
Technical Report CoSBi 11/2008

Simulation of non-Markovian
Processes in BlenX

Davide Prandi

The Microsoft Research - University of Trento

Centre for Computational and Systems Biology

prandi@cosbi.eu

Corrado Priami

The Microsoft Research - University of Trento

Centre for Computational and Systems Biology

and

Dipartimento di Ingegneria e Scienza dell’Informazione, University of Trento, Italy

priami@cosbi.eu

Alessandro Romanel

The Microsoft Research - University of Trento

Centre for Computational and Systems Biology

and

Dipartimento di Ingegneria e Scienza dell’Informazione, University of Trento, Italy

romanel@cosbi.eu

Simulation of non-Markovian Processes inBlenX

D. Prandi1, C. Priami1,2, and A. Romanel1,2

1 The Microsoft Research - University of Trento Centre for Computational and
Systems Biology

2 Dipartimento di Ingegneria e Scienza dell’Informazione, University of Trento, Italy
{prandi,priami,romanel}@cosbi.eu

Abstract. BlenX is a programming language designed for modeling entities that
can change their behavior in response to external stimuli. The actual framework
assumes interactions being exponentially distributed, i.e., an underlying Markov
process is associated withBlenX programs. In this paper we relax the Markov
assumption by providing formal tools for managing non-Markovian processes
within BlenX and we show experimental evidences of the effectiveness of the
approach.

1 Introduction

The strength of the interaction between two entities is usually thought as a two value
logic, i.e., the interaction is possible or not. For instance, two CCS [1] processes interact
iff they can perform complementary actions (input and output) on the same channel.
The paradigmcommunication by compatibility[2], recently proposed with the process
calculus Beta-binders [3], introduces a “fuzzy” vision, and lets interactions depend on a
notion of compatibility of the involved parties. For instance, web-services use XML to
describe provided services, and interactions are disciplined by a notion of compatibility
between XML descriptions [4]. Also, biological interactions depend on structural and
chemical complementarity of molecules, called affinity [5].

BlenX [6] is inspired to Beta-binders and it is designed for modeling entities that
can change their behavior in response to external stimuli. Ageneral entityE is depicted
as a boxBE:

PE

b b b bx1 : ∆1 xn : ∆n

BE

The programPE is written in a process calculi style language, and allows tocontrol the
behavior ofBE. In particular,PE activates proper replies to external signals caught by
interaction sitesxi : ∆i. Type∆i discriminates among allowed and disallowed inter-
actions, mimicking interaction mechanisms based on compatibility.

The BetaWB framework [7] is a computational tool that supports textualand vi-
sual programming withBlenX. The BetaWB can be seen as anin-silico laboratory,
where (in-silico) experiments can be designed (i.e., aBlenX program is written), simu-
lated and analyzed. The quantitative component of the experiments is guaranteed by the
stochastic capability ofBlenX, on the line of [8], where a continuous-time Markov pro-
cess is taken as foundational quantitative model. The goal of this paper is to provide the

formal tools for managing non-Markovian processes withinBlenX. Our motivations are
flexibility andabstraction. Assuming, as in Markov processes, that a random variable
follows the negative exponential distribution with parameterλ, fixes expected value to
λ−1 and variance toλ−2, thus limiting the flexibility of the choice about variability in
the stochastic model [9]. It is also the case that not all the quantitative data about the
basic steps of a Markov process are available, and many stepsare abstracted as a single
step. Since the composition of negative exponential distributions is not exponentially
distributed, general distributions are required to have better abstractions.

We start in Sect. 2 by providing aprovedreduction semantics for a core subset of
BlenX, following the work in [10]. Proved reduction semantics is arephrase of en-
hanced operational semantics [11], a conceptual tool for describing the behavior of
concurrent systems. In particular, the transitions of the system have rich labels that
permit to recover information about thecausalrelation between transitions. A seminal
work about causality and Beta-binders can be found in [12]. Here we introduce the no-
tion of dependencyin Sect. 2.1 to adapt the idea of causality toBlenX. Dependency
is then employed in Sect. 2.2 to supportenabling memory discipline[13], that is, the
stochastic distribution of the execution of a transitionθ must be influenced by all the
transitions fired from the states whereθ was firstly enabled. We can therefore compute
the right stochastic distribution of aBlenX transition. Sect. 3 proposes someBetaWB
simulations of non-Markovian processes. Sect. 4 concludesthe paper with some final
remarks.

2 Formal Treatment

In this section we provide a proved operational semantics inthe style of [10] for a subset
of BlenX. In particular, for the sake of clarity, we do not consider events [7].

A binderhas either the formβ(x, Γ), orβh(x, Γ), where the namex is thesubject
of the binder, andΓ ∈ T is thetypeof x. The domainT can be arbitrarily instanced
under the proviso that asymmetric compatibility relationis also defined, and that the
predicateα(,) : T × T → R

+, which returns a value greater that0 iff its argument
types are compatible, is decidable. Example of domainT can be found in [2]. Intu-
itively, a binderβ(x, Γ) represents an active (potentially interacting) site of a box. If a
binder has been hidden to prevent interactions, it is represented asβh(x, Γ). Metavari-
ableβ+ ranges over{β, βh}, and∆, ∆1, . . . , Γ, Γ1, . . . range over site types.Interfaces
are generated by the following grammar:

I ::= β+(x, Γ) | β+(x, Γ) I.
An interface is well-formed when the subjects and the types of its binders are all dis-
tinct. We will work only with well-formed interfaces. Auxiliary functionssub(I) and
typ(I) give the set of subjects and types of an interfaceI, respectively.

We assume two disjoint countable infinite sets:N of namesranged over byx, y, z, . . .
andS of delaysranged over byτ1, τ2, τ3, Processesare defined by the following:

P ::= nil | M | P | P | rep π. P M ::= π. P | M + M

π ::= x !v | y?w | πβ

πβ ::= τi | hide(x) | unhide(x) | expose(x, Γ) | ch(x, Γ)

2

‖0

π. P1

|0 |1

π. P2

+0

π. P3

+1

‖1

rep π. P4

|0 |1

π.P5

|0

π. P6

|1

Fig. 1.The tree of the sequential processes within the boxes in the system (1).

Processnil, prefixes outputx !v , inputy?w , and delayτi, and operators of parallel com-
position | and choice+ work as inπ-calculus. Guarded replicationrep π. P was in-
troduced in [14] and spawns a single copy ofP if prefix π is consumed. The prefixes
hide(x), unhide(x), expose(x, Γ), andch(x, Γ) manipulate the interface of a box and
will be further commented on when the semantics will be introduced. Finally,systems
are defined by the following:

B ::= Nil | I[P] | B ‖ B .
The actual syntax ofBlenX does not univocally identify which actions are active in a
given box. Consider, for instance, the following

I0[π. P1 | (π. P2 + π. P3)] ‖ I1[rep π. P4 | (π. P5 | π. P6)] (1)

A notion of address is needed to distinguish among the different instances of the prefix
π in (1). An address identifies a sequential component of a boxB, namely, a process
with a prefix as a top-level operator. In particular, ab-addressϑb ∈ {‖0, ‖1}∗, λb is the
empty one, identifies a box within a system, while ap-addressϑp ∈ {|0, |1, +0, +1}∗,
λp is the empty one, points to a specific sequential component ofa process. Consider
the abstract syntax tree of (1) in Fig. 1, built assuming parallel composition and choice
as main operators. The leaves of the tree are the active processes. The label of the path
from the root to a leaf is the address, e.g., processπ. P3 has address‖0 |1 +1. Once a tree
of a system is fixed, an address uniquely identifies an active action.

Systems are decorated with addresses by a labeling functionT (). An auxiliary
operator. that distributes addresses among the sequential components is defined:
• ϑp . nil = nil • ϑb . Nil = Nil
• ϑp

1 . (ϑp
2 π. P) = ϑp

1 ϑp
2 π. (ϑp

1 . P) • ϑb . I[P] = ϑb
I[P]

• ϑp . (M1 + M2) = ϑp . M1 +ϑp . M2 • ϑb . (B1 ‖ B2) = ϑb . B1 ‖ ϑb . B2

• ϑp . (P1 | P2) = ϑp . P1 | ϑp . P2

• ϑp
1 . rep ϑp

2 π. P = rep ϑp
1 ϑp

2 π. P
The operator behaves as expected (see [10]), except for guarded replicationrep π. P .
As it will become clear later, the address is not distributedoverP in rep π. P , but the
task is delayed until the application of structural congruence. FunctionT () inspects
a system and when a box‖, a process parallel|, or a choice+ is found, function.
is invoked to push the proper address inside the syntactic structure. In the other cases,
T () behaves as the identity. The definition follows.

3

P1 ≡ P2 if P1 andP2 are α-equivalent
P | nil ≡ P, P1 | P2 ≡ P2 | P1, P1 | (P2 | P3) ≡ (P1 | P2) | P3

repϑp π. P ≡ ϑp π. (ϑp
|0 . T (P) | rep ϑp

|1 π.P)

ϑb
1 I[P1] ≡ ϑb

2 I[P2] providedP1 ≡ P2

ϑb
1 I1I2[P] ≡ ϑb

2 I2I1[P]
B ≡ B′ if (B = ϑb

1 I
∗β+(x : ∆)[P] ‖ B3 andB′ = ϑb

2 I
∗β+(y : ∆)[P{y/x}] ‖ B3) or

(B′ = ϑb
1 I

∗β+(x : ∆)[P] ‖ B3 andB = ϑb
1 I

∗β+(y : ∆)[P{y/x}] ‖ B3)
with y fresh inP and insub(I∗)

B ‖ Nil ≡ B, B1 ‖ B2 ≡ B2 ‖ B1, B1 ‖ (B2 ‖ B3) ≡ (B1 ‖ B2) ‖ B3

Table 1.Structural congruence over both processes and boxes.

• T (nil) = nil • T (Nil) = Nil
• T (π. P) = π. T (P) • T (I[P]) = I[T (P)]
• T (rep π. P) = rep π.P • T (B0 ‖ B1) = ‖0 . T (B0) ‖ ‖1 . T (B1)
• T (P0 | P1) = (|0 . T (P0) | (|1 . T (P1))
• T (M0 + M1) = (+0 . T (M0)) + (+1 . T (M1))

It is straightforward proving thatT () is a bijection between processes and boxes and
their labeled version, its inverse being the function that discards addresses. For this
reason, in the following we will omit adjective labeled, andwe will refer to processes
and boxes leaving the context to discriminate.

The proved reduction semantics ofBlenX requires the use of the structural congru-
ence over both processes and boxes of Tab. 1. We overload the symbol ≡ to denote
both congruences and let the context disambiguate the intended relation. The laws of
structural congruence over processes are the typicalπ-calculus axioms except for the
rule of replication. In fact, the structural congruence rule for replication adds a parallel
component after the prefixπ. Suppose to have a processrep τ1 . τ2. The rule computes
the addresses ofτ1 andτ2 for each application of the structural congruence:
rep τ1 . τ2 ≡ τ1 . (|0 τ2 | rep |1 τ1 . τ2) ≡ τ1 . (|0 τ2 | |1 τ1 . (|1 |0 τ2 | rep |1 |1 τ1 . τ2))
The meaning of the laws for boxes follows. First, the structural congruence of internal
processes is lifted at the level of boxes. B-addresses are ignored. Second, the actual
ordering of binders within an interface is irrelevant. Third, the subject of a binder can
be refreshed under the proviso that name clashes in the internal process are avoided and
that well-formedness of the interface is preserved. Finally, the monoidal axioms for the
parallel composition of boxes are assumed.

Tab.2 shows our proved reduction semantics forBlenX. Arrows carry labels holding
the information needed to compute dependency relations. Labels, with metavariableθ,
have the form:

– ϑb ϑp πβ : a prefixπβ with p-addressϑp is consumed within boxϑb;

– ϑb ϑp〈|i ϑp
i x?w , |1−i ϑp

1−i x !z〉: a communication within boxϑb is taking place; the
communicating processes have a common context specified byϑp, and specific p-
addresses|i ϑp

i and|1−i ϑp
1−i;

4

(intra)
P ≡ ϑp

|i ϑp
i x?w . P1 + M1 | ϑp

|1−i ϑp
1−i x !z . P2 + M2 | P3

ϑb
I[P]

ϑb ϑp〈|i ϑ
p
i

x?w ,|1−i ϑ
p
1−i

x !z〉

−→ ϑb
I[P1{z/w} | P2 | P3]

(tau) ϑb
I[ϑp τi . P1 + M1 | P2]

ϑb ϑp τi
−→ ϑb

I[P1 | P2]

(hide)
P ≡ ϑp

hide(x) . P1 + M1 | P2

ϑb
I
∗ β(x, Γ) [P]

ϑb ϑp hide(x)
−→ ϑb

I
∗ βh(x, Γ) [P1 | P2]

(unhide)
P ≡ ϑp

unhide(x) . P1 + M1 | P2

ϑb
I
∗ βh(x, Γ) [P]

ϑb ϑp unhide(x)
−→ ϑb

I
∗ β(x, Γ) [P1 | P2]

(expose)
P ≡ ϑp

expose(x, Γ) . P1 + M1 | P2

, x /∈ sub(I) andΓ /∈ typ(I)

ϑb
I[P]

ϑb ϑp expose(x, Γ)
−→ ϑb

I β(x, Γ) [P1 | P2]

(change)
P ≡ ϑp

ch(x, ∆) . P1 + M1 | P2

, ∆ /∈ typ(I)

ϑb
I
∗ β(x, Γ) [P]

ϑb ϑp ch(x, ∆)
−→ ϑb

I
∗ β(x, ∆) [P1 | P2]

(inter)
P ≡ ϑp

P y?w . P1 + M1 | P2 Q ≡ ϑp
Q x !z . Q1 + N1 | Q2

B0 ‖ B1

ϑb〈‖i ϑb
i ϑ

p
P

y?w,‖1−i ϑb
1−i ϑ

p
Q

x !z〉

−→ B′
0 ‖ B′

1

where:
−B0 = ϑb

‖i ϑb
i β(y, Γ) I

∗
0[P] B′

0 = ϑb
‖i ϑb

i β(y, Γ) I
∗
0[P1{z/w} | P2]

−B1 = ϑb
‖1−i ϑb

1−i β(x, ∆) I
∗
1[Q] B′

1 = ϑb
‖1−i ϑb

1−i β(x, ∆) I
∗
1[Q1 | Q2]

−α(Γ, ∆) > 0

(redex)
B

θ
−→ B′

B ‖ B′′ θ
−→ B′ ‖ B′′

(struct)
B ≡ B1 B1

θ
−→ B2 B2 ≡ B′

B
θ

−→ B′

Table 2.Proved reduction semantics forBlenX.

– ϑb〈‖i ϑb
i ϑp

i y?w , ‖1−i ϑb
1−i ϑp

1−i x !z 〉: a common contextϑb allows to reach com-
municating boxes‖i ϑb

i and ‖1−i ϑb
1−i; p-addressesϑp

i and ϑp
1−i identify the in-

volved input and output prefixes, respectively.

The axiom(intra) defines communications between processes within the same box.
The axiom reads as follows. If the internal processP is structurally equivalent to
ϑp

|i ϑp
i x?w . P1 + M1 | ϑp

|1−i ϑp
1−i x !z . P2 + M2 | P3, then the box can perform a

reduction leading to a new box with unchanged interface and internal processP1{z/w} |
P2 | P3. The axiom(tau) models the consumption of delayτi. The axiom(hide) forces
a binder to become hidden, and therefore not available for interactions. The dual prefix
unhide(x) makes visible a hidden binder. The axiom(expose) adds a new binder to a
box. The namex declared in the prefixexpose(x, Γ) is a placeholder which can be re-
named to avoid clashes with the subjects of the other bindersof the containing box. To

5

guarantee the well-formedness of the interface new typeΓ cannot be in the set of types
of I, i.e., Γ 6∈ typ(I). The axiom(change) modifies the type of a binder, provided
well-formedness of the interface is preserved. The axiom(inter) defines the interaction
of boxes with complementary internal actions (i.e., input and output) over sites with
compatible types. The compatibility predicateα(∆, Γ) is left unspecified and different
typing policies and notions of compatibility may be adoptedaccording to distinct mod-
eling needs. However, independently from the notion of typecompatibility assumed,
the communication ability is only determined by the types ofthe involved interfaces
and not by their subjects. Information flows from the box containing the process which
exhibits the output prefix to the box enclosing the process that performs the input action.
Finally, the rule(redex) interprets the reduction of a parallel subcomponent as a reduc-
tion of the system, and the rule(struct) infers a reduction after a structural shuffling of
the system at hand.

The axioms and rules above give a detailed description of onestep of computation,
i.e., given a systemB, the semantics describes how to obtainB1, . . . , Bk such that

B
θi−→ Bi, 1 ≤ i ≤ k. Proved computationlifts one step of computation ton steps

of computation. IfB0
θ

−→ B1 is a transition, thenB0 is thesourceof the transition

andB1 is its target. A proved computation ofB0 is a sequence of transitionsB0
θ0−→

B1
θ1−→ · · · such that the target of any transition is the source of the next one.

To simplify the treatment, hereafter we supposeα-equivalence implemented a la De
Bruijn [15]. In this wayα-equivalence coincides with first-order equality.

2.1 Dependency Relation

We are ready to introduce the relation of dependency betweenthe transitions of a com-

putation. Intuitively, given a computationB0
θ0−→ B1

θ1−→ . . .
θn−→ Bn+1, the transition

Bn
θn−→ Bn+1 depends on a transitionBi

θi−→ Bi+1, i < n, if the θn transition cannot
appear before the transitionθi. Consider a simple computation:3

B0 , I[τ1 . τ2 . τ3] τ1−→ B1 , I[τ2 . τ3] τ2−→ B2 , I[τ3] τ3−→ B3 , I[nil]
It is clear thatB2

τ3−→ B3 depends uponB0
τ1−→ B1, because prefixτ3 is “covered”

by prefix τ1. Following this intuition, we define the notion of structural dependency

between transitions. Note that below we use labelθ to denote a transitionB
θ

−→ B′ as
shorthand, if no ambiguity arises. We need an auxiliary definition that flats labels:

– f(ϑb ϑp πβ) = {ϑb ϑp πβ}
– f(ϑb ϑp〈|i ϑp

i x?w , |1−i ϑp
1−i x !z 〉) = {ϑb ϑp

|i ϑp
i x?w , ϑb ϑp

|1−i ϑp
1−i x !z}

– f(ϑb〈‖i ϑb
i ϑp

i y?w , ‖1−i ϑb
1−i ϑp

1−i x !z 〉) = {ϑb
‖i ϑb

i ϑp
i y?w , ϑb

‖1−i ϑb
1−i ϑp

1−i x !z}

Definition 1. Given a computationB0
θ0−→ B1

θ1−→ B2 . . .
θn−→ Bn+1, θn has adirect

structural dependencyonθh (θh ≺I
str θn) iff h < n, ϑb ϑp π ∈ f(θh) andϑb ϑp ϑp′ π′ ∈

f(θn). Structural dependencyis defined as the reflexive and transitive closure of≺I
str ,

i.e.,≺str = (≺I
str)

∗.

3 Note, it is a proved computation even if no address is provided, because there is a single box
with only a sequential process.

6

Structural dependency does not catch possible relations between transitions that de-
pend on the notion of binder. For instance, consider the following computation:
β(x, Γ) [|0 unhide(x) | |1 hide(x)] |1 hide(x)

−→ βh(x, Γ) [|0 unhide(x)] |0 unhide(x)
−→ β(x, Γ) [nil]

Here|0 unhide(x) and|1 hide(x) are not structurally related, but the former cannot take
place before the latter has hidden the binderx. We callbinder dependencythis notion,
because it depends on theBlenX notion of binders.

Definition 2. Given a computationB0
θ0−→ B1

θ1−→ . . .
θn−→ Bn+1, θn has a direct

binder dependency onθh (θh ≺I
bin θn) iff h < n and

1. θn = ϑb ϑp unhide(x), θh = ϑb ϑp′ hide(x)
2. θn = ϑb ϑp hide(x), θn = ϑb ϑp′ unhide(x)

3. θn = ϑb〈‖i ϑb
i ϑp

i y?w , ‖1−i ϑb
1−i ϑp

1−i x !z 〉 andθh = ϑb′ ϑp unhide(k) and

((ϑb′ = ϑb
‖i ϑb

i andy = k) or (ϑb′ = ϑb
‖1−i ϑb

1−i andx = k))

4. θn = ϑb〈‖i ϑb
i ϑp

i y?w , ‖1−i ϑb
1−i ϑp

1−i x !z 〉 andθh = ϑb′ ϑp ch(k, ∆) and

((ϑb′ = ϑb
‖i ϑb

i andy = k) or (ϑb′ = ϑb
‖1−i ϑb

1−i andx = k))

5. θn = ϑb〈‖i ϑb
i ϑp

i y?w , ‖1−i ϑb
1−i ϑp

1−i x !z 〉 andθh = ϑb′ ϑp expose(k, ∆) and

((ϑb′ = ϑb
‖i ϑb

i andy = k) or (ϑb′ = ϑb
‖1−i ϑb

1−i andx = k))
6. θn = ϑb ϑp ch(x, ∆) andθh = ϑb ϑp′ expose(x, Γ)

Binder dependency is the reflexive and transitive closure of≺I
bin , i.e.,≺bin = (≺I

bin)∗.

We comment on the various conditions of the definition above.Item1 states that an un-
hide in a boxϑb depends upon an hide on the same binder within the same boxϑb. Item
2 states if the unhide happens before the hide, then the hide depends upon the unhide.
Items3, 4, and5 work on the same idea: an inter box communication cannot takeplace
if one of the involved binders is hidden, or has the wrong type, or it is not yet avail-
able, respectively. Finally, ach(x, ∆) depends upon the exposition of a binder named
x. The hypothesis aboutα-equivalence at the end of Sect. 2 makes simpler this defini-
tion avoiding complex labels to record information aboutα-conversion. Moreover, here
only b-addresses are used because we only need to know the boxwhere action is taking
place. As usual, thedependency relationis defined as≺ = (≺str ∪≺bin)∗.

Finally, we defineimmediate dependency, the basic relation for managing non-
Markovian processes. The idea is thatθn has an immediate dependency onθi if θn

depends uponθi, and there are not other transitions in between the two on which θn

depends.

Definition 3. Given a proved computationB0
θ0−→ B1

θ1−→ · · ·
θn−→ Bn+1, θn has an

immediate dependency onθi, θi ≺I θn, iff θi ≺ θn, and∀j, i < j < n, θj 6≺ θn.

2.2 General Distributions

In this section we define the formal tools to manage general continuous probability
distributions withinBlenX providing a stochastic extension of proved computations.

Given a setF of continuous probabilistic distribution functions with positive sup-
port, we assign a cost to each labelθ via a function$() such that$(θ) = Fθ ∈ F .

7

Relying on cost function$(), we make the qualitative model independent from quan-
titative considerations, allowing modelers to play with quantities. The density function
corresponding to distributionFθ is fθ , whereFθ(x) =

∫ x

−∞ fθ(t)dt. The following re-
sults show how to derive useful probabilities and distributions from a proved transition

(see [16, Th. 3.1]). The probability of a transitionB
θi−→ Bi is

pi =
∫ ∞

0
fi(t)

∏

j 6=i

B
θj
−→Bj

(1 − $(θj)(t))dt

and the distributioñFi of the random variableTi which describes the time interval as-

sociated withB
θi−→ Bi is

F̃i = P [Ti < t] = (
∫ t

0 fi(x)
∏

j 6=i

B
θj
−→Bj

(1 − $(θj)(x))dx) /pi

The random variableTi describes the time a transitionB
θi−→ Bi requires to complete.

In a Markovian setting,Ti is exponentially distributed and therefore it is independent
from the waited time. Consider, for instance:

I[|0 τ0 | |1 τ1]
|0 τ0
−→ I[|1 τ1]

|1 τ1
−→ I[nil] (2)

Under Markovian hypothesis the time required for transition |1 τ1 is independent from
the time consumed by transition|0 τ0. In a general setting, bothτ0 andτ1 are active
in I[|0 τ0 | |1 τ1] and the time required to complete|0 τ0 affects the time to complete
|1 τ1. Therefore, the distribution ofT|1 τ1

has to be updated considering that transition

|0 τ0 already happened. Generalizing, given a proved computation B0
θ0−→ B1

θ1−→

. . .
θn−→ Bn+1, the time distributionTn of θn depends upon the time distributionsTi of

transitionsθi, 0 ≤ i < n. But not all transitionsθi have to be considered. The following
computation, that looks similar to computation (2),

I[τ0 . τ1] τ0−→ I[τ1] τ1−→ I[nil] (3)

has a completely different quantitative behavior. In this case the time consumed by
τ0 does not affect the time to completeτ1, becauseτ1 becomes active only whenτ0

finished. The definition of immediate dependency helps in generalizing this idea. Note
that, by Def. 3, any pair of transitions in a given computation is either in a dependency
relation or not. Thus, once found the maximumi such thatθi ≺I θn, all the transitions
occurred afterθi, must influence the time distribution of transitionθn. The following
definition formalizes this idea.

Definition 4. If B0
θ0−→ B1

θ1−→ · · ·
θn−→ Bn+1 is a proved computation, then the

distribution of the random variableTn describing the time interval associated with

transitionBn
θn−→ Bn+1 is

F̃n = P

[

Tn ≤ t +

n−1
∑

h=i+1

Th | Tn >

n−1
∑

h=i+1

Th

]

with θi ≺I θn

assuming
∑

∅ Th = 0.

8

 0
 10
 20
 30
 40
 50
 60

 1000 2000 3000 4000

Gamma
Exp 10
Exp 15
Exp 20

Fig. 2.Simulation time of a chain of exponentially distributed steps vs. the equivalent Erlang step
varying the length of the chain.

The expert reader has already noticed that the distributionTn of θn can be computed
only after computing the distributionTi of θi, 0 ≤ i < n. This is essential to correctly
calculate of

∑n−1
h=i+1 Th. We conclude this section giving a constructive definition of a

stochastic computation.

Definition 5. Given a proved computationξ = B0
θ0−→ B1

θ1−→ . . .
θn−→ Bn+1, the

correspondingstochastic computationis

ξn+1 = B0
θ0,F̃0
−→ B1

θ1,F̃1
−→ . . .

θn,F̃n
−→ Bn+1

defined, fori ≥ 0, as

ξi = if i = 0 then ξ else ξi−1 {
(Bi−1

θi−1
−→ Bi)/(Bi−1

θi−1,F̃i−1)
−→ Bi}

whereF̃i = P
[

Ti ≤ t +
∑i−1

h=j+1 Th | Tn >
∑i−1

h=j+1 Th

]

with θj ≺I θi.

3 Experimental Results

We extended theBlenX language and theBetaWB with a prototypical implementation
of the concepts presented in the previous sections. Here we show the effectiveness of the
approach by presenting two simple bio-inspired examples that underline the importance
of being able to simulate non-Markovian processes.

In the first example we consider the following proved computation:

ξ = B0
θ0−→ B1

θ1−→ . . .
θn−1
−→ Bn

whereB0 undergoes an n-step transformation becomingBn. Each step is described by
a negative exponential distribution with parameterλ, i.e.,$(θi) = 1 − e−λt. A similar
path can be found, for instance, in the lambda phage model described in [17]. If the
focus is on simulating the production ofBn , without considering intermediatesBi,
i ∈ [1, n − 1], the system can be approximated as

ξA = B0
θ

−→ Bn

whereθ follows an Erlang distribution with scaleλ and shapen,

$(θ) =
n−1
∑

j=0

e−λt(λt)j

n!

9

Distribution Parameters Mean Variance
Exponential λ = 0.0078 128.2051 16436.554
Erlang k = 2, λ = 0.0156 128.2051 8218.2774
Hyperexponentialp1 = 0.3, p2 = 0.7 128.2051 79755.80924

λ1 = 0.0025, λ2 = 0.085312
Table 3.The three distributions used to model the individual conformational change of proteinA
from intermediate to active state.

The abstraction is correct because an Erlang distribution with shapen and scaleλ is the
sum ofn exponentially distributed random variables with parameters λ. Fig. 2 shows
the simulation time vs. the number of boxes inB0, whereξ andξA are simulated with
BetaWB, for different values ofn. Notice that the simulation time ofξA is independent
form the length of the chainn. Moreover, Fig. 2 points out also an argument regarding
the computational efficiency of the simulation, meaning that there are cases in which
the use of an Erlang step instead of a chain of exponentially distributed steps is useful
not only as a process abstraction, but also for speeding up the simulation time.

In the second example we consider a simple feedback mechanism (Fig. 3(a)) com-
posed of two interacting proteinA andB. ProteinB can be in an inactive (B−) or
active (B+) form, while proteinA can be in an inactive (A−), intermediate (A=) or
active (A+) form. B+ interact withA−, transforming it into its intermediate formA=,
which in turn is subject to an individual conformational change that leads to the active
form A+. Now, consider the individual conformational change. We tried to model this
reaction in three different ways by using an exponential, anErlang and a hyperexponen-
tial distribution with same means but different variances (see Tab.3). We ran stochastic
simulations of the three models with initially a number1000 of B+ andA− molecules.
Fig. 3(b) reports simulation results and in particular the number ofB− molecules over
time, showing the speed at which, through the feedback mechanism, the initial amount
of B+ is consumed. It is important to note that a different choice in the probability
distribution that drives the proteinA conformational change has a fundamental impact
on the overall behavior of the system.

(a) Example model

 0

 200

 400

 600

 800

 1000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
um

be
r

of
 B

-
m

ol
ec

ul
es

Time (s)

Exp
Erl

Hyperexp

(b) Simulation results

Fig. 3. Example model and simulation results for the three alternatives using different distribu-
tions to model the conformational change of proteinA from intermediate to active form.

10

(a) Example model modified

 0

 200

 400

 600

 800

 1000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
um

be
r

of
 B

-
m

ol
ec

ul
es

Time (s)

Exp
Erl

(b) Simulation results

Fig. 4. Example model with conformational change expressed as a 2-step transformation and
comparison of the simulation results with the one of the model in Fig. 3(a) that uses the Erlang
distribution.

Although important itself from a modeling point of view, this fact suggests us that
playing with non-Markovian processes is a useful tool to form hypotheses. Consider in-
deed a scenario in which the experimental data fits with the simulation results obtained
using the Erlang distribution. By the first example we know that our Erlang (Tab.3) can
be seen also as a chain of two exponential steps of rateλ = 0.0156, which can lead us to
the hypothesis that maybe our model is incomplete and that the conformational change
is a 2-step transformation passing through another intermediate protein formA=

1 . This
hypothesis could be used to refine the model in Fig. 3(a) as theone in Fig. 4(a), for
which the simulation results in Fig. 4(b) shows the perfect fit with the simulation re-
sults for the model in Fig. 3(a) that uses the Erlang distribution, and eventually to drive
wet experiments to confirm the hypothesis.

4 Conclusions

We presented the tools to cope with general distributions within theBetaWB frame-
work. The proved reduction semantics introduced forBlenX allows us to derive a notion
of dependency between transitions without changing theBlenX syntax. Moreover, we
exploit the notion of dependency only for quantitative purposes, but also qualitative as-
pects can be retrieved, as, for instance, localities [10]. In the literature there have been
many attempts to extend process calculi with general probabilistic distributions (see,
e.g., [18–21,16]), but, to the best of our knowledge, this isthe first time an effective
simulation tool is available. The examples presented in Sect. 3 outline that reasoning
about general distributions could be useful and need further investigations. In particu-
lar, the last example proposed non-Markovian processes as atool to form hypothesis
based on experimental observations. Clearly the example issimple and ad-hoc, and a
systematic way for constructing hypothesis is needed for validating the approach. Nev-
ertheless, the tool presented here is an important step in this direction, because it allows
playing with non-Markovian processes at a reasonable computational cost.

11

References

1. Milner, R.: Communication and Concurrency. International Series in Computer Science.
Prentice hall (1989)

2. Prandi, D., Priami, C., Quaglia, P.: Communicating by compatibility. JLAP75 (2008) 167
3. Priami, C., Quaglia, P.: Beta binders for biological interactions. In: CMSB 2004. Volume

3082 of LNCS., Springer (2004) 20
4. Meredith, G., Bjorg, S.: Contracts and types. Comm. of theACM 46(10) (2003) 41–47
5. Tame, J.: Scoring Functions - the First 100 Years. Journalof Computer-Aided Molecular

Design19 (2005) 445
6. Dematté, L., Priami, C., Romanel, A.: The BlenX Language: A Tutorial. In LNCS, ed.: SFM

2008, Springer-Verlag (2008) 313–365
7. Dematté, L., Priami, C., Romanel, A.: The Beta Workbench: a computational tool to study

the dynamics of biological systems. Briefings in Bioinformatics (2008)
8. Degano, P., Prandi, D., Priami, C., Quaglia, P.: Beta-binders for biological quantitative ex-

periments. Electr. Notes Theor. Comput. Sci164(3) (2006) 101–117
9. Mura, I.: Exactness and Approximation of the Stochastic Simulation Algorithm. Technical

Report 12/2008, The Microsoft Research - University of Trento Centre for Computational
and Systems Biology (2008)

10. Curti, M., Degano, P., Priami, C., Baldari, C.: Modelling biochemical pathways through
enhancedπ-calculus. TCS325(1) (2004) 111

11. Degano, P., Priami, C.: Enhanced operational semantics: A tool for describing and analysing
concurrent systems. ACM Computing Surveys33(2) (2001) 135–176

12. Guerriero, M.: From Intuitive Descriptions of Biochemical Systems to Their Formal Anal-
ysis. PhD in Information and Communication Technologies, International Doctorate School
in Information and Communication Technologies – University of Trento (2007)

13. Marsan, M., Balbo, G., Bobbio, A., Chiola, G., Conte, G.,Cumani, A.: The Effect of Exe-
cution Policies on the Semantics and Analysis of StochasticPetri Nets. IEEE Transactions
on Software Engeneering15(7) (1989) 832–846

14. Phillips, A., Cardelli, L.: Efficient, Correct Simulation of Biological Processes in the
Stochastic Pi-calculus. In: CMSB 2007. Volume 4695 of LNCS., Springer (2007) 184

15. de Bruijn, N.: Lambda calculus notation with nameless dummies. Indagationes Mathemati-
cae34 (1972) 381–392

16. Priami, C.: Language-based performance prediction fordistributed and mobile systems.
Information and Computation175(2002)

17. Arkin, A., Ross, J., McAdams, H.: Stochastic Kinetic Analysis of Developmental Pathway
Bifurcation in Phageλ-InfectedEscherichia coliCells. Genetics149(1998) 1633

18. Götz, N., Herzog, U., Rettelbach, M.: TIPP - Introduction and Application to Protocol Per-
formance Analysis. In: Formale Methoden für verteilte Systeme, GI/ITG-Fachgespräch,
Magdeburg, 10.-11. Juni 1992. (1992) 105–125

19. Marsan, M., Bianco, A., Ciminiera, L., Sisto, R., Valenzano, A.: A LOTOS extension for
the performance analysis of distributed systems. IEEE/ACMTransactions Networking2(2)
(1994) 151–165

20. Brinksma, E., Katoen, J., Langerak, R., Latella, D.: A Stochastic Causality-Based Process
Algebra. the Computer Journal38(7) (1995) 552–565

21. Bravetti, M., Bernardo, M., Gorrieri, R.: Towards Performance Evaluation with General
Distributions in Process Algebras. In: CONCUR ’98: Concurrency Theory, 9th International
Conference, Nice, France, September 8-11, 1998, Proceedings. (1998) 405–422

12

