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Abstract

Snow represents an important resource in mountainous regions. Monitoring its ex-
tent and amount is relevant for several applications, such as hydrology, ecology,
avalanche monitoring, or hydropower production. However, a correct understand-
ing of the high spatial and temporal variability of snow accumulation, redistribution
and ablation processes requires its monitoring in a spatialized and detailed way. Re-
cently, the launch of the Sentinel missions has opened the doors to new approaches
that mainly exploit high resolution (HR) data having a spatial detail of few dozens
of m. In this thesis, we aimed at exploiting these new sources of information to
retrieve important parameters related to the snowmelt processes. In detail, we i)
investigated the use of Sentinel-1 Synthetic Aperture Radar (SAR) observations to
evaluate snowmelt dynamics in alpine regions, ii) developed a novel approach based
on a hierarchical multi-resolution analysis of optical time-series to reconstruct the
daily HR snow cover area (SCA), and iii) explored the combination of HR SCA
time-series, SAR snowmelt information and other multi-source data to reconstruct
a daily HR snow water equivalent (SWE) time-series. In detail, in the first work
we analyzed the relationship between the snowmelt phases of a snowpack and the
multi-temporal SAR backscattering. We found that the SAR is able to provide
useful information about the moistening, ripening and runoff phases. In the second
work, we exploited the snow pattern repetition on an inter-annual basis driven by
the geomorphological features of a study area to carry out historical analyses. Thus,
we took advantage of these repetited patterns to fuse low resolution and HR satel-
lite optical data and set up a gap filling to derive daily HR snow cover area (SCA)
time-series. These two research works are the pillars for the last contribution, which
aims at combining all these information sources together with both in-situ data and
a simple yet robust degree day model that provides an estimate of the potential
melting to derive daily HR SWE time-series. These final results have an unprece-
dented spatial detail, that allows to sample the phenomena linked to the complex
snow accumulation, redistribution and ablation processes with the required spatial
and temporal resolution. The methodology and the results of each experimental
work are illustrated and discussed in detail in the chapters of this thesis, with a look
on further research and potential applications.

Keywords: Snowmelt, Snow Water Equivalent, Snow Cover Area, Sentinel mis-
sions, Multi-temporal, Multi-source
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Introduction

This chapter offers an introduction to the PhD thesis. The aim of this research
is the retrieval of snow parameters through innovative approaches based on remote
sensing techniques. We briefly introduce the framework where this thesis has been
developed by presenting the topic, a brief overview of the existing techniques and
the opportunities that arise by the use of recent satellite missions. This allows to
highlight and discuss the motivation, the objectives and the novel contributions of
this thesis. Finally, the structure of the document is reported.

Background

Snow is an essential component of the cryosphere. In the Northern Hemisphere, the
snow extent can cover more than half of the land area when reaching its maximum
annual expansion (Groisman 2001). Consequently, snow cover has a large influence
on the global water cycle and climate. In snow dominated regions, snowmelt is
the main contributor to streamflow runoff and groundwater recharge affecting much
larger downstream areas (MacDonald & Stednick 2003). Indeed, the percentage of
snow stored during winter and released as liquid water during spring can represent
at least 50% of the total flow sometimes going over 95% (Shafer et al. 1982, Cline
1997). The snow contribution to mountain hydrology is of crucial impact not only
for flood predictions but also for its socio-economic impacts, as hydropower contribu-
tion (Magnusson et al. 2020) and ski-tourism (Hanzer et al. 2020). Moreover, snow
affects the Earth’s energy budget due to its interaction with soil and atmosphere.
Being snow one important weather and climate forcing, its anomalies in terms of
snow cover area (SCA) are essential for evaluating climate change variations (Notar-
nicola 2020). Nonetheless, changes in SCA also influence the ecosystems (Starr &
Oberbauer 2003). Not least, an accurate knowledge of the snowpack is fundamen-
tal for avalanche forecasting. Combination of steep slopes, gravity, accumulation
and deformation of snow cover and short-term fluctuations in weather phenomena
can lead to detachment of large snow masses. The repercussions are damages to
transportation, infrastructure, resource industries, private properties and eventu-
ally represent a cause of human lives loss (Stethem et al. 2003).

It is obvious that an accurate monitoring of the snow distribution and availabil-
ity is thus essential for several scopes. In this sense, a key variable is the snow water
equivalent (SWE) that represents the total amount of water stored in the snowpack
that would be released upon complete melting. This variable is the most important
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from a hydrological point of view. Together with other common snow properties, it
is traditionally investigated through ground-based observations. However, this ap-
proach implies limited spatial coverage and intrinsic difficulties in monitoring remote
areas, but provides the best understanding of the environmental physics associated
with snow. Mathematical models have also been exploited to represent the physics
of the phenomena linking climate forcing and snowpack micro- and macro-structure
(Brun et al. 1992, Lehning et al. 1999, Bartelt & Lehning 2002, Lehning et al. 2002).
The main drawbacks of such a tool is represented by uncertainties and errors related
to model structure (Avanzi et al. 2016), meteorological forcing (Raleigh et al. 2015)
and model parameterizations (Engel et al. 2017), that may result in poor model
performances.

Remote sensing (RS) represents a valid alternative as well as a complementary
information source to ground-based observations and physical modeling. In the last
decade, the European Commission (EC) and the European Space Agency (ESA)
have financed the launch of the well-known Sentinel missions in the framework of
the Copernicus program. This has opened new interesting opportunities, given the
improved spatial and temporal resolution of the provided data that are available
free-of-charge. In detail, the missions of interest for snow monitoring are:

• the Sentinel-1 (S1) mission that is made up of a constellation of two identical
satellites with a C-band SAR mounted on board. The images acquired by
S1 have a nominal resolution of 20 m and are acquired in dual-polarization
(VV and VH) over Europe. The first satellite (S1A) is operating since April
2014 while the twin (S1B) since April 2016. Hence, starting from this date an
acquisition every 6 days is available. However, since December 2021 S1B has
experienced a power failure. Hence, S1C is planned to be launched in winter
2022;

• the Sentinel-2 (S2) constellation that is made up of two identical satellites op-
erating a multi-spectral sensor with 13 bands in the visible (VIS), near infrared
(NIR), and shortwave infrared (SWIR) parts of the spectrum. The spatial res-
olution varies from 10 m to 60 m. The first satellite (S2A) is operating starting
from June 2015 and the twin (S2B) from March 2017. The revisit time with
2 satellites is about 5 days at the equator and 2-3 days at mid-latitudes.

• the Sentinel-3 (S3) mission that is composed of two twin satellites that carry
multiple sensing instruments among which we recall the Sea and Land Surface
Temperature Radiometer (SLSTR) and the Ocean and Land Colour Instru-
ment (OLCI). These optical sensors can acquire medium resolution images,
i.e., from 300 to 500 m in the VIS, NIR, and SWIR part of the spectrum
every day for every location on the Earth. The first satellite was launched in
February 2016 and the second one in April 2018.

Beside these recent missions, further datasets are also available to provide long-term
observations over the past years. In detail, we cite:

• the Moderate Resolution Imaging Spectroradiometer (MODIS) mounted on
Terra and Aqua. These satellites were launched in December 1999 and in May
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Figure 1: Overview of some of the main satellite missions that are of interest for
snow monitoring. It is possible to notice that during the years, there has been an
improvement in terms of both spatial and temporal resolution.

2002, respectively, by the National Aeronautics and Space Administration
(NASA). The instrument is able to acquire over 36 spectral bands with a
spatial resolution of 500 m in the VIS, NIR and SWIR. The two satellites
provide two acquisitions per day.

• the Landsat missions, with a total number of 8 satellites that provide high
spatial resolution acquisitions. These multi-spectral sensors operate since 1982
(from Landsat-4) with spatial resolution ranging from 15 to 60 m in the VIS,
NIR, SWIR and thermal red part of the spectrum and a revisit time of 16
days.

An overview of the most relevant missions for snow monitoring is presented in
Fig. 1. Together with the above mentioned missions, we also reported the Advanced
Very-High-Resolution Radiometer (AVHRR) instrument that has operated in five
spectral bands (red, thermal, mid infrared, and NIR bands) and was mounted on
board of different satellites, such as the National Oceanic and Atmospheric Admin-
istration (NOAA) Polar-Orbiting Environmental Satellite (POES). Moreover, we
reported also the PlanetScope constellation that acquires images with a high spatial
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(3 m) and temporal resolution (1 day) but has the disadvantages that it acquires
data only over VIS and NIR spectral bands and that images are not available free
of charge. However, the increase in spatial and temporal resolution represents a
future trend for most of the missions. In this context, it still exists a clear trade-
off between spatial and temporal resolutions that needs to be solved by merging
information from different satellites. Furthermore, the availability of historical ob-
servations together with more recent and improved data - in terms of spatial detail
and temporal availability - creates new opportunities for developing novel data fu-
sion methods. In particular, multi-temporal and multi-source data can be integrated
in order to fulfill the current gaps in the state-of-the-art methods and develop im-
proved products that are relevant for snow monitoring. Hence, the main aim of
this thesis is to provide novel approaches to monitor the snow cover and relevant
parameters related to snow hydrology with high spatial and temporal detail. Such
a result is needed for a proactive management of the water resources. Moreover, an
improvement in terms of spatial and temporal resolution provides not only a mean-
ingful information for countless environmental applications but also a tool to better
understand the complexity and heterogeneity of the environmental phenomena that
govern the snow cover evolution.

Thesis Objectives and Contributions

In this thesis we aim at developing novel approaches based on RS techniques to de-
rive relevant information about the snow accumulation and melting, with the final
scope to derive a high detail information about SWE distribution. As mentioned in
the previous section, this is a variable of great interest for most of the applications.
However, as we will explain more in detail through the thesis, the state-of-the-art
methods developed so far for SWE retrieval are in general not able to extract suf-
ficient spatial and temporal detail as required for an accurate monitoring of this
important parameter. Advancements in terms of both spatial and temporal reso-
lution are important to depict the high spatial variability of snow accumulation,
redistribution and melting phenomena. These are linked to both the high hetero-
geneity of weather forcings as well as the geomorphological features of the analysed
area. Hence, RS represents an excellent tool in this sense. The recent context of
large data availability coming from heterogeneous sources has opened the doors to
development of novel approaches that exploit the large amount of multi-temporal
and multi-source data that we have. Hence, the main objective of this thesis is to
overcome the limitations of the current state-of-the-art methods by exploiting data
from new missions that represent a step forward in terms of spatial and temporal
resolution as presented in the previous section. Moreover, the results of this thesis
are developed in the future perspective of a data assimilation framework where RS
and in-situ observations are used together with physically based models since all
these outcomes should go hand in hand, always keeping in mind the physical pro-
cesses that drive the phenomena. In the following subsections the main objectives
and novelties for each contribution of the thesis will be briefly described.
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Use of Sentinel-1 Radar Observations to Evaluate Snowmelt
Dynamics in Alpine Regions

A correct understanding of the characteristics of the snowpack requires a proper
information about the snowmelt and the runoff timing. This information is es-
sential for many hydrological applications and especially in the context of SWE
retrieval. The Synthetic Aperture Radar (SAR) mounted on board of the S1 mis-
sion offers the opportunity to retrieve information about the snowpack status with
a temporal and spatial accuracy never seen before. Indeed, it is highly sensitive
to the LWC of the snowpack. The high sampling time (e.g., 6 days) allows to set
up a multi-temporal analysis between the SAR backscattering and the key snow
properties, as LWC and SWE, with an unprecedented spatial detail. This allows
us to identify the three melting phases that characterize the melting process, i.e.,
moistening, ripening and runoff. In detail, we can observe that the C-band SAR
backscattering decreases as soon as the snow starts containing liquid water, and that
the backscattering increases as soon as SWE starts decreasing, which corresponds
to the release of meltwater from the snowpack. A set of simple rules is defined to
identify the melting phases starting from the multi-temporal SAR backscattering.
The S1 backscattering is compared with snow properties derived from in-situ obser-
vations and physically-based snow modeling simulations for five alpine test sites in
Italy, Germany and Switzerland considering two hydrological years showing a good
agreement. A spatially-distributed application of the identification of the runoff
onset from SAR images for a mountain catchment, i.e., the Zugspitze catchment in
Germany, is also proposed. The results show great potentiality being able to well
represent the spatial and temporal variability of the snowmelt over large regions.

A Novel Approach Based on a Hierarchical Multi-Resolution
Analysis of Optical Time Series to Reconstruct the Daily
High-Resolution Snow Cover Area

The snow cover area (SCA) is also a relevant preliminary input for retrieving an
accurate information about the extent of the snow cover and, in turn, on its per-
sistence on the ground. Given the large variability of the snow cover dynamics, a
proper monitoring requires daily and high spatial resolution sampling. However,
the current satellite missions do not provide such observations. We propose a novel
approach that merges multi-source and multi-scale acquisitions to infer the daily HR
snow cover area for mountainous basins. The approach is based on the assumption
that inter-annual snow patterns are both affected by the local geomorphometry and
meteorology. To derive these patterns, we exploit a hierarchical multi-step approach
based on historical statistical analyses on a long and sparse HR time-series. The
inference is secondly reinforced by using a generalized additive model (GAM) that
exploits not only the historical data but also explicit geomorphometric, global snow
and multi-temporal properties. The results show an average overall accuracy of 92%
when evaluated in a catchment in the Sierra Nevada, USA, for three hydrological
years (2017-2019).
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Exploring the Use of Multi-source High-Resolution Satellite
Data for Snow Water Equivalent Reconstruction over Moun-
tainous Catchments

The information derived in the previous works can be exploited with the final pur-
pose to retrieve the snow water equivalent (SWE) that represents the variable of
greatest hydrological interest. Multi-source data are exploited here to reconstruct
daily SWE time-series at a final spatial resolution of 25 m by proposing a novel
approach designed for mountainous catchments. In detail, we exploit i) daily HR
time-series of snow cover area (SCA) obtained by high- and low-resolution optical
images to define the days of snow presence (derived in the framework of this thesis,
as explained previously), ii) a degree-day model driven by in-situ temperature to
determine the potential melting, iii) in-situ snow depth to derive the presence of
a snowfall, and iv) SAR images to determine the occurence of melting (derived in
the framework of this thesis, as explained previously). The product derived in the
framework of this PhD thesis allows to sample more adequately than standard prod-
ucts the snow distribution, resulting in a highly detailed spatialized information that
represents an important novelty. The proposed SWE reconstruction approach also
foresees a novel SCA time-series regularization from impossible transitions, i.e. the
change of the pixel class from snow to snow-free when it is supposed to be subjected
to an accumulation event or, the other way round, the change from snow-free to snow
during a melting event. Moreover, it reconstructs SWE for the whole hydrological
season, i.e., both accumulation and melting phase, without the need of spatialized
precipitation information as input, which is usually affected by uncertainty. De-
spite the simple approach based on a set of empirical assumptions, it shows good
performances when tested in two different catchments: the South Fork catchment,
California, and the Schnals catchment, Italy. The results show a good agreement
with an average bias of -40 mm when evaluated against a HR spatialized reference
product and of 38 mm when evaluated against manual measurements. Such a high
detail product is of great interest for several hydrological and ecological applications.

Thesis Organization

The thesis is organized in five main chapters. Chapter 1 illustrates the fundamentals
and the background notions useful for understanding the dissertation. Chapter
2 presents the proposed approach to the evaluation of the snowmelt dynamics in
alpine regions by using Sentinel-1 SAR observations. Chapter 3 describes the novel
approach based on a hierarchical multi-resolution analysis of optical time series
to reconstruct the daily high-resolution snow cover area. Chapter 4 presents the
novel use of multi-source high-resolution satellite data for SWE reconstruction over
mountainous catchments. Finally, in the last chapter the conclusions of the thesis
are drawn and proposals for future research developments are discussed.
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Chapter 1

Fundamentals and Background

In this chapter we present the fundamentals of snow physics, a brief overview of the
in-situ techniques to measure the most relevant snow parameters and an introduction
to remote sensing of snow techniques. This provides the basic concepts and basics
that are needed in the next chapters of the thesis and introduces the main parameters
that are of interest for this work.

1.1 Physics of Snow

Snow is a porous, multiphase medium made up by ice, air and water. The ice crys-
tals form a solid continuous structure that is connected through the pores. The
three phases usually coexist having the snowpack a temperature that is nearby the
melting point. However, their fractions continuously vary due to the exposure to
external forcings (temperature, solar radiations, precipitation, wind, gravity, etc.).
This results in internal changes that lead to the melting of the ice structure and the
percolation of the water fraction within the pores due to gravity. The continuous
transformation of the snowpack microstructure is known as snow metamorphism
and leads to the formation of clear distinguishable layers (Fierz et al. 2009). Due
to its unique characteristics, the snow represents an energy bank that stores and
releases energy as well as an insulator and reservoir of water, thus representing an
ideal ecosystem for many organisms.

The snowpack is characterized by the snow height (HS). However, most impor-
tant property is the snow water equivalent (SWE). SWE represents the height of
the water stored in the snowpack and that would be released upon complete melting
of the snowpack. Hence, we need to count both for the free water and the water
stored as ice matrix. SWE is usually expressed in [mm] and it is define as follows:

SWE =
Vw + ρi

ρw
Vi

A
(1.1)

where Vx is the volume of the x-phase (w: water, i: ice, and a: air), ρx the density
of each phase and A is the base area of the considered volume. However, it is
impossible to measure Vw and Vi and consequently SWE is determined by estimating
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the vertically-integrated density of the snowpack ρsnow:

SWE = HS · ρsnow
ρw

(1.2)

Generally, each volume component is normalized w.r.t. to the total volume of the
snowpack by defining the three volumetric fractions:

• θi :=
Vi

Vi+Vw+Va
the ice fraction;

• θw := Vw

Vi+Vw+Va
the water fraction;

• θa :=
Va

Vi+Vw+Va
the air fraction.

Of course, it is always valid:

θi + θw + θa = 1 (1.3)

θw is also known as liquid water content (LWC). The presence of water inside snow
is very important and alters for example its electromagnetic properties. When no
water is present inside snow - as it usually happens when snow accumulates - we
refer to dry snow ; on the other hand, we refer to wet snow when θw > 0.

A quick insight into the equations that describe the snowpack and are used in
the physically based snow models is given (e.g., Bartelt & Lehning 2002, Vionnet
et al. 2020, Endrizzi et al. 2014, Strasser et al. 2011). They are derived from the
mass and the energy conservation. By applying the mass conservation, neglecting
the air mass, and dividing by ρw, it is possible to obtain the following:

∂θw
∂t

+
ρi
ρw

∂θi
∂t

+
−→
∇ ·

−→
Jw + Sw = 0 (1.4)

where the first two terms represent the variation in time of the liquid and ice com-
ponent, respectively, the third term represents the water flux (by neglecting the
ice flux) and the last term represents the phase change sink or source term arising
from evaporation or sublimation. Moreover, it is possible to impose the following
boundary condition:

∂M∗

∂t
= P − Ev −Gp (1.5)

that expresses the variation in terms of snow mass (M∗ := Mw + Mi + Ma) as
balance between the different contributes that arise from the precipitation P , the
sublimation Ev and the percolation Gp.

From the energy balance, we can instead derive the following equation:

dU∗

dt
= Rnlw +Rnsw −H − λsEv +G+ Pe (1.6)

where the variation of internal energy U∗ is expressed as contribution of the net
longwave radiation Rnlw, the net shortwave radiation Rnsw, the sensible heat flux
H, the latent heat flux λsEv, the ground heat flux G and the energy arising from
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the precipitation Pe.

A correct understanding of the snowpack implies a correct characterization of
the phases that lead to its formation and evolution. First of all, snow accumulation
that is linked to the geomorphology of the study area but is still challenging to pre-
dict. At a large scale snowfalls are mainly controlled by the weather dynamics and
consequently by the geographic area, elevation and aspect. At a smaller scale local
effects as wind or gravitational distribution that are linked to the micro-topography
and canopy presence strongly influence the spatial snow distribution (Seibert et al.
2021). Due to this strong variability, the phenomenon needs to be monitored at
the appropriate spatial scale. Nevertheless, it is possible to recognize seasonal SWE
spatial patterns that are associated with elevation, slope, aspect and vegetation
(Mendoza et al. 2020). Once snow is accumulated on the ground, it is subjected to
redistribution due to wind or gravity, sublimation and ablation. In this thesis, we
focus on the snowmelt processes that are strongly related to the energy inputs. It
is during the melting phase that we can notice the major variations of SWE and
LWC. An accurate estimation of these parameters is thus essential for characterizing
the snowpack. Moreover, the release of liquid water during the melting phase is of
interest for most of the applications, as flood predictions or hydropower manage-
ment. However, being that melting is a nonlinear process affected by the strong
variability of both the snowpack characteristics and the meteorological forcings, it
is challenging both to measure or to predict the variables of interest. The melting
phase starts when the wetting front penetrates through the snowpack due to the
energy exchanges that happen at the surface of snow, as increasing air temperature,
solar radiation or rain on snow. This results in an increase of LWC. The snowpack
becomes isothermal and when no more liquid water can be retained, the runoff phase
starts, thus resulting in a strong decrease of SWE.

Further information about the snowpack properties will be given in Chapter 2,
where we will discuss in more detail the evolution of LWC within the snowpack dur-
ing the hydrological season and how this is detectable by the satellite. In chapter 4,
we will propose an attempt to reconstruct SWE by mean of RS data and other aux-
iliary information. However, in the next Section we want to give a quick overview
of the existing methods to determine these variables through in-situ manual or au-
tomatic observations.

1.2 Ground Observations

Traditional snow profiles consist in a snow pit that is dug to the ground level. The
observer identifies the stratigraphy, i.e. the different layers, and characterizes the
snowpack by performing different kind of qualitative and quantitative measurements,
e.g., temperature, snow density, grains size and form, permittivity. Manual snow
depth measurements are collected during field campaigns simply by mean of one
or more snow stakes that are inserted in the snowpack. The measurements can
be collected in several points, for example along a transect, in order to identify
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Figure 1.1: Principal physical processes that affect snow. Image inspired by SLF
(see https://www.wsl.ch/en/services-et-produits/logiciels-sites-inter

nets-et-apps/snowpack.html)
.

the spatial heterogeneity of the investigated area. In fact, topographically complex
environments, such as the European Alps, present a snowpack with high spatial
variability. SWE manual measurements consist in weighing samples of each layer of
a snow profile in order to estimate an averaged snowpack density ρsnow that can be
used in Eq. 4.6. A faster alternative is represented by SWE coring samplers that
are long tubes (up to 2 m) that allow to core the snow and weight the entire column.
Another alternative method is to take advantage of changing dielectric properties of
snow to measure density and LWC by mean of the so-called Denoth probe (Denoth
1989).

Automatic meteorological stations managed by local authorities or private bodies
are also available throughout the territory. The measurement is usually carried out
thanks to an ultrasonic sensor that measures the time needed by a pulse to travel
from and back to a target. This instrument represents a low-cost and widespread
method to measure snow depth and it is usually coupled with other automatic sen-
sors that measure other weather variables, such as air temperature, wind speed and
direction, and incoming/outgoing radiation. However they are representative of a
very restricted spatial area. Well-equipped networks also provide continuous SWE
measurements. The most common instruments are represented by the snow scale
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Figure 1.2: Example of a traditional snow pit analysis.

or the snow pillow. The first measures the weight of snow that accumulates on the
scale and converts it into SWE. The second measures the hydrostatic pressure of
snow that accumulates on the pillow on a bladder filled with anti-freeze and water.
Innovative, low-cost and non-invasive methods to derive SWE are also based on
Global Positioning System (GPS) signals Koch et al. (2019) or on Cosmic-ray neu-
tron sensing (CRNS) Schattan et al. (2019). Both methods measure the attenuation
of a signal that comes from different sources - in the first case, the GPS L-band signal
and in the second case, the cosmic-ray induced neutron flux.

1.3 Remote Sensing of Snow

Satellite remote sensing represents a valid tool to monitor snow given its applicability
over large and remote areas. On one hand, optical multi-spectral sensors that oper-
ates within the wavelengths of the visible (VIS), near (NIR) and shortwave infrared
(SWIR), are able to detect the presence of snow. In fact, due to its high albedo,
snow reflects up to 90% of the radiation in the VIS wavelengths (0.4-0.8µm). The
reflectance of snow decreases for longer wavelengths (NIR) and it is approximately 0
for the SWIR region. This results in the typical spectral signature of snow that can
be easily distinguished from other surfaces (see Fig. 1.3). These properties allow to
easily distinguish snow from other land surfaces by mean of optical multi-spectral
sensors that operate in the aforementioned regions of the electromagnetic spectrum.
For example, the normalized difference snow index (NDSI) is established as follows:
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Figure 1.3: Reflectances of different surfaces. Credit: Andreas Kaab, University of
Oslo.

NDSI =
V IS − SWIR

V IS + SWIR
(1.7)

The NDSI is used as threshold for the snow classification in many state-of-the-art
methods (e.g., Crane & Anderson 1984, Dozier 1989, Lopez et al. 2008, Klein et al.
1998). Furthermore, by performing a regression on the NDSI it is also possible to
retrieve information about the snow cover fraction (SCF), i.e. the percentage of snow
within a pixel Salomonson & Appel (2006). The SCF can be retrieved also by mean
of methods based on the spectral unmixing, i.e., the spectral signature of a pixel is
derived as combination of reference spectral signatures and in this way it is possible
to determine the abundance of each reference surface Painter et al. (1998), Bair
et al. (2021). More advanced methods exploit all the available spectral information
combined eventually with other features (e.g., digital elevation model (DEM) derived
features) by mean of machine learning (ML) techniques, such as neural networks,
support vector machine (SVM) up to more complex deep learning (DL) architectures
(e.g., Dobreva & Klein 2011, Nijhawan et al. 2019). Methods based on NDSI or
multi-spectral unmixing are often used for operational snow detection being easy to
implement, with the main disadvantage that may lack in robustness especially in
challenging situations. For example, problems arise when we face with conditions as
mixed pixels that are not completely covered by snow, snow under canopy, presence
of semi-transparent clouds or cirrus, or scarce illumination conditions as in shadowed
areas that result in difficulties in detecting snow.

Another important limitation of optical sensors is represented by cloud obstruc-
tion that reduces considerably the number of available scenes. Moreover, optical
sensors are useful to identify the presence/absence of snow but do not provide an in-
formation about the mass of snow on the ground. However, the temporal persistence
of snow on a pixel is a very important indicator that is linked to the SWE stored
in the snowpack (e.g., Cline et al. 1998, Molotch & Margulis 2008, Margulis et al.
2006). This parameter can be integrated with other sources of information, such as
hydrological models or other RS tools that provide knowledge on the snowpack mass.
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In this context, sensors that operate in the microwave portion of the electromag-
netic spectrum can be used to provide some important information about the snow
mass. In detail, SWE information may be extracted by mean of passive microwave
sensors (Pulliainen et al. 2020). This is possible by exploiting the correlation be-
tween the brightness temperature and SWE. However, these data are limited by
a poor spatial resolution, i.e., 25 km. Active microwave sensors such as Synthetic
Aperture Radars (SAR) represent also an important tool for SWE retrieval (Shi
et al. 1994, Baghdadi et al. 1997, Ulaby et al. 1981, Rott et al. 2010) and differ-
ential SWE (Guneriussen et al. 2001, Leinss et al. 2015). Since the presence of
liquid water within the snowpack alters its electromagnetic properties causing di-
electric losses, these sensors are able to detect important information about the
snowmelt. For example, dry snow is almost transparent for SAR sensor at C-band
meanwhile the presence of water in the snowpack causes dielectric losses Baghdadi
et al. (1997). However, also these sensors present some limitations especially due
to the intrinsic difficulty in the signal interpretation that is affected by a multitude
of non-linear effects due for example to surface roughness, snow density, grain type
and size which in turn are affected by the complex snow metamorphism. Moreover,
all these techniques work only in dry conditions while the scarce penetration of the
electromagnetic signal in wet conditions is invalidating their applicability in mon-
itoring the SWE evolution during the melting season. Several review articles are
available for more details about SWE retrieval using SAR acquisitions (e.g., Tsang
et al. 2021).

Another limitation that affect both active and passive sensors is represented by
the trade-off between spatial and temporal resolution, as illustrated in Fig. 1. In
fact, due to limitations in current satellite technologies linked to the swath angle,
it is possible either to provide daily or sub-daily data with poor spatial resolution
(e.g., hundreds of km) or high spatial detail (e.g., tens of m or even less) with low
resampling time. However, a proper characterization of the snow properties requires
a high spatial and temporal detail. In fact, the spatial heterogeneity of the snow
accumulation/redistribution is very strong and it is linked to weather phenomena
as well as geomorphological properties of the study area. The detail of tens of m
can even be not representative of this variability, but it represents an important
improvement in the monitoring of the snow cover area and can introduce relevant
benefits when assimilating this information in hydrological models (Li, Lettenmaier,
Margulis & Andreadis 2019). Furthermore, at least a daily (or even sub-daily) detail
is desired to represent quick changes in the snow cover area.
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Chapter 2

Use of Sentinel-1 Radar
Observations to Evaluate
Snowmelt Dynamics in Alpine
Regions

Knowing the timing and the evolution of the snow melting process is very impor-
tant, since it allows the prediction of: i) the snow melt onset; ii) the snow gliding
and wet-snow avalanches; iii) the release of snow contaminants and iv) the runoff
onset. The snowmelt can be monitored by jointly measuring snowpack parameters
such as the snow water equivalent (SWE) or the amount of free liquid water content
(LWC). However, continuous measurements of SWE and LWC are rare and difficult
to obtain. On the other hand, active microwave sensors such as the Synthetic Aper-
ture Radar (SAR) mounted on board of satellites, are highly sensitive to LWC of the
snowpack and can provide spatially distributed information with a high resolution.
Moreover, with the introduction of Sentinel-1, SAR images are regularly acquired
every 6 days over several places in the world. In this chapter1, we analyze the corre-
lation between the multi-temporal SAR backscattering and the snowmelt dynamics.
We compared Sentinel-1 backscattering with snow properties derived from in situ ob-
servations and process-based snow modeling simulations for five alpine test sites in
Italy, Germany and Switzerland considering two hydrological years. We found that
the multi-temporal SAR measurements allow the identification of the three melting
phases that characterize the melting process i.e., moistening, ripening and runoff.
In detail, we found that the C-band SAR backscattering decreases as soon as the
snow starts containing liquid water, and that the backscattering increases as soon
as SWE starts decreasing, which corresponds to the release of meltwater from the
snowpack. We discuss the possible reasons of this increase, which are not directly
correlated to the SWE decrease, but to the different snow conditions, which change
the backscattering mechanisms. Finally, we show a spatially-distributed application

1This chapter has been published in:
Marin, C., Bertoldi, G., Premier, V., Callegari, M., Brida, C., Hürkamp, K., Tschiersch, J., Zebisch,
M. Notarnicola, C. (2020), ‘Use of sentinel-1 radar observations to evaluate snowmelt dynamics
in alpine regions’, The Cryosphere 14(3), 935–956.
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of the identification of the runoff onset from SAR images for a mountain catchment,
i.e., the Zugspitze catchment in Germany. Results allow to better understand the
spatial and temporal evolution of melting dynamics in mountain regions. The pre-
sented investigation could have relevant applications for monitoring and predicting
the snowmelt progress over large regions.

2.1 Introduction

Seasonal snowpack is one of the most important water resources present in nature.
It stores water during the winter and releases it in spring during the melting. In
mountain regions, snow storage is essential for the freshwater supply of the low-
lands, making the mountains the water towers of the downstream regions Viviroli
& Weingartner (2004). In fact, the temporally delayed release of the water from the
head-watersheds to the forelands is essential for a large number of human activities
such as agriculture irrigation, drinking water supply and hydropower production
(Beniston et al. 2018). In particular, in the Alps, discharges in May and June are
largely dictated by snowmelt, while from July to September are influenced by glacier
melt (Wehren et al. 2010) and liquid precipitation. On the other hand, wet snow
may contribute to natural disasters such as wet snow avalanches (Bellaire et al. 2017)
or wet-snow gliding (Fromm et al. 2018). Moreover, in case of accumulated contam-
inant release from a snowpack, initial runoff meltwater can be highly enriched and
is able to cause severe impact on the water quality (Hürkamp et al. 2017). In this
context, knowing the temporal and spatial evolution of the snow melting process is
very important for a proactive management of the water resources and for hazard
mitigation.

The melt period can be generally separated in three phases (Dingman 2015):
i) moistening, ii) ripening and iii) runoff. The moistening is the initial phase of
the snowmelt. The air temperature and solar radiation increase and due to heat
exchanges and/or rain the superficial layers of the snowpack start melting. The
ripening phase begins when the maximum retention capacity of the pores is ex-
ceeded. The wetting front penetrates through the snowpack, driven by repeated
cycles of melting and refreezing, but the meltwater is not yet released. During this
phase, the snowpack becomes isothermal and when no more liquid water can be re-
tained, the runoff phase starts. The snowmelt process is a non-linear process affected
by the strong variability of both the snowpack characteristics and the meteorolog-
ical forcings that affect the snow. In order to obtain useful information about the
progression of the melting process, non-invasive techniques that allow performing
multiple measurements at the same location should be exploited. For this purpose,
measurements of meteorological variables such as air temperature, snow tempera-
ture, relative humidity, wind speed, precipitation, and solar radiation are usually
employed to extract information on snow melt dynamics (Kinar & Pomeroy 2015).
However, the most significant state variables to properly identify the three melting
phases are the snow water equivalent (SWE), i.e. the total mass of liquid and solid
water stored in form of snow, and the liquid water content (LWC), i.e. the mass of
liquid water inside the snowpack. An increase of LWC in time indicates a moistening
process going on. The downward penetration of the water front into the snowpack
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brings first, to a partial, and later to a complete isothermal state. This leads to the
generation of water runoff, and consequently to a significant decrease of SWE. It is
worth mentioning that sublimation may also contribute to SWE decrease (Strasser
et al. 2008).

Continuous measurements of SWE and LWC is therefore essential to monitor the
snowpack melting dynamics. So far, the most common method to manually measure
SWE is using snow sampling tubes, while the most spread techniques for automatic
SWE measurement include snow pillows and snow scales (Kinar & Pomeroy 2015).
The installation and the maintenance of these kinds of measurements are very costly
and a relatively limited number of continuous measurements of SWE are available
in the Alps. Direct measurements of LWC are usually performed through empirical
estimations (e.g. the hand test), or indirect assessments based on snow temperature.
Recently, some promising systems that exploit the dielectric properties of the snow
in the microwave region of the electromagnetic (EM) spectrum have been presented
to allow a continuous and nondestructive measuring of LWC. In particular, three
systems have demonstrated to be effective and robust in operational conditions: i)
the snowpack analyzer (SPA) (Stähli et al. 2004); ii) the snow sense (Koch et al.
2014) based on GPS signals; and iii) the upward-looking Ground Penetrating Radar
(upGPR) (Schmid et al. 2014). All of them are commercial systems buried under
the snowpack and rely on different methods for the dielectric constant estimation.
Interestingly, these EM devices can be used to measure the SWE as well. However,
all these ground-based measurements are limited in application to a single point,
require calibration to relate the dielectric constant to volumetric snow LWC, and
some of them are expensive, power intensive and laborious to be installed and main-
tained. These limitations complicate the possibility to monitor and understand the
meltwater runoff and the snow stability considering also the spatial variability of
the snowmelt dynamics.

To mitigate these limitations, energy based, multilayer physically based snow
models can simulate SWE and LWC at high spatial and temporal resolution (Essery
et al. 2013). Such kind of models account for shading, shortwave and longwave ra-
diation, and turbulent fluxes of sensible and latent heat (Mott et al. 2011), but can
differ in the way they parametrize snow metamorphism, grain size evolution, snow
layering and liquid water percolation (Wever et al. 2014). They can range from very
detailed approaches with a Lagrangian representation of snow layers as avalanche-
forecasting models like CROCUS (Brun et al. 1992) or SNOWPACK/ALPINE3D
(Bartelt & Lehning 2002, Lehning et al. 2006) to more simplified approaches as
the ones of hydrologically-oriented Eulerian models as AMUNDSEN (Strasser et al.
2011) or GEOtop (Endrizzi et al. 2014). Therefore, snow models can provide de-
tailed information about the snow properties starting from observed meteorolog-
ical conditions, which can be reliably acquired especially at plot-scale. However,
model performances are affected by uncertainties and errors related to model struc-
ture (Avanzi et al. 2016), meteorological forcing (Raleigh et al. 2015) and model
parametrizations (Engel et al. 2017, Günther et al. 2019). Therefore, there is the
need of snow observations with high temporal and spatial resolution, distributed
over a large area and systematically acquired.

In the past years, Synthetic Aperture Radar (SAR) was shown to be a valid tool
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to identify the wet snow i.e., snow that contains a given amount of free liquid water
(Nagler & Rott 2000, Dong 2018). In fact, SAR measurements are highly sensitive to
the liquid water in the snowpack and the increase of the LWC causes a high dielectric
loss that increases the absorption coefficient generating backscattered signal with
low intensity (Ulaby et al. 2015). This physical principle has been exploited for the
generation of wet snow maps by the bi-temporal algorithm proposed by (Nagler &
Rott 2000) and further improved in (Nagler et al. 2016). However, the increase of
the liquid water content explains only partially the decrease of the backscattering
coefficient. Indeed, as pointed out in Shi & Dozier (1995) and Baghdadi et al. (2000),
the relationship between the coefficient of backscattering and the snow wetness can
cause an increment of the backscattering value depending on the conditions of the
snow roughness, snow density, snow layering, snow grain size and local incidence
angle. This large number of unknowns, upon which the SAR backscattering is
dependent on, defines a complex multiparametric problem that is difficult or even
impossible to solve without introducing some simplification assumptions. So, even
though some works have been presented that try to extract the LWC using C-band
SAR images (Shi & Dozier 1995, Longepe et al. 2009), at the best of our knowledge
there are no attempts to use the SAR as source of information for describing the
multi-temporal evolution of the snow melting process. Progress has been hampered
by: i) the lack of ground truth information; ii) the relative high number of sources
of uncertainty of the SAR signal; and iii) the difficulty to access SAR data in the
past. This has changed since 2014 with the introduction of the Sentinel-1 (S1)
mission from the European Space Agency (ESA) and the European Commission
(EC) guarantying the availability of C-band SAR images free of charge. In detail, S1
is a constellation made up of two near-polar sun-synchronous satellites that acquire
images early in the morning and late in the afternoon, with a revisit time of 6
days at the equator. Moreover, as discussed before, an increasing number of data
on relevant snow parameters related to the snowmelt are collected by operational
systems (e.g. by SPA) or derived by physically based snow models. The information
on SWE and LWC provided by independent sources opens new opportunities for
better understanding the relationship between the snowpack properties during the
melting phase and the multi-temporal SAR backscattering.

The aim of this work is to evaluate the information that S1 can provide on mon-
itoring the snowmelt dynamics. In particular, we provide the theoretical EM back-
ground for understanding the impact on the multi-temporal SAR backscattering of
a melting snowpack. Then, we analyze the relationship between the multi-temporal
SAR signal acquired from S1 and in situ measurements of LWC and SWE in the
Alps. Given the limited number of point-related continuous SWE and LWC mea-
surements available in the test area, we made use of the physically based model
SNOWPACK to simulate the snow properties in other locations where only mete-
orological data and snow depth were available. This allowed us to define five test
sites at different altitudes in the Alps, where the interactions of S1 backscattering
with the snowpack were studied in detail during two melting seasons. On the basis
of the outcomes of the study, we propose an interpretation scheme to be applied to
multi-temporal dual polarization C-band SAR data in order to identify the different
snow melting phases of moistening, ripening and runoff. Finally, we demonstrate
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the effectiveness of the proposed approach in a real application scenario to provide a
spatially distributed information about the melting phases of the snowpack in alpine
terrain, which can be used for monitoring and predicting the snowmelt progress over
large regions.

2.2 Background

In this section we report the theoretical background on which this work is based on.
First, the snow melting process is explained from a physical point of view and the
different phases are identified considering the information of LWC and SWE. Then,
the response of the SAR backscattering to the wet snow is described in detail.

2.2.1 Snow melting process

Fig. 2.1 illustrates the snow cover development during the melting season consider-
ing the snow status in the morning and in the afternoon, when the S1 descending
and ascending data is acquired respectively. Hypothetical values of LWC and SWE
are reported on the right side of the figure. In general, the liquid water is intro-
duced in the snow by rain and/or melt due to heat exchange and the incoming flux
of shortwave radiation flux, which varies with slope, aspect and elevation. In both
cases, the snowpack starts melting at the surface (Techel & Pielmeier 2011). This
superficial moistening phase can be identified by comparing observations from the
coldest and warmest period of the day i.e., a diurnal cycle is visible. Interestingly,
the SAR acquisitions are approximately acquired around these two periods. The
liquid water released or absorbed from the superficial layers gets in contact with
the subfreezing snow present underneath and freezes. This releases latent heat that
causes the snowpack to warm up starting the process of snow ripening. Repeated
cycles of partial melting during the day and refreezing during the night induce the
development of the wetting front into the snow. This is generally not uniform, since
infiltrations usually start through isolated “flow fingers” which enlarge into meltwa-
ter channels due to the passing of time. Therefore, the ripening of the snowpack may
be different year by year or considering different areas. In fact, climatic factors or
snowpack stratifications may induce different behaviors. At the point of full water
saturation, the snow layer cannot retain any more liquid water. Further absorption
of energy produces water output, which, depending on soil properties, ice and water
content, could infiltrate in the soil or appear as surface runoff (DeWalle & Rango
2008a). The runoff phase is characterized by a significant decrease of SWE.

During the melting, the presence of liquid water inside the snowpack directly
affects the grain size, the grain shape and the density of the pack (Pomeroy & Brun
2001). Indeed, during the melt process the snow undergoes to a rapid metamorphism
that leads to a growing and a rounding of the grains linked to an increase of the
snow density. Moreover, it is important to underline that during the melt season a
general increase of the roughness of the snow surface is observed (Fassnacht et al.
2009) due to localized melting pattern (i.e., flow fingers) and rain on snow events.
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Figure 2.1: Example of transitions in snow status during the melting season obtained
by sampling the snow in the morning (M), when the S1 descending observations are
taken, and in the evening (A) when the S1 ascending data are taken. The upper
part of the figure illustrates the simplified temporal transportation of the free liquid
water (blue area) in the dry snowpack (white area). The lower part of the figure
illustrates the respective temporal evolution of LWC (yellow line) and SWE (red
line). In detail, by starting from a dry situation, the liquid water is introduced
into the snowpack by either a rain event or the melt due to the incoming flux of
shortwave radiation. In this moistening phase the LWC (yellow line) varies with a
diurnal cycle. Repeated cycles of partial melting and refreezing lead the snowpack
to the isothermal state. During the ripening period, a combination of different
situations can occur depending on the weather conditions but an increasing trend
of the LWC is visible. Once the snowpack is isothermal and it cannot retain water
anymore, it starts to produce water output until it melts totally. This last phase
starts with a significant decrease of the SWE (red line).
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2.2.2 SAR backscattering response to wet snow

From an EM point of view, the snowpack is an inhomogeneous medium composed
of scattering elements with different sizes, shapes, orientations and permittivity val-
ues. The backscattering σ0 produced by an EM wave generated by SAR over such a
medium can be modeled as an incoherent sum of three contributions (Shi & Dozier
1995, Ulaby et al. 2015): the surface scattering produced at the air-snow interface,
σ0
sup, the surface scattering produced at the snow-ground interface attenuated by

the snowpack, σ0
grd, and the volumetric scattering of the snowpack, σ0

vol. The in-
tensity of these contributions depends on parameters related to: i) the sensors i.e.,
frequency, local incidence angle (LIA) and polarization; ii) the snowpack properties
i.e., liquid water content (LWC), density (DS), ice particle size and shape (GS),
surface roughness (SR), which is usually described by the standard deviation of the
height and the correlation length of the surface; and iii) the ground properties. In
this chapter, we focus on the use of the C-band SAR mounted on board of S1, and
therefore all the parameters related to the sensor are known. Nonetheless, deriving
the theoretical behavior of the time series of σ0 for a given LIA for one hydrological
year is complex. Indeed, the relationship between the backscattering and the snow
parameters forms a non-linear system of equations. In the following we identify
the main scattering mechanisms isolating the contribution of each parameter to the
total backscattering.

During the accumulation period, dry snow is almost transparent for C-band, and
the radar echo can penetrate the snow for several meters. In this situation, the main
scattering source is the snow-ground interface (see Fig. 2.2) and the backscattering is
almost insensitive to different snow parameters (Rott & Mätzler 1987, Shi & Dozier
1993). During the melting period, the increase of the free liquid water inside the
snowpack causes high dielectric losses, which increase the absorption coefficient. By
considering a sufficiently thick snowpack, this leads to a rapid decrease of σ0

grd, which
can be then neglected. By assuming constant all the parameters but the LWC, the
increase of LWC causes the volume scattering to decrease and the backscattering
becomes sensitive to surface roughness (Shi & Dozier 1995). When the surface is
smooth e.g., according to the Frauenhofer criterion (Ulaby et al. 2015), volume
scattering dominates and therefore the increase of LWC results in a decrease of
the total backscattering. Whereas, when the surface is rough the surface scattering
dominates, thus with the increase of LWC the total backscattering tends to increase.
The amount of wetness from which the surface scattering becomes predominant
depends mainly on the surface roughness and LIA and may vary from about 1% to
6% of the total volume (Magagi & Bernier 2003). However, other parameters play
a role in this mechanism: by assuming constant all the parameters but the snow
density, the volume scattering decreases at the increase of the snow density, if all
the other parameters are kept fixed. Vice versa, the grain size increases the volume
scattering. It is finally worth stressing the fact that the response to the wet snow
becomes more complex in case of the snowpack in forest (Koskinen et al. 2009). In
this case the total backscattering σ0 is a function also of the forest stem volume.
This can be estimated and taken into account, nonetheless in this work we focus on
the identification of snow melting phase in open areas.

The main scattering mechanisms and their influence on the backscattering, as
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Figure 2.2: Main SAR backscattering mechanisms in presence of dry and wet snow
at C-band. The dry snow is almost transparent, and the radar echo can penetrate
the snow for several meters. The presence of LWC, causes high dielectric loss, which
increases the absorption coefficient.

Table 2.1: Simplified SAR backscattering response to wet snow divided in volumet-
ric, σ0

vol, and surface backscattering, σ0
sup, contributions. Considering a sufficiently

thick snowpack the contribution of σ0
grd can be negleted.

Parameter σ0
vol σ0

sup

Liquid water content (LWC) negative correlation positive correlation
Snow density (DS) negative correlation positive correlation
Snow grain size (GS) positive correlation -
Surface roughness (SR) - positive correlation

studied in the literature, are reported in Table 2.1. Even though the table is report-
ing the main backscattering mechanisms of the different snow conditions during the
melting process, the complete multi-temporal behavior that characterizes the three
phases of moistening, ripening and runoff has not yet been studied. In particular,
from an EM modeling point of view or real-data analysis, the implications of the
wet-snow metamorphism i.e., increase of LWC, density, snow grain size and super-
ficial roughness remain mainly unsolved. Indeed, state-of-the-art radiative transfer
(RT) models, particularly designed for studying the snow melting process, such as
Shi & Dozier (1995), Nagler & Rott (2000), Magagi & Bernier (2003), are not able
to model the microstructure scattering interactions. Whereas, RT models that take
into account the microstructure interactions, such as for example the modeles de-
veloped in SMRT (Picard et al. 2018) or MEMLS3&a (Proksch et al. 2015) are not
able to model the contribution from the superficial roughness and have never been
specifically tested for the characterization of the melting phases. Therefore, with-
out further research and validation activities, this invalidate the possibilty to use
state-of-the-art RT models to better understand the multi-temporal EM mechanisms
during the snowmelt at C-band (e.g., Veyssière et al. (2018) found a significant de-
viation between observations and simulations with MEMLS3&a during the melting
period).

In the following, as first attempt to fill this gap, we will consider the real time
series of backscattering recorded by S1 during two hydrological years in the proximity
of five test sites where LWC and SWE were measured or simulated. The outcome
of this study will be exploited to: i) understand if a characteristic relation can be
recognized from the comparison between the multi-temporal SAR signal and the
melting phases; and ii) define some rules to automatically identify the beginning of
each melting phase from the time series of σ0.
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Table 2.2: Details of the meteorological and snow parameters measured at each
station. Wind velocity (VW), wind direction (DW), air temperature (TA), rela-
tive humidity (RH), snow depth (HS), snow temperature at depth x (TSx), surface
temperature (TSS), soil temperature (TSG), incoming shortwave radiation (ISWR),
incoming longwave radiation (ILWR), outgoing shortwave radiation (OSWR), snow
water equivalent (SWE), snow density (DS), liquid water content (LWC) and ice
content (IC).

Station Lat, Long Altitude [m a.s.l.] Available measurements
Zugspitze
(Germany)

10.9835, 47.4064 2420 VW, DW, TA, RH, HS,
TSS, ISWR, OSWR,
SWE, DS, LWC, IC

Alpe del Tu-
mulo (Italy)

11.1487, 46.9136 2230 VW, DW, TA, RH, HS,
TSx, TSS, TSG, ISWR

Clozner Loch
(Italy)

11.0283, 46.5134 2165 VW, DW, TA, RH, HS,
TSx, TSS, TSG, ISWR

Malga Fadner
(Italy)

11.8614, 46.9256 2155 VW, DW, TA, RH, HS,
TSx, TSS, TSG, ISWR

Weissfluhjoch
(Switzerland)

9.8096, 46.8296 2455 VW, DW, TA, RH,
HS, TSS , TSG, ISWR,
OSWR, SWE

2.3 Dataset description

In this section, we present the experimental sites and we describe the collected in
situ data, the SNOWPACK set up and S1 data.

2.3.1 Test sites description, and in situ data

For ground truth and as input for the simulations with SNOWPACK, we consider
five snow and meteorological weather stations with different location in terms of
place and altitude in the European Alps, equipped with different installed sensors.
Among these, one is located in Bavaria (Germany), three in South Tyrol (Italy)
and one in Graubünden (Switzerland). In detail, considered parameters are wind
velocity (VW), wind direction (DW), air temperature (TA), relative humidity (RH),
snow depth (HS), snow temperature at depth x (TSx), surface temperature (TSS),
soil temperature (TSG), incoming shortwave radiation (ISWR), incoming longwave
radiation (ILWR), outgoing shortwave radiation (OSWR), snow water equivalent
(SWE), snow density (DS), liquid water content (LWC) and ice content (IC). The
considered data records started from the October 1, 2016 in order to cover the two
winter seasons 2016/2017 and 2017/2018. An overview of the location of the stations
is presented in Fig. 2.3 and a summary with the available parameters is presented
in Table 2.2.
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Figure 2.3: Overview map with the five stations located in Germany (Zugspitze),
Switzerland (Weissfluhjoch) and Italy (Malga Fadner, Clozner Loch and Alpe Tu-
mulo) used for the presented study (©2019 Microsoft Corporation ©2019 Digital
Globe ©CNES(2019) Distribution Airbus DS). The red points indicate the exact
location of the stations. The black squares indicate the S1 footprints. The foot-
prints were selected in order to minimize any possible interference of the EM wave
with the homemade structures but maintaining a certain correlation with the in situ
measurements. The panoramic images give an idea about the land cover type and
the topography around the stations.
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Zugspitze (Werdenfelser Alps, Germany)

The station is located in the Northern Calcareous Werdenfelser Alps, being part
of the Zugspitze massif. It is part of the snow monitoring stations network of the
Bavarian Avalanche Warning Service (Lawinenwarnzentrale Bayern) and located
on a flat plateau at the southern slope of Mt. Zugspitze summit (2962 m a.s.l.),
the so-called Zugspitzplatt (1500-2700 m a.s.l.), which is surrounded by several
summits in the north, south and west and drained by the Partnach River to the
east. Beside a standard meteorological station, the site is additionally equipped
with a snow scale and a snow pack analyzer (SPA) to record SWE, DS, LWC and
IC. The SPA uses a time-domain reflectometry (TDR) at high frequencies and a
low-frequency impedance analyzer. By exploiting different frequencies, the SPA is
able to determine the volumetric ice, air and water content as well as the density by
measurement of the complex impedance of the snow layer. The EM pulse propagates
along three 5 m long sensor bands, horizontally installed in 10 cm, 30 cm and 50 cm
above ground in 2016/2017. In 2017/2018 the heights of the bands were changed
to 10 cm, 20 cm and 30 cm due to a frequent failure of the uppermost sensor in
the preceding years. This allows the measurement of the bulk properties of the
snowpack rather than a point measurement as well as a tracking of the downward
penetrating water front inside the snowpack. Combined with information on the
snow height bulk, LWC is determined. The SPA has not been calibrated for the test
site, but it is used with standard set-up parameters and an internal calibration by
the manufacturer. This results in unreliable LWC values of about 2-3 % when the
snowpack is dry. Moreover, given that no bulk information of LWC for the total
thickness of the snowpack is provided by the SPA, we did not use the SPA LWC
in this study. Snow height is recorded by an ultrasound sensor, installed at 6 m
height. The sensors for the meteorological parameters are installed at a crossbar of
the 6 m mast, too, besides the wind sensor, which is at 6.5 m height. The maximum
snow height was 3.3 m during winter 2016/2017 and 3.9 m in January 2018. The
area is continuously covered by snow between December and May each year. During
the accumulation period, the stations records showed that no significant snowmelt
runoff at the snow base occurred at any time since 2012 (Hürkamp et al. 2019).
During the observed winter seasons the mean monthly wind velocity exceeded 3 m
s−1 in the winter months, therefore wind drift could likely alter snow accumulation.
The amount of mean annual precipitation is 2000 mm.

Alpe del Tumulo (South Tyrol, Italy)

The station is located on an alpine pasture in the North of Val Passiria. For this
and the other South Tyrolean stations, the temperature sensor is installed at a
2.8 m height and the wind sensor at 5.5 m. The site is weakly windy, with mean
monthly velocity usually around 2 ms−1. The maximum snow height was around
1.5 m during winter 2016/2017 and around 2 m during the winter 2017/2018. No
continuous measurements of LWC and SWE are available for this and the other
South Tyrolean stations.
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Clozner Loch (South Tyrol, Italy)

The station is located in Lauregno (Alta Val di Non) on an almost flat site. The mean
monthly wind velocity seldom exceeds 2 ms−1. The snow height never exceeded 1
m during the winter 2016/2017 and the maximum height reached during the winter
2017/2018 was around 1.5 m.

Malga Fadner (South Tyrol, Italy)

The station is located on an alpine pasture in Valle Aurina. The mean monthly
wind velocity never exceeds 2 m s−1. The maximum snow height was less than 1.5
m during winter 2016/2017 and around 2 m during the winter 2017/2018.

Weissfluhjoch (Graubünden, Switzerland)

The automatic weather station is located at Weissfluhjoch, Davos, Switzerland. It
is mantained by the WSL Institute for Snow and Avalanche Research SLF. The
data are regulary updated and made freely available (WSL Institute for Snow and
Avalanche Research SLF 2015). The wind sensor is installed at 5.5 m and the
temperature sensor at 4.5 m. The site is quite windy, with mean monthly velocity
usually around 2 ms−1 or sometimes greater than this value. The maximum snow
height was around 2 m during winter 2016/2017 and around 3 m during the winter
2017/2018. In this study, SWE GPS-derived measurements are used (Koch et al.
2019), which are also freely made available upon request.

2.3.2 SNOWPACK model set up

As described in the introduction, the proper identification of the melting phases
requires a precise knowledge of the evolution of LWC and SWE. However, these
parameters are not always available for the selected test sites. For this reason, there
is the need to set up snowpack simulations for obtaining the missing parameters.
In this work we used the physically-based model SNOWPACK, a one-dimensional
(1-D) model developed by the WSL Institute for Snow and Avalanche Research,
SLF (Bartelt & Lehning 2002). The model solves 1-D partial differential equations
governing the mass, energy and momentum conservation. Heat transfer, water trans-
port, vapor diffusion and mechanical deformation of a phase changing snowpack are
modeled assuming snow as a three-component (ice, water and air) porous material.
Meteorological data are used as input for the model. Required parameters are air
temperature, relative humidity, wind velocity, incoming longwave radiation and/or
outgoing shortwave radiation, incoming longwave radiation and/or surface tempera-
ture, precipitation and/or snow depth and soil temperature. The data were taken or
derived from the in situ measurements at the test sites. Meteo-IO (Bavay & Egger
2014) is used as pre-processing tool to check erroneous data, fill the gaps and gener-
ate missing parameters. In the current case, the ground temperature is generated as
a constant value assumed to be equal to the melting temperature if missing, and the
incoming longwave radiation is calculated through an all-sky parametrization, which
makes use of air temperature and humidity (Unsworth & Monteith 1975, Dilley &
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Table 2.3: SNOWPACK calibration results for each test site. Pearson correlation
coefficient (ρ) and the mean absolute error (MAE) have been computed for snow
depth (HS), snow temperatures at three different depth TS1 (0 m from the ground),
TS2 (0.2 m from the ground), TS3 (0.5 m from the ground) and SWE, according to
the availability of the ins situ data.

Station Roughness Calibration results ρ [-]/MAE [oC]
[m] HS TS1 TS2 TS3 SWE

Zugspitze 0.005 0.99/3.7 -/- -/- -/- 0.99/47.8
Alpe Tumulo 0.03 0.99/3.6 0.90/0.4 0.93/0.4 0.88/0.5 -/-
Clozner Loch 0.01 0.99/4.1 0.87/0.8 0.78/1.8 -/- -/-
Malga Fadner 0.01 0.99/2.8 0.83/0.6 0.83/0.7 0.85/1.2 -/-
Weissfluhjoch 0.002 0.99/2.8 -/- -/- -/- 0.99/35.1

O’brien 1998). Fresh snowfall must be provided as initial condition. Since direct
snow precipitation measurements are not available, the amount of new snow is forced
by subtracting the model snow depth to the measured snow depth. This difference
is assumed to be fresh snow only if reliable humidity and temperature conditions
are verified, using the approach proposed and validated by (Mair et al. 2016) and
implemented in the SNOWPACK model. This approach has been validated against
snow pillow observations and resulted more reliable compared to heated tipping
bucked rain gauges, which may underestimate solid precipitation up to 40% (Sevruk
et al. 2009). The energy exchanges on the snowpack surface are imposed either
using a Neumann boundary condition (BC), i.e. the energy fluxes are forced, or a
Dirichlet BC, i.e. imposing the surface temperature except during ablation when
again a Neumann BC is imposed. Additionally, a Dirichlet BC is imposed at the
ground interface. A neutral atmospheric surface layer using the Monin – Obukhov
similarity theory is imposed. The used water transport model is the NIED scheme
proposed by Hirashima et al. (2010). A typical time step of 15 minutes is used for
the simulations.

Since the SNOWPACK simulations are used in this work as reference data to
be compared against the SAR backscattering, we calibrated the model considering
the best agreement in the analyzed years 2016-2018 with in situ snow depth, snow
temperatures at three different depth TS1 (0 m from the ground), TS2 (0.2 m from
the ground) and TS3 (0.5 m from the ground) and SWE, when available. Pearson
correlation coefficient (ρ) and the mean absolute error (MAE) have been computed
for these variables. The aerodynamic roughness length, i.e. a parameter for the
Monin – Obukhov similarity theory that represents the height at wich the wind
speed becomes zero under neutral conditions, is used as calibration parameter. The
roughness is strongly influenced by the topography and the geometric features of
the study area, as for example the presence of canopy. Several test have shown that
SNOWPACK is mostly sensitive to variations of this parameter, that is why it has
been chosen as unique calibration parameter. The results are reported in Table 2.3.
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2.3.3 Remote sensing observations

S1 is a two satellites constellation with a revisit time of 6 days with the same ac-
quisition geometry and able to acquire dual polarimetric C-band (central frequency
of 5.405 GHz) SAR images with a nominal resolution of 2.7× 22 m to 3.5× 22m in
Interferometric Wide swath mode (IW). S1 works in a pre-programmed way in order
to build a consistent long-term data archive of images all around the world. IW ac-
quisitions have a swath of about 250 km. This, together with the cycle length of the
satellites of 175 orbits, allows the acquisition of more tracks over a given location at
the middle latitudes such as the Alps. Therefore, in 6 days more than one acquisi-
tion may be available for the area of interest. Table 2.4 indicates the most relevant
parameters related to the data acquisition for each of the selected locations. For the
five test sites a total of about 1300 acquisitions were considered. The data used for
the presented study are Level-1 ground range detected data, consisting of focused
SAR data that have been detected, multi-looked and projected to ground range
using an earth ellipsoid model by the data provider. The resulting products have
approximately square spatial spacing of 10 by 10 m. Phase information is lost for
this data. This data can be downloaded free of charge from the Copernicus data hub
(https://scihub.copernicus.eu/). In order to correct the complex topographic
terrain, typical of mountain regions, and to reduce the speckle noise that affects SAR
acquisitions, a tailored pre-processing has been applied for all the analyzed data.
In detail, the pre-processing operations are performed using the tools included in
SNAP (Sentinel Application Platform) version 6.0 and some custom tools developed
in Python by the authors. In detail, the S1 backscatter pre-processing operations
are the following (S indicates SNAP tool, C indicates custom tool): 1) application
of the precise Sentinel orbit to the data (S); 2) removal of the thermal noise present
in the images (S); 3) removal of the noise present at the border of the images (C); 4)
beta nought calibration (S); 5) assembly of the S1-tiles coming from the same track
(S); 6) co-registration of the multi-temporal images (S); 7) multi-temporal filtering
with a window size 11x11 pixels (C); 8) gamma-MAP spatial filtering 3x3 pixels
(S); 9) geo-coding and sigma nought calibration (S); 10) masking of the layover and
shadow by considering the local incidence angle (LIA) for each pixel (C). It is worth
noting that we use the multi-temporal filter proposed by (Quegan & Yu 2001). This
filter, which is suited for long time-series, allows a suppression of the speckle noise
by preserving at the same time the geometrical detail. The final spatial resolution
of the geo-coded S1 images is 20 by 20 m.

2.4 Data analysis and proposed approach to the

melting phases identification from S1

In this section, the time-series of SWE, LWC and σ0 for the identification of the
melting phases are compared. From this analysis and the background information
described in Sec. 2.2, we present the general temporal evolution of the backscattering
during the melting process. Finally, on the basis of this analysis we propose a set of
simple rules for the derivation of the onsets of each snow melting phase.
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Table 2.4: List of the Sentinel-1 acquisitions and their main characteristics over the
five test sites.

Test Site Relative orbit Time of the Orbit Direction Local incidence
number∗ acquisition angle (LIA)

Zugspitze 117 Afternoon Ascending 38o

168 Morning Descending 39o

Alpe Tumulo 095 Morning Descending 47o

117 Afternoon Ascending 35o

168 Morning Descending 40o

Clozner Loch 095 Morning Descending 43o

117 Afternoon Ascending 39o

168 Morning Descending 36o

Malga Fadner 044 Afternoon Ascending 34o

095 Morning Descending 48o

117 Afternoon Ascending 46o

168 Morning Descending 38o

Weissfluhjoch 015 Afternoon Ascending 43o

066 Morning Descending 31o

117 Afternoon Ascending 33o

168 Morning Descending 41o
∗ i.e., track number

2.4.1 Data analysis

Fig. 2.4 shows the time series of the backscattering coefficient against the measured
and/or modeled SWE and LWC for the five test sites during the hydrological years
2016/2017 (left column) and 2017/2018 (right column). Yellow, red and green ar-
eas highlight the moistening, ripening and runoff phases respectively. These phases
have been identified from the SWE and LWC data according to Sec. 2.2.1. In de-
tail, the moistening phase onset is identified by looking at the liquid water content
(LWC) of the snowpack. We empirically established a threshold of 1 kg/m2 that
has to be satisfied for at least two consecutive days. In other words, a significant
melting (and refreezing) cycle should be observed within two days. Among all the
isolated moistening events, in this work we focus only on the moistening preceding
a ripening phase. However, this does not mean that the SAR cannot detect isolated
peaks of melting, if the acquisitions are performed simultaneously to those events.
Regarding the ripening phase, we impose the rule to observe an increase of LWC
exceeding 5 kg/m2 and not decreasing to 0 kg/m2 during the diurnal cycles. If the
LWC returns to 0 kg/m2 for a timing of at least 5 days, we assume that the ripening
phase is interrupted. Otherwise, we assume that there is enough penetration of the
waterfront into the snowpack to initiate the ripening. Finally, the runoff phase is
identified when SWE starts decreasing from its maximum (after the ripening phase
is activated). In the case we have both measured and modelled SWE available, we
consider measured SWE as reference. The runoff phase ends when SWE has a value
of 0 kg/m2. The rules are shown in Algorithm 1.
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(a) Zugspitze, season 2016/2017 (b) Zugspitze, season 2017/2018

(c) Alpe del Tumulo, season 2016/2017 (d) Alpe del Tumulo, season 2017/2018

(e) Clozner Loch, season 2016/2017 (f) Clozner Loch, season 2017/2018
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(g) Malga Fadner, season 2016/2017 (h) Malga Fadner, season 2017/2018

(i) Weissfluhjoch, season 2016/2017 (j) Weissfluhjoch, season 2017/2018

Figure 2.4: Temporal evolution of the coefficient of backscattering acquired over the
five test sites. The two polarization VV (continuous line) and VH (dashed line) are
reported for the different available tracks with different colours. It is compared to
LWC and SWE measured in situ at the stations (when available) and modeled with
SNOWPACK (contains modified Copernicus Sentinel data, 2016/2018, processed by
Eurac Research). The three phases during the melting have been identified from
the in situ/modeled data. The first phase of moistening is reported in light yellow,
the ripening phase in light red and the runoff in light green. For all the test sites we
found that the multi-temporal SAR measurements confirm the identification of the
three melting phases. In detail, we systematically found that the SAR backscattering
decreases as soon the snow starts containing water and increases as soon as SWE
starts decreasing, which corresponds to the release of meltwater from the snowpack.
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Algorithm 1: Identification of the melting phases

Input: Liquid Water Content LWC and Snow Water Equivalent SWE
observations for a given day d, d ∈ {1, 2, ..., D} with D total
number of days with SWE > 0, SWEmax

Output: Onset moistening TM , onset ripening TR, onset runoff TRO

while d ≤ D do
if LWCmax,d > 0 kg/m2 then

# Snowpack is wet
# Check moistening phase
if (LWCmax,d > 1 kg/m2) and (LWCmin,d = 0 kg/m2) for at least
2 days then

TM = d
# Do not check this condition anymore
continue

end
# Check ripening phase
if (LWCmax,d > 5 kg/m2) and (LWCmin,d > 0 kg/m2) then

TR = d
# Do not check this condition anymore
continue

end
# Check runoff phase
if (SWEd == SWEmax) then

TRO = d
# Do not check this condition anymore
continue

end

end
else

# Snowpack is dry
end
d ++

end
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In the following, for each of the five test sites i.e., Zugspitze, Alpe Tumolo,
Clozner Loch, Malga Fadner and Weissfluhjoch, we will present the detailed com-
parison of LWC, SWE and the S1 σ0 time series during the melting process. This
will allow the derivation of important information about the possibility to identify
the three melting phases in general. In the next section, the outcome of this compar-
ison will be exploited to describe the characteristic behavior of the multi-temporal
SAR signal during the melting process.

Zugspitze

For this station, SWE was both measured and simulated and LWC was simulated
with SNOWPACK. The temporal evolution of SWE measured by the snow scale
and the one simulated with SNOWPACK shows a good agreement. For this station,
the tracks T168 (descending, morning) and T117 (ascending, afternoon) are avail-
able. The local incidence angle for the two tracks differs of about 1 degree. For the
hydrological year 2016/2017 the backscattering remains almost constant during the
accumulation phase until the beginning of the moistening phase (Fig. 2.4a). Here,
as described in Sec. 2.2.2, the increase of the LWC is accompanied by a decrease
of the backscattering from -8.5 dB and -12.7 dB to -14.3 dB and -20.0 dB for re-
spectively VV and VH of the afternoon track T117 between the 19th and the 25th
of March 2017 and from -5.8 dB and -12.7 dB to -12.5 dB and -18.1 dB for respec-
tively VV and VH of the morning track T168 between the 27th of March and the
4th of April. The difference in the dropping of the signal acquired by the morning
and afternoon track is due to the diurnal melting and refreezing cycles. After this
phase, the ripening phase began with oscillations of the backscattering coefficient
which on average presented low values. As described in Sec. 2.2.2, the oscillations
are due to the snowpack metamorphism, snow stratification and the meteorological
conditions. Since the ripening phase is characterized by an increase of the LWC,
the time series of the backscattering presents a decreasing trend. Interestingly, the
minimum of σ0 is reached in correspondence to the finishing of the ripening phase
and the beginning of the runoff phase i.e., 20th of May 2017. The runoff is instead
characterized by a monotonic increase of the backscattering until all snow is melted.
This characteristic behavior is unexpected since we the backscattering at C-band is
not explicitly dependent on SWE. It can be interpreted as follow: when the consid-
ered snowpack reaches its saturation condition in terms of the LWC, snow density
and internal structure, the backscattering recorded in C-band reaches its minimum
value. These snowpack conditions seems to represent the isothermal state before the
release of melt water i.e., the end of the ripening phase. After the saturation point
is reached, the monotonic increase of σ0 could be explained by a dominance of the
superficial scattering that becomes more and more prominent due to a monotonic
increase of the LWC per volume (see Sec. 2.2.2). This behavior continues until the
snow disappears. This period corresponds to the runoff formation phase, when SWE
starts decreasing. In Sec. 2.4.2 we will discuss a possible explanation of this ap-
parently surprising behavior. Regarding the winter 2017/2018 similar observations
were made, but here the snow ripening phase was limited to a very short period and
the runoff started very early in mid-April due to strong insolation and high mean
daily temperatures up to 5°C the days before. Interestingly, during the runoff phase,
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σ0 started increasing as expected, then it decreased in correspondence of a snow fall
(probably wet) followed by a relatively colder period which lasted some days at the
end of May 2018 and finally it increased again until the end of the snow season (Fig.
2.4b).

It is worth noting that the two polarizations acquired by S1 provided coherent
information. However, few cases in which there is a depolarization of the signal
can be spotted during the ripening phase. Here the repeated cycles of melting and
refreezing can generate ice layers (Kattelmann & Dozier 1999), which affect the
polarization in different ways.

Alpe del Tumulo

For this station, the information about the LWC and SWE were derived through
SNOWPACK. The calibration of the model was performed in order to achieve a
high agreement in terms of snow height and snow temperature (see Table 2.3). For
this station, the tracks T168 (descending, morning), T117 (ascending, afternoon)
and T095 (descending, morning) are available. The LIAs for the three tracks are
40, 35 and 47 degrees, respectively.

A very short moistening phase can be identified in both years from the modeled
LWC and SWE time series (Fig. 2.4c, 2.4d). These phases are well identified in the
σ0 time series by a drop of the morning and afternoon signal. The situation of the
runoff phase 2016/2017 looks similar to Zugspitze for the season 2017/2018: from
the LWC and SWE time series two modes are visible suggesting that the runoff was
stopped by a cold period (with a new snowfall). This situation is reflected in the
time series of the S1 backscattering by the two characteristic “U-shaped” behaviors
indicating that a first runoff started after the first minimum of σ0 and continued for
some days in correspondence of the monotonic increase of σ0, but then the process
was stopped by a new wet snowfall that forced the backscattering to a new minimum.
Finally, the runoff phase restarted, and the SAR signal increased again. However,
the runoff phases identified from the SAR local minima seem to be anticipated
by about two weeks with respect to the modeling results. Regarding the season
2017/2018, the runoff phase showed a more linear behavior which is represented by
the characteristic shape of σ0 time series as the one identified in the Zugspitze test
site. It is finally worth noting that, the three tracks (T095 and T168, descending,
and T117, ascending) acquired with different LIA show very similar trends.

Clozner Loch

For this station, the information about the LWC and SWE were simulated with
the SNOWPACK model. The calibration of the model was performed in order to
achieve a high agreement in terms of snow height and snow temperature (see Table
2.3). The tracks T168 (descending, morning), T117 (ascending, afternoon) and T095
(descending, morning) are available for this station. The LIAs for the three tracks
are 43, 36 and 39 degrees, respectively.

The season 2016/2017 is characterized by two melting phases (Fig. 2.4e). In
fact, the snow was completely melted in the first half of April with a new fresh
snowfall at the end of the month. For this reason, we highlighted two different times
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the snowpack alteration sequence moistening – ripening – runoff. Interestingly, the
time series of the backscattering seems to properly follow the two melting processes
with two characteristic “U-shaped” behaviors. The melting process for the season
2017/2018 was more linear (Fig. 2.4f) and the σ0 time series of the three tracks
provides coherent information with the one extracted by analyzing the time series
of LWC and SWE.

Malga Fadner

For this station, the information about the LWC and SWE were derived through
the SNOWPACK model. The calibration of the model was performed in order
to achieve a high agreement in terms of snow height and snow temperature (see
Table 2.3). Four tracks are available for this station: T168 (descending, morning),
T117 (ascending, afternoon), T044 (ascending, afternoon) and T095 (descending,
morning). The LIAs for the three tracks are 46, 48, 38 and 34 degrees, respectively.

The trend of the melting process over the two seasons looks similar to Alpe
del Tumulo. The season 2016/2017 is characterized by a consistent snowfall, which
happened after an initial runoff phase of the snowpack. This together with a cold
period, stopped the process, which was resumed in May (Fig. 2.4g). The time
series of the four tracks recorded by S1 backscattering showed two characteristic “U-
shaped” behavior indicating that a first runoff started after the first minimum of σ0

and continued for some days in correspondence of the monotonic increase of σ0, but
then the process was stopped by a new wet snowfall that forced the backscattering
again to the minimum. Nonetheless, the timings are different from the one identified
with the modeled data of LWC and SWE. The strong depolarization may indicate
a complex structure of the snowpack with different ice layers. The melting process
for the season 2017/2018 was more linear and the σ0 time series of the four tracks
provides coherent information with the one extracted by analyzing the time series
of LWC and SWE (Fig. 2.4e).

Weissfluhjoch

For this station, the information about the LWC and SWE were simulated with
SNOWPACK, additionally SWE GPS-derived measurements were available. The
calibration of the model was performed in order to achieve a high agreement in terms
of snow height and SWE (see Table 2.3). The tracks T168 (descending, morning),
T117 (ascending, afternoon), T015 (ascending, afternoon) and T066 (descending,
morning) are available for this station. The LIAs for the three tracks are 41, 33, 43
and 31 degrees, respectively.

The season 2016/2017 is characterized by an initial moistening phase, followed by
a ripening phase that was delayed by a cold period, when the LWC decreases almost
to 0 (Fig. 2.4i). In the middle of May a runoff phase started. The backscattering
followed the different phases as expected. The season 2017/2018 is more regular,
with a monotonic increasing of LWC indicating a short moistening followed by a
regular ripening and the runoff. In this case the measured SWE anticipated the
runoff onset of about one week w.r.t. the modeled SWE, which seems more in
accordance with the S1 data. The backscattering shows a similar behavior of other
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Figure 2.5: Schematic representation of the evolution of the backscattering coeffi-
cient acquired in the morning (green line) and in the afternoon (blue line) compared
with LWC (yellow line) and SWE (red line) evolution. The offset between the morn-
ing and afternoon signals is due to the generally different local incidence angle of the
ascending and descending acquisitions in mountainous regions. The three melting
phases are identified from the LWC and SWE information. Correspondingly, the
rules for the identification of each phase from the time series of σ0 is highlighted:
a decreases of at least T [dB] from the mean value in dry snow condition applied
to the afternoon and morning signals identifies the moistening and ripening onsets
respectively. The local minima of the signals indicate the runoff onset.

previously discussed cases with the characteristic “U-shaped” signal except for the
T066 that present several oscillations in the VH polarization.

2.4.2 Temporal Evolution of the Backscattering

From the comparison carried out in the previous section and by taking into account
the main backscattering mechanisms described in Sec. 2.2.2, it is possible to de-
rive and explain the temporal behavior of σ0 generated by a C-band SAR over a
sufficiently deep snowpack located in an open space that present a linear transition
between the three melting phases. By analyzing the backscattering time series of
the same pixel, the contribution of the LIA is always the same, making the values
of the time series comparable. Fig. 2.5 shows an illustrative evolution of σ0 for a
complete hydrological year that summarizes both the state-of-the-art background
and the observations done on real data. As described later, this conceptual time
signature will allow to derive a set of rules for the identification of the melting phases
also in time series of backscattering never observed before or in independent dataset
(e.g., Veyssière et al. 2018, Lievens et al. 2019).

Before the snow covers the terrain, σ0 is influenced by the fluctuation of the soil
moisture (Ulaby et al. 1996). Then, generally the first snow fall is wet or it covers
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relatively warm terrain resulting in a wet snowpack. This generates low backscat-
tering values in the SAR response. This situation, which in alpine environments
usually lasts for short periods, ends either with a significant decrease of the temper-
ature that brings the snowpack to a dry condition or with a complete melting of the
snowpack. It is also possible that the soil freezes before the first snowfalls. In this
case the coefficient of backscattering decreases and stabilizes around a given value,
not being affected by the soil moisture anymore.

As soon as the snowpack starts incorporating liquid water, the melting period
starts. It can be divided into three important phases as described in Sec. 2.2.1, i.e.,
the moistening, the ripening and the runoff phases. The first phase is related to
the initial moistening of the snowpack. As discussed previously, the liquid water is
introduced in the snow by rain and/or melt due to temperature and the incoming flux
of shortwave radiation. At the beginning of the process the value of LWC is low and
therefore the SAR backscattering experiences a relevant decrease in its value since
the volumetric scattering dominates the total backscattering. The drop of the signal
is recognizable by imposing a given threshold T . During the moistening, the wetting
front may be visible only during the afternoon and not in the morning since the
snowpack is still subjected to the diurnal cycles of melting and refreezing. As soon
as the wetting front has penetrated the superficial insulating layer of the snowpack,
the wet snow becomes visible also in the SAR early morning acquisitions. Please note
that the systematic offset between the morning and afternoon signals represents the
generally different local incidence angle of the ascending and descending acquisitions
in mountainous region. At this point the phase of snowpack ripening starts. In
this phase, the wetting front keeps penetrating the snowpack conducting it to an
isothermal condition. During the ripening phase, which is influenced by the weather
and the snowpack conditions, σ0 varies according to the snow conditions but with
an overall decreasing trend due to the increase of LWC.

We observed that the minimum of σ0 is reached in correspondence of the fin-
ishing of the ripening phase and the beginning of the runoff phase for all the ten
time series observed (see Sec. 2.5). The runoff is instead characterized by a mono-
tonic increase of the backscattering until all the snow is melted. To our knowledge,
this characteristic behavior has been never observed in the literature before. Our
interpretation is as follow: when the considered snowpack reaches its saturation con-
dition in terms of LWC and snow structure, the backscattering recorded in C-band
reaches its minimum value. This snowpack condition seems to correspond with the
isothermal condition i.e., the end of the ripening phase. After the saturation point is
reached, the monotonic increase of σ0 could be explained by one or the combination
of the following factors: i) an increase of the superficial roughness; ii) a change in
the snow structure i.e., increase of the density and increase of grain size and; iii)
at the end of the melting, the presence of patchy snow creates a situation of mixed
contribution inside the resolution cell of the SAR and therefore a further increase
of the total backscattering is recorded.

On the basis of this analysis, we propose here a simple set of rules to identify
the snow melting phases on the basis of the multi-temporal SAR signal. The start
of the melting process can be identified by a decrease of the multi-temporal SAR
signal recorded in the afternoon of 2 dB or more w.r.t. the general winter trend.
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This threshold has been also proposed by (Nagler et al. 2016). As soon as also the
backscattering time series recorded in the morning experience a decrease of more
than 2 dB, we assume that the ripening phase begins. This phase, characterized
by several oscillations, ends when both the morning and afternoon σ0 reach their
local minimum. We propose the mean date among the local minima as the start of
the runoff phase, which is characterized by a monotonic increase of the coefficient
of backscattering. These rules are summarized in Algorithm 2. It is worth noting
that, the rules are not calibrated on the observations done in Sec. 2.2.1, but reflect
the literature background.

Algorithm 2: Identification of the melting phases

Input: Multitemporal backscattering observations for different tracks,
σmorining and σafternoon, for a given day d, d ∈ {1, .., d, .., D} with D
total number of observations

Output: Onset moistening TM , onset ripening TR, onset runoff TRO

while d ≤ D do
if σafternoon,d − σdry ≥ −2 dB then

# Snowpack is wet
# Check moistening phase
if (σmorning,d − σdry < −2 dB) then

TM = d
# Do not check this condition anymore
continue

end
# Check ripening phase
if (σmorning,d − σdry ≥ −2 dB) then

TR = d
# Do not check this condition anymore
continue

end
# Check runoff phase
if (σd ==σmin ) then

TRO = d
# Do not check this condition anymore
continue

end

end
else

# Snowpack is dry
end
d ++

end

In the next section we applied these simple set of rules in order to identify the
melting phases for each of the five considered test sites. Moreover, the same rules
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are used to identify the runoff onset for each SAR pixel in the topographically well-
defined catchment of the Zugspitzplatt obtaining a spatially distributed map of the
runoff timing.

2.5 Application of the proposed approach to 1D

and 2D cases

In this section, we present the results obtained for the snow melting phases identifi-
cation from the time series of backscattering recorded from S1 over the five selected
alpine test sites. The results are compared with the derivation of the melting phases
considering the observed and modeled measurements of LWC and SWE. Finally, we
present the result of the runoff onset identification in the two dimensional space of
the original 20 m SAR images for the Zugspitze catchment.

2.5.1 Identification of snow phases from Sentinel-1 in the
five alpine test sites

Table 2.5 reports the comparison of the onset dates for the melting phases for each
of the considered test sites. The phases were identified from the backscattering
time series according to the rules expressed in the previous section. If more than
two acquisitions i.e., ascending and descending are available for one test site, the
first date representing the onset for the moistening and ripening phase among all
available tracks is selected. The runoff onset is identified as the mean date among
the local minima. These rules can be automatically applied without any human
supervision.

On average, the moistening phase was identified with a r.m.s. error of 6.5 days.
For the ripening phase the SAR time series allowed the identification with 4.5 days
of r.m.s. error. Finally, the runoff was identified with a r.m.s. of 8 days (4 days
r.m.s. error without considering Alpe del Tumolo for the years 2016/2017 and
Weissfluhjoch for the years 2017/2018 where the runoff process were articulated).
Considering the repetition frequency provided by S1 and the possible uncertainty of
the SNOWPACK modeling (Wever et al. 2015), the produced results demonstrate
the effectiveness of using the SAR for characterizing the snow melt process.

In some cases, the proposed rules could not be applied and the melting or ripening
onset could not be identified from the S1 data. This is mainly due to the short
melting or ripening periods that occurred during some years in the selected test
sites. However, it was always possible to identify the runoff onset. In these cases,
the 6 days repetitions provided by S1 is not adequate to sample this situation and
it happens that the moistening phase is captured by the morning acquisition before
than the afternoon acquisition (i.e., Zugspitze season 2016/2017 and 2017/2018,
Clozner Loch season 2016/2017 second moistening phase and 2017/2018) or the
first signal drop is reached at the same time of the local minima (i.e., Clozner Loch
season 2017/2018). One can also notice that, for the first runoff identified in the
season 2016/2017 for Malga Fadner, the proposed rules failed since for T168 no local
minimum was clearly identified (Fig. 2.4g).
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S1 Ref ∆
[days]

Moistening - 11/03 -
Ripening 23/03 21/03 +2
Runoff 20/05 20/05 0

(a) Zugspitze, season 2016/2017

S1 Ref ∆
[days]

- 04/04 -
05/04 08/04 -3
18/04 18/04 0

(b) Zugspitze, season 2017/2018

S1 Ref ∆
[days]

Moistening 19/03 14/03 +5
Ripening 23/03 20/03 +3
Runoff 24/03 08/04 -14

01/05 13/05 -13

(c) Alpe del Tumulo, season 2016/2017

S1 Ref ∆
[days]

07/04 02/04 +5
11/04 07/04 +4
14/04 20/04 -6

(d) Alpe del Tumulo, season 2017/2018

S1 Ref ∆
[days]

Moistening 23/02 14/02 +9
- 29/04 -

Ripening 12/03 16/03 -4
28/04 05/05 -7

Runoff 22/03 25/03 -3
08/05 13/05 -5

(e) Clozner Loch, season 2016/2017

S1 Ref ∆
[days]

- 25/03 -

- 06/04 -

12/04 18/04 -6

(f) Clozner Loch, season 2017/2018

S1 Ref ∆
[days]

Moistening 19/03 14/03 +5
Ripening 23/03 20/03 +3
Runoff 10/04 30/03 +11

07/05 09/05 -2

(g) Malga Fadner, season 2016/2017

S1 Ref ∆
[days]

07/04 05/04 +2
11/04 07/04 +4
21/04 19/04 +2

(h) Malga Fadner, season 2017/2018

S1 Ref ∆
[days]

Moistening 25/03 19/03 +6
Ripening 04/04 09/04 -5
Runoff 14/05 16/05 -2

(i) Weissfluhjoch, season 2016/2017

S1 Ref ∆
[days]

06/04 02/04 +4
10/04 17/04 -7
08/05 19/04 +19

(j) Weissfluhjoch, season 2017/2018

Table 2.5: Onset times for the melt phases identified in the five test sites using the
LWC and SWE (reference - Ref) and Sentinel-1 (S1) with the method proposed in
the previous section.
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2.5.2 Extension to a 2D analysis of the runoff onset: the
Zugspitzplatt catchment

In this section we evaluate how the identification of the runoff onset is performed at
a catchment scale. In particular, we considered the multi-temporal behavior of each
pixel acquired by S1 over the Zugspitzplatt during the hydrological year 2017/2018.
The plateau (1500-2700 m a.s.l.) on the southern slope of Mt. Zugspitze summit
(2962 m a.s.l.) is well suited for this application scenario, since it is proven that all
surface and ground water is drained to the Reintal valley in the east by the Partnach
River (Rappl et al. 2010). With regard to a potential transport of contaminants that
are stored in the snowpack and released with the first snowmelt (Hürkamp et al.
2017), the knowledge of the runoff onset can provide important information for the
scope of action concerning the management of countermeasures or planning actions
to mitigate potential soil and water contamination.

As illustrated in the previous section, the runoff onset was identified by locating
the minimum of the backscattering time series. In order to increase the robustness
of the detection, we considered the mean of backscattering of close pixel presenting
the same characteristics in terms of altitude, exposition and slopes. In detail, belts
of 100 m were considered for the altitude. Slope was divided in three classes between
0-20, 20-40 and 40-60 degrees. Four aspect classes were considered, i.e. North, East,
South and West. Finally, a local incidence angle ranging from 25 to 65 degrees was
divided in 8 classes with 5 degrees span, avoiding layover and shadow effects. All the
homogeneous classes generated by the different combinations were aggregated. The
forested areas were masked using the Copernicus tree cover density map (https:
//land.copernicus.eu/pan-european/high-resolution-layers/forests

/tree-cover-density/status-maps/2015). Moreover, since in this illustrative
example we are interested in the main runoff contribution, the proposed algorithm
is looking for local minima of the backscattering time series only after January 2018.
This to exclude isolated wet snowfalls or complete early melting events typical of
the beginning of the seasons.

Fig. 2.6 shows the runoff onset identified by the proposed method. As one
can notice, the regions at lower altitude started the runoff phase before the areas
at higher altitude. The same consideration can be done for the pixels north ex-
posed versus the south exposed ones. Interestingly, the last areas that start the
runoff phase in the catchment are the glacierized areas (Northern and Southern
Schneeferner glacier) and north faced slope areas. A selection of the backscattering
time series is reported at the bottom of the Fig. 2.6 for six points selected at differ-
ent altitudes. As one can notice the characteristic behavior described in Sec. 2.4.2
is always visible in the real data even though they were not analyzed before.

2.6 Discussion

Snow monitoring and/or prediction systems are typically based on real-time snow
ground observations (e.g., WSL Swiss monitoring system https://www.slf.ch/en/

avalanche-bulletin-and-snow-situation/snow-maps.html), snow hydrological
models (e.g., Mysnowmap for the European Alps https://www.mysnowmaps.com
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Figure 2.6: Runoff onset for the Zugspitzplatt catchment. (a) Test site presentation
(©2019 Microsoft Corporation ©2019 Digital Globe ©CNES(2019) Distribution
Airbus DS) (b) Map of the runoff onset (contains modified Copernicus Sentinel data,
2018, processed by Eurac Research). The runoff started at lower altitude and at the
south exposed slopes. The last areas to have the runoff in the catchment are the
high-altitude area, the north exposed and glacierized areas. (c) The multi-temporal
backscattering time series for the selected points along the transect identified in (b)
with red dots. All the time series present the characteristic “U-shaped” pattern.
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/), optical and passive microwave remote sensing observations (e.g., ESA Climate
Change snow Initiative snow-CCI http://cci.esa.int/snow), or the combination
of different sources (e.g., the US National 515 Operational Hydrologic Remote Sens-
ing Center (NOHRSC) https://www.nohrsc.noaa.gov/). The accuracy of such
systems varies, but in general is limited by the poor information on snow precipita-
tion, especially in mountain areas. This could lead to errors of several days, even
weeks, in the estimation of the snow disappearance time (Engel et al. 2017). The
approach described in this chapter allowed the identification of the melting phases
for the five considered test sites with an rmse of 6 days for the moistening phase,
4 days for the ripening and 7 days for the runoff phase. Therefore, it could be
potentially useful to improve the performances of snow monitoring.

It is important to underline that, in order to predict runoff, further hydrologi-
cal modeling is needed beside the information provided by the proposed approach.
While the runoff production below the snowpack starts quickly, being snow per-
meable to water, then the streamflow production can be delayed of several days,
even weeks, depending on catchment size and hydrological behavior (Rinaldo et al.
2011). Therefore, even if we do not propose a real-time implementation, we think
that, combining the information on the snow melting phases based on the principles
presented in Sec. 2.4.2 and easily available real-time and historical auxiliary data
such as temperature or historical streamflow, it is possible to develop an algorithm
to extract valuable information for the anticipation of the peak stream runoff phase.

Knowing the snow melting phases within just a few days delay can have very im-
portant applications for water resources management (e.g., hydropower production
or irrigation administration). In detail, the information provided by the proposed
approach can be ingested in operational hydrological modeling systems. In detail,
the ingestion of remote sensing information for improving snow modeling and mon-
itoring has been extensively applied in the past (e.g., Molotch & Margulis 2008).
So far, the most common variable assimilated is snow cover fraction from optical
sensors since this is the most available information acquired using remote sensing.
In our case, we would need to assimilate either information on presence/absence
of snow liquid water content or on the snow depletion curve, which can be com-
puted for the first time from the real beginning of the melting (i.e., runoff onset)
from high resolution remote sensing data. From a theoretical point of view, this
is feasible. However, if the assimilated variable is snow liquid water content, only
snow models which explicitly simulate snow liquid water content can be used. Usu-
ally physically based, energy-based snow models such as GEOtop (Endrizzi et al.
2014), AMUNDSEN (Strasser et al. 2011), CROCUS (Brun et al. 1992) or SNOW-
PACK/ALPINE3D (Bartelt & Lehning 2002, Lehning et al. 2006) are suitable for
this purpose.

The possibility to use state of the art Radiative Transfer (RT) models to simu-
late the multi-temporal behavior of the backscattering presented in Sec. 2.4.2 has
also been investigated. Although wet snow is of great importance for many applica-
tions, the most widely used models have been tested and applied mainly in dry snow
conditions (Picard et al. 2018, Proksch et al. 2015). In detail, during the melting
process the increase of superficial roughness, LWC and density and the coarsening
of the snow grains play an important role on the backscattering mechanisms. In-
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deed, when the LWC increases, the absorption coefficient increases, the penetration
depth decreases, and the total backscattering is influenced more and more by the
superficial roughness of the snow. As discussed in the background Sec. 2.2.2, at
the best of our knowledge, only few works have specifically addressed the wet snow
modeling at C-band i.e., (Shi & Dozier 1995, Nagler & Rott 2000, Magagi & Bernier
2003). Differently from more advanced models such as SMRT (Picard et al. 2018)
or MEMLS3&a (Proksch et al. 2015), these models assume independent scattering.
Even though Shi & Dozier (1995) and Magagi & Bernier (2003) indicate a positive
correlation between largely wet snowpack and the superficial roughness, Kendra
et al. (1998) on the basis of ground experimental analysis, expressed some doubts
on the realistic behavior of such models. Therefore, wetsnow RT modeling requires
dedicated efforts and validation campaigns, which has never been systematically
conducted for characterizing the multi-temporal snow roughness, which are out of
the scope of this chapter and will be left as future work.

It is finally worth noting that the availability of multi-temporal data, acquired
regularly over the entire globe and freely accessible, opens new opportunities to
monitor dynamic phenomena. In particular, monitor snow depth and snow water
equivalent in a systematic and spatially distributed manner would be crucial for a
proactive management of the water resources. The recent paper by Lievens et al.
(2019) proposes an empirical algorithm for snow depth retrieval from S1 at 1 km
resolution. The authors suggest a C-band sensitivity to snow height generated by
the cross-polarized information. This was never fully recognized before in the litera-
ture. Even though the focus of our research is only on the snowmelt, by considering
the 20 m multi-temporal S1 data acquired over the five test sites studied in the pre-
sented work, we provide some remarks that may be useful for future works in this
context. It is worth noting that all the backscattering time series in the two polar-
ization showed in the paper by Lievens et al. (2019) exhibit the characteristic shape
identified and analyzed in the presented study. Notwithstanding, when considering
our five test sites, the ratio σV H/σV V seems not providing clear evidences that the
cross polarization is sensible to the increase (or decrease) of snow depth (or SWE)
during both the accumulation and melting period (see Fig. 2.4). Nevertheless, our
five test sites represent a restricted and very specific dataset w.r.t. the global one
considered by Lievens et al. (2019). However, this does not exclude that different
manipulation of the S1 data (e.g., spatial and temporal averaging) and the empiri-
cal incidence angle normalization proposed in Lievens et al. (2019), which were not
taken into account in our experiments, may contribute to increase the sensitivity of
the backscattering to the snow height, by possibly removing the source of noise. In
conclusion, despite the lack of a generally accepted physical explanation, this work
shows how the rich amount of SAR data made available with a high repetition inter-
val can allow the monitoring of the complex processes related to the snow evolution
in a manner that was never addressed before. We believe this will be one of the
most interesting research topics in the future.
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2.7 Conclusions

In this chapter, we analyzed the correlation between the multi-temporal SAR backscat-
tering and the snow melt dynamics. We compared Sentinel-1 backscattering with
LWC and SWE measurements derived from in situ observations and process-based
snow modeling simulations for five alpine test sites in Italy, Germany and Switzer-
land considering two hydrological years. We found that the multi-temporal SAR
measurements allow the identification of the three melting phases that character-
ize the melting process i.e., moistening, ripening and runoff with a good agreement
considering the revisit time of Sentinel-1. In detail, we found that in the considered
sites the SAR backscattering decreases as soon as the snow starts containing water,
and that the backscattering increases as soon as SWE starts decreasing, which cor-
responds to the release of meltwater from the snowpack. We discuss the possible
reasons of this increase, which are not directly correlated to the SWE decrease, but
most probably to the different snow conditions, which change the backscattering
mechanisms. From this study we define a set of simple rules that can be applied
to the multi-temporal SAR backscattering in order to identify the melting phases.
We showed that by applying these rules, the identification of the melting phases
was possible for the five considered test sites with an rmse of 6 days for the moist-
ening phase, 4 days for the ripening and 7 days for the runoff phase. Moreover,
the same rules were applied for the identification of the runoff onset for the entire
Zugspitzplatt catchment with reasonable results even if further hydrological analyses
have to be performed. The presented investigation could have relevant application
for monitoring and predicting the snowmelt progress over large regions. A better
understanding of the spatial and temporal evolution of melting dynamics in moun-
tain regions and the knowledge on the onset of melt water runoff can help to predict
floods and define the scope of action to mitigate potential contaminant distributions
in soils and surface water.

As future developments we plan to develop and test an automatic method to
identify the three melting phases of a snowpack using larger validation dataset (e.g.,
SNOTEL) and allow to proper discuss the spatial and temporal evolution of snow
water content and runoff in mountainous region. Moreover, we investigate the rea-
sons of the increase of the backscattering in correspondence of the decrease of SWE
through in situ experiments that take into account the hypothesis expressed in this
chapter. This will help the development of the RT models in wet snow conditions.
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Chapter 3

A Novel Approach Based on a
Hierarchical Multi-Resolution
Analysis of Optical Time Series to
Reconstruct the Daily
High-Resolution Snow Cover Area

High-resolution (HR) snow cover maps derived by remotely sensed images are an
asset for data assimilation in hydrological models. However, the current satellite
missions do not provide daily HR multi-spectral observations suitable for an accu-
rate snow monitoring in alpine environments. On the contrary, low-resolution (LR)
sensors acquire daily information of snow cover fraction (SCF) but at an inappro-
priate spatial scale. This chapter 1 proposes a novel approach that combines multi-
source and multi-scale acquisitions to infer the daily HR snow cover area (SCA) for
mountainous basins. The approach builds on the assumption that inter-annual snow
patterns are both affected by the local geomorphometry and meteorology. We derive
these patterns through a hierarchical multi-step approach based on historical statis-
tical analyses on a long and sparse HR time-series. At each step, we obtain binary
HR snow cover maps with higher number of reconstructed pixels but decreasing level
of confidence. Historical data are used to estimate the probability that a HR pixel is
covered by snow according to two possible multi-scale strategies: i) HR gap-filling,
or ii) LR downscaling. These analyses lead to the identification of the patterns that
regularly appear given certain conditions. When no systematic patterns are observed,
we reinforce the inference of the pixel class by a generalized additive model (GAM)
that exploits not only the historical data but also explicit geomorphometric, global
snow and multi-temporal properties. The proposed approach has been validated on
a catchment in the Sierra Nevada, USA, for three hydrological years (2017-2019)

1This chapter has been published in:
Premier, V., Marin, C., Steger, S., Notarnicola, C. Bruzzone, L. (2021), ‘A novel approach based
on a hierarchical multi-resolution analysis of optical time series to reconstruct the daily high-
resolution snow cover area’, IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing 14, 9223–9240.
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showing an average overall accuracy of 92%.

3.1 Introduction

Snow cover monitoring is of crucial importance to accurately control and manage the
water resource availability (Immerzeel et al. 2020). The presence of snow has relevant
effects at different scales. At a regional scale, snow strongly affects the mountain
watershed hydrology, being one of the main contributor to streamflow runoff and
groundwater recharge (Dyer 2008, Earman et al. 2006). Moreover, the seasonal snow
accumulation and melt have a large impact also on the ecosystem functioning, the
human activities and the economic growth of the considered area. Just to cite some
examples, snow is a main source of freshwater provision, hydropower plant reser-
voirs, and ski tourism (Jones 2001, Beniston et al. 2018, DeWalle & Rango 2008b,
Winther & Hall 1999). At a global scale, due to its radiative and thermal properties,
snow affects the climate system by influencing the atmosphere and ground exchanges
(Zhang 2005, Ge & Gong 2010). At its maximum annual expansion, snow can cover
more than half the Northern Hemisphere land area (Groisman 2001). Hence, global
snow cover variations need to be monitored, especially in the context of a changing
climate (e.g., Notarnicola 2020).

Remote sensing (RS) is a valuable tool for snow monitoring, since it provides
spatially distributed information over large areas also when they are difficult to ac-
cess (Nolin 2010, Rees 2005). A key property that can be retrieved by optical sensors
mounted on board of satellites is the snow cover area (SCA). Time-series (TS) of
SCA provide a measurement of the snow cover depletion rate, which can be either
exploited for snow water equivalent (SWE) reconstruction, (e.g., Martinec & Rango
1981) or assimilated in hydrological models (e.g., Thirel et al. 2013, Rodell & Houser
2004). Furthermore, SCA is a proxy for many variables, e.g., related to assess the
impact of climate changes (Notarnicola 2020) or to predict the availability of water
discharge (Callegari et al. 2015).

The SCA is derived from optical multi-spectral sensors by exploiting the spectral
signature of snow. In general, the identification of snow-covered pixels is possible
through the normalized difference snow index (NDSI), which is calculated as the nor-
malized difference between the visible and short-wave infrared (SWIR) components
of the electromagnetic spectrum (e.g., Dietz et al. 2012). The output of the most
known state-of-the-art methods (e.g., Dozier & Painter 2004, Klein et al. 1998) is a
binary thematic map with snow and snow-free labels. More advanced methods deal
with the partially snow-covered pixels and retrieve the snow cover fraction (SCF)
at pixel level, i.e., the percentage of snow within the pixel. This can be achieved by
assuming a linear relationship between NDSI and SCF (e.g., Salomonson & Appel
2006, Gascoin et al. 2020). Other authors also make use of unmixing techniques
(e.g., Painter et al. 2009). Beside these methods, machine learning (ML) methods
have also been explored both for binary classification (Niroumand-Jadidi et al. 2020)
and for SCF (Czyzowska-Wisniewski et al. 2015).
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The trade-off between spatial and temporal resolution of the current satellite
missions negatively affects the proper exploitation of SCA maps to understand pro-
cesses related to snow and atmospheric energy exchanges, the hydrology, or the
ecosystem functioning of a given area (Oaida et al. 2019, Liston 2004, Vionnet et al.
2020). From one side, daily low-resolution (LR) SCF maps are available but with
a spatial resolution of hundreds of meters that is not appropriate especially when
dealing with complex topography and inhomogeneous snowfalls. In fact, local snow
spatial patterns due to wind redistribution, snow-canopy interaction or orographic
influences are not accurately detected. This together with systematic errors intro-
duced in the SCF retrieval, due for example to the variable illumination and viewing
angle, different types of land cover, and atmospheric effects (Dozier & Painter 2004,
Klein et al. 1998, Dozier et al. 2008) invalidate the possibility to properly appreciate
the spatial and temporal heterogeneity of SCA. On the other hand, high-resolution
(HR) satellite images introduce large benefits to the alpine snow monitoring allowing
for instance the proper observation of the release of localized SWE storages, which
are important for predicting the river runoff especially in the late melting season
(DeBeer & Pomeroy 2017) or for ecology studies (Mark et al. 2015). However, they
are available with a low temporal resolution. This does not permit to monitor quick
SCA changes thus precluding the correct identification of the snow onset and snow
end date (Aalstad et al. 2020, Selkowitz et al. 2014, Durand et al. 2008). In the
past, HR images were provided mainly by the Landsat missions, which acquired
one image every 16 days, thus resulting inadequate for temporally characterizing
the SCA. Nowadays, thanks to the recent introduction of the Copernicus Sentinel-2
(S2) mission, we can benefit free-of-charge of new images nominally acquired every
5 days (due to polar orbits the revisit time is increasing gradually from the equator
to the poles). This is opening the possibility to systematically produce HR SCA TS
increasing the spatial and temporal sampling of the snow related processes. How-
ever, there is still the need to fuse multi-temporal and multi-source information to
obtain HR TS with a daily temporal resolution, which is more adequate for snow
monitoring (Malnes et al. 2015).

The high temporal correlation of snow cover has been largely exploited in sev-
eral state-of-the-art methods that deal with cloud obstruction by propagating the
last/next available information (Gafurov & Bárdossy 2009, Da Ronco & De Michele
2014, Lindsay et al. 2015). Other methods are based on either interpolating SCA
(Dozier et al. 2008) or considering NDSI changes over time of similar cloud-free
pixels (Chen, Wang, Guo, Xie & Sirelkhatim 2020). However, these methods are
strongly influenced by the duration of the cloud presence and may not detect rapid
phenomena typical of snow accumulation and/or melting. Spatio-temporal correla-
tion of snow distribution has also been investigated (Li et al. 2017, Parajka & Blöschl
n.d., Hou et al. 2019, Tran et al. 2019) exploiting mainly the elevation (Gafurov &
Bárdossy 2009, Da Ronco & De Michele 2014, Parajka et al. 2010) but also other
digital elevation model (DEM) derived features (López-Burgos et al. 2013, Poggio
& Gimona 2015). The historical information provided by long TS has also been
exploited to fill the cloud gaps by considering the conditional probability (CP) of
having a class transition (snow/snow free) during the cloud covered period. This
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probability has been calculated during the same historical decade in which the clouds
affected the study areas (Niroumand-Jadidi et al. 2020). These methods were all
developed for low-resolution (LR) images (Li, Jing, Shen & Zhang 2019) but they
represent a possible starting point for HR gap-filling (e.g., Liu et al. 2020). However,
the application of these techniques to HR TS would suffer both by i) the presence of
larger gaps due to the sparser acquisitions that characterize HR time series; and ii)
the high spatial variability of SCA in complex terrains that is neglected in the state
of the art methods. Moreover, the reconstruction is not based on a direct observation
but it is inferred by exploiting the spatio-temporal correlation under the assump-
tion that no sudden SCA change can happen between the observations. In this
context, multi-source techniques can improve the sampling time. Fusion techniques
that merge LR and HR data have been proposed and provide daily snow cover maps
with a resolution of 30 m (Mityók et al. 2018, Berman et al. 2018). These methods
are based on long NDSI TS which are smoothed through interpolation techniques
(e.g., cubic splines), which provide good performances if the accumulation and melt-
ing are not subjected to abrupt changes. Moreover, HR and LR NDSI values are
assumed to follow similar trends without considering the intrinsic variability due
to the different spatial resolution. Multi-source methods for fusing optical and mi-
crowave observations have also been proposed (Deng et al. 2015). Other techniques
fuse information extracted from in-situ snow measurements by computing the CP to
observe a pixel as snow given the presence of snow in a set of meteorological stations
or other pixels (Gafurov et al. 2015, Dong & Menzel 2016, Chen, Wang, Guo, Xie,
Wang & Hao 2020). The implicit limitation of such methods is that the results are
strongly affected by the number of weather stations available for the study area.
Moreover they have not been explored using HR data.

In this work, we propose a novel multi-source approach to infer the daily SCA in
mountainous basins at a high spatial resolution starting from sparsely acquired TS
of high- and low-resolution snow cover maps. The inference process exploits the high
temporal and spatial correlation of the snow cover based on the physical processes
that lead to the snow accumulation and redistribution by considering the historical
information in a novel way. In particular, we observe the recurrent distribution of
snow in time which takes place following predominant regular inter-annual patterns.
These patterns are influenced by the geomorphometric features of the considered
pixels. Similar characteristics in terms of elevation, slope, and aspect lead to similar
response during and after a meteorological event (snow accumulation, distribution,
and melting) (Mendoza et al. 2020). For this reason, the proposed approach is de-
signed for hydrological catchments or areas driven by the same precipitation events.
Moreover, the spatial resolution of HR sensors is particularly suitable to identify the
snow cover patterns in complex terrain such as alpine catchments. To this purpose
we exploit all available multi-source observations with the main advantage to detect
quick phenomena, as for example quick snowfall events, which are generally missed
by the state-of-the-art methods.

The method is made up of five different steps grouped in two main blocks. First,
we extract the snow patterns by means of historical statistical analyses on a long HR
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TS without directly considering other features. In this phase, the geomorphometric
information is intrinsically embedded in the history. The patterns are extracted
by deriving the conditional probability (CP) to observe a pixel as snow given an
observation that is representative of the date to be reconstructed. Differently from
Gafurov et al. (2015), Dong & Menzel (2016), Chen, Wang, Guo, Xie, Wang & Hao
(2020), we propose to estimate the CP in a novel way that exploits the available
cloud-free multi-source HR or LR information. In detail, we calculate the probabil-
ity to observe a pixel as snow given: i) the SCA computed for the cloud-free portion
of the catchment, when HR acquisitions are partially cloud obscured; and ii) the LR
SCF observed for the corresponding HR pixel, when HR is not acquired. In the first
case, the computed CPs allow to perform a HR gap-filling and in the second one,
a downscaling. We initially infer the snow presence/absence only for those pixels
which show a highly persistent behaviour, i.e., CPs equal to 0 or 1. Depending on
the available source of information, gap-filling and downscaling are hierarchically
and iteratively applied in a framework driven by the hypothesis that HR maps are
more accurate than LR maps (Salomonson & Appel 2006, Dozier & Painter 2004).
Indeed, HR is used to correct possible errors in the SCF retrieval differently from
other state-of-the-art methods that preserve LR SCF (e.g., Cristea et al. 2017). In
this way, we generate partially reconstructed HR snow maps characterized by a high
confidence. Remaining gaps in the LR SCF TS are reconstructed by means of a lin-
ear interpolation (Dozier et al. 2008). It follows that we estimate the CP for all the
HR pixels and in the case they do not determine the snow presence, we reinforce the
label inference through a supervised machine learning (ML) technique. In detail, we
exploit a generalized additive model (GAM) trained on the CPs inferred through
LR SCF, the digital terrain model (DTM) derivatives (elevation, aspect, and slope)
(Schneider et al. 2021, Walters et al. 2014, Li et al. 2015, Cristea et al. 2017), the
global catchment snow condition (i.e., the estimated SCA), and multi-temporal fea-
tures (i.e., the observed NDSI values).

We tested the proposed approach on three hydrological seasons from October
2017 to August 2020 over a watershed in the Sierra Nevada by using HR snow maps
derived by S2 and Landsat-8 (L8), and LR SCF maps derived by MODIS. The final
daily HR maps have been evaluated against an independent multi-temporal dataset.
It is worth noting that the approach is general and can be applied to any HR and
LR sensors over any watershed.

The chapter is structured into five sections. Section 3.2 presents the procedure
to infer the daily high-resolution snow cover area in mountainous regions starting
from sparse multi-source optical observations. Section 3.3 illustrates the considered
dataset. The obtained results are illustrated and discussed in Section 3.4. Section
3.6 draws the conclusions of the work and gives indications for further exploitation
of the proposed approach.
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3.2 Proposed Method

In the considered problem, we can define three spatial levels and the relative observed
variables (see Fig. 3.1): i) the catchment scale and the relative SCA, ii) the LR
scale and the associated SCF, and iii) the HR scale and the binary information of
snow presence or absence, denoted with ωs and ωsf , respectively. The class labels
can be converted to numerical values, i.e., ωs = 1 and ωsf = 0. The HR grid is
resampled and spatially aligned within the LR grid. Both the HR and LR snow
maps are screened for all the undetermined pixels (e.g., clouds, shadows, missing
data), identified hereafter as ωnd. As shown in Fig. 3.1, we denote with xi the HR
pixel, with i = 0, 1, 2, ..., NHR and Xj the LR pixel, with j = 0, 1, 2, ..., NLR, where
NHR and NLR are the total numbers of HR and LR pixels, respectively. Let M be
the number of HR pixels contained in a LR cell, i.e., NHR/NLR. It follows that the
SCF can be retrieved either i) from the LR spectral information sensor using for
example the method proposed by Salomonson & Appel (2006), hereafter denoted as
SCFLR,j, or ii) by counting the pixels classified as ωs within the LR pixel, hereafter
denoted as SCFHR,j:

SCFHR,j =

∑M
i xi

M
, xi ⊂ Xj with i = jM, . . . , (j + 1)M − 1 (3.1)

Note that to keep reliability, Eq. 3.1 is calculated only if the number of valid HR
pixels is statistically significant (i.e., ωnd pixels are less than 5% of M). Similarly,
also the SCA can be computed starting either from the HR images (SCAHR) or
from the LR data (SCALR). When HR is partially covered by clouds and the SCA

refers to the cloud-free area only, we denote it as S̃CA.

The inputs to the method are a sparsely acquired long TS of HR snow cover maps
and a quasi-daily LR TS of SCF maps relative to the period to be reconstructed,
i.e., any time interval of interest up to last available acquisitions. We denote as
tη, with η = 0, 1, 2, ..., Tη a date belonging to the HR TS. The HR TS spans over
a longer period than the one considered for the daily reconstruction. As output
we obtain daily HR snow cover maps and daily LR SCF maps for each tξ, with
ξ = 0, 1, 2, ..., Tξ. Note that the daily SCF retrieval is not the main objective of the
work, but it is part of the reconstruction process.

As shown in Fig. 4.1, the workflow can be divided in two main blocks. The first
block, namely the historical block is based on historical analyses built on observa-
tions that exploit the rich information contained in the regular repetition of the snow
patterns. This allows the snow inference with very high accuracy, but returning a
spatially and temporally incomplete dataset. On purpose, this first output is kept
separated since its accuracy is comparable to the one of the HR multi-spectral obser-
vations, as we will see later in the result section. The historical block is repeated a
second time after the temporal interpolation of SCFLR. The interpolation exploits
the temporal correlation of the snow cover permitting a daily reconstruction LR
TS. This allows the use of the HR historical information a second time but possibly
with a lower accuracy depending on the time gap (e.g., Parajka & Blöschl n.d.). Fi-
nally, the GAM block is used to spatially complete the daily TS by exploiting proxy

51



Figure 3.1: Problem definition. We consider three spatial levels: i) the catchment
scale, defined by the HR and LR pixel included in the geographical area of the
catchment (grey line, black pixel are masked out), for which we can calculate the
SCA, i.e., the fraction of the catchment covered by snow; ii) the low-resolution scale
and the associated SCF calculated for each LR pixel Xj, i.e., the fraction of a LR
pixel covered by snow; and iii) the high-resolution scale, in which each HR pixel xi

is binary classified either as ωs or ωsf . Note that HR pixels are spatially resampled
and aligned to fit within the LR pixel.

variables related to the accumulation and melting processes. We obtain as output
two complete and coherent TS. It is worth noting that the conceptual separation of
the blocks allows the final user to distinguish pixels with different confidence level
depending on the final application of the snow TS (e.g., data assimilation).

As preliminary step - for sake of conciseness not included in Fig. 4.1 - we deal
with the daily multiple acquisitions. In case of two HR scenes acquired on the same
date, we combine them by i) filling the ωnd of one acquisitions with the label from
the other acquisition if not ωnd; or ii) setting to ωnd pixels if the labels are conflicting.
In case of two or more LR acquisitions, the SCFLR,j derived from the acquisition
with the lowest viewing angle is considered (Riggs et al. 2015).

The method starts by considering a date tξ belonging to the daily TS that needs
to be reconstructed. For sake of conciseness we illustrate the most complete case,
when both HR and LR are acquired. If a HR map is acquired, we check if it is pos-
sible to reconstruct any pixel xi by means of the first historical statistical analysis,
i.e., the computation of the CP given S̃CA. If yes - CPs equal to 0 or 1 - we apply
the gap-filling driven by the historical HR snow pattern persistence (Gap-filling -
see Section 3.2.1). The next step is the spatial correction of SCF (Correction - see
Section 3.2.3) to update the SCFLR,j by exploiting the original or the newly intro-
duced labels. These two steps are repeated until it is possible to reconstruct new
labels. If this is not possible - CPs different from 0 or 1 - we check if a LR acquisition
exists for tξ and we try to infer new labels by applying the downscaling driven by
the LR historical snow pattern persistence (Downscaling - see Section 3.2.2). Again,
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Figure 3.2: Workflow of the proposed method. It is composed by two main blocks,
i.e., the historical block (gap-filling, correction and downscaling) and the GAM
block (GAM and final correction). The two blocks are joined by an intermediate
step composed of the interpolation and correction.
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Figure 3.3: Gap-filling: historical statistical analysis to infer the snow presence
conditioned by the partial SCA. First, the cloud mask of the date to be reconstructed
is applied to the entire HR TS. The dates with similar S̃CA are then used to compute
the CP (Eq. 3.3) and infer the HR label (Eq. 3.4).

the newly inferred HR pixels can add information for repeating the cycle Gap-filling
and Correction. This is done for all the dates in the TS. When we have completed
the historical block for all the dates, we apply the temporal interpolation of SCF
(Interpolation - see Section 3.2.4) to fill the gaps in the LR TS and we Correct
again SCFLR to ensure coherence with the valid HR pixels within any interpolated
Xj. The interpolated values are used as input of a new cycle of the historical block
(Downscaling, Gap-filling and Correction) for all the dates tξ of the TS. When no
more labels can be inferred from the Downscaling, the remaining pixels are classified
with the GAM based reconstruction (GAM - see Section 3.2.5), which reinforces with
explicit geomorphometric, global snow cover, and multi-temporal properties the CP
previously obtained by applying the Downscaling. Note that in the last step we
consider the CPs included but not equal to 0 and 1. Finally, a last Correction is
applied to ensure consistency between the HR and LR final outputs.

3.2.1 Gap-filling driven by the historical HR snow pattern
persistence

The first step of our reconstruction method is applied when a cloud contaminated
HR snow map at a given time tξ is available. As shown in Fig. 3.3, a long HR TS is
used for computing the historical CP to observe a pixel as snow given the available
partial information on snow cover at tξ, i.e., S̃CAξ. In detail, the pixels classified
as ωnd at time tξ are used to mask each tη belonging to the HR TS. The scenes

that present S̃CAη similar to S̃CAξ both in absolute values and spatial distribution
are selected for the computation of the CP. By masking remaining cloudy pixels, a
simple similarity criterion is set up for the two dates tξ and tη:

δξ,η =

∑Nunmasked

i=0 |xξ
i − xη

i |
Nunmasked

, i ̸⊂ mask (3.2)

where Nunmasked = f(tξ) is the number of pixels belonging to the unmasked area.
The scenes are defined to be similar if δξ,η is less than a threshold Tδ. Hence,
by considering the resulting S similar scenes, we can infer the CP Pi(ωs|S̃CA) to
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Figure 3.4: Downscaling: historical statistical analysis to infer the snow presence
given the LR SCF. Given a LR acquisition on the date to be downscaled, we consider
SCFLR for each LR pixel Xj. We aggregate the HR TS (Eq. 3.1 and we select the
P pixels which show a similar SCF for Xj. Hence we compute the CP (Eq. 3.5 and
we perform the dowscaling (Eq. 3.6).

observe as snow the pixel xi belonging to the masked area for the considered date
tξ (hereafter the index ξ is omitted for brevity):

Pi(ωs|S̃CA) =

∑S
s=0 x

s
i

S
, i ⊂ mask (3.3)

To ensure statistical reliability, S should be greater than a certain threshold TS.
Hence, we apply the following rule:

xi = ωs, if Pi(ωs|S̃CA) = 1

xi = ωsf , if Pi(ωs|S̃CA) = 0
(3.4)

3.2.2 Downscaling driven by the LR historical snow pattern
persistence

This step of the method is used when the HR acquisition at time tξ is missing or not
reconstructed from the previous step, but we know the SCFLR,j. The estimation
of the HR snow distribution is done by downscaling SCFLR,j to the pixels xi in-
cluded in Xj following the method firstly proposed by Premier, Marin, Notarnicola
& Bruzzone (2021).
As shown in Fig. 3.4, given a LR scene acquired at the time tξ to be downscaled,
we consider the observed SCFLR for a generic pixel Xj. Hence, given an associated
HR TS we compute the CP conditioned to SCFHR:

Pi(ωs|SCFHR,j) =

∑P
p=0 x

p
i

P
, xi ⊂ Xj

(3.5)

where P is the number of LR pixels with same SCFHR. P should be greater than
a certain threshold TP to ensure statistical reliability. As for the gap-filling, we
define a similarity criterion between the SCFHR,j values to increase the number of
comparable pixels. For this reason, we quantize SCFHR in k steps with a fixed size
∆SCF,HR. The downscaling is performed when SCFHR,j is not available. SCFLR,j is
also quantized in k ∆SCF,LR. The use of ∆SCF,LR reduces possible errors in the SCF
retrieval (e.g., due to off-nadir viewing angle (Margulis et al. 2019)), since SCFLR
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Figure 3.5: Example of spatial correction of SCF. It is applied to a SCFLR,j (ob-
served or interpolated) when classified HR pixels within the considered pixel Xj are
available.

differences within the considered step do not affect the downscaling. However, when
SCFLR assumes values close to the lower and upper limits of the belonging interval
∆SCF,LR, inaccuracies can still be introduced. For this reason, we introduce an addi-
tional margin ε, such that ∆SCF,HR = ∆SCF,LR ± ε. For example, a ∆SCF,LR = 10%
and ε = 10% implies that a SCFLR which falls in the range 20-30% exploits a CP
computed for an interval between 10-40%.

Finally, we infer the presence or absence of snow for the pixel xi as follows:

xi = ωs, if

{
Pi(ωs|SCFLR,j) = 1

SCFLR,j = 1
, xi ⊂ Xj

xi = ωsf , if

{
Pi(ωs|SCFLR,j) = 0

SCFLR,j = 0
, xi ⊂ Xj

(3.6)

3.2.3 Spatial correction of SCF

This step aims at correcting errors in SCFLR by exploiting the HR information. In
particular, in the case when a part of the HR pixels included within the LR pixel are
labelled as ωs or ωsf , we can derive the minimum and maximum possible values of
SCFHR, namely SCFmin

HR and SCFmax
HR (see Fig. 3.5). These values are calculated

by assuming that the HR pixels classified as ωnd would all be labelled as ωsf or ωs,
respectively. Hence, for a LR pixel Xj the SCFLR,j should be between the minimum
and maximum of SCFHR,j, otherwise:

SCFLR,j =


SCFmin

HR,j if SCFLR,j < SCFmin
HR,j

SCFmax
HR,j if SCFLR,j > SCFmax

HR,j

SCFHR,j if SCFmin
HR,j = SCFmax

HR,j = SCFHR,j

(3.7)

Assuming that HR maps, even reconstructed, are more accurate than LR maps, Eq.
3.7 is applied to all the SCFLR,j, no matter whether observed or temporally inter-
polated, and every time new HR pixels are reconstructed by the proposed method
itself. This ensures consistent HR- and LR-TS outputs.
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3.2.4 Temporal interpolation of SCF

This step aims at reconstructing the daily SCFLR. This information is used by
the proposed method to recalculate the CP and perform a new reconstruction cy-
cle (historical block) exploiting the previous downscaling, gap-filling and correction
steps. Moreover, to reconstruct all the HR pixels even for the uncertain situations
without stable snow pattern persistence, the CP calculated given the SCFLR (eq.
3.5) and the estimation of the SCALR for the basin are used as input to the GAM.
To obtain a daily SCFLR, we propose to use a temporal interpolation. Several inter-
polation methods to perform gap-filling have been introduced in the snow literature
(e.g., López-Burgos et al. 2013, Dozier et al. 2008). For sake of simplicity, we make
the assumption that the SCF variation follows a linear trend, which is reasonable
especially in case of a smooth melting phase, but more complex interpolations can
be used. The effectiveness of this step depends on the time gap between the ob-
servations to interpolate. For this reason, a maximum gap is generally set in the
state-of-the-art snow interpolation methods (e.g., Parajka & Blöschl n.d.). In this
work, we do not specify a gap limit since we want to end up with a daily TS. In
order to cope with the possible errors that can be introduced by this operation,
we adopted the quantization strategy described in Section 3.2.2. In this way, the
downscaling is more robust when the variations of SCF are within ∆SCF,LR.

3.2.5 GAM based reconstruction

This step is applied to the partially reconstructed TS as final part of the proposed
method. The pixels labelled as ωnd in input to this step are uncertain as i) the his-
torical analyses highlighted an instability of the snow patterns given the observed
conditions; and ii) the SCFLR related to the snow situation at the considered time
and the relative CP may come from the temporal interpolation step described in the
previous section. For this reason, we propose to reinforce the computed CP from
the downscaling (Eq. 3.5) by including further proxy variables, representative of the
geomorphometry, the global snow cover conditions as well as the proximal spectral
properties of the considered pixels.

In detail, the components relevant to our analysis are:

• Digital Terrain Model (DTM) features that are related to geomorphometric
properties of the considered pixel. In detail:

– Elevation, which is strongly related to air temperature. Indeed, the eleva-
tion of the zero-degree isotherm controls the height at which the snowfall
occurs, but also the melting ratio differs based on the air temperature.
Accordingly, we expect a deeper and longer lasting snowpack with in-
creasing elevation.

– Slope, which is inversely correlated with the probability to have snow.
Flat terrain promotes the deposition of snow meanwhile steep terrains
are subjected to gravitational transport (Kerr et al. 2013). Since it is
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common to have higher slope at higher elevations, slope may invert the
trend of the probability to have snow above certain elevation values.

– Aspect, which is related to the solar radiation and hence to the energy that
is potentially available for the snowmelt. Snow disappearance patterns
are a consequence of spatial variation of longwave radiation (Schneider
et al. 2019)

• Multi-temporal features, i.e., the closest previous and next NDSI values, which
are linked to the spectral changes of a pixel related to the snow presence/absence;

• The SCALR that represents the estimated global snow cover situation over the
catchment. It is available after the interpolation step;

• The CP estimated through Eq. 3.5 as feature representative of the historical
information, which also includes the daily information (since they are linked
to the SCF observations).

It is worth noting that other features could be added to the ones listed above,
e.g., land cover type and forest density. A complex interrelationship between the
topography, the land cover and the snow patterns exists. Whether the presence of
forested areas strongly influences the snow deposition and melting processes, the
snow patterns controlled by the topography influence in turn the spatial vegetation
patterns (Tappeiner et al. 2001). However, the detection of snow under canopy is
not the scope of this chapter and requires deeper investigations.

To predict the snow distribution, we train a generalized additive model (GAM).
GAMs are also entitled interpretable machine learners and allow the user to directly
inspect modelled relationships in detail by interpreting partial dependence plots, i.e.,
the trends of the smoothing functions. The interpretability of a GAM is due to its
additive nature. GAMs, which generalize a logistic regression, are semi-parametric
models that can be used to fit a smooth curve through observed data (Hastie &
Tibshirani 1987). The probability to observe a pixel as snow can be derived as
follows:

g(P (ωs)) = α + f1(x1) + f2(x2) + ...+ fQ(xQ) (3.8)

where xi areQ independent features, g() is the link function that relates the predictor
variables to the estimated probability, α represents the intercept, and fi, i = 1, ..., Q
are non-parametric smoothing functions. The smoothing function fi is a combina-
tion of K spline functions bk(x) weighted by coefficients βk:

fi(x) =
K∑
k=0

bk(x)βk (3.9)

In a logistic GAM, the function logit is used as link function g. An important
parameter that controls the ”wiggliness” of the smoothing functions can be expressed
as:

wiggliness = λi

∫
[f ′′

i (x)]
2dx (3.10)
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where λi is the smoothing parameter relative to the feature xi. This parameter
controls the second derivative of the functions fi, i.e., the amount of smoothness we
want to impose on the model. Changing this parameter results in a change of the
degrees of freedom of the GAM.

The training of the model is performed by considering multi-temporal samples
collected over all the HR TS. Thus, a single GAM is used for predicting the class of
the missing HR pixels for each date. This choice, compared to perform a training of
the GAM for each date, has the main advantage of decreasing the computation time
and allows a more direct model interpretation. However, in the complex mountain
environment, an appropriate level of generalization and spatially transferable predic-
tions have to be ensured. For this research, model parameterization and validation
are based on a spatially explicit partitioning of the original dataset into five disjoint
training and test regions. The implementation of such a spatial cross validation
(SCV) procedure ensures the spatial transferability of the model, as well as higher
independence between the training and the test dataset (Schratz et al. 2019). For
this study, a grid-search over the smoothing penalties λi is performed for each of
the five subregions (i.e., folds). Within each subregion, this parameter is tuned by
means of an internal non-spatial generalized cross-validation (GCV) to select the
parameters of the model for each predictor (Wood 2017). After the parameter tun-
ing is done for a single subregion, the model is tested on the remaining ones. The
best model is chosen by evaluating:

• the overall accuracy OA = TP+TN
TP+FP+TN+FN

where TP are the true positive, TN
the true negative, FP the false positive and FN the false negative;

• the Brier score BS = 1
H

∑H
i=0(pi − oi)

2 where pi is the probability of the
prediction, oi is the binary outcome that we want to predict and H is the
number of training samples.

3.3 Dataset Description

To evaluate the performance of the proposed method, we applied it to the South
Fork watershed in California in the Sierra Nevada. The basin has an area of about
974 km2. The mean elevation of the catchment is 3067 m, ranging from a minimum
elevation of 1926 m up to a maximum elevation of 4146 m. This represents a high-
elevation Alpine catchment.

The inputs to the method are a long HR TS and a quasi-daily LR TS of the
period to be reconstructed. We used a HR TS of 352 scenes spanning over a period
of about 7 years from April 2013 to August 2020 (151 L8 and 201 S2 scenes). The
raw scenes were downloaded from https://earthexplorer.usgs.gov. Regarding
the LR scenes, we used MODIS daily data spanning three hydrological seasons from
October 2017 to August 2020, i.e., in detail the MOD02HKM product downloaded
from https://ladsweb.modaps.eosdis.nasa.gov.
The completely cloud covered images were removed after a visual inspection. Thus,
all the optical data were pre-processed to obtain calibrated Top of the Atmosphere
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Figure 3.6: Overview of the study area: a catchment located in the Sierra Nevada,
California. The DTM is represented on the right.

(ToA) reflectance values. All the bands were then re-projected, resampled and co-
registered to a consistent grid at a resolution of 25 m for HR and 500 m for LR.
The cloud mask is obtained for both HR and LR scenes by using an active learning
procedure based on a support vector machine (SVM) classifier (Tuia et al. 2016).
This allows to faster converge to the definition of the training set and to obtain
accurate classification results. We set up an interactive procedure by asking the
user either if the result is satisfactory or if the classification needs to be improved.
The classification of the HR scenes was done considering all the spectral bands ac-
quired by the sensors excluded the bands at 60 m for S2 (bands 1, 9 and 10) and
the panchromatic, cirrus and one of the thermal bands (bands 8, 9 and 11) for L8.
Regarding LR, we excluded band 5, which is corrupted due to a detection failure.
In all cases we added the normalized vegetation index (NDVI), NDSI, and the dif-
ference between the infrared and the SWIR bands, which have shown to introduce
benefits in the classification. Snow classification was done by using the algorithm
proposed by Dozier & Painter (2004) for HR, resulting in a binary map, and the
method proposed by Salomonson & Appel (2006) for LR, which results in a map
with SCF values ranging from 0 to 100%.

Regarding the GAM approach, we used the python package pyGAM for the im-
plementation of the model (Servén & Brummitt 2018). Particular attention was
devoted to the multi-temporal training of the GAM. We selected around 1000 ran-
dom samples from a set of around 150 HR scenes, whose cloud coverage was less
than 2%. Remaining cloudy pixels were excluded from the training set. We obtain
a total training set of around 150000 samples.
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Two independent datasets have been used for the validation. We considered nine
cloud-free HR data - three for each hydrological season - each made up of around
1.5 million pixels to be used for comparison with the obtained results. Moreover, we
used an independent dataset made of five 3 m resolution snow depth maps, measured
by the Airborne Snow Observatory (ASO), a coupled imaging spectrometer and
scanning lidar system developed at NASA/JPL (Painter 2018). To convert these
data to binary data with 25 m resolution, we resampled them by computing the
weighted averaging of all contributing pixels and we applied a threshold to the
snow depth classifying as ωs those pixels whose snow depth is at least 0.08 m and
as ωsf the remaining pixels. The threshold is selected according to the literature
(Notarnicola 2020, Zhang et al. 2019) and the sensitivity of the ASO Painter et al.
(2016). Furthermore, the performance of the two blocks, but the interpolation
step, several experiments were carried out. By considering the most cloud-free
scenes in our result evaluation, we did not investigate in detail the interpolation,
since interpolation techniques and temporal filters have been largely investigated in
literature.

3.4 Experimental Results

In this Section we present and discuss the results. In detail, we assess the per-
formance achieved by the historical block of the proposed method (gap-filling and
downscaling). Thus, we assess the performance of the GAM block that provides
complete output maps.

We summarize the parameters used in the historical block of the workflow as
shown in Table 3.1. The choice arises from the experimental sensitivity analyses
carried out in the next sections to understand the best trade-off between accuracy
and the amount of reconstruction. Note that these parameters are easily inter-
pretable and adaptable to other datasets as required by the user.

3.4.1 Results of the Gap-filling

An example of application of the gap-filling is shown in Fig. 3.7. The reference
presents a snow coverage of 100%. We apply an artificial cloud mask to elevations
between 2800 e 3300 m (see Fig. 3.7b). The observed partial snow cover is highly
informative and allows to infer the 79% of the cloud covered pixels. In the remaining
cloudy pixels, the historical analysis highlights variability of the snow patterns that
does not allow to determine the correct class. As it is possible to observe in the CP
map (see Fig. 3.7c), most of the pixels present a CP equal or close to 1. This may
indicate the presence of classification errors in the historical analysis. Hence, the
use of a less restrictive criterion on the CP thresholding could be applied in this case.

To assess quantitatively the performance of this step, we set up a general test
by considering 30 representative scenes with a cloud coverage less than 0.05% and
SCA spanning from 0 to 100%. We applied to each of the 30 cloud free scenes nine
different cloud masks with cloud percentage of 20, 30, 40, 50, 60, 70, 80, and 90%.
The cloud masks are randomly selected by the TS, to represent real situations. We
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Table 3.1: Values of the parameters used in the historical block selected through the
experimental sensitivity analysis.

Step Parameter Value Description
Gap-filling Tδ 15% Threshold on the

similarity δξ,η for
HR maps (see Eq.
3.2).

TS 10 Threshold on the
minimum number
of HR scenes S
considered for the
CP computation
(see Eq. 3.3).

Downscaling TP 10 Threshold on the
minimum number
of LR pixels P
considered for the
CP computation
(see Eq. 3.5).

∆SCFLR
10% SCF quantization

step for LR.
ε 10% Margin such

that ∆SCF,HR =
∆SCF,LR ± ε.

computed the CP (Eq. 3.3) for four different Tδ thresholds, i.e., 5-10-15-20%. TS

is fixed to 10 after the sensitivity analysis. For brevity and for similarity with the
results obtained for TP (see Sec. 3.4.2), the analysis is not reported in the chapter.

Fig. 3.8 shows the obtained OA versus different cloud cover percentages. The
results are accurate and stable for the different thresholds Tδ, with an OA higher
than 99.8%. This confirms that this step should be applied as first in our work-
flow. What varies is the percentage of the reconstructed pixels, which increases
by increasing Tδ from 5 to 15% and decreases for 20%. Choosing a small value
of Tδ implies a more selective criterion. Thus, it is possible that the minimum
number TS of required scenes with similar S̃CA is not satisfied. This explains the
increasing number of reconstructed pixels by increasing the similarity threshold Tδ.
Moreover, when the threshold becomes too big, the inverse trend is explained by
the increasing variability encountered, i.e., a larger number of analyzed scenes and
thus less pixels with CP equal to 0 and 1. In our experiment, Tδ = 15% returns the
best result being a good trade-off between statistical reliability and S̃CA variability.

However, it is worth stressing the fact that the results depend on the cloud
position and the partial observed snow cover. Let us consider the artificial example
of Fig. 3.9, where a cloud mask is applied to elevations lower than 2800 m. In
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Figure 3.7: Example of the application of the gap-filling step to infer the snow pres-
ence conditioned by the partial cloud-free SCA: (a) reference image, (b) artificial
cloud mask before the cloud filling procedure applied to elevations between 2800 e
3300 m, (c) conditional probability map, and (d) results after the gap-filling proce-
dure.

Figure 3.8: Performances achieved by the gap-filling step. The plot shows the
overall accuracy (OA) (solid lines –) and the reconstructed pixels (dashed lines
- -) for variable cloud masks and variable Tδ thresholds. The percentage of the
reconstructed pixels is calculated w.r.t. the cloud covered area. TS = 10 is used.
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Figure 3.9: Example of the application of the gap-filling step to infer the snow
presence conditioned by the partial cloud-free SCA: (a) reference image, (b) artificial
cloud mask before the cloud filling procedure applied to elevations lower than 2800
m, (c) conditional probability map, and (d) results after the gap-filling procedure.

this case, the gap-filling allows the reconstruction of only 4% of the total cloud
area (see Fig. 3.9a). Indeed, the analysis of the historical time series does not lead
to a reconstruction as shown in Fig. 3.9c. The high variability in the CP values
means that the considered S̃CA can be observed both for completely snow covered
catchment as well as for a partial coverage. However, a method based on the snow
line altitude (e.g., Gafurov & Bárdossy 2009, Da Ronco & De Michele 2014, Parajka
et al. 2010) would have failed to reconstruct even those pixels.

3.4.2 Results of the Downscaling

In Fig. 3.10 we present an example to illustrate how the downscaling approach
works. In details, on the left the SCFLR map that is used as input to the down-
scaling is shown. The computed CPs are shown in the center. Only the pixels with
CP equal to 0 or 1 are directly replaced with the class ωsf or ωs, respectively. The
resulting map is shown on the right. We downscale the 62% of the image. It is in-
teresting to note that the remaining unlabelled pixels are located mostly on melting
areas as for example intermediate elevations. It is possible to recognize similarities
between the snow patterns and the geomorphometry (see Fig. 3.7c). Also in this
case a less restrictive criterion on the CP thresholding could be applied to increase
the number of reconstructed pixels.

To better assess the performance of the downscaling, we analyze a LR TS com-
posed of 956 scenes acquired from October 2017 to August 2020. We split the TS
in four groups, depending on the scan angle θ (considered here as a mean value over
the scene, given the small variations inside the area of the catchment), to test how
much the off-nadir view affects the SCF detection (Dozier et al. 2008). In fact, for
whiskbroom scanning spectrometers with large swath, such as MODIS, pixels near
the edge of the swath present severe distortions i.e., the so-called “bow-tie effect”
(Sayer et al. 2015). To test the performance, we consider those LR scenes acquired
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Figure 3.10: Example of the application of the proposed reconstruction step to
downscale the SCF: (a) SCF map to be downscaled, (b) conditional probability
map, and (c) map downscaled with the proposed method.

at the same time of a HR scene that is need as reference (see Table 3.2).

Table 3.2: Overview of the scenes considered for the evaluation of the downscaling
step considering the different acquisition scanning angles.

Scan Angle Total LR scenes HR Reference
θ ≤ 20 171 30

20 < θ ≤ 40 248 44
40< θ ≤ 50 206 34

θ > 50 331 97

Hence, we compute the OA of the partially reconstructed scenes w.r.t. the orig-
inal HR scenes and the percentage of reconstructed pixels for different scan angles.
We select the best parameters among several possible combinations. However, for
illustration purposes we present only the results by fixing two of the thresholds and
varying the other one. In details, the results are reported in Figure 3.11 versus:
a) different ∆SCF,HR considering regular steps equal to 5-10-20-33.3-50-100%, with
TP = 10 and ε = 0%, b) different TP (0-5-10-15-20) with fixed ∆SCF,HR = 10%
and ε = 0% (i.e., ∆SCF,HR = ∆SCF,LR), and c) different ε 0-2-5-10-15-20% with
∆SCF,HR = 10% and TP = 10. Note that the percentage of reconstructed pixels is
calculate w.r.t. the pixels which can be potentially reconstructed, i.e., the total pix-
els do not consider those having cloudy LR (no SCF to perform the reconstruction)
and HR clouds (no reference pixel to compute the accuracy).

In general, we can notice a decreasing OA with increasing scan angle. Nonethe-
less, the performances of the proposed downscaling approach justify the use of
MODIS scenes even for large scanning angles since we can benefit of an observation
as guide for the reconstruction.

In detail, Fig. 3.11a shows that OA initially decreases with an increasing ∆SCF,HR

for all the scan angles, except for ∆SCF,HR = 100%. This value represents a special
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Figure 3.11: Sensitivity analysis for the downscaling step. OA (solid line –) and the
percentage of reconstructed pixels (dashed line - -) for: (a) different discretization
steps ∆SCF,HR, (b) different thresold values TP for the number of considered pixels,
and (c) different buffer size ε for the CP computation (see Eq. 3.5). The trends are
shown for different scan angles θ.

case, i.e., pixels reconstructed by directly replacing SCFLR equal to 0 or 100% (see
Eq. 3.6). Indeed, CPs are never 0 or 1 for ∆SCF,HR = 100% (i.e., no pixels are
always classified as ωs or ωsf ). The results show that the accuracy obtained for
these specific pixels is comparable with the proper downscaling.

By analyzing the first part of the plot, we can deduce that slight variations of OA
versus ∆SCF,HR are due to the trade-off between representativeness and variability.
A lower ∆SCF,HR implies a smaller number of pixels with that specific SCF. Due
to the threshold TP to ensure statistical reliability, for very small ∆SCF,HR we are
reconstructing only few pixels but with a good precision, if the observed SCF is
correct. On the other hand, the variability encountered decreases and we can fill in
more gaps. The higher ∆SCF,HR, the higher the variability, and this is the reason
why we are reconstructing less pixels even though TP is increasing. Thus we have
decreasing OA by increasing ∆SCF,HR. The choice of the best ∆SC,HRF results from
a trade-off between OA and reconstructed pixels. Setting ∆SCF,HR = 10% results
as a good trade-off maximizing the reconstructed pixels without significant losses of
OA.

Fig. 3.11b, which shows the results for different thresholds TP , points out that
10 is a good trade-off between OA and the number of reconstructed pixels.

As last parameter we tested ε, which also plays a role on the representativeness
and variability, as shown in Fig. 3.11c. The greater ε, the greater the number of
occurrences, the greater the variability and hence the number of pixels with CP
between 0 and 1. We use ε = 10%, since the performances are very similar to
ε = 5% but we increase the statistical reliability of the method.

However, we can notice that a slightly different choice of these parameters does
not strongly affect the final results, since we can see in the figures that they are
quite stable and the method always returns high accuracies.

To understand the main source of errors of the downscaling step, Fig. 3.12 shows
the trend of OA over time for the LR dataset with θ ≤ 20 together with the root
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Figure 3.12: Overall accuracy (OA) of the proposed downscaling and SCFLR RMSE
trends for the LR dataset with θ ≤ 20. RMSE is calculated between SCFLR and
SCFHR. ∆SCF,HR = 10%, TP = 10 and ε = 10% are chosen.

means square error (RMSE) of the retrieved SCFLR and SCFHR. As one can notice,
high RMSE is associated with low OA of the downscaling, confirming that errors
present in the SCFLR are propagated by the method. These errors are introduced
in the SCF due to the application of a global retrieval method that does not count
for variations in grain size, solar zenith angle, viewing angle, and atmospheric effects
(Salomonson & Appel 2006). For these reasons, the use of ∆SCF,LR introduces the
benefit that retrieval errors of SCFLR do not affect the downscaling when these are
within ∆SCF,LR. Moreover, this explains the need to progressively correct the SCF
values with HR observed or reconstructed pixels.

3.4.3 Results of the GAM

We present in this section the results not only in terms of performance of the step,
but also in terms of variable behaviour. In fact, the relationship between the features
list in Section 3.2.5 and the target variable can be analyzed by plotting the partial
dependence functions. We expect a linear increasing trend of the probability to
observe ωs both with SCALR and the CP. For this reason and to ensure model
generalization, we forced these features to be represented by a linear term instead of
a combination of spline functions. The importance of the CP is very high and it can
be understood by looking at the effect that the feature has on the predicted outcome
(see Fig. 3.13). Regarding the other features there is an increasing probability
to have snow by increasing elevation. With slope we observe instead an inverse
correlation, since steep terrains are more subjected to gravitational transport. For
the aspect variable, we split its contribute in two features: the ”northness”, i.e., the
cosine of the aspect, and the ”eastness”, i.e., the sine of the aspect. We observe
a stable trend, meaning that the aspect is irrelevant for the prediction. This can
happen when other variables already explain part of the associated data variability
of a feature. As expected, the geomorphometric features are embedded in the CP
and they loose relevance when this feature is added to the model. The NDSI trends
appear plausible, showing higher probability in case of higher indices.

Table 3.3 reports the smoothing parameters used in the implementation. These
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parameters are chosen after computing the SCV by evaluating different metrics and
result in an OA of 97.83% and a BS of 0.0034.

Table 3.3: Smoothing parameters used for the GAM reconstruction.

Parameter Value Feature Term
λ1 5659.72 f1 =SCA Linear
λ2 8514.25 f2 =elevation Spline (20 splines, order=3)
λ3 3650.07 f3 =slope Spline (20 splines, order=3)
λ4 5464.47 f4 =northness Spline (20 splines, order=3)
λ5 2325.85 f5 =eastness Spline (20 splines, order=3)
λ6 3627.94 f5 =NDSIt−1 Spline (20 splines, order=3)
λ7 5170.45 f7 =NDSIt+1 Spline (20 splines, order=3)
λ8 1.04 f8 =CP Linear

Let us now analyze the performances of three slightly different reconstruction
approaches for 20 dates almost cloud-free with variable SCA. The three reconstruc-
tions applied here are: i) standalone history, i.e., reconstruction with the historical
block (gap-filling - downscaling - correction) and application of a threshold (0.5) to
the CP resulting from the downscaling step to decide whether the label of a pixel
should be ωs or ωsf ; ii) standalone GAM, i.e., reconstruction fully completed by the
GAM trained on the CP resulting from the historical block, but the labels of those
pixels with CP=0 or CP=1 are not directly replaced; iii) the proposed method, i.e.,
the pixels with CP=0 or CP=1 are replaced with the corresponding labels, while
the remaining pixels are reconstructed by the GAM. We have for these dates both
HR and LR acquisitions. Remaining unlabelled pixels are not considered in the val-
idation scheme. These 20 dates are also excluded by the training set for the GAM,

Figure 3.13: Partial dependence plots for the features used for the GAM model,
i.e., elevation, slope and aspect. The blue continuous lines represent the smoothing
functions and the red dashed lines represent the 95% confidence intervals. The y-
axes have been fixed to the scale of the CP (P (ωs|SCF ) which is the feature that
shows the largest predicted outcome.
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Figure 3.14: Performances achieved by three considered reconstruction approaches:
i) standalone history, i.e., reconstruction with the historical block and application
of a threshold (0.5) to the CP; ii) standalone GAM, i.e., GAM trained on all the
CPs resulting from the historical block (also when equal to 0 or 1) without direct
reconstruction in the historical block; iii) the proposed method, i.e., reconstruction
with the historical block and, later, with GAM.

to ensure an independent validation set. This test also serves as evaluation of the
GAM performances. The results are presented in Fig. 3.14. We achieve for the
three tested methods a mean OA of 90.74, 91.94 and 92.19%, respectively.

What is clear from the plot is that the history is highly informative. Indeed, the
accuracy achieved by the standalone history is getting in the worst case an OA of
84%. The proposed method, that exploits also explicit auxiliary features in addition
to the history, is improving the results of about 1.5%. Interestingly, the application
of the standalone GAM is producing results with comparable accuracy. This result
also confirm that the GAM is driven by the CP being the historical patterns the
most important information, no matter if it is kept separated or it is embedded
in a ML method. However, when using the standalone GAM, it is not possible to
explicitly separate the two-level outputs that present different reliability, as we will
see in detail in the next section. Indeed, keeping these two blocks separated allows
the user to easily identify which pixels are subjected to the highest uncertainty and
therefore, to select the most suitable output depending on the final application.

3.4.4 Results of the Full Proposed Method

We present here the results by applying the proposed daily HR reconstruction frame-
work to three complete hydrological seasons spanning from the 1st of October 2017
to the 31st of August 2020. We selected among the most cloud-free scenes, nine HR
images acquired at three different days. These dates are used to evaluate the final
results and are not used as input to the proposed method. Furthermore we tested
five dates against an independent validation dataset (see Table 3.4 and Fig. 3.15).
The validation against the HR images resulted in an average OA of 96.97% after
applying the historical block (note that SCFLR is observed and not interpolated
for these specific dates) with a mean reconstruction percentage of 75.52%. After
the completion of the workflow, i.e., after the GAM, the method shows an OA of
92.26% with all the pixels reconstructed. Similarly, we get an OA of 94.90% when

69



evaluating against the ASO dataset for the historical block, with 85.36% of pixels
reconstructed and a final OA of 92.27%.

Table 3.4: Results in terms of OA [%], confusion matrix (CM) and reconstructed
pixels obtained by the different blocks of the proposed method on nine dates (three
for each hydrological season) evaluated against selected HR scene and five dates
evaluated against the ASO dataset. The CM reports the TP, FP, TN and FN
(clockwise from the upper left), normalized by row.

Historical Block GAM Block
Date OA [%] CM [%] REC [%] OA [%] CM [%]

H
R

re
fe
re

n
c
e

12.01.18 91.90
90.29 9.71

79.62 89.23
88.95 11.05

1.36 98.64 9.83 90.17

17.05.18 95.47
91.11 8.89

75.90 90.26
84.29 15.71

0.63 99.37 3.65 96.35

11.06.18 98.62
93.51 6.49

82.68 94.90
86.48 13.52

1.09 98.91 3.75 96.25

17.04.19 98.83
99.55 0.45

85.21 95.14
99.08 0.92

9.19 90.81 31.91 68.09

11.06.19 95.09
94.17 5.83

74.98 90.17
92.07 7.93

3.38 96.62 12.95 87.05

11.07.19 98.27
94.62 5.38

79.97 93.98
87.27 12.73

1.34 98.66 4.50 95.50

01.02.20 98.57
99.25 0.75

63.94 91.83
96.41 3.59

10.39 89.61 32.01 67.99

23.05.20 97.26
93.01 6.99

56.79 90.54
85.15 14.85

0.64 99.36 5.18 94.82

08.06.20 98.77
89.12 10.88

80.57 94.27
79.75 20.25

1.00 99.00 3.83 96.17

A
S
O

re
fe
re

n
c
e

23.04.18 95.14
97.29 2.71

81.56 89.49
96.38 3.62

10.52 89.48 26.38 73.62

01.06.18 91.47
96.69 3.31

100.00 91.47
96.69 3.31

10.81 89.19 10.81 89.19

17.03.19 98.05
98.13 1.87

68.96 94.47
95.20 4.80

22.93 77.07 36.45 63.55

02.05.19 94.97
98.72 1.28

100.00 94.97
98.72 1.28

19.67 80.33 19.67 80.33

14.07.19 94.85
96.68 3.32

76.27 90.96
94.61 5.39

5.24 94.76 9.67 90.33

It has to be taken into account that two dates of the ASO acquisition, i.e.,
the 1st of June 2018 and 2nd of May 2019, are acquired in correspondence of a HR
acquisition. We keep on purpose the HR scenes in the workflow, so the reconstruction
is not performed for those scenes. What we can see is that the performances of
the method are similar to the OA computed for the HR scenes, showing that i)
HR images are accurate but they can still be affected by small errors, and ii) the
assumption made in the workflow that the output of the historical block can be
considered reliable is fulfilled.

Fig. 3.15 presents the false-color composition (R:SWIR,G:NIR,B:RED), and the
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results in terms of true positive (TP), true negative (TN), false positive (FP) and
false negative (FN) before the GAM (partially reconstructed HR scene) and after
the GAM. The OA is higher than 97% for the reconstruction performed before the
GAM. It decreases after the application of the GAM, but it is still around 92% in the
worst case. The errors introduced after the GAM are mainly located on the ridges
of the mountains, which are erroneously classified as ωs. Other errors are located in
the transition zones, where the melting occurs (see for example 11/07/2019, orange
spots highlighting FN). These are errors due to the lack of information about the
local snow situation (both in time and space). In other words, as expected, the
historical, the time-proximal and the geomorphometric information are not enough
to describe snow distribution processes that are mainly related to specific meteoro-
logical conditions.

It is interesting to observe that in average we start with around 17% of labelled
HR pixels. After the historical block the average number is around 61%, meaning
that the presence of LR data together with the gap-filling procedure allows the re-
construction of more than half of the TS but there are still consistent gaps. After
the interpolation, the second repetition of the historical block results in the 83% of
reconstructed pixels and consequently, a relative small percentage is assigned to the
GAM. Finally, of course, after the GAM 100% of the pixels are labelled.

Fig. 3.16 compares the reconstructed daily SCA trends derived by the proposed
framework and the ones derived using only the observations from the HR and LR
TS. We represent the partial SCA as well as the amount of clouds. Furthermore, we
present the snow water equivalent (SWE) measured at the station Volcanic Knob
(see Fig. 3.6). The SWE observations (see Fig. 3.16c-f-i) are useful to understand
when the main snowfalls occured, even though a perfect temporal correspondence
cannot be found since the station is located at a lower quote than the average altitude
of the basin. As we can see in the plots a-d-g of the Fig. 3.16, the temporal resolution
of the HR TS is not suited for a proper monitoring of the SCA. The presence of
large gaps would not lead to a complete SCA reconstruction even by applying the
state-of-the-art methods as a multi-temporal filter. On the other hand, the LR TS
(see Fig. 3.16b-e-h) better captures the SCA variations but still suffers from cloud
obstruction that strongly limits its usability. If the sampling time is not appropriate
for catching quick events of snow-falling and melting, the interpolation could lead
to wrong results. Nonetheless, the reconstructed TS introduces the big advantage
of a higher spatial detail.

The technique was run on a 2.6 GHz CPU without parallelization with 30 GB
RAM. The analyzed catchment in Sierra Nevada made up of 1860x1580 pixels, with
a total number of 1516262 pixels that are not masked (e.g., lakes are masked). The
total running time was about 4.5 hours for each analyzed hydrological season. The
approach can be scaled on bigger catchments by applying it in parallel to all the
sub-catchments.
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Figure 3.15: False color composition (R:SWIR,G:NIR,B:RED) (a-d) and reference
map (g) for three reconstructed dates. Results before (b-e-h) and after applying
the GAM (c-f-i) in terms of overall accuracy (OA) and reconstructed pixels (REC).
True positive (TP) in dark green, true negative (TN) in light green, false positive
(FP) in red, false negative (FN) in orange, and no data in white.

72



Figure 3.16: SCA trends and measured SWE at the Volcanic Knob station for
the hydrological seasons 2017-18 (a-b-c), 2018-19 (d-e-f) and 2019-20 (g-h-i). The
reconstructed SCA is compared with the SCA observations from the HR (a-d-g)
and LR acquisitions (b-e-h), with relative SCA (orange dots) and cloud percentage
(vertical olive line). The validation dates are also indicated with a black x.
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3.5 Discussion

In this section we discuss the main outcomes of the presented method.

A main point of interest of the proposed method is its division in two main blocks.
The first block, namely the historical block (gap-filling, downscaling and correction)
aims at extracting the snow patterns by deriving the CP to observe a pixel as snow
given an observation that is representative of the date to be reconstructed. As we
have shown in the results, it allows to obtain high accuracy but the reconstructed
TS still contains gaps. For this reason, the reconstruction performed through the
historical block is particularly suited for users that need very accurate results but
not necessarily at a daily base, e.g., for data assimilation. This historical block
is repeated a second time after the SCF is temporally interpolated. By exploiting
the temporal correlation of the snow cover, this step allows to obtain a daily SCF
TS with an accuracy that depends at the first instance on the duration of the gap.
Finally, we obtain a daily HR TS by applying the second block, namely the GAM
block, that makes use of proxy variables related to the accumulation and melting
processes to infer the snow condition. The complete output is designed for users who
need a daily reconstruction, or for catchments that are affected by cloud obstruc-
tion only for limited periods. The daily TS has shown to be still an accurate product.

Interestingly, we have seen that the exploitation of the history directly in the
GAM block returns similar results. This is due to the high importance of the CP
used as feature in input to the classifier. However, differently from the proposed
method the use of the standalone GAM requires dedicated strategy to allow the
separation of the results in terms of uncertainty.

A specific sensitivity analysis has been carried out for the parameters used in
the historical block. We have seen that a different choice of these parameters does
not strongly affect the final results. Moreover, they can intuitively be modified ac-
cordingly to the user needs.

We discussed the sources of errors, finding that the erroneous SCF values re-
trieved from the LR data is the most critical one. Another important limiting factor
is represented by the cloud duration that could negatively affect the results of the
interpolation step. The proposed method tries to cope with this sources of error
by considering quantized SCF steps rather than the exact value. Furthermore, our
approach relies more on the HR information trying to correct possible errors intro-
duced by the SCF retrieval.

The resulted SCA of the basin represented a very informative and accurate in-
formation with higher temporal and spatial coverage than the original HR dataset.
We have presented the final SCA trends for three hydrological seasons, highlighting
that the raw input TS would have not been appropriate for hydrological purposes,
data assimilation in physically-based models or model evaluation. The produced
daily HR TS has shown to be able to capture snowfalls and melting periods when
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qualitatively compared with the observations of a weather station. Hence, the out-
put of this method represents an important asset for further applications.

The CPs have been used to define the pixels that show similar response under
certain conditions, i.e., with CP equal to 0 or 1, and the pixels subjected to vari-
able conditions, i.e., with CP included between 0 and 1. The first could be further
exploited for other applications. For example, the design of the hydrological re-
sponse units (HRU) could benefit of these information. The latter suffers of weak
information to determine the reconstruction, as in transition zones where changes
are happening as accumulation or melting. Interestingly, they also represent the
most important points to monitor and the knowledge of the areas that show the
highest variability can be relevant for planning a strategic network of meteorological
stations. In case auxiliary meteorological observations cannot be collected, a data
assimilation scheme should be exploited: from one side, the high-quality observa-
tions provided by the proposed method can improve the model, and from the other
side, the model could provide important information in the most uncertain areas.
Therefore, we believe that this work can be a starting point for further integrations
between meteorological/hydrological models and RS.

3.6 Conclusion

In this work we have presented a method to infer the daily snow cover at high spatial
resolution at a catchment scale. It exploits the physically based concept that we can
observe some systematic patterns in the snow cover distribution, which are regularly
repeating as they are related to the geomorphometry and the meteorology of the
considered area. The proposed approach is based on a hierarchical structure that
exploits all available daily sources of information, starting from the HR snow cover
if available. It takes as input classified snow cover maps (binary classification for
HR and SCF for LR) and processed data in five different steps: i) gap-filling, based
on a historical statistical analysis conditioned by the historical HR snow pattern
persistence, ii) downscaling, based on a historical statistical analysis conditioned
by the LR historical snow pattern persistence, iii) spatial correction of SCF, iv)
temporal interpolation of SCF, and v) GAM based snow reconstruction.

We tested the proposed approach on three hydrological seasons from October
2017 to August 2020 over a watershed in the Sierra Nevada by using HR snow maps
derived by S2 and L8, as well as LR SCF maps derived by MODIS. The final daily
HR maps have been evaluated against an independent multi-temporal dataset, show-
ing an OA around 97% for the historical block with a percentage of reconstructed
pixels around 76% and an OA around 92% after the GAM block. Hence, the partial
outputs after the historical block present accuracy similar to the maps classified by
means of the multi-spectral information.

75



Acknowledgements

This work was supported by the European Space Agency (ESA) under the Alpine
Regional Initiative AlpSnow EXPRO+ Contract No. 4000132770/20/I-NB.
We also would like to thank the NASA Airborne Snow Observatory (ASO) for
providing free-of-charge data.

76



Chapter 4

Exploring the Use of Multi-source
High-Resolution Satellite Data for
Snow Water Equivalent
Reconstruction over Mountainous
Catchments

Seasonal snow accumulation and release are so crucial for the hydrological cycle to
the point that mountains have been claimed as the ”water towers” of the world. A
key variable in this sense is the snow water equivalent (SWE). However, the complex
accumulation and snow redistribution processes render its quantification and predic-
tion very challenging. In this chapter1, we explore the use of multi-source data to
reconstruct SWE at a high spatial resolution (HR) of 25 m by proposing a novel
approach designed for mountainous catchments. To this purpose, we exploit i) daily
HR time-series of snow cover area (SCA) derived by high- and low-resolution op-
tical images to define the days of snow presence, ii) a degree-day model driven by
in-situ temperature to determine the potential melting, and iii) in-situ snow depth
and Synthetic Aperture Radar (SAR) images to determine the state of the catch-
ment (i.e., accumulation or ablation) that is needed to add or remove SWE to the
reconstruction. Given the typical high spatial heterogeneity of snow in mountainous
areas, HR data sample more adequately its distribution thus resulting in a highly
detailed spatialized information that represents an important novelty. The proposed
SWE reconstruction approach also foresees a novel SCA time-series regularization
from impossible transitions, i.e. the change of the pixel class from snow to snow-
free when it is supposed to be subjected to an accumulation event or, the other way
round, the change from snow-free to snow during a melting event. Moreover it
reconstructs SWE for all the hydrological season without the need of spatialized pre-
cipitation information as input, that is usually affected by uncertainty. Despite the

1This chapter has been submitted in:
Premier, V., Marin, C., Bertoldi, G., Barella, R., Notarnicola, C. Bruzzone, L. (2022), ‘Exploring
the Use of Multi-source High-Resolution Satellite Data for Snow Water Equivalent Reconstruction
over Mountainous Catchments’, The Cryosphere
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simple approach based on a set of empirical assumptions, it shows good performances
when tested in two different catchments: the South Fork catchment, California, and
the Schnals catchment, Italy, showing a good agreement with an average bias of -40
mm when evaluated against a HR spatialized reference product and of 38 mm when
evaluated against manual measurements. The main sources of error introduced by
each step of the method have been finally discussed to provide insights about the ap-
plicability and future improvements of the method that may be of great interest for
several hydrological and ecological applications.

4.1 Introduction

Seasonal snow accumulation and melting are of crucial importance for the hydro-
logical cycle and the total water supply. Especially in mountainous areas, the snow
has such a large impact on the local hydrology that mountains have been claimed
to be “the water towers of the world” (Immerzeel et al. 2020). For example, in the
Alps the snowmelt contribution to the streamflow ranges from at least 50% of the
total flow to sometimes over 95% (Viviroli et al. 2003). Hence, it is essential to
estimate the amount of water stored during the winter not only for river discharge
forecasting but also for a correct planning of human activities such as agriculture
irrigation, drinking water supply and hydropower production (Beniston et al. 2018,
DeWalle & Rango 2008b). However, especially in mountain regions, snow distribu-
tion is highly variable in space due to redistribution processes (Balk & Elder 2000)
and precipitation observations are often affected by large errors due to orographic
effects (Prein & Gobiet 2017). This also limits the spatial accuracy of snow accu-
mulation and melt models (Engel et al. 2017, Günther et al. 2019). In this context,
given the difficulty to dispose of spatialized and continuous observations especially
in remote areas (Rees 2005), remote sensing (RS) has shown to be a valuable tool
for snow hydrology, .

A spatial characterization of the snow properties requires both information about
the extent of the snow cover, i.e., the snow cover area (SCA), and appropriate snow-
pack information. A key variable is the snow water equivalent (SWE), i.e., the
total amount of water stored in the snowpack that would be released upon complete
melting. While a long list of methods for SCA detection that exploit multi-spectral
optical satellites is available in the literature (see Dietz et al. (2012) for a review),
we do not have operational methods to directly map SWE with high spatial reso-
lution (HR). Direct SWE observations are limited to point measurements through
manual sampling, snow scales or snow pillows (Archer & Stewart 1995, Meløysund
et al. 2007), or with a limited spatial footprint (∼ 500 m) as cosmic-ray neutron
probes (Schattan et al. 2019). Spatialized snow depth (HS) information can be pro-
vided by differential lidar altimetry (Painter et al. 2016) or stereo photogrammetry
(Deschamps-Berger et al. 2020). Currently, these methods can be applied only to
limited areas and with a low temporal sampling. Moreover, to derive SWE from HS
additional a priori information is needed to infer the snow density (Helfricht et al.
2018). Physically-based snow models represent a valid alternative (e.g., Lehning
et al. 2006, Vionnet et al. 2012, Endrizzi et al. 2014) that can provide HR SWE
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information on large areas. However, their accuracy is strongly limited by the avail-
ability of meteorological observations and by the gravitational and wind-induced
snow redistribution processes (Jost et al. 2007, Mott et al. 2018).

Active and passive microwave sensors can potentially provide information about
the snowpack. In particular, passive microwave sensors have been used to retrieve
long time-series of SWE by exploiting the correlation between the brightness temper-
ature and the SWE (Pulliainen et al. 2020). However, the observations are limited
by a poor spatial resolution (i.e., 25 km) and mountain areas are excluded. The use
of active microwave sensors such as Synthetic Aperture Radars (SAR) has also been
investigated for the HR retrieval of SWE (Shi et al. 1994, Baghdadi et al. 1997, Ulaby
et al. 1981, Rott et al. 2010) and differential SWE (Guneriussen et al. 2001, Leinss
et al. 2015). Despite the better spatial resolution also active microwave sensors suffer
for the complexity of non-linear effects introduced on the total backscattering, such
as snow layering, surface roughness, snow density, grain type and size which in turn
are all affected by the complex snow metamorphism and change in time. Moreover,
all these techniques work only in dry conditions while the scarce penetration of the
electromagnetic signal in wet conditions is invalidating their applicability in mon-
itoring the SWE evolution during the melting season. Several review articles are
available for more details about SWE retrieval using SAR acquisitions (e.g., Tsang
et al. 2021).

Even though SAR is still far from providing unambiguous information on SWE
for all situations, it represents a promising tool to monitor the melting phases of
the snowpack, i.e., the moistening, ripening and runoff phases or in other words, the
presence of liquid water inside the snowpack and its evolution (Marin et al. 2020).
If combined with optical data, the runoff onset, i.e., the time when SWE reaches its
maximum, does add value to the well known concept of the snow depletion curves
(SDC). SDC are functions that describe the relationship between SCA and HS or
SWE (Cline et al. 1998). Thus, time-series of SCA maps can be used to provide
an indirect measurement of SWE (Yang et al. 2022). Indeed, SWE is a function of
the duration of the snow cover, which intrinsically considers the energy exchanges
responsible of the melting process (Durand et al. 2008). For example, a shallow
snowpack and high melt rates are associated with a SDC with high derivative while a
deep snowpack and low melt rates are characterized by a longer curve. Consequently,
spatial accumulation and melt variability, which are linked to the geomorphology of
the study area (Anderton et al. 2002), result in different snowpack persistence (Luce
et al. 1998). Therefore, by knowing the SDC and the maximum of SWE at the end
of the accumulation for an area or an entire catchment, it is possible to derive the
evolution of SWE during the melting. This intuitive idea opens the possibility to
assimilate SCA and SDC into physically based snow models to correct the SWE
evolution and improve the simulations (Arsenault & Houser 2018).

In fact, another way to exploit the SDC for SWE estimation is the combina-
tion with distributed snowmelt models to reconstruct SWE time-series in re-analysis
(Martinec & Rango 1981, Molotch & Margulis 2008, Rittger et al. 2016). Differently
from the methods that require to know the precipitations and the meteorological
forces that redistribute the snowpack during the accumulation, SWE reconstruc-
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tion builds the SWE time-series backward from the last day of snow presence up to
the peak of accumulation by exploiting the estimation of the potential melt energy
and the knowledge about the presence of snow cover, simplifying in this way the
problem. SWE reconstruction approaches show good performances over large basin
and even mountain ranges, outperforming the accuracy provided by snow models
or spatial interpolation approaches of in-situ SWE measurements (Bair et al. 2016).
Nevertheless, the accuracy of the results depends on a robust estimation of both
the SCA and the melt energy. For this purpose, several methods have been pro-
posed for the computation of the potential melt energy that range from a simple yet
robust degree day (DD) model (Martinec & Rango 1981) to a complete radiation
energy computation that takes into account also the snow albedo (Bair et al. 2016).
These models generally consider a calibration factor that balances out the possi-
ble inaccuracies providing accurate results. Furthermore, the derivation of the HR
SCA is hampered by the cloud presence (e.g., Premier, Marin, Steger, Notarnicola
& Bruzzone 2021). In this regards the works presented in the literature exploited
only low-resolution (LR) images since the large swath allows a high repetition time,
i.e., with daily or sub-daily acquisitions, mitigating in this way cloud obstruction.
However, the LR images are not providing the spatial details, in the Shannon sense,
that allow a proper sampling of the snow cover evolution in the mountains, which
is in the order of few dozen of meters. Moreover, the use of LR sensors results in
a non-linear combination of the different contributions of the elements within the
pixel and this should be properly taken into account by the snow classification ap-
proaches to avoid large errors especially in complex terrains. On the other hand,
the use of HR snow maps introduces important benefits both in SWE determination
as well as in streamflow forecasting (Li, Lettenmaier, Margulis & Andreadis 2019).
With the introduction of the Copernicus Sentinel-2 (S2) mission, the HR images are
made available free of charge with a temporal resolution at the equator of 5 days.
This opens new opportunities to monitor the heterogeneous snow conditions in the
mountains. However, due to the cloud coverage, the useful acquisitions are reduced
by 50% in the Alps (Parajka & Blöschl 2006). Thus, even if the Landsat images are
exploited together with the S2 images, only few acquisitions are available per month.
In this sense, data assimilation of remote sensing products in models may represents
an added value (e.g., Margulis et al. 2016). Recently we proposed an approach to the
reconstruction of daily HR snow cover maps. The approach performs a gap-filling
and a downscaling of snow cover fraction (SCF) maps derived at LR based on the
idea that melting and accumulation patterns are repeating inter-annually (Premier,
Marin, Steger, Notarnicola & Bruzzone 2021, Revuelto et al. 2021). Therefore, by
observing partial HR or LR acquisitions it is possible to reconstruct a daily HR snow
cover.

In this chapter we explore multi-source satellite data to reconstruct HR SWE for
a given catchment. The approach exploits: i) daily HR snow cover time-series de-
rived by fusion of high- and low-resolution optical sensors to determine the dates of
snow appearance and disappearance, ii) potential melting derived by in-situ temper-
ature observations with a degree day (DD) model, iii) in-situ SD/SWE observations
to determine the accumulation state, and iv) SAR information to determine the ab-
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lation state. In detail, the method starts with the determination of the catchment
state, i.e. accumulation (SWE increase) or ablation (SWE decrease). According to
the state, that is assumed to be homogeneous for all the pixels of the catchment, we
regularize the HR SCA time-series from impossible transitions to correctly estimate
the dates of snow appearance and disappearance for each pixel. This simplificative
assumption is a consequence of technological limitations in spatializing this infor-
mation. The state information is needed together with the potential melting to
reconstruct the daily HR SWE maps with a resolution of 25 m by adding or re-
moving SWE according to the catchment state. Note that the reconstruction also
includes the accumulation phase without the need of spatialized precipitation data
as input, which are often unreliable over complex terrains. The main novelties of
the proposed approach are: i) the generation of daily HR SWE maps, ii) the regu-
larization of the daily HR SCA time-series from impossible transitions, and iii) the
precipitation independent SWE reconstruction. The approach has been validated in
two catchments: i) the South Fork catchment, located in the Sierra Nevada - Cali-
fornia (USA), and ii) the Schnals catchment, located in the Alps - South Tyrol, Italy.

The chapter is structured into five sections. Sec. 4.2 presents the different steps
of the proposed approach to reconstruct daily HR SWE. The two test sites and the
used dataset are presented in Sec. 4.3. The obtained results are illustrated in Sec.
4.4. A detailed discussion on the approach advantages and limitations and on the
results follows in Sec. 4.5. Finally, Sec. 4.6 draws the conclusions of the work and
gives indications for further exploitation of the proposed approach.

4.2 Proposed approach to HR SWE reconstruc-

tion

In this section, the proposed approach to HR SWE reconstruction will be presented.
The approach is made up of three main parts: i) the identification of the catchment
state, ii) the characterization of the snow season from the regularized SCA time-
series, and iii) the SWE calculation. The details will be illustrated in the three next
subsections. As depicted in Fig. 4.1, the method initially determines the state of
the catchment (see Sec. 4.2.1). This allows to properly reconstruct SWE in case of
solid precipitations after the peak of accumulation and also to redistribute the total
amount of SWE calculated for the melting in the accumulation period. Both cases
are generally omitted in state-of-the-art SWE reconstruction methods (e.g., Molotch
& Margulis 2008, Martinec & Rango 1981). Moreover, the catchment state infor-
mation is used to regularize the time-series of SCA from impossible transitions and
to correctly determine the beginning and end of the season (see Sec. 4.2.2). Finally,
from the potential melting and the regularized time-series of SCA the proposed
approach reconstructs the daily HR SWE maps (see Sec. 4.2.3).
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Figure 4.1: Workflow of the proposed approach showing the three main steps: i)
state identification, ii) characterization of snow season from SCA, and iii) SWE
reconstruction. The inputs are: i) a HR SCA time-series and daily spatialized DD
maps derived from AWS, ii) SAR backscattering time-series, and iii) SWE or HS
from automatic weather stations (AWS). As output, we obtain the daily HR SWE
maps.

4.2.1 Identification of the catchment state

The proposed reconstruction approach is designed for a hydrological catchment that
is subjected to similar weather forcings and consequently to similar accumulation
and ablation events i.e., the catchment is not too vast. If we take this assumption
strictly, we can define three states that describe the three possible SWE changes, i.e.,
∆SWE between two times t−1 and t. These states are accumulation (∆SWE > 0),
ablation (∆SWE < 0) and equilibrium (∆SWE = 0), as shown in Fig. 4.2. The
identification of the state is necessary in the proposed approach to decide whether
SWE is added or removed for the reconstruction (see Sec. 4.2.3). In detail, the
catchment state does not only characterize the change in terms of SWE but also in
terms of SCA, if observable, as described as follows:

• Accumulation when the total ∆SWE > 0 due to a snowfall. We can either ob-
serve i) a positive ∆SCA, if the snow covers the bare ground, or ii) ∆SCA = 0,
if the snowfall happens at higher elevation than the actual snowline. However,
∆SCA is never negative and consequently a single pixel can not turn from
snow to snow-free from t−1 to t. So, depending on the extent of the snowfall,
the spatial SWE increment can interest the total snow covered area or a part
of the catchment. It is usually a rapid event - one to a couple of days (Thorp
& Scott 1982).

• Ablation when the total ∆SWE < 0 due to any kind of energy exchanges
(as increasing temperature, solar radiation, or rain-on-snow). We can either
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observe a negative ∆SCA, if the snowpack is completely melted out and shows
the bare ground, or ∆SCA = 0, if the melting is only affecting the snow depth.
However, ∆SCA is never positive and a pixel can not turn from snow-free to
snow from t−1 to t. So, depending on the amount of energy and on the depth
of the snowpack, the spatial SWE decrement can interest the total SCA or a
part of the catchment. It can be a long period, especially in the last phase of
the season.

• Equilibrium when ∆SWE = 0. This is the case of a steady state, i.e., no
changes within the catchment, or redistribution due to wind or gravitational
transport, e.g., avalanches. This last condition does not affect the overall SWE
balance that remains constant, even though we can have local deposition and
erosion looking at a pixel scale. In terms of ∆SCA, these changes are mainly
increments of snow-free pixels, hence a pixel can not turn from snow-free to
snow from t− 1 to t. In fact, we expect that snow moves from exposed areas
- that can become snow-free - to sheltered areas - that were already covered
by snow, due to the terrain properties that facilitate snow deposition.

To determine the catchment state according to the aforementioned definitions,
it is clear that ∆SCA is ambiguous and consequently we need to estimate if SWE is
increasing, decreasing or is constant. This information can be retrieved by a network
of automatic weather station (AWS) that provide continuous information about
the occurrence and elevation of snowfall events, e.g., direct SWE measurements or
indirect precipitation/HS measurements. While continuous SWE measurements are
hardly available, by mean of pluviometers and temperature observations it is possible
to split precipitation between liquid and solid (Mair et al. 2013) and identify the
catchment state accordingly, but with the limitation that they are rarely installed at
high elevations. HS sensors are more suitable for our purpose but their observations
are often affected by wind and gravitational transport leading to deposition/removal
that may be falsely interpreted as accumulation/ablation. Hence, even if the AWS
are generally situated in locations undisturbed from the wind action, it is more
convenient to dispose of a large number of AWS that need to be screened to exclude
possible sensor errors or wind/gravitational redistribution. For these reasons, the
SWE/HS increment should be greater than a certain threshold that is fixed at 2
cm for HS according to values found in literature (Engel et al. 2017), resulting in
a value of 2 mm for SWE when considering the typical density of fresh snow (100
kg/m3).

Nevertheless, the general scarce availability of distributed measurements inside
a given catchment render the localization of the accumulation and ablation events
very challenging and therefore the definition of the catchment state prone to error.
Multi-temporal SAR observations have shown to be of great potentiality and to be
able to detect the presence of a melted snowpack as explained by Marin et al. (2020).
In this work the relationship between the SAR backscattering and the three melting
phases have been investigated. It has been shown that when the backscattering is
interested by a decrease of at least 2 dB, the snowpack is assumed to get moisted
(Nagler & Rott 2000). The minimum of the backscattering corresponds instead with
the maximum of SWE. After that moment, the snowpack starts to release water and
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Figure 4.2: Definition of the three possible catchment states: accumulation, ablation
and equilibrium. The description of the possible events that characterize the catch-
ment between two consecutive dates is reported together with the difference in terms
of SWE and SCA. As one can notice only ∆SWE can be used to unambiguously
identify the three states. The illustrations represent the SCA in an idealized catch-
ment where white and brown areas are the snow and snow-free areas, respectively
and the dashed lines represent the contour lines.
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enters in the so-called runoff phase. This moment represents the most important
contribution to the water release and can be provided in a HR spazialized manner,
i.e., marking the dates of ablation for each pixel.

On the other hand, at the best of our knowledge there are no remotely sensed
data that can be exploited to identify the snowfalls in a spatialized HR manner
and that can be used to identify the accumulation at the level of each single pixel.
In the majority of the situations, only one AWS located at a given high point of
the catchment (which is a common configuration for snow monitoring) would be
informative enough to identify all the accumulation events, but this may introduce
errors in particular cases of mixed conditions. For example, it is possible to observe
snowfalls at high elevations, rain-on-snow at low elevations that cause snowmelt and
even steady state conditions for mid altitude belts. A correct characterization of such
a situation requires to consider different areas with different states separately, which
for the moment is out of the scope of the chapter. We will discuss the limitations
and possible future steps to improve this aspect in Sec. 4.5.1.

In summary we propose a hybrid approach to identify the state by satisfying
the following necessary conditions in order of priority: i) accumulation when the
AWS show an increment greater than a defined threshold, ii) ablation when the
SAR backscattering presents a relevant drop (and not accumulation), and iii) equi-
librium otherwise. In this way, even though the accumulation does not allow to
correctly spatialize the snowfalls, a spatialized information on the ablation allows
to distinguish among pixels that are really subjected to melting and pixels that do
not experience any change. In other words, a coexistent ablation and equilibrium
is possible. Finally, it is worth to mention that mixed situations within the same
day and for the same area are also possible given diurnal fluctuations in the meteo-
rological forces. However in this work, we do not consider sub-daily variations but
only changes that are sampled in the temporal resolution of the exploited HR SCA
time-series, i.e., one day.

4.2.2 Characterization of the snow season from regularized
SCA time-series

A HR SCA is an input needed for the proposed SWE retrieval, as it is used to esti-
mate the date of snow appearance tSA and disappearance tSD. As mentioned in the
Introduction, such a product is not available directly from remotely sensed images
due to limitations in the revisit time and cloud contamination. Therefore, there is
the need to reconstruct a daily HR SCA. Among the several methods present in
literature, we used the approach proposed by Premier, Marin, Steger, Notarnicola
& Bruzzone (2021), which merges the information coming from a sparse long HR
time-series and a continuous daily LR time-series acquired in the period of interest.
Gap-filling and downscaling steps are performed by applying a set of hierarchical
rules based on historical analyses and geomorphometrical features. The main idea
behind the approach is that snow patterns are persistent over time and follow a reg-
ular distribution that is strongly dependent on the geomorphology and meteorology
of the area of interest (Mendoza et al. 2020). We refer the reader to Premier, Marin,
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Steger, Notarnicola & Bruzzone (2021) for the details.

Despite the generally accurate results of the above-mentioned approach, the out-
put HR SCA is still affected by possible inconsistencies. Errors may arise either from
the classification algorithm applied to the multi-spectral input images or from the
reconstruction approach. By applying the approach presented in Premier, Marin,
Steger, Notarnicola & Bruzzone (2021), we can highlight the presence of two main
sources of errors: i) an underestimation of snow presence in forested areas when the
snow falls below the canopy and is not visible anymore from the satellite point of
view, i.e., snow on ground, and ii) the missed identification of snow-patches at the
end of the season. The first error source is due to the fact that the classification
methods used for snow retrieval for both HR and LR data rely only on the spectral
information measured inside the resolution cell of the sensor without a dedicated
module for inferring the presence of snow if hidden by the canopy. This affects the
detection of snow on ground particularly for HR images since the small resolution
cell is likely to contain a majority fraction of canopy especially over very dense
forests. This problem is instead mitigated for LR pixels that are likely to contain
not only forested areas but also open fields where the snow is visible, increasing in
this way the possibility to detect the snow presence. Hence, in the daily time-series
of SCA, a discontinuity that happens mainly when HR images are acquired, can be
identified as a local decrease of SCA. The second error involves mostly LR images
whose spatial detail is not enough to detect mixed pixels with low SCF. It is an
error that persists over time since LR acquisitions are more frequent than HR ac-
quisitions. In other words, in both cases snow-free pixels may be falsely detected,
i.e., false negative (FN) errors. Snow pixels can also be falsely detected i.e., a false
positive (FP) errors due mainly to possible residual misclassified clouds that are
identified as snow - this is usually an error isolated in time. All these errors are
detectable by looking at the class transitions in the time-series of each pixel: the
snow presence is not smooth in time. This results in an erroneous SWE determina-
tion that is strongly related to the persistence of the snow, requiring a regularized
time-series.

A helpful information to regularize the SCA is the state of the catchment that
is daily identified by following the rules described in the previous subsection. If the
snow cover maps are coherent with the state, it follows that: i) if accumulation,
all the pixels can only turn from snow-free to snow or maintain their label, and
ii) if ablation or equilibrium, all the pixels can only turn from snow to snow-free
or maintain their label. Since ablation and equilibrium imply the same rule as
explained also in Sec. 4.2.1, we will refer more generally to ablation only. In other
words, tSA and tSD may vary for each pixel but for sake of coherence they must
coincide with an accumulation and an ablation date, respectively. Pixels that do
not respect these rules are potential mistakes that need to be corrected. When we
face with an erroneous class transition, we do not know a priori if the correct label
is the one at t − 1 or the one at t. To understand what is the correct solution, we
consider an appropriate time window and compute the most frequent label for it
according to a majority rule. The time window is chosen in a different way in the
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case that we are facing with a recent or an old date of snow appearance tSA. In
detail, for a given pixel, we consider:

• a recent date of snow appearance when t− tSA < 10 days. We observe in this
period FN mostly due to missed detection of snow under canopy especially by
HR sensors. In this condition, we do not expect fast changes since tempera-
tures are low and thus the potential melting is low (see Eq. 4.1). Accordingly,
we propose to consider a daily time window of ±5 days from t to check what
is the most persistent label of the considered pixel (Parajka & Blöschl 2006);

• an old date of snow appearance when t − tSA > 10 days. If the final melting
has already started, changes may be quick and the most common situation is
the missed detection of mixed pixels as snow patches. We observe that in this
period HR sensors detect snow patches that are completely omitted by LR
sensors. In this case: i) the dates after t are not informative since the snow
patches are disappearing quickly, and ii) daily SCA may not be informative
when it is derived by LR. For this reason, we consider only the last up-to-5
dates when a HR was originally acquired in a time window between tSA and t.

Once we have determined the state and whether if we are handling with a recent
or an old tSA, we can compute the most frequent label in the considered time window
and apply the following correction (see Algorithm 1).

The correction is performed by advancing forward in time, i.e. we assume that
previous labels are always coherent with previous states. The correction itself cannot
introduce inconsistencies. In case we are in accumulation, a transition from snow
to snow-free is not allowed. If the pixel is labelled as snow at t − 1, it means that
for sake of coherence it turned to snow at tSA. We also know the date of the last
ablation after tSA, i.e., tlastAB with tSA ≤ tlastAB ≤ t − 1. Hence, we compute the
most frequent label accordingly with the majority rules described in the previous
paragraph which vary depending if the snowfall is old or recent. If it results that i)
t is a false negative (FN), we can simply set it as snow ; ii) t − 1 is a false positive
(FP), we need to replace all times starting from the day of the last ablation state
(or tSA, in case the last ablation precedes tSA) until t− 1 with snow-free, since the
transition snow to snow-free can happen during ablation only.

Analogously, the transition from snow-free to snow is not allowed in ablation.
If the pixel is labelled as snow-free at t − 1, it means that for sake of coherence it
turned to snow-free at tSD. We also know the date of the last accumulation after
tSD, i.e., tlastAC with tSD ≤ tlastAC ≤ t − 1. Hence, we compute the most frequent
label accordingly with the majority rules and if it results that i) t is a false positive
(FP), we simply set it as snow-free; ii) t − 1 is a false negative (FN), we need to
replace all times starting from the day of the last accumulation state (or tSD, in case
the last accumulation precedes tSD) until t − 1 with snow-free since the transition
snow-free tro snow can happen during ablation only.
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Algorithm 1 Regularization of the snow cover maps with the catchment state.

if Accumulation then
# Transition snow to snow-free is not allowed!

# The pixel is snow from tSA ≤ t− 1.
# Between tSA and t− 1 all states are possible.
# We indicate with tlastAB a day tSA ≤ tlastAB ≤ t− 1
# representing the date of the last ablation after tSA
if t− tSA < 10 days then

Recent tSA: check t± 5 days and compute the most frequent label
else

Old tSA: check last up to 5 HR from tSA to t
and compute the most frequent label

end
if most frequent label is snow then

t is a FN (e.g., missed snow under canopy): set t as snow

else
t − 1 is a FP (e.g., cloud detected as snow): set [tlastAB; t − 1] as snow-free

end

else
# Transition snow-free to snow is not allowed!

# The pixel is snow-free from tSD ≤ t− 1.
# Between tSD and t− 1 all states are possible.
# We indicate with tlastAC a day tSD ≤ tlastAC ≤ t− 1
# representing the date of the last accumulation after tSD
if t− tSA < 10 days then

Recent tSA: check t± 5 days and compute the most frequent label
else

Old tSA: check last up to 5 HR from tSA to t
and compute the most frequent label

end
if most frequent label is snow then

t − 1 is a FN (e.g., missed snow patches): set [tlastAC ; t − 1] as snow

else
t is a FP (e.g., cloud detected as snow): set t as snow-free

end

end
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4.2.3 HR SWE reconstruction

Once the catchment state has been defined for each day as described in 4.2.1, and
the daily HR SCA time-series has been regularized with the catchment state as
described in section 4.2.2, the proposed approach to the HR SWE reconstruction
can be initiated. This operation requires to calculate the total amount of melting
and redistribute it during the snow season according to the preservation of the mass
and the catchment state. For this purpose we estimate the daily potential melting
with the degree day (DD) model. For a generic time interval [t− 1; t], the potential
melting Mt−1,t is estimated through the following equation:

Mt−1,t [mm] = a [mmoC−1d−1] ·DDt−1,t [
oCd] (4.1)

where a is the so called DD factor and varies depending on the considered area as
well on the considered snow period. We used a value of a = 4.5 mo C−1d−1 for
the South Fork catchment and a = 5.2 mmoC−1d−1 for the Schnals catchment. The
coefficient is calibrated by considering measured SWE and temperature at the AWSs
(if available) and taking into account also the range of values derived in previous
literature works (Hock 2003). The limitations of this approach will be discussed
in Section 4.5.3. DDt−1,t is the DD given by the cumulative sum of the hourly
temperatures exceeding a certain threshold:

DDt−1,t =
t∑

t−1

Th if Th > T̂ (4.2)

The threshold temperature T̂ is set to 0oC.
The DD is first calculated for each station and then spatially interpolated using a
three-dimensional universal kriging routine with linear variogram and external drift
(Murphy et al. 2020). The choice arises from the results of a leave one out (LOO)
cross validation (see Appendix A.2). The variogram parameters are automatically
calculated at each time step using a ”soft” L1 norm minimization scheme. The
number of averaging bins is set as 6 (default value). The kriging is performed on
the daily DD values instead of on the raw hourly temperature values to reduce
computational times.

We can determine the total amount of melting Mtot by summing up all the daily
Mt−1,t for all those days in ablation within the time range [tSA; tSD]. It is worth
noting that a single pixel may have more than one single snow period, hence we
can have more than a couple of tSA-tSD. Mtot, which has to be equal the total
accumulation Atot, is then calculated as follows:

Atot = Mtot =

tSD∑
t=tSA

Mt−1,t if ablation for t (4.3)

Consequently, it is possible to reallocate the total accumulation on those days
which are in accumulation:

At−1,t = kt−1,tAtot if accumulation for t (4.4)
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where kt−1,t is a coefficient that represents the quantity of the snowfall. In case we
have a network made by S AWS with measured SWE (or similarly, HS), k is set
proportional to the observed snowfalls:

kt−1,t =

∑S
s=1(SWEs

t − SWEs
t−1)∑

t

∑
s=1 S(SWEs

t − SWEs
t−1)

if accumulation for t (4.5)

Note that the number of days in accumulation varies for each pixel and consequently
the coefficient is function of time and space. In case an informative AWS network is
not available, we suggest to consider k = 1/

∑
t for t in accumulation, resulting in a

coefficient that is constant over time but still varies over space. Thus, it is possible to
determine the final output, i.e., a daily HR SWE time-series, by applying pixel-wise
the following rules:

SWE(t) =


0 if snow-free

SWE(t− 1) if equilibrium

SWE(t− 1)−Mt−1,t if ablation

SWE(t− 1) + At−1,t if accumulation

(4.6)

It may happen that during ablation temperatures are low and the term Mt−1,t is
equal to 0, thus coinciding with the equilibrium state. Note that M may also
be greater than 0 but if the state is different from ablation, that melting is not
encountered. It is in fact possible that temperatures present some inaccuracies or
increase without causing a real melting. We also neglect in a simplified manner
possible melting occuring during snowfall events. In other words, we assume that
ablation is only possible when we have simultaneously: i) absence of snowfalls, ii) a
decrease of SAR backscattering, and iii) high temperature. The term At−1,t is instead
always positive. It is worth stressing the fact that even though possible redistribution
caused by wind and gravitational transport is not explicitly taken into account in
Eq. 4.6, its consequences are implicitly appreciated by observing a longer persistence
of snow on the ground. Indeed, the potential melting is distributed over space and
time by considering the snow cover duration. This implicitly takes into account the
difference in the energy inputs due to both the topographic and the redistribution
effects providing a good estimation of the total SWE. Moreover, by providing an
approximation of the accumulation events we also consider late snowfalls that may
occur during the main melting season and that are a large source of error in the
state-of-the-art methods (Slater et al. 2013).

4.3 Study Areas and Dataset Description

To assess the performance of the proposed method, we consider two different test
areas. The first one is the South Fork catchment located in California, USA, in the
Sierra Nevada. For this test site, we considered three hydrological seasons spanning
from the 1st of October 2018 to 30th of September 2021. The considered basin has
an area around 970 km2 and a mean elevation of 3070 m, ranging from a minimum
elevation of 1930 m up to a maximum elevation of 4150 m. For this catchment, a spa-
tialized SWE product with a resolution of 50 m is available acquired by the Airborne
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Figure 4.3: Illustration of the reconstruction and temporal reallocation of the SWE
for a given pixel. Starting from the left side of the figure, the catchment state
is identified for each day of the snow season (delimited by tSA and tSD) and the
potential melting is estimated according to Eq.4.1. The sum of all the potential
melting at the different days represent the total amount of SWE for that pixel.
This is redistributed during the accumulation day using Eq.4.4. For this illustrative
example, a constant k is considered. As one can notice the reconstructed SWE
can represent accumulation (even as late spring snowfall), ablation and equilibrium
conditions.
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(a) (b)

Figure 4.4: Overview of the two test sites: a) South Fork catchment, California,
USA, and b) Schnals catchment, South Tyrol, Italy (©2022 Google Maps).

Snow Observatory (ASO). ASO couples imaging spectrometer, laser scanner and a
physical model that provides an estimate of the snow density to derive accurate SWE
maps (Painter et al. 2016). One snow pillow for continuous SWE measurements and
one AWS providing air temperature are available inside the catchment. Moreover,
we considered 6 snow pillows and 10 stations with continuous temperature mea-
surements within a radius of around 15 km from the catchment (see 4.4a). These
data were downloaded from the United States Department of Agriculture (USDA)
Natural Resources Conservation Service (NRCS) Snowpack Telemetry (SNOTEL)
network (see https://www.wcc.nrcs.usda.gov/snow/) and from the California
Data Exchange Center (CDEC) (see https://cdec.water.ca.gov/).

The second catchment is the Schnals (Senales in Italian - for brevity we will report
the German name only) located in the Vinschgau (Venosta) Valley in South Tyrol,
Italy, in the Alps. For this catchment we analyzed two hydrological seasons spanning
from the 1st of October 2019 to the 30th of September 2021. The considered area has
an extent of about 220 km2 and a mean elevation of 2370 m, ranging from a minimum
elevation of 590 m up to a maximum elevation of 3550 m. For this test site, manual
SWE measurements are available (collected by Avalanche Centre of the Bolzano
Province - Lawinenwarndienst - see https://lawinen.report/weather/snow-pr

ofiles - and by Eurac Research, Institute for Earth Observation). Additionally,
we considered the operating temperature and HS sensors of the Province of Bozen
(see https://data.civis.bz.it/it/dataset/misure-meteo-e-idrografiche).
An overview of the Schnals catchment and the location of available measurements
is provided in Fig. 4.4b.

The HR daily SCA time-series is derived through the method proposed by Pre-
mier, Marin, Steger, Notarnicola & Bruzzone (2021). The input data used for the
reconstruction are S2, Landsat-8 and MODIS data. The method requires as in-
put a long time-series of HR images. Hence, we downloaded a total of around
400 scenes for the South Fork catchment and 700 scenes for the Schnals valley from
https://earthexplorer.usgs.gov. The following steps are applied to opportunely
pre-processed the data: i) conversion from digital number to Top of the Atmosphere
(ToA) reflectance values, ii) cloud masking through the algorithm s2cloudless avail-
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able at https://github.com/sentinel-hub/sentinel2-cloud-detector (Zu-
panc 2017), iii) SCF detection through an unsupervised statistical learning approach
(Barella et al. 2022), and iv) binarization of the classification results.

The daily MODIS data are needed for those hydrological seasons in analysis only.
The ready-to-use MOD10 version 6.1 are distributed by the National Snow and Ice
Data Center (see https://nsidc.org/data/MOD10A1) (Hall & Riggs 2021). The
NDSI values are converted to SCF by using the algorithm proposed by Salomonson
& Appel (2004).

The S1 data are downloaded from https://search.asf.alaska.edu/ and
pre-processed (i.e., precise orbit application, thermal noise removal, border noise
removal, beta nought calibration, tile assembly, co-registration, multi-temporal fil-
tering, terrain correction, geo-coding and sigma nought calibration). These steps
are performed using SNAP (Sentinel Application Platform) and some custom tools.
Three tracks are available for each test site, i.e. track 64, 137 and 144 for the South
Fork catchment and track 15, 117 and 168 for the Schnals catchment, with a total
number of around 480 and 350 downloaded images respectively. The backscattering
is then daily interpolated and a multi-temporal analysis is carried out for the three
tracks separately. If at least one track shows a drop of at least 2 dB in the signal
(Nagler & Rott 2000) w.r.t. a moving average of the 12 previous days, that day is
considered to be in ablation.

4.4 Experimental Results

In this section, we present the results obtained for the South Fork and for the Schnals
catchment.

4.4.1 South Fork catchment

The proposed SWE maps are aggregated at a resolution of 50 m and compared with
the corresponding ASO maps, for a total number of 12 dates.

From a qualitative inspection of the results, a general good agreement between
the two SWE maps is visible. For sake of brevity we propose here a detailed analysis
of the 9th of June 2019, for which we reported in Fig. 4.5 the SWE map obtained
with the proposed approach, the SWE produced by ASO and the bias map cal-
culated as pixel-wise difference between the proposed and the reference ASO map.
In general, it is possible to notice that the proposed method is able to reproduce
spatial patterns similar to the ones detected by ASO. This result shows that the use
of HR input data achieve an unique spatial detail, which represents one of the main
advantages of the proposed method. By looking at a zoomed area, it is possible
to better appreciate this similarity. Nonetheless, it is possible to notice a tendency
of the proposed product to underestimate SWE especially in some North exposed
areas. This may be due to either i) an error introduced by the DD model, that
only considers temperature without accounting for radiation differences linked to
different exposures or ii) an error introduced by the reference HS map used in the
ASO for defining the amount of snow at the beginning of the season in permanently
snow covered areas.
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Figure 4.5: Proposed SWE map (on the left), ASO SWE map (in the centre) and
bias map calculated as difference between the proposed and ASO SWE (on the
right) for the 9th of June 2019. A zoom is shown under the correspondent maps. A
transect is shown with three green dots in the North area of the catchment (©2022
Google Maps).

Figure 4.6: SWE temporal trends for: the proposed approach (continuous lines) and
ASO (crosses) for the considered transect reported in Fig. 4.5.
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In Fig. 4.6 the temporal trend of three points for a selected transect is reported.
First of all, it is possible to observe that the proposed product presents an expected
behaviour, i.e., longer snow persistence and increasing SWE for higher elevation.
On the other hand, ASO shows higher SWE for the mid elevation point. It is worth
noting that even though we use ASO as reference product, some inconsistencies may
be present due to a possible inaccurate estimation of the snow density by the model.

The Volcanic Knob (VLC) monitoring site, which is located inside the analyzed
area, is also used for evaluating the obtained results showing a very good agreement
(see Fig. 4.7). However, it is worth to keep in mind that in-situ SWE stations
are usually located in flat forest clearings and may be not overly representative of
the overall complex topography settings of the study area. Note that the first year
2018/19 is also used to set up the constant a used for the DD model, according also to
values found in literature (Hock 2003). The validity of the chosen value is confirmed
by a good agreement of the results for the following two seasons. Interestingly, even
though the stations are used to identify the accumulation state the temporal SWE
trend does not necessarily present everywhere the same shape as for the station (see
in Fig. 4.6 and 4.7). In fact, this final result is influenced also by the persistence
of the snow as well by the potential melting, that varies depending especially by
the elevation as it is calculated with a kriging with external drift. Hence, the good
agreement with the station trend is also confirming the validity of the proposed
method.

The results of a quantitative global analysis are reported in Table 4.1. The eval-
uation shows a generally good correlation between the two products, i.e., 0.729 on
average. The average bias is -40 mm and the average RMSE is 216 mm. The high-
est bias and RMSE values are generally encountered in the mid-winter acquisitions.
This is due to the fact that the snow cover in that period of the year is higher,
and consequently the SWE, thus generating a potential larger error. Moreover, it
is possible to have an inaccurate detection of the exact location and duration of
the snowfalls. This may be due to the fact that the accumulation in the proposed
method is driven by punctual measurements and may be not representative of the
entire catchment as described in Sec. 4.2.1. For the South Fork area, only one
station is inside the catchment and this is not enough to capture the high variability
of precipitations as expected.

In Fig. 4.8, the temporal trend of the total SWE for the three considered hy-
drological seasons is shown. We notice a general good agreement between the total
amount of SWE estimated through the two approaches. The plot also gives an idea
of the large differences that can be encountered for different seasons and that are
well captured by the proposed method. The first hydrological season 2018/2019
shows the highest amount of SWE, while the others are drier. The tendency is of a
slight underestimation of SWE for the proposed method w.r.t. ASO results for the
first two seasons, while the last is overestimated as also shown in Table 4.1. The
possible reasons will be discussed in Sec. 4.5.

A more detailed analysis is presented in Fig. 4.9, where we show the trend
of the maximum of SWE versus elevation, slope and aspect. The results show an
increasing trend of SWE with altitude that is inverted for highest elevations, since
these usually present very steep slopes and consequently a marked tendency of snow
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(a) (b)

(c)

Figure 4.7: SWE obtained by the proposed approach (in orange) against the mea-
sured SWE (in blue) at the Volcanic Knob test site for the hydrological seasons a)
2018/19, b) 2019/20 and c) 2020/21.

Figure 4.8: Temporal trends of the total SWE for the South Fork catchment over
the three analyzed seasons. Crosses represent the ASO reference.
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Table 4.1: Results of the comparison between the proposed SWE and ASO products
for the South Fork catchment. Bias, RMSE and correlation are calculated pixel-wise.
SWE tot is the SWE integrated over space.

Date BIAS RMSE Correlation SWE tot SWE tot
[mm] [mm] [-] ASO [Gt] proposed [Gt]

17/03/2019 -88 311 0.73 734 653
02/05/2019 -66 308 0.84 640 580
09/06/2019 -71 299 0.86 482 417
04/07/2019 -59 197 0.85 167 113
14/07/2019 -51 166 0.80 100 53
15/04/2020 -70 239 0.64 367 303
05/05/2020 -65 225 0.66 235 165
23/05/2020 -95 234 0.65 156 69
08/06/2020 -20 152 0.66 44 26
26/02/2021 -8 130 0.65 175 167
31/03/2021 59 168 0.70 180 235
03/05/2021 49 166 0.70 67 123

to be subjected to gravitational transport. This is also confirmed by the second
graph, where steeper slopes present less SWE. Another coherent result is also the
bigger amount of SWE for North exposed areas. These results confirm that the
method is suitable to be exploited for hydrological applications.

For more results derived by the comparison between the proposed method and
the ASO reference product we refer the reader to the Appendix A.3 (see Fig. A.4).
Here we report a detailed analysis on the total SWE for all the available ASO SWE
information considering different elevation, aspect and slope belts (see Fig. A.5 and
A.6).

4.4.2 Schnals catchment

For the Schnals valley, reference spatialized data of SWE are not available. How-
ever, manually collected SWE measurements for the hydrological season 2020/21
were collected also along spatial transects. Differently from the South Fork catch-
ment, these measurements are acquired over complex terrain allowing to test the
ability of the method to cope with complex topography. For more details about the
measurement location, please refer to the Appendix A.1, Fig. A.1. The results show
a bias of 38 mm and a RMSE of 209 mm, indicating a general good agreement. For
sake of brevity, we report in Fig. 4.10 only few examples of reconstructed SWE
evaluated against the manual measurements. It is possible to notice, in accordance
with the results obtained for the South Fork catchment, that the variability from
an area to another of the catchment is properly caught by the proposed method.
This is due to the different persistence of snow on ground that modulates the spatial
variability of the potential melting estimated by the DD model. It is possible to
notice in the figure that the SWE tends to increase with the elevation.

In Fig. 4.11 we report the map of the SWE maximum for the two analyzed
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Figure 4.9: Trends of the maximum of SWE for the hydrological seasons 2018-
2021 w.r.t. the elevation (up), slope (centre) and aspect (low) for the South Fork
catchment.

Figure 4.10: SWE proposed (continuous line) against the manual measured SWE
(crosses) at some locations in the Schnals catchment (see Fig. A.1).
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(a) (b)

Figure 4.11: Maximum of SWE for the Schnals catchment for the hydrological
seasons a) 2019/20 and b) 2020/21.

hydrological seasons. It is possible to see that the season 2020/21 is character-
ized by a higher amount of SWE. However, the two years show similar patterns
that are coherent with the morphology of the study area. In detail, we can notice
that interestingly there is a higher amount of SWE especially in the East part of
the catchment that corresponds to the glacierized area of the Roteck/Monte Rosso
mountain. We found a longer persistence of snow for these North exposed slopes
and consequently a larger amount of reconstructed SWE. The consistency of the
SWE patterns is also confirmed by Fig. 4.12, from which similar considerations as
for the South Fork catchment can be carried out. Another qualitative indicator of
the goodness of the results is given in Fig. 4.13. The trend of the SWE maximum
over time is represented together with the discharge measured at Schnalserbach -
Gerstgras. In the second year, higher SWE amounts correspond to a higher peak
in terms of measured discharge as expected. Moreover, it is possible to appreciate
for the two seasons an increase of discharge that happens in correspondence of the
SWE decrease.

4.5 Discussion

We have presented in the previous section the quantitative and qualitative results
for the two study areas. Notwithstanding the good agreement with the observed
measures as well as with the reference ASO product, we will draw in this section a
critical analysis of the proposed approach. In detail, each main step, i.e., catchment
state identification, SCA regularization and SWE reconstruction, is analysed in the
following paragraphs, focusing on the main sources of errors.

4.5.1 Error in the determination of the catchment state

In Sec. 4.2.1 we have described how to define the accumulation state starting from
in-situ SWE, HS or precipitation measurements. We suggested that a network of
AWS is needed to cope with the possible heterogeneity of the snowfalls inside the
catchment. However, we would like to discuss more in detail the topology of such
a network. In Sec. 4.2.1 we assumed that the accumulation state refers to all the
catchment covered by snow without distinguishing between areas that are interested
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Figure 4.12: Trends of the maximum of SWE for the hydrological seasons 2019-2021
w.r.t. the elevation (up), slope (centre) and aspect (low) for the Schnals catchment.

Figure 4.13: SWE for the Schnals catchment for the hydrological seasons 2019-2021.
Continuous lines represent SWE, dashed lines represent the discharge measured at
Schnalserbach - Gerstgras.
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by a snowfall and areas that are in equilibrium or ablation, e.g., this is the case of
simultaneously rain-on-snow and snowfall inside the catchment. We introduced this
simplifying hypothesis since it is difficult to precisely determine where the snowfall
occurs with a HR detail. By strictly taking this assumption, and therefore exploiting
only one in-situ measurement, the results are still affected by wind and gravitational
redistribution that influence the AWS observations. This in turn may affect the
final SWE results that are biased by wrong state identification. Moreover, in some
remote areas automatic measurements can be completely missing. Hence, there
is the need to identify the accumulation state at HR as done for the ablation state
using the SAR information. A possible solution is to spatialize the AWS information
considering for example elevation bands where the hypothesis of a constant state is
more reliable (i.e., a similar concept as the hydrological response unit). Nonetheless,
this is a challenging task that requires a well distributed AWS network or to couple
our approach with a physically based model able to spatialize correctly the AWS
information. Even if the modularity of the proposed approach allows the separation
of the different steps that can be easily interchanged with other possible solutions,
this is is out of the scope of this chapter.

Another possible solution is to exploit once again the information provided by
the satellite missions. Indeed, the use of satellite information collected over larger
and remote areas represents an interesting enhancement of the proposed method.
The prediction of the catchment state could be provided for example by satellite
information about SCA variations that are connected to SWE changes. Especially
at the beginning of the season, an important snowfall is well represented by a strong
increment in terms of SCA. However, there are some ambiguities that need to be
solved. For example, when observing constant SCA or when SCA is 100% we cannot
determine the state of the catchment. In this sense, the size of the catchment plays
an important role that needs to be further investigated. As interesting alternative
we also mention the use of SAR data. In this work, we exploited S1 to detect the
snowpack melting. However, the signal seems to be also sensitive to the presence
of fresh snow, showing an increase of the backscattering in correspondence of a
snowfall (e.g., Lievens et al. 2022, Tsang et al. 2021). The poor temporal resolution
represents however a strong limitation for a practical application.

4.5.2 Error in the SCA derivation and regularization

It is worth discussing here the SCA regularization more in detail. In Fig. 4.14 and
4.15 we show the SCA before and after the regularization for the South Fork and
Schnals catchments, respectively. As explained in Sec. 4.5.2, due to the snow cover
detection algorithms employed in the proposed method the raw reconstructed SCA
presents: i) strong decreasing peaks in correspondence of the HR acquisitions at
the beginning of the season that indicate an underestimation of SCA in forested
areas, and ii) small increasing peaks in correspondence of the HR acquisitions in
the late melting phase that indicate the presence of snow patches that are missed
by LR sensors. The regularized SCA is instead more stable and the spurious oscil-
lations, present especially during the most cold winter period, are corrected. The
effectiveness of the correction is also visible by looking at a corrected image. Fig.
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4.16 represents a common situation when foggy and mixed pixels are classified er-
roneously. The proposed correction improves the snow detection especially in these
complicate cases.

An evident case where an overestimation of the SCA is introduced is in the season
2020/21 in May/June for the South Fork catchment (see Fig. 4.14c). This error is
due to the fact that the AWS do not indicate an accumulation in correspondence
of the peaks that happen in the late melting phase. Hence, the label is corrected
according to the majority rule in ablation in the case of an old snowfall (see Sec. 4.2.2
and Algorithm 1). Many pixels are considered as TP, leading to the propagation of
the snow pixels backward and the consequent overestimation of SCA. This in turn
leads to an overestimation of the SWE as shown in the results (see Sec. 4.4.1). On
the other hand, an underestimation of the SCA is introduced for example in May
2019 for the South Fork catchment (see Fig. 4.14a). By an accurate inspection of the
conditions that lead to the flattening of the SCA during the late snowfall, it has been
showed that the stations indicate a long period as accumulation, i.e., from 16th until
the 29th of May, while the peak starts decreasing in the original SCA time-series
starting from the 21st of May. According to the majority rule for a recent snowfall,
the pixels are marked as FP. In fact, the most frequent label is snow-free since they
are snow-free for sure from t onward and this implies the replacement with snow free
backward until the day of last ablation. It is possible that the AWS present some
sensor errors, but this could also be the case of a mixed state inside the catchment.
In other words, the AWS reveal a snowfall but this is most likely happening at high
elevations, while the SCA is decreasing due to an ongoing melting especially in the
lower elevation belts of the catchment (SCA from ∼ 100% to ∼ 80% means that
low elevations are getting snow-free). It may be possible that at low elevations it
rained while at higher elevations the AWS correctly detect a snowfall. However, we
expect that such an ephemeral snowfall is not affecting the total amount of SWE,
as we have seen in the Sec. 4.4.1. As future perspective, it is worth noting that the
availability of more HR images (e.g., Landsat-9) will help to mitigate the errors in
the daily SCA reconstruction.

4.5.3 Error in the SWE reconstruction

In Sec. 4.4 we have presented the results of the proposed method. We have shown the
differences that arise when comparing the results of our method with a spatialized
product (ASO). We would like to discuss here the sources of error and the major
weaknesses of the proposed method. The potential source of errors are represented
by i) the temperature data, that in turn affects the DD model, and ii) the wrong
identification of tSA and tSD, that depends on the accuracy of both the SCA time-
series and the catchment state. Since the input data are subjected to several degrees
of preprocessing, it is difficult to carry out a specific sensitivity analysis of the
problem. The most important factors are discussed in the work of Slater et al. (2013).
Instead, we perform here a critical analysis for better defining future developments
to improve the proposed method.

The implications of a wrong detection of tSD are much more important than
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(a)

(b)

(c)

Figure 4.14: SCA time-series in the South Fork catchment for the hydrological sea-
sons a) 2018/19, b) 2019/20 and c) 2020/21. Original input version (in blue) and
corrected version (in orange) after the application of the proposed regularization.
The background colors correspond to the ablation state (in cyan) and the accumu-
lation state (in pink).
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(a)

(b)

Figure 4.15: SCA time-series in the Schnals catchment for the hydrological seasons
a) 2019/20 and b) 2020/21. Original input version (in blue) and corrected version
(in orange) after the application of the proposed post-filter. The background colors
correspond to the ablation state (in cyan) and the accumulation state (in pink).

(a) (b) (c)

Figure 4.16: Example of a regularized snow map on the date 12/01/2020 for the
South Fork catchment: a) false-color composition (R:SWIR,G:NIR,B:RED), b) in-
put snow cover map, and c) regularized snow cover map.
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the wrong identification of tSA. At the end of the ablation period, M is high and
therefore the total SWE for a pixel, which is given by the potential melting integrated
over time for days in ablation, can be strongly altered by introducing either an
overestimation or an underestimation, depending on the case. The error can also
be propagated for several days during the melting season. On the contrary, in
the period of the year when most consistent snowfalls happen at the beginning of
the season, the days in ablation are few, temperatures are low, consequently M is
negligible (see Eq. 4.1) and does not change so much from one day to the other.

The use of a simple DD model for computing the potential melting is another
source of error. This simple model does not take into account different energy inputs
due to either geomorphometrical features or different periods of the year, since we
used a constant DD factor. This may be the case of the overestimation of SWE
happening during the hydrological season 2020/21 as shown in Sec. 4.4.1. In fact,
this year presents an anticipated melting. Hence, we expect a lower energy input
w.r.t. the season when the DD factor has been calibrated. Even though we are
aware of the limitations of such a simple model, we did not consider the use of a
more complex model, since this is not the focus of this work. An interesting further
development is to test the approach with a more sophisticated potential melting
estimation. Since the potential melting is calculated separately, this step can be
easily replaced.

As potential correction of the DD model, we proposed the use of S1 for identifying
the timing of the melting phase. In fact, it may be that the DD detects high
temperatures but the energy is still not sufficient to cause the snowpack melting.
Even though we do not expect big differences since temperatures are low in the first
phase of the melting and consequently the potential melting is low, the spatialization
of temperature may also be affected by possible errors. S1 represents a spatialized
way to identify the melting, but it presents as major disadvantage a poor temporal
resolution, i.e., few days. As future development, we aim at exploiting S1 and the
new HR land surface temperature acquired by the next Sentinel generation as a
proxy of the potential melting estimation, thus enlarging the applicability of the
proposed method in remote areas.

Finally it is worth mentioning that, the uncertainty introduced in the method are
also linked to the high spatial heterogeneity of the SWE. It is possible to encounter
a very large variability also within a pixel with size of 25 m as shown by the SWE
measurements acquired in Schnalstal by Warscher et al. (2021). This results in an
intrinsic difficulty to evaluate the output with an appropriate reference data.

4.6 Conclusions

In this work we presented a novel approach to reconstruct daily HR SWE maps for
a mountainous catchment. We started by determining the state of the catchment,
i.e. if it is subjected to accumulation (increase of SWE), ablation (decrease of
SWE) or equilibrium (constant SWE). The state was identified exploiting both i)
in-situ SWE or HS data, which provide information about the snowfall; and ii)
multi-temporal SAR information to decide if the pixel is melting. Moreover, a novel
daily HR SCA time-series was used to determine the dates of snow appearance
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and disappearance, which represents an information with unprecedented spatial and
temporal detail. The SCA time-series was opportunely regularized according to the
catchment state. Furthermore, the state was also used as necessary information
for the SWE reconstruction, i.e. whether SWE is added or removed. The potential
melting was estimated by mean of a simple DD model after having spatialized in-situ
temperature observations. The SWE was reconstructed for the entire snow season
without the need of precipitation data as input. In fact, despite snow depth or
SWE increments are considered for detecting snowfalls, the method does not require
quantitative spatialized preciptation data that are often affected by uncertainties.
The results obtained for two different test sites, i.e., the South Fork catchment and
the Schnals catchment demonstrated the effectiveness of the proposed approach to
estimate the HR SWE. For the first catchment, the results were evaluated against
the ASO SWE product at 50 m, showing an average bias of -40 mm. For the second
site, the results were evaluated against manual measurements showing a bias of
38 mm. The obtained results were extensively discussed also considering possible
hydrological applications of such a product. In this sense, we have seen that the
results are very promising, since they i) are able to well capture the typical spatial
variability of a HR product, ii) show spatial patterns that are consistent with the
reference product, as well as with the geomorphology of the study area, iii) provide
a reliable global balance at a catchment scale, and iv) reproduce the variability of
different hydrological seasons.

Finally, we can state that the use of HR SCA for SWE reconstruction is more
adequate to sample the variation of SWE due to the complex topography of moun-
tainous catchments. Some technological limitations are present (e.g., necessity of
merging LR and HR sensors given the absence of daily optical HR acquisitions,
scarce temporal resolution of SAR acquisitions). Even though the proposed ap-
proach tries to overcome all these limitations, we expect that further improvements
will be introduced also by future satellite missions. This will open opportunities not
only to improve the proposed method but also to obtain a near-real time predictor
of SWE for large hydrological and ecological applications.
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Conclusions

This chapter concludes the thesis by presenting a general discussion of the work
described and by providing a summary of the novel contributions illustrated in the
document. Finally, possible future developments of the proposed research work are
presented

Summary and Discussion

In this thesis we have investigated three different aspects of snow monitoring through
remote-sensing based approaches, namely i) the identification of the snowmelt phases
by using Sentinel-1 SAR backscattering, ii) the reconstruction of daily high-resolution
SCA time-series by fusing high- and low resolution optical data, and iii) the recon-
struction of daily high-resolution SWE time-series by combing both remote sensing
and in-situ data. The information obtained by applying the first two developed
methods has been used as input for the final SWE reconstruction. Indeed, SWE
represents a variable of great hydrological interest. S1 has been shown to be a
promising tool to detect the snowmelt phases, i.e., the ripening, the moistening and
runoff (see Chapter 2). In detail, we found that the SAR backscattering decreases
as soon as the snow starts containing water, and that the backscattering increases
as soon as SWE starts decreasing, which corresponds to the release of melt water
from the snowpack. We discussed the possible reasons of this increase, which are not
directly correlated to the SWE decrease, but most probably to the different snow
conditions (e.g., surface roughness), which change the backscattering mechanism.
The observation of this behavior allowed us to define a set of rules to identify the
snowmelt phases. These rules have been tested in five test sites over the Alps by
evaluated the obtained results against in-situ observations or against the output of
a physically-based model. We obtained an average RMSE of 6 days for the moist-
ening phase, 4 days for the ripening and 7 days for the runoff phase. A possible
application of the snowmelt phases identification is represented by the spatializa-
tion of the runoff onset for an entire catchment. We obtained reasonable results in
this sense for the Zugspitzplatt, showing a good qualitative correspondence with the
geomorphological features of the catchment.

The information about the runoff onset is particularly useful when exploited to-
gether with detailed SCA time-series that detect the persistence of snow on ground.
We have seen that the trade-off between temporal and spatial resolution of cur-
rent satellite missions does not allow to sample the snow cover variability with the
proper detail. In this sense, current lacks in the state-of-the-art methods require
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the definition of novel approaches to provide a daily HR SCA time-series by fus-
ing information coming from high- and low-resolution optical satellite sensors (see
Chapter 3). To this purpose, we proposed a novel method to infer the daily HR
SCA at a catchment scale by exploiting the patterns that repeat inter-annually in
the snow cover distribution due to the geomorphometry and the meteorology of the
considered area. The approach allowed us to obtain an average OA of 92% when
tested in a watershed in the Sierra Nevada, California, by evaluating the results
against an independent multi-temporal dataset.

Such a product represents a necessary input to our last proposed work to re-
construct daily HR SWE (see Chapter 4). This final contribution has foreseen the
determination of the catchment state, i.e. if it is subjected to accumulation (in-
crease of SWE), ablation (decrease of SWE) or equilibrium (constant SWE). The
state was identified exploiting both i) in-situ SWE or HS data, which provide in-
formation about the snowfall; and ii) multi-temporal SAR information to decide if
the pixel is melting. A novel contribution is represented also by the proposed SCA
regularization according to the catchment state. Furthermore, the SWE was recon-
structed for the entire snow season without the need of precipitation data as input.
The results obtained for the South Fork catchment in the Sierra Nevada, California,
were evaluated against the ASO SWE product at 50 m, showing an average bias of
-40 mm. The results for a second test site, i.e. the Schnals catchment, Italy, were
evaluated against manual measurements showing a bias of 38 mm.

Given the obtained evaluation metrics, the results have shown good performances
when evaluated against a reference product. Moreover, they have shown to correctly
represent the temporal and spatial variability of the analysed study areas according
to their local geomorphology. This result can be appreciated thanks to the improve-
ments in terms of high temporal and spatial resolution w.r.t. the state-of-the-art
methods. This achievement was made possible thanks to the large availability of
data from the recently launched Copernicus missions that allowed us to fulfill cur-
rent gaps in literature and develop the proposed novel methods. In particular, it was
possible to sample the high spatial and temporal variability of snow accumulation
and melting with an unprecedented spatial and temporal detail. We can state that
this represents the main contribution of this dissertation. However, we would like
to discuss here some challenges that are still present. It is important to highlight
that the proposed approaches are strictly inter-connected and single limitations may
affect the final SWE time-series reconstruction.

In this thesis, the S1 time-series used for determining the snowmelt phases is kept
with its original temporal resolution, i.e., 6 days. This temporal detail is enough
to represent important changes in the snowpack properties, as shown in the results,
but it represents a relatively scarce temporal resolution to capture quick changes
as fluctuations in the temperature especially in the period that precedes the full
melting season. These can lead to alternated melting and refreezing cycles that may
not be properly represented. Also, the presence of late snowfalls may be completely
neglected. Thus, a possible improvement to our work is related to increase the
temporal resolution, which would definitely represent an advantage.

Similarly, also the daily reconstructed SCA time-series may present some local
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errors despite the good overall results obtained. These arise in particular from the
optical data that may be affected by some uncertainties. First, all the processing
chain set up for the HR scenes starts from a classification of the multi-spectral
images into a binary map, i.e., snow and snow-free. Even though the classification
problem goes outside the purposes of this thesis, we would like to remind here that it
represents a relevant component that can lead to wrong results in some challenging
situation. For example, errors may arise from i) low energy recorded in areas of
shadow; ii) atmospheric disturbance, e.g., cirrus and semi-transparent clouds; iii)
high reflectance values due to sunglint possibly generated by a thin water layer
on the snow surface. Moreover, errors may arise also from missed cloud detection
when setting up the cloud mask, as well as missed detection of snow under canopy.
Secondly, also the SCF derived from the LR images may be affected by uncertainties,
as discussed in Chapter 3. Especially for these reasons, the proposed reconstruction
method may fail in some particular situations. Moreover, even though the proposed
approach has shown good performances, it is important to keep in mind that in
general a good reconstruction cannot replace an observation. Indeed, there are
some cases, as for example periods of persistent cloud obstruction, that may require
additional external information to be properly represented. We proposed a SCA
regularization to overcome some of these errors. Despite it is based on a set of
empirical rules that assume a simplified catchment dynamics, it represents a first
interesting attempt to consider the catchment as a holistic system.

All these uncertainties affect in turn the final SWE time-series. The proposed
SWE reconstruction method implies the use of a potential melting model that also
presents some limitations. While it is difficult to understand what is the main source
of error in the final product, also a proper evaluation of the results is challenging. In
fact, we used for this purpose the ASO spatialized product that is however present
only for few dates and only for few catchments. Also, in-situ observations may be
not completely representative since they are point measurements that are not able
to capture the high intra-pixel variability.

Future Developments

Given the obtained results and the discussion drawn in this thesis, it is possible
to point out that future improvements will be naturally introduced by the launch
of future satellite missions that will improve the spatial and temporal resolution of
the acquired images. This will also open the doors to novel approaches completely
independent from in-situ measurements. An improvement in terms of S1 temporal
resolution may be introduced also by merging the different available tracks. We are
aware that some works have been presented in this sense and need to be considered
for further developments ((e.g., Small 2011)). Regarding the problems linked to
optical image classification, it represents a largely investigated topic that however
still offers room for improvement ((e.g., Barella et al. 2022)). A possible alternative
strategy is represented by a change of perspective in terms of the used methodologi-
cal approach. While at the moment the final SWE time-series is obtained only after
several steps, which may introduce uncertainty in cascade, we aim at developing
a more complex architecture based for example on deep learning approaches that
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encloses all the raw input data to derive the final product of interest. We believe
that such an approach may outperform the proposed method and be used opera-
tionally. Indeed, we expect that a deep learning architecture if properly trained and
constrained, can learn and improve automatically some of the cumbersome rules
that we had to set up in this thesis. However, our multi-step approach has helped in
investigating the physical aspects and the driving factors of the accumulation and
snowmelt phenomena.

Another interesting item that needs to be better investigated is related to the op-
erational application of the proposed method. In other words, the approach should
be tested on a large number of catchments. Different conditions may lead to dif-
ferent results (e.g., different land cover type or weather forcings). Also the size of
the analyzed area is an interesting variable to investigate, since larger areas would
require more computational time and may represent a bottleneck given the large
amount of data involved in the computation. Moreover, all the analyses are driven
at a catchment scale. In this sense, considering the correct size of the catchment
is very important, since the area should be not too big in order to be subjected
to the same weather forcings. For this reason, it is still recommended to consider
subcatchments instead of too large areas. Apart from the spatial generalization, the
method represents potential attractiveness also to be tested on a long time frame.
In particular, it would be interesting to check whether the information acquired in
the last years with the current satellite missions can be transferred also in the past,
when the Sentinel missions were not available yet. This would allow us to better
investigate the relationship between SCA and SWE, possibly leading to a derivation
of the SDC that may be exploited also for a near real-time prediction. Moreover,
such a long term analysis is interesting for giving insights on variations related to
climate change.

Finally, another future development is represented by the derivation of a com-
plete hydrological study for a given catchment. For this purpose, also other factors
as the evapotranspiration and the subsurface runoff need to be considered possibly
by coupling the obtained results with physically-based model. Especially in areas
where resources are mostly dependent by the nival melt, a correct determination of
SWE is essential for retrieving as final variable the streamflow runoff. Once again,
the crucial advantage of remote sensing observations is in this sense represented by
their application in poorly-monitored system with low cost strategies.
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Appendix A

Supplementary Material to
Chapter 4

A.1 In-situ snow measurements

The state characterization is done by observing available SWE or SD in-situ mea-
surements. For the South Fork catchment, SWE continuous measurements are
available for 7 different sites. As shown in Fig. 4.4a, only one station is inside
the considered area, i.e. the Volcanic Knob station (VLC). However, we considered
also the stations in the surrounding area to smooth out possible sensor errors or
redistribution effects.

In the Schnals catchment, SWE continuous records are available only for the
location Bella Vista. For this reason, the decision on the catchment state is based
on the SD records available for 5 stations (see Fig. 4.4b). Three stations are inside
the study area and the remaining ones are very close to the study area.

Note that for the same catchment, all the stations show a coherent pattern,
meaning that we can consider the catchment subjected to the same major weather
forcings.

In Fig. A.1 we also report the location of some of the manual SWE observa-
tions collected internally by Eurac Research (Institute for Earth Observation) for
the Schnals catchment. These few points have been used in Fig. 4.10 to show some
examples of reconstructed SWE trend and its behaviour against the manual mea-
surements. For an overview of the location of all the collected manual observations
used to compute the performances of the approach, see Fig. 4.4b.

A.2 Degree day estimation

The degree day (DD) is estimated starting from the available in-situ temperature
observations for both catchments. Regarding the South Fork catchment, the tem-
perature is available in 11 different stations located within a radius of around 15
km from the study area (see Fig. 4.4a). Due to the presence of some gaps in the
data, we excluded from the computation of the DD the station ”RKC” for season
2018/19, ”WWC” for 2019/20 and ”DKY”,”VLC”, and ”UBC” for 2020/21. For
the Schnals catchment, the temperature is available in 15 different locations within
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Figure A.1: Overview of the measurements (©2022 Google Maps).

(a) (b) (c)

Figure A.2: Leave-one-out cross validation results for the South Fork catchment for
the hydrological seasons a) 2018/19, b) 2019/20 and c) 2020/21.

a maximum distance of around 10 km (see Fig. 4.4b). Once the DD is computed
for each station through Eq. 4.2, the DD is spatially interpolated with the kriging
routine as explained in Sec. 4.2.3. The goodness of the spatial interpolation is tested
through a leave one out (LOO) cross validation. The results in terms of root mean
square error (RMSE) are reported in Fig. A.2 for South Fork and in Fig. A.3 for
Schnals, showing a mean RMSE that never exceeds 1.5oCd.

A.3 SWE results for the South Fork catchment

Fig. A.4 shows the SWE maps derived with the proposed method, the ASO reference
product and the bias calculated as difference between the proposed and the reference

(a) (b)

Figure A.3: Leave-one-out cross validation results for the Schnals catchment for the
hydrological seasons a) 2019/20 and b) 2020/21).
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maps.
Fig. A.5 shows the total amount of SWE calculated for different elevation, slope

and aspect bands for the 12 dates when also the ASO product is available. We
can notice a general good agreement showing that the proposed method is able to
represent the typical geomorphological variability of the snow processes.

Fig. A.6 shows the boxplots relative to the total amount of SWE calculated
for different elevation, slope and aspect bands for the 12 dates when also the ASO
product is available. We remind that a boxplot represents the Interquantile Range
(IQR) and is composed by the median (orange line), the first quartile Q1 (or 25th
percentile) and the third quartile Q3 (or 75th percentile). The whiskers show the
”minimum” (Q1-1.5*IQR) and the ”maximum” (Q3 +1.5*IQR). In this representa-
tion we omit the outliers.
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(a) 17th March 2019.

(b) 2nd May 2019.

(c) 9th June 2019.

Figure A.4: Proposed SWE (left), ASO SWE (centre) and bias (right) for the 12
analyzed dates over the three hydrological season (2018-2021) for the South Fork
catchment. (©2022 Google Maps)
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(d) 4th July 2019.

(e) 14th July 2019.

(f) 15th April 2020.

Figure A.4: Proposed SWE (left), ASO SWE (centre) and bias (right) for the 12
analyzed dates over the three hydrological season (2018-2021) for the South Fork
catchment (cont.). (©2022 Google Maps)
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(g) 5th May 2020.

(h) 23th May 2020.

(i) 8th June 2020.

Figure A.4: Proposed SWE (left), ASO SWE (centre) and bias (right) for the 12
analyzed dates over the three hydrological season (2018-2021) for the South Fork
catchment (cont.). (©2022 Google Maps)
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(j) 26th February 2021.

(k) 31st March 2021.

(l) 3rd May 2021.

Figure A.4: Proposed SWE (left), ASO SWE (centre) and bias (right) for the 12
analyzed dates over the three hydrological season (2018-2021) for the South Fork
catchment (cont.). (©2022 Google Maps)
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(a) 17th March 2019. (b) 2nd May 2019.

(c) 9th June 2019. (d) 4th July 2019.

(e) 14th July 2019. (f) 15th April 2020.

Figure A.5: Total SWE [Gt] distributed for each elevation, slope and aspect belt.
The proposed product (in yellow) is evaluated against ASO (in blue) for the 12
analyzed dates over the three hydrological season (2018-2021) for the South Fork
catchment.
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(g) 5th May 2020. (h) 23th May 2020.

(i) 8th June 2020. (j) 26th February 2021.

(k) 31st March 2021. (l) 3rd May 2021.

Figure A.5: Total SWE [Gt] distributed for each elevation, slope and aspect belt.
The proposed product (in yellow) is evaluated against ASO (in blue) for the 12
analyzed dates over the three hydrological season (2018-2021) for the South Fork
catchment (cont.).
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(a) 17th March 2019. (b) 2nd May 2019.

(c) 9th June 2019. (d) 4th July 2019.

(e) 14th July 2019. (f) 15th April 2020.

Figure A.6: Boxplots of the bias calculated as the SWE generated by the proposed
approach minus the ASO product for each elevation, slope and aspect belt. The
results are represented for the 12 analyzed dates over the three hydrological season
(2018-2021) for the South Fork catchment.
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(g) 5th May 2020. (h) 23th May 2020.

(i) 8th June 2020. (j) 26th February 2021.

(k) 31st March 2021. (l) 3rd May 2021.

Figure A.6: Boxplots of the bias calculated as the SWE generated by the proposed
approach minus the ASO product for each elevation, slope and aspect belt. The
results are represented for the 12 analyzed dates over the three hydrological season
(2018-2021) for the South Fork catchment (cont.).
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