4' _\ The Microsoft Research - University of Trento

Centre for Computational
b“‘.} and Systems Blelogy Technical Report CoSBi 11/2008

Simulation of non-Markovian
Processes in BlenX

Davide Prandi

The Microsoft Research - University of Trento
Centre for Computational and Systems Biology

prandi@cosbi.eu

Corrado Priami

The Microsoft Research - University of Trento
Centre for Computational and Systems Biology
and
Dipartimento di Ingegneria e Scienza dell’Informazione, University of Trento, Italy

priami@cosbi.eu

Alessandro Romanel

The Microsoft Research - University of Trento
Centre for Computational and Systems Biology
and
Dipartimento di Ingegneria e Scienza dell’Informazione, University of Trento, Italy

romanel@cosbi.eu

Simulation of non-Markovian Processes irBlenX

D. Prandt, C. Priami-2, and A. Romanél?

! The Microsoft Research - University of Trento Centre for Qomational and
Systems Biology
2 Dipartimento di Ingegneria e Scienza dell'Informazion@jJdrsity of Trento, Italy
{prandi, pri am , romanel }@osbi . eu

Abstract. BlenXis a programming language designed for modeling entitiats th
can change their behavior in response to external stimhé.dctual framework
assumes interactions being exponentially distributed, an underlying Markov
process is associated wiBlenX programs. In this paper we relax the Markov
assumption by providing formal tools for managing non-Mmikn processes
within BlenX and we show experimental evidences of the effectiveneskeof t
approach.

1 Introduction

The strength of the interaction between two entities is istlaought as a two value
logic, i.e., the interaction is possible or not. For ins@nwo CCS [1] processes interact
iff they can perform complementary actions (input and ot)tpn the same channel.
The paradigntommunication by compatibilifi2], recently proposed with the process
calculus Beta-binders [3], introduces a “fuzzy” visiongdets interactions depend on a
notion of compatibility of the involved parties. For instan web-services use XML to
describe provided services, and interactions are diseglby a notion of compatibility
between XML descriptions [4]. Also, biological interagi®depend on structural and
chemical complementarity of molecules, called affinity. [5]

BlenX [6] is inspired to Beta-binders and it is designed for mangkntities that
can change their behavior in response to external stimgereral entity is depicted

as a boxBg: X1 A7 - Xp: Ap

Pe

The progranPyg is written in a process calculi style language, and allowsotatrol the
behavior ofBg. In particular,Pg activates proper replies to external signals caught by
interaction site; : A;. Type A; discriminates among allowed and disallowed inter-
actions, mimicking interaction mechanisms based on coitvifityt

The BetaWB framework [7] is a computational tool that supports texiaad vi-
sual programming wittBlenX. The BetaWB can be seen as an-silico laboratory,
where (in-silico) experiments can be designed (i.8leaX program is written), simu-
lated and analyzed. The quantitative component of the @rpets is guaranteed by the
stochastic capability dBlenX, on the line of [8], where a continuous-time Markov pro-
cess is taken as foundational quantitative model. The ddhisopaper is to provide the

formal tools for managing non-Markovian processes wiBianX. Our motivations are
flexibility andabstraction Assuming, as in Markov processes, that a random variable
follows the negative exponential distribution with pardere, fixes expected value to
A~ ! and variance ta.—2, thus limiting the flexibility of the choice about varialtylin

the stochastic model [9]. It is also the case that not all thentjtative data about the
basic steps of a Markov process are available, and manyatepdstracted as a single
step. Since the composition of negative exponential distions is not exponentially
distributed, general distributions are required to havtebabstractions.

We start in Sect. 2 by providing grovedreduction semantics for a core subset of
BlenX, following the work in [10]. Proved reduction semantics isephrase of en-
hanced operational semantics [11], a conceptual tool fecrildng the behavior of
concurrent systems. In particular, the transitions of y&tesn have rich labels that
permit to recover information about tltausalrelation between transitions. A seminal
work about causality and Beta-binders can be found in [18feRve introduce the no-
tion of dependencin Sect. 2.1 to adapt the idea of causalityBienX. Dependency
is then employed in Sect. 2.2 to supperntabling memory disciplinfL3], that is, the
stochastic distribution of the execution of a transittbmust be influenced by all the
transitions fired from the states whetevas firstly enabled. We can therefore compute
the right stochastic distribution ofBlenX transition. Sect. 3 proposes soBetaWB
simulations of non-Markovian processes. Sect. 4 concltiiepaper with some final
remarks.

2 Formal Treatment

In this section we provide a proved operational semantittsaistyle of [10] for a subset
of BlenX. In particular, for the sake of clarity, we do not considezrs [7].

A binderhas either the fornd(z, I'), or 3" (z, I'), where the name is thesubject
of the binder, and™ € 7 is thetypeof z. The domainZ can be arbitrarily instanced
under the proviso that symmetric compatibility relatiors also defined, and that the
predicaten(_,) : 7 x 7 — R*, which returns a value greater thaiff its argument
types are compatible, is decidable. Example of domfainan be found in [2]. Intu-
itively, a binders(z, I') represents an active (potentially interacting) site of x. lica
binder has been hidden to prevent interactions, it is repitesl a3 (=, I'). Metavari-
ablest rangesovef3, 8"}, andA, Ay, ..., I, I1,. .. range over site typetterfaces
are generated by the following grammar:

I:=p%@, 1) | g%,)L
An interface is well-formed when the subjects and the tygats dinders are all dis-
tinct. We will work only with well-formed interfaces. Awidry functionssub(I) and
typ(I) give the set of subjects and types of an interfAceespectively.

We assume two disjoint countable infinite sg{sof namesanged over by, y, z,

ands of delaysranged over by, 72, 73, Processesire defined by the following:
Pou=nil |M|P|P|reprP M:=mnP|M+M
m c=gzlv | y?w | 7g
75 =7, | hide(z) | unhide(z) | expose(w, I') | ch(z, I")

71'.P2 7T.P3 71'.P5 71'.P6

Fig. 1. The tree of the sequential processes within the boxes irydtera (1).

Processil, prefixes output!v, inputy?w, and delay-;, and operators of parallel com-
position| and choice+ work as inr-calculus. Guarded replicatiamp . P was in-
troduced in [14] and spawns a single copyfoff prefix 7 is consumed. The prefixes
hide(z), unhide(x), expose(z, I"), andch(x, I") manipulate the interface of a box and
will be further commented on when the semantics will be idireed. Finallysystems
are defined by the following:

B:=Ni | I[P] | B| B.
The actual syntax oBlenX does not univocally identify which actions are active in a
given box. Consider, for instance, the following

Io[ﬂ'.Pl | (7T.P2—|—7T.P3)] H Il[repﬂ'.P4 | (7T.P5 | 7T.P6)] (1)

A notion of address is needed to distinguish among the diffieinstances of the prefix
m in (1). An address identifies a sequential component of aBpramely, a process
with a prefix as a top-level operator. In particulab-address)® € {|o, | }*, A’ is the
empty one, identifies a box within a system, whilp-addressy? € {|o, 1, o0, +1} ",
AP is the empty one, points to a specific sequential componeatmwbcess. Consider
the abstract syntax tree of (1) in Fig. 1, built assuming lpgreomposition and choice
as main operators. The leaves of the tree are the activegaegeThe label of the path
from the root to a leaf is the address, e.g., proee$s has address |, +.. Once atree
of a system is fixed, an address uniquely identifies an actitilera

Systems are decorated with addresses by a labeling funZion An auxiliary

operator- that distributes addresses among the sequential comisetgfined:

o 9P b nil = nil e 9% > Nil = Nil

o 9P (98 7. P) = 9P 0L 7. (98 > P) e 0'>I[P|=0"1[P]

o P> (My 4+ M) = 9> My +9°> My 9°> (B || B2) =9°> By || 9°> By

e 9> (P | P) =9’ Py | 97> Py

e ¥ prepdbm. P =repd 9 w. P
The operator behaves as expected (see [10]), except fodepiaeplicationep 7. P.
As it will become clear later, the address is not distribudedr P in rep 7. P, but the
task is delayed until the application of structural congiege FunctiorZ (_) inspects
a system and when a bdl a process parallé| or a choice+ is found, function>
is invoked to push the proper address inside the syntactictate. In the other cases,
7 () behaves as the identity. The definition follows.

P, = R if P, andP; are a-equivalent
I‘_’|ni|EI‘_’7 131|1:’251:’2|1317 P1|(P2|P3)E(P1|P2)|R;
rep9? . P = 9P 7. (VP |o> T (P) | repI? |y . P)

9 I[P | = 95 I] P | providedp, = P,
1911112[| =9 .1, P]
B=B'if (B=9I"'8(z: A)| P] || BsandB’ = 95 I* 8+ (y : A)[P{y/x} | || Bs) or
(B' =94 15" (x: A)[P] || BsandB = 94 I* 3+ (y : A)| P{y/z} | || Bs)
with y fresh in P and insub(I™)
B|INI=B, Bi||Ba=By || Bi, Bi|l(Bz2| Bs)= (B B2) |l Bs

Table 1. Structural congruence over both processes and boxes.

o T(nil) = e T(Nil) = Nil

o T(n.P)=m. T(P) e TUI[P)=1I[T(P)]

e T(repm. P) repm. P e T (Bo || B1) =1lo>7(Bo) || Ih>7T(B1)
e T(Py| Pr)= (lo> T(FPo) | (> T (P1))

. T(M0+M1) (+ol> T(Mo))+(+1l> T(M1))
It is straightforward proving thaf () is a bijection between processes and boxes and
their labeled version, its inverse being the function thatards addresses. For this
reason, in the following we will omit adjective labeled, and will refer to processes
and boxes leaving the context to discriminate.

The proved reduction semanticsBiEnX requires the use of the structural congru-
ence over both processes and boxes of Tab. 1. We overloagnitmb= to denote
both congruences and let the context disambiguate thedatkrelation. The laws of
structural congruence over processes are the typicalculus axioms except for the
rule of replication. In fact, the structural congruenceridar replication adds a parallel
component after the prefix. Suppose to have a procespg 7, . 72. The rule computes
the addresses af andr, for each application of the structural congruence:
repmi. 2 =71 (o2 [repliTi. T2) =71 (loT2 | 171 (liloT2 | replu s 1. T2))

The meaning of the laws for boxes follows. First, the streadtaongruence of internal
processes is lifted at the level of boxes. B-addresses amrdd. Second, the actual
ordering of binders within an interface is irrelevant. Thithe subject of a binder can
be refreshed under the proviso that name clashes in the@i@ocess are avoided and
that well-formedness of the interface is preserved. Rm#le monoidal axioms for the
parallel composition of boxes are assumed.

Tab.2 shows our proved reduction semantic8ienX. Arrows carry labels holding
the information needed to compute dependency relatiorslsawith metavariabl@,
have the form:

— 9° 9P 75 a prefixmz with p-addres®? is consumed within box?;

— 9P 9P (), 9 22w, 1, 9§ _, z!2): a communication within box® is taking place; the
communicating processes have a common context specifiéé,tand specific p-
addresses ¥¥ and|,_; ¥} _

71

PEﬁp\iﬁfI?w.P1+M1 |’l9p\1,i’l911)72~:17!z.P2+M2 | P3

(intl’a) 90 9P (1. 9P 27w ;O xlz
o a[p] T g Py | Py]
9 9P 1.
(tau) I[P 7 P+ My | Py] T I[Py | Py]
P =9 hide(z). P + M | P>
(hide) 9P 9P hide(z)
I B, N [P] " "9 B, D) [P P2
P = 9? unhide(z). P1 + M1 | P»
(unhide)

91 B, 1) [P] 7N 90 1 e, 1) [Py | Py

P =9’ expose(x, I'). PL + M1 | P>
(expose) , @ ¢sub(I)andl” ¢ typ(I)

L expose(x
o r[p] " g 1 g, 1) [Py | Py
P= ﬁpch(;c7 A)P1 + M, | P>
(change) ; ;. Ag¢typ(I)
b o 97 9P ch(z, A) p &
I Ba, D[P] " TS0 Bla, A) [Py P2
PEﬁ%y?w.P1+M1|P2 QEﬁ%I!Z.Q1+N1|Q2
(inter) 9b (1 ot P b op
08 (Il 98 92, y2w, |y —; 95, 9P al2)
Bo | By P e Bl By
where:
—Bo =" 1,9 By, 1) I3[P| By =" 1,9} By, I) Is[Pi{zw} | P2]
—By = 9" -9} Bz, AT Q| B = 9" 1,95 Bz, A)I[Q1| Q2]
—a(l,A)>0
4 / 0
BB _ _ o
(redex) 7 (struct) B=B B—B B=B
B H B// AN B/ H B// B i} B/

Table 2.Proved reduction semantics fBlenX.

— () 9297 y?w, |98, 9%, x!2): @ common contexi’ allows to reach com-
municating boxes; ¥ and ||,_, ¥}_,; p-addresses” and ¥} _, identify the in-
volved input and output prefixes, respectively.

The axiom(intra) defines communications between processes within the saxne bo
The axiom reads as follows. If the internal procd3ss structurally equivalent to
WP 0% 2w . Py 4+ My | 9P 95, !z . P, + M, | P, then the box can perform a
reduction leading to a new box with unchanged interface atetnal proces®; {#/w} |
P, | Ps. The axiom(tau) models the consumption of delay. The axiom(hide) forces
a binder to become hidden, and therefore not available ferastions. The dual prefix
unhide(z) makes visible a hidden binder. The axi¢expose) adds a new binder to a
box. The name: declared in the prefigxpose(z, I") is a placeholder which can be re-
named to avoid clashes with the subjects of the other birafehe containing box. To

guarantee the well-formedness of the interface new fypannot be in the set of types
of I,i.e.,,I" ¢ typ(I). The axiom(change) modifies the type of a binder, provided
well-formedness of the interface is preserved. The axioter) defines the interaction
of boxes with complementary internal actions (i.e., inpad @utput) over sites with
compatible types. The compatibility predicateA, I') is left unspecified and different
typing policies and notions of compatibility may be adopdedording to distinct mod-
eling needs. However, independently from the notion of tgpmpatibility assumed,
the communication ability is only determined by the typedha involved interfaces
and not by their subjects. Information flows from the box edmihg the process which
exhibits the output prefix to the box enclosing the processptarforms the input action.
Finally, the rule(redex) interprets the reduction of a parallel subcomponent aswcred
tion of the system, and the rustruct) infers a reduction after a structural shuffling of
the system at hand.

The axioms and rules above give a detailed description obtepeof computation,
i.e., given a systenB, the semantics describes how to obtéip, ..., B, such that

B %, B;, 1 <1 < k. Proved computatiofifts one step of computation to steps
of computation. IfBy N B is a transition, therBy is the sourceof the transition

and B is itstarget A proved computation of3, is a sequence of transitior bo,

B, 1, ... such that the target of any transition is the source of thé o

To simplify the treatment, hereafter we suppasequivalence implemented a la De
Bruijn [15]. In this waya-equivalence coincides with first-order equality.

2.1 Dependency Relation

We are ready to introduce the relation of dependency betiteetmansitions of a com-
putation. Intuitively, given a computatidsy bo, B b, O, B, 11, the transition
B, LN B,+1 depends on a transitioB; N Bi+1,1 < n, if the §,, transition cannot
appear before the transitién. Consider a simple computatién:
BOéI[T]_.TQ.'TB:Il)BléI[TQ.T?,]l’BQéI[7—3]lB3éI[nll]

It is clear thatBy — Bj; depends upoB, — B, because prefix; is “covered”
by prefix 1. Following this intuition, we define the notion of structldeependency

between transitions. Note that below we use labiel denote a transitio? —— B’ as
shorthand, if no ambiguity arises. We need an auxiliary defmthat flats labels:

— f(WP 9P) = {90 9P s}
— f(P P (), O 22w, Y, 2z)) = {90 0P | 9Y w9 9P | 9wz}
— £ (1 90 I y2w, (1o 98, 9 wl2)) = {001 90 I ytw, 90 98 0Y L wle)

Definition 1. Given a computatior, b, B N Bs... I, B,11, 0, has adirect
structural dependen@n 6y, (05, <%, 0,.) iff b < n, 9* 9P 7 € £(6,) andy® 9?9’ 1’ €

f(6,,). Structural dependendy defined as the reflexive and transitive closure<¢f.,
i.e., <str = (=L,

% Note, it is a proved computation even if no address is praijibecause there is a single box
with only a sequential process.

Structural dependency does not catch possible relatianebea transitions that de-
pend on the notion of binder. For instance, consider thevioilg computation:
B(x, T) [1o unhide() | 1, hide(z) | " 225 g% (2, 1) [|, unhide(z)] ° 25 gz, 1) [il |
Here|, unhide(x) and|, hide(x) are not structurally related, but the former cannot take
place before the latter has hidden the bindeWe callbinder dependenayis notion,
because it depends on tB&enX notion of binders.

Definition 2. Given a computatiomBy b, B T N B,11, 0, has a direct
binder dependency ah, (6, <¢,,, 0,,) iff h < n and

1. 6,, = ¥° 9P unhide(z), 8, = ¥* ¥P’ hide(x)

2. 0, = 9 9P hide(x), 6,, = ¥° Y?’ unhide(x)

3. O = 9°(1: 92 0Y y?w, s 9%, 9h_, x!z) and), = 9" 9P unhide(k) and
(9°" = 9P |, 9 andy = k) or (9*" = 9P|, _, 9% _, andu;c =k))

4. 0, = 9°(; 90 9P y?w, |-, 9°_, 9P zlz) and@), = 9 9P ch(k, A) and

) 1—2 ¥ 1—4

(9° = 9° |, 9 andy = k) or (9*" = 9P|, _, 9% _, andd;c =k))

5. 0 = 9°(: 909 y?w, |l 94, 9, 21z) and@), = 9°" 9P expose(k, A) and
(9 =9 |, 9 andy = k) or (9" = 9°|,_, ¥ _, andx = k))

6. 0, = 9° 9P ch(x, A) andy, = ¥° 9P’ expose(x, I)

Binder dependency is the reflexive and transitive closurelgf, i.e.,<pin = (<1,,)*.

We comment on the various conditions of the definition abtieen 1 states that an un-
hide in a box?* depends upon an hide on the same binder within the samé’tbem
2 states if the unhide happens before the hide, then the hjgends upon the unhide.
Items3, 4, and5 work on the same idea: an inter box communication cannotpkice
if one of the involved binders is hidden, or has the wrong fyget is not yet avail-
able, respectively. Finally, eh(z, A) depends upon the exposition of a binder named
x. The hypothesis about-equivalence at the end of Sect. 2 makes simpler this defini-
tion avoiding complex labels to record information abautonversion. Moreover, here
only b-addresses are used because we only need to know thehieos action is taking
place. As usual, thdependency relatiois defined as< = (< U <pin)™

Finally, we defineimmediate dependencthe basic relation for managing non-
Markovian processes. The idea is tl#igthas an immediate dependency @&nif 6,
depends upo#;, and there are not other transitions in between the two ochwhj
depends.

Definition 3. Given a proved computatioBg o, B L2 TN B,1, 0, has an
immediate dependency 6q 6; <1 0,, iff 6; < 6,,, andV¥j, i < j < n, 0; £0,.

2.2 General Distributions

In this section we define the formal tools to manage genenatiraoous probability

distributions withinBlenX providing a stochastic extension of proved computations.
Given a setr of continuous probabilistic distribution functions witlogtive sup-

port, we assign a cost to each laldelia a function$(_) such that$(9) = Fy € F.

Relying on cost functio$(-), we make the qualitative model independent from quan-
titative considerations, allowing modelers to play witraqtities. The density function
corresponding to distributiofy is fy, whereFy(z) = ffoo fo(t)dt. The following re-
sults show how to derive useful probabilities and distiitms from a proved transition

(see [16, Th. 3.1]). The probability of a transitiéh-2 B;is

po= Iy BT, (L= S$(0,)(0)dt
and the distributior?’; of the random variabl&; which describes the time interval as-
sociated withB -2 B, is

Fo=PIT; <t = (o £@]17, (=800 @)de) /i

The random variabl&; describes the time a transitidh b, B; requires to complete.
In a Markovian setting7; is exponentially distributed and therefore it is indeperide
from the waited time. Consider, for instance:

I omo [1m] B 0] or) 22 1 nil] @)

Under Markovian hypothesis the time required for transitior; is independent from
the time consumed by transitionr,. In a general setting, both, andr; are active
in I[loTo | Ih 71] and the time required to completer, affects the time to complete

1. Therefore, the distribution df}, ., has to be updated considering that transition

lo 7o already happened. Generalizing, given a proved computﬁjpi B, LR

LN B,,+1, the time distributior?;, of 4,, depends upon the time distributiofsof

transitiond);, 0 < i < n. But not all transitiong; have to be considered. The following
computation, that looks similar to computation (2),

I[To.Tl]l?I[Tl]l?I[n”] (3)

has a completely different quantitative behavior. In thases the time consumed by
70 does not affect the time to completg, becauser; becomes active only whety
finished. The definition of immediate dependency helps iregdizing this idea. Note
that, by Def. 3, any pair of transitions in a given computai®either in a dependency
relation or not. Thus, once found the maximussuch tha®¥; <; 0,,, all the transitions
occurred afted;, must influence the time distribution of transitiép. The following
definition formalizes this idea.

Definition 4. If By Bo, B; L VO N B,+1 is a proved computation, then the
distribution of the random variabld’,, describing the time interval associated with

. 0, .
transitionB,, — B, 41 IS

n—1 n—1
Fo=P|T,<t+ Y Ty|T,> Y Tl with 6;<,0,
h=i+1 h=i+1

assuming _, Ty, = 0.

0
1000 2000 3000 4000

Fig. 2. Simulation time of a chain of exponentially distributedpstes. the equivalent Erlang step
varying the length of the chain.

The expert reader has already noticed that the distribatjosf 6,, can be computed
only after computing the distributiofy; of 6;, 0 < i < n. This is essential to correctly
calculate ofzz;il+1 T}. We conclude this section giving a constructive definitiba o
stochastic computation.

Definition 5. Given a proved computatioch = B, b, g, B O Bpi1, the
correspondingstochastic computatias

007F0 017F1 0717F71

ént1 =By — B — Bt

defined, for > 0, as

0;—1 _
g=if i=0then ¢else & i {F — Byp,_, -rh-v gy

whereF, = P [Tl <t+ Z;;ljﬂ T, | T, > Z;;ljﬂ Th} with 6; <1 0;.

3 Experimental Results

We extended thBlenX language and thBetaWB with a prototypical implementation
of the concepts presented in the previous sections. Herbavetbe effectiveness of the
approach by presenting two simple bio-inspired examplathderline the importance
of being able to simulate non-Markovian processes.

In the first example we consider the following proved compata

0 0 On—1
§€=By—> B — ... = B,

whereB, undergoes an n-step transformation beconingEach step is described by
a negative exponential distribution with parameter.e.,$(6;) = 1 — e~ . A similar
path can be found, for instance, in the lambda phage modetided in [17]. If the
focus is on simulating the production &, , without considering intermediatds;,

i € [1,n — 1], the system can be approximated as

€4 =By - B,
wheref follows an Erlang distribution with scaleand shape:,

Distribution Parameters Mean |Variance
Exponential A =0.0078 128.2051|16436.554
Erlang k=2,A=0.0156 128.2051|8218.2774
Hyperexponenti41b1 =0.3,p2 =0.7 128.2051|79755.80924

A1 = 0.0025, A2 = 0.085312
Table 3.The three distributions used to model the individual comfational change of proteiA
from intermediate to active state.

The abstraction is correct because an Erlang distributitnshape: and scale\ is the
sum ofn exponentially distributed random variables with paramsete Fig. 2 shows
the simulation time vs. the number of boxesAp, where¢ andé 4 are simulated with
BetaWB, for different values of.. Notice that the simulation time @f, is independent
form the length of the chain. Moreover, Fig. 2 points out also an argument regarding
the computational efficiency of the simulation, meaning thare are cases in which
the use of an Erlang step instead of a chain of exponentistyilslited steps is useful
not only as a process abstraction, but also for speedingeugittiulation time.

In the second example we consider a simple feedback mechéhig. 3(a)) com-
posed of two interacting proteid and B. Protein B can be in an inactive{~) or
active (B™) form, while proteinA can be in an inactive4~), intermediate 4=) or
active (A1) form. BT interact withA—, transforming it into its intermediate form=,
which in turn is subject to an individual conformational oa that leads to the active
form A™. Now, consider the individual conformational change. Viedito model this
reaction in three different ways by using an exponentiagdang and a hyperexponen-
tial distribution with same means but different varianceee(Tab.3). We ran stochastic
simulations of the three models with initially a numhéno of B+ and A~ molecules.
Fig. 3(b) reports simulation results and in particular thenber of B~ molecules over
time, showing the speed at which, through the feedback nmésrimathe initial amount
of B is consumed. It is important to note that a different choitehie probability
distribution that drives the proteiA conformational change has a fundamental impact
on the overall behavior of the system.

1000 -

800 -/
600 | |
400 | |

ﬂ
Number of B- molecules

0.001 0.1 200 |/ pu— i

; Hyperexp -

m ol v vt s

v A= A+ 0123456 78 9101112131415
u Time (s)

(a) Example model (b) Simulation results

Fig. 3. Example model and simulation results for the three altaresiusing different distribu-
tions to model the conformational change of protdifrom intermediate to active form.

10

1000 -
800 -
600 -
400

0.1
0.001 200 -

. 0.0156 0.0156 0
— - — 012 3 456 7 8 9101112131415
Time (s)

(a) Example model modified (b) Simulation results

‘[
Number of B- molecules

Fig. 4. Example model with conformational change expressed astaptsansformation and
comparison of the simulation results with the one of the rhod€ig. 3(a) that uses the Erlang
distribution.

Although important itself from a modeling point of view, ghiact suggests us that
playing with non-Markovian processes is a useful tool torféwypotheses. Consider in-
deed a scenario in which the experimental data fits with tihelsition results obtained
using the Erlang distribution. By the first example we knoatthur Erlang (Tab.3) can
be seen also as a chain of two exponential steps oArat®.0156, which can lead us to
the hypothesis that maybe our model is incomplete and tkatdhformational change
is a 2-step transformation passing through another intgiate2protein formAy. This
hypothesis could be used to refine the model in Fig. 3(a) asrken Fig. 4(a), for
which the simulation results in Fig. 4(b) shows the perfdaivfth the simulation re-
sults for the model in Fig. 3(a) that uses the Erlang distidiny and eventually to drive
wet experiments to confirm the hypothesis.

4 Conclusions

We presented the tools to cope with general distributionkiwihe BetawWB frame-
work. The proved reduction semantics introducedi@nX allows us to derive a notion
of dependency between transitions without changingBleaX syntax. Moreover, we
exploit the notion of dependency only for quantitative pnggs, but also qualitative as-
pects can be retrieved, as, for instance, localities [10fhé literature there have been
many attempts to extend process calculi with general piibsi@b distributions (see,
e.g., [18-21,16]), but, to the best of our knowledge, thighésfirst time an effective
simulation tool is available. The examples presented irt. Seoutline that reasoning
about general distributions could be useful and need fuitivestigations. In particu-
lar, the last example proposed non-Markovian processed@d o form hypothesis
based on experimental observations. Clearly the examienigle and ad-hoc, and a
systematic way for constructing hypothesis is needed fiidating the approach. Nev-
ertheless, the tool presented here is an important stegsiditiection, because it allows
playing with non-Markovian processes at a reasonable ctatipoal cost.

11

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. Milner, R.: Communication and Concurrency. Internagio8eries in Computer Science.

Prentice hall (1989)

. Prandi, D., Priami, C., Quaglia, P.: Communicating by patibility. JLAP 75 (2008) 167
. Priami, C., Quaglia, P.: Beta binders for biological ratgions. In: CMSB 2004. Volume

3082 of LNCS., Springer (2004) 20

. Meredith, G., Bjorg, S.: Contracts and types. Comm. ofA8& 46(10) (2003) 41-47
. Tame, J.: Scoring Functions - the First 100 Years. Jowh@lomputer-Aided Molecular

Design19 (2005) 445

. Dematté, L., Priami, C., Romanel, A.: The BlenX Languayg&utorial. In LNCS, ed.: SFM

2008, Springer-Verlag (2008) 313—-365

. Dematté, L., Priami, C., Romanel, A.: The Beta Workberecbomputational tool to study

the dynamics of biological systems. Briefings in Bioinfotios (2008)

. Degano, P., Prandi, D., Priami, C., Quaglia, P.: Betaldnis for biological quantitative ex-

periments. Electr. Notes Theor. Comput. $64(3) (2006) 101-117

. Mura, |I.: Exactness and Approximation of the Stochasitieuation Algorithm. Technical

Report 12/2008, The Microsoft Research - University of Toe@entre for Computational
and Systems Biology (2008)

Curti, M., Degano, P., Priami, C., Baldari, C.: Modadlihiochemical pathways through
enhancedr-calculus. TCS8251) (2004) 111

Degano, P., Priami, C.: Enhanced operational semantio®| for describing and analysing
concurrent systems. ACM Computing Survég?) (2001) 135-176

Guerriero, M.: From Intuitive Descriptions of Biochami Systems to Their Formal Anal-
ysis. PhD in Information and Communication Technologiaginational Doctorate School
in Information and Communication Technologies — Universit Trento (2007)

Marsan, M., Balbo, G., Bobbio, A., Chiola, G., Conte, Gumani, A.: The Effect of Exe-
cution Policies on the Semantics and Analysis of Stoch&stici Nets. IEEE Transactions
on Software Engeneeringy(7) (1989) 832—846

Phillips, A., Cardelli, L.: Efficient, Correct Simulati of Biological Processes in the
Stochastic Pi-calculus. In: CMSB 2007. Volume 4695 of LNCFhringer (2007) 184

de Bruijn, N.: Lambda calculus notation with namelessighies. Indagationes Mathemati-
cae34(1972) 381-392

Priami, C.: Language-based performance predictiorditributed and mobile systems.
Information and Computatioh75(2002)

Arkin, A., Ross, J., McAdams, H.: Stochastic Kinetic Msis of Developmental Pathway
Bifurcation in Phage\-InfectedEscherichia coliCells. Genetic449(1998) 1633

Gotz, N., Herzog, U., Rettelbach, M.: TIPP - Introdantand Application to Protocol Per-
formance Analysis. In: Formale Methoden fir verteilte t8yse, GI/ITG-Fachgesprach,
Magdeburg, 10.-11. Juni 1992. (1992) 105-125

Marsan, M., Bianco, A., Ciminiera, L., Sisto, R., Valanp, A.. A LOTOS extension for
the performance analysis of distributed systems. |IEEE/AG&hsactions Networking(2)
(1994) 151-165

Brinksma, E., Katoen, J., Langerak, R., Latella, D.: AcBgstic Causality-Based Process
Algebra. the Computer Journd8(7) (1995) 552-565

Bravetti, M., Bernardo, M., Gorrieri, R.: Towards Penimnce Evaluation with General
Distributions in Process Algebras. In: CONCUR '98: Coneugy Theory, 9th International
Conference, Nice, France, September 8-11, 1998, ProggeditD98) 405422

12

