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A B S T R A C T

In this paper we will propose a Robust Ordered Weighted Averaging (ROWA) optimization model to find
a portfolio according to different attitudes towards risk of a decision maker. The rationale of our model is
supported by the idea of measuring risk through conditional means of losses from a database of past returns.
The way in which these means of extreme losses affect to the final decision may be different according to
the risk perception of the decision maker (scenarios). In this context, a compromise portfolio is identified to
reconcile the admisible risk attitudes of a decision maker according to different paradigms. We will also link
the robustness of the proposed solution with its efficiency from a multi-criterion decision making viewpoint
(Pareto optimality). Both concepts have been connected previously in the literature in different contexts. The
paper ends with an extensive numerical experiment in order to check the applicability of our model to real
data on six financial markets.
1. Introduction

Nowadays, shortfall or quantile risk measures are the basis of an
established tool to monitor and control the existing risk in financial
and logistic applications (see Guastaroba et al., 2020 and the refer-
ences therein). A typical approach would be modeling the decision
problem as a bi-criteria optimization where an efficiency measure,
such as expected profits, is combined with a risk measure, as the
expected loss in adverse scenarios. One of these shortfall measures is
the CVaR, the Conditional Value at Risk. In Rockafellar and Uryasev
(2000), Rockafellar and Uryasev proposed to minimize the CVaR for
general distributions of losses, while at least a given level in the
expected return is required. Later, Uryasev together with Krokhmal
and Palmquist analyzed in Krokhmal et al. (2002) the efficient frontier
of the bicriterion optimization problem in which CVaR and expected
return are the objectives for any feasible portfolio. Both papers used
the Value at Risk (or VaR) and the CVaR, for absolutely continuous
statistical distributions of losses. In Rockafellar and Uryasev (2002) the
authors extended their definitions to the case of general distributions
of losses with possible discontinuities. Basically, the value VaR is a
quantile of the loss probability distribution, while the CVaR is the
expectation of those losses that are greater than the VaR. As noted
in Filippi et al. (2019), under empirical distributions of losses, the CVaR
can be seen as a 𝑘−𝑠𝑢𝑚 operator, the average of the 𝑘-worst outcomes,
where 𝑘 is a positive integer chosen by the decision maker.

The CVaR approach has proved its successfulness in many aspects
of portfolio optimization, but one of its possible weakness could be
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that the expected loss is usually calculated for just one conditional
distribution, representing just a particular assessment of the negative
events, that is, a particular attitude towards risk. An earlier effort to
address this weakness was undertaken by Mansini et al. in Mansini et al.
(2007) in the context of a portfolio model. In order to infer robustness
features to the portfolio selection, the authors proposed in Mansini
et al. (2007) to aggregate more than one CVaR constraints, specified
by different tolerance levels, by means of a linear combination defined
by the decision maker.

Another natural approach could be to consider a family of dis-
tributions or weights in order to model different degrees of aversion
towards risk. This technique is particularly interesting when the de-
cision maker has uncertainty about the evolution of the economic
conditions under which its investment policy will be assessed or when
several managers, with different attitudes towards risk, are involved in
the decision process. An application of this methodology was proposed
by Zhu and Fukushima in Zhu and Fukushima (2009) where the worst-
case CVaR criterion under a set of possible probability distributions of
losses (mixture distribution uncertainty, box uncertainty and ellipsoidal
uncertainty) was studied. In this paper it is shown through numerical
experiments that, in comparison with the original CVaR, the portfolio
selection model using the worst-case CVaR as the risk measure performs
robustly in practice and provides more flexibility in portfolio decision
analysis. The first two families of the above probability distributions
of losses have also been recently studied in the context of VaR (Sehgal
et al., 2023) and Omega ratio optimization (Sharma et al., 2017).
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The idea of finding a robust portfolio under a given family of
statistical distributions for the returns is also studied by Kang and Li
in Kang and Li (2018). In their paper, the authors proposed the choice
of a minimax strategy for a given set of probability measures of the
returns that generalizes the robust mean–variance model of Garlappi
et al. (2007), the robust maximum return model of Pinar (2016), and
the robust minimum VaR and CVaR models of Paç and Pinar (2014).
In the first of these papers, Kang and Li (2018), the authors used
the so-called ambiguity concept to denote the situation in which there
exists a family of probability distributions for the returns, all of them
compatible with the available information, where the decision maker
has almost no possibility to single out the true distribution. When
this family is defined by a set of probability distributions with fixed
means and covariances (statistically inferred by the historical data) they
derive a closed-form expression for the optimal portfolio strategy of the
minimax mean-multiple risk portfolio.

There are applications of this methodology outside the portfolio
selection problem. For instance, in Asimit et al. (2017), different ap-
proaches modeling insurance contracts are considered under VaR and
CVaR indicators as risk measures. In that paper, the authors assumed
the existence of a discrete family of probability functions modeling
possible economic outcomes and proposed two decision rules, the
minimax CVaR and minimax regret VaR, to find robust investments. Both
apers analyzed economically acceptable solutions in the sense of Pareto
ptimality. In Xidonas et al. (2017) another minimax regret model was
roposed to find a robust portfolio by assessing the Mean Absolute
eviation of the returns, as a risk measure to be minimized and the
xpected portfolio return, as an objective to be maximized under a set
f future economic scenarios.

In our paper, we combine some of these ideas in order to propose
robust (minimax regret) solution. We assess each feasible portfolio by
sing an Ordered Weighted Averaging (OWA), Hajjami and Amin (2018),
f its losses where each weight is allocated to a specific position within
he ordered sequence of losses in order to aggregate them. For instance,
f just one nonzero weight is considered to the maximum portfolio loss
hen, the corresponding OWA operator leads to the minimax solution.
ach OWA operator plays the role of a risk aversion measure for a
pecific decision maker profile and the minimax regret portfolio will
epresent a compromise investment policy that tries to conciliate all
hese different risk attitudes of the team of managers.

The approach of modeling risk attitudes through OWA operators
as been previously proposed in stock selection in Hajjami and Amin
2018), to model a portfolio problem as a preference voting system
nder two different risk attitudes, one of them corresponding to a risky
nvestor whose goal is to select stocks with the highest returns and
nother more pessimistic attitude, corresponding to a creditor whose
oal is to maximize the repayment ability. However, to the best of
ur knowledge (see Filippi et al., 2020; Ghahtarani et al., 2022), the
WA model from a minimax regret perspective based on multiple CVaR
easures corresponding to different distributions of weights has not

een previously studied.
The contributions of this paper are multi-fold:

• We propose the Robust Ordered Weighted Averaging or ROWA
model as a new method (see Ghahtarani et al., 2022) to select a
portfolio by aggregating different risk attitudes with a minimax
regret criterion. It is shown how this approach covers different
selection models proposed in the literature.

• We use the convexity properties of the proposed indicators and
exploit the duality relations between the optimization programs
to formulate an operational Linear Programming model in order
to find a robust portfolio. This formulation primarily relies on the
structural characteristics of the set of extreme weights allowed by
the ROWA model in use.

• Two different ROWA paradigms are studied by using the frame-
work provided by this formulation, the first one models multiple
tolerance levels in CVaR and the other one defines what is called
2

a robust orness portfolio selection.
• Some relationships between the ROWA portfolio and weakly ef-
ficient solutions are derived enabling us to link our model with
multiple criteria CVaR formulations proposed previously in the
literature.

In the next section, a general mathematical program is introduced in
order to optimize an OWA measure on a given set of feasible solutions.
In Section 3, a specific ROWA formulation is derived under linear
functions of the losses incurred by a given portfolio. This formulation
is applied to two different ROWA models by characterizing the set of
extreme weights allowed by each approach. As we will see in Section 4,
the proposed robust portfolio has theoretical properties in terms of a
multi-criteria problem which will allow us relating our ROWA portfolio
in terms of its efficiency for a given set of individual CVaR measures.
Finally, in Section 5 numerical experiments are carried out in order to
check the applicability of our model to financial markets by using real
daily stock returns.

2. A minimax regret OWA loss model

Ordered weighted averaging operators are cost functions that have
been frequently used in Location Theory (see Aouad and Segev, 2019;
Ogryczak and Olender, 2016 and its references). In that field, OWA
operators have been proposed to penalize the coverage distance of each
demand point by a multiplicative weight, depending on its ranking
(or percentile) in the ordered list of distances. In this way, location
concepts as medians or centers, can be seen as optimal solutions for
specific cases of OWA operators. Each one of these OWA operators
transfers different features to the solution in terms of efficiency or
coverage of the located service.

When OWA operators are applied in order to select an optimal
solution from a given set 𝑋 of feasible portfolios, costs (losses or
negative returns) play the role of distances in the above problem, so
that performance measures like return averages, CVaR’s, worst or best
returns or quantile measures as the VaR can be related to given choices
of the weights defining these operators. In the following, we will focus
on OWA operators describing CVaR’s.

Let us consider the general problem (1) of minimizing the 𝑘-largest
values of 𝑛 cost functions,

𝑧∗ = min
𝑛
∑

𝑖=𝑛−𝑘+1
𝑔(𝑖)(𝑥)

s.t.
𝑥 ∈ 𝑋,

(1)

where the cost functions for a given solution 𝑥 are denoted by 𝑔𝑗 (𝑥), 𝑗 ∈
{1,… , 𝑛} and it is supposed these functions are continuous on a com-
pact set 𝑋 of feasible portfolios warranting, this way, the existence
of a minimum in (1). The notation 𝑔(𝑖), with a subindex between
parentheses, is used in (1) to fix the cost component which occupies
the 𝑖th position in the non-decreasing ordered sequence of costs 𝑔𝑗 (𝑥),
that is,

𝑔(1)(𝑥) ≤ 𝑔(2)(𝑥) ≤ ⋯ ≤ 𝑔(𝑛)(𝑥), (2)

where (𝑖) = 𝑗 if 𝑔𝑗 (𝑥) occupies the 𝑖th position in that ordered sequence.
Now we will extend the above risk indicator to an objective function

including specific weights whose purpose is to penalize each ordered
cost. The new indicator also preserves practical properties as the so-
called minimization formula of Rockafellar and Uryasev (2002). Let
𝜆1, 𝜆2,… , 𝜆𝑛 ≥ 0 the problem (𝑃𝜆) of minimizing the ordered median
loss function is defined as follows

𝑧∗(𝜆) = min
𝑛
∑

𝑖=1
𝜆𝑖𝑔(𝑖)(𝑥)

s.t.
(𝑃𝜆)
𝑥 ∈ 𝑋.
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Note that each weight 𝜆𝑖 is associated to the 𝑖th position in the
non-decreasing ordering of costs, independently of which index 𝑗 cor-
responds to the cost function 𝑔𝑗 (𝑥) occupying this position. This allows
us to consider objective functions of different nature by varying 𝜆. For
example, if all the weights are zeroes except one of them taking the
value 1, the objective function represents a given quantile of the sample
of costs, giving place to a VaR indicator as measure of risk. In particular,
for 𝜆𝑛 = 1, (𝑃𝜆) minimizes the maximum cost, that is, it is a minimax
model.

Remark 1. By taking 𝜆1 = 𝜆2 = ⋯ = 𝜆𝑛−𝑘 = 0 and 𝜆𝑛−𝑘+1 = ⋯ =
𝑛 =

1
𝑘 the problem (𝑃𝜆) minimizes the discrete CVaR objective function

corresponding to the 𝛽-VaR, with 𝛽 = (𝑛−𝑘+1)∕𝑛, that is, the (𝑛−𝑘+1)-th
value in the ordered sequence of losses (2).

Using results from Ogryczak and Tamir (2003) one has that
𝑛
∑

𝑖=𝑛−𝑘+1
𝑔(𝑖)(𝑥) = min 𝑘𝑡 +

𝑛
∑

𝑖=1
(𝑔𝑖(𝑥) − 𝑡)+

s.t.
𝑡 ∈ R.

(3)

then, the problem (1) is equivalent to

𝑧∗ = min 𝑘𝑡 +
𝑛
∑

𝑗=1
𝜉𝑗

s.t.
𝑡 − 𝑔𝑗 (𝑥) + 𝜉𝑗 ≥ 0, 𝑗 ∈ {1,… , 𝑛},

𝜉𝑗 ∈ R+, ∀𝑗 ∈ {1,… , 𝑛},

𝑡 ∈ R, 𝑥 ∈ 𝑋.

(4)

oreover, given an optimal solution (𝑡∗, 𝑥∗) of the problem (4), one has
hat 𝑡∗ achieves the value of the (𝑛− 𝑘+ 1)∕𝑛-quantile of the sample of
osts at the optimal solution 𝑥∗, that is, 𝑡∗ = 𝑔(𝑛−𝑘+1)(𝑥∗).

As proposed in Ogryczak and Tamir (2003), when 0 ≤ 𝜆1 ≤ 𝜆2 ≤
⋯ ≤ 𝜆𝑛, that is, when the weight given to a cost increases with the
position of such a cost in the ordered sequence (2), one can use the
formulation (3) in order to state an equivalent formulation of (𝑃𝜆) as

𝑧∗(𝜆) = min
𝑛
∑

𝑖=1
(𝜆𝑖 − 𝜆𝑖−1)

[

(𝑛 − 𝑖 + 1)𝑡𝑖 +
𝑛
∑

𝑗=1
(𝑔𝑗 (𝑥) − 𝑡𝑖)+

]

s.t.
𝑥 ∈ 𝑋,
𝑡𝑖 ∈ R, ∀𝑖 ∈ {1,… , 𝑛},

(5)

where 𝜆0 has been taken as zero for convenience. From now on, we will
use the formulation (5), hence we will assume that 0 ≤ 𝜆1 ≤ 𝜆2 ≤ ⋯ ≤
𝜆𝑛 ≤ 1, where the last inequality is just a normalization constraint.

Now, in order to ease the reading of the last formulation, we will
add the parameters 𝛿𝑖, being

𝛿𝑖 = 𝜆𝑖 − 𝜆𝑖−1 ≥ 0, 𝑖 ∈ {1,… , 𝑛}. (6)

Hence, using (4), the formulation (5) can be written as

𝑧∗(𝛿) = min
𝑛
∑

𝑖=1

[

(𝑛 − 𝑖 + 1)𝛿𝑖𝑡𝑖 +
𝑛
∑

𝑗=1
𝛿𝑖𝜉𝑖𝑗

]

s.t.
𝑡𝑖 − 𝑔𝑗 (𝑥) + 𝜉𝑖𝑗 ≥ 0, 𝑖, 𝑗 ∈ {1,… , 𝑛},

𝑥 ∈ 𝑋,

𝑡𝑖 ∈ R, ∀𝑖 ∈ {1,… , 𝑛},

𝜉𝑖𝑗 ∈ R+, 𝑖, 𝑗 ∈ {1,… , 𝑛},

(𝑃𝛿)

where a replica of the decision variables (𝑡, 𝜉) has been added for each
𝑖 ∈ {1,… , 𝑛}.

Problem (𝑃𝛿) remains tractable under convex loss functions 𝑔𝑗 (𝑥).
In particular, if these loss functions are piecewise linear convex func-
3

tions the corresponding problem (𝑃𝛿) becomes a Linear Programming
problem efficiently solved by off-the-shelf solvers. For instance, if

𝑔𝑗 (𝑥) = max{ℎ𝑗𝑘(𝑥) ∶ 𝑘 ∈ 𝐾𝑗},

eing ℎ𝑗𝑘(𝑥) linear functions, we only need replacing the constraint
𝑖 + 𝜉𝑖𝑗 ≥ 𝑔𝑗 (𝑥) of (𝑃𝛿) by 𝑡𝑖 + 𝜉𝑖𝑗 ≥ ℎ𝑗𝑘(𝑥) ∶ 𝑘 ∈ 𝐾𝑗 , which are linear
onstraints.

We will assume that the decision maker is capable of identifying a
ollection of plausible vectors of 𝜆-weights (or its equivalent 𝛿 weights)
or (𝑃𝜆). Each one of these vectors of weights could give rise to a
ational decision under a particular economic scenario. For instance,
ncreasing 𝜆-weights for the losses of the last positions in the ordered
equence (2) gives place to criteria with greater aversion towards risk,
hich can be reasonable in high volatility scenarios. However, the
xisting uncertainty about the actual economic scenario that will occur,
akes advisable to consider several vectors of 𝜆-weights modeling dif-

ferent attitudes towards risk in order to improve the ex-post assessment
of our portfolio.

The proposed optimization model will find a robust solution, in the
sense that

• it takes into account a set of possible scenarios of 𝛿-weights to
parametrize advisable (according to experts) risk attitudes under
the existing uncertain conditions

• and tries to reach a good overall performance under these scenar-
ios when compared with the optimal ex-post portfolio.

From now on, we will denote the set of considered 𝛿-weights by 𝛥
tated in the following

efinition 1. We will denote by 𝛥 a compact polyhedron of 𝛿-weights
odeling admissible decision maker attitudes towards risk according to
𝑃𝛿).

Each positive 𝛿-weight represents the degree of importance that a
ecision maker gives to the difference between consecutive losses in
he nondecreasing ordered sequence (2). There exists a one-to-one cor-
espondence between 𝜆 and 𝛿 weights by (6), however 𝛿-weights allow
s to write in a bit more compact way some subsequent expressions and
ormulations, as the proposed minimax regret portfolio model (𝑃 ) whose

formulation is given in terms of the function 𝑧(𝑥, 𝛿) defined by (7)

𝑧(𝑥, 𝛿) ∶= min
𝑛
∑

𝑖=1

[

(𝑛 − 𝑖 + 1)𝛿𝑖𝑡𝑖 +
𝑛
∑

𝑗=1
𝛿𝑖𝜉𝑖𝑗

]

s.t.
𝑡𝑖 − 𝑔𝑗 (𝑥) + 𝜉𝑖𝑗 ≥ 0, 𝑖, 𝑗 ∈ {1,… , 𝑛},

𝑡𝑖 ∈ R, 𝑖 ∈ {1,… , 𝑛},

𝜉𝑖𝑗 ≥ 0, 𝑖, 𝑗 ∈ {1,… , 𝑛},

(7)

that is, the weighted sum of the ordered losses for a given portfolio
𝑥 ∈ 𝑋 as defined in the objective function of (𝑃𝜆).

Specifically, a Robust Ordered Weighted Averaging (ROWA) opti-
mization model for portfolio selection based on the specified set of
weights 𝛥 will be proposed as the minimax regret problem (𝑃 ),

𝑅∗ ∶= min max
(

𝑧(𝑥, 𝛿) − 𝑧∗(𝛿)
)

𝑥 ∈ 𝑋 𝛿 ∈ 𝛥.
(𝑃 )

Let us denote by 𝑅(𝑥, 𝛿) = 𝑧(𝑥, 𝛿) − 𝑧∗(𝛿) the regret for a given
portfolio 𝑥 ∈ 𝑋 under the 𝛿-weights scenario. One has the following

Proposition 1. 𝑅(𝑥, 𝛿) is convex in 𝛿 ∈ 𝛥.

Proof. From the definition of 𝑧∗(𝛿) in (𝑃𝛿) it follows directly that it
s concave in 𝛿. Now, using (3) and the definition (7), for any 𝛿, 𝛿 ∈
𝛥, 𝜇 ∈ [0, 1] one has that

𝑧(𝑥, 𝛿) =
𝑛
∑

𝑔(𝑖)(𝑥)
𝑖

∑

𝛿𝑗 ,

𝑖=1 𝑗=1



Computers and Operations Research 167 (2024) 106666S. Benati and E. Conde

w

R

p
t
f
l

C

𝑋

w
a
m
c
s
f

𝑧

a
t
p
d
m

c

is a linear function

𝑧(𝑥, 𝜇𝛿+(1−𝜇)𝛿) =
𝑛
∑

𝑖=1
𝑔(𝑖)(𝑥)

𝑖
∑

𝑗=1
(𝜇𝛿𝑗 +(1−𝜇)𝛿𝑗 ) = 𝜇𝑧(𝑥, 𝛿)+(1−𝜇)𝑧(𝑥, 𝛿),

hich implies the convexity of 𝑅(𝑥, 𝛿). □

emark 2. If 𝛥 and 𝑋 are compact polyhedra and 𝑔𝑗 , 𝑗 ∈ {1,… , 𝑛}
piecewise linear convex functions, the maximum regret 𝑅(𝑥, 𝛿) for a
given portfolio 𝑥 ∈ 𝑋 is reached at the extreme points of 𝛥.

Proof. First, observe that, 𝑧∗(𝛿) is well-defined for any 𝛿 ∈ 𝛥 since
it represents the optimal value of (𝑃𝜆) for a given 𝜆 that always exists
since the functions 𝑔𝑗 are continuous on a compact polyhedron 𝑋. Now,
as 𝑔𝑗 , 𝑗 ∈ {1,… , 𝑛} are piecewise linear convex functions and 𝑋 is a
olyhedron we can obtain the value 𝑧∗(𝛿) for a given 𝛿 by assessing
he objective function of (𝑃𝛿) at the finite set of extreme points of its
easible set. That is, 𝑧∗(𝛿) is given by the minimum of a finite set of
inear functions in 𝛿, then 𝑧∗(𝛿) is continuous which implies that 𝑅(𝑥, 𝛿)

is also continuous in 𝛿 ∈ 𝛥 for any given portfolio 𝑥 ∈ 𝑋 in addition to
being convex from Proposition 1.

Finally, the result follows by Bauer’s maximum principle, Kružík
(2000), that is, any convex and continuous function defined on a
convex and compact set, attains its maximum at some extreme point
of that set. □

3. The ROWA problem under linear loss functions

In order to simplify subsequent formulations, we will assume that
the loss functions in formulation (𝑃𝛿) have a linear structure

𝑔𝑖(𝑥) = −
∑

𝑎∈𝐴
𝑟𝑖𝑎𝑥𝑎, 𝑖 ∈ {1,… , 𝑛}, (8)

where 𝑟𝑖𝑎 is the return of asset 𝑎 ∈ 𝐴 in period 𝑖 ∈ {1,… , 𝑛}.
The set of feasible portfolios 𝑋 appearing in (𝑃𝛿) can include a broad

range of possible technical constraints, as those considered in Krokhmal
et al. (2002), related to transaction costs, diversification, changes in in-
dividual positions (liquidity constraints) or bounds on positions. These
constraints are commonly expressed as linear inequalities involving
the decision variables within the optimization model. However, for
readability purposes, we will only consider two linear constraints,

• a normalization condition about the invested amount, which will
be fixed at one and

• a constraint on the minimum level of expected return 𝑟∗, empiri-
cally estimated from historical data.

onsequently:

= {𝑥 ∈ R𝑛
+ ∶

∑

𝑎∈𝐴
𝑥𝑎 = 1,

∑

𝑎∈𝐴
𝑟𝑎𝑥𝑎 ≥ 𝑟∗}, (9)

here 𝑟𝑎 is the average return for each asset 𝑎 ∈ 𝐴. Including other
dditional linear constraints to 𝑋 will not modify in essence the nu-
erical algorithms developed later as they would just modify the linear

onstraints of the problem formulation. Under the choice (9) of the
et 𝑋 and the loss functions (8), Problem (𝑃𝛿) can be written as the
ormulation (𝑃𝐿𝛿).

∗(𝛿) = min
𝑛
∑

𝑖=1

[

(𝑛 − 𝑖 + 1)𝛿𝑖𝑡𝑖 +
𝑛
∑

𝑗=1
𝛿𝑖𝜉𝑖𝑗

]

s.t.
𝑡𝑖 +

∑

𝑎∈𝐴
𝑟𝑗𝑎𝑥𝑎 + 𝜉𝑖𝑗 ≥ 0, 𝑖, 𝑗 ∈ {1,… , 𝑛},

∑

𝑎∈𝐴
𝑥𝑎 = 1,

∑

𝑎∈𝐴
𝑟𝑎𝑥𝑎 ≥ 𝑟∗,

𝑥𝑎 ≥ 0, 𝑎 ∈ 𝐴,

𝑡𝑖 ∈ R, 𝑖 ∈ {1,… , 𝑛},

(𝑃𝐿𝛿)
4

𝜉𝑖𝑗 ≥ 0, 𝑖, 𝑗 ∈ {1,… , 𝑛}.
The value 𝑧∗(𝛿) measures the weighted mean of ordered losses
ssumed by the decision maker when she acts optimally according
o the vector of weights 𝛿. Each optimal solution of Problem (𝑃𝐿𝛿)
ossesses interesting properties in terms of second degree stochastic
ominance (SSD). In fact, as it was shown in Mansini et al. (2007), under
ild conditions these optimal solutions are SSD efficient portfolios.

Taking into account that 𝑧∗(𝛿) exists for every 𝛿 ∈ 𝛥 since it
orresponds to the optimal value of (𝑃𝜆) for a given 𝜆, from (𝑃𝐿𝛿), this

optimum is reached at the finite set of extreme vertex of its polyhedron
of feasible solutions, hence 𝑧∗(𝛿) is a concave and piecewise linear
function since it can be expressed as the minimum of a finite set of
linear functions, one for each extreme points in (𝑃𝐿𝛿).

The dual formulation of (𝑃𝐿𝛿) can be written as (𝐷𝐿𝛿).

𝑧∗(𝛿) = max−𝑢0 + 𝑟∗𝑣0
s.t.
𝑛
∑

𝑗=1
𝑢𝑖𝑗 = (𝑛 − 𝑖 + 1)𝛿𝑖, 𝑖 ∈ {1,… , 𝑛},

𝑛
∑

𝑖,𝑗=1
𝑟𝑗𝑎𝑢𝑖𝑗 + 𝑟𝑎𝑣0 ≤ 𝑢0, 𝑎 ∈ 𝐴,

𝑢0 ∈ R,

𝑣0 ≥ 0

0 ≤ 𝑢𝑖𝑗 ≤ 𝛿𝑖, 𝑖, 𝑗 ∈ {1,… , 𝑛}.

(𝐷𝐿𝛿)

Using Remark 2, we can write the ROWA problem (𝑃 ) as (10)

𝑅∗ = min 𝑅
s.t.

𝑧(𝑥, 𝛿) − 𝑧∗(𝛿) ≤ 𝑅, ∀ 𝛿 ∈ Ext(𝛥)
𝑥 ∈ 𝑋,

(10)

where Ext(𝛥) is the set of extreme points of 𝛥.
Then, from the formulations (𝐷𝐿𝛿) and (7), one has that formula-

tion (10) can be written as the linear programming problem (𝑃𝐿𝐸𝑋).

min 𝑅

s.t.
𝑡𝑖 +

∑

𝑎∈𝐴
𝑟𝑗𝑎𝑥𝑎 + 𝜉𝑖𝑗 ≥ 0, 𝑖, 𝑗 ∈ {1,… , 𝑛},

𝑛
∑

𝑖=1

[

(𝑛 − 𝑖 + 1)𝛿𝑖𝑡𝑖 +
𝑛
∑

𝑗=1
𝛿𝑖𝜉𝑖𝑗

]

+ 𝑢𝛿0 − 𝑟∗𝑣𝛿0 ≤ 𝑅, ∀ 𝛿 ∈ Ext(𝛥)

𝑛
∑

𝑗=1
𝑢𝛿𝑖𝑗 = (𝑛 − 𝑖 + 1)𝛿𝑖, 𝑖 ∈ {1,… , 𝑛}, 𝛿 ∈ Ext(𝛥),

𝑛
∑

𝑖,𝑗=1
𝑟𝑗𝑎𝑢

𝛿
𝑖𝑗 + 𝑟𝑎𝑣

𝛿
0 ≤ 𝑢𝛿0, 𝑎 ∈ 𝐴, 𝛿 ∈ Ext(𝛥),

𝑢𝛿𝑖𝑗 ≤ 𝛿𝑖, 𝑖, 𝑗 ∈ {1,… , 𝑛}, 𝛿 ∈ Ext(𝛥),
∑

𝑎∈𝐴
𝑥𝑎 = 1,

∑

𝑎∈𝐴
𝑟𝑎𝑥𝑎 ≥ 𝑟∗,

𝑡 ∈ R𝑛,

𝑢𝛿0 ∈ R, 𝛿 ∈ Ext(𝛥),
𝑣𝛿0 ≥ 0, 𝛿 ∈ Ext(𝛥),
𝜉 ≥ 0, 𝑥 ≥ 0, 𝑢𝛿 ≥ 0, 𝛿 ∈ Ext(𝛥).

(𝑃𝐿𝐸𝑋)

In (𝑃𝐿𝐸𝑋) a copy of the variables 𝑢 appearing in the formulations
(𝐷𝐿𝛿) has been made for each 𝛿 ∈ Ext(𝛥), while the variables 𝑡, 𝜉
appearing in the problem (7) need not be replicated due to the fact
that the weight vector 𝛿 just affect to the objective function of (7).
These copies have been denoted with a superindex 𝛿 in order to ease the
reading of this last formulation. Taking into account the separability of
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each block of constraints according to 𝛿 ∈ Ext(𝛥), if there exist feasible
solutions for the problems (𝑃𝐿𝛿) and (𝐷𝐿𝛿) verifying the constraints
𝑛
∑

𝑖=1

[

(𝑛 − 𝑖 + 1)𝛿𝑖𝑡𝑖 +
𝑛
∑

𝑗=1
𝛿𝑖𝜉𝑖𝑗

]

+ 𝑢𝛿0 − 𝑟∗𝑣𝛿0 ≤ 𝑅, ∀ 𝛿 ∈ Ext(𝛥) (11)

we are ensuring that

𝑧(𝑥, 𝛿) − 𝑧∗(𝛿) ≤ 𝑅, ∀ 𝛿 ∈ Ext(𝛥),

since this last difference can be obtained by minimizing the left hand
side member of (11) in the feasible sets of the corresponding problems
(𝑃𝐿𝛿) and (𝐷𝐿𝛿). The reciprocal of this assertion is also true.

In the next two subsections, we demonstrate the utility of the for-
mulation (𝑃𝐿𝐸𝑋) in creating operational Linear Programming models
for specific robust portfolio selection paradigms.

3.1. The case of multiple tolerance levels in CVaR

As commented in the introduction, an efficient portfolio can be
found constraining the average of its 𝑘 largest losses for different values
of 𝑘, as proposed in Mansini et al. (2007). Following the ideas of
these authors, the resulting methodology ‘‘enriches the capabilities’’
of ‘‘modeling various risk aversion preferences’’ as compared with the
‘‘crude’’ single CVaR formulation. Additional properties, as the SSD
efficiency (Theorem 1 of Mansini et al. (2007)), can be shown for the
optimal portfolios respect to an aggregation of these multiple CVaR
measures.

According to Remark 1, for a given choice of 𝑘, the selection of
𝜆1 = 𝜆2 = ⋯ = 𝜆𝑛−𝑘 = 0 and 𝜆𝑛−𝑘+1 = ⋯ = 𝜆𝑛 = 1

𝑘 , gives rise to a
roblem (𝑃𝜆) with discrete CVaR objective for the (𝑛 − 𝑘 + 1)∕𝑛-VaR.
hese 𝜆-weights, for all possible values of 𝑘, that is, for all the possible
olerance levels in CVaR are the extreme points of the polyhedron

= {𝜆 ∈ R𝑛
+ ∶ 𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑛,

𝑛
∑

𝑖=1
𝜆𝑖 = 1}.

The closed-form of these extreme points is known as Paelinck’s
heorem (see Claessens et al., 1991). Since the corresponding 𝛥-set is
he image set of 𝛬 for the linear bijective function given by (6), it is
lear that its extreme points are also the corresponding image of the
xtreme points of 𝜆, that is, 𝛥 is the polyhedron with extreme points 𝛿
efined by

𝑛−𝑘+1 =
1
𝑘

and 𝛿𝑖 = 0 for 𝑖 ≠ 𝑛 − 𝑘 + 1, (12)

for any possible 𝑘 ∈ {1, 2,… , 𝑛}.
Hence, if we want to find a robust portfolio according to any one of

the possible CVaR measure of the corresponding risk we should solve
Problem (𝑃𝐿𝐸𝑋) for all the extreme 𝛿-weights given in (12). However,
if just a subset of these extreme points are considered, we would
be modeling the ‘‘tolerance levels’’ of the multiple criteria problem
proposed by Mansini et al. in Mansini et al. (2007) (Problem (10)).

We will now formulate the linear program (𝑃𝐿𝐸𝑋) to derive a
robust portfolio, considering all the extreme points 𝛿 of (12). It is
important to note that focusing on a subset of these extreme points
would also hold significance within this context.

Let us denote such extreme vectors as

Ext(𝛥)

=
{

𝛿1 =
( 1
𝑛
, 0,… , 0

)

, 𝛿2 =
(

0, 1
𝑛 − 1

, 0,… , 0
)

,… , 𝛿𝑛 = (0,… , 0, 1)
}

.

(13)

First, by using the fact that 𝛿𝑖𝑖 =
1

𝑛−𝑖+1 and 𝛿𝑖𝑘 = 0 if 𝑘 ≠ 𝑖, we have
hat the constraint set

≤ 𝑢𝛿𝑖𝑗 ≤ 𝛿𝑖, 𝑖, 𝑗 ∈ {1,… , 𝑛}, 𝛿 ∈ Ext(𝛥),

f (𝑃𝐿𝐸𝑋) becomes

≤ 𝑢𝑖 ≤ 1 , 𝑖, 𝑗 ∈ {1,… , 𝑛}, 𝑢𝑖 = 0, ∀𝑘 ≠ 𝑖, (14)
5

𝑖𝑗 𝑛 − 𝑖 + 1 𝑘𝑗
where 𝑢𝑖 has been used, instead of the generic notation 𝑢𝛿 , to denote
the vector of dual variables associated to each extreme point 𝛿𝑖 of 𝛥.

his means that most of these dual variables need not to be defined
ince they are zeroes. Hence, one can delete the superscript of these
ariables and rewrite (𝑃𝐿𝐸𝑋) as the formulation (15)

∗ = min 𝑅

s.t.
𝑡𝑖 +

∑

𝑎∈𝐴
𝑟𝑗𝑎𝑥𝑎 + 𝜉𝑖𝑗 ≥ 0, 𝑖, 𝑗 ∈ {1,… , 𝑛},

𝑡𝑖 +
1

𝑛 − 𝑖 + 1

𝑛
∑

𝑗=1
𝜉𝑖𝑗 + 𝑢𝑖0 − 𝑟∗𝑣𝑖0 ≤ 𝑅, ∀ 𝑖 ∈ {1,… , 𝑛},

𝑛
∑

𝑗=1
𝑢𝑖𝑗 = 1, 𝑖 ∈ {1,… , 𝑛},

𝑛
∑

𝑗=1
𝑟𝑗𝑎𝑢𝑖𝑗 + 𝑟𝑎𝑣𝑖0 ≤ 𝑢𝑖0, 𝑎 ∈ 𝐴, 𝑖 ∈ {1,… , 𝑛},

𝑢𝑖𝑗 ≤
1

𝑛 − 𝑖 + 1
, 𝑖, 𝑗 ∈ {1,… , 𝑛},

∑

𝑎∈𝐴
𝑥𝑎 = 1,

∑

𝑎∈𝐴
𝑟𝑎𝑥𝑎 ≥ 𝑟∗,

𝑡 ∈ R𝑛,

𝑢𝑖0 ∈ R, ∀ 𝑖 ∈ {1,… , 𝑛},

𝑣𝑖0 ≥ 0, ∀ 𝑖 ∈ {1,… , 𝑛},

𝜉 ≥ 0, 𝑢 ≥ 0, 𝑥 ≥ 0.

(15)

Formulation (15) can be written in a more general setting when only
a few of the largest losses of any portfolio should be considered, so
constraints (14) can be modified. For instance, the values of 𝑖 could
be constrained to be in the set {𝑞𝑙 , 𝑞𝑙 + 1,… , 𝑞𝑢}, with ⌊𝑛∕2⌋ ≤ 𝑞𝑙 ≤
⋯ ≤ 𝑞𝑢 ≤ 𝑛, corresponding to CVaR with 𝛽’s such that 0.5 ≤ 𝛽 ≤ 1.
In this case, a set of consecutive intermediate tolerances for the CVaR
indicator are taken as reasonable risk measures:

𝛿𝑖𝑖 =
1

𝑛 − 𝑖 + 1
for 𝑖 ∈ 𝐼 ∶= {𝑞𝑙 ,… , 𝑞𝑢}

𝛿𝑖𝑖 = 0 for 𝑖 ∉ 𝐼

𝛿𝑖𝑗 = 0 for 𝑗 ≠ 𝑖.

Of course, the values 𝑖 for the considered tolerances do not need
to be consecutive. For instance, by taking just 𝑖 = 1 and 𝑖 = 𝑛, the
orresponding 𝛥-set of (13) is the segment with extreme points

1 =
1
𝑛
, 𝛿𝑗 = 0 for 𝑗 ≠ 1 and 𝛿𝑛 = 1, 𝛿𝑗 = 0 for 𝑗 ≠ 𝑛,

which gives place to the risk assessment called cent-dian, Halpern
(1978). This last criterion is built as convex combinations of the mean
cost and the maximum cost and was proposed and analyzed in the
context of Location Theory, Halpern (1978).

When considering solely a subset of extreme points of the 𝛥-set,
we only have to delete from (15) those constraints and indices corre-
sponding to the extreme 𝛿-weights not included in our choice, for ex-
ample, when consecutive tolerances index are considered the extremes
1 2 𝑞𝑙−1 𝑞𝑢+1 𝑛
𝛿 , 𝛿 ,… , 𝛿 and 𝛿 ,… , 𝛿 will be deleted from Formulation (16)
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giving rise to Formulation (16).

𝑅∗ = min 𝑅

s.t.
𝑡𝑖 +

∑

𝑎∈𝐴
𝑟𝑗𝑎𝑥𝑎 + 𝜉𝑖𝑗 ≥ 0, 𝑖 ∈ {𝑞𝑙 ,… , 𝑞𝑢},

∀ 𝑗 ∈ {1,… , 𝑛},

𝑡𝑖 +
1

𝑛 − 𝑖 + 1

𝑛
∑

𝑗=1
𝜉𝑖𝑗 + 𝑢𝑖0 − 𝑟∗𝑣𝑖0 ≤ 𝑅,

∀ 𝑖 ∈ {𝑞𝑙 ,… , 𝑞𝑢},
𝑛
∑

𝑗=1
𝑢𝑖𝑗 = 1, 𝑖 ∈ {𝑞𝑙 ,… , 𝑞𝑢},

𝑛
∑

𝑗=1
𝑟𝑗𝑎𝑢𝑖𝑗 + 𝑟𝑎𝑣𝑖0 ≤ 𝑢𝑖0, 𝑎 ∈ 𝐴, 𝑖 ∈ {𝑞𝑙 ,… , 𝑞𝑢},

𝑢𝑖𝑗 ≤
1

𝑛 − 𝑖 + 1
, 𝑖 ∈ {𝑞𝑙 ,… , 𝑞𝑢}, 𝑗 ∈ {1,… , 𝑛},

∑

𝑎∈𝐴
𝑥𝑎 = 1,

∑

𝑎∈𝐴
𝑟𝑎𝑥𝑎 ≥ 𝑟∗,

𝑡 ∈ R𝑛,

𝑢𝑖0 ∈ R, ∀ 𝑖 ∈ {𝑞𝑙 ,… , 𝑞𝑢},
𝑣𝑖0 ≥ 0, ∀ 𝑖 ∈ {𝑞𝑙 ,… , 𝑞𝑢},

𝜉 ≥ 0, 𝑢 ≥ 0, 𝑥 ≥ 0.

(16)

The optimal portfolios obtained by solving formulations like (15)
r (16) or any other variant of the general formulation (𝑃 ) have
ot only robustness features derived from the choice of different risk
easurement scenarios, as shown in the following section, it is possible

o work out several efficiency properties conferred to those solutions in
he context of a multi-objective model related, in a natural way, with
ur investment problem.

.2. A robust orness model for portfolio selection

In Section 3.1 we considered a set of 𝜆-weights 𝛬 in which the
ormalization condition ∑

𝑖 𝜆𝑖 = 1 was included. In the next model, we
nclude that normalization constraint in the set of 𝛿-weights together
ith the so-called orness measure of weights. In Hajjami and Amin

2018), Hajjami and Amin proposed the following set of weights in the
ontext of a model for stock selection using ordered weighted averaging
perators
{

𝛿 ∈ R𝑛
+ ∶ 𝑜𝑟𝑛𝑒𝑠𝑠(𝛿) ∶=

𝑛
∑

𝑖=1

𝑛 − 𝑖
𝑛 − 1

𝛿𝑖 = 𝛼,
𝑛
∑

𝑖=1
𝛿𝑖 = 1

}

. (17)

he value 𝛼 ∈ [0, 1] is known in the multicriteria decision-making
iterature, Yager (1993), as the orness parameter (a measurement of
heir proximity to the OR-operator) and models the optimism level of
he manager when facing the uncertain conditions under which any
iven solution will be assessed. This value 𝛼 represents a measurement
f the proximity of the OWA aggregation to the OR-operator (‘‘oring’’
perator) as proposed by Yager (1988). In this way, a value 𝛼 = 0
eaves 𝛿 = (0, 0,… , 1) as the only feasible vector of weights, that is, the
orresponding (𝑃𝜆)-problem models a minimax decision corresponding

to a purely pessimistic manager. On the other hand, a value 𝛼 = 1 leaves
𝛿 = (1, 0,… , 0) as the only feasible vector of weights which identifies
ur (𝑃𝜆)-problem with the minsum criterion, that is, the decision maker
gnores the relative order of the losses due to the selected portfolio. For
given 𝛼 ∈ (0, 1) one has an intermediate attitude towards risk in which
non-singleton 𝛥-set of weights is considered.
6

However, a more general approach would be that of considering
an interval of the orness 𝛼-values. Let us consider the following set of
weights, that we call, the orness 𝛥-set,

𝛥 ∶=

{

𝛿 ∈ R𝑛
+ ∶

𝑛
∑

𝑖=1

𝑛 − 𝑖
𝑛 − 1

𝛿𝑖 ∈ [𝛼0, 𝛼1],
𝑛
∑

𝑖=1
𝛿𝑖 = 1

}

, (18)

where 𝛼0, 𝛼1 ∈ [0, 1].
We call this a proper orness 𝛥-set if 𝛼0 ≠ 1 and 𝛼1 ≠ 0 since

these conditions correspond to one of the degenerate cases considered
before. The meaning of these upper and lower bounds on the orness
of the admissible OWA operators is clearly understood by any decision
maker which may identify small values of the orness with a pessimistic
attitude towards risk whilst a large orness is a neutral attitude.

We can have an operational formulation of (𝑃𝐿𝐸𝑋) by identifying
the extreme weights of the orness 𝛥-set. Following Conde (2023), these
extreme weights can be obtained by writing (18) as

𝑛
∑

𝑖=1
(𝑛 − 𝑖)𝛿𝑖 − 𝛽0 = (𝑛 − 1)𝛼0,

𝑛
∑

𝑖=1
(𝑛 − 𝑖)𝛿𝑖 + 𝛽1 = (𝑛 − 1)𝛼1,

𝑛
∑

𝑖=1
𝛿𝑖 = 1,

𝛿𝑖, 𝑖 ∈ {1,… , 𝑛}, 𝛽0, 𝛽1 ≥ 0,

and taking into account that every basic feasible solution of the orness
𝛥-set must have, at least, one of its slack variables 𝛽0 or 𝛽1 in the set of
basic variables. Hence, an extreme vector of weights of the orness 𝛥-set
should have one of the following three different forms:

1. If both variables are basic, by taking the inverse of the basic
matrix one has the extreme weights

𝛿 = 𝐞𝑝,∀𝑝 = ⌈𝑛 − (𝑛 − 1)𝛼1⌉,… , ⌊𝑛 − (𝑛 − 1)𝛼0⌋ (19)

where 𝐞𝑝 is the vector with an one in the 𝑝th component and
zeros elsewhere, ⌈𝑎⌉ is the smallest integer greater than or equal
to 𝑎 and ⌊𝑎⌋ the largest integer smaller than or equal to 𝑎.

2. If 𝛽0 is the only basic variable, for all 𝑝 ≠ 𝑞

𝛿 =
(𝑛 − 1)𝛼1 − 𝑛 + 𝑞

𝑞 − 𝑝
𝐞𝑝 +

(𝑛 − 1)𝛼1 − 𝑛 + 𝑝
𝑝 − 𝑞

𝐞𝑞 , 𝑝 ≤ 𝑛 − (𝑛 − 1)𝛼1 ≤ 𝑞.

(20)

3. If 𝛽1 is the only basic variable, for all 𝑝 ≠ 𝑞

𝛿 =
(𝑛 − 1)𝛼0 − 𝑛 + 𝑞

𝑞 − 𝑝
𝐞𝑝 +

(𝑛 − 1)𝛼0 − 𝑛 + 𝑝
𝑝 − 𝑞

𝐞𝑞 , 𝑞 ≤ 𝑛 − (𝑛 − 1)𝛼0 ≤ 𝑝.

(21)

By using the given set of extreme points of 𝛥, that is, Ext(𝛥) one
an write the specific Linear Programming formulation (𝑃𝐿𝐸𝑋) for the

corresponding robust orness model for portfolio selection reducing its
set of decision variables as in Conde (2023).

4. Efficiency properties of the ROWA solution

Let 𝑓𝑘(𝑥) be the sum of the 𝑘 largest losses for the portfolio 𝑥 ∈ 𝑋,
that is, 𝑓𝑘(𝑥) is defined by (22)

𝑓𝑘(𝑥) = min 𝑘𝑡 +
𝑛
∑

𝑗=1
(𝑔𝑗 (𝑥) − 𝑡)+

.t.
𝑡 ∈ R.

(22)

Taking into account the separability property of the problem (5)

respect to the 𝑡𝑖-variables, if 0 ≤ 𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑛 its optimal solutions
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can be seen as the Pareto optimal solutions for the vector optimization
problem (V)

𝑉 − 𝑚𝑖𝑛(𝑓𝑘(𝑥) ∶ 𝑘 = 1,… , 𝑛)
.t.

𝑥 ∈ 𝑋,
(V)

here 𝑉 − 𝑚𝑖𝑛 stands for vector optimization, in this case, vector mini-
ization.

Hence, for different 𝜆-weights, Formulation (𝑃𝜆) determines weakly
fficient portfolios for the multi-objective problem (V). This set could
e too large as to be fully described in practical applications even
hen the set of possible 𝜆-weights is constrained by using subsets
f extreme 𝛿-weights as it was done in the last section. However,
nder mild conditions, the minimax regret optimal portfolios of (𝑃 )
epresent a subset of these efficient solutions which usually is much
ore manageable than the entire Pareto optimal set.

roposition 2. Let 𝛥 be a bounded polyhedron set of weights verifying that
𝛿 =

∑

𝛿∈Ext(𝛥) 𝛿 has strictly positive components, then if the problem (𝑃 ) has
unique optimal solution it is an efficient or Pareto-optimal portfolio for the
ector optimization problem (V).

roof. Using Theorem 1 of Kouvelis and Yu (1997) the unique optimal
olution 𝑥∗ of (𝑃 ) is efficient for the problem

𝑉 − min(
𝑛
∑

𝑘=1
𝛿𝑘𝑓𝑘(𝑥) − 𝑧∗(𝛿) ∶ 𝛿 ∈ Ext(𝛥))

s.t.
𝑥 ∈ 𝑋.

(23)

Now let us suppose, by contradiction, that 𝑥∗ is not efficient for the
vector optimization problem (V) and let 𝑦 ∈ 𝑋 a portfolio dominating
𝑥∗, that is,

𝑓𝑘(𝑥∗) ≥ 𝑓𝑘(𝑦), ∀𝑘 ∈ {1,… , 𝑛},

eing strict at least one of these inequalities. Then, as 𝛿 =
∑

𝛿∈Ext(𝛥) 𝛿
as strictly positive components, it directly follows the existence of at
east one 𝛿0 ∈ Ext(𝛥) for which
𝑛
∑

=1
𝛿0𝑘𝑓𝑘(𝑥

∗) >
𝑛
∑

𝑘=1
𝛿0𝑘𝑓𝑘(𝑦).

or all the other 𝛿 ∈ Ext(𝛥) one has
𝑛
∑

=1
𝛿𝑘𝑓𝑘(𝑥∗) ≥

𝑛
∑

𝑘=1
𝛿𝑘𝑓𝑘(𝑦)

ince, by definition, 𝛿 ≥ 0. Hence 𝑥∗ would not be an efficient solution
f the vector optimization problem (23) which contradicts the initial
ssumption. □

Let us consider the optimization problem (24) in which a weighted
um of the functions 𝑓𝑘(𝑥) defined in (22) is minimized subject to a set
f new constraints

in
𝑛
∑

𝑖=1
𝛿𝑖𝑓𝑛−𝑖+1(𝑥)

s.t.
𝑛
∑

𝑖=1
𝛿𝑖𝑓𝑛−𝑖+1(𝑥) ≤ 𝑅∗ + 𝑧∗(𝛿), ∀ 𝛿 ∈ Ext(𝛥),

𝑥 ∈ 𝑋.

(24)

where 𝑅∗ is the optimal objective value of the problem (𝑃 ) and 𝑧∗(𝛿)
the optimal objective value of the problem (𝑃𝛿) for every 𝛿 ∈ Ext(𝛥).
roposition 2 can be generalized as stated in Proposition 3.

roposition 3. Let 𝛥 be a bounded polyhedron set of weights verifying that
𝛿 =

∑

𝛿∈Ext(𝛥) 𝛿 has strictly positive components, then any optimal solution
of the problem (24) is an efficient or Pareto-optimal portfolio for the vector
optimization problem (V).
7

Proof. Let 𝑥∗ be an optimal solution of (24) then, by the new set of
constraints included in this problem, we have also the optimality of 𝑥∗
n the ROWA problem (𝑃 ). Now, if 𝑥∗ is not efficient for the vector
ptimization problem (V), there must exists 𝑦 ∈ 𝑋 dominating 𝑥∗, that
s,

𝑘(𝑥∗) ≥ 𝑓𝑘(𝑦), ∀𝑘 ∈ {1,… , 𝑛},

eing strict at least one of these inequalities. Then,
𝑛
∑

=1
𝛿𝑘𝑓𝑘(𝑥∗) >

𝑛
∑

𝑘=1
𝛿𝑘𝑓𝑘(𝑦)

which contradicts the initial assumption. □

Now, the problem (24) of Proposition 3 can be written using the
same constraints of (𝑃𝐿𝐸𝑋) by changing 𝑟 for 𝑅∗ and the objective
functions as it appears in the formulation (25).

min
𝑛
∑

𝑖=1

[

(𝑛 − 𝑖 + 1)𝛿𝑖𝑡𝑖 +
𝑛
∑

𝑗=1
𝛿𝑖𝜉𝑖𝑗

]

s.t.
𝑛
∑

𝑖=1

[

(𝑛 − 𝑖 + 1)𝛿𝑖𝑡𝑖 +
𝑛
∑

𝑗=1
𝛿𝑖𝜉𝑖𝑗

]

+ 𝑢𝛿0 − 𝑟∗𝑣𝛿0 ≤ 𝑅∗, ∀ 𝛿 ∈ Ext(𝛥)

𝑡𝑖 +
∑

𝑎∈𝐴
𝑟𝑗𝑎𝑥𝑎 + 𝜉𝑖𝑗 ≥ 0, 𝑖, 𝑗 ∈ {1,… , 𝑛},

𝑡𝑖 ∈ R, 𝑖 ∈ {1,… , 𝑛},

𝜉𝑖𝑗 ≥ 0, 𝑖, 𝑗 ∈ {1,… , 𝑛},
𝑛
∑

𝑗=1
𝑢𝛿𝑖𝑗 = (𝑛 − 𝑖 + 1)𝛿𝑖, 𝑖 ∈ {1,… , 𝑛}, 𝛿 ∈ Ext(𝛥),

𝑛
∑

𝑖,𝑗=1
𝑟𝑗𝑎𝑢

𝛿
𝑖𝑗 ≤ 𝑢𝛿0, 𝑎 ∈ 𝐴, 𝛿 ∈ Ext(𝛥),

0 ≤ 𝑢𝛿0, 𝛿 ∈ Ext(𝛥),
0 ≤ 𝑢𝛿𝑖𝑗 ≤ 𝛿𝑖, 𝑖, 𝑗 ∈ {1,… , 𝑛}, 𝛿 ∈ Ext(𝛥),
∑

𝑎∈𝐴
𝑥𝑎 = 1,

∑

𝑎∈𝐴
𝑟𝑎𝑥𝑎 ≥ 𝑟∗,

𝑥𝑎 ≥ 0, 𝑎 ∈ 𝐴.

(25)

Formulation (𝑃𝐿𝐸𝑋) has |𝐴|+ (𝑛2 + 1)|Ext(𝛥)|+ 𝑛2 + 𝑛+ 1 variables
and |𝐴||Ext(𝛥)| + (𝑛 + 1)|Ext(𝛥)| + 𝑛2 + 1 linear constraints (excepting
nonnegativity and upper bounding constraints on some variables).
Formulation (25) has nearly the same size (one variable less since 𝑟
becomes a constant). Both problems are quite tractable from a numer-
ical viewpoint by using off-the-shelf solvers for large sets of assets (𝐴),
time periods (𝑛) and weight scenarios (Ext(𝛥)).

Once we have proposed a robust portfolio by solving the ROWA
problem (𝑃 ) and highlighted its relation with the Pareto efficiency in
the vector optimization problem (V), a numerical experiment has been
designed in order to check its behavior with real data.

5. Numerical experiments

To test the effects of using the ROWA optimization model (𝑃 ) to
aggregate multiple CVaR risk measures, we simulated a hypothetical
decision maker that invests its wealth on the assets of a financial
market according to different models of portfolio optimization. The
investor observes the market data of the last periods, then it runs
some optimization model and implements the corresponding optimal
solution. Next, the process is repeated after that a certain period has
elapsed.

Four portfolio models have been tested:
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• The (1∕𝑁)-Portfolio, or Equally Weighted (EqW) portfolio.
• The min-CVaR model (with and without the constraint on the

minimum expected return 𝑟∗).
• The ROWA model (with and without the constraint on the mini-

mum expected return 𝑟∗).
• The Huang et al.’s model of the relative robust CVar.

The (1∕𝑁)-Portfolio is the passive strategy that, in every trad-
ng day, allocates 1∕𝑁 fraction of wealth to each asset, where 𝑁 is

the number of the traded assets. This procedure has been proposed
in DeMiguel et al. (2009) as a tool to minimize the market risk without
using any information. It has been found that it is an effective strategy
for portfolio management, as it often outperforms the market indexes
without substantive effort for decision-makers. This is the case for the
six data sets that we are using: In all markets, the 1∕𝑁 portfolio greatly
outperforms the index, so, we will propose this procedure as the most
appropriate benchmark against which to compare the CVaR and ROWA
models. The Huang et al.’s model, see Huang et al. (2010), is a relative
robust CVaR model in which there are multiple possible scenarios. They
can be used to predict the portfolio expectations and CVaRs and when
the prediction is not correct, the investor regrets its choice. The model
objective function is to minimize the regret. The difference between
Huang et al.’s model and ours is that in the former model, scenarios
are different market predictions, while in the latter model, scenarios
are CVaR estimates with different thresholds 𝛽.

The min-CVaR model has been run with 𝛽 = 0.90, whereas the
ROWA model (16) has been run with various choices of 𝑞𝑙 and 𝑞𝑢, cor-
responding respectively to CVaR parameters 𝛽𝑙 and 𝛽𝑢. We remind that,
when a range [𝛽𝑙 , 𝛽𝑢] is determined, then the ROWA model (16) con-
siders all the discrete CVaR’s calculated for 𝛽 ∈ [𝛽𝑙 , 𝛽𝑢] and aggregate
them through the maximum regret. Since min-CVaR is a risk measure,
we did not use values of 𝛽𝑙 smaller than 0.5, as it should include returns
that are above the median, representing opportunities rather than risks.
The selected values of 𝛽𝑙 were 𝛽𝑙 ∈ {0.5, 0.6, 0.7, 0.8, 0.9}. Regarding 𝛽𝑢,

e have tested values 𝛽𝑢 ∈ {0.9, 1}. Specific combinations of 𝛽𝑙 and 𝛽𝑢

an be interpreted as pessimistic or realistic investors. We consider a
essimistic investor the one with 𝛽𝑢 = 1, as CVaR’s are calculated even
or the worst quantiles, that are the ones in which only the greatest
osses are considered. Conversely, we consider a realistic investor the

one with 𝛽𝑢 = 0.9, as CVaR’s with high value of 𝛽 are excluded. The
Huang et al.’s model has been tested with three and five scenarios and
with the same parameters used in the tests reported in Huang et al.
(2010).

These optimization models have been tested on the following six
financial markets:

• Dow Jones, a data set including 28 assets and 6818 daily obser-
vations from 16/02/1990 to 07/04/2016.

• Eurostoxx, including 49 assets and 3884 daily observations from
22/05/2001 to 11/04/2016.

• FTSE, including 82 assets and 3587 daily observations from
11/07/2002 to 11/04/2016.

• Hang Seng, including 43 assets and 2706 daily observations from
25/11/2005 to 11/04/2016.

• Mibtel, including 60 assets and 1305 daily observations from
17/2/2003 to 15/2/2008.

• NASDAQ, including 82 assets and 2983 daily observations from
03/11/2004 to 11/04/2016.

The Mibtel data have been previously used in the portfolio simu-
lation reported in Benati (2015), while the other datasets have been
previously used in Benati and Conde (2022) and Carleo et al. (2017)
and are available in http://host.uniroma3.it/docenti/cesarone/DataSe
ts.htm.

The solved instances for each model have been generated according
to the following parameters. Models are run using the last 𝑇 days, fixing
8

𝑇 = 120. When needed as model inputs, return averages are estimated
Fig. 1. Minimum Risk models: Comparison between ROWA (red lines) and the CVaR
portfolios (dark line).

through the sample mean of these 𝑇 days, while the minimum input
parameter 𝑟∗ has been fixed using the (1∕𝑁)-portfolio as benchmark:
Let 𝑟𝑏𝑡 = 1

𝑁 (
∑

𝑎∈𝐴 𝑟𝑎𝑡) be the (1∕𝑁)-return in time 𝑡, then 𝑟∗ =
∑

𝑡 𝑟
𝑏
𝑡

𝑇 .
Finally, investors using CVaR’s and ROWA models are assumed to re-
balance their portfolio every 20 days, being 𝑡 = 150 the first period of
the series in which they use the corresponding optimization model.

We compare portfolio strategies through data of:

• Realized returns, that are the out-of-sample returns.
• Portfolio compositions, that are the statistics about the assets

weights.

Realized returns are compared through their averages, standard de-
viations, and Sharpe indexes but, quantiles indicators are also reported.
Portfolio compositions are compared through indexes of diversifica-
tion, maximum exposition, and portfolio turnover. Diversification is
measured through the Herfindahl–Hirschman (HH) index, maximum
exposition is measured by the maximum portfolio weight (the Max
index), the turnover is the portfolio wealth percentage that is sold in
every rebalancing period.

Next, we considered two families of portfolio strategies:

• Minimum risk models;
• Risk/return optimization models.

Minimum risk models are run without any constraints on minimum
expected return, so we can ascertain the effect of the ROWA model
without the (possible) bias caused by the expected return. Next, in the
risk/return model we study the effect of the ROWA model when an
investor wants to balance risks with expected returns.

In Table 1 and in Fig. 1 results are shown about the ex-post returns
of the minimum risk models. Fig. 1 shows the comparison between
the CVaR and two ROWA portfolios, for the Nasdaq and the Eurostoxx
markets (for the other markets results are similar). It can be seen that
ROWA portfolios are tracking closely the patterns of CVaR’s. In some
cases red lines terminate above the black lines, showing that the ROWA
final wealth is higher than the one corresponding to the CVaR criterion.
However, this is not a consistent and regular trend: In Table 1 data
about the median and the mean expected returns are reported, and it
can be seen that there is no clear superiority of one model against the
other. However, models are optimized without the constraint on the
expected return and they have the sole purpose of minimizing risk. So,
when we compare the standard deviations, we can see a clear evidence

that both the CVaR and the ROWA carried out less variability than the
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Table 1
Return indexes for markets and models (pure minimization model).

Market Model Min 0.25 Median 0.75 Max Mean SD Sharpe

DowJones 1/N −8.234 −0.443 0.040 0.583 11.998 0.059 1.115 5.258
CVaR −7.689 −0.415 0.025 0.528 12.325 0.043 0.919 4.702
ROWA(0.9) −7.635 −0.435 0.038 0.544 13.459 0.051 0.954 5.333
ROWA(0.8) −7.662 −0.416 0.034 0.537 13.515 0.049 0.942 5.215
ROWA(0.7) −7.675 −0.415 0.034 0.533 13.572 0.049 0.939 5.215
ROWA(0.6) −7.704 −0.416 0.032 0.532 13.639 0.049 0.939 5.239
ROWA(0.5) −7.704 −0.415 0.030 0.530 13.639 0.049 0.938 5.195
ROWA(0.5/0.9) −8.026 −0.407 0.033 0.508 12.872 0.042 0.905 4.632
ROWA(0.6/0.9) −8.026 −0.412 0.031 0.504 12.872 0.041 0.903 4.581
ROWA(0.7/0.9) −7.963 −0.414 0.035 0.514 12.760 0.041 0.903 4.524

Eurostoxx 1/N −7.816 −0.665 0.024 0.720 10.704 0.028 1.458 1.947
CVaR −8.339 −0.450 0.041 0.556 8.739 0.028 1.002 2.812
ROWA(0.9) −10.104 −0.450 0.046 0.572 9.755 0.034 1.033 3.326
ROWA(0.8) −8.903 −0.450 0.039 0.565 10.114 0.033 1.023 3.257
ROWA(0.7) −8.902 −0.443 0.032 0.563 10.111 0.032 1.020 3.147
ROWA(0.6) −8.903 −0.443 0.035 0.562 10.114 0.032 1.020 3.156
ROWA(0.5) −8.944 −0.442 0.036 0.565 9.981 0.032 1.020 3.178
ROWA(0.5/0.9) −9.446 −0.428 0.039 0.535 9.121 0.027 0.978 2.714
ROWA(0.6/0.9) −9.384 −0.429 0.036 0.531 9.366 0.026 0.979 2.690
ROWA(0.7/0.9) −9.174 −0.425 0.036 0.531 9.399 0.026 0.977 2.634

FTSE 1/N −7.907 −0.469 0.061 0.591 8.146 0.053 1.167 4.507
CVaR −6.517 −0.335 0.054 0.487 8.252 0.050 0.860 5.775
ROWA(0.9) −6.897 −0.371 0.047 0.497 6.336 0.048 0.886 5.421
ROWA(0.8) −6.696 −0.359 0.045 0.497 5.264 0.048 0.868 5.526
ROWA(0.7) −6.635 −0.352 0.046 0.498 4.795 0.047 0.862 5.499
ROWA(0.6) −6.705 −0.359 0.039 0.502 4.630 0.045 0.858 5.295
ROWA(0.5) −6.705 −0.362 0.041 0.500 4.629 0.046 0.858 5.384
ROWA(0.5/0.9) −5.644 −0.338 0.047 0.490 9.489 0.050 0.856 5.847
ROWA(0.6/0.9) −5.649 −0.333 0.047 0.488 9.460 0.049 0.855 5.748
ROWA(0.7/0.9) −5.963 −0.337 0.057 0.483 8.385 0.049 0.853 5.723

HangSeng 1/N −12.613 −0.600 0.000 0.745 12.190 0.051 1.536 3.302
CVaR −9.947 −0.372 0.009 0.507 11.164 0.036 0.979 3.696
ROWA(0.9) −8.903 −0.409 0.018 0.540 7.521 0.045 1.010 4.420
ROWA(0.8) −9.105 −0.395 0.017 0.542 7.317 0.044 0.998 4.393
ROWA(0.7) −9.105 −0.396 0.020 0.539 7.300 0.044 0.990 4.477
ROWA(0.6) −9.105 −0.396 0.020 0.534 7.278 0.044 0.988 4.480
ROWA(0.5) −9.105 −0.395 0.021 0.537 7.278 0.045 0.988 4.522
ROWA(0.5/0.9) −10.783 −0.385 0.024 0.549 10.085 0.047 1.037 4.493
ROWA(0.6/0.9) −10.606 −0.390 0.025 0.554 10.223 0.046 1.041 4.444
ROWA(0.7/0.9) −10.969 −0.402 0.030 0.549 10.399 0.047 1.051 4.500

Mibtel 1/N −4.682 −0.292 0.101 0.481 3.051 0.037 0.778 4.786
CVaR −5.867 −0.227 0.072 0.392 6.386 0.048 0.676 7.089
ROWA(0.9) −4.624 −0.277 0.049 0.407 5.115 0.035 0.700 4.999
ROWA(0.8) −5.018 −0.264 0.054 0.417 5.500 0.041 0.685 5.950
ROWA(0.7) −5.020 −0.259 0.054 0.410 5.502 0.042 0.682 6.116
ROWA(0.6) −5.017 −0.260 0.054 0.409 5.499 0.041 0.682 6.073
ROWA(0.5) −5.019 −0.261 0.054 0.400 5.501 0.042 0.681 6.143
ROWA(0.5/0.9) −5.795 −0.207 0.081 0.403 6.347 0.058 0.673 8.684
ROWA(0.6/0.9) −5.831 −0.201 0.079 0.406 6.363 0.058 0.671 8.700
ROWA(0.7/0.9) −5.848 −0.206 0.080 0.399 6.358 0.059 0.672 8.703

Nasdaq 1/N −9.170 −0.514 0.087 0.733 11.672 0.072 1.345 5.344
CVaR −7.405 −0.446 0.061 0.606 7.345 0.070 1.065 6.607
ROWA(0.9) −6.872 −0.449 0.039 0.612 8.277 0.064 1.069 5.982
ROWA(0.8) −6.563 −0.448 0.042 0.607 8.038 0.062 1.063 5.857
ROWA(0.7) −6.704 −0.435 0.046 0.602 7.746 0.062 1.062 5.854
ROWA(0.6) −6.431 −0.422 0.043 0.595 7.945 0.063 1.060 5.956
ROWA(0.5) −6.431 −0.412 0.047 0.599 8.194 0.064 1.060 6.084
ROWA(0.5/0.9) −7.459 −0.402 0.079 0.621 7.283 0.077 1.045 7.408
ROWA(0.6/0.9) −7.083 −0.410 0.083 0.620 7.251 0.077 1.041 7.398
ROWA(0.7/0.9) −7.306 −0.407 0.067 0.610 7.051 0.073 1.048 6.972
1∕𝑁 portfolio. Moreover, a difference between the realistic, pessimistic
ROWA, and CVaR models emerged, as in five markets out of six (the
exception was HangSeng) the realistic ROWA models are the ones with
the least variability, e.g. standard deviation, amongst all the considered
models. Similar risk rankings are confirmed when we look at the loss
quantiles, e.g., the minimum and the first quartile returns, in which it
can be seen that the realistic ROWA models are always better than the
pessimistic ROWA one.
9

In Table 2 and Fig. 2 it can be seen that the reason why realistic
ROWA is less variable than the pessimistic ROWA and the CVaR is due
to more diversification, less maximum exposition, and less turnover.
The data about portfolio composition is reported for the Nasdaq and the
Eurostoxx. It can be seen in Fig. 2 that the blue points, corresponding
to the realistic ROWA model, are always below the black points,
representing the CVaR. It means that realistic ROWA solutions are
more diversified and less exposed portfolios, and with less turnover.
This effect is regular and consistent: In Table 2 it can be seen that it
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Fig. 2. Minimum Risk models: Comparison between portfolio features. Black points
re CVaR models, red points are pessimistic ROWA, blue points are realistic ROWA
odels.

lways happens in all markets and this effect can be quantified as a
ecrease around 10% of all the indexes. This happens for the realistic
OWA model, but to a less extent for the pessimistic one. As can be
een in Fig. 2 for the Eurostoxx data, the red points (corresponding
o the pessimistic ROWA) regarding diversification and exposition are
bove the black ones. It implies that there is no consistent and regu-
ar portfolio improvements on these measures by using a pessimistic
OWA criterion, as confirmed by data reported in Table 2. Instead,
egular improvements appears on the turnover, as data about both
OWA models are inferior as compared with the corresponding one for

he CVaR criterion.
In conclusion, the analysis of the minimum risk models, reveals that

OWA portfolio can improve diversification, exposition and turnover of
he CVaR portfolios, specially in the ROWA version corresponding to a
ealistic investor. Results on portfolio compositions are sound, showing
regular behavior in the decreasing of those indexes. Increasing diver-

ification affects the ex-post return, as the realistic model provides less
eturn variability than the CVaR.

Next, we analyze the ROWA models in the risk/return optimization
ramework. In Table 3 and in Fig. 3 data about the ex-post returns of
he risk/return models are shown. The situations can be one of the
wo reported in Fig. 3. In the first one, exemplified by the Nasdaq
rontier reported in the figure on the right, the realistic ROWA model
btains an highest Sharpe ratio than the CVaR. Moreover, the ROWA
olution dominates the respective CVaR, as the highest Sharpe ratio
10

as been obtained through the highest return and the smallest standard
Table 2
Portfolio indexes for markets and models (pure minimization model).

Market Model HH-index Max-index Turn over

DowJones CVaR 0.213 0.324 0.339
ROWA(0.9) 0.232 0.346 0.310
ROWA(0.8) 0.226 0.343 0.305
ROWA(0.7) 0.222 0.338 0.299
ROWA(0.6) 0.222 0.337 0.298
ROWA(0.5) 0.222 0.337 0.298
ROWA(0.5/0.9) 0.190 0.296 0.273
ROWA(0.6/0.9) 0.190 0.297 0.275
ROWA(0.7/0.9) 0.195 0.303 0.282

Eurostoxx CVaR 0.235 0.341 0.340
ROWA(0.9) 0.257 0.371 0.330
ROWA(0.8) 0.251 0.363 0.314
ROWA(0.7) 0.249 0.361 0.314
ROWA(0.6) 0.248 0.361 0.312
ROWA(0.5) 0.248 0.360 0.312
ROWA(0.5/0.9) 0.211 0.326 0.281
ROWA(0.6/0.9) 0.213 0.329 0.285
ROWA(0.7/0.9) 0.217 0.332 0.289

FTSE CVaR 0.156 0.256 0.406
ROWA(0.9) 0.167 0.272 0.397
ROWA(0.8) 0.156 0.256 0.379
ROWA(0.7) 0.153 0.251 0.375
ROWA(0.6) 0.151 0.249 0.370
ROWA(0.5) 0.151 0.248 0.368
ROWA(0.5/0.9) 0.137 0.232 0.354
ROWA(0.6/0.9) 0.138 0.233 0.351
ROWA(0.7/0.9) 0.140 0.238 0.358

HangSeng CVaR 0.253 0.371 0.309
ROWA(0.9) 0.237 0.347 0.294
ROWA(0.8) 0.236 0.347 0.283
ROWA(0.7) 0.233 0.344 0.280
ROWA(0.6) 0.233 0.343 0.275
ROWA(0.5) 0.233 0.342 0.276
ROWA(0.5/0.9) 0.215 0.330 0.287
ROWA(0.6/0.9) 0.216 0.332 0.293
ROWA(0.7/0.9) 0.219 0.333 0.304

Mibtel CVaR 0.166 0.264 0.367
ROWA(0.9) 0.190 0.295 0.376
ROWA(0.8) 0.185 0.294 0.360
ROWA(0.7) 0.181 0.289 0.351
ROWA(0.6) 0.179 0.288 0.347
ROWA(0.5) 0.178 0.287 0.342
ROWA(0.5/0.9) 0.152 0.245 0.321
ROWA(0.6/0.9) 0.153 0.247 0.328
ROWA(0.7/0.9) 0.154 0.249 0.338

Nasdaq CVaR 0.187 0.304 0.404
ROWA(0.9) 0.188 0.301 0.376
ROWA(0.8) 0.182 0.292 0.362
ROWA(0.7) 0.177 0.287 0.355
ROWA(0.6) 0.176 0.286 0.351
ROWA(0.5) 0.175 0.285 0.347
ROWA(0.5/0.9) 0.165 0.279 0.344
ROWA(0.6/0.9) 0.165 0.279 0.346
ROWA(0.7/0.9) 0.170 0.287 0.351

deviation. Such a situation occurs in the Hang-Seng, Mibtel and Nasdaq
data. In the other three markets, e.g. the DowJones, the Eurostoxx and
the FTSE, the situation is the one reported in the figure on the left.
It can be seen, that even though the realistic ROWA models have the
smallest Sharpe ratio, still their mean/standard deviation points are
located on the efficient frontier, as they are providing less return for
less standard deviation than the CVaR.

Again, the reason of this regular behavior can be found in Table 4,
in which data about the portfolio composition are reported. As before,
it can be seen that the realistic ROWA portfolios are those with the
highest level of diversification, the lowest exposure, and they neces-
sitate the least turnover. Similarly to the minimum-risk models, these
indexes decrease by approximately 10% when transitioning from the
CVaR to the realistic ROWA criterion.
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Table 3
Return indexes for markets and models (risk/return model).

Market Model Min 0.25 Median 0.75 Max Mean SD Sharpe

DowJones 1/N −8.234 −0.443 0.040 0.583 11.998 0.059 1.115 5.258
CVaR −7.689 −0.430 0.024 0.540 12.325 0.044 0.931 4.687
ROWA(0.9) −7.635 −0.443 0.038 0.555 13.459 0.053 0.964 5.489
ROWA(0.8) −7.662 −0.432 0.038 0.542 13.515 0.050 0.951 5.269
ROWA(0.7) −7.675 −0.424 0.037 0.542 13.572 0.050 0.950 5.312
ROWA(0.6) −7.704 −0.426 0.038 0.539 13.639 0.050 0.949 5.297
ROWA(0.5) −7.704 −0.423 0.037 0.540 13.639 0.050 0.949 5.261
ROWA(0.5/0.9) −8.026 −0.415 0.031 0.512 12.872 0.042 0.914 4.615
ROWA(0.6/0.9) −8.026 −0.415 0.032 0.509 12.872 0.042 0.912 4.595
ROWA(0.7/0.9) −7.963 −0.418 0.029 0.523 12.760 0.041 0.913 4.462
Huang(3) −7.634 −0.434 0.033 0.541 12.898 0.046 0.930 4.908
Huang(5) −7.942 −0.418 0.033 0.526 12.570 0.042 0.909 4.673

Eurostoxx 1/N −7.816 −0.665 0.024 0.720 10.704 0.028 1.458 1.947
CVaR −8.339 −0.459 0.044 0.567 8.739 0.028 1.011 2.758
ROWA(0.9) −10.104 −0.460 0.048 0.573 9.755 0.034 1.044 3.240
ROWA(0.8) −8.903 −0.455 0.038 0.578 10.114 0.032 1.033 3.125
ROWA(0.7) −8.902 −0.453 0.035 0.577 10.111 0.032 1.032 3.091
ROWA(0.6) −8.903 −0.451 0.038 0.581 10.114 0.033 1.032 3.189
ROWA(0.5) −8.944 −0.453 0.038 0.582 9.981 0.033 1.032 3.184
ROWA(0.5/0.9) −9.446 −0.430 0.038 0.541 9.121 0.027 0.984 2.724
ROWA(0.6/0.9) −9.384 −0.431 0.034 0.545 9.366 0.027 0.985 2.710
ROWA(0.7/0.9) −9.174 −0.431 0.033 0.544 9.399 0.026 0.984 2.660
Huang(3) −8.861 −0.438 0.042 0.547 8.149 0.028 1.009 2.824
Huang(5) −8.494 −0.444 0.051 0.560 8.887 0.033 1.005 3.316

FTSE 1/N −7.907 −0.469 0.061 0.591 8.146 0.053 1.167 4.507
CVaR −6.517 −0.337 0.053 0.499 8.252 0.049 0.866 5.707
ROWA(0.9) −6.897 −0.371 0.050 0.505 6.336 0.050 0.892 5.600
ROWA(0.8) −6.696 −0.358 0.046 0.506 5.264 0.050 0.874 5.736
ROWA(0.7) −6.635 −0.353 0.043 0.507 4.795 0.049 0.868 5.600
ROWA(0.6) −6.705 −0.360 0.039 0.508 4.630 0.047 0.864 5.390
ROWA(0.5) −6.705 −0.361 0.042 0.509 4.629 0.048 0.865 5.538
ROWA(0.5/0.9) −5.644 −0.339 0.046 0.491 9.489 0.050 0.858 5.833
ROWA(0.6/0.9) −5.649 −0.338 0.047 0.488 9.460 0.049 0.859 5.747
ROWA(0.7/0.9) −5.963 −0.342 0.055 0.487 8.385 0.050 0.857 5.794
Huang(3) −6.104 −0.350 0.047 0.493 6.866 0.049 0.883 5.544
Huang(5) −6.022 −0.355 0.055 0.493 6.607 0.053 0.858 6.155

HangSeng 1/N −12.613 −0.600 0.000 0.745 12.190 0.051 1.536 3.302
CVaR −9.947 −0.399 0.030 0.588 11.164 0.052 1.082 4.849
ROWA(0.9) −8.903 −0.465 0.016 0.606 7.521 0.056 1.111 5.063
ROWA(0.8) −9.105 −0.441 0.013 0.599 7.317 0.058 1.091 5.317
ROWA(0.7) −9.108 −0.437 0.021 0.604 7.300 0.057 1.079 5.298
ROWA(0.6) −9.105 −0.438 0.016 0.608 7.278 0.057 1.077 5.260
ROWA(0.5) −9.105 −0.437 0.015 0.606 7.278 0.057 1.078 5.292
ROWA(0.5/0.9) −10.783 −0.385 0.024 0.549 10.085 0.047 1.037 4.493
ROWA(0.6/0.9) −10.606 −0.390 0.025 0.554 10.223 0.046 1.041 4.444
ROWA(0.7/0.9) −10.969 −0.402 0.030 0.549 10.399 0.047 1.051 4.500
Huang(3) −9.389 −0.409 0.020 0.545 8.689 0.046 1.018 4.508
Huang(5) −11.274 −0.392 0.027 0.528 13.507 0.043 1.018 4.209

Mibtel 1/N −4.682 −0.292 0.101 0.481 3.051 0.037 0.778 4.786
CVaR −5.867 −0.236 0.063 0.396 6.386 0.049 0.679 7.295
ROWA(0.9) −4.624 −0.290 0.049 0.403 5.115 0.035 0.709 5.000
ROWA(0.8) −5.016 −0.271 0.057 0.415 5.498 0.038 0.691 5.504
ROWA(0.7) −5.018 −0.264 0.059 0.412 5.501 0.040 0.690 5.752
ROWA(0.6) −5.019 −0.265 0.058 0.409 5.501 0.040 0.690 5.832
ROWA(0.5) −5.017 −0.268 0.058 0.394 5.499 0.041 0.689 5.942
ROWA(0.5/0.9) −5.795 −0.207 0.081 0.403 6.347 0.058 0.673 8.684
ROWA(0.6/0.9) −5.825 −0.203 0.077 0.408 6.357 0.058 0.673 8.688
ROWA(0.7/0.9) −5.849 −0.211 0.076 0.402 6.358 0.058 0.674 8.670
Huang(3) −5.792 −0.230 0.062 0.410 6.335 0.058 0.678 8.622
Huang(5) −4.113 −0.243 0.084 0.387 3.780 0.056 0.606 9.235

Nasdaq 1/N −9.170 −0.514 0.087 0.733 11.672 0.072 1.345 5.344
CVaR −7.405 −0.454 0.059 0.629 7.345 0.071 1.075 6.603
ROWA(0.9) −6.872 −0.447 0.034 0.616 8.277 0.064 1.080 5.902
ROWA(0.8) −6.563 −0.446 0.051 0.625 8.038 0.064 1.075 5.930
ROWA(0.7) −6.704 −0.437 0.049 0.612 7.746 0.063 1.073 5.843
ROWA(0.6) −6.431 −0.427 0.045 0.608 7.945 0.064 1.071 5.968
ROWA(0.5) −6.431 −0.416 0.046 0.609 8.194 0.065 1.070 6.041
ROWA(0.5/0.9) −7.459 −0.410 0.083 0.633 7.282 0.078 1.050 7.419
ROWA(0.6/0.9) −7.083 −0.416 0.085 0.638 7.251 0.079 1.047 7.544
ROWA(0.7/0.9) −7.306 −0.409 0.069 0.622 7.051 0.074 1.053 7.060
Huang(3) −8.190 −0.449 0.053 0.636 8.374 0.071 1.102 6.479
Huang(5) −7.454 −0.433 0.047 0.611 8.447 0.065 1.079 5.983
11
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Fig. 3. Risk/Return frontiers: Black points are CVaR models, red points are pessimistic
OWA, blue points are realistic ROWA models.

When we compare the ROWA with the Huang et al.’s portfolios,
e can see that their results are quite similar. The data reported in
able 3 shows that averages and deviations of the Huang model are in
he range of the ROWA portfolios without clear evidence that one of
he models should be preferred. Comparable conclusions can be drawn
rom the data presented in Table 4, in which the only notable effect is
hat, looking at the HH-index and Max-index, the Huang model with 5
cenarios obtains the most diversified portfolio for a small fraction. In
onclusion, the choice between the ROWA and Huang models cannot be
olely determined by empirical returns and portfolios; instead, it should
e based on the optimization goals of the decision-makers.

To summarize our findings, we have shown that the realistic ROWA
odel is a reliable extension of the CVaR model. The CVaR model

uffers from the limitation of considering just one CVaR measure,
orresponding to just one fixed value of 𝛽. Deciding which 𝛽 should

be the best for the optimization model is a problem never solved
and always subject to empirical considerations. Conversely, the ROWA
models overcome this limitation because it considers a collection of
different CVaR’s, characterized by different 𝛽’s, and aggregated through
the maximum regret function. Computational tests on real financial
data have shown that specific choices of the 𝛽 range, corresponding
to what was called a realistic investor, consistently improves the CVaR
solutions in a variety of settings. In minimum risk context, they provide
the least ex-post standard deviation. In mean/return settings, they
provide the best Sharpe ratios, or points located on efficient frontiers
anyway. The reason why this happens is the portfolio composition;
when portfolio weights are analyzed, the realistic ROWA models are the
ones characterized by the highest diversification and least maximum
exposition and turnover.

6. Concluding remarks

This paper is focused on the way in which ordered weighted aver-
ages of costs can be used as risk measures in the context of portfolio
optimization. In financial jargon, ordered weighted averages or OWAs,
are discrete Conditional Value-at-Risk (CVaR). Here, we have analyzed
the possibility of using multiple OWA values simultaneously for port-
folio optimization. This is justified by the fact that each CVaR measure
can represent a distinct attitude towards risk. A minimax regret model
has been proposed in order to find a compromise investment policy
which consider each one of these risk measures as the right scenario
under which we should have optimized our decision. We have derived
operational mathematical formulations and tested experimentally the
effect of our proposed solution.

The case in which our returns depend linearly on the amount of
wealth invested on each asset has been studied in detail. We find the
key formulation (𝑃𝐿𝐸𝑋) that allows us writing a family of Linear
Programming problems just by knowing the extreme points of a given
polyhedron 𝛥 of the so-called 𝛿-weights. Each set 𝛥 defines a given
12

portfolio optimization model in the basis of OWA costs. As an example,
Table 4
Portfolio indexes for markets and models (mean/risk model).

Market Model HH-index Max-index Turn over

Dow Jones CVaR 0.212 0.324 0.353
ROWA(0.9) 0.225 0.339 0.334
ROWA(0.8) 0.221 0.336 0.326
ROWA(0.7) 0.219 0.333 0.321
ROWA(0.6) 0.218 0.333 0.319
ROWA(0.5) 0.218 0.333 0.319
ROWA(0.5/0.9) 0.190 0.295 0.285
ROWA(0.6/0.9) 0.190 0.297 0.288
ROWA(0.7/0.9) 0.194 0.301 0.296
Huang(3) 0.205 0.316 0.377
Huang(5) 0.184 0.293 0.301

Eurostoxx CVaR 0.232 0.336 0.358
ROWA(0.9) 0.253 0.367 0.357
ROWA(0.8) 0.245 0.357 0.343
ROWA(0.7) 0.244 0.355 0.343
ROWA(0.6) 0.243 0.354 0.341
ROWA(0.5) 0.243 0.354 0.341
ROWA(0.5/0.9) 0.209 0.323 0.296
ROWA(0.6/0.9) 0.211 0.325 0.302
ROWA(0.7/0.9) 0.215 0.329 0.308
Huang(3) 0.227 0.339 0.393
Huang(5) 0.206 0.319 0.315

FTSE CVaR 0.157 0.257 0.415
ROWA(0.9) 0.167 0.271 0.408
ROWA(0.8) 0.156 0.256 0.389
ROWA(0.7) 0.153 0.252 0.384
ROWA(0.6) 0.151 0.249 0.377
ROWA(0.5) 0.151 0.248 0.377
ROWA(0.5/0.9) 0.136 0.232 0.356
ROWA(0.6/0.9) 0.138 0.234 0.355
ROWA(0.7/0.9) 0.140 0.238 0.364
Huang(3) 0.162 0.268 0.467
Huang(5) 0.139 0.232 0.367

HangSeng CVaR 0.228 0.339 0.365
ROWA(0.9) 0.229 0.340 0.351
ROWA(0.8) 0.226 0.337 0.331
ROWA(0.7) 0.223 0.336 0.327
ROWA(0.6) 0.223 0.335 0.324
ROWA(0.5) 0.223 0.335 0.325
ROWA(0.5/0.9) 0.215 0.330 0.287
ROWA(0.6/0.9) 0.216 0.332 0.293
ROWA(0.7/0.9) 0.219 0.333 0.304
Huang(3) 0.236 0.351 0.364
Huang(5) 0.207 0.319 0.285

Mibtel CVaR 0.164 0.261 0.373
ROWA(0.9) 0.188 0.298 0.385
ROWA(0.8) 0.182 0.294 0.360
ROWA(0.7) 0.180 0.290 0.355
ROWA(0.6) 0.179 0.290 0.348
ROWA(0.5) 0.179 0.289 0.343
ROWA(0.5/0.9) 0.152 0.245 0.321
ROWA(0.6/0.9) 0.153 0.247 0.328
ROWA(0.7/0.9) 0.154 0.247 0.338
Huang(3) 0.189 0.289 0.416
Huang(5) 0.137 0.237 0.336

Nasdaq CVaR 0.186 0.305 0.417
ROWA(0.9) 0.187 0.299 0.387
ROWA(0.8) 0.180 0.291 0.369
ROWA(0.7) 0.175 0.284 0.362
ROWA(0.6) 0.174 0.285 0.360
ROWA(0.5) 0.174 0.284 0.358
ROWA(0.5/0.9) 0.164 0.278 0.350
ROWA(0.6/0.9) 0.164 0.277 0.353
ROWA(0.7/0.9) 0.168 0.284 0.355
Huang(3) 0.171 0.285 0.458
Huang(5) 0.158 0.271 0.377
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the formulation obtained for a 𝛥-set modeling multiple tolerance levels
in the CVaR measure and the so-called robust orness model have been
analyzed. However, the formulation (𝑃𝐿𝐸𝑋) opens the possibility to
extend the analysis to other interesting models characterized through
this 𝛥-set. For instance, this 𝛥-set can be defined through existing
linear relations between the 𝛿-weights by means of a given class of

-matrix (see Ahn, 2017 and the references therein) which enables
s to find its extreme points readily due to what is known as inverse-
positive property. The knowledge of extreme points not only allows
us writing Linear Programming formulations as (𝑃𝐿𝐸𝑋), it also helps
us to prioritize feasible portfolios by iterative exploration of decision-
maker’s preference in which the extreme 𝛿-weights can be modified by
the addition of new preference information (see e.g. Ahn, 2017) what
could be an interesting subject for forthcoming developments.
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