiemated reasoning
systems must interact in large, open, distributed syst&éhesse problems are: ontology
alignment; coalition formation; outcome prediction; maining shared knowledge; re-
specting local constraints; and relating interaction tmcpiss requirements. Our contri-
bution is to provide a novel integrative view across all thesoblems by turning control
of interaction into a declarative programming problem stbanging it within scope of
the existing tools and techniques. This is not to say tha&oyr six problems are en-
tirely solved in this way (they are, arguably, too generdlécsolved definitively) but by
making models of interaction explicit, via the LCC languag&ection 2.1, we are able
to tackle aspects of each of the problems that are difficidtidress using conventional
declarative or agent oriented programming.

What is the simplest thing that could possibly work? The L@@guage of Sec-
tion 2 is pared down to a minimal set of concepts that we hayeeat are essential to
describe intearctions in an executable form. Ontology hiatzusing the interaction-
specific method described in Section 3 need not involve niane ¢ach individual peer
maintaining lists of matches between expressions thatsefibspecifically for the in-
teractions in which it is engaged. The event based matchnudik&ection 4 relies on
counting successes and failures generated from the uimgihteraction mechanism
so this is no more complex from a user’s point of view than paaping in the current
Web. Interaction context is maintained, in Section 5, bywggiarameters to roles in
the interaction model. Getting this right can be a sophastid task for the designer of
an interaction model but those using interaction modelsi mext be aware of this so-
phistication (just like the muddy children in our exampleda't have been aware that
the interaction model in which they were involved was camstd in a devious way).
One simple reaction to brittleness of interaction (our ¢oipi Section 6) is to endure
it as a fact of life in the same way as we tolerate brittlenassoinventional Web ser-
vices. If this proves too brittle, however, our declaratsigle of modelling allows us
to increase flexibility in some respects (via constraintdigug and adaptation) without
requiring individual peers to become significantly morelsepicated. All of the meth-
ods described in these sections could be made more compteeds demand but none
of them require great sophistication from individual usafrthe peer to peer system.

Simplicity may also be achieved through familiarity, andehthe issue is whether
those who wish to describe (rather than only use) interastieould adopt any language
other than the one with which they are already familiar. Bec? demonstrates one
way of bridging this gap by write interpreters for the comrityspecific languages

49

in LCC. Writing each interpreter is complex, but done onlycenwhile using it is
then simple. Furthermore, some of the complexity of modslgiecan be reduced by
applying traditional methods of formal verification to irdetion models, as we describe
in section 8.

Acknowledgements
This work was supported by the UK EPSRC Advanced Knowledghri@ogies Inter-

disciplinary Research Collaboration (GR/N15754/01) apdhe EU OpenKnowledge
project (FP6-027253).

References

A

. J. Agusti, J. Puigsegur, and D. Robertson. A visual syfuabogic and logic programming.

Journal of Visual Languages and Computifg 1998.

2. . Altintas, A. Birnbaum, K. Baldridge, W. Sudholt, M. N&k, C. Amoreira, Y. Potier, and
B. Ludaescher. A framework for the design and reuse of gridkflamvs. In P. Herrero,
M. Perez, and V. Robles, editotsternational Workshop on Scientific Aspects of Grid Com-
puting pages 120-133. Springer-Verlag, Lecture Notes in Comn@dince 3458, 2005.

3. A. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. KleinLEBymann, K. Liu, D. Roller,
D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Bessrprocess execution language
for web services, version 1.1, 2003.

4. A. Artikis, J. Pitt, and M. Sergot. Animated specificaoof computational societies. In
C. Castelfranchi and W. Lewis Johnson, edité®sjceedings of the 1st International Joint
Conference on Autonomous Agents and MultiAgent Sysiemes 1053-1061, Bologna,
Italy, July 15-19 2002. Association for Computing Machiner

5. A. Barker and R. Mann. Integration of multiagent system8dtroGrid. InProceedings of
Astronomical Data Analysis Software and SystemsB(Yopean Space Astronomy Centre,
Spain, 2005.

6. J. Barwise. Scenes and other situatialmirnal of Philosophy78(7):369-397, 1981.

7. M. Benerecetti, F. Giunchiglia, and L Serafini. Model dkirg multiagent systemslournal
of Logic and Computatiqr8(3):401-423, 1998.

8. P. Besana, D. Robertson, and M. rovatsos. Exploitingaoten contexts in p2p ontology
mapping. In2nd International Workshop on Peer to Peer Knowledge Mamegg San
Diego, California, USA, July 2005. CEUR Workshop ProcegdinSSN 1613-0073, online
CEUR-WS.org/Vol-139/2.pdf.

9. R.H. Bordini, M. Fisher, C. Pardavila, and M. Wooldridddodel checking agentspeak. In
Proceedings of the Second International Conference onndmous Agents and Multiagent
SystemsMelbourne, Australia, 2003. ACM Press.

10. R.H. Bordini, m. Fisher, W. Visser, and M. Wooldridge.at8tspace reduction techniques
in agent verification. IProceedings of the Third International Conference on Aatoaus
Agents and Multiagent Systenpages 896-903, New York, USA, 2004. ACM Press.

11. K. L. Clark and F. G. McCabe. Go! for multi-threaded dei#ttive agents. In J. A. Leite,
A. Omicini, L. Sterling, and P. Torroni, editoreclarative Agent Languages and Tech-
nologies, First International Workshop, DALT 2003. Melbmey Victoria, July 15th, 2003.
Workshop Notepages 17-32, 2003.

12. E.M. Clarke, O. Grumberg, and D.A. Pelddodel CheckingMIT Press, 1999.

50

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.

29.

30.

31.

32.

33.

Adrian Perreau de Pinninck, David Dupplaw, Spyros Klateuand Ronny Siebes. The
openknowledge kernel. IRroceedings of the IX CESSE conferendenna, Austria, 2007.
Adrian Perreau de Pinninck, David Dupplaw, Spyros KlasuRonny Siebes, David Rober-
son, and Frank van Harmelen. The architecture of the opemdedge system. Technical
report, Open-knowledge consortium, 2006.

K. Decker, K. Sycara, and M. Williamson. Middle-agemtsthe internet. IfProceedings of
the 15th International Joint Conference on Artificial Intgénce Nagoya, Japan, 1997.

M. Esteva, D. de la Cruz, and C. Sierra. Islander: anmleict institutions editor. IrPro-
ceedings of the 1st International Joint Conference on Aaoous Agents and MultiAgent
Systemgspages 1045-1052, 2002.

D. Fensel, R. Benjamins, E. Motta, and R. Wielinga. A famrk for knowledge system
reuse. InProceedings of the International Joint Conference on Aitfilntelligence Stock-
holm, Sweden, 1999.

D. Fensel and C Bussler. The web service modellign frasmewElectronic commerce:
Research and application$:113-137, 2002.

F. Giunchiglia, P. Shvaiko, and M. Yatskevich. S-magrhalgorithm and an implementation
of semantic match. IRroceedings of the European Semantic Web Sympppamges 61—75,
2004.

D. Goldin, S. Smolka, P. Attie, and E. Sonderegger. Tumirachines, transition systems and
interaction.Information and Computatiqri94(2), 2004.

B. Grosz and S. Kraus. Collaborative plans for complexigraction Artificial Intelligence
2,1986.

J. Y. Halpen and Y. Moses. Knowledge and common knowledgelistributed environment.
Journal of the ACM37(3):549-587, 1990.

F. Hassan and D Robertson. Constraint relaxation taceebtittleness of distributed agent
ppotocols. InProceedings of the ECAI Workshop on Coordination in Emergeent Soci-
eties Valencia, Spain, 2004.

F. Hassan, D Robertson, and C. Walton. Addressing @nstailures in an agent interaction
protocol. InProceedings of the 8th Pacific Rim International WorkshopMuti-Agent
SystemsKuala Lumpur, Malasia, 2005.

G. J. HolzmannThe SPIN Model Checker: Primer and Reference Manddbison Wesley,
2003.

D. Jackson and J. Wing. Lightweight formal methd@&EE ComputerApril, 1996.

L. Kagal, T. Finin, and A. Joshi. A policy language forymsive systems. |Rourth IEEE
International Workshop on Policies for Distributed Sysseand Networks2003.

Y. Kalfoglou and M Schorlemmer. Ontology mapping: thatestof the art. Knowledge
Engineering Reviey2003.

N. Kavantzas, D. Burdett, G. Ritzinger, and Y. Lafon. Wetvices choreography description
language version 1.0, 2004. W3C Working Draft 12 October200

m. Klusch and K. Sycara. Brokering and matchmaking fordination of agent societies:
a survey. InCoordination of Internet agents: models, technologiesl applications pages
197-224. Springer-Verlag, 2001.

D. Lambert and D. Robertson. Matchmaking and brokeringirparty interactions using
historical performance data. Fourth International Joint Conference on Autonomous Agent
and Multi-agent System2005.

G. Li, J. Chen-Burger, and D Robertson. Mapping a busipescess model to a semantic
web services model. IRroceedings of the IEEE International Conference on WebiSeg
San Diego, 2004.

G. Li, D Robertson, and J. Chen-Burger. A novel approacleiiacting distributed business
workflow on a peer-to-peer platform. Proceedings of the IEEE Conference on E-Business
Engineering Beijing, 2005.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

51

M. Lowry, A. Philpot, T. Pressburger, and |I. Underwood. folkmal approach to domain-
oriented software design environments. Rroceedings of the 9th Knowledge-Based Soft-
ware Engineering Conference, Monterey, Califorrpages 48-57, 1994.

D. Martin, m. Burstein, J. Hobbs, O. Lassila, D. McDerm8&t Mcliraith, S. Narayanan,
M. Paolucci, B. Parsia, T. Payne, E. Sirin, N. Srinivasaul, linSycara.owL-s 1.1, 2004.

J. McGinnis and D. Robertson. Realising agent dialogui#s distributed protocols. In
Developments in Agent Communication: Proceedings of thendmous Agents and Multi-
agent Systems Workshop on Agent Communicatioinme 3396. Springer Verlag Lecture
Notes in Atrtificial Intelligence, 2004.

S. Mcllraith and T. Son. Adapting golog for compositiohsemantic web services. In
Proceedings of the Eighth International Conference on Kedge Representation and Rea-
soning pages 482-493, 2002.

R. Milner, J. Parrow, and D. Walker. A calculus of mobilegesses, part I/llinformation
and Computation100(1):1-77, 1992.

E. Motta, J. Domingue, L. Cabral, and M. Gaspari. Irgiframework and infrastructure
for semantic web services. Proceedings of the Second International Semantic Web Con-
ference Florida, USA, 2003.

T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Gne@od, T. Carver, K. Glover,
M. Pocock, A. Wipat, and P. Li. Taverna: a tool for the comfiosi and enactment of
bioinformatics workflows Bioinformatics 20(17):3045-3054, 2004.

N. Osman.Addressing Constraint Failures in Distributed DialogueoRycols PhD thesis,
School of Informatics, University of Edinburgh, 2003. MSkeEis.

N. Osman, D. Robertson, and C. Walton. Run-time modelkihg of interaction and deontic
models for multi-agent systems. Rroceedings of the Third European Workshop on Multi-
agent System8russels, Belgium, 2005.

M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Inmqppthe semantic web in UDDI,
2002.

m. Paolucci, J. Soudry, N. Srinivasan, and K. Sycara.okdarfor OWL-S web services. In
Proceedings of the 2004 AAAI Spring Symposium on SemartiS@/gices2004.

M. Paulucci, T. Kawamura, T.R. Payne, and K. Sycara. &gowaatching of web services
capabilities. InProceedings of the International Semantic Web Confere2@@2.

D. Robertson. A lightweight coordination calculus fgeat social norms. IRroceedings
of Declarative Agent Languages and Technologies worksh@pAMAS New York, USA,
2004.

D. Robertson. Multi-agent coordination as distributegic programming. Ininternational
Conference on Logic Programming§ant-Malo, France, 2004.

D. Robertson and J. Agustoftware Blueprints: Lightweight Uses of Logic in Conceptu
Modelling Addison Wesley/ACM Press, 1999. ISBN 0201398192.

D. Robertson, A. Bundy, R. Muetzelfeldt, M. Haggith, andJschold. Eco-Logic: Logic-
Based Approaches to Ecological ModellinglI T Press (Logic Programming Series), 1991.
ISBN 0-262-18143-6.

Ronny Siebes, David Dupplaw, Spyros Kotoulas, Adriame2@ de Pinninck, David Rober-
son, and Frank van Harmelen. The functional descriptiorhefdpen-knowledge system.
Technical report, Open-knowledge consortium, 2006.

R.G. Smith. The contract net protocol: high-level comination and control in a distributed
problem solver. IrmDistributed Artificial Intelligence pages 357—366. Morgan Kaufmann
Publishers Inc., 1988.

W. van der Hoek and M. Wooldridge. On the logic of cooperaaind propositional control.
Artificial Intelligence 164(1-2), 2005.

52

53

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

. J.van Leeuwen and J Wiedermann. A computational modeterfaiction in embedded sys-
tems. Technical Report UU-CS-02-2001, Dept. of Computérie, University of Utrecht,
2001.

C. Walton. Model checking agent dialogues. Froceedings of the 2004 Workshop on
Declarative Agent Languages and Technologhsw York, USA, 2004.

C. Walton. Model checking multi-agent web servicesPtaceedings of AAAI Spring Sym-
posium on Semantic Web Servic@alifornia, USA, 2004.

C. Walton. Model checking multi-agent web servicesPtaceedings of the AAAI Spring
Symposium on Semantic Web Seryi&tanford, USA, 2004. AAAI.

C. Walton and A Barker. An agent-based e-science expetibuilder. InProceedings of the
1st International Workshop on Semantic Intelligent Mideiee for the Web and the Grid
Valencia, Spain, Aug 2004.

P. Wegner. Why interaction is more powerful than aldgponis. Communications of the ACM
40(5), 1997.

H. Wong and K. Sycara. A taxonomy of middle-agents foritibernet. InProceedings of
the International Conference on Multi-agent SysteR@90.

M. Wooldridge, M. Fisher, m.P. Huget, and S. Parsons. éflobecking multiagent systems
with MABLE. In Proceedings of the First International Conference on Aaotoonus Agents
and Multiagent SystemBologna, Italy, 2002.

M. Wooldridge and N.R. Jennings. The cooperative praldelving process.Journal of
Logic and Computatior9(4), 1999.

L. Zeng, B. Benatallah, M Dumas, J. Kalagnanam, and Qg l@uality driven web services
composition. InProceedings of the twelfth international conference onliMgYide Web
pages 411-421. ACM Press, 2003.

Z. Zhang and C. Zhang. An improvement to matchmakingrihgos for middle agents. In
Proceedings of the first international joint conference ariohomous agents and multiagent
systemspages 1340-1347. ACM Press, 2002.

