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Abstract—In this paper, non ranging-based cooperative po-
sitioning algorithms based on GNSS measurements, including
Absolute Position Differencing (APD), Single-Differencing (SD),
and Double-Differencing (DD), are used to estimate the inter-
vehicle distance (IVD). To reduce the uncertainty of IVD esti-
mates, the maximum volume algorithm (MVA) was employed
to determine the optimal geometric group composition of four
satellites as a multi-GNSS system, namely GPS, GLONASS,
Galileo, and BeiDou. Real-world experiments on two autonomous
vehicles using SD-based and DD-based algorithms demonstrate
that estimated IVD uncertainty is sub-centimetres, which is close
to sensor-based solutions but at a lower cost.

Index Terms—Inter-vehicle-distance (IVD), Absolute Posi-
tion Differencing (APD), Single-differencing (SD), Double-
differencing (DD), Multi-GNSS systems

I. INTRODUCTION

The development and mass manufacturing of autonomous
vehicles has the potential to change mobility and safety in
transportation. As a key component of autonomous vehicles,
advanced driver assistance systems play a critical role in in-
creasing road safety, which significantly relies on inter-vehicle
distance (IVD). Sensor-based technologies can accurately es-
timate the IVD by measuring the relative vehicle distances
with, e.g., a Radio detection and ranging (Radar) and Light
Detection Ranging (LiDAR) [1] or adopting a camera sys-
tem [2]. However, high cost, poor performance in the adverse
weather conditions, and limited perceptual fields remain major
issues. The restricted perceptual range of these sensor-based
approaches can be addressed via cooperative positioning algo-
rithms [3]-[5]. In general, cooperative positioning algorithms
are classified as either ranging-based or non ranging-based.
For IVD estimation in ranging-based solutions, signal strength
variations such as radio signal strength [6], Time of Arrival [7],
round trip time [8] or Time Difference of Arrival [9] can be
used. However, these approaches are often expensive since
they require additional infrastructure and hardware to be
implemented. The non ranging-based cooperative algorithms,
on the other hand, provides the most cost-effective solutions by
measuring the IVD directly from each vehicle’s pseudorange
information [3]-[5]. Since GNSS systems are undoubtedly low
cost and can be employed independently in cooperative con-
nected vehicles [3]-[5], several studies have been conducted as
non-ranging cooperative positioning. Miiller et al. [4] analyzed
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the use of GNSS double difference pseudoranges to estimate
the relative position of two vehicles using two Bayesian filters.
Yang et al. [10] proposed the weighted least squares pseudor-
ange double difference algorithm for accurate IVD estimation
in Dedicated Short Range Communications (DSRC) vehicular
networks. Tahir et al. [5] provided a theoretical framework
for measuring IVD using GNSS measurements exchanged
between vehicles. Recently, Wang et al. [3] examined the
performance of four non ranging-based cooperative algorithms
for IVD estimation including Absolute Position Differencing
(APD), Pseudorange Differencing (PD), Single Differencing
(SD), and Double Differencing (DD) in static and dynamic
experiments. Although the IVD estimation problem utilizing
GNSS measurements have been extensively studied in the
literature, they were limited to a single satellite system and did
not take into account the Multi-Constellation Multi-Frequency
system, despite the fact that these systems are becoming
increasingly available to reach centimetre-level accuracy [11]
and can increase the overall system robustness. In this paper,
we extend the Multi-Constellation Multi-Frequency system
with multiple satellites to increase the IVD accuracy and relia-
bility. More in-depth, we studied the IVD estimation problem
with real-world data coming from four satellites, including
GPS, GLONASS, BeiDou, and Galileo, and we employed
non ranging-based cooperative positioning algorithms that use
sharing GNSS measurements, namely APD, SD and DD.
Furthermore, the maximum volume algorithm (MVA), which
is well-studied in [12], was used to determine the optimal
configuration composition of four satellites with the lowest
geometric dilution of precision (GDOP) to provide the highest
IVD estimation accuracy.

This paper is built up as follows. Section II provides
the mathematical formulation of the IVD estimation problem
using the APD, SD, and DD algorithms. Section III describes
the real-world experiment’s configuration, including the study
interval and the Lagrange interpolation for calculating the
satellite positions. Section IV explains how to determine the
optimal configuration of four satellites in various systems
including one-, two-, three-, and four-systems of satellites
using the MVA algorithm. Section V compares the estimated
IVD among the best sets of satellites. Finally, conclusions are
drawn in Section VI.



II. PROBLEM SET-UP

The GNSS raw measurements considered, denoted by
p, are defined as the distance between a vehicle V €
{v1,v2,vs,..,v,} and a satellite S € {5, 52,S53,.., 5} at
any time-step k, which are modeled as follows [3]:

pv (k) = Ry (k) + t3 (k) + ec(k) + eu (k) (1)

where RY (k) = ||Ps(k) — Py(k)|| is the true range
between the vehicle V' and the satellite S, Ps(k) =
[5(k),ys(k), zs(k)]T is the position vector of the satellite S,
Py (k) = [xv(k), yv (k), 2y (k)]T is the position vector of the
vehicle on the Earth-centered, Earth-fixed (ECEF) coordinate
system, t{- (k) is the time delay error between the receiver and
the satellite, £.(k) is the correlated uncertainty induced by the
ephemeris and the atmosphere, and finally, €, (k) denotes the
uncorrelated uncertainty, which includes the multi-path error
and the thermal noise.

A. Cooperative positioning algorithms

1) Absolute Position Differencing (APD): The GNSS re-
ceiver installed on each vehicle is able to compute an estimate
of its absolute position vector in ECEF coordinates after
acquiring and tracking the GNSS signal of at least four
satellites. The absolute position differencing (APD) method
calculates the distance between two vehicles at any time-step
k denoted by D;;(k) = || Py, (k) — P, (k)||, i.e.

— Lo,y )2

Dij(k) = \/(ZU2 - ZU1)2 + (yv2 - yv1)2 + (Z‘U2
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where (Zy,, Yoy, 2v;) and (Zo,, Yoy, 20,) are the ECEF co-
ordinates of vehicle 1 and vehicle 2 obtained at time-step
k from the GNSS, respectively. We assume here that the
two autonomous vehicles equipped with the GNSS receivers
additionally have a Real-time kinematic (RTK) system that
calculates the distance between itself and the satellite which is
broadcasting. Therefore, utilizing the RTK data, the estimated
IVD by the APD approach is assumed to be the actual ground
truth between the two vehicles.

2) Single-differencing (SD): Fig. 1 depicts the single differ-
encing approach used for the IVD. The SD method estimates
the IVD by subtracting the pseudorange measurements of
two vehicles from the same satellite. This approach can
eliminate both the clock imperfect synchronization between
the vehicles as well as the atmospheric delay error. Given that
the satellite S is sufficiently far from vehicles, the pseudorange
measurements from each vehicle toward the satellite S are
considered to be parallel (see Fig. 1) [3], [5]. More precisely,
given (1) for two vehicles v; and v;, computing the difference
we have:

Apy,; (k) = pi (k) = pi (k) =
= AR (k) + Aty (k) + Al (k)

where ARY (k) defines the difference between the true
distance of vehicle v; and vehicle v; from the satellite S,
At,, , (k) denotes the time delay error, and A&l , (k) repre-
sents all the remaining uncertainties, usually dubbed unusual
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Fig. 1. Single-Differencing (SD-based) algorithm and triangle concept
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Fig. 2. DD-based IVD estimation algorithm

error [3], [5]. Due to the difference among the measured
pseudoranges, the unusual error appears to be increasing [3].
Since the true distances between the vehicles and the satellites
are much larger than the distance between the vehicles, we can
estimate the ARfm_ (k) as follows [3], [5]:

ARS (k) = [w*] Dy (k) )

—
where D;j(k) = P,, (k) — P,, (k) whose norm is given by (2),
uS = SRR e the line-of-sight unit vector from

— IPs(k)= Py, (k)]
vehicle v; to satellite S, Pg(k) represent the position of the
satellite S and P,, (k) indicates the position of the reference
vehicle v; at time-step k (see Fig. 1 for reference). By
considering N common visible satellites for the two vehicles

and using (3), we can build the following measurement matrix

Apv,v, ( ) [Ul}; 1
Y S L

S el z{Atmf(M ®
Aply, (k) [wN]" 1

yielding the SD estimates [3], [S].

3) Double-differencing (DD): In the SD-based algorithm
of (5), user clock offsets and uncorrelated errors are still
present. To mitigate this uncertainties, we can utilize a new
GNSS measurement and then computing the difference of the
SD estimates obtained from two distinct satellites, say Sy
and Sy. This is referred to as double-differencing (DD) and
depicted in Fig. 2. The DD-based algorithm assumes that both
vehicles can track satellites S); and Sy at the same time.
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Fig. 3. DD-based IVD estimation algorithm and triangle concept

Hence, we first apply an SD-based algorithm to each vehicle
toward the satellites Sp; and Sy, denoted by Apf%]( ) and

Apij (k), respectively, which are obtained from (3). Then,
the difference of such quantities is obtained as:

VAR () = Aoty (B) — A, ) =

= ARJMSY (k) + Aepi ™™ (k)
where ARf%fN (k) = ARS{” (k) — ARleJ (k) and
Asf%f”(k) = Agf”;(k:) AESN (k). We can then estimate

ARE%JS ~ (k) using the same trlgonometric idea of SD, that is
depicted in Fig. 3 [3]-[5].

ARSYS (k) = [uS™ — u¥\ Dy (k) )

where u°™ and 45N are computed as in (4). Using (6) is then
possible to calculate the distance and the relative positions
of two vehicles. Indeed, using the satellite M as reference,
the solution to the DD-based algorithm according to Fig. 3 is
given by the matrix form [3], [4]:

VAPSIZM( ) [ul _uJV[]T
VAP‘Z%]M (k) [u? — uM]T

' ~| | Duk) ®
VAPEI;I};SNI(]C) [ — uM]T

Notice that the IVD vector B” ) is projected in the direction
of the difference satellite unitary vectors wSMN = Y Sm
SN for each DD measurement VApff‘g N (k). Assuming four
satellites, say Sas, Sy, So, and Sp, and considering Sy as
the reference satellite, the following system of linear equations
derived from (8) can be obtained [4]:

VApE%JN ufMN uSMN ufMN D,
VAPE%O uiMo uSMo UEMO D,| =
vApSMJP ugMP ui'MP ufMP D, , 9
= H,. Dyy(k)
where
=80 _ Salk) = Pu, (k) Sp(k) — Py (k)
|[Sq(k) = Po,(K)I[ |1Sr(k) = P, (k)]
Sq s
Uz’ uy"
= ujq — ’U/zr 5
qu uzr

where S, and S,, ¢,r € {M,N,O,P} are the satellite
positions and P, is position of the vehicle v;, all evaluated
at the time-step k. Notice that 4 is the minimum number of
satellites needed to have a solution of the DD-based algorithm,
ie., Hy, (known as the geometry matrix) should be non
singular. Usually, if more than 4 satellites are available, a more
precise and effective Least Squares solution is adopted.

B. Geometric dilution of precision (GDOP)

To compute the GDOP as a figure of merit for the reachable
uncertainty [13], we first assume that all the GNSS measure-
ments are zero-mean and with equal variance aﬁ, which yields:

D11 D12 Dis Dyy
D D D D
O, = o2(HT H,,) ! = | P2 22 D2z Doy 10
7o (o o) D31 D3y D33 D3y (10)
Dyy Diz Dyz Dy
Then GDOP is finally given by:
GDOP = /D11 + Dy + D3s + Dyy. (1D

III. OPTIMAL SATELLITE SELECTION PROCEDURE

The maximum volume algorithm (MVA), a four-steps
heuristic method for picking four satellites based on the form
of a tetrahedron, was proposed by Kihara et al. [12] as follows:

o Step.1: Select the visible satellite S; with the largest

elevation angle relative to the position of the receiver.

o Step.2: Choose the visible satellite So having the angle

to S, i.e,, Os,s,, close to 109.47°.

o Step.3: Pick the visible satellite S3 that maximizes the

volume of the tetrahedron:

1 — %3 |:\/2(1 — G,Q)(]. —+ a3)(1 — aga3 — b2b3)+

Va =

+ |b203|:|7

(12)
where

az = cosbg,g,,bs =sinbg,s,,as = cosbg, s,

cosfs, s, — asas
b3=+,03:i 1—a?—b3.
2

Notice that the tetrahedron is formed by S7, So, Ss.

o Step.4: Select the satellite .S, from the remaining visible
satellites so that it maximizes the volume of the tetrahe-
dron

Vg = édet(S) (13)

where S is the matrix that contains the line-of-sight
vectors corresponding to S, S3, S3, and Sy.

IV. REAL-WORLD EXPERIMENT CONFIGURATION

We conducted a real-world experimental test for two au-
tonomous vehicles collecting pseudorange data from different
satellites. We first considered all 1500 available epochs for
the two vehicles in our case study, while considering two
known satellite positions in the first and last epochs taking
from the NASA service data on April 26, 2022 at 12:55:00



and 13:00:00 UTC time [14]. Then, as shown in Fig. 4, we
employed the Lagrange interpolation approach to compute
satellite positions epoch-by-epoch across the whole study
interval. For this purpose, we consider L, € {lo,l1,l2,...,1,}
be the values of the satellite locations, i.e., Ls = [z, Ys, 25,
in times at t € {to,t1,%t2,...,t,}. The first and final known
satellite positions taken from NASA service data are then used
as inputs for the Lagrange method to calculate the approximate
value of [, denoted by L(t) at any time of ¢ as follows [15]:

L(t) = aplg + a1ly + asly + ... + ayl, = Z a;l; (14)
=0
where:

(t—to)(t —t1).(t — ti—1)(t — tig1)...(t — 1)
(15)
Now, by substituting ¢ in Eq. 14 with {to, t1, ta,..., t,}, we
obtain:

a; =

Lto) = lo, L(t1) = Iy, e, L(tn) = I (16)

According to [15], while dealing with Lagrange interpolation
for computing satellite positions, we typically have an error
in the beginning and ending points of the interpolation. Thus,
we considered a validity interval for dealing with Lagrange
interpolation errors in our satellite positioning by ignoring
the start and final 10% of the data-set, as proposed in [15].
To evaluate the performances, the root mean squared error
(RMSE) of the IVD is computed as:

1 N
RMSE = || + ; [Di;(k) — Dy (k)]” (17

where D;;(k) is the true distance between the two vehicles
v; and v; at time-step k and D;;(k) is the estimated TVD
at time-step k. N is the number of total epochs during the
interval period, which is N = 250. It has to be recalled that
the ground-truth IVD D,;(k), which is computed as in (1),
is the one returned by the APD with the RTK system. In all
the following experimental results, this value is over the entire
study interval is 3.35 m.

A. One-system of satellites

The total number of common visible satellites in our case
study is 26 (see Fig. 5). In the first set of study, we consider
only one group of satellites, say GPS, GLONASS, Galileo,
or BeiDou. To select the four satellites, we used the MVA
algorithm previously depicted. For example, Table I subsumes
the optimal choice for the GPS satellite system with the
four steps of the MVA exemplified. In the end, among the
8 available satellites, G18, G05, G16 and G31 were chosen
in order. Table II subsumes the MVA results obtained for
all the available satellite systems, i.e., including GLONASS,
Galileo, and BeiDou. According to Table II and Fig. 6, the
Galileo satellite system has the lowest RMSE and the closest
IVD for both the SD and DD algorithms to the ground truth

t=1; 12:55:00 UTC; 219318:000 GPS time; April 26,2022
(Known Position of satellites)

Ignoring 10% of epochs due to possible Lagrange
interpolation error.
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Ignoring 10% of epochs due to possible Lagrange
interpolation error.

t=1500; 13:00:00 UTC; 219618:000 GPS time; April 26, 2022
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Fig. 4. Structure of the study interval

TABLE I
OPTIMAL CONFIGURATION OF FOUR SATELLITES FROM ONLY GPS

One-system of satellites (GPS)
Satellite Step 1 Step 2 Step 3: Step 4:
Elevation angle Angle to Sp 1%} Vi
(deg) (deg)
17.221 _
S3:G16 46.705 17.327 0.31456 | ———
S1:G18 75.032 —_
G23 23.833 111.26 0.10962 | 0.14394
G26 74.94 19.134 0.12668 | 0.016652
G27 20.485 15.836 0.29532 | 0.080569
G29 32.762 136.56 0.2463 0.022658
S4:G31 21.306 57.955 0.047787 | 0.168999

APD. Notice that, as mentioned previously, the DD gains the
highest performance. Moreover, the poor performance of the
GLONASS confirms our first statement that we cannot rely
only on one system of satellites for measuring the IVD due
to possible satellite visibility limitations.

System | PRN Code | System | PRN Code System PRN Code System PRN Code
G05 E01 Co5 RO
G16 E12 c13
G18 E24 C24 R1S
GPS G23 Galileo E26 BeiDou C26 GLONASS >
(UsA) G26 ED) E31 (China) C29 (Russia) R1s
G27 C35
G29 E33 Ca4
G31 c45 R19
Fig. 5. List of common visible satellites for the vehicles v; and v2

B. Two-system of satellites

There are six scenarios to combine two satellite systems to
find the optimal geometry configuration of four satellites, in-
cluding GPS-GLONASS, GPS-Galileo, GPS-BeiDou, Galileo-
BeiDou, Galileo-GLONASS and BeiDou-GLONASS. As for
the one-system of satellites case, we used the MVA algorithm
to determine the optimal geometry of configuration in those
six cases. Table III provides a comparative analysis of the
performance for all groups from the two-system of satellites.



TABLE II
AVERAGE ESTIMATED IVD IN METERS FOR ONE-SYSTEM OF SATELLITES

TABLE III
AVERAGE ESTIMATED IVD IN METERS FOR TWO-SYSTEM OF SATELLITES

System of Optimal APD DD SD RMSE System of Optimal APD DD SD RMSE
Satellite Configuration Satellite Configuration
GPS G05,G16,G18,G31| 3.35 | 2.7987 | 2.8168| 1.5049 GPS G18,G5,R9,R15 335 | 1L.775 | 11.775 | 8.5636
GLONASS || RO9,RI5S,RI8RI19 | 3.35 | 28.326 | 28.326| 25.489 GLONASS
Galileo E33,E31,E24,E26 | 3.35 | 3.294 | 3.3294 GPS G18,G5,E24,E12 | 335 | 4.2927 | 42927 | 1.1764
BeiDou C35,C45,C13,C24 | 3.35 | 3.9477 | 3.9477| 1.8117 Galileo
GPS C35,G5,C24,C45 | 3.35 | 2.9276 | 2.9276
BeiDou
Estimated IVD using DD and SD algorithms in all optimal satellite i ion in ystem of BeiDou C35,C45,C 1 3,C24 3.35 31.623 31.623 32.413
= APD Galileo
“r bl end Galileo RI8RI5E24E26 | 3.35 | 44782 | 44782 | 23952
35 Set.32: E33-E31-E24-E26 GLONASS
a0l Set.33: C35-C45-C13-C24 BeiDou C35,R15,C13,C24 | 3.35 | 3.7108 | 3.7111 1.6596
GLONASS
E 25
S 20f
3 TABLE IV
£ er AVERAGE ESTIMATED IVD IN METERS FOR THREE-SYSTEM OF
o SATELLITES
N= Looion PRSI, o\
of MRS Va S System of Optimal APD | DD SD | RMSE
A Satellite Configuration
GPS C35,E1,G5,G27 | 3.35 | 2.8736 | 2.8736
" 5‘0 1(;0 15‘)0 2(;0 25‘0 (;‘dlile()
Epoch Time (1) BeiDou
GPS G18,G23,E24,G5 | 3.35 | 5.5057 | 5.5059 | 2.2201
iilill(i)t.esEstimated IVD by SD- and DD-based algorithms in one-system of G?gi?zss
BeiDou C35,E1,LE24,C29 | 3.35 | 31.632 | 31.623 | 32.413
Galileo
GLONASS

C. Three-system of satellites

There are three different satellite groups for the three-system
of satellites, including GPS-Galileo-BeiDou, GPS-Galileo-
GLONASS, and Galileo-BeiDou-GLONASS. Table IV sum-
marizes the analysis performance for these cases.

D. Four-system of satellites

Finally, Table V shows that the optimal group of satellites
when combining all the sources is C35, E24, G5, and R15.

V. RESULTS AND DISCUSSION

From the presented analysis, we first notice that basically
there is no difference between SD and DD when the number
of satellite systems increases. In other words, the systematic
effects affecting the pseudorange measurements appear to be
cancelled out. This is somehow expected since every satellite
systems suffer from different systematic uncertainties in the
measurements. As a second result, we may notice that mixing
together different satellite systems has indeed some benefits,
as depicted in Fig. 7. It may be noted that, even accounting
for system of satellites returning quite poor results (see the
GLONASS results in Table II), the combination with other
sources turns out to be a winning combination, as reported
in Fig. 7 and in the first row of Table V. In other words,
combining together multiple satellite systems surely increases
the estimation robustness (we are not constrained to a single
source of data) and, on the other hand, reaches similar target
uncertainties. For what concerns the robustness and the favor-
able satellite configuration when multiple systems are adopted,
we finally report in Fig. 8 the GDOP values as a function of

the epoch time (i.e., the time step k). As clearly depicted, the
GDOP values decreases (hence, less ensuing uncertainty) from
one-system of satellite to four-system of satellites. It should be
noted that, while the performance of the one-system and four-
system of satellites in our case study is closely comparable,
the four-system of satellites has the lowest GDOP, as shown in
Fig. 8. Furthermore, we may notice that even when the GDOP
configuration worsen as a function of time (upper left picture
of Fig. 8), this effect is highly mitigated (actually, inverted)
when multiple systems are considered at once, thus further
verifying the main message of this paper: using multiple
satellite systems benefit the uncertainty related to the inter-
vehicle distance.
As a final comparison, let us consider the absolute error,
e., Ad = |D;;(k) — D;;(k)|, from the camera-based solution
proposed in [16]. With such a solution, the estimated IVD in
the best case of a partly occluded environment or in a fully
occluded situation is 6.2 cm and 18.9 cm, respectively, which
is comparable to the analysis proposed here but at a higher
computational cost.

VI. CONCLUSION

This study proposed and experimentally validated that
the use of a multi-GNSS system using either the Single-
Differencing (SD) or the Double-Differencing (DD) algo-
rithms can provide lower uncertainties in the determination
of the inter-vehicle distance. Indeed, it has been shown with
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TABLE V
AVERAGE ESTIMATED IVD IN METERS FOR FOUR-SYSTEM OF SATELLITES

System of Optimal APD DD SD RMSE
Satellite Configuration
BeiDou C35,E24,G5,R15 | 3.35 | 3.47201| 3.47312
Galileo

GLONASS
GPS

GPS C35,E1,G5,R19 335 | 4.6550 | 4.6555 | 2.4007
Galileo
GLONASS
BeiDou
GLONASS || R18,C13,G23,E24 | 3.35 | 5.5900 | 5.5999 | 2.2893
Galileo
GPS
BeiDou
GPS C35,E1,G5,G27 335 | 2.8736 | 2.8736 | 0.6776
Galileo
BeiDou
GLONASS

Set.32: E33-E31-E24-E26 (One-system of satellites)
Set.35: C35-G5-C24-C45 (Two-system of satellites)
A |- Set.42: C35-E1-G5-G27 (Three-system of satellites)

Set.74: C35-E24-G5-R15 (Four-system of ites)
T T

) 0 50 100 150 200 250

Epoch Time (t)

Fig. 7. Estimated IVD by the DD-based algorithm in the best configuration
of satellites

experimental evidence that relying on multiple satellite sys-
tems benefits the reachable uncertainty (as expressed with the
GDOP) and the robustness. Moreover, it also have computation
time reduction since both the SD and DD behaves similarly.
In future research, we will focus on the application of the
method on multiple vehicles (i.e., more than two) and in the
improvement of the algorithmic solution provided by the SD
or DD approaches.
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