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Abstract –In this paper, the effects of sampling upon rise time measurements with a digital oscilloscope are considered. In particular, the 

use of linear interpolation for estimating signal rise times is discussed, and its effects are analyzed for various step signals. A simple 

expression is derived, which accurately models the sampling and linear interpolation contributions to the overall rise time measurement 

error. Using these results, a correction formula is proposed, and its applicability is discussed. 

 

I. INTRODUCTION 

Digital Storage Oscilloscopes (DSOs) are nowadays widely used in many measurement processes, often replacing analog 

ones. Such devices, after conditioning and A/D converting the input signal, perform most measuring processing into the digital 

domain, thus offering high and reproducible performances. In order to evaluate the uncertainty associated to measurements of 

wideband signals or transient phenomena, it is very important to characterize the dynamic performance of both analog and 

digital oscilloscopes. To this aim, it has been shown that the knowledge of analog circuitry bandwidth and the use of some 

empirical rules usually applied to estimate its effect on a transition time measurement are not fully justified [1]. 

Moreover, when a DSO is employed, the threshold crossing times of a signal are often estimated by means of linear 

interpolation. Thus, measurements of transient phenomena are affected by a further source of error, which, to the best of the 

knowledge of the authors, has not been adequately addressed yet. 

In this paper, the effects of sampling on the rise time measurements are analyzed, for various step signals. In this regard, it 

should be noticed that the sampled signal is not the DSO input signal, but the output of the analog circuitry of the instrument 

[1],[2],[3]. First, simple step signal analytical models are considered. Then more realistic waveforms are achieved as the output 

of a second-order system fed by simple step signals [1]. In both cases, the error introduced on the rise time measurement by 

sampling and linear interpolation is evaluated by means of simulations. A formula is then derived, and its usefulness in 

compensating measurement error for a wide class of input signals is discussed. 
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Fig. 1: Relative error ε  due to sampling and linear 
interpolation on rise time measurements 

II. EFFECT OF SAMPLING AND LINEAR INTERPOLATION 

The rise time of a step signal is usually defined as the difference between the instants t10% and t90% in which the signal 

crosses two threshold values, conventionally assumed as 10% and 90% of the step amplitude respectively. A DSO measures 

the rising time of a step signal by evaluating the difference between the estimated values for t10% and t90%. To this aim, the 

instrument often performs a linear interpolation between the last collected sample lower than the reference threshold level and 

the following sample. This process introduces an estimation error, which depends also on the delay between the signal 

transition and the sampling instants. At first, three signals are kept into account: a linear, an exponential, and a Gaussian step 

signal respectively. The linear and exponential steps are often used to model physical phenomena, while the Gaussian one is 

often adopted to describe the overall step response of a set of cascaded linear filters and amplifiers [1]. Each step signal has 

been normalized, thus presenting a unitary ideal rise time and unitary amplitude. The relative error ε=(TRm-TR)/TRm, where TR is 

the signal rise time and TRm is the measured rise time, is evaluated by means of both meaningful simulations and theoretical 

analysis, which is reported in the appendix. 

Fig. 1, obtained for various step signals, reports ε as a function of the ratio between TRm and the sampling period TS. For 

each considered waveform, two curves are plotted, which represents the maximum error εmax and the minimum error εmin 

respectively, achieved by varying the delay between the signal transition and the sampling instants. When the TRm/TS ratio is 

low, the error grows quickly, because the measured time tends to the sampling period. For higher values of TRm/TS, the error 

magnitude tends to zero due to the improved resolution in estimating t10% and t90%, and can be upper bounded with a hyperbolic 

law (see the appendix). In particular, Fig. 1 shows that in order for εmax to be below 10%, TRm/TS should exceed 4. Moreover, it 

can be observed that, for the exponential step, a low TRm/TS ratio may lead to a negative error. 



It is also worth noticing that when TRm is an integer multiple of TS, the error can be null. Such a behavior can be explained 

by considering that in such a situation two samples may exist, which equal the 10% and 90% step reference levels. 

Consequently, the corresponding sampling times are exactly t10% and t90%, and no interpolation error is introduced. 

Furthermore, when the measured signal is a linear step, sampling does not introduce an estimation error when TRm/TS equals or 

exceeds 8. In fact, under such constraint, it can be easily shown that the interpolating straight lines exactly reproduce the linear 

step rising front. 

 

III. ERROR ESTIMATION AND CORRECTION 

The measured rise time TRo of an analog oscilloscope is usually expressed as follows 

 

,22
ORRo TTT +=         (1) 

 

where TO is the oscilloscope rise time [1]-[5]. Fig. 1 suggests that a similar expression can be adopted for the mean value of ε, 

thus expressing the measured rise time as 

 

,222
SRRm TTT α+=         (2) 

 

where α is a suitable coefficient used to model the effects of sampling and linear interpolation. By applying (2) and the 

definition of ε, the following expression can be derived, 
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where εint models the mean value of ε as a function of the TRm/TS ratio. Thus, by properly fitting (3) to simulation results, it is 

possible to evaluate the coefficient α, which allows to estimate the correction term in (2). 

Fig. 2 reports the curves εint, obtained by fitting (3) to the mean value of ε, with the least squares method, for the three 

considered input signals. The related values of α provided by the algorithm for 1 ≤ TRm/TS ≤ 10 are reported in tab.1. 
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Fig. 4: Residual error ε’, obtained after applying 
the bias removal correction (11) 

than 2, the measurement results are dominated by the sampling period TS. Conversely, for values of TRm/TS greater than 10, the 

estimation error introduced by sampling and linear interpolation is negligible. Finally, it should be noticed that (4) is useful 

only when αTS is not negligible with respect to the oscilloscope rise time, because the contribution of the analog circuitry to 

measurement errors cannot be easily corrected [1]. 

IV. ERROR ESTIMATION AND CORRECTION FOR FILTERED STEP SIGNALS 

In order to analyze a more realistic situation, three new stimuli have been considered, obtained by feeding with a linear step, 

an exponential step, and a Gaussian step respectively the following second-order system: 
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with damping factor 2/1=D , ω=2πf, where f is the frequency expressed in Hz, ω0=2πf0, and f0=1/(2πTR). Such a system 

introduces a moderate distortion on the considered waveforms, and it is characterized by a rise time of about 2.1TR [1]. 

The analysis has shown that the second-order system has a regularizing effect, generating quite similar output signals even if 

the input step signals are appreciably different. By following the approach described in the previous section, the relative error 

has been estimated. First, ε has been evaluated and reported in Fig. 5, showing that the effect of sampling is quite similar for all 

of the considered filtered waveforms. Then, the mean value of ε has been fitted to (3) using the least squares method. For all of 

the considered waveforms a value of α close to 1.0 has been obtained. Thus (4) becomes: 
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Fig. 6: Residual error ε’, obtained after applying
the bias removal correction (11) to the
measured rise time, obtained for the linear,
exponential and Gaussian steps filtered by a
second-order system, and limiting curve. 

 

whose application leads to the residual error curves reported in Fig. 6. As expected, the results are quite similar for all of the 

considered stimuli, and suggest that, the correction factor α=1.0 may be applied to most input signals. Finally, by applying 

fitting techniques to the maximum absolute local values of the residual error curves, the following hyperbolic law 
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has been derived, which provides an upper bound for the residual error magnitude and is also reported in Fig. 6. 

V. CONCLUSIONS 

The error introduced by sampling and linear interpolation on the rise time measurements of a step signal has been analyzed. 

In particular, a simple formula has been proposed which removes the error bias, and its usefulness and validity have been 

discussed. It has been shown that, differently from the analog case, a correction may be applied with advantage for a large class 

of input signals.  

 

APPENDIX: EFFECT OF SAMPLING ON RISE TIME MEASUREMENTS 

Let us call the estimates of t10% and t90% made by the DSO as  and respectively. The effect of sampling and 

interpolation on the result of a rise time measurement can be theoretically evaluated by expressing  and  as a function 

%10t̂ %90t̂

%10t̂ %90t̂



of TS, of the delay between the signal and the sampling instants, of the signal shape, and of the interpolation algorithm. In 

particular, in the case of linear interpolation,  is given by %10t̂
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where f(·) is the mathematical law which describes the step signal to be sampled, tn-1 and tn are the two consecutive sampling 

times such that f(tn-1)<f(t10%)<f(tn), and η10%=(tn- t10%)/Ts may be modeled as a random variable, uniformly distributed in [0,1] 

which keeps into account the lack of synchronization between the signal and the sampling times. Similarly, t  is given by %90
ˆ
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where tm-1 and tm are such that f(tm-1)<f(t90%)<f(tm), and η90% =(tm-t90%)/Ts. It should be noticed that η10% and η90% are not 

uncorrelated. In fact, by expressing the signal rise time TR as follows 

 

,)( SR TkT δ+=         (A.3) 

 

where k is an integer and δ∈[0,1[, it can be shown that  
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Thus, by using (A.1), (A.2) and (A.4), the DSO measured rise time TRm= -  may be expressed as %90t̂ %10t̂
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where A expresses the effect of the signal shape on the rise time measurement when linear interpolation is used. The 

measurement error, normalized to TRm can then be expressed as 
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In order to validate the model accuracy, the mean value of ε has been also evaluated by numerically integrating (A.6). In 

particular, the relative deviation between theoretical results and simulations is lower than 9·10-5 for 1≤TR/TS≤10. 

Finally, as the error on the estimation of both t10% and t90% is upper bounded by TS, it results that |TRm-TR|<2TS. 

Consequently, the magnitude of the relative error ε, expressed as a function of TRm/TS, is upper bounded by a hyperbolic curve, 

according to the following 

 

SRm TT /
2|| ≤ε         (A.7) 

 

REFERENCES 

[1] C. Mittermayer and A. Steininger, “On the determination of Dynamic Errors for Rise Time Measurements with an Oscilloscope”. IEEE Trans. on 

Instrum. Meas., Vol. 48, No. 6, pp. 1103-07, Dec. 1999. 

[2] Tektronix Application Note 55W_12047_0, “Effects of Bandwidth on Transient Information”, available on the Internet at www.tektronix.com. 

[3] Agilent Application Note 5962_0015E, “Precision Time Domain Measurements using the Agilent E1430A”, available on the Internet at 

www.agilent.com. 

[4] ENV 13005:1999, Guide to the Expression of Uncertainty in Measurement. 

[5] H. W. Johnson and M. Graham, High Speed Digital Design-A Handbook of black magic, Englewood Cliffs, NJ, Prentice Hall, 1993. 

http://www.tektronix.com/
http://www.agilent.com/

