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Visuomotor transformations at the cortical level occur along a network where posterior parietal regions are connected to ho-
mologous premotor regions. Grasping-related activity is represented in a diffuse, ventral and dorsal system in the posterior
parietal regions, but no systematic causal description of a premotor counterpart of a similar diffuse grasping representation
is available. To fill this gap, we measured the kinematics of right finger movements in 17 male and female human partici-
pants during grasping of three objects of different sizes. Single-pulse transcranial magnetic stimulation was applied 100ms af-
ter visual presentation of the object over a regular grid of 8 spots covering the left premotor cortex (PMC) and 2 Sham
stimulations. Maximum finger aperture during reach was used as the feature to classify object size in different types of classi-
fiers. Classification accuracy was taken as a measure of the efficiency of visuomotor transformations for grasping. Results
showed that transcranial magnetic stimulation reduced classification accuracy compared with Sham stimulation when it was
applied to 2 spots in the ventral PMC and 1 spot in the medial PMC, corresponding approximately to the ventral PMC and
the dorsal portion of the supplementary motor area. Our results indicate a multifocal representation of object geometry for
grasping in the PMC that matches the known multifocal parietal maps of grasping representations. Additionally, we confirm
that, by applying a uniform spatial sampling procedure, transcranial magnetic stimulation can produce cortical functional
maps independent of a priori spatial assumptions.

Key words: grasping; ventral premotor; dorsal premotor; supplementary motor area; parietal; transcranial magnetic
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Significance Statement

Visually guided actions activate a large frontoparietal network. Here, we used a dense grid of transcranial magnetic stimula-
tion spots covering the whole premotor cortex (PMC), to identify with accurate spatial mapping the functional specialization
of the human PMC during grasping movement. Results corroborate previous findings about the role of the ventral PMC in
preshaping the fingers according to the size of the target. Crucially, we found that the medial part of PMC, putatively covering
the supplementary motor area, plays a direct role in object grasping. In concert with findings in nonhuman primates, these
results indicate a multifocal representation of object geometry for grasping in the PMC and expand our understanding of how
our brain integrates visual and motor information to perform visually guided actions.

Introduction
Visually guided hand-object interactions are a fundamental
component of primate behavior. Such behavior is modular,
including several main dissociable components, from trans-
porting the hand toward the object (reaching component)
to shaping the hand according to it (grip component)
(Turella and Lingnau, 2014). The present work focuses on
how the brain uses visual information on object geometrical
properties to guide hand-shape while reaching for the object
itself.
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Converging neurophysiological and neuroimaging studies in
primates indicate that the different subcomponents that underlie
visually guided hand-object interactions are mediated by a spe-
cific neural substrate, linking the posterior parietal cortex
to frontal regions, mainly to the premotor cortex (PMC)
(Jeannerod et al., 1995; Wise et al., 1997; Turella and Lingnau,
2014; Caminiti et al., 2015; Borra et al., 2017). In particular,
human parietofrontal networks for upper limb movements are
classified into two main systems, referred to as the dorsomedial
and dorsolateral systems, on account of being both embedded in
the dorsal visual stream (Rizzolatti and Matelli, 2003; Turella and
Lingnau, 2014; Caminiti et al., 2015; Gallivan and Culham, 2015;
Borra et al., 2017; Monaco et al., 2017; Cavina-Pratesi et al.,
2018). The dorsomedial pathway, which includes superior pari-
eto-occipital cortex (SPOC), the medial part of the intraparietal
sulcus and dorsal PMC, is classically considered to contain maps
of the space around us, associated with reaching movements for
controlling the upper limb position (Connolly et al., 2003; Prado
et al., 2005; Filimon et al., 2007, 2009; Cavina-Pratesi et al., 2010;
Turella and Lingnau, 2014). The dorsolateral pathway connects
the anterior part of the intraparietal sulcus with the ventral PMC
(PMv). This pathway is coding grasping, and it is responsible for
the transformation of the properties of the object (e.g., shape and
size) into the appropriate motor command (Culham et al., 2003;
Frey et al., 2005; Cavina-Pratesi et al., 2010). However, much evi-
dence is not entirely compatible with the notion of independent
neural coding for grasp and reach movements, and recent find-
ings in humans (Gallivan et al., 2011, 2013; Verhagen et al., 2012;
Fabbri et al., 2014; Turella and Lingnau, 2014; Monaco et al.,
2015; Turella et al., 2016) suggested that both the dorsolateral
and the dorsomedial pathways could code for grasping informa-
tion. Such observations of object- and grasping-related activity in
the dorsomedial pathway are inspired and supported by findings
in nonhuman primates, which demonstrated grasping-relevant
information both in the medial occipito-parietal cortex (Fattori
et al., 2010, 2012) and medial PMC (Lanzilotto et al., 2016;
Bonini, 2017; Gerbella et al., 2017; Livi et al., 2019).

In human, there is growing evidence indicating that parietal
activity within the dorsomedial pathway encodes grasp-related
parameters. Gallivan et al. (2011, 2013) demonstrated that pre-
paratory activity along the dorsomedial circuit, in particular
SPOC, decodes reach-to-touch versus reach-to-grasp move-
ments. A recent transcranial magnetic stimulation (TMS) study
(Vesia et al., 2017) directly demonstrated a crucial role of SPOC
in encoding handgrip formation during action preparation. In
general, while accumulating evidence shows that that grasping
representations in the posterior parietal cortex are distributed
between the dorsolateral and the dorsomedial systems, the repre-
sentation of grasping in the PMC is still incompletely under-
stood. In particular, an important, yet unresolved, question is
whether grasping information represented in the medial parietal
regions (Gallivan et al., 2011; Vesia et al., 2017) has a counterpart
in the medial premotor regions. Neuroimaging studies demon-
strated that both visually guided (Gallivan et al., 2011, 2013) and
nonvisually guided (Fabbri et al., 2014) reach-to-grasp actions
activated not only the PMv, but also a more medial-dorsal part
of the PMC (Turella and Lingnau, 2014). However, functional
neuroimaging lacks the temporal resolution to investigate the
neural correlates of ongoing movements, and most fMRI studies
focus on the preparatory phase before the actual voluntary move-
ment (Medendorp et al., 2005; Beurze et al., 2007, 2009).
Therefore, from a functional perspective, the specificity of pre-
motor activity can be difficult to interpret because these

approaches cannot determine whether this neural activation
reflects neural processing that is critical for grasping movements.
TMS does not suffer from these limitations and can provide
more accurate information about where and when grasping
movements are coded. However, most TMS studies on voluntary
actions explored single foci that were chosen a priori within the
PM cortex: therefore, they yielded limited spatial information on
the overall functional organization of the PM region.

In the present study, we explored the topographic distribution
of goal-directed sensorimotor functions in healthy volunteers
performing grasping movements toward cylindrical objects of
three different sizes. Event-related TMS was applied to single
spots of a dense grid of 8 points on the participants’ left hemi-
scalp, putatively covering the whole of PM. Single-pulse TMS
was applied at 100 ms after the Go signal, a time window that
has been previously demonstrated critical for hand movement
preparation and visuomotor transformations (Davare et al.,
2006). This approach has a double advantage: On the one hand,
dense mapping with TMS (i.e., stimulating the cortex across a
uniform array of adjacent target foci) allows the detailed func-
tional cartography of the PMC. On the other hand, it allows to
generate spatially unbiased data in a relatively hypothesis-inde-
pendent way (Cattaneo, 2018; Lega et al., 2019). In support of
this approach, data-driven classification algorithms were used to
classify the kinematic parameters as belonging to the small, me-
dium, or large object, and to compare the classification accuracy
between active and sham spots.

Materials and Methods
Participants. Seventeen participants took part in the experiment (10

females and 7 males; mean age: 26 years; SD: 4.15 years). All participants
were right-handed and with normal or corrected-to-normal visual acuity
and normal color vision. Before the TMS experiment, each subject filled
in a questionnaire to evaluate eligibility for TMS. None of the partici-
pants reported any contraindications for TMS use (Rossi et al., 2009).
Written informed consent was obtained from all participants before the
beginning of the experiment. The study protocol was approved by the
local ethical committee, and the experiment was conducted in accord-
ance with the Declaration of Helsinki.

Experimental design. The timeline of an experimental trial is shown
in Figure 1. Participants performed a grasping movement while we
measured the grip aperture of their right hand by a glove equipped with
flexible sensors strategically put to detect fingers’ movements (Gentner
and Classen, 2009). The whole experiment was conducted in the semi-
dark condition. Participants had to grasp a cylindric object of three pos-
sible sizes (diameter: 1, 3, and 5 cm). Participants wore glasses with LCD
shutter lenses, controlled by a specific voltage that makes them opaque
or transparent, so that subjects could see the object to grasp only from
the “go” signal just before the beginning of the grasping movement. The
“go” was represented by three different signals that happened simultane-
ously: (1) the glass became transparent; (2) participants heard a “beep”
sound; and (3) a flexible mini LED USB light was fixed over the object
and lit up the object to be grasped. Participants were instructed to main-
tain their right hand over a response button and to keep it pressed. After
the Go signal, they were required to grasp the object and leave their right
hand over the object until the light went out and the glass became opa-
que (3500ms). After that, participants were instructed to come back and
again press the response button. The subsequent trial started after
4500ms. At 100ms after the Go signals, online single-pulse TMS was
applied over 8 different sites of left PM and 2 sham sites, for a total of 10
sites of stimulation. Participants performed 20 blocks (2 blocks for each
stimulation sites; see below). In each block, participants performed 27
grasping (9 small object, 9 medium object, and 9 large object). This led
to a total of 54 grasping movement (18 for each object size) for each
stimulated site. The order of the first 10 blocks (one for each stimulation
site) was pseudo-randomized so that the TMS conditions were equally
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distributed across participants. After perform-
ing the first 10 blocks, the order of the remain-
ing 10 blocks was reversed relative to the first
part. This was done to minimize any carryover
effects related to stimulation site. Each experi-
mental session lasted ;3 h. The software
Open-Sesame (Mathôt et al., 2012) was used
for stimulus presentation, data collection, and
TMS triggering.

Sensor glove. Kinematic information on
finger movements was acquired by means of a
glove in which flexion sensors were embedded.
This technique is widely used to record finger
dynamics (see, e.g., Gentner and Classen,
2006; Kumar et al., 2012; Cattaneo et al., 2015;
Fricke et al., 2019), and instructions for its
realization have been published by Gentner
and Classen (2009). Three commercial right-
hand gloves of a stretchable grade of Lycra, of
three different sizes (small, medium, and large
hand size) were modified to accommodate
four 114-mm-long flexion sensors (flexsensors
4.5 inch, Spectrasymbol) over the metacarpo-
phalangeal and proximal interphalangeal
joints of the thumb, index, and little fingers (1
sensor for each finger). The ring finger was
not recorded because of its high covariance
with little finger activity (Hager-Ross and
Schieber, 2000).

Neuronavigation. All participants under-
went high-resolution MP-RAGE anatomic
MRI scans. Individual anatomic scans were
converted to the nifti format and loaded on a neuronavigation software
(SofTaxic, E.MS). Surface renderings of the brain surfaces were used to
mark an 8-spot grid covering the premotor region. The grid had a 2� 4

structure, with the long side extending along the mediolateral dimen-
sion, form the midline to the ventral premotor region and the short side
extending along the caudal-cranial direction (Fig. 2). The spots were
localized according to individual anatomic landmarks. First, we localized

Figure 1. Schematic representation of the trial sequence. The object remains invisible for 3500 ms. Each movement started with the shutter opening, indicating the Go signal. Participants
were instructed to grasp the object and to keep the hand on the object until shutter closing (3500 ms). The following trial started after 4500 ms.

Figure 2. The 8-spot grid covering the PMC. Each spot for each participant is visualized in MNI space in the superior (A),
medial (B), and lateral (C) view. D, A schematic illustration of the eight stimulation sites.
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the 4 spots of the posterior row (Spots 1, 3, 5, and 7) in the following
way: Spot 1 was localized 5 mm lateral to the midline, 5 mm anterior to
the end of the paracentral lobule. Spot 4 was localized in the apex of the
crown of the precentral gyrus, 10 mm inferior to the junction between
the precentral sulcus and the inferior frontal sulcus. Spots 2 and 3 were
localized along an imaginary line connecting Spots 1 and 4, at equal
spacings. The anterior row was set by simply moving 2 cm cranial from
the 4 spots of the posterior row. While images in native space were used
for actual neuronavigation, all individual brains and grids were also nor-
malized to MNI space to allow for interindividual comparisons and
group analysis. Mean MNI coordinates of the 8 stimulated points are
reported in Table 1. Coordinates of all 17 subjects are available online
(https://osf.io/2rdzk/?view_only=bf4172e9ee5640fa84764e3ecf691637; stored
on the Open Science Framework data sharing platform). Furthermore,
2 spots (Sham 1 and Sham 2) where sham stimulation was to be
applied, were localized in the dorsal and ventral part of the PMC as
control condition. A 3D optical digitizer (Polaris Vicra, NDI) was used
in combination with the SoftTAxic neuronavigation software to cor-
egister in the same virtual space the participant’s head, the digitizer
pen, and the TMS coil throughout the whole experiment to monitor
coil position on every spot of the grid.

TMS. Single-pulse TMSs were delivered at 100ms after the Go signal.
A 70 mm figure-of-eight stimulation coil was placed over the stimula-
tion sites tangentially to the skull, with the handle pointing backward at
a 45° angle from the midsagittal line. For the two sham points, the coil
was held at a 90° position to ensure that the magnetic field did not stim-
ulate the target area. Indeed, this sham condition has been proven to be
ineffective in producing an electric field capable of changing neuronal
excitability (Lisanby et al., 2001). TMS was applied with a Super Rapid2
system (Magstim). The intensity of the magnetic stimulation was set sep-
arately for each participant 120% of the individual motor threshold and
was kept constant between sessions. The mean stimulating intensity was
58% of the maximum stimulator output. We checked in each partici-
pant whether stimulation over the defined 8 premotor spots evoked
any motor-evoked potentials and reassessed the grid spots if this was
the case. The resting motor threshold was determined using the soft-
ware Motor Threshold Assessment Tool, version 2.0 (http://www.
clinicalresearcher.org/software.htm) that uses an adaptive threshold
tracking algorithm (Awiszus, 2003) instead of the canonical “relative
frequency” method. A motor-evoked potential� 50mV peak-to-peak
amplitude was fed back to the software as valid response. EMG record-
ings were made with 10 mm Ag/AgCl surface cup electrodes. The active
electrode was placed over the first dorsal interosseous muscle of the
right hand and the reference electrode over the metacarpophalangeal
joint of the index finger. The EMG signal was sampled and amplified
1000� by using a Digitimer D360 amplifier (Digitimer) and digitized
by an analog-digital converter (Power 1401, Cambridge Electronic
Design) at 5 kHz sampling rate, bandpass filtered 10Hz to 2 kHz, and
then stored using the Signal software (Cambridge Electronic Design).

Statistical analysis. The output of each trial was the raw recordings
from each of the four flexion sensors, starting in the resting position
(baseline level), opening during reaching, and closing on the object (for
an example of recording, see Fig. 3). We extracted from the raw signal
the following data: (1) The flex-sensor values corresponding to the peak
finger aperture, defined as the difference between initial baseline flex-
sensor values and maximum peak value during reaching. This value is

indicative of the maximum angle that the phalanxes form with respect to
each other. We will refer to these as “peak aperture.” (2) The peak veloc-
ity of flex-sensor signal while reaching peak aperture. We will refer to
this value as “peak angular velocity.” (3) The time of movement onset,
corresponding to the time between the opening of the shutter lenses and
the release from the response button. We will refer to this value as “reac-
tion time.” Peak aperture and peak angular velocity were analyzed by
means of a classification procedure, which is aimed at building a model
able to predict the category of an unknown object (among a set of pre-
specified categories) (Duda et al., 2001; Bishop, 2006; Rajkomar et al.,
2019). In particular, in our study, for a given subject (and a given stimu-
lation), we measure the capability of a classifier in discriminating
between the three different cylinders (small vs medium vs large), based
on finger openings. The idea is that we can assess the impact of the stim-
ulation on the subject by measuring the decrease in classification accu-
racy (i.e., if the task becomes more difficult for the classifier when the
subject is stimulated). More in detail, we adopted the following strategy:

Step 1. For a given subject Subi and a given state Statj (i.e., stimula-
tion site), we define a classification problem in which every object is a
single repetition of the given task (i.e., grasping the cylinder) done by the
subject Subi who has been stimulated in the state Statj. Every experiment
is described with the four opening values, and has associated the label 1,
2, or 3 according to the grasped cylinder, as shown in Table 2.

Step 2. For every classification problem (i.e., for every subject-state),
we chose a classifier, and calculate its classification accuracy with a

Figure 3. Example of recording of the first participant: the figure represents the four flex-
ion sensor traces (thumb, index finger, middle finger, and little finger) as a function of the
three object sizes (small, medium, and large).

Table 1. Mean MNI coordinates of the eight stimulated target points

Spots x y z

1 �7.9 �1.4 80.2
2 �8 13.8 75.3
3 �36.1 �7.2 72.4
4 �34.9 6.3 69.4
5 �53.5 �1.2 50.4
6 �51.1 14.3 47.9
7 �68.2 4.8 27.6
8 �64.2 17.8 22.5
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cross-validation strategy, that is, a mechanism that permits to test the
classifier using objects not present in the training set (the set of objects
used to learn the classifier). This ensures to estimate the generalization
capability of the given classifier, that is, its capability in classifying also
objects not present in the training set (Duda et al., 2001). We used the
variant called leave-one-out (Bramer, 2016), a variant that should be pre-
ferred when the number of instances in a dataset is small (Wong, 2015).
The procedure is as follows: in the first step, the classifier is trained with
all the objects, except the first, which is then used for testing; if the label
predicted by the classifier is different from the true label of the testing
object, then an error occurred. We then repeat the scheme by leaving
out the second object and so on, until all objects have been tested. The
final classification accuracy is measured as the number of the objects
that have been correctly predicted by the classifier, divided by the total
number of objects. Using this scheme, the testing set is always separated
from the training set (this permits to measure generalization capabil-
ities), whereas the size of the training set is maximized (this permits to
have good estimates of the classifiers). An additional advantage of the
leave-one-out is that it does not involve a randomness mechanism; and
therefore, research reproducibility is allowed. In order to increase the
significance of the results, we used different classifiers (Duda et al., 2001;
Bishop, 2006), which ranged from the simple Nearest Neighbor up to
more complex classifiers, such as Support Vector Machines or Random
Forests. More in details we used:

• (1nn): The classic Nearest Neighbor rule, in which the testing object
is assigned to the class of its most similar training object (i.e. the
nearest object of the training set). Here we used the Euclidean dis-
tance as proximity measure, using the MATLAB prtools library
(http://prtools.tudelft.nl/) (Duin et al., 2000) implementation
knnc.

• (knn(opt K)): The K-Nearest Neighbor rule, which generalizes the
nearest neighbor by assigning an unknown object to the class most
frequent inside its K most similar points of the training set (the K
nearest neighbors of the testing object). Also, in this case, we used
the Euclidean distance, and we found the optimal K using another
leave-one-out strategy on the training set (as provided in the knnc
routine of the prtools library).

• (ldc): The Linear Discriminant Classifier, a probabilistic classifier
that implements the Bayes decision rule: in this case, every class is
modeled with a different Gaussian distribution, and the covariance
matrix is shared among the different classes. In particular, the joint
covariance matrix is the average of the class-specific covariance
matrices, each one weighted by the a priori probability (function
ldc of prtools).

• (qdc): The Quadratic Discriminant Classifier, which is similar to
ldc but the covariance matrix is different for every class (function
qdc of prtools).

• (svm): The Support Vector Machine (Cristianini and Shawe-
Taylor, 2000), a classifier based on the statistical learning theory.
Here we used the rbf kernel with the scale parameter automatically
estimated on the training set (as provided in the MATLAB Statistics
and Machine Learning toolbox routine fitcsvm).

• (RF-100): The Random Forest classifier, an effective classifier
(Breiman, 2001), based on an ensemble of decision trees. Here we
used the routine TreeBagger from the Statistics and Machine
Learning toolbox, using 100 trees.

Step 3. At the end of the previous step, we have computed 17
accuracies (corresponding to the 17 subjects involved in the study) for

every state stimulation and for every classifier. In order to see the
impact of the stimulation in a given state Statj, we can compare the
accuracy obtained in such state with the accuracy obtained in the Sham
state. In order to have a more robust estimation of the Sham
(i.e., the baseline accuracy), we averaged the accuracies obtained in the
Sham 1 and Sham 2.

Step 4. Moreover, to have a statistical significance, we performed a
paired t test to compare the 17 accuracies obtained by a given classifier
in a given state with the accuracies obtained by the same classifier in the
sham state, with the hypothesis that the two matched samples come
from distributions with equal means (i.e., the difference between them is
assumed to come from a normal distribution with unknown variance).
We used a significance level of 0.05, corrected by the Bonferroni rule for
multiple tests.

The effect of TMS on reaction time was tested using a linear mixed
model using R (R Core Team, 2016) and the lme4 package (version 1.1-
12) (Bates et al., 2015). Statistical significance was tested with the F test
with Satterthwaite approximation of degrees of freedom. The experi-
mental factor TMS (the 8 active spots and the collapsed sham spots), size
(small vs medium vs large), and their interaction were entered as fixed-
effect factors in a linear mixed model that predict reaction times (the
sham condition was the reference level for all comparisons). Random
coefficients across participants were estimated for intercept and for the
factor TMS.

Data visualization. Data of Subject 1 are visualized in Figure 4 for
illustration purposes. The plots represent the first two principal compo-
nents of each set of experiments. More in details, we projected each
flexor sensor (represented with 4 values) in a bidimensional space, using
a classic and well-known linear transformation, the Principal Compo-
nent Analysis (Jolliffe, 2002) (in particular, we used the MATLAB
prtools library [prtools] (Duin et al., 2000) implementation pcam).

Results
Peak aperture
Mean accuracy and statistics for the six different classifiers, as a
function of the 8 premotor stimulation sites are indicated in
Table 3. Results indicated that overall the accuracy of the six clas-
sifiers under the sham conditions is 63%, which is significantly
higher compared with a random classifier (random classifier
accuracy= 33%, p, 0.01). Overall, results consistently indicated
that the accuracy of the classifiers under the stimulation of the
Site 1 (mean accuracy = 46%) is significantly reduced compared
with sham stimulation (mean accuracy= 63%). More specifically,
analysis indicated that the accuracy is significantly reduced after
the stimulation of the Site 1 in the medial part of the PMC, for all
the six classifiers considered ((1nn): t(16) = 6.39, p, 0.001; (knn
(opt K)): t(16) = 5.41, p, 0.001; (ldc): t(16) = 6.38, p, 0.001;
(qdc): t(16) = 6.53, p, 0.001; (svm): t(16) = 6.39, p, 0.001; (RF-
100): t(16) = 6.72, p, 0.001) (Fig. 5). Furthermore, analysis also
demonstrates that overall the six classifiers are less accurate in
discriminating the three cylinders after stimulation of Site 5 in
the PMv (mean accuracy= 52%), compared with the sham stim-
ulation (mean accuracy= 63%). Five of six classifiers showed sig-
nificantly lower accuracy compared with the sham conditions
((1nn): t(16) = 2.94, p=0.07; (knn (opt K)): t(16) = 3.91, p=0.009;
(ldc): t(16) = 4.22, p=0.005; (qdc): t(16) = 4.43, p= 0.003; (svm):
t(16) = 3.68, p= 0.01; (RF-100): t(16) = 3.35, p= 0.003). Finally, the
overall accuracy was also reduced after stimulation of the lateral
part of the PMv, Site 8 (mean accuracy = 52%), compared with
the sham control conditions. For Site 8, analysis demonstrated
that three of six classifiers are significantly less able to discrimi-
nate the movements toward the three different objects, compared
with the sham ((1nn): t(16) = 3.78, p=0.01; (knn (opt K)):
t(16) = 2.63, p=0.14; (ldc): t(16) = 2.81, p=1.0; (qdc): t(16) = 3.17,
p= 0.04; (svm): t(16) = 2.57, p= 0.16; (RF-100): t(16) = 3.89, p =

Table 2. Structure of experimental variables for the classification procedures

Repetition Opening Labels

1 x1 = [x11, x12, x13, x14] c1 (1,2, or 3)
2 x2 = [x21, x22, x33, x24] c2 (1,2, or 3)
N xN = [xN1, xN2, xN3, xN4] cN (1,2, or 3)
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0.001). Results indicated that the accuracy of the all six classi-
fiers were comparable between the sham and the stimulation
site number 2 (all p values = 1.0), number 3 (all p values = 1.0),
number 4 (all p values. 0.51), number 6 (all p values = 1.0), and
number7 (allp values . 0.90) (fordetails, see Figs. 5, 6; Table3).

In order to further inspect what specifically drove the reduced
classifiability of movement kinematics after TMS stimulation, we
plotted the difference between the mean peak aperture in each
active spot and the sham control condition, as a function of sen-
sors, objects, and stimulation sites (Fig. 7). Positive values of

Figure 4. First two principle components (PCA) extracted from the four flexion sensors data of the first participant.

Table 3. Maximum finger aperturea

Stimulation
sites

(1nn) (Knn (opt K)) (ldc) (qdc) (svm) (RF-100)

Mean t p Mean t p Mean t p Mean t p Mean t p Mean t p

1 41.9* 6.39* ,0.001* 47.5* 5.41* ,0.001* 47.5* 6.38* ,0.001* 47.2* 6.53* ,0.001* 46.2* 6.39* ,0.001* 46.6* 6.72* ,0.001*
2 56.1 1.61 1.0 59.5 0.57 1.0 63.5 0.87 1.0 60.2 1.42 1.0 58.7 1.56 1.0 61.7 0.84 1.0
3 61.0 0.25 1.0 64.6 1.19 1.0 63.2 0.90 1.0 60.1 1.36 1.0 61.7 0.26 1.0 63.2 0.17 1.0
4 53.6 1.98 0.51 55.1 1.81 0.71 60.6 1.98 0.51 60.5 1.01 1.0 59.7 1.17 1.0 58.1 1.86 0.65
5 49.2 2.94 0.07 50.5* 3.91* 0.009* 55.4* 4.22* 0.005* 51.1* 4.43* 0.003* 51.2* 3.68* 0.01* 52.7* 3.35* 0.03*
6 59.3 0.28 1.0 58.5 1.17 1.0 64.5 0.52 1.0 60.0 1.37 1.0 59.1 1.49 1.0 60.0 1.48 1.0
7 63.3 1.44 1.0 64.6 1.60 1.0 69.3 1.67 0.90 65.5 0.69 1.0 66.3 1.58 1.0 65.2 0.51 1.0
8 47.3* 3.78* 0.01* 52.2 2.63 0.14 55.9 2.81 0.10 52.0* 3.17* 0.04* 52.2 2.57 0.16 50.7* 3.89* 0.01*
Sham 60.1 61.0 65.7 63.8 62.6 63.9
aMean accuracy and statistics (t values, p values, Bonferroni correction) for the six different classifiers, as a function of the eight premotor stimulation sites. Degrees of freedom for all tests are 16.
*Significant.
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such difference indicate a greater mean
aperture compared with the sham condi-
tion and negative values smaller mean
aperture compared with the sham in the
same condition. Therefore, the visual
inspection of the data consistently shows
that, under the stimulation of Spots 1, 5,
and 8, participants tended to overestimate
the size of the smaller object and to
underestimate the size of the larger object
compared with the sham control condi-
tion, a pattern that is likely the basis of the
reduced capacity of the classifiers to cor-
rectly discriminate the three objects.

Peak angular velocity
Following the same logic of the peak aper-
ture analysis, for a given subject (and a
given stimulation), we measure the capa-
bility of a classifier in discriminating
between the three different cylinders
(small vs medium vs large), based on
maximum finger opening velocity. Mean
accuracy and statistics for the six different
classifiers, as a function of the 8 premotor
stimulation sites, are indicated in Table 4.
Overall, the results corroborated and
strengthened the results concerning the
peak aperture. Indeed, analysis consis-
tently indicated that the accuracy of the
classifiers under the stimulation of the
Site 1 (mean accuracy= 35%) is signifi-
cantly reduced compared with sham stim-
ulation (mean accuracy= 57%). More in
details, analysis indicated that the accu-
racy is significantly reduced after the
stimulation of the Site 1 in the medial part of the PMC, for all the
six classifiers considered ((1nn): t(16) = 4.46, p, 0.001; (knn (opt
K)): t(16) = 5.42, p, 0.001; (ldc): t(16) = 7.60, p, 0.001; (qdc):
t(16) = 7.57, p , 0.001; (svm): t(16) = 5.67, p, 0.001; (RF-100):
t(16) = 6.71, p, 0.001). Furthermore, analysis also demonstrates
that overall the six classifiers are less accurate in discriminating
the three cylinders after stimulation of Site 5 in the PMv (mean
accuracy= 36%), compared with the sham stimulation (mean
accuracy= 57%). All the six classifiers showed significantly lower
accuracy compared with the sham conditions ((1nn): t(16) = 7.58,
p, 0.001; (knn (opt K)): t(16) = 6.04, p, 0.001; (ldc): t(16) = 6.20,
p, 0.001; (qdc): t(16) = 7.57, p, 0.001; (svm): t(16) = 9.91, p,
0.001; (RF-100): t(16) = 8.46, p, 0.001). Finally, the overall accu-
racy was also reduced after stimulation of the lateral part of the
PMv, Site 8 (mean accuracy= 36%), compared with the sham
control conditions. Also for Site 8, all the six classifiers are signif-
icantly less able to discriminate the movements toward the three
different objects, compared with the sham ((1nn): t(16) = 5.23,
p, 0.001; (knn (opt K)): t(16) = 4.25, p=0.004; (ldc): t(16) = 7.20,
p, 0.001; (qdc): t(16) = 6.11, p, 0.001; (svm): t(16) = 6.20, p,
0.001; (RF-100): t(16) = 6.43, p, 0.001).

Reaction time
Overall mean reaction time was 299ms, and median reaction
time was 281ms (SD= 111ms). The analysis revealed a non-
significant main effect of TMS (F(8,15.3) , 1, p= 0.92), indicat-
ing that overall TMS did not significantly affect the start of the

movement (all contrasts, p. 0.39), as well as a nonsignificant
main effect of size (F(2,5830.3) , 1, p= 0.55). The interaction
between TMS and size was also nonsignificant (F(16,5827.8) , 1,
p= 0.49) (Fig. 8).

Figure 5. Mean classification accuracy for the six different classifiers as a function of the 9 stimulation sites (81 sham).
Significant contrasts between sham and the active spots: ***p, 0.001; **p, 0.01; *p, 0.05.

Figure 6. Statistical map projected on the brain of the average t values per site across the
six classifiers. Negative t values indicate a better ability of the classifiers to discriminate the three
objects compared with the sham control condition. Positive t values indicate a worse ability of
the classifiers to discriminate the three objects compared with the sham control condition.
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Discussion
The ability to reach and grasp objects is at the basis of our daily
interaction with the external world. At the neural level, the infor-
mation relative to the grip component (i.e., the posture of the
hand to anticipate the shape, size, and orientation of the object)
has been classically attributed to the dorsolateral pathway, con-
necting the anterior part of the intraparietal sulcus with the PMv.
Recent neuroimaging studies in human (Gallivan et al., 2011,
2013; Verhagen et al., 2012; Fabbri et al., 2014; Monaco et al.,
2015; Turella et al., 2016) did not support this functional exclu-
sivity of the human frontoparietal dorsolateral circuit, demon-
strating grasp-related activity within the dorsomedial pathway as
well (Grafton et al., 1996; Culham et al., 2003; Grol et al., 2007;
Turella and Lingnau, 2014; Vesia et al., 2018). This is particularly
evident in the parietal cortex, where both neuroimaging
(Gallivan et al., 2011, 2013; Turella and Lingnau, 2014; Gallivan
and Culham, 2015) and neuromodulation studies (Vesia et al.,
2017) have shown that a component of the dorsomedial system
in the parietal lobe (in particular the SPOC) is involved in
encoding grasping information. On the contrary, the functional
representation of grasping in the PMC is still incompletely
understood. In particular, clear-cut causal evidence on which
regions within the PMC mediate reach-to-grasp behaviors is still
missing. Here, we used a dense TMS approach to map the role of
the entire PM in producing visually guided grasping in healthy
human volunteers. Using a hypothesis-free data analysis approach,
our study indicated that TMS altered finger joint motion when
applied over spots located in the PMv and a spot located near
the midline, putatively corresponding to the supplementary
motor area (SMA). Importantly, in accordance with previous
findings (Davare et al., 2006), TMS did not affect the time to
movement onset but did affect the kinematic parameters associ-
ated to the correct hand posture configuration, therefore

indicating a selective role of those spots in direct visuomotor
transformation. The present findings corroborate a robust body
of evidence showing hand-related information in the ventral
part of the PMC. More interestingly, the present study is the
first to directly indicate a causal involvement of the medial part
of the PMC in mediating grip information during a visually
guided grasping movement. The present findings are discussed
in relation to the nonhuman literature.

Grasp information within the PMv
The present study demonstrated that stimulation of 2 different
spots within the PMv directly interfere with the hand preshaping.
Indeed, the classifiers consistently indicated a lower accuracy in
discriminating the size of the three different objects when TMS
was applied in the medial PMv and partly in the lateral-anterior
PMv compared with a control sham condition. This result is in
line with a considerable amount of evidence both in human
(Grol et al., 2007; Cavina-Pratesi et al., 2010; Filimon, 2010;
Turella and Lingnau, 2014; Vesia et al., 2017) and nonhuman
primates (Jeannerod et al., 1995; Tanné-Gariépy et al., 2002;
Brochier and Umiltà, 2007), indicating the PMv as a crucial node
in encoding the visuomotor transformation for grasp move-
ments. Electrophysiological studies in monkeys demonstrated
that PMv neurons show a strict congruency between the coded
grip and the intrinsic properties of the object, thus confirming
the role of PMv in shaping the hand posture appropriately to
grasp object (Murata et al., 1997; Rizzolatti and Luppino, 2001;
Raos et al., 2006). Ventral premotor sector F5 contains visuomo-
tor neurons (“canonical” neurons), which are active both when
the monkey is performing grasping movement and when observ-
ing graspable objects (Bonini et al., 2014). Furthermore, selective
inactivation of the monkey PMv leads to severe deficits in the
grasping component of hand movements, keeping the reach
component unaffected (Fogassi et al., 2001). Congruently, TMS
studies in humans demonstrated that stimulation of both the left
and the right PMv (but not of dorsal PMC) interferes with the
hand preshaping, a crucial prerequisite for a well-planned grasp-
ing movement (Davare et al., 2006). Importantly, this effect was
selectively observed when the TMS was delivered at 50 and 100
ms after the Go signal, but not at later timing, therefore suggest-
ing an early involvement of the PMv during hand movement
preparation. By unveiling a decrease in the classification accuracy
of the three different objects after early PMv stimulation, the
present findings are therefore in line with those of Davare et al.
(2006), both in terms of behavioral outcomes and timing of stim-
ulation. Indeed, the fact that the classifier is less able to discrimi-
nate whether the movement is associated to a big, small, or
medium object is direct evidence that the PMv stimulation inter-
feres with the hand configuration during the grasping move-
ment. Although the present findings significantly expand our
understanding of the premotor involvement during grasping
movement, it would be important for future investigation to
explore the temporal dynamics of both dorsal and ventral pre-
motor spots in object-oriented behaviors and to test the TMS
effect in early versus later phases of movement preparation.

Grasp information within the SMA
To the best of our knowledge, this is the first causal evidence in
human showing the involvement of the SMA in coding the
grasping components of goal-directed hand behaviors. Crucially,
this finding is corroborated by recent studies in nonhuman pri-
mates, showing that neurons within the SMA (F6 sector) play a
role in the integration of visuomotor transformation and

Figure 7. The difference between peak aperture values in the active condition minus the
peak aperture in the sham condition is shown separately for each sensor (thumb, index, mid-
dle, and little finger), for each object (small, medium, and large), and for each stimulation
site. Positive values indicate that active TMS is associated with a greater mean aperture com-
pared with the sham condition. Vice versa, negative values indicate that TMS is associated
with smaller mean apertures compared with the sham condition. Dashed lines indicate Spots
1, 5, and 8 in which TMS reduced classifiability of object in the main analysis.
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sensorimotor association for grasping (Lanzilotto et al., 2016;
Gerbella et al., 2017; Livi et al., 2019). Lanzilotto et al. (2016)
showed that motor and visuomotor neurons of area F6 shared
common features with neurons in sector F5 within the ventral
PM, supporting a functional interplay between these two areas
and suggesting to consider area F6 as a crucial additional node of
the brain circuit for object grasping (Lanzilotto et al., 2016;
Bonini, 2017; Gerbella et al., 2017; Livi et al., 2019). Area F6 is
anatomically connected to the crucial premotor and parietal
areas of the grasping network (Luppino et al., 1993, 2003; Rozzi
et al., 2006; Gamberini et al., 2009; Gerbella et al., 2011).
Furthermore, tracing studies directly show that the dorsomedial
and the dorsolateral pathways are not completely anatomically
segregated (e.g., Gharbawie et al., 2011; Janssen et al., 2018; Livi
et al., 2019). Together, these findings suggested that the SMA
may play a pivotal role in coding the grasping component, by
integrating information coming from crucial regions of the
grasping network. Importantly, the evidence from the medial
PMC is not surprising if we consider that it nicely parallels the
results already observed in the parietal cortex, where grasping
neurons in the medial occipito-parietal cortex (V6A) of the mac-
aque monkey have been consistently reported (Fattori et al.,
2010, 2012). Likewise, neuroimaging studies in human demon-
strated that preparatory activity in the medial parietal cortex
(SPOC, the putative homolog of area V6A) accurately predicted
upcoming grasping movement (Gallivan et al., 2011, 2013).
These results were recently corroborated by a TMS experiment
(Vesia et al., 2017), showing that the dorsomedial SPOC-M1
pathway encodes handgrip formation during reach-to-grasp
movement preparation. By unveiling a causal involvement of the
SMA in visuomotor transformation for grasping, the present
findings suggested a similar counterpart of grasping representation

within the PMC. These results are in line with a growing body of
evidence demonstrating that the hand-related information is coded
within both the dorsolateral and the dorsomedial pathways, com-
prising the PMv, but also a more medial-dorsal part of the PMC
(Gallivan et al., 2011, 2013; Verhagen et al., 2012; Fabbri et al., 2014;
Monaco et al., 2015; Turella et al., 2016). In human, the SMA is part
of the network associated with the control of hand posture
(Rizzolatti et al., 2014) and is classically known to be involved in the
planning and execution of goal-directed behaviors (Nachev et al.,
2008; Rauch et al., 2013) and in motor sequence learning (Sakai et
al., 1999). Nonetheless, its specific involvement in grasping move-
ments has been observed, especially for precision grip movements
(for review, see King et al., 2014). The present study corroborates
and extends these findings, first demonstrating a direct involvement
of the medial part of the PMC in visuomotor transformation neces-
sary for a correct visually guided grasping. This result is congruent
with recent evidence in monkeys, thus suggesting that the func-
tional neuroanatomy of sensorimotor transformation needed to
preshape the hand correctly may be similar between human and
nonhuman primates. Future investigations are needed to better clar-
ify the role of the pre-SMA in coding grasping information and its
temporal dynamic compared with the PMv. For instance, once the
critical role of PMv and SMA in grasping movement is identified,
TMS stimulation at different time points will reveal the temporal
unfolding of the mechanisms that are implemented in the targeted
areas during the course of grasping movement. Furthermore, one li-
mitation of the current study is that the data-glove adopted here
just allowed to record and analyze finger joint motion (which
indeed was our main interest). Nonetheless, combining TMS with
kinematic tracking will allow to directly test whether the stimulation
of SMA and/or PMv causally influence other kinematic parameters.

TMS statistical mapping
Finally, the present study adopted a cutting-edge methodological
approach to shed light on the functional role of the entire PMC
in visually guided grasping movement. First, we used the dense
sampling TMS approach, which ultimately allows to map the
functional role of the left PMC with a reliable spatial informa-
tion. Dense TMS spatial mapping gives more detailed informa-
tion compared with TMS studies adopting the a priori
localization of coil positioning and has already been demon-
strated successful in mapping different cognitive functions
(Ellison et al., 2004; Stoeckel et al., 2009; Cattaneo and Barchiesi,
2011; Finocchiaro et al., 2015; Maule et al., 2015; Parmigiani et
al., 2015; Schaeffner and Welchman, 2017; Cattaneo, 2018; Lega
et al., 2019). Second, the analysis approach went in the same
direction, since data-driven classification algorithms allow to

Table 4. Peak angular velocitya

Stimulation
sites

(1nn) (Knn (opt K)) (ldc) (qdc) (svm) (RF-100)

Mean t p Mean t p Mean t p Mean t p Mean t p Mean t p

1 37.8* 4.46* ,0.001* 33.8* 5.42* ,0.001* 36.6* 7.60* ,0.001* 34.3* 7.57* ,0.001* 34.2* 5.67* ,0.001* 34.6* 6.71* ,0.001*
2 53.2 0.28 1.0 53.8 0.66 1.0 55.6 1.65 0.93 53.6 1.93 0.56 54.0 0.96 1.0 54.0 0.74 1.0
3 53.2 0.24 1.0 55.0 0.19 1.0 56.5 1.17 1.0 52.9 2.58 0.15 52.7 1.60 1.0 53.8 0.91 1.0
4 49.7 1.12 1.0 54.5 0.36 1.0 56.6 0.91 1.0 54.2 1.76 0.77 52.0 1.94 0.55 56.6 0.21 1.0
5 36.0* 7.58* ,0.001* 30.1* 6.04* ,0.001* 40.2* 6.20* ,0.001* 39.1* 7.57* ,0.001* 33.4* 9.91* ,0.001* 37.2* 8.46* ,0.001*
6 56.0 1.50 1.0 55.2 0.16 1.0 60.8 0.73 1.0 57.5 0.73 1.0 55.8 0.58 1.0 55.3 0.42 1.0
7 56.3 1.68 0.89 54.0 0.40 1.0 60.0 0.25 1.0 59.1 0.22 1.0 57.1 0.14 1.0 59.1 1.14 1.0
8 34.5* 5.23* ,0.001* 36.0* 4.25* 0.004* 38.1* 7.20* ,0.001* 35.1* 6.11* ,0.001* 34.3* 6.20* ,0.001* 35.1* 6.43* ,0.001*
Sham 52.5 55.6 59.4 58.6 56.9 56.0
aMean accuracy and statistics (t values, p values, Bonferroni correction) for the six different classifiers, as a function of the eight premotor stimulation sites. Degrees of freedom for all tests are 16.
*Significant.

Figure 8. Mean reaction times (ms) of movement onset as a function of the 9 stimulation
sites (81 sham) and the three different objects (small, medium, and large).
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describe the data in a relatively hypothesis-independent way.
Furthermore, to increase the significance of the results, we used
different classifiers (Duda et al., 2001; Bishop, 2006). Importantly,
these methods allowed to substantiate previous TMS studies on the
crucial role of PMv in visuomotor transformation (Davare et al.,
2006), therefore confirming the validity of our approach. In addi-
tion, they allowed to draw a more detailed functional cartography
of the human PMC, revealing a direct involvement of SMA in
object grasping, a clear-cur causal evidence that has never been
described in human literature.

In conclusion, using a dense TMS spatial mapping approach,
the present findings showed a detailed functional cartography of
the entire PMC, consistently indicating a multifocal representa-
tion of object geometry for grasping. More specifically, we dem-
onstrated that information about the preshaping of the hand
with respect to the object’s intrinsic properties is coded in the
human PMv. More interestingly, the present study also indicated
the human SMA as causally involved in visuomotor transforma-
tion for grasping. In accordance with monkey literature
(Lanzilotto et al., 2016; Gerbella et al., 2017), we suggested inclu-
sion of the SMA as a crucial node of the human cortical grasping
network.
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