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Abstract—Long-range contextual information is crucial for the
semantic segmentation of High-Resolution (HR) Remote Sensing
Images (RSIs). However, image cropping operations, commonly
used for training neural networks, limit the perception of long-
range contexts in large RSIs. To overcome this limitation, we
propose a Wide-Context Network (WiCoNet) for the semantic
segmentation of HR RSIs. Apart from extracting local features
with a conventional CNN, the WiCoNet has an extra context
branch to aggregate information from a larger image area. More-
over, we introduce a Context Transformer to embed contextual
information from the context branch and selectively project it
onto the local features. The Context Transformer extends the
Vision Transformer, an emerging kind of neural networks, to
model the dual-branch semantic correlations. It overcomes the
locality limitation of CNNs and enables the WiCoNet to see the
bigger picture before segmenting the land-cover/land-use (LCLU)
classes. Ablation studies and comparative experiments conducted
on several benchmark datasets demonstrate the effectiveness of
the proposed method. In addition, we present a new Beijing
Land-Use (BLU) dataset. This is a large-scale HR satellite dataset
with high-quality and fine-grained reference labels, which can
facilitate future studies in this field.

Index Terms—Remote Sensing, Semantic Segmentation, Vision
Transformer, Convolutional Neural Network

I. INTRODUCTION

Semantic segmentation of remote sensing images (RSIs)
refers to their pixel-wise labelling according to the ground in-
formation of interest (e.g., land-cover/land-use (LCLU) types).
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This is important for a variety of practical applications such as
environmental assessment, crop monitoring, natural resources
management and digital mapping. Recently with the develop-
ment of Earth observation technology and the emergence of
convolutional neural networks (CNNs), it has been possible to
perform automatic semantic segmentation of RSIs on easily
accessible high-resolution (HR) RSIs.

Recent CNN models for visual recognition tasks are mostly
based on stacked convolutional filters. A single convolu-
tion operation can extract/strengthen a certain feature, while
stacked convolutions can combine and transform variety of
features. With the inclusion of numerous convolutional layers,
a deep CNN can learn high-level semantic representations of
the observed objects in images [1]. Since the introduction of
Fully Convolutional Network (FCN) in [2], deep CNNs have
been widely used for dense classification tasks (i.e., semantic
segmentation).

However, one of the limitations of CNNs is the intrinsic
locality of convolution operations. The receptive field (RF) of
a CNN unit is the region of input that is seen and responded
to by the unit. Considering the sparse activation nature of
CNNs, the valid receptive field (VRF) of a CNN unit is rather
small [3]. This means that conventional CNNs model mostly
the local image patterns (e.g., color, texture of objects) rather
than considering the context information. Although numerous
papers have proposed designs to enlarge the VRFs of CNNs
[4], [5], they do not consider the long-range dependency
between different image areas. The introduction of attention
mechanism in CNNs [6], [7], [8] has allowed the network to
learn biased focus under different image scenes. However, the
semantic correlations between different image regions are not
deeply modelled.

Recently, transformers are emerging [9] and gaining increas-
ing research interest in the computer vision community [10],
[11]. Differently from CNNs that rely on local operators to
extract information, transformers employ stacked multi-head
attention blocks to model the global relationship between
tokenized image patches. This enables them to exploit in-
depth the long-range dependency that the data may exhibit.
In recent studies transformers are replacing CNNs in many
visual recognition tasks [12], [13], [14]. However, training a
vision transformer requires large amount of training data to
compensate its lack of inductive biases [10]. It is also more
calculation-intensive compared to CNNs.

In this study we aim to take advantage of both the CNN

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2022.3168697

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 2

and transformer for the semantic segmentation of HR RSIs.
The CNNs are good at preserving the spatial information,
while transformer enables a better modelling of the long-range
dependencies. Moreover, instead of placing a plain transformer
at the end of a CNN [15], we propose a dual branch Context
transformer to model the broader context in large RSIs. By
allowing network to look at the bigger picture (i.e., seeing
the wider context), it can understand better the local LCLU
information. The main contributions in this study can be
summarized as follows:

1) Proposing a Wide-Context Network (WiCoNet) for the
semantic segmentation of HR RSIs. The WiCoNet
includes two CNNs that extract features from local
and global image levels, respectively. This enables the
WiCoNet to consider both local details and the wide
context;

2) Proposing a Context Transformer to model the dual-
branch semantic dependencies. The Context Transformer
embeds the dual-branch CNN features into flattened
tokens and learns contextual correlations through repet-
itive attention operations across the local and contextual
tokens. Consequently, the projected local features are
aware of the wide contextual information;

3) Presenting a benchmark dataset (i.e., the Beijing Land-
Use (BLU) dataset) for the semantic segmentation of
RSIs. This is a challenging HR satellite dataset annotated
according to the land-use types. We believe the release
of this dataset can greatly facilitate future studies.

The remainder of this paper is organized as follows. Sec-
tion II introduces the literature work related to the semantic
segmentation of RSIs. In Section III, we present the proposed
WiCoNet. Section IV illustrates the designed experiments and
introduces our BLU dataset. Finally, we draw a conclusion of
this study in Section V.

II. RELATED WORK

A. Semantic Segmentation of Natural Images

In [2] deep CNNs have been first introduced for the se-
mantic segmentation of images. CNN-based semantic segmen-
tation can be used in many applications, such as saliency
detection [16], medical segmentation [17], road scene un-
derstanding [18], and LC mapping [19]. CNN architectures
for the semantic segmentation of images typically include an
encoder network to aggregate the local information, as well
as an decoder network to retrieve the lost spatial details [17],
[20]. Many network modules have been proposed to enhance
the exploitation of local information, including the deformable
convolution [21] and the dilated convolution [5] to enlarge
the convolutional kernels and the pyramid pooling module to
model multi-scale context information [4]. Meanwhile, many
literature works presented sophisticated CNN architectures to
enhance the extraction of features, such as the multi-branch
feature encoding designs in the HRNet [22] and the RefineNet
[23]. In [24] the ExFuse is proposed, which is a network that
includes cross-level information exchanging and multi-scale
feature fusion designs.

In recent years, the self-attention mechanism has been intro-
duced to visual tasks in the Squeeze-and-Excitation Networks
(SENet) [25]. An SE block aggregates and embed global
information into features to learn biased focus in different
image scenes, which is often referred as channel attention in
later literature. In [7] the channel attention is extended also
to the spatial dimension to learn the position of focus. In
[18] the DANet, which combines channel attention and non-
local attention [26] in a parallel manner, has been presented.
In the OCRNet [27] the relation between each pixel and
its surrounding object regions is calculated to augment the
contextual representations.

B. Semantic Segmentation of RSIs

Semantic segmentation of RSIs refers to the dense classi-
fication of either multiple LCLU classes or single interested
class in RSIs (e.g., road [28], building [29], and water body
[30]). Spatial accuracy is often crucial to remote sensing appli-
cations, which is a requirement for the semantic segmentation
of RSIs. To improve the spatial localization accuracy, many
literature works introduce U-shape networks with symmet-
ric encoder-decoder structures. The TreeUNet [31] employs
a DeepUNet to extract multi-scale features and adaptively
construct a tree-like CNN module to fuse the features. The
ResUNet [32] employs the UNet with residual convolutional
blocks as the segmentation backbone and combines atrous
convolution and pyramid scene parsing pooling to aggregate
the context information. The MP-ResNet [33] includes three
parallel feature embedding branches to model the context
information at different scales, each of which includes a full
ResNet34 (some of the residual blocks are shared). Other
papers resort to strengthen the extraction of edge information.
In [34] and [35] the ground truth boundaries of objects are
provided as a supervision to guide the network to learn
edge features. In [36], the Multi-layer Perceptron (MLP) is
employed to rectify the uncertain areas in CNN predictions,
which improves the preservation of object boundaries.

Another research focus is to model the geometric features of
ground objects. In [37], a direction supervision is introduced
for the segmentation of roads. It strengthens the detection
of linear features, thus the occluded and low-contrast roads
are more salient to the models. In [29], the shape of object
contours is modelled for the segmentation of buildings. The
building contours are in-painted and sharpened through the
adversarial learning of their shape information.

Recently, the attention mechanism has been widely used
to augment the CNN-extracted features for the semantic seg-
mentation of RSIs. In [38], the SE design is extended to
the spatial dimension to represent the patch-wise semantic
focus, which bridges the semantic gap between high-level
and low-level features. In [39], local and non-local attention
designs are integrated in different branches of the HRNet
[22], so that the local focus and long-range dependencies are
captured, respectively. In [40], the channel attention and non-
local attention blocks are sequentially used to augment the
long-range dependencies in aerial RSIs.
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Fig. 1: The proposed Wide-Context Network (WiCoNet).

C. Transformers in Vision Tasks

Transformer was first introduced for natural language pro-
cessing tasks [9] where it achieved the state-of-the-art per-
formance [41]. Recently the use of transformer for computer
vision tasks has drawn great research interests. In [10], the
Vision Transformer (ViT) is introduced for image classifica-
tion, which shows that a pure transformer can replace CNN for
image recognition tasks. In [42], transformer is first used for
object detection. The resulting detection Transformer (DETR)
passes CNN features to a transformer, where the object class
and locations are automatically generated with the encoded
positional queries.

There are also literature works that use transformers for
dense classification tasks. In [11], a dual-path transformer is
proposed for panoptic segmentation, which includes a pixel
path for segmentation and a memory path for class prediction.
The transformer is used for information communication be-
tween the two paths. In [43], a two-branch architecture is pro-
posed for the segmentation of medical images, which employs
jointly a CNN and a transformer to extract features. In the
Swin Transformer [13] cascaded transformers are constructed
in an architecture similar to the ResNet. The spatial sizes of
embedded patches are gradually increased to enlarge the RF.

In several recent papers transformers have been introduced
for processing RSIs. In [44] the vision transformer shows
advantages over CNNs for scene classification in RSIs. In
[45] a bi-temporal transformer is introduced for the change
detection of RSIs. The bi-temporal semantic features are
tokenized and concatenated, followed by the transformer to
enrich the global semantic correlations.

III. PROPOSED WIDE-CONTEXT NETWORK

In this section, we illustrate the motivation for modelling
a wide context in RSIs, followed by the architecture of the
proposed network. Then, we describe the designed Context

Transformer for communication of information between the
two feature extraction branches. Finally, we report the imple-
mentation details.

A. Motivation of the Wide-Context Modelling

VRFs are known to be crucial for visual recognition tasks,
since they determine the maximum range of area where
neural networks can gather information. In [40] and [39],
the non-local attention blocks are introduced for the semantic
segmentation of RSIs, which expand the VRFs of the networks
into the whole input image. However, during training of
neural networks, the input RSIs are often spatially cropped
to avoid the overload of computational resources (and also
to mix the samples in different image regions). Let us denote
I ∈ Rc×h×w as a RSI that consists of c spectral bands and has
the spatial size of h×w. To train a standard CNN modelM, I
is usually cropped into Il ∈ Rc×hl×wl where hl, wl are height
and width of the cropping window, respectively. This limits
the maximum possible RF of M to be hl × wl. Moreover,
due to the locality that is inherent to CNNs [10], their VRFs
are usually much smaller than hl × wl [46]. Therefore, the
long-range context information is insufficiently exploited in
M.

This issue is crucial in many LCLU mapping applications.
The LCLU mapping is a complex task that requires high-
level abstraction of regional information, where the context
information limited in hl × wl is often insufficient for rec-
ognizing some crucial samples. Moreover, for many objects
that are spatially large (e.g., industrial buildings) or elongated
(e.g., roads and rivers), the geometric features and semantic
correlations cannot be well-presented in local windows. To
conquer these limitations, the context information should be
modelled in a wider image range, which is the motivation of
this study.
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B. Network Architecture

We propose a Wide-Context Network (WiCoNet) that ex-
ploits the long-range dependencies in a larger image range in
RSIs. As illustrated in Fig. 1, the proposed WiCoNet consists
of two encoding branches. The local branchM1, which is the
main branch of the WiCoNet, employs the ResNet to extract
local features. The novel design in the WiCoNet is a context
branchM2, which is introduced to explicitly model the wider-
range context information in RSIs. It employs a simple CNN
encoder to learn coarsely the context information (instead
of gathering the spatial details). The context information
is learned through M2 and embedded into M1 through a
Context Transformer T . The final results of the WiCoNet is
then produced by the context-enriched M1.

Formally, the training of a standard CNN model is per-
formed on Il:

P =M(Il), (1)

where P ∈ Ru×hl×wl is the segmentation map (u is the
number of classes). Differently, the WiCoNet is trained with
both Il and Ic. Ic ∈ Rc×hc×wc is a down-sampled copy of I to
provide an overview of the surrounding environment. The Il is
associated with the central area of Ic. Two segmentation maps
Pl ∈ Ru×hl×wl and Pc ∈ Ru×hc×wc are produced during the
training phase:

Pl, Pc = T [M1(Il),M2(Ic)], (2)

The training is driven by the total multi-class cross-entropy
(MCE) losses of the two branches, calculated as:

LSeg = LMCE(Pl, Ll) + αLMCE(Pc, Lc), (3)

where α is a weighting parameter, Ll and Lc are the ground
truth (GT) maps in the local and context branches, respectively.

Since the information extracted from M2 is already mod-
elled through T , no further feature fusion operations are
performed. During the testing phase, Pl is taken directly as
the segmentation result.

C. Context Transformer

We introduce a Context Transformer to project long-range
contextual information onto the local features, which is de-
veloped on top of the Vision Transformers. A typical Vision
Transformer takes flattened and projected image patches as
inputs. It consists of multiple layers of attention blocks, each
of which has a Multi-head Self-Attention (MSA) unit and
an MLP unit [9]. Normalization and residual connections are
enabled in each unit. The long-range semantic correlations are
learned through the stacked attention blocks. Let us consider
an input 3D signal x ∈ Rĉ×h×w where ĉ is the number
of channels. x is first reshaped into a flattened 2D patch
xp ∈ RN×ĉp2

, where N = hw/p2, (p, p) is the spatial size
of each flattened patch. Then, xp is projected into a token
vector t ∈ RN×D where D is the constant latent vector size
in all the layers of the Transformer. This operation that maps
x into t is named Patch Embedding. To retain the position
information, t is further added with trainable parameters before

it is forwarded into the transformer. The operations inside a
transformer block can be represented as follows:

t̂ = MSA(LN(t)) + t,
t̃ = MLP(LN(̂t)) + t̂,

(4)

where LN denotes a LayerNorm function. The calculations
included in a MSA unit are:

t̂ = Av = softmax(
qkT√
D/n

)v, (5)

where q,k, v ∈ RN×D/n are three projections of LN(t), A ∈
RN×N is the attention matrix, n is the number of heads in the
MSA.

Meanwhile, the goal of the designed Context Transformer
T is to pass information from M2 to the main encoding
branch M1. Instead of adding directly the values [47], we
aim to project a biased focus to augment the features in
M1. Specifically, for each position in the local feature, the
responses from all the context windows are calculated and
projected.

Let tl ∈ RN×D and tc ∈ RM×D (M is the number of
flattened features in M2) denote the local and context tokens
embedded fromM1 andM2, respectively. In T , a local query
ql is projected with tl, while the context key kc and value vc

are projected with tc:

ql = tlWq ∈ RN×D/n,

kc = tcWk ∈ RM×D/n,

vc = tcWv ∈ RM×D/n,

(6)

where Wq,Wk,Wv ∈ RD×D/n are the corresponding weights
of the projection function.

The context attention Ac ∈ RN×M is then calculated to
update tl:

t̂l = Acvc = softmax(
qlk

T
c√

D/n
)vc. (7)

These operations, together with the MLP calculations, are
repeated for L times, where the contextual dependencies
between tl and tc are modelled and enforced. Consequently,
the local tokens are projected with long-range dependencies
from the context tokens. Finally, the local and context tokens
are reshaped into 2-dimensional features.

D. Implementation Details

Here, we report detailed information of the proposed
WiCoNet.

1) The feature extraction networks. We chose the ResNet50
as the feature extraction network inM1, which is powerful in
exploiting the local features [38]. The down-sampling stride of
the ResNet is ×1/8 to better preserve the spatial information.
In the context branch, we employ a simple convolutional block
(referred as the Context Encoder) to extract context features.
It consists of 11 sequentially connected layers, including 8
convolutional layers and 3 max-pooling layers. Each pooling
layer is placed after 2 convolutional layers following the
encoder design of UNet [17].
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2) Area of the context modelling. The down-sampling scale
for input to M2 is ×1/4, while the down-sampling stride of
the context encoder is the same as the ResNet (×1/8). The
size of context window is set to 9 times the size of local
window (w = 3wl, h = 3hl). An analysis of the accuracy
versus context modelling range is provided in Sec. V-A. In
this study, the size of the local window is 256× 256. In cases
where the local window is at the border of RSIs, empty areas in
the context window are padded with reflections of the image.

3) Context Transformer. The hyper-parameters in the Con-
text Transformer include: L - number of transformer blocks,
n - number of heads, p - size of the embedded parches
and D - dimension of the embedded tokens. p is set to 1
to retain the spatial information. D is set to 512, which is
the number of output channels of the context encoder. L
and n are set according to the experimental results, which
are discussed in Sec. V-A. Additionally, there is a weighting
parameter α. It is dynamically calculated at each iteration as:
(1−iteration/all iterations)2. In this way, its value declines
over iterations and the WiCoNet gradually focuses on the local
branch.

To find more details of the WiCoNet, readers are encouraged
to visit the released codes at: https://github.com/ggsDing/
WiCoNet.

IV. EXPERIMENTAL DATASETS AND SETTINGS

In this section, the experimental datasets and settings are
reported. First the experimented datasets are introduced, in-
cluding the novel Beijing LU dataset and two open datasets.
Then the experimental settings and evaluation metrics are
reported.

A. Beijing Land-Use Dataset

Currently there are few HR satellite benchmark datasets
available for the multi-class semantic segmentation of RSIs.
To facilitate future researches, we present a new benchmark
dataset named Beijing Land-Use (BLU) dataset. This dataset
was collected in June, 2018 in Beijing by the Beijing-2
satellite provided by the 21th Century Aerospace Technology
Co.,Ltd. The collected data are RGB optical images and have a
ground sampling distance (GSD) of 0.8m. We constructed fine-
grained human annotations on the collected images based on
6 LU classes: background/barren, built-up, vegetation, water,
agricultural land, and road. These are the most interesting and
frequently investigated land-use classes in both research stud-
ies and real-world applications (e.g., environment monitoring,
traffic analysis and urban and rural management). The detailed
statistics of the class distributions are shown in Table I.

Compared to the existing datasets, the BLU dataset shows
several remarkable features: i) High spatial resolution. As a
satellite dataset, it has a high GSD of 0.8m; ii) High annotation
accuracy. The annotations were performed by an experienced
annotation team dedicated to the RS applications. Fig. 4 shows
some sample image patches selected from this dataset. One
can observe that the LU classes in this dataset are easy to be
discriminated due to the high GSD of RSIs. Moreover, the
annotations are up to the pixel-level and the ground objects

have been precisely annotated and geometrically optimized
(to ensure both local consistence and topological correctness).
Meanwhile, the observed areas include a variety of scenes,
including farmland, residential areas, highways, airport, wet
land, and others. This ensures that each LU class contains
diverse samples. For example, the ‘built-up’ class includes
residential buildings, industrial buildings, and villages; the
‘water’ class includes rivers, ponds and wet lands, etc. These
features present challenges to the generalization capability of
segmentation algorithms.

Fig. 2 presents an overview of the BLU dataset. The
observed regions include both urban and rural scenes, covering
around 150 km2 of area in total. The dataset consists of 4
tiles of large RSIs collected in 4 sub-urban regions in Beijing,
each one with a pixel size of 15680 × 15680. Each large
image is further cropped into 64 images (49 for training, 7 for
validation, and 8 for testing), each of which has 2048× 2048
pixels (Fig. 3). The training, validation, and testing areas
are non-overlapping, whereas the cropping windows within
each area have small overlaps. The total number of images
for training, validation, and testing are 196, 28, and 32,
respectively. Both the original tiles and the divided sub-sets are
provided. The BLU dataset will be released openly accessible
to researchers 1.

B. Standard Benchmark Datasets

To make a comprehensive analysis on the performance of
the proposed WiCoNet, we conducted experiments on two
additional open benchmark datasets, i.e., the ISPRS Potsdam
dataset and the Gaofen Image Dataset (GID).

1) The Potsdam dataset. This is an area dataset collected
in urban scenes. It consists of 38 tiles of very high resolution
(VHR) RSIs, each having 6000 × 6000 pixels. The provided
data include true ortho photos containing 4 spectral bands
(RGB and infrared) and the registered digital surface model
(DSM) data. The labels are annotated with 6 LC categories:
impervious surfaces, building, low vegetation, tree, car, and
clutter/background. We use 18 tiles of images for training,
6 for validation and the remaining 14 ones for testing. The
division of training and validation tiles follows the practice in
[48].

2) The GID. This is an HR LC classification dataset col-
lected by the Gaofen-2 (GF-2) satellite. It consists of 10 tiles
of RSIs with 4 spectral bands (RGB and near infrared). Each
tile has 7200 × 6800 pixels, with a GSD of 0.8m. Since the
division of training and testing sets is not provided, we further
crop and divide the tiles into 90 training images, 30 validation
images and 40 testing images (each one with 2048 × 2048
pixels. 16 LC classes are annotated, including: industrial land
(IDL), urban residential (UR), rural residential (RR), traffic
land (TL), paddy field (PF), irrigated land (IL), dry cropland
(DC), garden plot (GP), arbor woodland (AW), shrub land
(SL), natural grassland (NG), artificial grassland (AG), river
(RV), lake (LK), and pond (PN).

1https://rslab.disi.unitn.it/dataset/BLU/
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Fig. 2: Overview of the BLU dataset.

Fig. 3: Split of the training, validation and testing sets.

Fig. 4: Sample images taken from different scenes in the BLU
dataset.

C. Experimental Settings

The proposed WiCoNet and the compared methods are
implemented with PyTorch. The hardware environment of this
study is a server equipped with a GTX3090 GPU. For each
dataset, we fix the training epochs to 50, the batch size to
32 and the initial learning rate to 0.1. The learning rate lr
is dynamically calculated at each iteration as: 0.1 ∗ (1 −

TABLE I: Class distribution in the BLU dataset.

Class Name Number of pixels Proportions (%)
Background 156,190,234 15.88
Built-up 125,695,683 12.78
Vegetation 478,668,644 48.67
Water 28,364,259 2.88
Agricultural 159,386,020 16.20
Road 35,144,760 3.57

Total 983,449,600 -

iterations/total iterations)1.5. The optimization algorithm
is the Stochastic Gradient Descent with the momentum of 0.9.
Random flipping and random cropping operations are adopted
to augment the data. They are performed at each iteration of
the training process. At the end of training, the model file with
the best OA (evaluated on the validation set) is saved.

In this study we adopt the most frequently used metrics
[35], [40] to evaluate the tested methods, including: i) Over-
all Accuracy (OA), which is the numeric ratio of correctly
classified pixels versus all the pixels in RSIs, ii) F1 score of
each class, which is the harmonic mean of the Precision and
Recall, and iii) mean Intersection over Union (mIoU). The
metrics can be calculated with the number of True Positive
(TP ), True Negative (TN ), False Positive (FP ), and False
Negative (FN ) pixels as follows:

OA = (TP + TN)/(TP + TN + FP + TN),

P recision = TP/(TP + FP ), Recall = TP/(TP + FN),

F1 = 2× Precision×Recall
Precision+Recall

,

IoU = TP/(TP + FP + FN).
(8)

V. EXPERIMENTAL RESULTS

This section reports the results of the conducted exper-
iments. First an ablation study is developed to verify the
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accuracy improvements. Then the effect of context modelling
range is analyzed. Finally, the proposed WiCoNet is compared
with several CNN models with context-aggregation designs in
recent studies.

A. Ablation Study

Choice of Hyper-Parameters As introduced in Sec.III-D,
L and n are two adjustable hyper-parameters in the Context
Transformer. First we conduct a group of experiments to set
their values. The initial values of L and n are set to 2 and 4,
respectively. We change the values of L and n by sequence,
and report the OA obtained by the WiCoNet in Table III.
One can observe that the best OA on the BLU and GID
datasets is obtained when L = 4, n = 4. Meanwhile, the
optimal hyper-parameter values for the Potsdam dataset are
L = 2, n = 4. The OA is lower when L is set to 8. We
assume that this is caused by over-fitting, since the long-range
context information in RSIs is relatively simple, thus too many
Transformer layers may be redundant. The tested optimal
parameters for different datasets are fixed in the following
experiments.

Quantitative Results An ablation study is conducted to test
the effectiveness of context modelling. The novel designs in
the WiCoNet include an extra context branch and the Context
Transformer. First, we compare the results of the proposed
WiCoNet and the FCN [2]. To exclude the improvements
brought by the transformer, we also constructed a variant of the
FCN where a transformer is placed at the end of its encoder,
denoted as FCN+Transformer. The experimental results are
reported in Table II.

Compared to FCN, the improvements brought by adding
the transformer as an encoder head (FCN+Transformer) are
limited. This can be attributed to the limited long-range context
information in local patches. However, after performing the
wide context modelling with the WiCoNet, significant im-
provements are obtained. The improvements over the base-
line FCN are 0.84%, 1.01%, and 1.41% in OA and 1.41%,
4.05, and 1.69% in mIoU, respectively, on the BLU dataset,
GID, and Potsdam dataset. These results show that the wide
context modelling in the WiCoNet stably improves the LCLU
segmentation accuracy of HR RSIs.

Qualitative Results To qualitatively assess the effects of
context modelling, Fig. 5 and Fig. 6 show comparisons of the
results in some sample areas on the BLU and the additional
datasets, respectively. In the sample images, both the context
window and the local window of the WiCoNet are presented.
The salience maps of the FCN and the WiCoNet are also
shown to highlight their perception of the critical classes.
One can observe that there are many fragmentation errors
and inconsistency in the segmentation results of the FCN. In
many cases, learning only the local bias is not sufficient to
overcome these shortcomings, as shown in the results of the
FCN+Transformer.

The proposed WiCoNet shows advantages in: i) Discrimi-
nating the critical areas. By modelling contextual dependen-
cies on similar samples in the context window, the discrimina-
tion of certain critical or minority classes in the local window

is improved (e.g., Fig. 5(b), Fig. 6(b)(f)); ii) Improving the
connectivity of segmented objects. The spatial layout of certain
objects is clearer in a wider image context (e.g., the road in
Fig. 5(a), the rivers in Fig. 5(c) and Fig. 6(a)). The WiCoNet
better preserves their long-range consistency; iii) Reducing
fragmentation errors. By looking into the context window, the
WiCoNet understands better the local scenes, thus eliminating
some false predictions (e.g., the lake in Fig. 6(c) and an empty
field in Fig. 6(e)).

Effects of the Context Modelling Range The size of
the context window (w × h) determines up-to which range
the context information is modeled, which is critical for
the WiCoNet. To allow enough coverage of the surrounding
regions, the size of the context window should be several times
bigger than the size of the local window (wl×hl). Meanwhile,
since transformer is based on self-attention mechanism, too
large context modelling range may cause loss of focus on the
local content. To find the best context modelling range, we
further conduct experiments by varying the size of context
windows.

The results are reported in Table IV. The tested context
windows have ×4, ×9, and ×16 times the area of local
windows (i.e., w × h = 2wl × 2hl, w × h = 3wl × 3hl,
and w × h = 4wl × 4hl). One can observe that the ×16
context window results in the best accuracy on the GID and
the Potsdam dataset, whereas the ×9 context window leads to
better accuracy on the BLU dataset. The relationship between
OA and the size of context window is presented in Fig. 7.
Overall, the increase in OA from ×4 to ×9 windows is
noticeable, whereas that from ×9 to ×16 windows is not
significant.

B. Comparative Study
We further compare the proposed WiCoNet with several

recent works on context-aggregation designs. The compared
models include the baseline FCN, the Deeplabv3+ [5] with
dilated convolutions, the PSPNet [4] with the pyramid scene
parsing (PSP) module, the DANet [18] with channel attention
and non-local attention, the SCAttNet [49] with spatial and
channel attention, the MSCA [39] with multi-scale context
aggregation designs, and the LANet [38] with local attention.

We implement all the tested methods with the experimental
settings described in Sec. IV-C and report the results in Ta-
bles V, VI and VII. The reported values are the average of the
metrics derived in 3 trials. One can observe that DeepLabv3+,
a well-known network in the computer vision community,
shows stable improvements over FCN on the three datasets.
The recent attention-based approaches (DANet, LANet and
SCAttNet) obtain good results on the BLU and Potsdam
datasets. In particular, the LANet obtains the second best OA
on the BLU dataset and the GID. The MSCA that integrates
attention designs into the HRNet architecture achieves the sec-
ond best results on the Potsdam dataset. By extending attention
into wider image areas through transformers, the proposed
WiCoNet obtains the best accuracy metrics (in both OA, mean
F1 and mIoU) on the three datasets. Its improvements are
particularly noticeable on the GID where context information
is crucial to determine the LC classes.
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TABLE II: Quantitative results of the ablation study on the considered data sets.

Dataset Method Components OA(%) mean F1(%) mIoU(%)local branch context branch Transformer

BLU
FCN [2]

√
86.51 81.88 70.09

FCN+Transformer
√ √

86.74 82.48 70.92
WiCoNet (Ours)

√ √ √
87.35 82.89 71.50

GID
FCN [2]

√
74.71 63.13 49.02

FCN+Transformer
√ √

75.82 65.20 51.36
WiCoNet (Ours)

√ √ √
77.14 66.26 53.07

Potsdam
FCN [2]

√
88.96 90.72 83.24

FCN+Transformer
√ √

88.69 90.39 82.66
WiCoNet (Ours)

√ √ √
90.24 91.70 84.93

(a)

(b)

(c)

(d)

Test image GT FCN Saliency map
of FCN FCN+Transformer WiCoNet

(Ours)

Saliency map
of our

WiCoNet

Fig. 5: Qualitative results of the ablation study on the BLU datasets. The saliency maps of the critical classes are presented.
The selected challenging scenes include: (a) occluded road, (b) green algae-covered river, (c) streets in a residential area, and
(d) farmland surrounded by vegetation.

TABLE III: The OA obtained by the WiCoNet with different
hyper-parameters.

Dataset L n
2 4 8 4 8

BLU 87.03 87.35 87.02 87.35 87.13
GID 77.04 77.14 76.96 77.14 77.05

Potsdam 90.24 90.21 89.95 90.24 90.22

The parameter size and computational cost of each model

are reported in Table VIII. The number of floating point
operations per second (FLOPS) is calculated based on the
experimental settings for the BLU dataset (including input &
output size and hyper-parameters), except for the batch size
which is set to 1 for clarity. The overall consumption of the
WiCoNet is higher than that of the FCN, the SCAttNet and
the LANet, but it is lower than that of the PSPNet and the
DANet. Its parameter size and FLOPS are very close to those
of the DeepLabv3+.
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(a)

(b)

(c)

(d)

(e)

(f)

Test image GT FCN Saliency map
of FCN FCN+Transformer WiCoNet

(Ours)

Saliency map
of our

WiCoNet

Fig. 6: Qualitative results of the ablation study on the additional datasets. The saliency maps of the critical classes are presented.
(a)(̃c) Results selected from the GID, (d)(̃f) Results selected from the Potsdam dataset.

VI. CONCLUSIONS

While long-range context information is crucial for the
semantic segmentation of VHR RSIs, most existing studies
only focus on modeling the local context information within
cropped image patches. To overcome this limitation, we
propose a Wide-Context Network (WiCoNet). The WiCoNet
employs an extra context branch to aggregate the context in-
formation in bigger image areas (i.e., context windows), which
greatly broadens the possible RFs of the models. Moreover,
instead of using simple feature fusion designs, we introduce a
Context Transformer to communicate the information between

its dual branches. The context information is calculated and
projected into the local query tokens, which overcomes the
locality limitations of CNNs.

To support this study and to facilitate future researches,
we also release a high-quality and large-scale benchmark
dataset for the semantic segmentation on HR RSIs, i.e., the
Beijing Land-Use (BLU) dataset. Through experiments on
the BLU dataset and two additional datasets, we i) verified
the effectiveness of the long-range context modelling, ii)
analyzed the accuracy of different context modelling sizes,
and iii) compared the WiCoNet with several literature works
that models context information in RSIs. Experimental results
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Fig. 7: The OA of results versus different size of context
windows.

TABLE IV: The effects of context modeling range on the
segmentation accuracy.

Dataset Metrics Size of context windows
512×512 768×768 1024×1024

BLU
OA 86.91 87.35 87.20

mean F1 82.11 82.77 82.35
mIoU 70.41 70.58 70.81

GID
OA 77.06 77.14 77.28

mean F1 66.03 66.26 66.55
mIoU 53.04 53.07 53.38

Potsdam
OA 90.16 90.24 90.34

mean F1 91.59 91.71 91.76
mIoU 84.72 84.93 85.03

show that the WiCoNet enables a better understanding and
modeling of both the local scene information and the global
class distribution, thus brings significant accuracy improve-
ments. However, there are still global inconsistency and some
local fragmentation errors remain, indicating that there is
still margin to improve the modelling of long-range context
information in large RSIs. This is left for future works, where
adversarial learning strategies [29] can be employed to model
the semantic correlations.
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TABLE V: Comparison of segmentation accuracy provided by different methods on the BLU dataset.
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