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Abstract: A method based on an interval arithmetic is proposed to analyze uncertain factors such as
the curvature radii, excitation amplitude, and excitation phase of a spherical conformal array antenna.
An interval description of element factors under different curvature radii of spherical substrates
is established using the surrogate model based on the data obtained through a full-wave analysis
method. The interval formula of the spherical curvature radius and array element position error is
derived and the effects of the spherical radius tolerance, excitation amplitude tolerance, and excitation
phase tolerance on the antenna power pattern are studied. To evaluate the effectiveness and reliability
of the proposed method, a set of representative numerical results are reported and discussed and
a comparison with the Monte Carlo methods and full-wave simulation is described. This method
can be widely used during the antenna design and before the antenna prototyping/manufacturing
to predict the effects, on the radiation performance, of possible errors/tolerances in the antenna
structure to guarantee the antenna working ‘in operation’.

Keywords: interval arithmetic; surrogate model; spherical conformal array antenna; tolerance
analysis

1. Introduction

Conformal array antennas (CAAs) refer to an array antenna attached to and fitted
to a carrier surface, i.e., a non-planar conformal antenna array that needs to be confor-
mally installed on a fixed-shape surface [1]. The patch array antenna is widely used in
aerospace [2,3] and military [4] communication equipment owing to its high gain character-
istics, flexible shape, controllable beam shape, and ease in conforming to the surfaces of
dielectric substrate.

To meet the aerodynamic requirements of aircraft, CAAs usually have a special shape
that incorporates the shape of an airborne radome [5]. Compared with array antennas,
whose traditional plane configurations severely limit their application in aircraft with
curved shapes, CAAs have the feasibility of a joint other physical geometry, space saving,
increased array aperture, and reduced aerodynamic drag, greatly improving the space
utilization and stealth performance of a carrier [6–8]. Therefore, the realization of conformal
array antennas has significant potential in future applications, which has attracted the
attention of scholars [9]. Ma et al. designed and manufactured a curved dielectric plate
antenna that can provide a wider bandwidth and a higher gain [10]. Ramadan et al. also
studied a wearable conical antenna and controlled its RF performance while maintaining the
flexibility of the antenna [11]. With the wide application of conformal antennas, 3D printing
technology provides a channel for the processing of antenna models. As a disadvantage,
the accuracy is slightly inferior to that of the traditional chemical etching method [12].
Therefore, it is necessary to explore the influence of uncertain factors of the antenna
structure on its power pattern.
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Uncertain factors of array antennas, mainly structural and system factors, affect
the actual performance of the antenna. Therefore, an interval analysis of the electrical
performance can be carried out according to uncertain factors of the antenna. There are
two main methods of interval analysis: probability- and improbability-based research
methods [13,14]. Based on the research method of probability, Ruze was the first to study
the influence of aperture tolerance on antenna radiation patterns, taking the uncertainty
variable as a Gaussian distribution for research by analyzing a large number of statistical
data [15,16]. Gilbert studied the influence of random geometric errors on antenna pattern
gain [17]. Elliott analyzed the influence of random errors in the structure and excitation
on the sidelobe level; this method can only analyze the influence of random errors on a
certain electrical performance [18]. Samii proposes a research based on Ruse that considers
non-uniform root mean square surface error and non-uniform illumination function at the
same time to determine the influence of different random errors and illumination taper
on parameters such as gain loss and sidelobe level [19,20]. Hsiao used statistical methods
to study the relationship between random error and maximum sidelobe level, which is
of great significance in radar systems [21,22]. Ling studied the probability distribution of
reflector antenna sidelobe levels affected by some random surface errors [20]. With the
development of the antenna model toward a higher precision, this method requires a lot
of time and numerous resources. Therefore, more researchers now choose such methods
based on probability.

Research methods based on improbability mainly consider interval arithmetic (IA) and
have been well developed in recent years [23–26]. In general, the upper and lower bounds
of the variables are easily obtained through a small number of experiments and, thus, the
interval arithmetic treats the uncertain factors as interval variables. Rocca et al. exploited
an interval analysis method to explore the influence of the uncertainties of array factors on
the power pattern of an array antenna, including the excitation amplitude tolerance [27–29]
and the excitation phase tolerance [30,31]; when the excitation distribution is known,
the variation range of the radiation pattern is deduced by the interval expression. Later,
Anselmi et al. studied the influence of the excitation amplitude and phase errors on the
radiation pattern of the array antenna based on the interval center and radius [28,30],
which laid a foundation for a subsequent interval analysis. Li et al. used interval analysis
arithmetic to study the influence of radome uncertainties on the far-field pattern, including
the radome thickness [32] and permittivity of the materials [33]. Wang et al. studied the
tolerance of a 3D-printed patch antenna and proved that the influence of the element and
array factors on the power pattern cannot be ignored [34].

To the best of the authors’ knowledge, (1) considering only the tolerance analysis
of planar array antennas in the existing works, this study focuses on the effects of the
structural and excitation tolerance on the power pattern of spherical CAAs; (2) considering
only the tolerance of the array factor, the tolerances in both element factor and array factor
could be researched by this study. Based on the IA method, according to the geometric
characteristics of the sphere, the formula of the element position, excitation amplitude,
phase, and pattern of the CAAs are derived. The interval of the element factors under
different radii of a spherical substrate is established using a surrogate model to describe
the data obtained by the full-wave analysis method. Finally, the influence of the uncertain
factors of the CAAs on the antenna power pattern is studied based on the element and
array factors.

The remainder of this paper is organized as follows. The theoretical formula for a
spherical CAA is derived in Section 2. Some numerical examples are used to verify the
validity and accuracy of the proposed method in Section 3. Section 4 describes the analyses
and studies the uncertain factors of the CAA. Finally, some conclusions are drawn in
Section 5.
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2. Materials Formula

For linear array and planar array, the beam direction of each directional element is the
same if the same element is used. According to the pattern product theorem [35], the array
pattern can be expressed in the form of the product of element factors f a and array factors
f e, as shown in (1).

F(θ, ϕ) = f a(θ, ϕ) · f e(θ, ϕ) (1)

Since the elements of conformal array are distributed on the surface of the carrier
and the direction of the pattern of each directional element is different, the multiplication
principle similar to the linear array cannot be simply used to solve the pattern. The pattern
of conformal array antenna will be analyzed below.

As shown in Figure 1a, for N-element arbitrary antenna array in space, let the position
of the nth array element at rn in the array be (xn, yn, zn) and the excitation of the array
element be wn = AnejBn . An is the excitation amplitude and Bn is the excitation phase. For
observation point P in the far field (θ, ϕ), the direction vector is

α = (cos φ sin θ, sin φ cos θ, cos θ) (2)
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Figure 1. Simple model and spatial placement model of 3D conformal array antenna ((a) diagram of
space conformal array antenna, (b) model diagram established by HFSS).

With the coordinate origin O as the phase reference point, the path difference between
the element arriving at far-field point P and the reference point arriving at point P is

dn = rn · α = xn cos φ sin θ + yn sin φ cos θ + zn cos θ (3)

The radiation pattern of the nth antenna array element at point P can be expressed as

Fn(θ, ϕ) = fn(θ, ϕ) · wn · ejkdn (4)

where fn(θ, ϕ) is the element pattern of the nth array element. According to the superpo-
sition principle of electromagnetic field, the far-field radiation pattern of this N-element
array is

F(θ, ϕ) =
N

∑
n=1

Fn(θ, ϕ) =
N

∑
n=1

fn(θ, ϕ) · wn · ejkdn

=
N

∑
n=1

fn(θ, ϕ) · An · ej(Bn+k(xn cos φ sin θ+yn sin φ cos θ+zn cos θ))

(5)
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2.1. Array Factors of Spherical CAAs

The derivation of the array factor needs to start from the calculation of the coordinates
of the central point of each element. Because of the perfect spatial symmetry of the spherical
array structure, it can be regarded as consisting of several ring arrays, and the radius of
each ring is determined by its position distribution on the sphere. Taking the m× n CAA
in Figure 2 as an example (the radius of the sphere is Rs), where α is the angle between
the two antenna elements relative to the origin of the coordinate and it is related to the
length and width of the element patch antenna. αm represents the angle between the mth
row antenna and the x-axis on the plane and αn represents the angle between the nth
column antenna element and the y-axis on the yoz plane. αm and αn are angles calculated
based on the number of elements and the spherical radius αm = 1/2(π − (m− 1)α) and
αn = 1/2(π − (n− 1)α). Therefore, the position of the center point of the antenna element
in the mth row and nth column can be calculated based on the geometric relationship of
the sphere.

Rm= Rs× cos(π/2− αm)

xmn= Rs× sin(π/2− αm)

ymn= Rm × cos αn

zmn= Rm × sin αn

(6)

where Rm represents the radius on the xoz plane of the antenna in the mth row.
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Figure 2. m × n spherical CAA angle calculation model.

For spherical CAAs, all antenna elements were distributed in a three-dimensional (3D)
space, as shown in Figure 1. The position of each antenna element is different in the 3D
cartesian coordinate system. The far radiation field of the antenna element is the product
of the vector pattern of the antenna element and the spherical wave e−jk0Rmn /Rmn. The
radiation far field of the antenna element after approximate processing can be expressed as
follows in spherical coordinate system [36]:

Emn(θ, ϕ, r) = A · f emn(θ, ϕ) e−jk0Rmn

Rmn

= e−jkR

R f emn(θ, ϕ)ejkrmn ·r̂
(7)

where rmn is the position vector of the element antennas in the mth row and nth column
relative to the origin O of the 3D cartesian coordinate system, r̂ is the unit vector in the
P(x, y, z) direction at some point in the far field. Here, is the coordinate transformation
between the two coordinate systems, rmn = xmn x̂ + ymnŷ + zmn ẑ, r̂ = ux̂ + vŷ + cos θẑ,
where u = cos ϕ sin θ and v = sin ϕ sin θ. A is a constant, which is usually omitted in
the analysis of array antennas. Therefore, the array factor of the CAAs obtained from the
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superposition theorem is as follows. It is the closed-form equation of array factor f a and
spherical radius r.

f a(θ, ϕ) =
M

∑
m=1

N

∑
n=1

wmnejk0(uxmn+vymn+cos θzmn) (8)

2.2. Establishment of Element Factor Interval Surrogate Model Based on Machine Learning

The patch antenna is widely used as the element in array antenna. The pattern
(element factor) formula of traditional planar patch antenna can be found in much of
the literature [12,34]. The tolerance analysis of structure factor such as dimensions and
materials based on IA has also been conducted in [34], however it cannot be used for the
spherical patch antenna of CAAs due to the limitations of the theoretical formula. Therefore,
this section uses the surrogate model obtained by the method of artificial intelligence to
overcome the theoretical derivation of a closed-form formula for the spherical patch antenna
pattern, just as the Taylor series has been used as the surrogate model to replace the rigorous
theoretical deduction and reduce the overestimate of IA in [34,37,38].

The process of obtaining the surrogate model is shown in Figure 3. Firstly, the full
wave analysis method (HFSS) was used to establish the element model of conformal patch
antenna. Then, the interval of the spherical patch antenna pattern with a structure tolerance
interval was obtained by the Monte Carlo (MC) method and the data were calculated via
HFSS used for training and validation and new data predictions using a backpropagation
(BP) neural network. Finally, the data were sorted and normalized and the upper and
lower boundary formulas of element factors were fitted in MATLAB. Here, Rs represents
the radius of the spherical substrate, the subscript in f in Rs ∈ [Rsinf, Rssup] represents the
lower boundary, and sup represents the upper boundary.
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Figure 3. The flow chart of the surrogate model.

The BP neural network is a multi-layer feedforward network trained according to
the error backpropagation algorithm and it is also one of the most widely used neural
network models. The basic structure of a neuron is shown in Figure 4, which consists of an
input layer, a hidden layer, and an output layer. Nodes (neurons) relate to some specified
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weights. Using the BP trained network to predict new data can not only obtain accurate
data but can also save a lot of time in HFSS simulation. As shown in Figure 5, the green
line represents the E-plane/H-plane pattern under different radii within a group of radius
errors simulated using the BP neural network; the maximum f ei-HFSS(θ) and minimum
f ei-HFSS(θ) values of the corresponding angle points in this group of data are proposed
as the upper boundary f esup(θ) (red line) and lower boundary f einf(θ) (blue line) of the
element factor interval. Finally, the upper and lower boundaries were fitted using MATLAB
to obtain the approximate function about θ as the surrogate model of the element factor.
The midpoint and radius were used to represent the element factor interval as follows [28].

f esup(θ)= max{ f ei-HFSS(θ)}
f einf(θ)= min{ f ei-HFSS(θ)} i = 1, 2, . . . , n

(9)

where i represents the number of simulations in HFSS, θ ∈ (−90
◦
, 90

◦
) and then

f emid = 1/2× ( f einf + f esup) and f erad = 1/2× ( f esup − f einf); here the subscripts mid
and rad (the same below) represent the midpoint and radius of the interval, respectively.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 23 
 

 

errors simulated using the BP neural network; the maximum - ( )
i HFSS

fe θ  and minimum 

- ( )
i HFSS

fe θ  values of the corresponding angle points in this group of data are proposed as 

the upper boundary sup
( )fe θ  (red line) and lower boundary inf

( )fe θ  (blue line) of the ele-
ment factor interval. Finally, the upper and lower boundaries were fitted using MATLAB 
to obtain the approximate function about θ  as the surrogate model of the element factor. 
The midpoint and radius were used to represent the element factor interval as follows 
[28]. 

  
Figure 3. The flow chart of the surrogate model. 

 
Figure 4. Basic structure of a neuron. 

sup -

inf -

( ) max{ ( )}

( ) min{ ( )} 1,2,...,
i HFSS

i HFSS

fe fe

fe fe i n

θ θ

θ θ

=

= =  
(9)

Figure 4. Basic structure of a neuron.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 23 
 

 

where i  represents the number of simulations in HFSS, ( 90 , 90 )θ ∈ −  

and then 

inf sup1 / 2 ( )
mid

fe fe fe= × +
 and sup inf1 / 2 ( )

rad
fe fe fe= × −

; here the subscripts mid  and rad  
(the same below) represent the midpoint and radius of the interval, respectively. 

 
Figure 5. Element pattern (schematic of surrogate model for obtaining the element factor interval). 

2.3. Internal Power Pattern of Spherical CAAs 

After the formula of the element factor ( ),fe θ ϕ  and array factor ( ),fa θ ϕ  of CAAs 
is obtained, the far-field pattern of the CAAs can be expressed as (5) and substituted into 

( ) ( ) 2, ,P Fθ ϕ θ ϕ=
 to calculate the power pattern. 

( ) ( ) ( )0 cos

1 1
, sin( ), mn mn mn

mn mn n

N N
jk ux vy z

m n

w fe aF e θθ ϕθ ϕ + +

= =

×=  (10)

The requested steps to obtain the bounds of power pattern from the radius error in-
tervals are shown in Figure 6. After determining the tolerance range of the radius of the 
spherical substrate, we can obtain the boundary of the coordinate of the center point of 
the antenna element according to the geometric relationship between the center point of 
the antenna element and the spherical radius in the cartesian coordinate system and we 
can substitute it and the element factor surrogate model into (5) to obtain the boundary of 
the far-field pattern. Then, it can be expanded into real part and imaginary part and di-
vided into many cases to solve the boundary of power pattern. 

When there is a tolerance, it is assumed that the element factor of each element an-
tenna in the array antenna has the same upper and lower boundaries; then the interval 

formula for the thm  row and thn  column element pattern is shown in (11), where the 

subscript IA represents the interval value (the same as below) and ( ), sin( )IA nfe aθ ϕ ×  in-
dicates that the element factor interval takes the component on the z-axis. 

( ) ( ) ( )0 cos, sin( ), mn IA mn IA mn IA
IA IA n

jk ux vy z
mn mn fe aF w e θθ ϕθ ϕ − − −+ +

− ×= ×  (11)

The radius of curvature of the thm  antenna on the xoz plane is expressed as follows: 

( ) cos( / 2 )
m IA m

R Rs δ π α− = ± × −  (12)

Figure 5. Element pattern (schematic of surrogate model for obtaining the element factor interval).

2.3. Internal Power Pattern of Spherical CAAs

After the formula of the element factor f e(θ, ϕ) and array factor f a(θ, ϕ) of CAAs is
obtained, the far-field pattern of the CAAs can be expressed as (5) and substituted into
P(θ, ϕ) = |F(θ, ϕ)|2 to calculate the power pattern.

F(θ, ϕ) =
N

∑
m=1

N

∑
n=1

wmn f emn(θ, ϕ)× sin(an)ejk0(uxmn+vymn+cos θzmn) (10)

The requested steps to obtain the bounds of power pattern from the radius error
intervals are shown in Figure 6. After determining the tolerance range of the radius of the
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spherical substrate, we can obtain the boundary of the coordinate of the center point of the
antenna element according to the geometric relationship between the center point of the
antenna element and the spherical radius in the cartesian coordinate system and we can
substitute it and the element factor surrogate model into (5) to obtain the boundary of the
far-field pattern. Then, it can be expanded into real part and imaginary part and divided
into many cases to solve the boundary of power pattern.
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When there is a tolerance, it is assumed that the element factor of each element antenna
in the array antenna has the same upper and lower boundaries; then the interval formula
for the mth row and nth column element pattern is shown in (11), where the subscript IA
represents the interval value (the same as below) and f eIA(θ, ϕ)× sin(an) indicates that
the element factor interval takes the component on the z-axis.

Fmn−IA(θ, ϕ) = wmn f eIA(θ, ϕ)× sin(an)× ejk0(uxmn−IA+vymn−IA+cos θzmn−IA) (11)

The radius of curvature of the mth antenna on the xoz plane is expressed as follows:

Rm−IA = (Rs± δ)× cos(π/2− αm) (12)

The x-, y-, and z-axis coordinates of the center point of the patch antenna element in
the mnth are expressed as:

xmn−IA = (Rs± δ)× sin(π/2− αm) = xmn−mid ± xmn−rad
ymn−IA = Rm−IA × cos αn = ymn−mid ± ymn−rad
zmn−IA = Rm−IA × sin αn = zmn−mid ± zmn−rad

(13)
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The central coordinate position of the element is located in the exponent part in (11)
and can be replaced by Φmn:

Φmn−inf = k0(uxmn−inf + vymn−inf + cos θzmn−inf)
Φmn−sup = k0

(
uxmn−sup + vymn−sup + cos θzmn−sup

)
Φmn−mid = k0(uxmn−mid + vymn−mid + cos θzmn−mid)
Φmn−rad = 1/2× (Φmn−sup −Φmn−inf)

(14)

The array pattern is the sum of all element patterns, as shown in (15):

FIA(θ, ϕ) =
N

∑
m=1

N

∑
n=1

Fmn−IA(θ, ϕ) (15)

The interval formulas of (15) is obtained as follows via the midpoint and radius
notation in interval theory [39].

Fmid
mn,real= Amn sin(an)× µ{ f e−IA} × µ{cos(Φmn)}

Frad
mn,real= Amn sin(an)×

(
|µ{ f e−IA}| × 1

2 ω{cos(Φmn)}+ |µ{cos(Φmn)}|
× 1

2 ω{ f e−IA}+ 1
2 ω{ f e−IA} × 1

2 ω{cos(Φmn)}

) (16)

Fmid
mn,imag= Amn sin(an)× µ{ f e−IA} × µ{sin(Φmn)}

Frad
mn,imag= Amn sin(an)×

(
|µ{ f e−IA}| × 1

2 ω{sin(Φmn)}+ |µ{sin(Φmn)}|
× 1

2 ω{ f e−IA}+ 1
2 ω{ f e−IA} × 1

2 ω{sin(Φmn)}

) (17)

where µ represents the midpoint, ω represents the interval width, and the subscripts real
and imag represent the real and imaginary parts of the complex item, respectively. The
interval calculation of cos(Φmn) and sin(Φmn) are used in the method in [32]; then the
upper and lower boundaries of the power pattern interval of CAAs are as indicated in (18)
and (19), respectively.

Pinf
Rs =



min
((

Finf
real
)2

,
(

Fsup
real

)2
)
+ min

((
Finf

imag

)2
,
(

Fsup
imag

)2
)

;(
Finf

real > 0||Fsup
real < 0

)
&&
(

Finf
imag > 0||

(
Fsup

imag

)
< 0

)
min

((
Finf

real
)2

,
(

Fsup
real

)2
)

;(
Finf

real > 0||Fsup
real < 0

)
&&
(

Finf
imag ≤ 0||

(
Fsup

imag

)
≥ 0

)
min

((
Finf

imag

)2
,
(

Fsup
imag

)2
)

;(
Finf

real ≤ 0||Fsup
real ≥ 0

)
&&
(

Finf
imag > 0||

(
Fsup

imag

)
< 0

)
0; Otherwise

(18)

Psup
Rs = max

((
Finf

real

)2
,
(

Fsup
real

)2
)
+ max

((
Finf

imag

)2
,
(

Fsup
imag

)2
)

(19)

In addition to the structural uncertainty analysis of the element factors in the CAAs, the
interval analysis of the excitation error on the electrical performance can also be discussed
via the proposed method. Based on (10), the excitation amplitude is taken as the interval
variable, as shown in (20). The influence of the tolerance of the excitation amplitude on the
electrical performance of the antenna can be further studied.

F(θ, ϕ) =
N

∑
m=1

N

∑
n=1

Amn−IA × f emn(θ, ϕ)× sin(an)ejk0(uxmn+vymn+cos θzmn)

Amn−IA = [Amn − δ× Amn, Amn + δ× Amn]

(20)
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Based on (5), the excitation phase is taken as the interval variable, as shown in (21),
where Bmn =

[
Binf

mn; Bsup
mn

]
is the phase error of the CAAs, with the upper and low bound-

aries Binf
mn = bmn − β and Bsup

mn = bmn + β, respectively, and β is the phase error (unit =
degree). Similarly, the interval analysis method RIA in [13] substitutes (21) into the interval
formula of the power pattern to obtain the upper and lower boundaries.

F(θ, ϕ) =
N

∑
m=1

N

∑
n=1

Amn f emn(θ, ϕ)× sin(an)ej[k0(uxmn+vymn+cos θzmn)+Bmn ] (21)

Because the phase and radii errors are located in the exponent part, they can also be
expressed by Φmn, as shown in (22).

Φmn = k0(uxmn + vymn + cos θzmn) + Bmn (22)

3. Numerical Examples of Verification
3.1. Verification of Spherical Element Factors

This section tries to verify the surrogate model of the spherical element factor (spherical
patch antenna pattern). The patch antenna (as element) is designed and simulated by full-
wave method (HFSS) as shown in Figure 7. The radius of the spherical substrate is an
interval variable; it is 500 mm with an error of 1.5 mm, the length of the patch is L = 41 mm,
the width is W = 41 mm, the distance from the bottom feed to the center is 6.5 mm, the
permittivity is 2.2, and the thickness of the substrate is 2 mm. It is assumed that the radius
of curvature at any point of the antenna element is the same, there is no radius distribution
in the patch, and the radius of the different element antennas can be different. When there
is an error in the radius of the spherical substrate, the corresponding element factor is
affected but the upper and lower boundaries of all antenna element patterns are consistent.
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Figure 7. Model of conformal patch antenna.

There are two parameters used for BP neural network training in this research: spher-
ical substrate radius and radiation angle. The spherical substrate radius error samples
simulated in HFSS are 31 (498.5 mm–501.5 mm, with an interval of 0.1 mm) and 1801 radia-
tion angle samples (−90◦–90◦, with an interval of 0.1◦). These two samples are combined
and 55,831 databases were generated. The database is randomly forked and the ratios
of 80%, 10%, and 10% are used for training, validation, and testing, respectively. The
comparison between the actual value and the predicted value is shown in Figure 8. When
the number of nodes in the middle-hidden layer is 10, the mean square error at this time is
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0.0276. Therefore, the prediction of new data within the error range can be made using the
trained network.
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example and the radius of the spherical substrate was set to infinity. The calculation 

Figure 8. Comparison of predicted value and actual value of BP neural network test set.

Taking the E-plane element pattern as an example, the element factor pattern interval
obtained by the surrogate model is shown in Figure 9. The green line is the MC simulation
result of the trained BP neural network (200 times in total) with radius varies in interval
[498.5, 501.5] mm randomly, and the red and blue lines are the upper and lower boundaries
fitted by MATLAB. The fitting accuracy of MATLAB was 10−25. The normalized element
factor interval is listed in Table 1, where ∆ represents the interval width. The interval
obtained by MATLAB completely envelops all simulation results of the BP.
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Figure 9. Interval pattern of E-plane element factor.

Table 1. Interval value of element factor of plane E in Figure 9.

Theta (Deg) BP Results ∆ This Work ∆

−60 [0.507; 0.540] 0.033 [0.507; 0.541] 0.034
−30 [0.847; 0.868] 0.021 [0.843; 0.870] 0.027

0 [0.993; 1.015] 0.022 [0.991; 1.020] 0.029
30 [0.850; 0.869] 0.019 [0.850; 0.870] 0.020
60 [0.489; 0.536] 0.047 [0.487; 0.541] 0.054

3.2. Verification of Planar Arrays

The power pattern of a planar array obtained by the proposed method was compared
with the results of a full-wave method (HFSS). A 10 × 10 array antenna was taken as
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an example and the radius of the spherical substrate was set to infinity. The calculation
results were compared with the array antenna simulated using HFSS software, as shown in
Figures 10 and 11.
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Figure 10. Simulation of 10 × 10 array antenna contrast pattern using MATLAB and HFSS
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Figure 11. Simulation of 10 × 10 array antenna contrast pattern using MATLAB and HFSS (Dolph–
Chebyshev excitation).

It can be seen from Figures 10 and 11 that, when the radius of the spherical substrate
is sufficiently large, the tow power patterns are almost the same and, the closer they are
to the main lobe, the closer they are numerically. At a distance from the main lobe, the
two patterns are slightly different. It is undeniable that the surrogate model of the element
factor obtained by fitting will also incur an error. In addition, the pattern obtained through
the proposed method is asymmetrical in the far-side lobes, mainly because the pattern of
the element factor obtained by BP neural network is not completely symmetrical, as shown
in Figure 9. Then, the examples in Section A and B can prove that the surrogate model can
obtain satisfactory calculation accuracy and can be used for the tolerance analysis with
high efficiency rather than a full-wave method such as HFSS.

3.3. Verification of Spherical Array

This section verifies the proposed method in a spherical conformal array antenna. A
6 × 6 spherical CAA as shown in Figure 1 was designed and simulated by the full-wave
method (HFSS). The radius of the spherical substrate was 1000 mm and three cases were
compared with the power pattern calculated by HFSS, as shown in Figure 12. Case 1 (blue
line): with reference to the method in [28], the element factor was not included and only the
array factor was taken into account. Case 2 (red line): with reference to the method in [34],
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the element and array factors were considered simultaneously and the element factor used
the theoretical formula of a planar patch antenna. Case 3 (black line): using the method
proposed in this work, the element and array factors were considered simultaneously and
the surrogate model of the element factor was obtained using the HFSS data.
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Figure 12. Comparison of simulation results between HFSS and MATLAB (Plane E, uniform excitation).

In Figure 12, the pink line represents the results obtained through the full-wave method
(HFSS), it can be seen that the power pattern trends of the HFSS results are completely
consistent, among which the difference between the simulation results of the HFSS with
only an array factor is the largest, particularly in the far lobe region. The element factor
has a significant effect on the power pattern. The different between the results of the
proposed method and the HFSS results is minimal, which demonstrates the reliability and
effectiveness of the proposed method.

3.4. Verification of Linear/Planar Arrays Interval Analysis

When the spherical radius is sufficiently large, the curved surface tends toward the
plane. When the element number m or n is set to 1, this method is also applicable to
linear arrays. To verify the proposed interval analysis method of CAAs, a comparison
between a spherical substrate with a sufficiently large radius and the planar/linear array
antenna is also one of the verification examples. The tolerance analysis of a linear array
was implemented in this section and results obtained by this method are compared with
data in [28,30]. The results in the presence of the excitation amplitude and phase tolerance
are shown in Figures 13 and 14. A data comparison with the literature [28,30] is shown in
Tables 2 and 3.
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Figure 13. Linear array antenna pattern with excitation amplitude tolerance (Plane E, Dolph–
Chebyshev excitation, the tolerance of MC method is 1%).
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Table 2. Numerical results of power pattern in Figures 13 and 15.

SLL(dB) Amplitude
Error

Line Array
(Figure 13) ∆L Curvilinear Array

(Figure 15) ∆C [28] ∆

−10
1% [−10.28; −9.64] 0.64 [−3.08; −2.58] 0.50 [−10.29; −9.68] 0.61
5% [−11.51; −8.42] 3.09 [−4.15; −1.62] 2.53 [−11.49; −8.43] 3.06

10% [−13.11; −6.89] 6.22 [−5.56; −0.53] 5.03 [−13.10; −6.96] 6.14
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Table 3. Numerical results of power pattern in Figures 14 and 16.

SLL
(dB)

Phase
Error

Line Array
(Figure 14) ∆L Curvilinear Array

(Figure 16) ∆C [30] ∆

−20
2◦ [−21.06; −18.92] 2.14 [−3.30; −1.91] 1.39 [−20.58; −18.42] 2.16
5◦ [−26.30; −15.97] 10.33 [−4.50; −0.99] 3.51 [−25.45; −14.81] 10.64
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Figure 16. Power pattern under different excitation phase tolerances (Plane E, Dolph–Chebyshev
excitation, the tolerance of MC method is ±2◦).

In the first example, the Dolph–Chebyshev excitation is adopted and the error of
excitation amplitude is 1%, 5%, and 10%, respectively. Comparing the interval width of
the proposed method and RIA [29], the two values are very close, which can prove that
the tolerance analysis results of the amplitude error interval by the proposed method
are reasonable.

In the second example, the sidelobe level (SLL) is −20 dB, the excitation mode is the
same as the example in [30], and the phase error is 2 and 5 deg. Comparing the interval
width of the proposed method and RIA [30], the two values are almost the same, which
proves that the tolerance analysis results of the phase error interval by the proposed method
are also reasonable.

3.5. Verification of Conformal Arrays Interval Analysis

Because there is no comparable interval analysis example for a spherical CAA, the
interval results of the linear array on the spherical surface were compared with the results
of the plane linear array and the MC method. The radius of the spherical substrate is 500
mm and its ideal power pattern and the pattern with excitation amplitude and phase error
are shown in Figures 15 and 16. Table 2 was compared with the example with the amplitude
error interval in [28]. The comparison conditions in the two works are the same, i.e., SLL =
−10 dB, Dolph–Chebyshev excitation is applied, and the amplitude error ratios are 1%, 5%,
and 10%, respectively. A spherical CAA significantly increased the sidelobe. Comparing
the interval width of this method and RIA [28], the two results are of the same order of
magnitude, which proves that the data calculated by the proposed method are reasonable.

Table 3 was compared with the example with the phase error interval in [30]. The
comparison conditions in the two works are the same, i.e., SLL =−20 dB, Dolph–Chebyshev
excitation is applied, and the phase error is 2 deg and 5 deg. The interval width between the
method in this study and RIA [31] was compared. Although the interval width obtained
by the proposed method is less than that of the RIA [31], it is still of the same order of
magnitude. Therefore, it can be proved that the phase error data calculated by the proposed
method are reasonable.

4. Tolerance Analysis of Spherical CAAs with Error Interval

In this section, a tolerance analysis carried out for the spherical CAAs with radius,
excitation amplitude, and phase error intervals is described.
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4.1. Tolerance Analysis of Spherical CAA with Radius Error Interval

The 6 × 6 array antenna in Figure 1 was also taken as an example. Under uniform
excitation, the spherical substrate radius is 500 mm and the error of the radius error is {±0.5,
±1.0, ±1.5} mm. The selected 6 × 6 array is completely symmetrical and the patterns of the
E- and H-planes are roughly the same. Therefore, the analysis results of the E-plane power
pattern are shown in Figures 17 and 18 and compared with the results of 20,000 Monte Carlo
simulations. The results are listed in Table 4. In addition, we also used the Ruze formula
(G = G0e−(4πδrms/λ)2

) to calculate the gain deviation under different error conditions for
comparison with the interval gain pattern calculated by this study method [16]. When the
errors are 0.5 mm, 1 mm, and 1.5 mm, the gain deviations calculated by the Ruze formula are
−0.042 dB, −0.168 dB, and −0.379 dB, respectively, while the deviation intervals obtained
in this study are [−0.66; 0.66] dB, [−1.05; 1.02] dB, and [−1.52; 1.37] dB. The peak deviation
estimated by the Ruze formula are all within the interval obtained by this study method.

Sensors 2022, 22, x FOR PEER REVIEW 16 of 23 
 

 

order of magnitude. Therefore, it can be proved that the phase error data calculated by 
the proposed method are reasonable. 

4. Tolerance Analysis of Spherical CAAs with Error Interval 
In this section, a tolerance analysis carried out for the spherical CAAs with radius, 

excitation amplitude, and phase error intervals is described. 

4.1. Tolerance Analysis of Spherical CAA with Radius Error Interval 
The 6 × 6 array antenna in Figure 1 was also taken as an example. Under uniform 

excitation, the spherical substrate radius is 500 mm and the error of the radius error is 
{±0.5, ±1.0, ±1.5} mm. The selected 6 × 6 array is completely symmetrical and the patterns 
of the E- and H-planes are roughly the same. Therefore, the analysis results of the E-plane 
power pattern are shown in Figures 17 and 18 and compared with the results of 20,000 
Monte Carlo simulations. The results are listed in Table 4. In addition, we also used the 

Ruze formula (
2

0
(4 / )= rmsG G e πδ λ−

) to calculate the gain deviation under different error condi-
tions for comparison with the interval gain pattern calculated by this study method [16]. 
When the errors are 0.5 mm, 1 mm, and 1.5 mm, the gain deviations calculated by the 
Ruze formula are −0.042 dB, −0.168 dB, and −0.379 dB, respectively, while the deviation 
intervals obtained in this study are [−0.66; 0.66] dB, [−1.05; 1.02] dB, and [−1.52; 1.37] dB. 
The peak deviation estimated by the Ruze formula are all within the interval obtained by 
this study method. 

 
Figure 17. Interval power pattern of radius error of spherical CAAs (Plane E, uniform excitation). 

 
Figure 18. Interval power pattern of radius error of spherical CAAs (Plane E, uniform excitation, the 
tolerance of MC method is ±1 mm). 

  

Figure 17. Interval power pattern of radius error of spherical CAAs (Plane E, uniform excitation).

Sensors 2022, 22, x FOR PEER REVIEW 16 of 23 
 

 

order of magnitude. Therefore, it can be proved that the phase error data calculated by 
the proposed method are reasonable. 

4. Tolerance Analysis of Spherical CAAs with Error Interval 
In this section, a tolerance analysis carried out for the spherical CAAs with radius, 

excitation amplitude, and phase error intervals is described. 

4.1. Tolerance Analysis of Spherical CAA with Radius Error Interval 
The 6 × 6 array antenna in Figure 1 was also taken as an example. Under uniform 

excitation, the spherical substrate radius is 500 mm and the error of the radius error is 
{±0.5, ±1.0, ±1.5} mm. The selected 6 × 6 array is completely symmetrical and the patterns 
of the E- and H-planes are roughly the same. Therefore, the analysis results of the E-plane 
power pattern are shown in Figures 17 and 18 and compared with the results of 20,000 
Monte Carlo simulations. The results are listed in Table 4. In addition, we also used the 

Ruze formula (
2

0
(4 / )= rmsG G e πδ λ−

) to calculate the gain deviation under different error condi-
tions for comparison with the interval gain pattern calculated by this study method [16]. 
When the errors are 0.5 mm, 1 mm, and 1.5 mm, the gain deviations calculated by the 
Ruze formula are −0.042 dB, −0.168 dB, and −0.379 dB, respectively, while the deviation 
intervals obtained in this study are [−0.66; 0.66] dB, [−1.05; 1.02] dB, and [−1.52; 1.37] dB. 
The peak deviation estimated by the Ruze formula are all within the interval obtained by 
this study method. 

 
Figure 17. Interval power pattern of radius error of spherical CAAs (Plane E, uniform excitation). 

 
Figure 18. Interval power pattern of radius error of spherical CAAs (Plane E, uniform excitation, the 
tolerance of MC method is ±1 mm). 

  

Figure 18. Interval power pattern of radius error of spherical CAAs (Plane E, uniform excitation, the
tolerance of MC method is ±1 mm).



Sensors 2022, 22, 9828 16 of 23

Table 4. Numerical results of SLL of power pattern in Figures 17 and 18.

Radius Error ±0.5 mm ∆0.5 ±1.0 mm ∆1.0 ±1.5 mm ∆1.5

Main
0 dB

This Work [−0.66; 0.66] 1.32 [−1.05; 1.02] 2.07 [−1.52; 1.37] 2.89
MC [−0.13; 0.14] 0.27 [−0.23; 0.28] 0.51 [−0.38; 0.42] 0.80

1st
−3.09 dB

This Work [−3.80; −2.35] 1.45 [−4.34; −1.87] 2.47 [−4.90; −1.42] 3.48
MC [−3.26; −2.92] 0.34 [−3.40; −2.74] 0.66 [−3.57; −2.60] 0.97

4.2. Tolerance Analysis of Spherical CAA with Excitation Amplitude Error Interval

Using the same spherical CAAs with a uniform excitation and an amplitude error
of δ = {1%, 3%, 5%} and comparing via Monte Carlo results (20,000 times), the interval
results of the E-plane power pattern of the spherical CAA were obtained, as shown in
Figures 19 and 20 and listed in Table 5.
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uniform excitation).
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Figure 20. Interval power pattern of excitation amplitude error of spherical CAAs (Plane E, uniform
excitation, the tolerance of MC method is 3%).
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Table 5. Numerical results of SLL of power pattern in Figures 19 and 20.

Amplitude Error 1% ∆1% 3% ∆3% 5% ∆5%

Main
0 dB

This Work [−0.29; 0.28] 0.57 [−0.90; 0.83] 1.73 [−1.55; 1.34] 2.89
MC [−0.09; 0.09] 0.18 [−0.26; 0.26] 0.52 [−0.44; 0.43] 0.87

1st
−2.63 dB

This Work [−2.95; −2.31] 0.64 [−3.62; −1.68] 1.94 [−4.29; −1.08] 3.21
MC [−2.71; −2.54] 0.17 [−2.89; −2.37] 0.52 [−3.07; −2.20] 0.87

4.3. Tolerance Analysis of Spherical CAA with Excitation Phase Error Interval

A uniform excitation occurred, bmn = 0, and an error of β{1, 2, 3}deg was achieved.
Compared with the results of the Monte Carlo method, the interval results of the CAA are
shown in Figures 21 and 22 and the results are listed in Table 6.
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Table 6. Numerical results of SLL of power pattern in Figures 21 and 22.

Phase Error 1 Deg ∆1 Deg 2 Deg ∆2 Deg 3 Deg ∆3 Deg

Main
0dB

This Work [−0.33; 0.31] 0.64 [−0.67; 0.61] 1.28 [−1.03; 0.90] 1.93
MC [−0.13; 0.13] 0.26 [−0.26; 0.26] 0.52 [−0.41; 0.38] 0.79

1st
−2.63dB

This Work [−3.01; −2.25] 0.76 [−3.41; −1.89] 1.52 [−3.81; −1.54] 2.27
MC [−2.75; −2.52] 0.23 [−2.84; −2.42] 0.42 [−2.94; −2.32] 0.62

For the spherical CAAs, the following conclusions can be drawn from the above three
numerical examples: (1) when the radius is an interval variable, the width of the interval
is the largest; (2) when the MC simulation result is compared with the power pattern,
the element factor adopts the surrogate model and the RIA method adopted by the array
factor is feasible and the simulation result is valid; (3) all examples verify the envelope
of the interval. The premise of the interval analysis method used in this section was to
have an explicit expression of the power pattern and to allow some of the variables to be
intervalized in order to obtain an intervalized result.

4.4. Spherical CAAs with Different Radii

Taking a linear array of 1 × 10 as an example, the influence of the curvature radius
of the substrate on the electrical performance was calculated through MATLAB when the
spherical conformation antenna was studied, as shown in Figure 23. The black dotted line
in the figure is the pattern of plane E of the planar array and the other curves are the pattern
of the spherical antenna with a radius from 400 mm to 3000 mm.
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Figure 23. Comparison of the influence of different radii on the pattern when calculated using
MATLAB (uniform excitation).

Through a comparison between the patterns of spherical array antennas with different
radii and planar array antennas with an increase in radius, the beam width of the power
pattern decreases and the pattern of the spherical antenna gradually approaches the pattern
of the planar array antenna, which verifies the correctness of the derived expression of the
spherical conformal array antenna. In addition, the derived expression can also be used for
any array within a spherical range. Examples are shown in Figure 24.
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form excitation, (a) 2 × 10, (b) 3 × 4, (c) 4 × 6, (d) 5 × 8).

4.5. Influence of Element and Array Factors on Interval of Array Antenna Pattern

In this section, with spherical substrates of the same size (Rs = 500 mm) and error
(±0.5 mm), the power patterns of a 1 × 10 linear array and 10 × 10 planar array antennas
were analyzed using a MATLAB simulation under different conditions to explain the
interval influence of the element and array factors on the pattern of the array antenna. As
shown in Figures 25 and 26, all curves were calculated using MATLAB. The black line
represents the ideal array antenna pattern, the green and red lines are the interval results
obtained when only element or array factor errors occur, respectively, and the blue line
represents the pattern interval when both the array factor and the array factor error occur
simultaneously. It can be seen from the figure that, for both a linear array and a planar
array, the pattern interval in which the element and array factor errors occur at the same
time envelops the result in which only the array factor error occurs, and the pattern interval
in which only the array factor error occurs envelops the result in which only the element
factor error occurs.

According to the analysis of the results in Tables 7 and 8, when an error occurs in the
radius of the spherical dielectric substrate, the array factor error (coordinate position error
of the antenna unit) has a greater impact on the array antenna pattern and the element
factor error has a smaller impact on the array antenna pattern but cannot be ignored.
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Table 8. SLL interval value in Figure 26 (10 × 10 array).

Lobe Array + Element
Tolerance ∆AE Array Factor

Tolerance ∆A Element Factor
Tolerance ∆E ∆A/∆AE ∆E/∆AE

Main [−1.33; 1.32] 2.65 [−0.68; 0.68] 1.36 [−0.08; 0.16] 0.24 51.3% 9.1%
1st [−1.26; 1.08] 2.34 [−0.80; 0.59] 1.39 [−0.16; 0.03] 0.19 59.4% 8.1%
2nd [−2.90; −0.27] 2.63 [−2.30; −0.82] 1.48 [−1.61; −1.42] 0.19 56.3% 7.2%
3rd [−10.12; −5.92] 4.20 [−8.90; −6.98] 1.92 [−8.10; −7.86] 0.24 45.7% 5.7%

5. Conclusions

This study follows the surrogate model method for an element factor and the interval
calculation method for the real and imaginary parts of an array factor. The following
conclusions can be drawn from the analysis of the power pattern interval of the non-
expandable spherical CAA:

(1) When the radius is an interval variable, the interval width is the largest; thus, the
proportion of the interval radius is reduced, the remaining error is a few percentage points,
and the radius is a few tenths of a percent.

(2) Compared with the Monte Carlo method, the method used in an interval analysis
can effectively, simply, and reasonably solve the influence of the spherical substrate radius
error and the excitation amplitude and phase error on the pattern.

(3) The object of this article is a spherical CAA that has not been analyzed for the
interval and provides new material for the development of an interval analysis in the field
of antennas.

(4) For explicit expressions that are difficult to derive directly, surrogate models or
machine learning algorithms can be used to solve them. This research uses the BP intelligent
algorithm to build the surrogate model; other artificial intelligence algorithms are also
suitable for this research.
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