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Abstract

Vision deep neural networks (DNNs) learn many sparse
features that are activated rarely or not at all. It is how-
ever unknown how these features structure the represen-
tational geometry of a DNN’s embedding space. Previ-
ous research used supervised iterative-magnitude prun-
ing (“lottery-ticket”) to remove less-important features,
and concluded that even minor feature-pruning strongly
alters layer representations. Here we investigate DNN’s
representational geometry, but using an unsupervised
approach, where pruning is guided by how frequently a
node is inactivated across samples. Using representa-
tional similarity analysis, we find that for CIFAR-10 and
MNIST, 20% of the features can be removed without any
impact on the representational space. However, these
redundant features do contain distributed information:
when used alone, they account for 10%-50% of the vari-
ance in the non-pruned embeddings. Additionally, we
find that for some natural image-sets, the removal of
sparse features improves the prediction of human simi-
larity judgments. Finally, we show that for a given set of
images belonging to an object category, never-activated
features encode meaningful semantics that is irrelevant
for representing the category. Overall, our findings con-
tribute to the understanding of how sparse features shape
objects’ representations in DNNs and how they impact
their effectiveness as a model of human behavior.

Keywords: deep neural networks, features, pruning, represen-
tational geometry, human similarity judgments

Introduction

DNNSs trained for image classification learn many sparse fea-
tures which seldom activate, with some never activating for
any image (“ghost” features). For example, up to 70% of VGG-
16 model’s features trained on CIFAR-10/100 do not activate
for any image in the training set (Mehta, Kim, & Theobalt,
2019). Removing infrequently-firing nodes by computing their
Percentage of Zeros (PoZ) statistic over a training batch is an
effective pruning strategy (Hu, Peng, Tai, & Tang, 2016).

The impact of ghost features and high-PoZ nodes on a
trained model’s representational geometry is currently un-
known. Computing representational dissimilarity matrices
(RDMs) is a common approach to characterize a neural net-
work’s geometry, capturing all pair-wise similarities between
objects (Kriegeskorte, Mur, & Bandettini, 2008). While the
removal of high-PoZ features minimally affects or even im-
proves classification (Hu et al., 2016), retaining them in im-
age embeddings can significantly impact the pairwise sim-
ilarity values. Consider three images (A, B, C) with hy-
pothetical embeddings below, where node #6 is always
0. The full embeddings produce pairwise Pearson simi-
larity values of 0.62,0.56,—0.18 for (A,B; B,C; A,C). How-
ever, removing feature #6 yields values of —0.06,0.40, —0.94.
Thus, Sim(A,B) > Sim(B,C) with the full embeddings, but
Sim(A,B) < Sim(B,C) without the 0 feature.

ImageA: 091 0.76 03 07 09 0
ImageB: 04 07 06 03 0.7 0
ImageC: 0.02 04 09 02 02 O

This will affect any analysis in which RDMs computed from
DNN features are used as models of human behavior, for ex-
ample, when used as models of human similarity judgments.
Psychologically, removing a feature that is non-activated for
all images should not impact perceived similarity, however, it
impacts RDM values. Pruning these features prior to con-
structing RDMs may improve the prediction of human simi-
larity judgments, and compress the embedding space itself.

In our work, we investigate the following questions: 1) How
does pruning high and low-PoZ features impact a DNN’s rep-
resentational geometry? 2) Are pruned DNNs better or worse
models of human behavior? and 3) Can identifying high-PoZ
features be used to explain what dimensions are not relevant
for coding differences within a semantic category?

Prior work (Ansuini, Medvet, Pellegrino, & Zullich, 2020)
used supervised pruning to address the first of our questions,
concluding that: “pruning, even at small rates, produces layer
representations which are different from the unpruned network
ones”. Similar findings were reported by Blakeney, Yan, and
Zong (2020) and one of their findings was that as pruning pro-
gresses through training, deeper layers undergo substantial
transformations in representation, which are then maintained
throughout the rest of the training.

Experiments and Results
Study of the representational geometry

Fifty instances of LeNet5, a small DNN model, were trained
on MNIST and CIFAR-10 with Adam optimizer until they con-
verged on typical accuracy levels. The models were then used
to generate embeddings for out-of-sample data using post-
ReLU activations from the penultimate layer. Figure 1a shows
a PoZ histogram, indicating that about 40% of nodes have a
PoZ > 80%, meaning that they are mostly zeros.

To quantify how a feature’s PoZ impacts its contribution to
representational geometry, we sorted the features from high
to low PoZ. We then incrementally added features from high-
to low-PoZ, each time recomputing the (partial) DNN RDM
and computing the Pearson correlation with the full embed-
dings’ RDM (figure 1b). Figure 1c shows a similar analysis, but
where the features were inserted from low- to high-PoZ (that
is, from most to least informative). The R? arrives at 1.0 af-
ter inserting 80% of the nodes, meaning the 20% highest-PoZ
nodes are not required. However, these high-PoZ features in
some cases produced an R? of over 0.4 for CIFAR-10 when
used alone (figure 1b). While substantial, this is much lower
than found when using the 30% of the features with low-PoZ
values, which produced a R? of over 0.9 for CIFAR-10 (1c). In
conclusion, high-PoZ features are less informative than low-
PoZ ones with respect to capturing a DNN'’s overall represen-
tational geometry, and may not capture unique information.

1026



Pearson R?

—— MNIST
—— CIFAR-10

—— MNIST
—— CIFAR-10

Pearson R?

Pearson R?

—— ANIMALS
0.2 AUTOMOBILES
0.2 — FRUITS

—— MNIST —— FURNITURE
—— CIFAR-10 —— VARIOUS
—— VEGETABLES

O o b

RS R RS R O O o H o
P PFPPFPPESLELLLS S P PP K

5 O O H
Q7 o7 O QF Q7 o7 o B‘? B'b Q/‘\ 0(? 09
Poz % node added

(a) (b)

H O D H P DL O DL N 0.0
IR IR K S

% node added

()

O ONPPRPDN PP @O P N
% node added

(d)

Figure 1: a) Cumulative histogram of PoZ statistic; b) and c) Pearson correlation R? between RDMs of pruned and full DNN
embeddings; d) Pearson correlation R* between RDM from pruned DNN embeddings and RDM from human similarity judgments.
The red dots indicate the maximum scores, while the black stars indicate the significant improvements.

Predicting human similarity judgments

We used data from Peterson, Abbott, & Griffiths, 2018, which
provides pairwise-similarity judgments for six datasets, each
with 120 images. DNN embeddings in each dataset were ex-
tracted from pretrained VGG-19’s penultimate layer containing
4096 nodes (Simonyan & Zisserman, 2014). Figure 1d illus-
trates the relationship between RDMs computed from DNN
embeddings and the human RDMs when features are inserted
from lowest-PoZ to highest-PoZ. For most datasets, the first
20% of features were found to be sufficient for approximating
the predictive capacity provided by the full embeddings. No-
tably, adding high-PoZ features produced small but statistically
significant reductions in predictive accuracy for two datasets
(Furniture and Vegetables). That is, they decreased accuracy
as compared to a smaller set of lower-PoZ features.

Semantics of ghost features

For each of the six above-mentioned datasets we identified
those features that fired 0 for all 120 images. We then passed
ImageNet’s test-set through VGG-19, retaining the embed-
dings of the these features alone, and performed PCA to gen-
erate 10 scores per image. We then identified those images
that scored highly on each Principle Component (PC). Fig-
ure 2 shows that for Fruit-ghost-features, the images scor-
ing most strongly on PC1 were associated with strong repet-
itive vertical pattern; here, dogs, people, or their combina-
tions. The highest scoring images on PCs2-6 have fore-
ground patterns or foreground/background combinations in-
consistent with fruits. For Furniture-ghost-features, images
scoring highly on PC1 have a single cohesive foreground over
patterned background, while images scoring highly on PCs 2-
6 have foreground patterns or color combinations not typical
for furniture.

Discussion

We extended previous research that studied how supervised
pruning affects DNN'’s representational geometry (Ansuini et
al., 2020; Blakeney et al., 2020), but here focused on unsuper-
vised pruning that is guided by a feature’s PoZ. High-PoZ fea-
tures captured a significant proportion of variance in a DNN’s
original geometry, but less effectively than low-PoZ features.

Figure 2: Content coded by ghost features. Sample im-
ages of representative Fruits and Vegetables (rows 1, 4) and
of images that scored highly on information coded by ghost-
features for these two categories (rows 2-3; 5-6).

Interestingly, in some cases, removing high-PoZ features from
the full embeddings improved the network’s ability to predict
human similarity judgments. We show that inspecting ghost
features is an explainable-Al tool for describing visual dimen-
sions that do not differentiate between objects within a given
category, but distinguish them from other categories. Retriev-
ing images based on ghost features could be a strategy for
creating a negative query (i.e. not fruits, not furniture) in im-
age search engine applications.
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