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Abstract

Human-robot collaboration is one of the key elements in the Industry 4.0 revolution, aiming to a close and direct collaboration between robots and
human workers to reach higher productivity and improved ergonomics. The first step toward such kind of collaboration in the industrial context
is the removal of physical safety barriers usually surrounding standard robotic cells, so that human workers can approach and directly collaborate
with robots. Anyway, human safety must be granted avoiding possible collisions with the robot. In this work, we propose the use of a people
tracking algorithm to monitor people moving around a robot manipulator and recognize when a person is too close to the robot while performing
a task. The system is implemented by a camera network system positioned around the robot workspace, and thoroughly evaluated in different
industry-like settings in terms of both tracking accuracy and detection delay.
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1. Introduction

Industry 4.0 is the next industrial revolution aiming at the
massive introduction of intelligent systems, leading to smart
factories that assist people and machines in execution of their
tasks. Among its design principles, this new paradigm goes be-
yond traditional factory robotics and envisions close/direct col-
laboration between robots and human workers that could lead
to higher productivity and improved ergonomics because of the
synergy between human intelligence and mechanical power.
In the industrial context, robots are considered as a potential
source of danger. Standard robotic cells have a fixed barrier
to prevent human contact with machines. A first step toward
human-robot collaboration is to remove any physical system
separating the working environment of humans and robots, de-
creasing the amount of installation space and costs for safety
barriers, but this leads to the issue of safety. In the simplest
type of collaboration, a robot shares part of its workspace with
workers: they work in the same space but not at the same time.
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When workers and robots operate simultaneously, accidental
collisions between them must be avoided. In this work, we
address human-robot collaboration and focus on guaranteeing
safety of the human operators by developing a system to de-
tect when a human enters the robot’s workspace; in that case
the machine is stopped until the worker leaves. Such system
is based on a previous paper that track and monitor people in
the working area of a robot manipulator as illustrated in Fig-
ure 1. Now, when a person gets too close to the robot and enters
its reachable workspace, the system broadcast this information
to the robot to take into account the presence and the position
of the person. Based on such information the robot can react
in a proper way to avoid collisions with the human operator.
This simple behavior is designed to be robust and fast with the
specific aim of demonstrating the performance of the people
tracking algorithm with an industrial-like setting. The previous
algorithm has been adapted to work for lost-cost embedded de-
vices using several cameras to cover a large space populated
by up to 10 people. The system has been developed within the
framework of the EuRoC project for reconfigurable interactive
manufacturing cells. We also investigate how to evaluate the
performance of our system, proposing three different metrics to
measure both tracking accuracy and detection delay.2351-9789 c© 2020 The Authors. Published by Elsevier Ltd.
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Metrics are computed comparing the tracking output of the
system with ground truth data obtained with our novel annota-
tion procedure. Together with tracking output data, we acquired
RGB frames from one of the cameras in the camera network.
Each frame is then annotated with bounding boxes around each
person in the frame to get their position in the scene. Annotation
has been speed-up by using Piotr’s Matlab Toolbox annotation
tool [7] that we extended to consider not only people position in
the scene but also if they are or not inside the robot workspace.
Summarizing, the work presents 3 main contributions: (i) a low
cost people detection and tracking system working in real time,
composed of several agents in a network, scalable and suitable
for industrial scenarios; (ii) a monitoring system based on vir-
tual barriers that identifies dangerous interactions between hu-
mans and robots and stops the robot movement as preventive
measure; (iii) an annotation system to benchmark the perfor-
mance of the proposed framework. The remainder of the paper
is organized as follows. Section 2 reviews the works related to
people tracking and people re-identification. In Section 3 the
algorithms and solutions adopted to validate the results are de-
scribed, while in Section 4 the proposed system is thoroughly
evaluated in two different setups. Finally, in Section 5, conclu-
sions are drawn and future directions of research identified.

Figure 1. The proposed system in action. People inside the danger zone (shown
in red) are correctly recognized by the system.

2. Related works

Detection and tracking of people in real-time are a key infor-
mation for several applications. The main objective is to iden-
tify the presence of people in complex real world scenes with
occlusions and cluttered or even moving backgrounds. Algo-
rithms can rely on different technologies to achieve the task of
detecting human in the environment depending on the scope.
Considering visual data enables a wider set of applications and
they have been largely studied as main or exclusive source of
information. In particular, people detection is at the basis of
various important and more general tasks like surveillance of
sensible areas [23], domotics and smart homes [27], assistance
in activities of daily living [5], pedestrian interaction for ad-
vanced driving and autonomous cars [9], analysis of sport activ-
ities [15]. Many works exist about people detection and tracking

by using RGB images or range data only [3][12]. Using depth
information could help reducing problems related to occlu-
sions, varying in the scene illumination, and crowded environ-
ments [11][24]. Depth data can be calculated by using a stereo
approach, but the computations needed for creating the dispar-
ity map impose limitations to the maximum frame rate achiev-
able, especially when further algorithms have to run in the same
CPU. A low-cost alternative is represented by the recently in-
troduced RGB-D sensors such as the Microsoft Kinect. These
sensors combine appearance and distance information by pro-
viding in real-time both high resolution RGB images and robust
depth data with the drawback of a range limited to some meters
and reduced usability in direct sunlight. Once the data source is

Figure 2. Process pipeline usually applied in people detection and tracking al-
gorithms.

defined, the process pipeline is usually based on the steps sum-
marized in Figure 2. The detection uses the data captured from
the sensors in order to estimate in a static way the presence
of people in the scene. In order to do that, there are different
approaches, like background subtraction [22] [8] or dense scan-
ning of RGB-D images [19] [13]. Actual and past detection data
are used in a stochastic dynamic model which is able to improve
the detection result and predict future values. Classical tracking
approaches are Kalman [10] [14], bayesian [12], or particle [1]
filters. The re-identification technique used in order to recog-
nize if a detected person was tracked previously could be short
or long term. Short term recognition is based on global fea-
tures like color and shape histograms [6] or local features like
2D/3D keypoints detector [16] or skeleton keypoints [21], while
long term recognition is based on skeleton lengths [2], face and
point cloud shape [25]. Recent alternatives use end-to-end ap-
proaches relying on the direct estimation of people presence
from a single image, and therefore removing the pipeline de-
scribed so far [20] [4]. While all the previously cited approaches
lead to people detection and tracking, not all of them could be
applied in industrial scenarios. The long and complicated cali-
bration procedures used in [8] [14] [25] cannot be easily used in
real settings. In other cases, they are not easily scalable to large
spaces like for [6] [10] [22]. Another limit is related to the real-
time capabilities that are difficult to achieve when working with
dense RGB-D data ([2] [16] [19]) or they can be obtained only
with high-performance costly hardware ([20] [4] [21] [24]).

Detection and tracking are crucial elements for human-robot
collaboration (HRC), since the robot must be capable to per-
ceive what is happening around it in order to identify potential
dangerous situations for the human workers. In [18] the dis-
tance between the robot and the human worker is constantly
monitored by using an RGB-D camera and skeletal tracking. In
[26] a multi-camera system is used to perceive the working area
of a robot by tracking worker’s hand. Such approaches are fea-
sible when either small workcells are considered or just one hu-
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man worker needs to collaborate with the robot. For large work-
cells, many workers may be operating close to the robot and
people tracking systems are more suitable to correctly track all
the people in the work area in the fastest way. Similar capabili-
ties are available in commercial products like SafetyEYE1, hav-
ing the advantage to be ready for integration in production line
and designed for applications up to Cat. 3 of EN ISO 13849-
1:2008, SIL2 of IEC 61508, PL d of EN ISO 13849-1 and appli-
cations in accordance with DIN EN 61496. On the other hand,
our system is built upon a camera network of multiple cameras
with no restriction on the camera models, which offers a scal-
able solution, increase the area monitored by the system and
help reducing problems related to occlusions. As a drawback,
our system is not yet ready for production integration and we
relied on the use of lightweight collaborative robots to comply
to international safety standards, using the camera network for
improving the safety level.

In a previous work [17], we presented a suitable scalable and
distributed multi-camera people tracking system able of sup-
porting a heterogeneous set of 3D sensors (e.g. Asus Xtion,
Microsoft Kinect One, Mesa SwissRanger). In this paper, we
improved the previous work by using the tracking information
in order to model the interaction between human and robot. The
first objective is to improve the safety of the human in an usu-
ally hostile environment by avoiding collisions. The 3D cen-
troids and 2D bounding boxes defining the position of people
in the scene has been extended to 3D solids to consider the ac-
tual space occupied by each person. Different shapes have been
considered to better understand when people is entering a dan-
gerous area. We develop a set of GUI tools in order to define
the danger zone around the robot and annotate frame to com-
pute valuable metrics to measure the performance of the system
with the aim of meeting real industrial requests from end-users
in the EuRoC project.

3. Methods

We developed our system building upon a previous work. In
particular, we rely on OpenPTrack [17] to track people in the
scene and on its user-friendly calibration procedure to quickly
calibrate the camera network system. On top of that, we add
the possibility to define the area around the robot, which we
named danger zone, with respect to the coordinate system of
the camera network. In such a manner the system can monitor
the people moving in the area covered by the camera network,
and detect when a person gets too close to the robot manipu-
lator entering the danger zone. We also proposed a pipeline to
manually annotated ground truth data needed to evaluate the
performance of the system.

An overview of our proposed system is depicted in Figure 3,
summarizing the main steps involved. The first step is the cal-
ibration of the whole system, hence both the camera network
system using the calibration pipeline provided in [17] , and the

1 https://www.pilz.com/en-INT/eshop/00106002207042/SafetyEYE-Safe-
camera-system

Figure 3. Overview of our proposed system, describing the main steps and the
relation between them.

position of the danger zone with respect to the camera network
coordinate system. The second step regards the online working
of the system: the software runs on the calibrated camera net-
work tracking all the people moving in the area covered by the
cameras. For each person tracked by the system, the framework
provides as output a track representing the position of the per-
son inside the camera network over time. Each track is given as
input to the entrance algorithm which analyzes if the track is in-
side the danger zone, whose position and width is given by the
former calibration step. In the last step, tracking data and RGB
images from one of the cameras are recorded to evaluate the
system later on. RGB images are required to obtain a ground
truth with which compare the tracking results after a manual
annotation phase. Each component is described in detail in the
remainder of this section.

3.1. Camera network system

OpenPTrack [17] allows to perform people tracking within
a network of RGB-D sensors by distributing people detection
and centralizing the tracking process; each sensor is directly
attached to a computer which analyzes the data stream and per-
forms people detection. Only the detections are sent through the
network, in order to be merged at the tracking level after being
referred to a common reference frame by means of calibration
data, describing the pose of each camera within the network.
Calibration data are obtained by means of a calibration proce-
dure with checkerboards developed in ROS2, the Robot Oper-
ating System. RGB-D data from each sensor are converted to
point cloud and processed by the detection module running on
the corresponding computer.

The point cloud is filtered and the points belonging to the
ground removed; note that ground plane equation is computed
in the network calibration procedure. The remaining points are
divided in 3D clusters. A HOG-based people detection algo-
rithm is applied to the projection onto the RGB image of the
3D clusters (extended to the ground) and also a Support Vec-
tor Machine (SVM) in order to keep only those clusters that
are more likely to belong to people. The resulting output is a
set of detections that are then passed to the tracking module.

2 https://www.ros.org
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The tracking module is a centralized algorithm which receives
detections from all over the network and performs data associa-
tion every time a new set of detections arrives. This is done as a
maximization of a joint likelihood composed by motion infor-
mation and people detection confidence. An Unscented Kalman
Filter (UKF) is used to predict people positions along the two
world axes (x, y) using as motion term the Mahalanobis distance
between tracks predicted positions and detection positions. Fi-
nally, the people detection confidence is also used for robustly
initializing new tracks when no association with existing tracks
is found. For further details about the people tracking system,
please refer to [17].

3.2. Danger zone calibration

We denote as danger zone the reachable workspace of the
robot manipulator, that is the volume the robot can reach dur-
ing its movements. For simplicity, we assumed that the dan-
ger zone is approximately cylindrical with a circular base and
centered on the base frame of the robot manipulator. With this
assumption, we can describe the danger zone with only two pa-
rameters: the radius of the base circle and the position of its
center with respect to the camera network coordinate system.
With the term danger zone calibration we mean the problem
of estimating the values of such parameters with respect to the
camera network coordinate system. The world frame of such
coordinate system is not a point in the real scene, but depends
on the last checkerboard pose used during the camera network
calibration. Therefore, is not possible to measure directly the
position of the danger zone center and we needed to developed
a calibration procedure which can be easily adopted in various
scenarios. First, we drew on the floor the danger zone perime-
ter with some tape: we stretched out the robot arm and moved
it around, keeping it parallel to the ground, while drawing on
the floor the projection of the end effector. Drawing the whole
danger zone it is not mandatory, only few points are sufficient;
we chose to draw the whole perimeter in order to facilitate the
manual annotations later on.

Consider now a circle of radius equals to the total length
of the robot arm, centered in the world frame of the camera
network coordinate system. This circle is defined in 3D coordi-
nates with respect to the camera network coordinate system, but
we can easily project this circle onto the image plane of one of
the cameras thanks to the former camera network calibration.
In particular, we sample the circle in 8 points and project each
point onto the camera image plane; interpolating then those
points gives an ellipsoid in the RGB image seen by the cam-
era, as depicted in Figure 4. Using the RGB image provided
by the camera, in which are visible both the real danger zone
perimeter and the projected circle, it is possible to modify the
danger zone parameters (i.e radius and center position) to make
it overlap the line (or the points) drawn on the floor.

The procedure described has been implemented with a ROS
node which let the user calibrate the danger zone for the real
scenario at hand in a graphical way. The RGB image from one
of the cameras in the network is shown, together with some
trackbars which indicate the values for the danger zone param-

Figure 4. Danger zone calibration. A window let the user tuning the danger
zone parameters until is aligned with the tape on the floor.

eters. Moving the trackbars, the user can modify the value of
the danger zone parameters and the circle projected onto the
image plane of the camera is updated according to the new val-
ues to give the user a visual feedback, as in Figure 4. When the
projected circle overlaps the points drew on the floor with the
tape, the calibration is terminated and the parameters values of
the danger zone are saved to be used later on by the algorithm
for people entrances detection.

3.3. Entrance detection algorithm

Among the tracking data output by our framework, there are
the centroid coordinates with respect to the world frame for
each track found. Using this information and the danger zone
parameters found with our calibration procedure, it is possible
to determine when a person is inside the danger zone. As we
assumed that the danger zone has a circular shape, a person is
inside this area if the distance d between the track’s centroid
OTR and the center of the danger zone ODZ is lower than the
danger zone’s radius rDZ , and outside otherwise.

Since humans can be modelled as points only as first approx-
imation, we improved our algorithm by taking into account also
the volume of a person. Therefore, we consider a bounding box
around the track’s centroid to take into account the body of a
real person walking in the scene. Indeed, with the bounding
box, we can detect people inside the danger zone when they
just put a foot inside the area and not only when their centroid
is inside. In such a manner, our algorithm is more suitable for
safety purpose. Using a cylindrical bounding box of radius rBB

centered on the track’s centroid, now we can consider a per-
son as inside the danger zone when the bounding box starts to
overlap the danger zone area. The bounding box’s radius can be
modified and adapted to the real scenario on hand. We find out
that a reasonable value for our application is rBB = 0.20 meters.

Using a circular bounding box, we are considering the mo-
tion in each direction with the same probability with respect
to another, that is each direction has the same weight a priori.
But actually, while walking people have a preferential direc-
tion along which they move, and it depends on the previous
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positions (i.e. the trajectory is usually a continuous function).
Therefore, our algorithm may overestimate the person’s vol-
ume and consider a person as inside when the human is walking
close to the danger zone but not entering it. From this observa-
tion, we tried to use a bounding box with an ellipse as base,
with the major axis aligned with the movement direction of the
track. The biggest challenge of this approach is the robust com-
putation of the ellipse orientation. We used previous tracking
data for each track and compute the angle θ between the major
axis of the ellipse and the x−axis of the world frame as

θ = Atan2
(
ynew − yold, xnew − xold

)
where

(
xnew, ynew

)
are the actual centroid’s coordinate w.r.t

world frame,
(
xold, yold

)
are the previous centroid’s coordinate

w.r.t world frame and Atan2 is the function which computes the
arctangent of the arguments, taking into account their signs for
choosing the right value of angle. In this way, we are able to
align the major axis of the ellipse with the direction of travel
of each track. This approach relies on the availability of previ-
ous tracking data. During our first tests with this approach, we
observed that frequently there were some losses and delays in
the tracking data that led to a wrong computation of the ellipse
orientation. On average using the ellipse was less robust than
using a circle as base of the cylindrical bounding box, so at the
end we decided to use a cylindrical bounding box with circular
base.

3.4. Ground truth data annotation

To evaluate the performance of our system, it is mandatory to
associate data with a set of accurate measurements with which
compare the system output: the ground truth. The approach we
choose is to record RGB frames from a camera which captures
most of the scene in its Field of View (FoV). Then, for each

Figure 5. User interface of the annotation tool VBB Labeler.

frame, we annotate the position of every person in the working
area using a rectangular bounding box as shown in Figure 5;
the coordinates and the dimensions of those annotations will
be our ground truth. To simplify the manual annotation phase,
we used Piotr’s Matlab Toolbox [7] and a Matlab labeling tool

named “VBB Labeler”, both from Caltech University. The first
one defines a sequence file as a series of concatenated image
frames with a fixed size header and provides Matlab routines
for reading/writing/manipulating seq files. The latter uses a cus-
tom “video bounding box” (vbb) file format for annotations, it
contains utilities to view seq files with annotations overlaid and
provides an easy way to note each frame. A video bounding
box (vbb) annotation is simply a Matlab structure and stores
bounding boxes (bbs) of objects of interest. The primary dif-
ference from a static annotation is that each object can exist for
multiple frames, that is a vbb annotation not only provides the
locations of objects but also tracking information.

The annotation tool allows to efficiently browse and anno-
tate a video in a minimum amount of time. Its most salient as-
pect is an interactive procedure where the annotator labels only
a sparse set of frames and the system automatically predicts
person positions in intermediate frames. Specifically, after an
annotator labels a bounding box (BB) around the same person
in at least two frames, BBs in intermediate frames are interpo-
lated using cubic interpolation (applied independently to each
coordinate of the BBs). Thereafter, every time an annotator al-
ters a BB, BBs in all the unlabeled frames are reinterpolated.
An example of the User Interface (UI) of this tool is depicted
in Figure 5. At the bottom of the UI there is the sequence of
frames composing the loaded sequence; frames mark as green
are the one chosen to be interpolated. For every frame in which
a given person is present in the scene, annotators must mark a
BB that depicts the full extent of the person; if the person is
occluded or partially occluded, annotators need to indicate this
fact using the bar under the blue bar for each frame in which the
person is occluded. The annotation tool described allows us to
efficiently annotate a video but don’t provide a way to indicate
when a person is inside the danger zone or not. Therefore, we
tried to adapt the existing tool in a simple and smart way. We
saved two different vbb files where the first contains the anno-
tations with the information about occlusions. The second one
instead, contains the same annotations and uses the bar reserved
for occlusions to point out if a person is inside or not.

3.5. Evaluation

Ground truth data are obtained by manual annotation of the
frames from one camera with 2D bounding boxes, but we can-
not directly compare them with the tracking data output by
the system, since those are generally expressed as 3D coordi-
nates with respect to the camera network coordinate system.
Actually, among the tracking data of each track there are also
2D bounding boxes for each detected person but they are not
expressed with respect to the same camera. Indeed, when the
tracker merge the detections coming from the sensors, it pro-
duces a track data which contains information of its 2D bound-
ing box with respect to the last camera which sent its detection.
Because of that, we have not guarantees about which camera the
track’s bounding boxes are referred to and so we cannot com-
pare them with the ground truth ones, which are computed with
respect to the same camera. Therefore, we have to project the
3D information for each track with respect to the same camera
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used for annotating the ground truth, which we denote Mas-
ter camera from now on, and compute a 2D bounding box for
each person detected. Each track published by the system con-
tains the centroid coordinates with respect to the world frame
and the estimated height of the person which the track corre-
sponds to. Starting from that information, we built up a bound-
ing box 2D with respect to the Master camera frame, using
the same approach used in danger zone calibration based on
2D reprojection. So, assuming that the centroid has coordinates
(x, y, z) and h is the estimated height, we consider two 3D points
Ctop =

(
x, y, h

)
and Cbottom =

(
x, y, 0

)
. We project those points

and the centroid on the Master camera frame; starting from the
2D points obtained we build up our bounding box 2D: the dif-
ference between y-coordinates of top and bottom will be the
height of the bounding box and as width we consider half the
height.

All this was added to a ROS node which implements the en-
trance algorithm and listens to the tracking results provided by
the camera network, publishing a new message containing the
information we need. So, for each track present in the tracking
results, it computed if the person is inside the danger zone and
a 2D bounding box as described earlier.

An issue which revealed to be not so trivial was how to as-
sociate, when possible, each ground truth track with its cor-
responding track in the tracking results and determine when
it is not possible. For solving this problem we use an algo-
rithm well-known in literature, the Munkres algorithm. This al-
gorithm (also called Hungarian algorithm) is a combinatorial
optimization algorithm that solves the assignment problem in
polynomial time. The assignment problem requires to associate
pairs of elements taken by two different sets; taking into account
that every couple has an associated cost, we want to minimize
the total cost. Formally, denoting by ci j the associated cost of
couple (i, j) and given a n × n matrix C = [ci j], we want to find
a permutation φ of {1, . . . , n} that minimizes the cost function∑n

i=1 ciφ(i). In our case, we need to solve an assignment problem
for each frame left after the selection. The two different sets
for a single frame are represented by the person individuated
in ground truth and the tracks given by the tracker algorithm.
Denoting respectively by n and m the sizes of those sets, the
cost matrix is a n × m matrix C = [ci j] where each element
ci j takes into account how good is the match for a couple of
bounding boxes taken from the two sets. A reasonable choice
for evaluating this match is to use a percentage computed as the
ratio of overlap area to union area of the two bounding boxes;
the closer this value is to 1, the better is the match between
bounding boxes. Since we want to minimize the cost function∑n

i=1 ciφ(i) we choose as cost ci j of each couple the quantity:

ci j = 1 −
AGT ∩ A TR

AGT ∪ A TR

where AGT and A TR are a couple of bounding boxes and i, j
their indices in the corresponding set.

4. Experiments

The system presented up to this point is capable of track-
ing people inside the working area and detecting when a per-
son enters the danger zone around the robot manipulator. We
tested the whole system in two different indoor environments: a
mock-up environment created in our laboratory and in the real
working area in Stuttgart. In both testbeds, the camera network
system was composed of 4 Kinect One3. Each Kinect One has
been connected to a low cost embedded device capable of per-
forming on the edge computing, namely an Nvidia Jetson TX1.
The code in [17] has been adapted and compiled on the boards
flashed with Ubuntu 14.04 and equipped with an external PCIe
USB 3.0 card to avoid bandwidth limitations. Every Jetson TX1
board was part of a LAN to realize the camera network system.
The total cost of the system is around 1500 euros considering
the total amount a dedicated Ethernet network and the material
(e.g. tripods, supports, adapters, cables) required for covering
an area of 90 m2 with limited occlusions.

4.1. Metrics

To evaluate the performance of our system, we propose three
different metrics which measure tracking accuracy and preci-
sion of the whole system with respect to manually annotated
ground truth. As required by the project in order to achieve in-
dustrial requests, for each metric we set a baseline and target
value as summarized in Table 1. Baseline represents the mini-
mum value to be achieved by our system, while target is the re-
sult we aim to achieve for the selected scenario. The first metric,

Table 1. Metrics considered and target values.

Metric Target Baseline

Metric I FN < 10% FN < 25%
Metric II FN < 2% FN < 5%
Metric III Mean delay < 0.25 sec Mean delay < 1.5 sec

Metric I, measure the frame-wise tracking accuracy by comput-
ing the percentage of False Negatives (FN). A False Negative
occurs when the tracking algorithm does not recognize a person
inside the scene. For each frame we have the number of people
tracked by the algorithm and the number of people inside the
scene from the ground truth manually annotated. As described
in Section 3.5, we associate tracking and ground truth data ac-
cording to the bounding boxes and, after the association step,
we consider a correct detection if the ratio of overlap area to
union area is greater than 50%. Let’s denote N f the total num-
ber of frames, we compute the metric as:

FN(%) =

∑N f

i=1 Pscene(i) −
∑N f

i=1 Pmatch(i)∑N f

i=1 Pscene(i)
· 100 (1)

3 https://en.wikipedia.org/wiki/Kinect
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where for each frame i, Pscene(i) is the number of people in the
scene and Pmatch(i) is the number of correct detections. The
baseline value of FN < 25%, has been chosen according to
state of the art performance in industrial environment with oc-
clusions.

The second metric, Metric II, measure how many times a
person is correctly detected as entering the danger zone within
2 seconds, as percentage of False Negatives. Compared to the
previous metric, which depends on the camera network system
accuracy, Metric II measures the accuracy of the algorithm to
detect if a person is inside the danger zone or not. Therefore,
instead of computing False Negatives for all frames and all peo-
ple in the scene, to compute Metric II we need to look only
at frames in which people enter the danger zone. From both
ground truth and tracking data it is possible to compute how
many people are inside the danger zone in each frame. Let’s
denote PGT

in (i) and PTR
in (i) as the number of people inside the

danger zone at frame i for ground truth and tracking data respec-
tively. Intuitively, Pin increases when a person enters the dan-
ger zone and decreases when the person leaves it, therefore the
quantity E(i) = Pin(i) − Pin(i − 1) is positive for entrances, neg-
ative for exits and zero otherwise, that is when the number of
people inside the danger zone does not change between frame
i − 1 and frame i. In this way we are able to highlight frames
in which particular events occur by simply looking at the value
taken by E(i) for frame i. Starting from this observation, we
compute the following quantities for each frame i = 1 . . .N f ,

EGT (i) = PGT
in (i) − PGT

in (i − 1)
ETR(i) = PTR

in (i) − PTR
in (i − 1)

and we consider a person as correctly detected if, given an en-
trance in the ground truth data, there is also an entrance in the
tracking data within 2 seconds. That is, given the frame index
i, such that EGT (i) > 0 and an interval I, we search if there is
a index j ∈ I such that ETR( j) > 0. The interval I = [imin, imax]
is chosen in order to cover an interval of two seconds, possi-
bly centered on the timestamp of frame i. In general, it can be
expected that the entrance view by the tracking algorithm hap-
pens later than that indicated in ground truth. But as explained
before, the use of the bounding box can lead in certain cases
to an overestimation and therefore the entrance in tracking data
comes before the same entrance in ground truth. Because of that
we decided to look before and after the timestamp of frame i.
So we choose

imin = max{t1, ti − 1}
imax = min{tN f , imin + 2}

where ti is the timestamp of frame i expressed in seconds. In
order to keep the interval length of 2 seconds, we put imin =

(imax − 2) when imax = tN f . Let’s denote Ecorrect the sum of
correct entrances detections and EGT the sum of entrances in
Ground Truth, that is the sum of only positive terms EGT (i) for
i = 1 . . .N f . Finally, we compute the metric required as

FN(%) =
EGT − Ecorrect

EGT · 100 (2)

In the last metric, Metric III we measure with how much delay
a person is correctly detected as entering the danger zone. To
compute the previous metric we select only the frames in which
an entrance occurs, that is all the frames i such that EGT (i) > 0.
For each of them we find out the corresponding frame j in
which also the tracking algorithm detects the entrance within
2 seconds. The delay between them is simply the difference be-
tween the ground truth and tracking data timestamps, namely
di = t j − ti. Therefore the third metric is computed as the mean
of all di’s obtaining the mean delay of the entrance detection
algorithm. As illustrated before, in some cases the tracking al-
gorithm moves up the entrance detection, leading to a negative
value for the delay di; for this reason we compute the mean de-
lay as the mean of the absolute value of each entrance detection
delay di. Here, the baseline value chosen, mean delay < 1.5 sec,
is lower than the typical delay in crowd counting.

4.2. Lab testbed

The space used as working area in our laboratory is de-
picted in Figure 6. It represents a very challenging environment
due to different causes which negatively affect tracking perfor-
mances, for example the sunlight coming through the windows
or the metal closets which give many reflections. On the other
hand, however, we could change the position of the cameras
freely. We perform four experiments by changing the number

Figure 6. Experimental testbed in our lab. The red circle on the floor represents
the danger zone obtained in the calibration step.

of people walking in the working area. In all the experiments
the robot manipulator was moving, performing a repetitive tra-
jectory while people were entering carefully the danger zone
several times. The results obtained are summarized in Table 2.

Table 2. Results obtained in our laboratory testbed.

Run 1 Run 2 Run 3 Run 4 mean

Metric I 24.45% 13.35% 6.67% 6.06% 12.63%
Metric II 0.00% 0.00% 0.00% 0.00% 0.00%
Metric III 0.361s 0.216s 0.088s 0.489s 0.289s

In all the experiments the system performs better than the
baseline chosen according to the state of the art for people track-
ing algorithm. The value of 0.00% for Metric II in all the exper-
iments shows that all the people entering the danger zone are
correctly detected.

7
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4.3. Stuttgart testbed

The testbed in Stuttgart was smaller than the one in our lab,
as it is shown in Figure 7. A main difference with respect to pre-
vious testbed is that in our lab we were free to place the cam-
eras where we wanted to, while in the Stuttgart testbed we had
to comply with the limited setup and place the camera network
system inside the assigned area.

This leads to some difficulties in setting up the camera net-
work system, since a smaller area forces to place the cameras
closer to each other, thus decreasing the overlap between the
various field of view of the cameras and the tracking perfor-
mance. Several attempts were necessary before finding an ac-
ceptable camera network configuration, in which the cameras
are placed along two sides of the assigned area.

Figure 7. Experimental testbed in Stuttgart. The black tape on the floor represent
the danger zone, with the robot manipulator at its center.

As required, we recorded a whole day of work and then
an external supervisor selected 5 sequences of 1 minute each.
Each sequence contains both the tracking results provided by
the overall system and the RGB frames recorded by the camera
directly connected to a master PC. We manually annotated the
RGB frames corresponding to each sequence as previously de-
scribed, and evaluate the tracking results according to the three
metrics.

Figure 8. An example of the evaluation phase. In each frame the ground truth
bounding boxes (dotted lines) are compared with the bounding box computed
from the tracking data (solid lines). Blue and red colors represent detections
inside or outside the danger zone respectively.

Table 3. Results obtained in Stuttgart testbed.

Run 1 Run 2 Run 3 Run 4 Run 5 mean

Metric I 12.64% 0.77% 3.88% 0.96% 0.32% 3.91%
Metric II 0.00% 0.00% - 0.00% 0.00% 0.00%
Metric III 0.217s 0.133s - 0.422s 0.133s 0.226s

An example of the evaluation phase is depicted in Figure 8,
while the results obtained in the evaluation phase are summa-
rized in Table 3. As shown in Table 3, for each sequence the
system performed better than the baseline and, in many case, it
performed also better than the target as well. As for Metric II in
which we obtained 0.00% for all the experiments demonstrat-
ing the high accuracy of our entrance detection algorithm. Note
that in Run 3 there is no values for Metric II and III, since in
the sequence selected by the external supervisor there were no
people entering the danger zone.

5. Conclusions

In this work, we proposed a novel system based on a cam-
era network system, capable of monitoring people in the work-
ing area around a robot manipulator. The system detects when
a person enter the robot workspace and broadcast this infor-
mation to the robot in order to avoid collisions by stopping
its motion. The innovation of the work is threefold. First, a
simple and flexible procedure to define the danger zone with
respect the camera network coordinate system has been intro-
duced. Second, we proposed a benchmark procedure to evaluate
the system composed of 3 different metrics to measure tracking
accuracy, accuracy in entrance detection and detection delay.
Third, we developed an annotation tool and described in detail
our evaluation pipeline to associate the tracking results with the
ground truth annotations related to easy-to-capture RGB data.
The proposed system has been evaluated in two different ex-
perimental setups, showing in both cases good performance in
terms of tracking accuracy and detection delay. We consider
this work as a solid starting point for safe human-robot inter-
action, providing clear and comparable metrics for understand-
ing if people detection and tracking systems are capable of the
robust and real-time performance for being introduced in de-
manding industrial scenarios. It contributed with an easy-to-use
tool for ground-truth annotations working for generic applica-
tions. Compared to other approaches or commercial products,
our system is a low-cost, flexible and scalable solution. Further
industrialization of the current solution could lead to a reduced
cost of the hardware. Anyway, more extensive considerations
are necessary to understand the engineering cost to bring the
Technology Readiness Level (TRL) 5/6 aimed during the Eu-
RoC project to an industrial application (TRL 8/9). Particular
attention is necessary to pair this system with not lightweight
collaborative robots in order to deal with safety measures re-
quired by the ISO/TS standard 15066 for safe human-robot col-
laboration. For sure, this point represents a very interesting yet
challenging future research direction. In the future, we also plan
to further improve the system with skeletal tracking to better
perceive human movements and predict their future actions, in
order to allow the robot not to just stop, but coordinate with the
human worker by slightly modifying its trajectory.
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