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16 Abstract
17 Objective
18 The corticospinal responses of the motor network to transcranial magnetic stimulation (TMS) 
19 are highly variable. While often regarded as noise, this variability provides a way of probing 
20 dynamic brain states related to excitability. We aimed to uncover spontaneously occurring 
21 cortical states that alter corticospinal excitability.

22 Approach
23 Electroencephalography (EEG) recorded during TMS registers fast neural dynamics -- 
24 unfortunately, at the cost of anatomical precision. We employed analytic Common Spatial 
25 Patterns (aCSP) technique to derive excitability-related cortical activity from pre-TMS EEG 
26 signals while overcoming spatial specificity issues. 

27 Main results
28 High corticospinal excitability was predicted by alpha-band activity, localized adjacent to the 
29 stimulated left motor cortex, and suggesting a travelling wave-like phenomenon towards 
30 frontal regions. Low excitability was predicted by alpha-band activity localized in the medial 
31 parietal--occipital and frontal cortical regions. 

32 Significance
33 We established a data-driven approach for uncovering network-level neural activity that 
34 modulates TMS effects. It requires no prior anatomical assumptions, while being 
35 physiologically interpretable, and can be employed in both exploratory investigation and brain 
36 state-dependent stimulation.
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37 Introduction
38 Transcranial magnetic stimulation (TMS) applied to the human neocortex produces highly 
39 variable effects [1–3]. This variability can be partially attributed to the dynamic nature of neural 
40 activity in the stimulated brain area. Rather than treating the TMS readout as a true effect 
41 obscured by noise, this can be seen as the result of the interplay between the stimulation effect 
42 and the brain’s endogenous neuronal activity [4]. Such a conceptual approach to TMS effects 
43 allows exploiting variability in the readout to study dynamic brain states [5]. In this study, we 
44 explored this approach in combination with machine learning (ML) analysis techniques to 
45 identify functionally relevant patterns of cortical activity in relation to TMS effects.

46 Previous studies within the sensorimotor network have associated fluctuations in TMS effects 
47 with the state of oscillatory cortical activity recorded with electroencephalography (EEG). The 
48 power and phase characteristics of neuronal oscillations recorded just before or at the onset of 
49 stimulation have been linked to the level of TMS-induced excitation of corticospinal pathways, 
50 represented by motor evoked potentials (MEP) [6]. The effects of endogenous neuronal 
51 oscillations on TMS-evoked activity may originate in the dynamics of local and global cortical 
52 excitability, i.e., the probability that a given neuronal population will respond to an input signal 
53 [7]. Furthermore, excitatory and inhibitory connections from other regions of the functional 
54 network in study may affect the excitability of the stimulated area. The connectivity state 
55 between communicating cortical areas may be inferred from their oscillatory signals by 
56 measuring the alignment of their phases [8]. Indeed, in primates, the spiking rate of individual 
57 neurons was found to depend on the phase-coupling between local field potentials in distal 
58 regions [9]. Thus, relative phases across brain regions, in addition to local oscillatory power 
59 and phase, may partially explain variability in the MEP amplitude. The variability of TMS 
60 effects offers a unique opportunity to investigate state dynamics of the brain network activity. 

61 Despite active ongoing research, neuronal processes modulating TMS effects within the 
62 sensorimotor network are still largely unknown. In the context of EEG—TMS studies, some 
63 of the obstacles on this path are low signal-to-noise ratio of EEG oscillations, mixing of source 
64 signals in scalp recordings due to volume conduction, and scarcity of prior knowledge about 
65 functionally relevant cortical sources. To overcome the first two issues, source activity can be 
66 reconstructed through spatial filtering of sensor signals, wherein a weighted average of sensor 
67 signals is taken [10]. However, commonly used “model-based” source reconstruction 
68 techniques require prior assumptions about source locations as well as a forward model (i.e., 
69 the signal’s source-to-sensor mixing process) [11]. In the absence of either, spatial filtering can 
70 be achieved with “data-driven” Blind Source Separation (BSS) techniques, such as Common 
71 Spatial Patterns (CSP). CSP is designed to separate a multivariate EEG signal into components 
72 that are most distinguishing between discrete experimental conditions or outcomes [12,13]. 
73 CSP is commonly used in the field of brain-computer interfaces to decode right- vs. left-hand 
74 motor imagery from periods of spatially specific event-related desynchronization detected in 
75 EEG signals [14]. In our study, we used a variant of CSP, called analytic CSP (aCSP), that is 
76 particularly suitable for studying oscillatory phenomena as the analytic signal (derived using 
77 the Hilbert transform) simultaneously encodes instantaneous phase and amplitude using 
78 complex numbers, and this allows a separation of multivariate signals based on both amplitude 
79 relationships and also phase relationships. Signal components produced by aCSP, commonly 
80 referred to as spatial patterns, can capture dynamics of both local oscillatory amplitude (e.g., 
81 standing waves) as well as network-level phase-specific communication between neuronal 
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82 populations (e.g., phase-coupling phenomena and travelling waves). Employing these 
83 components as features in an ML classifier quantifies their relevance for the experimental 
84 conditions. In principle, aCSP provides an opportunity to uncover neuronal correlates of 
85 targeted brain function, while requiring little prior knowledge and/or assumptions about the 
86 nature of the neuronal activity in question.

87 Within the domain of EEG—TMS, aCSP can be employed to detect neuronal processes, which 
88 interact with the effects of TMS and thus predict stimulation outcomes. Previous studies have 
89 shown applicability of ML methods to EEG—TMS-based brain state identification [15,16]. 
90 We applied aCSP to an EEG—TMS dataset obtained in the course of single-pulse TMS of the 
91 primary motor (M1) cortex. We used EEG components extracted with aCSP as features in an 
92 ML classifier to predict MEP amplitudes from pre-stimulus EEG signals. Furthermore, we 
93 examined the components to identify functionally relevant cortical activity and describe its 
94 spatial, temporal, and spectral characteristics [17]. Overall, this paper proposes a new data-
95 driven approach to studying the variability of TMS effects and their relationship with brain 
96 activity that could lead to a better understanding of the underlying neuronal processes. Such an 
97 approach is applicable at an exploratory stage of an investigation, as well as within the domain 
98 of brain state-dependent stimulation both in research and clinical application.

99 Methods
100 Dataset
101 The dataset used in this study consisted of 20 EEG—TMS recordings. Experiments were 
102 performed on right-handed healthy adult participants with no known neurological conditions 
103 (12 females, 8 males, mean age ± SD = 26 ± 4). All participants provided written informed 
104 consent prior to participation. The study was approved by the ethics committee at the Faculty 
105 of Medicine in the University of Tübingen (approval ID: 810/2021BO2) and conducted in 
106 accordance with the Declaration of Helsinki. The EEG—TMS recordings were acquired 
107 previously for other purposes with slight variations in the experimental protocol. Single TMS 
108 pulses (1000—1200 pulses) were applied over the hand knob area in the left M1 at 110% of 
109 the resting motor threshold (RMT) at 2—3-s intervals with random jitter (2 ± 0.25, 2.1 ± 0.1, 
110 3 ± 0.5 s, depending on the protocol of the given recording). EEG with 126 channels (positioned 
111 following the international 10/10 placement system) recorded continuous signal from the scalp 
112 with a 5-kHz sampling rate, while 2 bipolar EMG channels recorded activity from the abductor 
113 pollicis brevis (APB) and the first dorsal interosseous (FDI) muscles of the right hand. The 
114 experimental procedure, the acquired dataset, as well as the data preprocessing pipeline are 
115 described in more detail elsewhere [15] (the data acquisition description for participants 1--9 
116 is described in Zrenner et al. [18]).

117 EEG preprocessing
118 EEG data was preprocessed using the methods described in Metsomaa et al. [15]. Briefly, trials 
119 were epoched around the TMS pulse, raw EEG signal within a 1.5-s window (1.500—0.005 s) 
120 before each TMS pulse was downsampled to 1 kHz, after which slow trends were removed 
121 from the signal. Noisy channels and trials were excluded from the data based on their deviation 
122 from the respective median noise level. Then, eye movement artefacts were removed from the 
123 signal with Independent Component Analysis (ICA). Cleaned EEG data were filtered in the 
124 8—30-Hz band with a 6th-order Butterworth filter and downsampled to 250 Hz. The frequency 
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125 range of the bandpass filter spanned the alpha- and beta-range, both of which are known to be 
126 functionally relevant oscillatory frequency bands within the sensorimotor network [19]. 
127 Finally, the signals were transformed into their analytic representation with the Hilbert 
128 transform. The signal within a 0.5-s window (0.505—0.005 s) preceding the TMS pulse was 
129 used for the subsequent analysis, leaving 124 time samples in each epoch. The time window 
130 was selected such that it included at least 4 cycles of each retained frequency [20].

131 EMG preprocessing
132 EMG signals from the APB and FDI muscles of the hand were preprocessed in the following 
133 way: continuous EMG signals were separated into 1-s-long epochs centered at each TMS pulse. 
134 Epochs containing pre-innervation within the 300-ms pre-stimulus window of the EMG 
135 (defined as a maximum peak-to-peak signal exceeding an individual threshold set between 30 
136 and 40 µV) were excluded from further analysis. Slow trends and TMS-related artefacts were 
137 removed from the remaining epochs (for a detailed description of the preprocessing procedure, 
138 see Metsomaa et al. [15]). MEP amplitudes were calculated on the clean EMG signals as a 
139 peak-to-peak amplitude distance in the 18—55 ms window after the TMS pulse. MEP 
140 amplitudes from the muscle with the higher average amplitude value for a given subject were 
141 selected for further analysis. All trials were divided into a “High” and a “Low” corticospinal 
142 excitability condition (henceforth referred to simply as “High” and “Low”) based on the 
143 respective MEP value. In order to do so, while taking into account possible slow trends in the 
144 amplitudes across the experimental session, a dynamic baseline was defined as a moving 
145 median of 150th order across successive trials. The MEP values were labelled as “High” or 
146 “Low” depending on whether they were above or below their respective baseline.

147 aCSP
148 Analytic CSP was applied to EEG data, following the approach described in Falzon et al. [13] 
149 (Figure 1). aCSP decomposes multivariate data into a set of components using generalized 
150 eigenvalue decomposition (GED). This method takes complex spatial covariance matrices for 
151 each condition as input and generates a set of eigenvectors and eigenvalues. The eigenvectors 
152 are used as spatial filters to extract signal components that account for the maximum variance 
153 in one condition and the minimum variance in the other. These components can be considered 
154 as reconstructed source-level neuronal activity that exhibits the difference between the 
155 experimental conditions. aCSP analysis was applied to each subject’s EEG data in the 
156 following way.

157 All available trials in a given condition were ranked based on their respective MEP values (see 
158 EMG preprocessing). 200 trials with the highest MEP values in the “High” condition and the 
159 same number of trials with the lowest MEP values in the “Low” condition were selected, 
160 leaving 400 trials for the subsequent analysis. This selection aimed to maximize the separability 
161 of the two conditions.

162 Within each condition, spatial complex-valued covariance matrices were calculated from the 
163 pre-stimulus analytic EEG signals and averaged across trials. From each trial's EEG epoch 
164 contained in an 𝑛 × 𝑚 complex-valued matrix denoted as 𝑿, with n being the number of EEG 
165 channels and m being the number of time samples, a normalized 𝑛 × 𝑛 covariance matrix 𝑹 

166 was calculated as: 𝑹 =
𝑿𝑿∗

tr(𝑿𝑿∗). The denominator in the equation is the trace of the covariance 
167 matrix or the sum of the squares of the samples from each channel and 𝑿∗ denotes complex 
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168 conjugate transpose of 𝑿. The two averaged covariance matrices were then used for the aCSP 
169 analysis.

170 aCSP was performed by means of GED for each condition separately, maximizing signal 
171 variance in the chosen condition while minimizing the total variance (represented by a sum of 
172 the two averaged covariance matrices from both conditions). To prevent overfitting to noise, 
173 the GED was regularized with a coefficient weighted by channel-wise variances. The 
174 regularization coefficient was selected via a cross-validation (CV) procedure as a value 
175 between 1𝑒―8 and 1𝑒―1 (see Classification and cross-validation), and the channel-wise 
176 variances were averaged across all analyzed trials from both conditions pulled together.

177 The output of aCSP is represented by an 𝑛 × 𝑛 matrix, where each column is an eigenvector, 
178 accompanied by a set of n corresponding eigenvalues. These eigenvectors serve as spatial 
179 filters for the sensor-level EEG signals. The eigenvalues represent the proportional differences 
180 in the amount of variance explained by each eigenvector between the two conditions. We 
181 selected eigenvectors with the largest eigenvalues, maximizing signal variance for one of the 
182 two conditions. Between 2—6 spatial filters were chosen for further analysis, with an equal 
183 number of filters for each condition.  The number of filters was selected via the CV procedure 
184 and differed across the CV folds (see Classification and cross-validation). Since input 
185 covariance matrices were complex-valued, the resulting aCSP filters were also complex-
186 valued.

187 The variance of each aCSP component was then used as a predictor for the excitability 
188 condition label. Specifically, the variance of each component in a given trial quantifies the 
189 power of that component within the EEG signal in that trial. The given component’s predictor 
190 feature p was calculated from the single spatial filter contained in a 𝑛 × 1 complex-valued 
191 vector 𝒇 as:  𝑝 = |𝑓∗𝑅𝑓|. This yielded one feature value per trial for each aCSP component 
192 (i.e., 2—6 values per trial, depending on the number of filters in a given cross-validation fold).

193 We performed a few variations of the analysis in order to characterize the predictive 
194 components. In order to verify, whether the predictive component is time-locked to the 
195 stimulation event, we repeated the analysis with both variance and phase of the component 
196 time courses as predictor features in LDA. While variance of a time course served to quantify 
197 presence of the component in the analyzed time window, phase of a time course served to 
198 quantify the extent to which the activity of the predictive component was time-locked to the 
199 stimulation event, i.e., whether the time courses were aligned across trials in their phases with 
200 respect to the stimulation event. The phase was derived from the spatially filtered complex-
201 valued time course at the last time sample of the analyzed window (12 ms before the pulse) 
202 and was transformed into sine and cosine of the angle of the complex value before being passed 
203 on to LDA. Next, we performed the analysis with only phase features as predictors in LDA. In 
204 both cases sine and cosine of the angle were passed to LDA as two separate features. Finally, 
205 we tested whether phase-shifted network activity played a role in the prediction of the 
206 excitability state. Instead of using analytic signals, we performed CSP on real-valued EEG 
207 signals that did not undergo Hilbert transform. Real CSP extracts purely instantaneous activity 
208 (i.e., changes in signal variance happening instantaneously across the scalp), while aCSP 
209 extracts both instantaneous and phase-shifted activity (i.e., changes in signal variance phase-
210 shifted across the scalp). In addition, we compared the power of real and analytic CSP 
211 components within the same trials for each subject by calculating the filters on the same 
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212 training set (320 trials), applying them to the same test set (80 trials), calculating logarithm of 
213 the variance of each component within each trial and performing Pearson correlation between 
214 CSP and aCSP components across test trials.

215  

216
217 FIGURE 1. ANALYSIS PROCEDURE. A. For each subject, all experimental trials were 
218 separated into High and Low excitability conditions according to their corresponding 
219 MEP amplitude. B. Preprocessed pre-stimulus EEG signals from 0.5 s before each TMS 
220 pulse were then divided into two groups according to the condition labels. C. Covariance 
221 matrices of the EEG signals from both conditions were averaged across trials for each 
222 condition and used in aCSP analysis. D. The aCSP produced spatial filters aimed at 
223 isolating signal components that maximize separation between the two experimental 
224 conditions. The effectiveness of separation was tested in the following way. E. The pre-
225 stimulus EEG signals were spatially filtered with the aCSP filters. F. The variance of the 
226 filtered signal components in each trial was employed as features in LDA classification 
227 to predict the excitability condition. The classification accuracy was measured as a 
228 proportion of correctly classified trials with respect to the original labelling based on the 
229 MEP amplitude. With the exception of the condition labelling stages (A—B), the aCSP 
230 analysis underwent a 5-time 5-fold CV procedure (outer CV layer, C—F). The average 
231 classification accuracy across all CV folds of this layer was taken as an overall 
232 classification accuracy of the given subject. The hyperparameters used in aCSP were 
233 derived via an additional 5-fold CV procedure on each iteration of the outer CV layer 
234 (inner CV layer, C—F). 
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235 Classification and cross-validation
236 A classification analysis was performed to test whether the obtained aCSP components were 
237 predictive of the excitability condition. In each iteration of the analysis, 400 trials from a single 
238 subject’s data were randomly divided into a training and a test set in a 4:1 ratio, i.e., with 320 
239 trials in a training set and 80 trials in a test set. Both the training and the test sets included an 
240 equal number of trials from each condition. The aCSP filters were generated using the training 
241 set, and they were then applied to both the training and the test sets to create predictors for the 
242 classification. Regularized Linear Discriminant Analysis (LDA) with automatic 
243 hyperparameter optimization was then trained on the training set and applied to the test set to 
244 predict the condition labels from the variance of the aCSP components. The percentage of 
245 correctly classified test set trials was taken as the classification accuracy.

246 To ensure that the classification results were not driven by possible outliers in the randomly 
247 assigned test set, the results were calculated on and averaged across various training-test 
248 partitions of trials. This was implemented via a 5-time 5-fold CV procedure (Figure 1). Each 
249 subject’s data were randomly split into five equal folds, with one fold assigned as a test set. 
250 The whole analysis including aCSP and LDA was repeated with different training—test set re-
251 assignments until all available folds had been used as a test set once (i.e., five times). 
252 Furthermore, the partitioning of data into folds was repeated five times to average out the 
253 effects of randomness in the data splitting process. The average classification accuracy across 
254 all 5 ×  5 repetitions of analysis was taken as the classification accuracy of the given subject. 

255 Furthermore, the CV operated on two levels. The outer layer was dedicated to the estimation 
256 of a given subject’s classification accuracy and was performed as described above. The inner 
257 layer of CV was dedicated to the selection of analysis hyperparameters, i.e., the number of 
258 aCSP filters (2, 4 or 6 filters) and the value of the aCSP regularization coefficient (1𝑒―8, 1𝑒―6, 
259 1𝑒―4, 1𝑒―2, and 1𝑒―1). The hyperparameters were selected via a 5-fold CV procedure, which 
260 was performed anew for each fold iteration of the outer layer. The combination of 
261 hyperparameters that yielded the highest average classification accuracy across the five folds 
262 of the inner layer was used on the outer layer. In this way, the optimal hyperparameters were 
263 estimated individually for each CV fold..

264 Spatial patterns analysis
265 The aCSP filters can be viewed as inverse operators to retrieve neuronal source activity from 
266 multidimensional EEG signals. The filters can be transformed into spatial EEG patterns, also 
267 known as activation patterns or topographies, which are then equivalent to forward models. 
268 These patterns reflect how the source signal projects onto the sensor space (i.e., source-to-
269 sensor spatial mapping), and are in principle neurophysiologically interpretable.

270 The spatial patterns could not be obtained directly from the classification analysis due to the 
271 use of a CV procedure with varying hyperparameters and subsets of data. Consequently, the 
272 spatial patterns used for interpretation were obtained in a separate analysis procedure and, 
273 therefore, were associated with but did not directly correspond to either the aCSP components 
274 used in the classification analysis or the classification results. The spatial patterns were 
275 obtained in the following way. To obtain the spatial patterns for a given subject, the aCSP 
276 filters were calculated on all 400 trials, without separation into training and test sets. The 
277 regularization coefficient value was obtained from a CV-fold of the main analysis with the 
278 highest classification accuracy. The spatial patterns were calculated using the method described 
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279 in Haufe et al. [17]. The complex-valued 𝑛 × 𝑛 matrix 𝑾, with columns being the filters, was 
280 transformed into a complex-valued 𝑛 × 𝑛 matrix 𝑨, with columns being spatial patterns, as:  𝑨
281 = 𝑾―⊤, where ― ⊤ denotes the complex conjugate transpose of the inverse. Before averaging 
282 across subjects, each pattern was individually normalised to unit-norm. 

283 We selected a single pattern with the largest eigenvalue, i.e., the most distinct between the two 
284 conditions, for each condition and each subject for all further "interpretation” analysis. The 
285 patterns were calculated only for the subjects that yielded classification accuracy above chance 
286 level (see Statistical analysis). Since both the filters and the associated spatial patterns were 
287 complex-valued, the magnitude and phase parts of the pattern topographies were visualized 
288 separately [13]. The magnitude part represents the distribution of amplitude across sensors, and 
289 was derived by taking the absolute values of the complex-valued pattern. The phase part 
290 represents the distribution of phase shifts across sensors. While the complex-valued aCSP 
291 filters used in the main analysis, as well as the spatial magnitude patterns derived from them, 
292 were reference-free (i.e., had an averaged reference), the phase patterns derived at the 
293 interpretation stage were re-referenced to particular channels in order to visualize relative phase 
294 shifts across the scalp. Before deriving the phase pattern, the complex-valued “High” pattern 
295 was referenced to the FCC3h channel, so that the value at each channel quantifies the phase 
296 shift between that channel and FCC3h. Meanwhile, the “Low” pattern was referenced to the 
297 Cz channel. The phase pattern was then derived by computing the angles of the complex-valued 
298 pattern. The choice of a reference channel was to some extent arbitrary, selected such that they 
299 result in visually smooth phase shift distributions across the scalp in the respective group-
300 averaged pattern to facilitate visual interpretability. All missing channels were interpolated 
301 with spherical spline interpolation before computing magnitude and phase patterns.

302 Time and frequency analysis
303 Filtering EEG signals with an aCSP filter produces a time course of the extracted signal 
304 component. This time course can be assessed in terms of its temporal dynamics and spectral 
305 characteristics. The following analysis was performed only on the subjects with significant 
306 classification results. A 1.25-s-long pre-stimulus analytic EEG signal with a 250-Hz sampling 
307 rate was divided into a training and a test set (160 and 40 trials, respectively, within each 
308 condition). The aCSP filters were then calculated on a 0.5-s window of the training set and 
309 applied to a 1.25-s window of the test set. The power spectra of the time courses were estimated 
310 within an 8—30-Hz frequency range, averaged across trials, and then across subjects. To 
311 visualize the temporal dynamics of the components, the envelope of the filtered signals, 
312 reflecting the amplitude as a function of time, was computed by taking the absolute value of 
313 the analytic signal and averaged across trials of the test set, and then across subjects. Before 
314 averaging across subjects, the envelope was normalized to unit-norm within each component 
315 but across trial-average time courses from both conditions pulled together, for visualization 
316 purposes.

317 To further explore the spectral specificity of the discriminative components, we repeated the 
318 main analysis on signals that were bandpass-filtered to different frequency bands: 4—8 Hz, 
319 8—13 Hz, 13—30 Hz, and 30—40 Hz within the same time window of 0.5 s preceding the 
320 TMS pulse. The frequency bands were not equal in size but rather were chosen to correspond 
321 to theta, alpha, beta, and low gamma-rhythms, respectively.  Of note, theta- and low gamma-
322 bands were outside of the frequency spectrum of the main analysis but were still included for 
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323 comparison. To explore the time specificity of the components, the main analysis was repeated 
324 at different latencies of the pre-stimulus signal, overlapping by 250 ms: 1250—750 ms, 1000—
325 500 ms, and 750—250 ms before the TMS pulse. The signals were bandpass-filtered to 8—30 
326 Hz, as in the main analysis.

327 Statistical analysis
328 To account for possible deviations of the data from normality, the significance threshold was 
329 determined by performing a permutation test on each of the 20 subjects. For that, the aCSP 
330 procedure was repeated with the following modification. After the trials were selected based 
331 on their MEP amplitudes (see aCSP) but before proceeding with the aCSP analysis, the 
332 condition labels were randomly permuted across the selected trials. The permutation procedure 
333 and the subsequent analysis were repeated 1,000 times, and the resulting classification accuracy 
334 values formed a null distribution of the classification results. The accuracy at the 95th percentile 
335 of the distribution marked an upper confidence limit for a given subject and its average value 
336 across subjects was taken as a significance threshold for all subjects. Of note, the permutation 
337 test was performed for the main analysis (i.e., with variance of aCSP components used as a 
338 predicting feature) but not for any further analysis that used other predicting features, for which 
339 statistical significance was not evaluated.

340 Since aCSP analysis was performed on each subject independently, there is no imposition on 
341 the extracted signal components to represent the same neurophysiological phenomenon across 
342 subjects in terms of function or spatial localization. The only explicit commonality between 
343 them is the predictiveness over the excitability condition. However, the spatial similarity 
344 between aCSP patterns from different subjects would indicate the physiological validity and 
345 generalizability of the individually derived patterns on a population level. The spatial similarity 
346 across the aCSP patterns was statistically tested with a correlation analysis on a subset of 
347 subjects with statistically significant classification results. For each selected pattern, channels 
348 excluded at the preprocessing stage were interpolated before the analysis. Then, correlation 
349 coefficients were calculated between each individual magnitude topography and the group-
350 average topography. The average correlation coefficient was then taken as a measure of 
351 similarity. The analysis was performed separately for each excitability condition.

352 The statistical significance of the result was evaluated with two permutation tests, by shuffling 
353 either EEG channels within the selected patterns or the selection of the patterns as such. The 
354 first test compared the similarity among the patterns against the similarity between random 
355 spatially uncorrelated sets of values. Before the correlation analysis, channels were randomly 
356 permuted within each topographical map. The procedure was repeated 10,000 times, and the 
357 correlation value at the 95th percentile of the resultant null distribution was taken as a 
358 significance threshold. The second test compared the similarity among the patterns against 
359 other aCSP patterns, thereby testing the uniqueness and salience of the patterns associated with 
360 the highest eigenvalues. When GED is performed, the same number of filters is generated for 
361 each condition as there are channels present in the EEG data, although only the ones with the 
362 highest eigenvalues are utilized for most analysis. Here, instead of permuting channels within 
363 a tested pattern, the remaining aCSP patterns from the same condition were used.  On each 
364 iteration, a pattern was randomly drawn from a complete set of patterns within a given 
365 condition from a given subject. Correlation coefficients were calculated between randomly 
366 drawn patterns and their average pattern, and finally a mean correlation coefficient was taken. 
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367 This procedure was repeated 10,000 times, and the correlation coefficient value at the 95th 
368 percentile of the obtained distribution was taken as a significance threshold.

369 Validation analysis
370 In order to validate the results, we applied the same analysis to a different EEG—TMS dataset. 
371 This dataset consisted of recordings from 10 healthy right-handed adult participants who did 
372 not have any known neurological conditions. Single-pulse TMS was applied over the hand 
373 knob area in the left M1 using 800 pulses at an intensity of 110% of RMT, with an inter-
374 stimulus interval of 2.25 s and a random jitter of ±0.125 s. EEG was recorded throughout the 
375 experiment by a 64-channel system with a 5-kHz sampling rate, while EMG activity from the 
376 APB and FDI muscles of the right hand was measured with 2 bipolar channels. The 
377 preprocessing and analysis pipeline used in the main analysis was applied to this dataset the 
378 same way as described above for the primary dataset.

379 Results
380 Example of an individual analysis pipeline
381 For illustrative purposes, in the following section we will present the analysis steps and results 
382 using an individual subject as an example case (Figure 2). The preprocessed EEG epochs were 
383 categorized into either the “High” or “Low” condition based on their corresponding MEP 
384 amplitudes (Figure 2A). From each condition, 200 trials were selected for further analysis. The 
385 trials with the highest and lowest MEP amplitudes above or below the moving median, 
386 respectively, were chosen. aCSP was then performed on the selected data, generating spatial 
387 filters targeted at each condition (Figure 2B). The EEG data was subsequently spatially filtered 
388 to isolate the signal components, and the variance of these components in each trial served as 
389 predictors of the condition label in LDA classification. We employed the nested cross-
390 validation procedure, repeating the aCSP+LDA analysis multiple times with different subsets 
391 of trials and different hyperparameter values. The overall prediction accuracy for each subject 
392 was determined by calculating the average classification accuracy across all cross-validation 
393 (CV) rounds.

394 For the interpretation stage, all 400 trials of EEG data were used in the GED, generating signal 
395 components without conducting any classification analysis. We selected only the components 
396 with the highest eigenvalues (i.e., most discriminating between the excitability conditions) for 
397 further interpretation. The spatial, temporal and spectral characteristics of these components 
398 are visualized in Figure 2B, C, D, E, and F. As the filters were complex-valued, the magnitude 
399 (i.e., absolute value) and phase topographies are visualized separately (Figure 2B). Although 
400 the filters themselves are not directly visually interpretable, they can be transformed into spatial 
401 patterns that allow for physiological interpretation. The patterns are visualized as pairs of 
402 magnitude and phase maps (Figure 2C). When considered together, they describe the 
403 progression of an oscillatory signal across the scalp. The dynamic nature of the complex-valued 
404 spatial pattern can be alternatively depicted as the change in voltage distribution as a function 
405 of phase (Figure 2D). Multiplying the pattern with a generic unit-amplitude oscillation 
406 projected from the source offers a different view of the voltage dynamics. In further text, we 
407 will restrict pattern visualization to magnitude and phase topographies, as shown in Figure 2C. 

408 Finally, we spatially filtered EEG signals with the aCSP filters to derive time courses of the 
409 associated signal components. The amplitude of these time courses corresponds to the 
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410 component’s presence in the EEG signal at a given point in time (Figure 2E). Importantly, the 
411 phase of the filtered signal at any given latency does not play a role in the MEP prediction, 
412 only the variance of the component across the analyzed pre-stimulus window does. The filters 
413 were created based on 0.5-s-long signals but were applied to longer 1.25-s epochs from a set 
414 of trials not used when generating the filters. For this subject, the presence of the components 
415 in the signal fluctuates with time but does not exhibit any change in the temporal proximity to 
416 the pulse. However, the presence of the “High” component is consistently more evident in the 
417 trials that resulted in high MEP amplitude as opposed to the trials that ended with low MEP 
418 amplitude. This was not the case to the same extent for the “Low” component. Additionally, 
419 the time courses were decomposed into their spectral representation (Figure 2F). Here the 
420 spectral peak in the alpha-frequency band is evident, for both the “High” and the “Low” 
421 components.

422
423 FIGURE 2. EXAMPLE RESULTS FROM A SINGLE SUBJECT. A. Separation of trials into the 
424 “High” (in red) and “Low” (in blue) corticospinal excitability conditions based on the 
425 MEP amplitude. Black line corresponds to a moving median of 150th order separating the 
426 data into the two conditions. B. Spatial filters generated with aCSP for the “High” (top) 
427 and “Low” (bottom) conditions. Complex-valued spatial filters are visualized as pairs of 
428 magnitude (absolute values, left) and phase (right) topographies. C. Spatial patterns 
429 derived from the spatial filters (in B). The complex-valued spatial patterns are visualized 
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430 as pairs of magnitude (left) and phase (right) topographies. Phase topographies depict 
431 spatial distribution of phase lags across the scalp with respect to a reference channel 
432 (indicated with a black dot). D. Dynamical depiction of spatial patterns for the “High” 
433 (middle row) and “Low” (bottom row) conditions as a function of phase (top row). The 
434 spatial patterns from C can be alternatively visualized as the change in voltage 
435 distribution across the scalp as a function of a phase of an oscillatory signal projected 
436 onto the scalp. See also Figure S1. E. Time course of the “High” (top) and “Low” (bottom) 
437 aCSP components. Time courses are visualized as the real part (left) and the envelope 
438 (right) of the filtered signal, averaged across trials. For comparison, both components 
439 were extracted from the EEG signals from both “High” (in red) and “Low” (in blue) trials. 
440 Dashed vertical lines indicate the time of the TMS pulse. F. Power spectrum of the “High” 
441 (top) and “Low” (bottom) aCSP components. Power spectrum was calculated on the 
442 spatially filtered signals.

443 Classification accuracy
444 To assess the predictive value of the aCSP components for MEP amplitude, we used the 
445 variance of the components in each trial as features in a classification test (see Classification 
446 and cross-validation). The accuracy of the classification, measured as the proportion of 
447 correctly classified trials with respect to their pre-defined excitability labels, served as an 
448 indicator of prediction success. The average classification accuracy across 20 subjects was 68% 
449 ± 8% (mean ± SD), ranging between 57% and 91%. The statistical significance of the 
450 individual classification results was evaluated by establishing confidence limits from a null 
451 distribution (see Statistical analysis). The null distribution’s median was at 50% for all subjects, 
452 while the group-average upper confidence limit was 59% ± 0.5%. With the significance 
453 threshold set at 59%, the excitability condition was successfully predicted for 19 out of 20 
454 subjects. This accuracy was achieved when the number of used aCSP components was allowed 
455 to vary across CV folds between 1, 2, or 3 highest components per each experimental condition 
456 (2, 4, or 6 components in total). When restricting the analysis to the single highest aCSP 
457 component per condition (2 components in total), the average classification accuracy was 66% 
458 ± 9%, with 16 out of 20 subjects exhibiting significant prediction accuracy. 

459 We repeated the analysis with the real-valued EEG signals, rather than their analytic 
460 representation, which would correspond to the standard CSP approach. Thus, we implicitly 
461 tested whether addition of phase-shifted network activity to instantaneous activity improved 
462 prediction of the excitability state. The average classification accuracy across 20 subjects was 
463 68% ± 8%, ranging between 55% and 92%, making the classification success identical between 
464 CSP and aCSP. We further repeated the aCSP analysis, employing both the component’s 
465 variance across the trial as well as the instantaneous phase at the end of the analyzed time 
466 window (12 ms before the pulse), as predictor features in LDA. Thus, we tested whether the 
467 effect of the aCSP component on the state prediction was time-locked to the stimulation event. 
468 Since the phase is not a linear measure, it was included in the LDA in the form of sine and 
469 cosine of the phase as two separate features. The average classification accuracy across 20 
470 subjects was 67% ± 8%, ranging between 54% and 92%, making the classification success 
471 identical with the main results of aCSP, which included only variance as the predictor. Finally, 
472 we ran the aCSP analysis with only the instantaneous phase at the end of the window of the 
473 component time course as a predictor in LDA. The average classification accuracy across 20 
474 subjects was 51% ± 2%, ranging between 48% and 58%, making it essentially chance level 
475 prediction.
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476 Spatial patterns
477 To assess the spatial similarity of the aCSP components, we derived spatial magnitude maps 
478 from the individual components (see Spatial patterns analysis). We averaged these maps across 
479 subjects and measured the spatial correlation between each subject’s map and the average map 
480 within each condition (see Statistical analysis). To evaluate the statistical significance of 
481 correlation, we calculated confidence intervals (CI) using two approaches: random permutation 
482 of channels (referred to as CI-channel) and random selection of a pattern from each subject’s 
483 full set of derived aCSP patterns for a given condition (referred to as CI-pattern).

484 The magnitude map represents how the component’s underlying sources are projected onto the 
485 scalp. The average spatial pattern of the “High” excitability condition exhibited distributed 
486 localization in the left central—parietal, left frontal—central, right frontal and occipital areas 
487 (Figure 3A). The analyzed individual patterns exhibited significant spatial correlation, although 
488 they were no more correlated with each other than a combination of any other individual 
489 patterns generated by the aCSP for the “High” condition (Pearson’s r = 0.3, CI-channel = 0.03, 
490 CI-pattern = 0.36). Upon visual inspection, a similar pattern recurred in 6 out of 19 subjects, 
491 primarily located in the left central—parietal area (Figure 3C).

492 In the “Low” excitability condition, the average spatial pattern was localized in the right 
493 parietal—occipital, medial frontal and bilateral temporal areas (Figure 3B). The analyzed 
494 patterns also exhibited statistically significant similarity, but to no greater extent than other 
495 patterns from the same condition (Pearson’s r = 0.25, CI-channel = 0.03, CI-pattern = 0.34).  
496 Upon visual inspection, a similar pattern repeated in 6 out of 19 subjects, localized in the medial 
497 parietal—occipital and frontal areas (in a different subset of subjects compared to the “High” 
498 condition, Figure 3D).

499 To assess the phase patterns of the components, we calculated phase maps for subjects with 
500 similar magnitude patterns in “High” (Figure 3E) or “Low” (Figure 3F) conditions (𝑁=6 in 
501 each subset). The phase values represent the phase shift in each channel with respect to the 
502 reference, and their signs indicate the direction of phase progression. The signs are arbitrary 
503 and depend on the choice of the reference EEG channel, from which the phases were 
504 subtracted. The average phase pattern in the “High” condition revealed a phase shift relative to 
505 the phase in the FCC3h channel along the posterior—anterior direction slanting toward the 
506 vertex (Figure 3E). When re-referenced to more posterior channels (e.g., CP3), the direction of 
507 the phase shift changed, suggesting the presence of a travelling wave along the posterior—
508 anterior path through the left central area of the stimulated hemisphere. For the “Low” 
509 condition, the topographical phase distribution showed a phase shift along the posterior—
510 anterior direction relative to the phase in the Cz channel, indicating a travelling wave along the 
511 posterior—anterior path through the mid-central area (Figure 3F).

512 Since real and analytic CSP components performed equally well in the MEP amplitude 
513 prediction, we verified whether CSP and aCSP isolated the same EEG components. We did so 
514 by running one iteration of both CSP and aCSP analysis on the same training set (320 trials) 
515 and applying the first filters from both of them to the same testing set (80 trials). Then we 
516 calculated Pearson correlation coefficient between the log of variance of CSP and aCSP 
517 components across test trials in each subject. The components were significantly correlated in 
518 all subjects in both conditions (p<0.05), with an average correlation coefficient across subjects 
519 in the High component of 0.79 ± 0.2, while the average in the Low component was 0.81 ± 0.23.
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520
521 FIGURE 3. SPATIAL PATTERNS. A—B. Group-average magnitude topography for the 
522 “High” (A) and “Low” (B) spatial patterns. The “High” pattern corresponds to a 
523 component explaining the most variance in the high-excitability trials and least variance 
524 in the low-excitability trials, while the “Low” pattern corresponds to a component 
525 explaining the most variance in the low-excitability trials and least – in the high-
526 excitability trials. The colors represent the distribution of amplitude of the component 
527 across the scalp. The average topographies were calculated on the subjects with 
528 significant prediction accuracy (𝑵 = 𝟏𝟗). See also Figures S2 and S3. C. Group-average 
529 magnitude topography for the “High” spatial pattern calculated on a subset of subjects 
530 with a similar “High” topography (𝑵 = 𝟔). D. Group-average magnitude topography for 
531 the “Low” pattern calculated on a subset of subjects with a similar “Low” topography (
532 𝑵 = 𝟔). E. Group-average phase topography for the “High” pattern calculated on a subset 
533 of subjects with a similar “High” magnitude topography (𝑵 =  𝟔, same subset as in C). 
534 The colors represent the phase shift (in degrees) with respect to a reference channel 
535 (FCC3h channel, indicated with a black dot). All phases were subtracted from the phase 
536 in the reference channel. The channels exhibiting the magnitude below the median of the 
537 magnitude distribution were masked (in grey). F. Group-average phase topography for 
538 the “Low” pattern calculated on a subset of subjects with a similar “Low” magnitude 
539 topography (𝑵 =  𝟔, same subset as in D). The colors represent the phase shift (in 
540 degrees) with respect to the reference channel (Cz channel).
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541 Time and frequency analysis
542 We evaluated the spectral composition of the aCSP components by analyzing the power spectra 
543 of the spatially filtered EEG signals (see Time and frequency analysis). To distinguish the 
544 spectral characteristics of the components from the intrinsic spectral properties of the non-
545 filtered EEG signals, we applied the same filters to the EEG data from both experimental 
546 conditions. Across subjects, the frequencies in the alpha-frequency range dominated the 
547 spectrum, regardless of the applied filters or the condition, which the EEG signals belonged to 
548 (Figure 4A, B). The difference in power of the component between the EEG data from the two 
549 conditions was more prominent with the “High” component than with the “Low” one. 
550 Furthermore, the difference in power between the components was more pronounced with the 
551 EEG data from the “High” rather than “Low” condition.

552 To examine the role of oscillatory activity in different frequency bands in the effect of TMS, 
553 we conducted the analysis using narrower bandpass-filtered EEG signals (Figure 5). The 
554 highest prediction accuracy was achieved when the signals were filtered in the beta-frequency 
555 band (66% ± 8%). However, this accuracy result is still not as high as with the broadband 8—
556 30 Hz signal used in the main analysis. Analysis on the theta-, alpha-, and low gamma-
557 frequency band-filtered analytic signals resulted in accuracies of 60% ± 7%, 62% ± 7%, and 
558 64% ± 9%, respectively (Figure 5A). We hypothesized that the lower prediction accuracy with 
559 narrower spectral filtering may be due to signal distortion. To test this, we further divided the 
560 beta-band into two narrower sub-bands, low beta (13—22 Hz) and high beta (22—30 Hz), and 
561 repeated the analysis. The classification accuracy decreased to 64% ± 8% for both sub-bands, 
562 which was still 2% higher than the accuracy obtained with the alpha-band signal (which had a 
563 still narrower spectral filter), but equivalent to the low gamma-band results (which had the 
564 same filter width). The topographical maps appeared to exhibit more focal patterns when 
565 narrower frequency bands were isolated compared to the results of a broadband analysis 
566 (Figure 5B).

567 For consistency, we averaged the topographical maps from each frequency band across all 
568 analyzed subjects, regardless of the individual statistical significance of the classification 
569 accuracy. The spatial patterns revealed that within the alpha-frequency band, the “High” 
570 condition was predicted by signals from left central—parietal region, while the “Low” 
571 condition was predicted by signals from medial parietal—occipital and frontal locations. 
572 Within the beta-frequency band, the “High” condition was predicted by signals localized in the 
573 left frontal—central, right frontal and occipital areas. The “Low” beta-component was 
574 localized in bilateral temporal regions. Notably, we observed that both “High” and “Low” 
575 spatial patterns derived from the broadband 8—30 Hz signal (Figure 3A) appeared to be 
576 superpositions of respective alpha- and beta-specific patterns (Figure 5B).

577 We examined the temporal dynamics of the aCSP components within the pre-stimulus period 
578 preceding the TMS pulse (see Time and frequency analysis). The amplitude fluctuations of the 
579 components were visualized as an envelope of the filtered signals (Figure 4C, D).  Although 
580 the amplitude of the components varied throughout the 1.25-s period before the pulse, there 
581 were no consistent changes in the signal immediately before the stimulation onset. Notably, 
582 the amplitude of the component was higher in the trials from the congruent condition (i.e., the 
583 “High” component in the “High” trials) as opposed to the incongruent one (i.e., the “High” 
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584 component in the “Low” trials), and this distinction was more pronounced with the “High” 
585 component (Figure 4C, D).

586 To further investigate the significance of the signal’s proximity to the TMS onset, we repeated 
587 the analysis using different time windows relative to the TMS pulse (Figure 6). We observed a 
588 marginal gradual increase in accuracy with increasing proximity to the stimulation onset 
589 (Figure 6A), from 66% ± 8% in the earliest window (1.25—0.75 s) to 68% ± 8% in the latest 
590 window (0.5—0 s). The scalp topographies remained similar across the different windows 
591 (Figure 6B). Within the “High” patterns, there was a gradual shift in amplitude “bridging” the 
592 left central—parietal, left frontal—central and right frontal regions. Similar to the analysis 
593 conducted on different frequency bands described earlier, the spatial patterns were averaged 
594 across all subjects included in the analysis.

595
596 FIGURE 4. POWER SPECTRUM AND AMPLITUDE TIME COURSE OF THE ACSP 
597 COMPONENTS. Spatial filters were computed on the signals within a 0.5-s window before 
598 the TMS pulse (dashed vertical line in C and D) and applied to a longer 1.25-s window 
599 for visualization. The filters were applied to a set of trials that were not used in their 
600 computation. “High” and “Low” labels represent which excitability condition either the 
601 EEG signals or the components correspond to. A—B. Power spectrum of the “High” (A) 
602 and “Low” (B) components isolated from the EEG signals recorded during the “High” (in 
603 red) and “Low” (in blue) trials (mean ± standard error of the mean (SEM) across subjects). 
604 Power spectrum was averaged across trials and then across subjects with significant 
605 classification accuracy (𝑵 =  𝟏𝟗). C—D. Time courses of the amplitude are visualized as 
606 the envelope of the “High” (C) and “Low” (D) components isolated from the signals from 
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607 the “High” (in red) and “Low” (in blue) trials (mean ± SEM across subjects). The time 
608 courses were averaged across trials, normalized to unit-norm for visualization and then 
609 averaged across subjects with significant classification accuracy (𝑵 =  𝟏𝟗).

610
611 FIGURE 5. ACSP ANALYSIS IN DIFFERENT FREQUENCY BANDS. A. Classification accuracy 
612 of aCSP analysis of EEG data filtered in four different frequency bands (mean accuracy 
613 ± SEM across subjects, 𝑵 =  𝟐𝟎). B. Magnitude topographies of the “High” (top) and 
614 “Low” (bottom) spatial patterns in the four analyzed frequency bands. The “High” and 
615 “Low” labels represent, which excitability condition the patterns correspond to. The 
616 colors represent the distribution of the component’s amplitude across the scalp. The 
617 average topographies were calculated on all analyzed subjects (𝑵 =  𝟐𝟎). Of note, higher 
618 accuracy in the beta- and low gamma-band is at least partially due to broader bandpass 
619 filtering of the EEG signals, resulting in less signal distortion.
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620
621 FIGURE 6. ACSP ANALYSIS IN DIFFERENT TIME WINDOWS. A. Classification accuracy of 
622 aCSP analysis of EEG data from different overlapping time windows in the pre-stimulus 
623 period (mean accuracy ± SEM across subjects, 𝑵 =  𝟐𝟎). B. Magnitude topographies of 
624 the “High” (top) and “Low” (bottom) spatial patterns in the four analyzed time windows. 
625 The “High” and “Low” labels represent, which excitability condition the patterns 
626 correspond to. The colors represent the distribution of the component’s amplitude across 
627 the scalp. The average topographies were calculated on all analyzed subjects (𝑵 =  𝟐𝟎).

628 Replication of the results
629 To validate our findings, we applied the same analysis to a different EEG—TMS dataset (see 
630 Validation analysis). The average classification accuracy across 11 analyzed subjects was 65% 
631 ± 5%, with 10 out of 11 subjects reaching statistical significance in classification accuracy with 
632 the threshold set at 59%. This accuracy is slightly lower but comparable to the main results 
633 (68% ± 8%). The group-average topography of the pattern was also consistent with the patterns 
634 of main analysis for both the “High” and “Low” conditions (Figure 7). The 3% reduction in 
635 classification accuracy compared to the main analysis may be due the analysis algorithm being 
636 overfit to the main dataset, due to a lower number of electrodes in the EEG layout, or due to 
637 other possible differences in data collection. Nevertheless, these results successfully replicated 
638 our initial findings.
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639
640 FIGURE 7. SPATIAL MAGNITUDE PATTERNS FROM THE VALIDATION DATASET. Group-
641 average magnitude topographies for the “High” (left) and “Low” (right) components. 
642 “High” and “Low” labels represent which excitability condition the patterns correspond 
643 to. The colors represent the distribution of the component’s amplitude across the scalp. 
644 The average topographies were calculated on the subjects with significant classification 
645 accuracy (𝑵 =  𝟏𝟎).

646 Discussion
647 Patterns of spontaneous cortical oscillatory activity predict corticospinal 
648 excitability
649 We showed that aCSP components, derived from spontaneous oscillatory activity in the pre-
650 stimulus EEG signals, can predict the post-stimulus MEP amplitude. The variance of the aCSP 
651 components, reflecting their power in each pre-stimulus window, was predictive of the 
652 stimulation outcome in 95% of the analyzed subjects, with an average prediction accuracy of 
653 68%. The achieved prediction accuracy is comparable to other ML-based approaches in 
654 decoding corticospinal excitability states from EEG—TMS data [15,16]. This suggests that 
655 aCSP, guided by the readout of stimulation, revealed patterns of cortical activity that are 
656 relevant to the state of corticospinal excitability and, as such, may modulate the effect of TMS.

657 While we isolated source activity corresponding to high and low excitability states separately, 
658 the high-excitability component was particularly well-isolated (Figure 4A, C). Compared to 
659 the low-excitability component (Figure 4B, D), it was more distinct between the two 
660 experimental outcomes. This observation indicates that high MEP amplitudes have a more 
661 explicit relationship with the state of cortical activity, while low MEP amplitudes emerge for 
662 various reasons and may not be so clearly predicted by any singular oscillatory process. It is 
663 important to note here that high- and low-excitability components were used together in 
664 classification, so the classification success does not reflect their individual predictive power.

665 The achieved classification accuracy is relatively modest compared to the success of CSP 
666 application in other domains, such as brain-computer interfaces [21]. There are several possible 
667 reasons for the mis-prediction of single-trial MEPs. In particular, MEP amplitude reflects 
668 excitability not only of corticospinal neurons in motor cortex but also of motoneurons in spinal 
669 cord [3,6,22]. This leads to two implications: on one hand, corticospinal excitability as proxied 
670 by MEP amplitude may not be decoded from EEG signals in a deterministic way, and on the 
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671 other hand, MEP is a noisy measure of the state of corticospinal excitability, susceptible to 
672 errors in labelling. Additionally, spontaneous oscillatory activity in EEG typically exhibits low 
673 signal-to-noise ratio on short timescales, making it challenging to separate weak signals from 
674 background noise, even with advanced signal separation techniques [23]. While these 
675 confounds are to some extent inherent to the classification of TMS-probed spontaneous states, 
676 they can still in principle be avoided by targeting other cortical states which are (1) clearly 
677 separable and (2) have a straightforward relation to the readout measure. Task-related states 
678 rather than spontaneous states could be one such target.

679 Individual scalp topographies are physiologically valid but not ubiquitous
680 The aCSP components were derived and selected individually, with the intention of isolating 
681 spatial patterns specific to each subject. Even if the underlying source activity was shared 
682 among individuals, differences in head geometry and EEG electrode placement would result in 
683 variations in the scalp distribution of the spatial filters and patterns. Despite the expected 
684 variability, we aimed to assess overlaps in the scalp topographies of the predictive components. 
685 If the most predictive spatial patterns exhibit similarity across individuals, it would indicate 
686 physiological validity as well as generalizability of the underlying neurophysiological 
687 phenomenon at the population level.

688 The distribution of the pattern magnitude across the scalp was significantly correlated across 
689 individuals for both high- and low-excitability patterns (see Spatial patterns). However, 
690 although the selected patterns exhibited greater similarity compared to a set of randomly 
691 generated topographies, their similarity was not higher than that of a random selection of other 
692 less predictive patterns generated by the aCSP on the same data. This suggests that, while the 
693 aCSP patterns were anatomically meaningful, there was insufficient evidence to conclude that 
694 the selected patterns shared a common source. This may be attributed to our selection of spatial 
695 patterns for further interpretation based on their eigenvalues, which represent the achieved level 
696 of separability between the two conditions [24,25]. The same spatial pattern may be present in 
697 some or all of the subjects but have a relatively small eigenvalue for some of them, if patterns 
698 with stronger separability are available. Thus, we do not conclude that the predictive patterns 
699 vary across individuals, but rather that the most separative ones do. It is important to note that, 
700 while we selected only single components with the largest eigenvalues for further exploration 
701 of their spatial, spectral, and temporal features, several components from each experimental 
702 condition were sometimes combined in the classification to achieve the best prediction.

703 Spatial, spectral and temporal characteristics of the predictive components
704 The aCSP components obtained from EEG signals can be viewed as reconstructed oscillatory 
705 source activity, allowing for characterization in terms of their spatial localization, spectral 
706 composition, and temporal dynamics.

707 The high-excitability component was primarily localized in the left central—parietal scalp 
708 region, posterior to the stimulation site of the left motor cortex, and in the left frontal—central, 
709 right frontal and occipital areas (Figure 3A). The alpha-specific oscillations dominated the 
710 component’s spectral composition (Figure 4A) and originated primarily in the left central—
711 parietal region, posterior to the stimulated motor cortex (Figure 5B). These observations 
712 suggest that the high-excitability component partially represents the sensorimotor mu-rhythm 
713 in M1 or the primary somatosensory cortex (S1). Indeed, phase and power dynamics of the 
714 sensorimotor mu-rhythm have been associated with changes in corticospinal excitability, 
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715 although with inconsistent results [26–36]. The beta-frequency range activity was less 
716 prominent in the component’s spectral composition compared to alpha-oscillations (Figure 
717 4A), and its localization was distributed between left frontal—central, right frontal and 
718 occipital areas (Figure 5B). Given the localization in the left frontal—central region anterior to 
719 that of the alpha-specific topography, this component may partially represent the sensorimotor 
720 beta-rhythm, propagating along anterior—posterior axis [19,37]. Previous studies have 
721 associated the phase or power dynamics of the sensorimotor beta-rhythm with changes in MEP 
722 amplitude, although with varying findings [27,36]. It may also simply be a harmonic of the 
723 mu-rhythm [38]. Indeed, magnitude distribution of the broadband spatial pattern in our study 
724 (Figure 3A) resembled a superposition of the alpha- and beta-specific patterns (Figure 5B).

725 The phase shift progression observed in individuals sharing this pattern (Figure 3E) suggests a 
726 travelling wave or phase-coupling along an anterior—posterior direction, possibly between M1 
727 and premotor cortex or S1 and M1 [39–41]. This observation is supported by the evolution of 
728 magnitude distribution of the high-excitability patterns with temporal proximity to the pulse 
729 (Figure 6B). The observed shift in localization may be a temporal manifestation of a travelling 
730 wave between frontal and central—parietal regions. Despite these indications of the phase-
731 shifted activity presence in the aCSP patterns, we did not verify its importance for the MEP 
732 prediction. The real CSP analysis, limited to only non-phase-lagged amplitude dynamics, 
733 predicted the MEP class equally well. Indeed, the variance of the real CSP and aCSP 
734 components in the same trials was significantly correlated. This indicates that taking phase-
735 shifted activity into account did not provide any essential information for MEP amplitude 
736 prediction. Thus, another physiological interpretation of the observed high-excitability pattern 
737 could be a change in the dipole orientation rather than location, representing the spread of 
738 activation within M1 or S1 [42]. 

739 The low-excitability component was localized in the right parietal—occipital, medial frontal 
740 and bilateral temporal areas (Figure 3B). The alpha-rhythmic activity prevailed in the power 
741 spectrum (Figure 4B) and was localized in the medial parietal—occipital and frontal areas 
742 (Figure 5B). The parietal—occipital alpha-rhythm is generally associated with closed-eyes 
743 state and idle state [43]. Strigaro et al. [44] found no effect of the eyes-open versus eyes-closed 
744 condition on either resting motor threshold or effective connectivity between visual and motor 
745 cortex. Moreover, our participants were instructed to fixate the eyes on a cross during the 
746 experiment. Still, there has been evidence of a modulatory connection between visual and 
747 motor cortex, probed with either visual or magnetic stimulation of visual cortex [44,45]. 
748 Alternatively, the appearance of the effect of occipital alpha activity on MEP amplitudes could 
749 be explained by the coexistence of occipital alpha- and sensorimotor mu-rhythms within the 
750 same frequency range. The occipital alpha signals may be detectable during instances of low 
751 sensorimotor mu-activity, thus corresponding to lower MEP amplitudes, and vice versa 
752 (conceptually similar to the hand vs. foot imagery scenario in Blankertz et al. [14]. The phase 
753 shift progression suggests a possible underlying travelling wave or phase-coupling between 
754 parietal—occipital and frontal regions (Figure 3F). However, this observation was not 
755 supported by further analysis (invariability of the spatial pattern across different time windows 
756 (Figure 6B), comparable prediction success of real and analytic CSP, and significant 
757 correlation of variance of real CSP and aCSP components across trials).
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758 The observed spectral shape of the components suggests that alpha-frequency band activity 
759 may be relevant for both excitability conditions. Alpha-rhythm has been associated with top-
760 down mechanisms of selective inhibition and information-gating [43]. In contrast, the 
761 sensorimotor mu-rhythm has been suggested as a mechanism of temporally constrained 
762 facilitation, rather than inhibition [32]. However, it is also possible that the alpha-peak reflects 
763 the dominant frequency band within the unfiltered sensor signals, either due to properties of 
764 the underlying sources or due to the general 1/f shape of the EEG spectrum [46]. The latter is 
765 supported by our observation that prediction success depended on the spectral width of the 
766 bandpass-filter rather than on the specific choice of retained frequencies (Figure 5A). Still, the 
767 sources of the high- and low-excitability components were clearly distinct, since their 
768 topographies were localized differently (Figure 3A, B).

769 There were no systematic amplitude dynamics in either components time course within 1.25 s 
770 before the stimulation (Figure 4C, D) and EEG signals from any latency within that period 
771 were equally successful in MEP prediction (Figure 6A). Thus, a longer temporal window of 
772 the signal is necessary to verify the timescale of the neural activity involved. For reference, 
773 Hussain et al. [16] also found no difference in the success of MEP prediction when applying 
774 LDA to the power of oscillatory signals in different time windows within a 3-s period before 
775 TMS. 

776 Other approaches to decoding corticospinal excitability with ML
777 It is worth briefly considering the difference between the current study and previous studies 
778 that used ML to decode corticospinal excitability from pre-stimulus EEG. Metsomaa et al. [15] 
779 employed data-driven individual spatial and temporal filtering of EEG signal for decoding 
780 MEP amplitude from pre-stimulus oscillatory source activity phase-locked to the stimulation 
781 onset. The essential difference of our approach is that the targeted activity is not time- (or 
782 phase-)locked to the stimulation event. Similar to that study, the component does not 
783 necessarily originate from an anatomically restricted neuronal generator; instead, it may 
784 represent functionally coherent activity of a distributed network [13,25]. However, due to the 
785 involvement of phase lags, the component’s time course may aggregate not only simultaneous 
786 but also phase-delayed activity of the network. Hussain et al. [16] employed power of different 
787 spectral bands in the pre-stimulus EEG signals as predictors of the MEP amplitude in LDA. In 
788 the main analysis of the current study, the EEG signals were broadband-filtered and thus were 
789 not frequency-specific. Moreover, rather than using sensor-level power features, we reduced 
790 signal dimensionality with aCSP and then supplied the isolated components to the classifier.

791 Limitations of the study
792 The use of MEP amplitudes as means for categorizing stimulation outcomes into discrete 
793 conditions has its specifics. MEP amplitude, like corticospinal excitability, is inherently a 
794 continuous measure rather than a discrete one [47]. Discretizing the continuous measure, while 
795 necessary for the current analysis, omits a certain level of the underlying complexity of the 
796 data. Nonetheless, we opted for the discrete measure for two main reasons. Firstly, in the 
797 simplest brain state-dependent stimulation paradigm, the decision space for stimulation is 
798 discrete (deliver or not deliver). Thus, having discrete information about the ongoing brain 
799 state (e.g., present or absent) makes it easier to inform the decision. Secondly, when applying 
800 statistical analyses to continuous measures (e.g., regression), assumptions need to be made 
801 about the shape of the relationship between the analyzed variables (e.g., linear or non-linear). 
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802 Nevertheless, future studies may consider incorporating non-discrete readout or extracting non-
803 discrete brain states using other signal extraction methods besides CSP.

804 When interpreting the results of our analysis performed on the signals filtered in different 
805 frequency ranges, it is important to consider that the use of narrowband frequency filters may 
806 distort the signal, worsening the estimation of spatial covariance [48]. Indeed, we observed 
807 lower classification accuracy when narrower-filtered signals were analyzed (see Time and 
808 frequency analysis). However, adopting a more frequency-specific approach seemed to 
809 improve the isolation of the aCSP components in terms of their spatial localization (Figure 5B). 
810 Future studies may go for either one of the two approaches depending on whether the focus is 
811 on maximization of prediction accuracy or maximization of interpretability of the results. 

812 Conclusion
813 We employed a machine-learning approach in combination with blind-source separation in the 
814 form of aCSP to derive predictors of corticospinal excitability from spontaneous EEG activity. 
815 The isolated oscillatory patterns represented network-level oscillatory activity, and the 
816 variance of these patterns predicted the MEP amplitude. We found predictive activity within 
817 the analyzed 0.5-s time window before the TMS pulse in the 8—30-Hz frequency range. The 
818 activity predictive of high corticospinal excitability was localized in the lateral central--parietal 
819 region close to the stimulated motor cortex. The activity predictive of low corticospinal 
820 excitability was localized in the medial parietal--occipital and frontal areas. The predictive 
821 components from both conditions had a spectral peak in the alpha-frequency band. Overall, we 
822 established a data-driven approach to uncovering network-level oscillatory activity that 
823 modulates TMS effects. The aCSP approach requires no anatomical priors, while being 
824 physiologically interpretable, and can be employed in both exploratory investigation and brain 
825 state-dependent stimulation.
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