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ABSTRACT

T
HIS dissertation focuses on the following research question: “how to independently

and systematically validate empirical vulnerability models?”. Based on the survey on

past studies about the vulnerability discovery process, the dissertation has pointed

out several critical issues in the traditional methodology for evaluating the performance of

vulnerability discovery models (VDMs). Such issues did impact the conclusions of several

studies in the literature. To address such pitfalls, a novel empirical methodology and a data

collection infrastructure are proposed to conduct experiments that evaluate the empirical

performance of VDMs. The methodology consists of two quantitative analyses, namely qual-

ity and predictability analyses, which enable analysts to study the performance of VDMs, and

to compare them effectively.

The proposed methodology and the data collection infrastructure have been used to as-

sess several existing VDMs on many major versions of the major browsers (i.e., Chrome, Fire-

fox, Internet Explorer, and Safari). The extensive experimental analysis reveals an interesting

finding about the VDM performance in terms of quality and predictability: the simplest lin-

ear model is the most appropriate one for predicting vulnerability discovery trend within the

first twelve months since the release date of browser versions; later than that, logistic models

are more appropriate.

The analyzed vulnerability data exhibits the phenomenon of after-life vulnerabilities,

which have been discovered for the current version but also attributed to browser versions

out of support – dead versions. These vulnerabilities however may not actually exist, and

may have an impact on past scientific studies, or on compliance assessment. Therefore, this

dissertation has proposed a method to identify code evidence for vulnerabilities. The results

of the experiments show that a significant amount of vulnerabilities has been systematically

over-reported for old versions of browsers. Consequently, old versions of software seem to

have less vulnerabilities than reported.
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1
INTRODUCTION

This chapter presents the motivation of this dissertation. It describes the overall

research questions and research method that drive the subsequent chapters. It also

summarizes the major contributions of this work, as well as published/in submission

publications on which the dissertation is built upon.

R
ECENT years have seen major efforts addressing the insecurity of software from guide-

lines for secure software development [McG09; HL03; HL06] to studies attempting to

understand the nature of vulnerabilities. Our survey of 59 recent studies in the field

from 2005 to 2012 whose contributions were (partially) relied on (or validated by) empirical

experiments shows fact finding papers (i.e., reporting the findings with/without some statis-

tics [Ozm05; OS06; Fre06; Res05; Li12; Sha12]), modeling papers (i.e., proposing mathemat-

ical models, or metrics, or methodologies concerning vulnerabilities [Alh07; And02; Res05;

You11; Joh08], or economic models [Shi12; AM13]), and prediction papers (i.e., predicting

the vulnerabilities in code base, [Shi11; CZ11; Geg09b; Neu07; Boz10]).

Vulnerability data sources now are employed not only in scientific studies, but also in

the compliance assessment for deployed software. The US National Institute of Standards

& Technology (NIST) Security Content Automation Protocol (SCAP) [Qui10], and Payment

Card Industry Data Security Standard (PCI DSS)[WC12] have been applied to evaluate the

compliance of software-related products. They both employ NVD. Any mistakes in NVD

might result in unfair fines raking hundreds of thousand of euros in companies. For instance,

if a product embeds an older version of browser (e.g., Chrome v4), it might lose compliance

1



2 CHAPTER 1. INTRODUCTION

with PCI DSS due to a large number of unfixed vulnerabilities. Then the product vendor

might either update to new version, or pay a fine, or be kicked out of the market.

This dissertation does not aim to provide a novel model of the vulnerability discovery

process, nor an outperform approach to early detect vulnerabilities. Instead, motivating by

the fact that several models on vulnerabilities are based on empirical experiments, the dis-

sertation lays its focus on the research question: “how to independently and systematically

validate empirical vulnerability models?".

The rest of this chapter is organized as follows. Section 1.1 briefly summarizes the main

contributions of the dissertation. Section 1.3 describes the chapters in the dissertation, as

well as a short summary for each chapter. Section 1.4 shows the ordinal publications that I

have (co)authored during the course of the PhD study.

1.1 Contributions

This section briefs the major contributions of the dissertation as follows.

i) An empirical methodology to evaluate the performance of time-based vulnerability dis-

covery models (VDMs). Several VDMs have been proposed e.g., [Alh05; Joh08; You11],

and have been claimed to be workable by their proponents. However, there were some

criticisms that these models might not work due to the violation of their implicit as-

sumptions [Ozm05]. We have pointed out some issues that might affect the valida-

tion experiments on the performance of VDMs. We have proposed a novel empiri-

cal methodology to validate the performance of VDMs. The methodology consists of

two quantitative analyses, namely quality and predictability, which enable analysts

to study the performance of VDMs, and to compare them effectively. Moreover, the

methodology addresses all identified issues that might be problematic while validat-

ing VDMs.

ii) A systematic assessment on the performance of existing VDMs based on our proposed

methodology. The conducted experiment assesses 8 out of 10 existing VDMs on 30

major versions of dominant web browsers (i.e., Chrome, Firefox, IE, and Safari). The

experiment results have revealed an interesting finding about the VDM performance

in terms of quality and predictability: the simplest linear model (Ω(t ) = Ax +B) is the

champion within first 12 months since the release date of browsers in predicting the

future trend of vulnerabilities; later then, logistic models are more appropriate.
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iii) An empirical technique to quickly identify evidences for the existence of vulnerabilities

in retro versions of software. Apart from the findings about the majority of foundational

vulnerabilities [OS06] which are introduced in the very first version and continue to

survive in later versions, Chapter 5 shows that many of vulnerabilities have been re-

ported for “dead" software, which we called after-life vulnerabilities. Such vulnerabil-

ities are byproducts when researchers (or attackers) study and report security flaws in

the latest release of the software. These vulnerabilities however may not actually exist,

and may have an impact on past studies (e.g., Ozment and Schechter [OS06]), or on

compliance assessment (e.g., [Qui10; WC12]). Therefore, we have proposed a method

to quickly identify code evidence for vulnerabilities. The method has been empirically

tested in an experiment showing that a significant amount of vulnerabilities has been

systematically misreported for old versions of browsers. Consequently, old versions of

software (e.g., Chrome v4) seem to have less vulnerabilities than reported.

1.2 Terminology

Vulnerability is “an instance of a [human] mistake in the specification, development, or

configuration of software such that its execution can [implicitly or explicitly] violate

the security policy"[Krs98; Ozm07a].

Vulnerability entry is an entry, which reports security problem(s), in a vulnerability data

source, for instance NVD entries (a.k.a Common Vulnerabilities and Exposuress (CVEs))

of the NVD data source.

Vulnerability claim is a statement by a data source that a particular software version is vul-

nerable to a particular vulnerability entry. Figure 8.1 shows an example of the claims

of CVE-2008-7294.

Spurious vulnerability claim is a vulnerability claim which is not correct.

Data set is a collection of vulnerability data extracted from one or more data sources.

Release refers to a particular version of an application e.g., Firefox v1.0.

Horizon is a specific time interval sample. It is measured by the number of months since

the released date, e.g., 12 months since the release date.
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Observed vulnerability sample (or observed sample, for short) is a time series of monthly

cumulative vulnerabilities of a major release since the first month after release to a

particular horizon.

Evaluated sample is a tuple of an observed sample, a VDM model, and the goodness-of-fit

of this model to this sample.

Commit is a unit of changes in source code, managed by the code base repository.

Bug-fix commit is a commit that contains changes to fix a (security) bug.

Vulnerable code footprint is a piece of code which is changed (or removed) in order to fix

a security bug. The intuition to identify such vulnerable code footprints is to compare

the revision where a security bug is fixed (i.e., bug-fix commit) to its immediate parent

revision. Pieces of code that appear in the parent revision, but not in the bug-fixed

revision are considered vulnerable code footprints, see Section 8.2.3 for more details.

1.3 Structure of the Dissertation

Chapter 1: Introduction. This chapter presents the motivation and the contributions of the

dissertation. It also describes the organization of the dissertation.

Chapter 2: Research Roadmap. This chapter presents the research objective of the disser-

tation, as well as research questions refined from the objective. It also describes how

other chapters could help to attain the research objective.

Chapter 3: A Survey of Empirical Vulnerability Studies. This chapter presents a survey on

empirical vulnerability studies. It focuses on the usage of data sources, and the major

focuses of those studies.

Related publication(s): This chapter has been partially published in:

• Fabio Massacci and Viet Hung Nguyen. “Which is the Right Source for Vulnera-

bilities Studies? An Empirical Analysis on Mozilla Firefox”. In: Proceedings of the

International ACM Workshop on Security Measurement and Metrics (MetriSec’10).

2010

Chapter 4: Data Infrastructure for Empirical Experiments. This chapter presents the data

infrastructure that will be used in the experiments conducted within the dissertation.
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This chapter includes the software infrastructure, and some heuristic rules to collect

the data from public sources.

Related publication(s): This chapter has been partially published in/ or being submit-

ted to:

• Fabio Massacci and Viet Hung Nguyen. “Which is the Right Source for Vulnera-

bilities Studies? An Empirical Analysis on Mozilla Firefox”. In: Proceedings of the

International ACM Workshop on Security Measurement and Metrics (MetriSec’10).

2010

• Fabio Massacci, Stephan Neuhaus, and Viet Hung Nguyen. “After-Life Vulnera-

bilities: A Study on Firefox Evolution, its Vulnerabilities and Fixes”. In: Proceed-

ings of the 2011 Engineering Secure Software and Systems Conference (ESSoS’11).

2011

• Viet Hung Nguyen and Fabio Massacci. An Empirical Methodology to Validated

Vulnerability Discovery Models. Tech. rep. (under submission to IEEE Transac-

tions on Software Engineering). University of Trento, 2013

Chapter 5: After-Life Vulnerabilities. This chapter presents our findings based on the col-

lected vulnerability data. We find that there are a lot of vulnerabilities discovered after

the browsers are out-of-support. We also revisit the claim about the majority of foun-

dation vulnerabilities made in [OS06].

Related publication(s): This chapter has been published in:

• Fabio Massacci, Stephan Neuhaus, and Viet Hung Nguyen. “After-Life Vulnera-

bilities: A Study on Firefox Evolution, its Vulnerabilities and Fixes”. In: Proceed-

ings of the 2011 Engineering Secure Software and Systems Conference (ESSoS’11).

2011

Chapter 6: A Methodology to Evaluate VDMs. This chapter describes a methodology to em-

pirically evaluate the performance of vulnerability discovery models (VDMs). The

chapter reviews the traditional validation methodology in past studies, as well as criti-

cal issues that potentially bias the experiments in past studies. The proposed method

addresses all these issues in its data collection and analysis steps. All notions and

concepts in the methodology are exemplified by real data from the experiment on

browsers.
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Related publication(s): This chapters has been partially published in/or being submit-

ted to:

• Viet Hung Nguyen and Fabio Massacci. “An Independent Validation of Vulnera-

bility Discovery Models”. In: Proceeding of the 7th ACM Symposium on Informa-

tion, Computer and Communications Security (ASIACCS’12). 2012

• Viet Hung Nguyen and Fabio Massacci. An Empirical Methodology to Validated

Vulnerability Discovery Models. Tech. rep. (under submission to IEEE Transac-

tions on Software Engineering). University of Trento, 2013

Chapter 7: The Evaluation of Existing VDMs. This chapter applies the methodology pro-

posed in the previous chapter to conduct a validation experiment to review the perfor-

mance of existing VDMs. The experiment assesses the performance of eight VDMs in

different usage scenarios based on the vulnerability data of 30 major releases of domi-

nant browsers (i.e., Chrome, Firefox, IE, and Safari).

Related publication(s): This chapters has been partially published in/or being submit-

ted to:

• Viet Hung Nguyen and Fabio Massacci. “An Idea of an Independent Validation of

Vulnerability Discovery Models”. In: Proceedings of the 2012 Engineering Secure

Software and Systems Conference (ESSoS’12). 2012

• Viet Hung Nguyen and Fabio Massacci. “An Independent Validation of Vulnera-

bility Discovery Models”. In: Proceeding of the 7th ACM Symposium on Informa-

tion, Computer and Communications Security (ASIACCS’12). 2012

• Viet Hung Nguyen and Fabio Massacci. An Empirical Methodology to Validated

Vulnerability Discovery Models. Tech. rep. (under submission to IEEE Transac-

tions on Software Engineering). University of Trento, 2013

Chapter 8: A Method to Assess Vulnerabilities Retro Persistence. This chapter describes an

empirical method that automatically assess the retro persistence of vulnerabilities.

The proposed method extends the work by Sliwerski et al. [Sli05] to identify evidences

for the existence of vulnerabilities in retro versions of software.

Related publication(s): This chapter has been partially published in/or being submit-

ted to:
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• Viet Hung Nguyen and Fabio Massacci. “The (Un) Reliability of NVD Vulnerable

Versions Data: an Empirical Experiment on Google Chrome Vulnerabilities”. In:

Proceeding of the 8th ACM Symposium on Information, Computer and Communi-

cations Security (ASIACCS’13). 2013

• Viet Hung Nguyen and Fabio Massacci. An Empirical Assessment of Vulnerabili-

ties Retro Persistence. Tech. rep. (to be submitted to Empirical Software Engineer-

ing, journal, Springer). University of Trento, 2013

Chapter 9: The Assessment of the NVD Vulnerability Claims. This chapter applies the pro-

posed assessment method for vulnerabilities retro persistence to conduct an experi-

ment on 33 major versions of Chrome and Firefox. The purpose is to test the proposed

method, and to validate the rule “version X and all its previous versions are vulnerable"

adopted by NVD security team. The experiment results have shown that, on average,

more than 30% of vulnerability claims to each of these versions are erroneous. The

errors do not negligibly happen by chance, but are significant and systematic phe-

nomenon along the browser age, and individual version age. Furthermore, we have

shown that these errors could negatively impact the conclusions withdrawn from some

vulnerability analyses.

Related publication(s): This chapter has been partially published in/or being submit-

ted to:

• Viet Hung Nguyen and Fabio Massacci. “The (Un) Reliability of NVD Vulnerable

Versions Data: an Empirical Experiment on Google Chrome Vulnerabilities”. In:

Proceeding of the 8th ACM Symposium on Information, Computer and Communi-

cations Security (ASIACCS’13). 2013

• Viet Hung Nguyen and Fabio Massacci. An Empirical Assessment of Vulnerabili-

ties Retro Persistence. Tech. rep. (to be submitted to Empirical Software Engineer-

ing, journal, Springer). University of Trento, 2013

Chapter 10: Conclusion. This chapter summarizes the major contributions of the disserta-

tion and describes possible future directions based on the results.

1.4 Publications

During my work as a PhD candidate I have (co)authored the following publications:
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• Fabio Massacci and Viet Hung Nguyen. “Which is the Right Source for Vulnerabilities

Studies? An Empirical Analysis on Mozilla Firefox”. In: Proceedings of the International

ACM Workshop on Security Measurement and Metrics (MetriSec’10). 2010

• Viet Hung Nguyen and Le Minh Sang Tran. “Predicting Vulnerable Software Compo-

nents using Dependency Graphs”. In: Proceedings of the International ACM Workshop

on Security Measurement and Metrics (MetriSec’10). 2010

• Fabio Massacci, Stephan Neuhaus, and Viet Hung Nguyen. “After-Life Vulnerabilities:

A Study on Firefox Evolution, its Vulnerabilities and Fixes”. In: Proceedings of the 2011

Engineering Secure Software and Systems Conference (ESSoS’11). 2011

• Viet Hung Nguyen and Fabio Massacci. “An idea of an independent validation of vul-

nerability discovery models”. In: Proceedings of the 2012 Engineering Secure Software

and Systems Conference (ESSoS’12). 2012, pp. 89–96

• Viet Hung Nguyen and Fabio Massacci. “An Independent Validation of Vulnerability

Discovery Models”. In: Proceeding of the 7th ACM Symposium on Information, Com-

puter and Communications Security (ASIACCS’12). 2012

• Viet Hung Nguyen and Fabio Massacci. “The (Un) Reliability of NVD Vulnerable Ver-

sions Data: an Empirical Experiment on Google Chrome Vulnerabilities”. In: Proceed-

ing of the 8th ACM Symposium on Information, Computer and Communications Secu-

rity (ASIACCS’13). 2013

• Viet Hung Nguyen and Fabio Massacci. An Empirical Methodology to Validated Vulner-

ability Discovery Models. Tech. rep. (under submission to IEEE Transactions on Soft-

ware Engineering). University of Trento, 2013

• Viet Hung Nguyen and Fabio Massacci. An Empirical Assessment of Vulnerabilities

Retro Persistence. Tech. rep. (to be submitted to Empirical Software Engineering, jour-

nal, Springer). University of Trento, 2013

• Riccardo Scandariato, Viet Hung Nguyen, Fabio Massacci, and Wouter Joosen. Eval-

uating Text Features as Predictors of Security Vulnerabilities. Tech. rep. Univeristy of

Trento, University of Leuven, 2013



C
H

A
P

T
E

R

2
RESEARCH ROADMAP

This chapter presents the global research objective of the dissertation, as well as sev-

eral research questions refined from this objective. The chapter discusses the research

method to attain the research objective, and also discusses how various artifact pre-

sented in other chapters could fit together to obtain the global objective.

T
HIS chapter presents the general research objective of the dissertation, and the method-

ology to achieve the objective. The chapter describes various research questions re-

fined from the general objective, and gives an overview how and where these ques-

tions are answered in the dissertation. The chapter is organized as follows. Section 2.1

presents the global research objective. Section 2.2 discusses the research methodology and

various research questions refined from the objective. Section 2.3 summarizes the chapter.

2.1 Research Objective

Recent years have seen a growing interest of studies in quantitative security assessment and

the use of empirical methods on software vulnerabilities. Most of studies address the knowl-

edge problems such as what are the interesting phenomena in vulnerabilities?" or focus on

the ability to capture characteristics of vulnerabilities: e.g., what is the mathematical model

for the discovery of vulnerabilities? or could we predict vulnerabilities? Obviously, attaining

such insights would help to improve the security of software.

9
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This dissertation is inspired by two key observations on past studies. First, only few stud-

ies [Res05; OS06] provided some claims about the quality of the data sources they used in

their experiments. Second, many proposed empirical models about vulnerabilities were

evaluated by researchers who are the authors of the models, except few independent dis-

cussion [OZMEN-07-QOP]. This motivates for the research objective that drives the rest of

this dissertation:

“How to perform an independent empirical evaluation of vulnerability models?”

2.2 Research Method and Research Questions

Figure 2.1 illustrates the steps of the research method used in this dissertation:

• Experimental setup. We gather background knowledge, facts, and requisites that need

to carry out the research.

• Observation. We observe on collected information in the previous step for interesting

phenomena.

• Induction. Based on observed phenomena plus background knowledge, we propose

a technique, a method, or an artifact that explains in more general terms the obser-

vations. Since our research goal focuses on an independent empirical evaluation of

vulnerability models, we have not invented our own version of a method or model

that predicted the observed data. Rather during the induction phase we have invented

methods to evaluate other work.

Experiment Setup

Observation

Induction

Evaluation

Figure 2.1: Essential steps of the research methodology.
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Table 2.1: Summary of research questions.

Research Question Answered In

Activity: Survey State-of-the-Art

RQ1 Which are the popular data sources for vulnerability studies? Chapter 3

RQ2 Which data sources and features are used for which studies? Chapter 3

Activity: Invent Method(s)

RQ3 How to evaluate the performance of a VDM? Chapter 6

RQ4 How to compare between two or more VDMs? Chapter 6

RQ5 How to estimate the validity of a vulnerability claim to a retro version

of software?

Chapter 8

Activity: Evaluate Invented Method(s)

RQ6 Is the proposed VDM evaluation methodology effective in evaluating

VDMs?

Chapter 7

RQ7 Among existing VDMs, which one is the best? Chapter 7

RQ8 Is the proposed assessment method effective in assessing the retro

persistence of vulnerabilities?

Chapter 9

RQ9 To what extend are vulnerability claims by NVD trustworthy? Chapter 9

RQ10 To what extend does the bias in vulnerability claims by NVD (if any)

impact conclusions of a vulnerability analysis?

Chapter 9

• Evaluation. We conduct empirical experiments to evaluate the methods invented in

the previous step.

Figure 2.2 shows how we apply the research method in this dissertation, and how various

artifacts in subsequent chapters could fit to the research method. In this figure, rectangles

are activities and parallelograms represent artifacts produced in each activity. In general

the dissertation consists of following activities: Survey State-of-the-Art (Chapter 3), Acquire

Experimental Data (Chapter 4), Perform Observation on Experimental Data (Chapter 5, and

Chapter 6), Invent Method(s) (Chapter 6, Chapter 8), and Evaluate Invented Method(s) (Chap-

ter 7, Chapter 9).

As parts of these activities, we have conducted several empirical experiments. In these

experiments, we have refined the research objective into several technical research ques-

tions. Thus to achieve the final research objective, we are going to satisfy all these research
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A Survey of Empirical 
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Infrastructure Data 

Collection and Experiments

Observation on the Retro 

Persistence of Vulnerability Claims 

(After-Life and Foundational 

Vulnerabilities)

Observation on 

Vulnerability Discovery Models

Empirical Method to Evaluate 

Vulnerability Discovery Models

Empirical Method to Evaluate the 

Retro Persistence of Vulnerabilities

Assessment on Existing 

Vulnerability Discovery Models

Assessment on Chrome and 

Firefox vulnerabilities

Activity

Artifact

Legend

Figure 2.2: An overview to the research activities and produced artifacts.

questions, which will be described in the rest of this section, and are summarized in Ta-

ble 2.1.

The details of these activities and research questions are discussed in the sequel.

2.2.1 Survey State-of-the-Art

This activity is a part of the experiment setup where we gather background knowledge for

the research. Since the major focus of this dissertation lays on the area of empirical studies,

we conduct a survey about empirical studies on software vulnerabilities. The survey aims

to understand the following characteristics in past research studies: the research questions

which past studies have addressed, and the vulnerability data sources, particularly data fea-

tures, which past studies have used for their research topics. Formally, the survey addresses
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the following research questions:

RQ1 Which are the popular data sources for vulnerability studies?

RQ2 Which data sources and features are used for which studies?

The outcome of this activity is a Survey of Empirical Vulnerability Studies. The details of the

survey is described in Chapter 3.

2.2.2 Acquire Experimental Data

Data is a common requisite for an empirical study about vulnerabilities since data plays a

crucial role in an empirical experiment. As a part of the experiment setup, this activity leads

to an Infrastructure Data Collection and Experiments to acquire vulnerability data. The in-

frastructure describes the software infrastructure and rules for compiling vulnerability data

from various data sources discussed in the survey of the previous activity. The details of the

data infrastructure are discussed in Chapter 4.

2.2.3 Perform Observation on Experimental Data

Based on the collected data, we can start the observation for interesting phenomena. We also

challenge the claims in past studies on the same data sources as we have an independent

validation of these claims. In particular, we have made the following observations:

• Observation on the Retro Persistence of Vulnerabilities (After-Life Vulnerabilities and

Foundational Vulnerabilities). We observe Firefox vulnerabilities in order to look for

an empirical evidence whether software-evolution-as-a-security-solution is actually a

solution. This observation reveals that a non-negligible amount of after-life vulnera-

bilities is a counter-evidence the solution. We also use the vulnerability data to check

the claim whether foundational vulnerabilities are the majority [OS06]. More detailed

discussion on this observation is described in Chapter 5.

On the other side, we observe an implicit rule in reporting vulnerability claims by the

NVD security team: they will claim all versions of a software vulnerable to a particu-

lar vulnerability without any additional validation if its description has something like

“version X and its previous versions are vulnerable”. This rule might be overdosed, and

could be a threat to validity of not only empirical vulnerability studies, but also assess-

ment of security compliance (e.g., SCAP, PCI DSS). This observation is presented in

Chapter 8.
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• Observation on Vulnerability Discovery Models. We observe many issues that exist in

the traditional validation method to evaluate VDMs. They bias the outcome of VDM

validation experiments that follow this traditional method. Additionally, existing vali-

dation experiments in the past were conducted by the own authors of the model. This

observation motivated the invention of an empirical method that could independently

and systematically evaluate the performance of VDM. This observation is described in

Chapter 6.

2.2.4 Invent Method(s)

From the observations done in the previous step, we propose two empirical methods:

• Empirical Method to Evaluate Vulnerability Discovery Models. During the observation

activity, we have observed several issues in the traditional validation method for VDMs.

This potentially biases the outcome of VDM validation experiments that follow this

method. This motivates the following research questions:

RQ3 How to evaluate the performance of a VDM?

RQ4 How to compare between two or more VDMs?

We answer the above research questions by proposing an empirical method to eval-

uate the empirical performance of VDMs. The method consists of two key analyses:

goodness-of-fit quality analysis and goodness-of-fit predictability analysis. These anal-

yses allow researchers (or practitioners) to evaluate the performance of VDM, as well

as to compare VDMs. With these analyses, the proposed method delivers a better in-

sight than the traditional method. Moreover, the proposed method addresses all issues

of the traditional method. The outcome of a VDM validation experiment following the

proposed method is thus more reliable than the traditional analysis. We describe the

methodology in Chapter 6.

• Empirical Method to Evaluate the Retro Persistence of Vulnerabilities. The observation

on the retro persistence of vulnerability claims motivates following research question:

RQ5 How to estimate the validity of a vulnerability claim to a retro version of software?

We propose an empirical method that could quickly identify whether a vulnerability

claims made to a retro version of software is valid or not. The method quickly looks for

vulnerable code footprints, whose occurrences relate to the validity of vulnerabilities,
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in the repository of the software. Then the method scans through the code base of

a software version, searching vulnerable code footprints. If none of them exists, it is

more likely that the vulnerability claim is not valid. The details of this method are

presented in Chapter 8.

2.2.5 Evaluate Method(s)

We conduct two experiments on browser vulnerabilities to test the two proposed empirical

methods. These experiments are:

• Assessment on Existing Vulnerability Discovery Models. We validate the methodology

to evaluate VDMs described in Chapter 6 by conducting an evaluation experiment on

several existing VDMs. The experiment addresses the following research questions:

RQ6 Is the proposed VDM evaluation methodology effective in evaluating VDMs?

RQ7 Among existing VDMs, which one is the best?

By the word “effective”, we mean the proposed methodology is able to evaluate VDMs

at least as good as the traditional methodology to conduct the experiment. We com-

pare the outcomes of each methodology. The comparison shows that the proposed

methodology provides more informative and interesting answers than the traditional

one. The experiment also studies the quality and predictability of VDMs in different

period of software lifetime. The details of this experiment are reported in Chapter 7.

• Assessment on Vulnerabilities of Chrome and Firefox. We test the method to assess the

validity of (retrospective) vulnerability claims in an experiment with many major ver-

sions of Chrome and Firefox. The experiment address the following research ques-

tions:

RQ8 Is the proposed assessment method effective in assessing the retro persistence of

vulnerabilities?

RQ9 To what extend are vulnerability claims by NVD trustworthy?

RQ10 To what extend does the bias in vulnerability claims by NVD (if any) impact con-

clusions of a vulnerability analysis?

Similarly, by the word "effective" we mean the proposed method is able to assess most

of vulnerability claims for the target applications (i.e., Chrome and Firefox). The out-

comes of the experiment present an empirical evidence that vulnerability claims by
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NVD contains significant biases, which may significantly impact the conclusion of a

vulnerability analysis. The details of this experiment are presented in Chapter 9.

2.3 Chapter Summary

This chapter presented the research objective, as well as the research method to attain the

objective in this dissertation. The major focus of this work is to propose empirical method(s)

to evaluate empirical vulnerabilities. We followed the inductive inference research method-

ology to carry out the research. During the course of the dissertation, we have refined the

objective into several technical research questions. The answers to these research questions

will help to meet the research objective.

In the next section, we are going to describe the survey of empirical vulnerability studies.
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A SURVEY OF EMPIRICAL VULNERABILITY

STUDIES

This chapter describes a survey about empirical vulnerability studies. The survey

focuses on the data usage of past studies, in which we study which data sources have

been used, and which data features are available in these data sources. We present

some descriptive statistics about the usage of data sources in these studies. Finally,

the survey briefly reviews past studies.

A
N important stepping stone for conducting research is to have a sufficient knowl-

edge about the literature. A traditional way, which is also very good, to achieve such

knowledge is to conduct a survey. Since we are interested in evaluation of empirical

studies, the objective of the survey on empirical vulnerability studies focuses on the follow-

ing research questions:

RQ1 Which are the popular data sources for vulnerability studies?

RQ2 Which data sources and features are used for which studies?

To find the answers for these questions, we conduct a survey on the vulnerability studies

that based their contributions on top of vulnerability data sources. For the first question,

RQ1, we look at past studies to learn their research questions and which data sources are

used in order to fulfill the research purposes. For the second one, RQ2, we examine the data

sources for provided features and see which features are for which research questions.

17
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The rest of this chapter is organized as follows. Section 3.1 describes the method that

we follow to conduct the survey. Section 3.2 reviews past studies. Section 3.3 presents a

qualitative analysis on data sources used in past studies. Section 3.4 summarizes the chapter.

3.1 The Method to Conduct the Survey

We partially adopt the guidelines of Kitchenham [Kit04] and Webster and Watson [WW02] to

conduct the survey. We select candidate papers in leading journals, conferences, and work-

shops. We search the Scopus (www.scopus.com) for computer science publications with fol-

lowing keywords: “empirical stud(ies)/analysis, software vulnerabilit(ies), software security".

We also apply the similar search on Google Scholar. Finally we manually evaluate the rele-

vance of the papers based on their title and abstract. For selected papers, we look at their

bibliography for other candidates. Next, we describe the inclusion criteria for selected pub-

lications.

Included papers are published between 2005 and 2012. Moreover, selected papers should

have their major contributions based on (or validated by) some vulnerability data sources.

Some works in the same series by same authors and with very similar content such as a

conference/workshop paper and its extended journal version are intentionally classified and

evaluated as separate studies for a more rigorous analysis.

Indeed, research studies in the field of software vulnerabilities are diversity and cover

different research topics which might or might not employ a vulnerability data set. Hence,

this chapter mostly scopes out research works that explicitly relied on vulnerability data sets.

Concretely, we focus on past papers in the following research horizons:

• Fact Finding. Works in this horizon describe the state of practice in the field, e.g.,

[Ozm05; OS06; Res05]. These studies provide data and aggregate statistics but do

not provide models for prediction. Some research questions picked from prior studies

are “What is the median lifetime of a vulnerability?"[OS06], “Are reporting rates declin-

ing?"[OS06; Res05].

• Modeling. Studies in this area aim to find models that captures certain aspects of vul-

nerabilities. For example, in [Alh07; AM05b; AM08; And02; Res05], researchers invent

mathematical models for the evolution of vulnerability, and collect vulnerability data

to validate their models.

www.scopus.com
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• Prediction. Such works in this horizon focus on predicting particular attributes of vul-

nerabilities based on historical data. Mostly they predict the existence of vulnerabil-

ities in code base, e.g., [CZ11; Geg09b; Jia08; Men07; Neu07; Ozm05; SW08b; SW08a;

ZN09; Zim07]. The main concern of these papers is to find a metric or a set of metrics

that correlates with vulnerabilities in order to predict vulnerable source files.

If we look at the issue of the lifetime of vulnerabilities, Fact Finding papers will provide

statistics on various software and the related vulnerability lifetime. Meanwhile, Modeling

papers will try to identify a mathematical law that describes the lifetime of vulnerabilities

e.g., a thermodynamic model [And02], or a logistics model [AM05b]. The good papers in

the group will provide experimental evidences that support the models, e.g., [Alh07; AM05b;

AM08]. Studies on this topic aim to increase the goodness-of-fit of their models i.e., try to

answer the question “How well does our model fit the facts?". Prediction studies identified

software characteristics (or metrics) that correlate with the existence of vulnerabilities, and

then used these metrics to predict whether a software component will exhibit a vulnerability

during its lifetime. These papers usually use statistics and machine learning methods and

back up their claim with some empirical evidence. These studies focus on the attribute and

the quality of prediction, and they aim to answer the question “How good are we at predict-

ing?"

We collected 59 papers that were in the scope of this study. These 59 papers are referred
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Note: a paper could be classified into one or more research topics depended on its contributions.

Figure 3.1: Classification of primary studies yearly.
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Table 3.1: Details of primary studies.

Studies are formatted according to their contributions: FF – fact findings, M – modeling, P – prediction.

Year Type Primary Studies FF M P All

2005 W [Ozm05] 1 1 0 1

J [Res05] 1 1 0 1

C [AM05b], [AM05a], [Alh05] 0 3 0 3

2 5 0 5

2006 W [Abe06], [Fre06], [Man06], [Ozm06] 2 2 0 4

J [Aro06] 1 0 0 1

C [AM06b], [AM06a], [OS06], [Woo06b], [Woo06a] 1 4 0 5

4 6 0 10

2007 J [Alh07] 0 1 0 1

C [Kim07], [Neu07] 0 1 1 2

0 2 1 3

2008 W [Geg08b], [SW08a] 1 0 1 2

J [AM08] 0 1 0 1

C [Joh08], [SW08b] 0 1 1 2

1 2 2 5

2009 C [Geg09a], [Geg09b], [JM09], [MW09b], [SM09], [Sch09b], [Sch09a], [Vac09], [Wan09] 5 2 3 9

2010 W [Fre10], [MN10], [NT10], [Ran10] 3 0 1 4

J [Aro10], [LZ10] 1 1 0 2

C [Boz10], [CZ10], [Cla10], [Zim10] 1 0 3 4

5 1 4 10

2011 J [CZ11], [MW11], [Sch11], [Shi11], [Woo11] 1 2 2 5

C [Gal11], [Mas11], [You11], [Zha11] 1 2 1 4

2 4 3 9

2012 W [AM12] 1 0 0 1

J [WD12] 0 0 1 1

C [BD12], [EC12], [NM12c], [NM12a], [Sha12], [Shi12] 3 3 0 6

4 3 1 8

Total 23 25 14 59
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to as primary studies [Kit04]. Of these, 12 were published in workshops, 35 in conferences,

and 12 in journals. Figure 3.1 classifies primary studies yearly by publication types (a), and

research topics (b). It reveals a stable trend of publications in years.

Table 3.1 lists all primary studies with respect to their publication years, and types of

the venue (i.e., W–workshop, C–conference, and J–journal). We format the primary studies

according to their research horizons: italic–fact finding studies, bold–modeling studies, and

underline–prediction studies. Notice that some primary studies are classified into several

research horizons. Their format will be the combination, such as bold italic for fact findings

and modeling studies. Therefore, the sum of all studies might be different from the sums of

all individual horizons.

Among the collected primary studies, I also included my own empirical studies during

the PhD course. However, the reviews for these studies are not presented in this chapters as

they will be presented in the rest of the dissertation.

3.2 A Qualitative Overview to Primary Studies

3.2.1 Fact Finding Studies

The work by Frei et al. [Fre06; Fre10] can be easily described as the representative of the

security and economics fields. It offers a detailed landscape of which security vulnerabilities

affect which systems but does not provide a concrete answer to any research questions.

Ozment [Ozm05] pointed out many problems that NVD database suffered, which are

chronological inconsistency, incomplete selection, and lack of effort normalization. The chrono-

logical inconsistency referred to the inaccuracy in the versions affected by a vulnerability.

The second problem was that NVD does not cover every vulnerability detected in a software

system. In fact, only vulnerabilities that are discovered after 1999 and assigned CVE identi-

fiers are included. The third problem referred to the fact that data is not normalized for the

number of testers. The paper also discussed techniques to address the two first problems:

the bugs’ birth dates were approximated by adopting the repository log mining technique

[Sli05], the incomplete selection was compensated by making use of additional data sources.

The authors collected a vulnerability data set for OpenBSD, and used this data set to validate

many software reliability models in another study [Ozm06].

Arora et al. [Aro06] conducted an analysis to understand how software vulnerability in-

formation should be made public. The study correlated the software attacks in the wild

to vulnerabilities reported by NVD. The attack data was obtained from honeypots (www.

www.honeynet.org
www.honeynet.org
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honeynet.org). The empirical result exhibited that vulnerabilities which were published

and patched appealed more attacks than others. Additionally, the attacks on non-disclosed

vulnerabilities increased slowly overtime until these vulnerabilities were published.

In another empirical analysis, Arora et al. [Aro10] analyzed the correlation between se-

curity patches and the disclosure of vulnerabilities. The authors collected vulnerability data

from Computer Emergency Response Team/Coordination Center (CERT), Bugtraq to con-

duct their study. The outcome of the study was validated again vulnerability data reported

by NVD. Their study revealed that vulnerabilities which were disclosed, or had high sever-

ity were quickly patched. Also, open source vendors tended to deliver patched faster than

closed source vendors.

Ozment and Schechter [OS06] extended the data set discussed in their previous work

[Ozm05] to study whether software security improves with age. The most important findings

in that work was that foundation vulnerabilities were the majority in OpenBSD. However,

their data set did not include data for the first version of OpenBSD, but started from version

v2.3. This would be a validity threat to their findings.

Shin and Williams [SW08a] checked for whether code complexity could account for vul-

nerabilities. They collected known vulnerabilities reported by Mozilla Foundation Security

Advisories (MFSA), and corresponding bugs reported by Mozilla Bugzilla (MBug). Their

study reported a weak correlation between complexity metrics and the occurrences of vul-

nerabilities in Java Script Engine of Firefox v2.0 and retrospective versions.

Vache [Vac09] studied the vulnerability life cycle and the exploit appearance. They have

studied 52000 vulnerabilities reported by Open Source Vulnerability Database (OSVDB) since

December 1998. The study were mostly relied on the time features of the data entries. They

found that they could use Beta distribution to characterize the distribution of the disclosure

date, patch date, and exploit date.

Scarfone and Mell [SM09] performed an analysis on the Common Vulnerabilities Scor-

ing System (CVSS) version 2, which is adopted by NVD to score the severity of its published

vulnerabilities. They analyzed severity scores of NVD entries to understand the effectiveness

of CVSS v2 with respect to CVSS v1. The analysis showed that most changes CVSS v2 have

met the desire goals (i.e., they are actually better than CVSS v1), but some changes com-

plicated the calculation of severity score while providing negligible effect. Gallon [Gal11]

developed another analysis on the distribution of CVSS scores in NVD vulnerabilities. The

study pointed out some deficiencies which might impact the vulnerability discrimination of

CVSS v2.

Schryen [Sch09a; Sch09b; Sch11] employed NVD data to conduct an empirical study

www.honeynet.org
www.honeynet.org
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about the security difference between two kinds of software: open source and closed source.

The study compared 17 applications in several aspects: disclosed vulnerabilities, mean time

between disclosure, vulnerability severity, and patches. The empirical results did not show

any significant evidence about the difference between open source and close source.

Ransbotham [Ran10] studied the exploits on vulnerabilities of open source software to

understand whether disclosing source code would improve the security of software. To con-

duct his analysis, the author employed data from three sources: intrusion detection system

alert logs, vulnerabilities reported by NVD, and manual justification whether software was

open source or closed source. The author employed Cox proportional hazard model to ana-

lyze the risk of first exploitation attempt, and two-stage Heckman model to study the number

of alerts per each vulnerability. His study revealed that, compared with closed source soft-

ware, vulnerabilities in open source software have higher risk of exploitation, the attacks dif-

fused sooner and with higher total penetration, and higher volume of exploitation attempts.

Clark et al. [Cla10] worked on the honeymoon effect of 38 software systems (both close

and open source) in various categories: operation systems, server applications, and com-

mon user applications. The honeymoon effect was defined as the period of time counting

when a software product was released until its first vulnerability was publicly reported. They

collected security advisories from seven sources: Securina, US-CERT, SecurityFocus, IBM

ISS X-Force, SecurityTracker, iDefense’s (VDC) and TippingPoint (ZDI). They calculated the

honeymoon ratio p0/p0+1, in which p0 was the honeymoon period, and p0+1 was time pe-

riod between the discovery of the first and second vulnerabilities. All time measurements

were done on the initial disclosure date, which was the earliest published date of an advisory

in several sources. They find that most of software have a positive honeymoon (p0/p0+1 > 1),

and open-source software seem to have a longer honeymoon than close-source, contradict

to the fact that attackers cannot study the source code of the close-source software. How-

ever, they did not show any analysis on code bases of software systems. It is obviously the

limit in their study.

Allodi and Massacci [AM12] performed an analysis for the relation between vulnerabili-

ties’ severity score and their real attacks in the wild. That analysis focused on the question

that whether severity scores by NVD (i.e., CVSS), and Exploit-DB – a de facto standard data

base showing proofs of concept to exploit vulnerabilities, are actually representative for at-

tacks found in the wild. To identify real attacks, they relied on Symantec’s Threat Explorer,

and their own constructed data set called EKITS which contained vulnerabilities used by

exploit kits in the black market. Their findings showed that NVD and Exploit-DB are no a

reliable source of information for real attacks.
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Shahzad et al. [Sha12] described a large scale analysis on the life cycle of software vulner-

abilities. The analysis were based on data collected from NVD, OSVDB, and a data set from

other study [Fre06]. The authors highlighted that the patching of vulnerabilities in close-

source software is faster compared to open-source software. It is however contradict with

findings by [Aro10]. Such contradiction in these two studies might because they were based

on different data sources, and in different time frames.

Bilge and Dumitras [BD12] conducted an analysis on the data of real attacks in the wild.

The data set was built on Worldwide Intelligence Network Environment (WINE) [Win], de-

veloped by Symantec Research Labs, and public vulnerability data sources such as OSVDB,

Microsoft Security Bulletin (MSB), Apple Knowledge Base (AKB). The authors described a

method to identify zero-day attacks by mining the conducted data sets. They have identi-

fied 18 zero-day vulnerabilities, and analyzed the evolution of their attacks in time. Their

most important findings included: most zero-day attacks could not be detected in a timely

manner using current policies and technologies, and most of them were targeted attacks;

the public disclosure of vulnerabilities will significantly increase the volume of attacks (up to

five orders of magnitude).

Edwards and Chen [EC12] studied the correlated between several metrics generated by

Static Code Analyzers (SCAs), as well as SCA-identified issues, and the actual vulnerability

rates (in terms of number of CVE entries). The study outcome showed that SCAs could be

sued to make some assessment of risk due to the significant relation between the number of

SCA-identified issues and the actual vulnerability rates in next releases of software. However,

metrics generated by SCAs could not be used for the same purpose due to an insignificant

correlations between metrics values and vulnerability rates.

3.2.2 Modeling Studies

Anderson [And02] discussed the trade-off in security in open source and close source sys-

tems. On one side ‘to many eyes, all bugs are shallow’, but in the other side, ‘potential hackers

have also had the opportunity to study the software closely to determine its vulnerabilities’.

He proposed a VDM, namely Anderson’s Thermodynamic – AT, based on reliability growth

models. In the AT model, the probability of a security failure at time t , when n bugs have

been removed, was in inverse ratio to t for alpha testers. This probability was even lower for

beta testers, λ times more than alpha testers. However, he did not conduct any experiment

to validate the proposed model

Rescorla [Res05] focused on the discovery of vulnerability. Although he discussed out
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many shortcomings of NVD, his study heavily relied on it. By studying vulnerability reports

of several applications in NVD, Rescorla introduced two mathematical models to capture the

discovery trends of vulnerabilities. These models were Rescorla’s Linear model and Rescorla’s

Exponential model, to identify trends in vulnerability discovery.

Alhazmi et al. [AM05a; AM05b; Alh07] observed vulnerabilities of Windows and Linux

systems from different sources. For Windows systems, the data sources were mostly NVD,

other papers, and private sources. For Linux systems, data was from NVD and Bugzilla for

Linux. The authors tried to model the cumulative vulnerabilities of these system into two

models: the logistic model and the linear model. Based on the goodness of fit on each model,

the authors gave a forecast about the number of undiscovered vulnerabilities, and empha-

sized the applicability of the new metric called vulnerability density which was obtained

by dividing the total of vulnerabilities by the size of the software systems. Also based on

these vulnerability data, Alhazmi and Malaiya [AM08] compare their proposed models with

Rescorla’s [Res05] and Anderson’s [And02]. The result showed that their logistic model had a

better goodness of fit than others.

Woo et al. [Woo06a] carried out an experiment with AML on three browsers IE, Firefox

and Mozilla. However, it was unclear which versions of these browsers were analyzed. Most

likely, they did not distinguish between versions. In their experiment, IE has not been fitted,

Firefox was fairly fitted, and Mozilla was good fitted. From this result, we could not con-

clude anything about the performance of AML. In another experiment, Woo et al. [Woo06b]

validated AML against two web servers: Apache and IIS. Also, they did not distinguish be-

tween versions of Apache and IIS. In this experiment, AML has demonstrated a very good

performance on vulnerability data.

Kim et al. [Kim07] introduced AML for Multiple-Version (MVDM) which was the gener-

alization of AML. MVDM divides vulnerabilities of a version into several fragments. The first

fragment included vulnerabilities affecting a version and its past versions, and other frag-

ments included shared vulnerabilities of a version and its future versions. The authors com-

pared MVDM to AML on Apache and MySQL. Both models were well fitted the data. MVDM

was slightly better, but not significant.

Joh et al. [Joh08] proposed JW model, and compared it to AML on WinXP, Win2K3 and

Linux (RedHat and RedHat Enterprise). The goodness-of-fit of JW was slightly worse than

AML. In other work, Younis et al. [You11] proposed YF model and compared it to AML on

Win7, OSX 5.0, Apache 2.0, and IE8. The results showed that YF was sometime better than

AML.

Abedin et al. [Abe06] proposed four security metrics to evaluate the state of security of
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software based on existing vulnerabilities and historical vulnerabilities in a software service.

The metrics were derived from the severity of vulnerabilities. The authors conducted an

experiment using NVD data to evaluate their metrics. However the result of the experiment

was not clearly reported.

Manadhata et al. [MW09a; Man06; MW11] worked on a system-level metric called at-

tackability, which estimated the opportunities to attack. This metric was first introduced in

[How05]. Manadhata et al. categorized the attackability of a software system into different

abstract dimensions. These dimensions together defined the attack surface of the system,

which was how much the software was exposed to attacks. The attackability is therefore

measured by the total area of the attack surface. The authors have conducted some experi-

ments to validate the proposed metrics.

Liu and Zhang [LZ10] analyzed the severity scores of a large set of vulnerabilities in sev-

eral data sources, including IBM ISS X-Force, Vupen, and NVD. Their analysis exhibited the

significant difference between the severity scores of vulnerabilities by different data sources.

Based on the outcome of the analysis, the author proposed a new system for rating and scor-

ing vulnerabilities.

3.2.3 Prediction Studies

Hereafter, we briefly review studies on this area after 2005. For older studies, interested read-

ers can find more details in the review of Catal and Diri [CD09].

Neuhaus et al. [Neu07] constructed a tool called Vulture to predict vulnerable compo-

nents for Mozilla products with a hit rate of 50%. Vulture used a vulnerability database for

Mozilla products for training its predictor. This database was compiled upon three main

different sources: MFSA, MBug and Concurrent Version System (CVS) archive. Vulture col-

lected the import patterns and function-call patterns in many known vulnerable modules

and then applied the Support Vector Machine (SVM) technique classify new modules.

Meneely and Williams [MW09b] performed an empirical case study examining the cor-

relation between the known vulnerabilities and developers’ activities in Red Hat Enterprise

Linux 4. They found that files developed by independent developers were move likely to

have vulnerability. Files with changes from nine or more developers were more likely to have

vulnerability than others.

Shin et al. [SW08a; SW08b] argued that software (in)security and software complexity are

related. In order to validate these hypotheses, the authors conduct an experiment on the

JavaScript Engine (JSE) module of the Mozilla Firefox browser. They mined the code base
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of four JSE’s versions for complexity metric values. Meanwhile, faults and vulnerabilities for

these versions are collected from MFSA and MBug. Their prediction model is based on the

nesting level metric and logistic regression methods. Although the overall accuracy is quite

high, their experiment still misses a large portion of vulnerabilities.

In another work, Shin et al. [Shi11] evaluated the prediction power of complexity met-

rics and code churn in combination with developers’ activity metrics. They used 34 minor

versions of Firefox between versions 1.0 and 2.0, which got combined into 11 releases. Their

setup consist of a next-release experiment where each release is tested with a model built

over the previous three releases. The authors used logistic regression and under-sampling of

the training set, variable selection based on information gain and logarithmic transforma-

tion of the independent variables. In their results, recall is between 68% and 88% and the file

inspection ratio is between 17% and 26% (precision is 3%).

Gegick et al. [Geg09a; Geg09b] employed Automatic Source Analysis tools (ASA) warn-

ings, code churn and total line of code to implement their prediction model. However, their

experiments were based on private defected data sources and they thus were difficult to re-

produce.

Chowdhury et al.[CZ11; CZ10] claimed the combination of non-security realm such as

combine complexity, coupling and cohesion (CCC) metrics were useful for vulnerability pre-

diction. They conducted an experiments on fifty-two releases (including both major and

minor releases) from v1.0 to v3.0.6. They collected a vulnerability data set for Firefox, which

was assembled from MFSA and MBug, and calculate CCC metrics using a commercial tool

(Understand C++). These values were then fed to a trained classifier to determine whether

the source code is vulnerable. They obtained an average accuracy rate of 70% and recall rate

of 58%.

Bozorgi et al. [Boz10] attempted to predict the exploitability of vulnerabilities using data

mining and machine learning approach. In their experiment, a balanced set of 4,000 vulner-

abilities of OSVDB and NVD is used to produce very high dimension vectors (95,378 features)

for each vulnerability. These vectors were then fed into an SVM-based classifier to predict

the exploitability of vulnerabilities. The exploitability was considered in two folds: whether

a vulnerability likely was exploitable, and how long that a vulnerability was to be exploited.

The experiment has showed a high accuracy of nearly 90% for the first fold, and 75%-80% for

the second.

Zimmermann et al. [Zim10] conducted a large-scale empirical study on Windows Vista.

In that study, they empirically evaluate the efficacy of classical metrics like complexity, code

churn, coverage, dependency measures, and organizational structure of the company to pre-
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dict vulnerabilities. Their study showed that classical metrics could predict vulnerabilities

with a high precision but low recall rates. Meanwhile, the actual dependencies could predict

vulnerabilities with lower precision but substantially higher recall.

Zhang et al. [Zha11] conducted an empirical study to predict the time-to-next-vulnerabilities

of several software applications. The prediction models were based on time and severity

score of NVD vulnerability data. The authors concluded that NVD in generally have poor

prediction capability. Then they discussed several reasons that might decrease the predic-

tion power of their models.

Walden and Doyle [WD12] proposed Static-Analysis Vulnerability Indicator (SAVI) to com-

bine several types of static-analysis data to rank application vulnerability. Organizations

could use SAVI to select a less vulnerable software applications based on the outcome ranks

of vulnerability. The authors have conducted an experiment to evaluate the proposed met-

rics on several web applications. The outcome has shown a strong relation between the

predicted ranks and the actual ranks, which were based on number of NVD entries.

3.3 A Qualitative Analysis of Vulnerability Data Sources

In this section, we study the data sources and their features that are used in primary studies.

3.3.1 Classification of Data Sources

Based on the owner of data sources, we have two types: software vendor (shortly, vendor),

and third-party organization (shortly, third-party). The former indicates the data sources

owned by the vendor who develop and/or distribute software targeted by the data sources.

The latter, as name suggested, indicates data sources run by third-party organization who

are not vendor of software targeted by the data sources.

Based on the level of abstraction, we also have two types: advisory and bug tracker. An

advisory data source consists of high level reports which mostly target end-users. An advi-

sory report usually provide textual description of the security issues, and solution for these

issues, usually software patches to fix the problems. On contrary, a bug tracker data source

mainly targets developers. A bug tracker report describes how to reproduce the problem and

other technical information for developers to fix the corresponding bug.

Table 3.2 summarizes different categories of data sources. Each category has an abbre-

viation name (i.e., code name), a full name, and a description. Among four categories, we

have not found any data source being classified as Third-party Bug Tracker. The missing of
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Figure 3.2: The usage of data sources in all research topics (left) and its breakdown (right).

data source in this category might come from the purpose of bug trackers which are mostly

interested by software vendors in fixing bugs. Meanwhile, end-users and third-party orga-

nizations are not interested in this kind of data. However, we still keep the definition of this

category for the completeness. We define an extra categories called Other (OTH). Other data

sources determines ones that could not be classified in one of above categories, they could

be a personal effort in synthesizing data from different sources, e.g., Ozment’s data source.

We additional classify data sources with respect to their availability to public. From this di-

mensions, we have Public (PUB), Private (PRV), and Mix (MIX) data sources. The public data

sources are publicly available to all. On the other hand, private data sources are limited to

the data source providers or their clients. Mix data sources are something in the middle:

some features are public, but some features are private.

Table 3.3 summarizes data sources used in primary studies. Each data source is reported

with a short name and a full name. The full name is provided by the data source provider,

but the short name is not necessary. Some short names are also well known such as Bugtraq,

NVD, OSVDB, while many others are local in this chapter(denoted by a star in this table).

To investigate the usage of data sources in primary studies, we count how many times a

kind of data sources was used. For example, a primary study use NVD, OSVDB, and MBug.

Because both NVD and OSVDB are TDAV data source, and MBug is a BUG data source. We

increase the usage of TADV by 1, and BUG also by 1 similarly.

Figure 3.2 exhibits the usage of data sources reported in Table 3.3 in primary studies. It

reports the usage for all data source categories (left), and the usage breakdown in individual

research topics (right). From the pie chart on the left, it is very easy to observe the domi-
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Table 3.2: Classification of vulnerability data sources.

Category Description

ADV Vendor

Advisory

A database of security advisories for one or more software. An se-

curity advisory is a security report that mostly targets end-users,

which provides textual summary about the security issues as well

as their solutions (or work-around) doable by end-user to prevent

or mitigate the problems. The data source is maintained by the

software vendor.

TADV Third-party

Advisory

A database of security advisories for one or more software. The

data source is maintained by third-party organization who are not

vendor of the software mentioned in the data source.

BUG Vendor Bug

Tracker

A database of bug reports for one or more software. A bug report

contains technical information for developers to fix the bug. The

data source is maintained by the software vendor.

TBUG Third-party

Bug Tracker

A database of bug reports for one or more software. The data

source is maintained by third-party organization. Thus far, there

is no data source in this category.

OTH Other Source A data sources that does not belong to above categories.

PRV Private Source The access to data source is limited to the data source provider

and/or their clients.

PUB Public Source The access to data source is available to public. However, some

entries might be restricted due to the policy of the data source

provider.

MIX Mix Source The access to data source is available to public. However, some

features in all entries are restricted to the data source provider

and/or their clients.
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Table 3.3: Vulnerability data sources in past studies.

Short Name Name Category Provider

AKB Apple Knowledge Base PUB ADV Apple

Bugtraq Security Focus PUB TADV Security Focus

Bugzilla Mozila Bugzilla PUB BUG Mozilla Foundation

Cisco Cisco PRV OTH Cisco

CIT Chrome Issue Tracker PUB BUG Google

iDef(∗) iDefense PUB TADV Verisign

MFSA Mozila Foundation Security

Advisories

PUB ADV Mozilla Foundation

MSB Microsoft Security Bulletins PUB ADV Microsoft

NVD National Vulnerability Database PUB TADV NIST

OpenBSD OpenBSD Errata PUB ADV OpenBSD

OSVDB Open Source Vulnerability

Database

PUB TADV Open Security Foundation

Ozmen Ozmen’s Data Source PUB OTH

RHBugzilla RedHat Bugizlla PUB BUG RedHat

RHSA RedHat Security Advisories PUB ADV RedHat

SAP SAP PRV ADV SAP

Secunia Secunia MIX TADV Secunia

ST(∗) Security Tracker PUB TADV Security Tracker

STE(∗) Symantec’s Threat Explorer PUB OTH Symantec

US-CERT US-CERT PUB TADV US-CERT

Vupen Vupen PRV TADV VUPEN Security

WINE Worldwide Intelligence Network

Environment

PRV OTH Symantec

Xforce(∗) ISS/Xforce PUB TADV IBM

ZDI Zero Day Initiative PUB TADV TippingPoint

(∗): short names are given by me.

nance of the third-party databases (TADV) which occupies 56% of the data sources usage

in primary studies. The other (OTH) data sources take a modest fraction, approximate 10%.

BUG and ADV equivalently share the rest, more or less, which are orderly 13%, and 21%.
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The clustered bar plot on the right of Figure 3.2 details the usage of data sources in in-

dividual research topics. The TADV data sources are preferred the most in Fact Finding and

Modeling studies: 61% and 65% of the used data sources are TADV in these studies. The pre-

diction studies more prefer both ADV and BUG data sources than others, 28% (for ADV) and

28% (for BUG). However, the share of TADV is still high, 28%, which confirms the preference

for this kind of data sources in the community.

The rationale for the high usage ratios of both BUG and ADV data sources in Prediction

studies is the relationship from vulnerabilities to their corresponding source files. This re-

lationship is essential to set up (and/or validate) a prediction model. Researchers could es-

tablish this relationship thank to BUG and ADV data sources (and some repository mining

technique [Sli05]). However, these kinds of data source usually do not provide version infor-

mation, i.e., which versions are vulnerable to which vulnerabilities. The missing data could

be found in TADV ones. This reasons the relatively high usage ratio of TDAV data sources in

the Prediction area, though they are not dominant.

Some Prediction studies [Geg08a; Geg08b; GW08] employed PRV data sources to conduct

their prediction models. This raises the usage ratio of PRV data sources in this area. However,

this ratio is still lower than others (except OTH data sources which are not used) because

these data sources usually could not be replicable due to the disclosure policy of the data

source owners.

The repeatability is responsible for the low usage ratios of OTH data sources in all other

research topics. Some OTH data sources are not public, or are out date, or require huge ad-

hoc effort to reconstruct. Thus studies based on these sources are hard to reproduce.

In contrary, TADV data sources are publicly available to all researchers. These data sources

also provide vulnerabilities data for a variety of software. Therefore, researchers can easily

repeat studies based on TADV data sources. Moreover, experiments relied on TADV could

be also applied to numerous applications, which increases the generality of the withdrawn

conclusions. As the result, TADV are more frequently used than others in the community.

Figure 3.3 details the usage of individual TADV data sources. The bar plot indicates the

number of primary studies that employs a particular data source. The numbers on top rep-

resent the percentage of primary studies that employ the corresponding data source to the

primary studies that employ third-party data sources (non-parenthesized), and to the to-

tal primary studies (parenthesized). The bar plot shows that: 95% of TADV-based primary

studies employ NVD. This confirms the top most popularity of NVD.

Though there are several similar TADV data sources (e.g., OSVDB, Bugtraq), NVD be-

comes the top most popular one because of two reasons, probably. First, CVE-ID, the identi-
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The numbers on top are the numbers of primary studies that use the corresponding data source, and its per-

centage to all studies that use third-party data sources.

Figure 3.3: The usage of third-party data sources.

fier of NVD, is used as a de-factor standard to identify vulnerabilities, and to link across data

sources. Second, NVD supports most of features that provided by other data sources (this

will be shown later).

3.3.2 Features in Data Sources

The data source features are summarized in Table 3.4. Each feature has a unique ID, a name,

and a short description about the meaning of the feature. Features are grouped into follow-

ing categories.

• Reference includes features describing the source of an entry e.g., who creates an entry

(RREP), or cross references among different data sources, e.g., unique id of an NVD entry

(RCVE), or hyperlinks to relevant entries in other data sources (RREF).

• Impact includes features describing the impact of the problem reported by an entry

in various perspectives: whether the problem is security related or not (IC, IV), textual

description (ID, IT), severity of the consequence (IS), and solution for the problem (IP).

• Target includes features describing the target applications related an entry, such the

version where the problem gets fixed (VF), then version at discovery (VD), and affected

versions (VA).

• Life cycle includes features about different milestone in the lifetime of the problem

reported by an entry. Typically, a security problem (i.e., vulnerability) has following
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milestones in its lifetime: when the problem is committed to the code base (TI), when

the problem is discovered by either attacker or researcher (TD), when the vendor ac-

knowledges the problem (TN), when the problem gets fixed (TF), when the problem is

publicly announce to public (TA), when the problem is firstly exploited (TE).

Table 3.5 presents the availability of the features listed in Table 3.4 in data sources used in

past studies (see Table 3.3). The bullet at the cross between a feature in a column and a data

source in a row indicates the feature is available in the data source. The availability of a fea-

ture is affirmed if we find an entry which has a field for a feature no matter this field is empty

or not. Notice that for some private data source (e.g., Cisco) or commercial data source (e.g.,

Vupen) we do not have access to the data. Thus we could not make any assessment on these

data sources.

Figure 3.4 reports the usage of data features in primary studies. Each feature is counted

at most once in each study, no matter the feature could be belong to different data sources.

For example, if a study used TA of two data sources NVD and OSVDB, we still count the

Table 3.4: Potential features in a vulnerability data source.

Cat. ID Name Description

R
ef

er
en

ce

RID Unique ID The unique ID of this problem within a data source

RCVE CVE ID Reference to CVE/NVD entry

RREP Reporter Person who reports or files this problem

RREF Reference Links Reference to other confirmation sources

RREFC Reference to Source Code Reference to locations in codebase which are responsible for this problem

Im
p

ac
t

IC Category Type of entry, e.g., Bug, Security, Enhance, Feature

ID Description Text about the problem

IT Title Short description of this problem

IV Vulnerability Discernibility Determine whether this problem is a security vulnerability

IP Patch/Solution Solution for the vulnerability, e.g., patches or work around.

IS Impact Score A qualitative (e.g., low, high, medium) or quantitative (e.g., CVSSv2 score)

assessment of the problem’s impact

Ta
rg

et VF Fixed Version The version containing fix for this problem

VD Version at Discovery The version that this problem is discovered

VA Affected Versions Versions impacted by this problem

Li
fe

cy
cl

e

TI Injection Date The date when this problem is first introduced in the codebase

TD Discovery Date The date when this problem is discovered

TN Acknowledge Date The date when the software vendor get acknowledge about this problem

TF Fixed Date The date when this problem is fixed

TA Announced Date The date when this problem is publicly announced

TE Exploit Publish Date The date when this problem is known to be exploited

TU Update Date The date when this entry is updated
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usage of TA once in that study. The figure shows that almost features have been used in

primary studies. Due to the variety of research topics, none of features is used in more than

75% of primary studies. However, we can observe that VA and TA are the most frequently

used features (in more than 50% primary studies). It means that the life cycle (TA) and the

targets (VA) of vulnerabilities were the major concern in primary studies. The features that

are used more frequently than the rest are the reference features (RID, RREF), and severity of

vulnerabilities. The former features were mostly for correlating vulnerability data sources to

obtain missing features. The latter feature was used primarily in fact findings studies.

According to Figure 3.4, the majority of primary studies employed VA and TA to conduct

their research. The former VA is used to indicate which software products (or versions of

software product) are affected by an entry reported in a data source. However, we observe the

process to attain data for this feature is not clear (or at least not public). The conversations

Table 3.5: Features of vulnerabilities data sources.

Reference Impact Target Life Cycle

Data Source RID RCVE RREP RREF RREFC IC ID IT IV IP IS VF VD VA TI TD TN TF TA TE TU

MFSA • • • • • • • • • • •
AKB • • • • • • • • • • • •
MSB • • • • • • • • • • • • •
OpenBSD • • • • • • • •
RHSA • • • • • • • • • • • •
SAP • • • • • • • • • • • • • •
Bugzilla • • • • • • • • • •
RHBugzilla • • • • • • • • • •
Ozmen • • • • • • • • • • • • • • • • •
Cisco

CIT • • • • • • • • • •
Bugtraq • • • • • • • • • • •
iDef • • • • • • • • • • • •
Xforce • • • • • • • • • • •
NVD • • • • • • • • • • • • • •
OSVDB • • • • • • • • • • • • • • • • •
Secunia • • • • • • • • • • •
ST • • • • • • • • • •
US-CERT • • • • • • • • • • • • •
Vupen

ZDI • • • • • • • • • • •
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Each feature is counted at most once for each study no matter it could belong to different data sources. The

color of bars indicate the frequency of features: green – features are used in more than 75% of primary studies,

red – features are used in less than 25%, gray – others.

Figure 3.4: Usage of features by primary studies in each research topic.

with the NVD research team reveal that they do not actually perform test to determine which

versions are affected by which NVD entry. Importantly, they apply a strategy that “version X

and all its previous versions are vulnerable” when they could not find any better information.

This leads to noise in the NVD (and possibly other data sources). We will come back to this

issue later in Chapter 9 where we discuss more details about the impact such noise to the

validity of scientific studies.

The latter feature TA were mostly used as a surrogate for the discovery time of vulnerabil-

ity TD. It is because TD is only available in few TADV data source (i.e., OSVDB, see Table 3.5),

but data for this feature is empty in most entries of the data source ( 7%) [Vac09]. Such surro-

gate is a non-negligible threat to the validity of primary studies since the TA feature depends

on the disclosure policy of the data source providers. Such policy could change over time.
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Thus it is very hard to approximate the discovery date by public announced date.

3.4 Chapter Summary

This chapter presented a survey about empirical vulnerability studies. The survey includes

59 primary studies in international workshops, conferences/symposium, and journals from

2005 to 2012. The survey studied the data sources and data features used in primary studies.

It also summarized most common features in the used data sources. The analysis on data us-

age has revealed that third-party data sources were preferred more than other data sources

to conduct empirical experiments. Among several data source, NVD was the most popular

one, which was used in about 62% of primary studies across different research topics. Ad-

ditionally, Affected Versions (VA) and Announced Date (TA) were the mostly used features in

primary studies.

In the next chapter, we will present the data infrastructure for compiling experimental

data which will be used in the rest of this dissertation.
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DATA INFRASTRUCTURE FOR EMPIRICAL

EXPERIMENTS

This chapter focuses on the compilation of vulnerability data for further experiments

in the dissertation. It discusses the vulnerability data infrastructure including the

data sources and software infrastructure for data collection. It discusses potential bi-

ases in data sets that were collected based on the software infrastructure. The chapter

also describes other data sources such as market share information and code base

information of the target applications.

R
ECENTLY we have seen a substantial shift of vulnerability discovery from operating

systems to web browsers and their plugins [You13]. Additionally, a study by Google

[Raj11] shows that more than two-third of attacks to internet users have exploited

vulnerabilities of browsing software or its plugins. Therefore in this dissertation, we mostly

target our experiments on browsers, and select the most popular ones according to the main

providers of market share information.

Table 4.1 presents the vulnerability data sources for compiling the data infrastructure of

the dissertation. The category of the data source is based on the classification in the previ-

ous survey (see Table 3.2). The Apply for indicates the browsers of which the correspond-

ing data source provides vulnerability data. Among different third-party data sources (see

Table 3.3), we choose to use NVD because: first, it provides almost features which are sup-

ported by other third-party data sources; second, almost third-party data sources maintain

39
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references to NVD; third, it is the most popular data source in the literature (see Section 3.3),

thus choosing NVD will enable us to compare the outcome of our experiments to the others.

The rest of this chapter is organized as follows. Section 4.1 presents the data sources as

well as the software infrastructure to collect vulnerability data. Section 4.2 discusses poten-

tial biases in the data set collected by the infrastructure, and how to mitigate them. Sec-

tion 4.3 describes how to obtain the market share data for browsers. Section 4.4 summarizes

the chapter.

4.1 Software Infrastructure for Data Acquisition

Vulnerability data is not static, but keeps evolving as more and more vulnerabilities are dis-

covered when time passes by. During the course of this dissertation we have to collect vul-

nerability data for several times, especially when we start new experiments so that we base

the experiments on the up-to-date data. Therefore, in this chapter we will not present any

snapshot of vulnerability data. Instead, we describe the software infrastructure to acquire

the data. This infrastructure is consistently used throughout all experiments within this dis-

sertation.

Moreover, from the perspective of researchers who are not inside the data source providers,

we are in favor of an automated process to collect vulnerability data. This makes the col-

lected data objective rather than subjective. Some sanitization activities could be applied

to the collected data to improve the quality. However these activities should be clearly de-

fined, and should not be subject to personal judgments, which could be different from per-

son to person. Therefore the experiments based on the data could be easily and widely re-

producible by other researchers.

Table 4.1: Vulnerability data sources of browsers.

Data Source Category Apply for

National Vulnerability Database (NVD) TADV All browsers

Mozilla Foundation Security Advisories (MFSA) ADV Firefox

Mozilla Bugzilla (MBug) BUG Firefox

Microsoft Security Bulletin (MSB) ADV IE

Apple Knowledge Base (AKB) ADV Safari

Chrome Issue Tracker (CIT) BUG Chrome
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In the subsequent section we describe the software infrastructure to automate the data

acquisition task.

4.1.1 Acquiring Vulnerability Data for Firefox

Figure 4.1 exhibits the software infrastructure for collecting Firefox vulnerability data. The

infrastructure consists of a couple of scripts: Sphinx scripts (white rectangles) and R scripts

(filled rectangles). The former scripts are written in the Sphinx script language, which is

developed by myself and is optimized for extracting data in text files (e.g., HTML pages).

The latter scripts are written in R, a very popular language for data processing and statistics.

Apart from the output data set (stack of cans), the figure also shows some intermediate data

sources (filled cans), which are the outcome of the scripts.

The data collection process for Firefox starts by processing the MFSA dashboard (www.

mozilla.org/security/known-vulnerabilities/) which lists all MFSA entries. The MFSA

Feature Extractor invokes Web Crawler to download all HTML pages of all available MFSA

entries for Firefox, and parses the content of these pages to produce three intermediate data

sets: MFSA Data, MFSA Refs, and Bug-CVE Links. The first data set contains meta infor-

mation of each MFSA entry; the second maintains cross-reference links between an MFSA

entry to a CVE or an MBug entry; the third holds the associations between CVEs and MBugs

mentioned in each MFSA report.

For each MBug detected in an MFSA, MFSA Feature Extractor passes it to MBug Feature
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Figure 4.1: The infrastructure to collect vulnerability data for Firefox

www.mozilla.org/security/known-vulnerabilities/
www.mozilla.org/security/known-vulnerabilities/
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Extractor which in turn asks Web Crawler to download its corresponding XML page, and

parses the downloaded page to produce the data set MBug Data, which contains meta infor-

mation of MBug.

On the other side, NVD Feature Extractor for Firefox mines the NVD Archives data set,

which is provided by NVD (nvd.nist.gov/download.cfm), to produce two data sets: Fire-

fox NVD Data and Firefox NVD Refs. The former contains CVEs that mention Firefox as the

affected application. The latter maintains the all reference links of a CVE to either an MBug

or an MFSA entry. Finally all the intermediate data sets are fed into the Firefox Data Synthe-

sizer to produce the final output data set, Firefox VDB.

The schemas of all these data sets are described as follows:

MFSA Data = (mfsaID, mfsaDate, title)

MFSA Refs = (mfsaID, refType, refID)

Bug-CVE Links = (bugID, mfsaID, cveID, patternType)

MBug Data = (bugID, mfsaID, bugDate)

Firefox NVD Data = (cveID, cveDate, a�ectedVersion)

Firefox NVD Refs = (cveID, refType, refID)

Firefox VDB = (bugID, bugDate, mfsaID, mfsaDate,

cveID, cveDate, minA�ectedVersion, maxA�ectedVersion)

Some features are self-explained by their name, we only describe the meaning for the rest.

Particularly, refType is one of strings 'CVE', or 'Bugzilla', or 'MFSA', which indicates the

meaning of the refID feature. The feature patternType determines the heuristic rule used to

associate CVE and MBug.

The heuristic rules to associate CVE and MBug are based on the relative positions of the

hyperlinks to MBug and hyperlinks to NVD in an MFSA report. To clarify, we use the term

BUG and CVE to denote hyperlinks to MBugs, and CVEs, respectively. If more than one similar

term appears in a sequence, we use the star symbol (*). There are following cases for these

relative positions.

• BUG*: one or more MBug hyperlinks, see Figure 4.2(a). We thus have no clue to link

these MBug entries to any NVDs entries. However, this case only applies for Firefox

v1.0. Thus we can safely assume that these MBug entries only affect Firefox v1.0 be-

cause they are fixed in Firefox v1.0.x. In other words, we still obtain the missing values

for the IV feature.

nvd.nist.gov/download.cfm
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(a) BUG* (b) BUG CVE

(c) CVE BUG* (d) BUG* CVE

Figure 4.2: Different patterns of BUG and CVE references in MFSA.
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• BUG CVE: one MBug hyperlink followed by an NVD hyperlink, see Figure 4.2(b). We

assume that the mentioned MBug entry correlates to the mentioned NVD entry. We

then correlate these entries together. This case occurs in most MFSA entries.

• (CVE BUG*)*: one NVD entry is followed by one or more MBug entries, and then an-

other NVD entry and MBug entries, see Figure 4.2(c). We assume that the NVD entry

correlates to the immediately followed MBug entries.

• (BUG* CVE)*: this case is the opposite of the previous one, see Figure 4.2(d). There

is one or more MBug entries followed by an NVD entry, then other MBug entries and

another NVD entry. Similarly, we assume that MBug entries correlate to their followed

NVD entry.

By correlating NVD and MBug, we assume that all affected versions of the NVD entry are

also applied for the MBug entry.

4.1.2 Acquiring Vulnerability Data for Chrome, IE, and Safari

The software infrastructure to download vulnerability data for Chrome, IE and Safari is illus-

trated in Figure 4.3.

For Chrome, first we download the CIT Data data set which contains a list of security bugs

of Chrome. The GUI of CIT allows users to query the data. The queried results then could

be exported to Comma Separated Values (CSV) file. Since we are only interested in security

bugs, we set the query parameter to acquire only this type of bugs, i.e., type:Security-Bug.

Second, the NVD Feature Extractor for Chrome, as similar as NVD Feature Extractor for Fire-

fox, also mines the NVD Archives to produce two intermediate data sets Chrome NVD Data

and Chrome NVD Refs. The meaning of these two data sets are similar to Firefox NVD Data

and Firefox NVD Refs, which have been discussed above. Finally, all intermediate data sets

are fed into the Chrome Data Synthesizer to produce the final vulnerability data set for Chrome,

i.e., Chrome VDB.

The acquisition of vulnerability for IE and Safari are mostly the same as Chrome. In this

dissertation we have no interest in any features of MSB as well as AKB, except their IDs.

Therefore, we will not present the infrastructure to collect features form these data sources,

but only for collecting vulnerabilities for IE and Safari from the NVD Archives data set.

The schemas of the data sets in Figure 4.3 are described as follows.
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Figure 4.3: The infrastructure to collect vulnerability data for Chrome, IE, and Safari.

CIT Data = (bugID, bugDate, cveID)

Chrome NVD Data = (cveID, cveDate, a�ectedVersion)

Chrome NVD Refs = (cveID, bugID)

IE NVD Data = (cveID, cveDate, a�ectedVersion)

IE NVD Refs = (cveID, msbID)

Safari NVD Data = (cveID, cveDate, a�ectedVersion)

Safari NVD Refs = (cveID, akbID)

Chrome VDB = (bugID, bugDate, cveID, cveDate,

minA�ectedVersion, maxA�ectedVersion)

IE VDB = (cveID, cveDate, msbID, minA�ectedVersion, maxA�ectedVersion)

Safari VDB = (cveID, cveDate, akbID, minA�ectedVersion, maxA�ectedVersion)

4.2 Potential Biases in Collected Data Sets

We have identified some validity threats to the collection of vulnerability data. These threats

are classified to the Construction validity to any experiments relying on this infrastructure to

attaining data. These threats are described as follows.
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Bugs in the implementation scripts. The software infrastructure in Figure 4.1 and Fig-

ure 4.3 consists of some implemented scripts. These scripts might be buggy, leading to mis-

takes in the collected data. We have tried to remove programming bugs as much as possible.

We first ran all the scripts in some samples, and then manually check the outputs of these

scripts to see if there was any mistakes. If yes, we fixed the scripts and ran the test again.

When all identified bugs have been eliminated. We ran the scripts to collect all data sets.

Then we randomly sampled the data sets for mistakes. If there was any, we fixed the bugs

and started over the data collection.

Bias in correlating MBug to NVD entries. Some MBug entries explicitly indicate the cor-

responding NVD in their titles, but the most of them do not. We employ the heuristic rules

described in the previous section to link. The rules might not hold for all cases, leading to

mistakes in the collected data. We tried to mitigate the mistakes by manually checking the

description of MBug and NVD entries in some samples.

Figure 4.4 reports the distribution of number of MBugs per NVD entry reported by MFSA

entries (up to January 2014). In most of cases (86%), each NVD is associated with a sin-

gle MBug. This means that the associations between MBug and NVD established via MFSA

apparently contain less bias. However, we have still manually verified many correlations be-

tween NVD and MBug entries. Fortunately all of them are found consistent.

Example 4.1 This example illustrates the corresponding between NVD and MBug entries.
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Figure 4.4: Histogram of number of MBugs per NVD entry, reported by MFSA.
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Figure 4.2(d) shows the screenshot of MFSA-2009-15. The description of this MFSA entry

said:

“Bjoern Hoehrmann and security researcher Moxie Marlinspike independently re-

ported that Unicode box drawing characters were allowed in Internationalized

Domain Names (IDN) where they could be visually confused with punctuation

used in valid web addresses. This could be combined with a phishing-type scam

to trick a victim into thinking they were on a different website than they actually

were.”

Also, this MFSA has two reference hyperlinks to two MBugs, and one reference hyperlink

to an NVD entry. The former are 479336 and 354592. The latter is CVE-2009-0652. The

description of the CVE-2009-0652 said:

“The Internationalized Domain Names (IDN) blacklist in Mozilla Firefox 3.0.6

and other versions before 3.0.9; Thunderbird before 2.0.0.21; and SeaMonkey be-

fore 1.1.15 does not include box-drawing characters, which allows remote attack-

ers to spoof URLs and conduct phishing attacks, as demonstrated by homoglyphs

of the / (slash) and ? (question mark) characters in a subdomain of a .cn domain

name, a different vulnerability than CVE-2005-0233. NOTE: some third parties

claim that 3.0.6 is not affected, but much older versions perhaps are affected.”

The titles of the MBug entries said:

MBug 479336: “ (CVE-2009-0652) IDN blacklist needs to include box-drawing

characters.”

MBug 354592: “Handling of U+2571 and U+FF1A in IDNs allows URL spoofing.”

By looking at the description of CVE-2009-0652 and the title of the two MBug 479336,

354592, it is clearly that they were talking about the same problem but at different levels of

abstraction.

4.3 Market Share Data

The information about market share of browsers are provided from several providers, e.g.,

Net Application (www.netmarketshare.com), StatCounter Global (gs.statcounter.com),

and W3Schools Online (www.w3schools.com/browsers/). Due to the lack of a standard way

www.netmarketshare.com
gs.statcounter.com
www.w3schools.com/browsers/
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Figure 4.5: The market share of browsers since Jan 2008.

to calculate software market share, these data providers use their own methods to achieve

the information. These methods could be classified into two classes: counting the number

of unique visitors (e.g., Net Application), or counting the number of page views (e.g., Stat-

Counter Global).

The latter method, counting the number of page views, might only be an approxima-

tion for the traffic share of browsers. This stats might be a good indicator for understanding

bandwidth-dominating browsers, but might be not appropriate for estimating the choice of

individual users which represents the market share. Since we are more interested in study-

ing the browser choice of individual people, we prefer to use the number of unique visitors

in this work.

Hereafter, we use the term market share to refer to the percentage of unique users of a

particular browser to the total unique users. Notably, users who interchangeably use more

than one browsers are counted multiple times.

We acquire market share of browsers from Net Application. The data is provided in

monthly percentage starting from January 2008 to September 2013. The market share of

each browser is the sum of all unique visitors (in percentage) of all versions of a browser. We

mostly focus on the share of top 4 dominant browsers. The market shares of these browsers

are exhibited in Figure 4.5.

Table 4.2 reports the yearly descriptive statistics of market shares of these browsers. All

the values are in percentage. The market share of Chrome in 2008 was below 1% because this

browser joint the market in December 2008.
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Table 4.2: Descriptive statistics of browsers market share.

Market share values are in percentage.

Year IE Firefox Chrome Safari

µ σ min max µ σ min max µ σ min max µ σ min max

2008 75.54 [2.38] 70.92 78.42 18.80 [1.67] 16.56 21.83 0.39 [0.58] 0.00 1.41 2.65 [0.19] 2.47 3.14

2009 67.55 [2.08] 63.69 70.17 23.54 [0.95] 22.27 25.05 2.68 [1.03] 1.53 4.71 3.52 [0.25] 3.19 3.88

2010 61.54 [1.07] 59.26 63.22 24.21 [0.67] 23.52 25.13 7.57 [1.49] 5.32 10.36 3.89 [0.08] 3.73 4.02

2011 55.87 [2.51] 51.87 59.22 22.67 [0.46] 21.83 23.72 14.60 [2.71] 11.15 19.11 4.63 [0.40] 4.13 5.43

2012 53.88 [0.59] 52.84 54.77 20.24 [0.38] 19.71 20.92 18.72 [0.59] 17.24 19.58 5.04 [0.23] 4.62 5.33

2013 56.30 [0.88] 55.14 57.80 19.57 [0.85] 18.29 20.63 16.58 [0.72] 15.74 17.76 5.46 [0.16] 5.24 5.77

4.4 Chapter Summary

This chapter presented the data infrastructure for the empirical experiments that will be dis-

cussed in the rest of the dissertation. We focused the data compilation for four browsers:

Chrome, Firefox, IE, and Safari. These browsers are top dominant in the market of browsing

software. The chapter described the software infrastructure for acquiring vulnerability data.

The chapter also presented the market share information for each browsers

In the next chapters, we are going to describe the observations based on the data col-

lected by the presented software infrastructure.
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AFTER-LIFE VULNERABILITIES

This chapter reports our first observational study and studies the interplay in the

evolution of source code and known vulnerabilities in Firefox over six major versions

(v1.0–v3.6) spanning almost ten years of development. We observe a large fraction of

vulnerabilities apply to code that is no longer maintained in older versions. We call

these after-life vulnerabilities. Through an analysis of that code’s market share, we

also conclude that vulnerable code is still very much in use both in terms of instances

and as global code base: CVS evidence suggests that Firefox evolves relatively slowly.

P
UBLIC vulnerability databases such as National Vulnerability Database (NVD, web.

nvd.nist.gov), Open Source Vulnerability Database (OSVDB, www.osvdb.org), Bug-

traq (www.securityfocus.com) have been used by both academics and industry to

study and assess the security of a software. Among these, NVD emerges as one of the most

popular source of vulnerabilities for a vast range of software types. Each entry in NVD (a.k.a

CVE) is assigned with a unique CVE-ID which has been used as a de-factor vulnerability

identifier among other vulnerability data sources. Each CVE is ‘assessed1’ against individual

versions (both older and recent ones) to understand which ones are vulnerable.

Besides the academic interests, the presence of “vulnerable" software, according to the

NVD, in a company’s deployment has a major impact on its compliance with regulation.

Some security protocol, such as US Government NIST SCAP [Qui10], evaluates the compli-

ance of software products based on the existence of vulnerabilities as well as their severity

1In fact, we do not known the assessment process.
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www.securityfocus.com
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score (e.g., CVSS). However, an analysis by Allodi and Fabio [AF12; All13b] on the exploits of

vulnerabilities in the wild has shown that basing on CVSS is not an effective strategy since

vulnerabilities with high CVSS score only represent a negligible amount of actual attacks.

Moreover, if you are a credit card merchant, you may need to obtain the compliance with

the PCI DSS[WC12] even if it is now not a regulation or a law2. If you use, e.g., Chrome v4

embedded in your products, then you might have a software that is vulnerable and may lose

the PCI DSS compliance since one of PCI DSS specific regulatory requirement is that: “fix all

medium- and high-severity vulnerabilities" [WC12, Chap. 9]. This may lead to fines raking

hundreds of thousands of euros.

Meanwhile the current strategy among software vendors is to counter the risk of exploits

by software evolution: security patches are automatically pushed to end customers, sup-

port for old versions is terminated, and customers are pressured to move to new versions.

The idea is that, as new software instances replace the old vulnerable instances, the eco-

system as a whole progresses to a more secure state. Additionally, this strategy also has some

economic advantages for software vendors: software market is a market of lemons [And01;

Ozm07b] the first comers have to change to gain market share, and the simultaneous main-

tenance of many old versions is simple too costly to continue. However such strategy leaves

many old, out-of-support versions, which we refer to as end-of-life versions – or simply dead

versions, with many unpatched vulnerabilities. This might be troubles for organizations who

still rely on end-of-life versions as discussed above.

The major concern that we try to address in this chapter is whether there is some empir-

ical evidence that software-evolution-as-a-security-solution is actually a solution, i.e., leads

to less vulnerable software over time.

The remainder of this chapter is structured as follows. Section 5.1 presents the findings

in the ecosystem of software evolution. Section 5.2 reports the findings in the ecosystem

of vulnerabilities. Section 5.3 analyzes the threats to validity. Section 5.4 summarizes the

chapter.

5.1 The Ecosystem of Software Evolution

We looked at six Firefox versions, namely v1.0, v1.5, v2.0, v3.0, v3.5 and v3.6. Their lifetimes

[Wik12a] can be seen from Figure 5.1. At the time of writing, the versions of Firefox that were

actively maintained were v3.5 and v3.6. Therefore, the rectangles representing version v3.5

2Some states in US (i.e., Nevada and Minnesota) have adopted PCI DSS as a actual law for some business

operating in these states [WC12, Chap.3 ]
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and v3.6 actually extend to the right. There is very little overlap between two versions that

are one release apart, i.e., between v1.0 and v2.0, v1.5 and v3.0, v2.0 and v3.5, or v3.0 and

v3.6. This is consistent with the conscious effort by the Mozilla developers to maintain only

up to two versions simultaneously.

Figure 5.2 illustrates the evolution of Firefox code base from version v1.0 to v3.6. From

this figure, the large fraction of code re-use reconciliate the seemingly contradictory infor-

mation that vulnerability discovery is an hard process with the existence of zero-day at-

tacks: when a new release gets out, the 40% of old code have been already analyzed by over

6 months. Therefore the zero-day attack of version X could well be in reality a six month

mounting attack on version X-1.

There is a long held belief in the community that security exploits are a social phenomenon:

the wider a user base the more economic appeal it has as a target, the more vulnerabilities

are likely to be found. In order to evaluate the impact of social economic aspect of vulnera-

bilities we consider the market share of the various versions in order to calculate the attack

surface of code that is around. The intuition is to calculate the Line of Code (LoC) on each

version that are currently available to attackers, either by directly attacking that version or by

attacking the fraction of that version that was inherited in later versions.

Let users(v, t ) be the number of users of Firefox version v at time t , and let loc(p,c) be the

number of lines of code that the current version c has inherited from the previous version p.

Then the total number of lines of code in version c is
∑

1≤p≤c loc(p,c). In order to get an idea

how much inherited code is used, we define a measure LOC-users as:

Lifetimes of Firefox Versions

2005 2006 2007 2008 2009 2010 2011
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v2.0
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Figure 5.1: Release and retirement dates for Firefox.
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Figure 5.2: Size and lineage of Firefox source code

LOC-users(v, t ) = ∑
1≤p≤v

users(p, t ) · loc(p, v). (5.1)

This is an approximation because the amount of code inherited into version v varies with

time, therefore, loc(p, v) is time-dependent. In this way, we eliminate transient phenomena

for this high-level analysis.

Figure 5.3 shows the development of the number of users and of LOC-users over time. It

is striking to see the number of Firefox v1.0 go down to a small fraction, while the LOC-users

for v1.0 stays almost constant.

An important observation is that even the “small” fraction of users of older versions ac-

counts to millions of users. You can imagine wandering in Belgium and each and every per-

son that you meet in the city still uses old Firefox v1.0.

This might have major implications in terms of the possibility of achieving herd immu-

nity as the number of vulnerable hosts would be always sufficient to allow propagation of

infections, see [Het00] for discussion on threshold for epidemics.
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Number of Firefox users (left) and LOC-users (right). While the number of users of Firefox v1.0 is very small,

the amount of Firefox v1.0 code used by individual users is still substantial.

Figure 5.3: Firefox Users vs. LOC Users

5.2 After-life Vulnerabilities and the Security Ecosystem

We looked at security advisories of Firefox and found 335 MFSAs, from MFSA-2005-008 to

MFSA-2010-48. In order to find out in which version a vulnerability applies to, we look at the

NVD entry for a particular vulnerability and take the earliest version for which the vulner-

ability is relevant. For example, MFSA 2008-60 describes a crash with memory corruption.

This MFSA links to CVE 2008-5502, for which NVD asserts that versions v3.0 and v2.0 are

vulnerable. The intuitive expectation (confirmed by the tests) is that the vulnerability was

present already in v2.0 and that v3.0 inherited it from there.

Figure 5.4 exhibits the cumulative numbers of vulnerabilities in individual versions of

Firefox. In the figure, we additionally mark the end-of-life for each version by a vertical line.

As is apparent, the number continues to grow up even if the life time of a version is termi-

nated. We call vulnerabilities discovered after the life time of a version as after-life vulnera-

bilities.

By the time of this observation, Firefox v3.5 and v3.6 are alive. Obviously we have no

after-life vulnerabilities for them. However, for other versions, Figure 5.4 shows a significant

amount of after-life vulnerabilities in the security landscape of individual versions of Firefox.

This phenomenon could be explained by the ecosystem of code evolution, as previously
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Figure 5.4: Vulnerabilities discovered in Firefox versions

presented in Figure 5.3. Even when a version is dead, their code base still survives for a very

long time since the code base is usually inherited across versions, see Figure 5.2. Thus when

a vulnerability is discovered in an alive version, i.e., a version which is still being supported,

it has some chances that this vulnerability falls into the code base of an older version, see

also Figure 5.2 (right). As the result, the number of after-life vulnerabilities arises.

After-life vulnerabilities are usually discovered in alive versions, then found to affect also

retro versions. In alive versions, these vulnerabilities are fixed and shipped to users through

security patches. However, they are not fixed in dead versions. Consequently, any products

relied on dead versions of Firefox would expose themselves to a major threat: they contain a

lot public-but-non-fixed after-life vulnerabilities.

We further study the breakdown of cumulative vulnerabilities in each version to see the

origin of vulnerabilities, i.e., where vulnerabilities were firstly introduced and survived. De-

pend on versions that a vulnerability affects, it can be classified into following sets:

• Inherited vulnerabilities are ones spanning consecutive versions.
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• Foundational vulnerabilities are inherited ones, but apply also for the very first version

e.g., v1.0.

• Local vulnerabilities are ones introduced in some versions, but fixed before the next

version comes out.

• Survive vulnerabilities are one discovered in some versions, and still survive in the next

versions.

• Regressive vulnerabilities are present in some versions, then they disappear to reappear

again in later versions.

This classification is obviously not exclusive. In the set of vulnerabilities of version x, the

inherited set I (x) subsumes foundational set F (x), and survive set of the immediate prede-

cessor S(x −1). Hence, if we categorize vulnerabilities of Firefox in general (do not consider

versions), we have three complete disjoint sets: foundational, non-foundational inherited,

and local vulnerabilities. Similarly, if we categorize vulnerabilities of each version individu-

ally, we have four disjoint sets: foundation, non-foundational inherited, survive, and local

vulnerabilities. In the collected vulnerability data, we observed a single instance of regres-

sive vulnerability, but it turned to be an input mistake which has been corrected later on by

the data provider.

The definition of foundational vulnerability is weaker (and thus more general) than the

one used by Ozment and Schechter [OS06]. We do not claim that there exists some code in

version v1.0 that is also present in, say, v1.5 and v2.0 when a vulnerability is foundational. For

us it is enough that the vulnerability applies to v1.0, v1.5 and v2.0. This is necessary because

many vulnerabilities (in the order of 20-30%) are not fixed. For those vulnerabilities it is

impossible, by looking at the CVS and Mercurial sources without extensive and bias-prone

manual analysis, to identify the code fragment from which they originated.

Table 5.1 reports the number of vulnerabilities in Firefox depended on the versions they

are discovered (columns), and the version they were first introduced (rows). For example,

there were 99 vulnerabilities that were discovered during the lifetime of Firefox v3.0, which

were introduced in Firefox v1.0. Since we have no regressions (see above), these 99 vulnera-

bilities also apply to all intermediate versions v1.5 and v2.0.

We can now easily categorize the vulnerabilities in the table according to the categories

that interest us: inherited vulnerabilities are the numbers above the diagonal (they are car-

ries over from some previous version); foundational vulnerabilities are those in the first row,
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Table 5.1: Vulnerabilities in Firefox

Version at

Introduction

Version at Discovery

v1.0 v1.5 v2.0 v3.0 v3.5 v3.6

v1.0 79 72 33 99 34 61

v1.5 — 109 88 0 0 0

v2.0 — — 163 24 0 1

v3.0 — — — 64 30 5

v3.5 — — — — 34 49

v3.6 — — — — — 21

Table 5.2: Vulnerabilities in individual versions of Firefox

(a) All vulnerabilities

Inherited

from

Version

v1.0 v1.5 v2.0 v3.0 v3.5 v3.6

v1.0 378 299 227 194 95 61

v1.5 - 197 88 0 0 0

v2.0 - - 188 25 1 1

v3.0 - - - 99 35 5

v3.5 - - - - 83 49

v3.6 - - - - - 21

Total 378 496 503 318 214 137

(b) After-life vulnerabilities

Inherited

from

Version

v1.0 v1.5 v2.0 v3.0

v1.0 228 203 126 50

v1.5 - 1 0 0

v2.0 - - 1 0

v3.0 - - - -

v3.5 - - - -

v3.6 - - - -

Total 228 204 127 50

excluding the first element (they are carries over from version v1.0); local vulnerabilities are

those on the diagonal (they are fixed before the next major release and are not carried over).

Another interesting perspective is to look at vulnerabilities in individual versions. Ta-

ble 5.2(a) reports the cumulative numbers of individual versions of Firefox, and their break-

down. These number could be derived from Table 5.1. For example, the cumulative num-

ber of vulnerabilities for a particular version, e.g., v2.0, is the sum of cells (r ow,col ) where

r ow ≤ v2.0 and col ≥ v2.0, which is 503. For each version in the columns, numbers in the first

row (except version v1.0) are foundational vulnerabilities, numbers in the diagonal are sum

of local vulnerabilities and survive vulnerabilities, and others are non-foundational inherited

ones. Table 5.2(b) is similar to Table 5.2(a), but only after-life vulnerabilities are counted.

According to Table 5.2, among the total vulnerabilities in individual versions, on average,
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51% are inherited from the very first version – foundational vulnerabilities, 17% are inher-

ited from other versions. Intuitively, inherited vulnerabilities (both foundational and non-

foundational) are responsibility of the legacy code in each version. Hence, the contribution

of legacy code to the (in)security of software (Firefox) is still a large portion. It is coherent to

the large amount of legacy LoC in each version.

Substantially, about 40% of vulnerabilities have been discovered after the versions were

out of support. These after-life vulnerabilities are mostly foundational, see Table 5.2(b).

Considering the market share of Firefox, see Figure 5.3, there are a significant amount of

exploitable vulnerabilities in the ecosystem of Firefox.

In short, the observation based on the collected data has reveal the following finding

about the security landscape of Firefox.

“For each version of Firefox, foundational vulnerabilities take a significant amount

among the total vulnerabilities. More than one-third of vulnerabilities are after-

life i.e., discovered after a version were out of support, and most of them are foun-

dational."

5.3 Threats to Validity

Construct validity includes threats affecting the way we collect vulnerability data.

Bias in data collection. We apply the software infrastructure described in Chapter 4. As

discussed, it might have some construction validity to the observation in this chapter. We

inherit the mitigation described in Section 4.2 to reduce the bias in the collected data.

Bias in NVD. We determine the Firefox versions from which a vulnerability originated by

looking at the earliest Firefox version to which the vulnerability applies, and we take that

information from the “vulnerable versions” list in the NVD entry. If these entries are not re-

liable, we may have bias in the analysis. We have manually confirmed accuracy for few NVD

entries, and an automatic large-scale calibration will be a part of future work (considering

the time this observation were made). Indeed, we have done such calibration in Chapter 9

where we report the bias in NVD and revisit the findings in this observation.

Internal validity concerns the causal relationship between the collected data and the con-

clusion in the study.

Ignoring the severity. We deliberately ignore the severity of vulnerabilities in our study.

Because current severity scoring system, CVSS, adopted by NVD and other ones (e.g., quali-
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tative assessment such as critical, moderate used in Microsoft Security Bulletin) have shown

their limitation. In accordance to Bozorgi et al. [Boz10], these systems are “inherently ad-hoc

in nature and lacking of documentation for some magic numbers in use". Moreover, in that

work, Bozorgi et al. showed that there is no correlation between severity and exploitability

of vulnerabilities.

External validity is the extent to which our conclusion could be generalized to other scenar-

ios. The combination of multi-vendor databases (e.g., NVD, Bugtraq) and software vendor’s

databases (e.g., MFSA, Bugzilla) only works for products for which the vendor maintains a

vulnerability database and is willing to publish it. Also, the source control log mining ap-

proach only works if the vendor grant community access to the source control, and devel-

opers commit changes that fix vulnerabilities in a consistent, meaningful fashion i.e., inde-

pendent vulnerabilities are fixed in different commits, each associated with a message that

refers to a vulnerability identifier. These constraints eventually limit the application of the

proposed approach.

Another facet of generality, which is also the limitation of this observation, is that whether

the findings are valid to other browsers, or other categories of software such as operating sys-

tem? We plan to overcome this limitation by extending the observation to different software

in future.

5.4 Chapter Summary

First, for the individual, we have the obvious consequence that running after-life software

exposes the user to significant risk, which should therefore be avoided. Also, we seem to

discover vulnerabilities late, and this, together with low software evolution speeds, means

that we will have to live with vulnerable software and exploits and will have to solve the

problem on another level.

Second, for the software ecosystem, the finding that there are still significant numbers of

people using after-life versions of Firefox means that old attacks will continue to work. This

means that the penetrate-and-patch model of software security (i.e., software-evolution-as-

a-security-solution) might not be enough, and that systemic measures, such as multi-layer

defenses, need to be considered to mitigate the problem.

These phenomena reveal that the problem of inherent vulnerabilities is merely a small

part of the problem, and that the lack of maintenance of older versions leave software (Fire-
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fox) widely open to attacks. Security patch is not made available because it is not being

deployed and because many users are slow at moving to newer version of software.

In terms of understanding the interplay of the evolution of vulnerabilities with the evo-

lution of software we think that the jury is still out, we cannot in any way affirm that most

vulnerabilities are due to foundational or anyhow past errors. We need to refine these find-

ings by a careful analysis of the fraction of the code base for each version.

These results have been possible by looking at vulnerabilities in a different way. Other

studies have studied a vulnerability’s past, i.e., once a vulnerability is known, we look at

where it was introduced, who introduced it etc. In this observation, we look at a vulnera-

bility’s future, i.e., we look at what happens to a vulnerability after it is introduced, and find

that it survives in after-life versions even when it is fixed in the current release.

The observation made in this chapter relies on the vulnerability claims by NVD. This

chapter assumes the data is all correctly provided. In Chapter 8, we present an automatic

method to estimate the retro persistence of vulnerability claims by NVD. Chapter 9 discusses

an experiment assessing the validity of vulnerability claims for Firefox and Chrome. The

experiment results exposes that many vulnerability claims for older versions of Chrome and

Firefox are not correct. Thus it might impact the observation of this chapter.

In the next chapter, we are going to present the observation on the traditional validation

methodology for vulnerability discovery models. The observation has revealed some critical

biases in the traditional methodology. Based on that, we have proposed a novel evaluation

methodology which can substitute the traditional one.
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A METHODOLOGY TO EVALUATE

VULNERABILITY DISCOVERY MODELS

Vulnerability Discovery Models (VDMs) operate on known vulnerability data to es-

timate the total number of vulnerabilities that will be reported after software is re-

leased. This chapter presents an observation on the traditional validation method-

ology for VDMs. It discusses several issues which might bias the outcomes of valida-

tion experiments that follow the traditional methodology. Based on that, this chapter

proposes an empirical methodology that systematically evaluates the performance of

VDMs along two dimensions: quality and predictability. The proposed methodology

tackles all identified issues of the traditional methodology.

T
IME-based vulnerability discovery models (VDMs) are parametric functions counting

the number of cumulative vulnerabilities of a software at an arbitrary time t . For

example, if Ω(t ) is the cumulative number of vulnerabilities at time t , the function

of the linear model (LN) is Ω(t ) = At +B where A,B are two parameters of LN, which are

calculated from the historical vulnerability data. Accurate models can be useful instruments

for both software vendors and users to understand security trends, plan patching schedules,

decide updates, and forecast security investments.

Figure 6.1 sketches a taxonomy of major VDMs. It includes Anderson’s Thermodynamic

(AT) model [And02], Rescorla’s Quadratic (RQ) and Rescorla’s Exponential (RE) models [Res05],

Alhazmi & Malaiya’s Logistic (AML) model [AM05b], AML for Multi-version (MVDM) model

63
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SRGM: Software Reliability Growth Model

Figure 6.1: Taxonomy of Vulnerability Discovery Models.

[Kim07], Weibull model (JW) [Joh08], and Folded model (YF) [You11]. Hereafter, we shortly

refer to time-based VDM as VDM.

The goodness-of-fit (GoF) of these models, i.e., how well a model could fit the numbers

of discovered vulnerabilities, is normally evaluated in each paper on a specific vulnerability

data set, except AML which has been validated for different types of applications (i.e., oper-

ating systems [Alh05; AM08], browsers [Woo06a], web servers [AM06b; Woo11]). Yet, all of

the validations so far have been done by the model authors, and there is no independent val-

idation by researchers who are different than these very authors. Furthermore, the validation

results of these studies might be biased by the following issues:

1. Past studies do not clearly define the notion of vulnerability. Indeed different defini-

tions of vulnerability (e.g., different databases such as NVD, versus MFSA) might lead

to different counted numbers of vulnerabilities, and consequently, different conclu-

sions.

2. All versions of a software are considered as a single entity. Though they belong to a
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same product line, they are still different entities because they are different by a non-

negligible amount of code. Considering them as a single entity might make the valida-

tion results imprecise.

3. A model has been usually considered as a good fit to a data set if its goodness-of-fit test

returns p-value ≥ 0.05. This threshold is sound to reject a bad model, but it is overly

optimistic to conclude whether a model is good.

4. The goodness-of-fit of the models is often evaluated at a single time point (of writing

the paper). This could seriously impact the conclusion about the quality of a VDM be-

cause a VDM could obtain a good fit at a certain time point (i.e., horizon), but could

turn to be bad at another time point. For example, while fitting AML to Win2K vulnera-

bilities, the experiment in [Alh05] reported the significance level p-value = 0.44, which

could be positive; whereas p-value = 0.05 in [Alh07], which is bad. Moreover, no study

uses VDMs as a predictor, for example, to forecast data for the next quarter.

To deal with these issues, it is necessary to have a methodology that analyzes the perfor-

mance of VDMs independently and systematically. In this chapter we propose a methodol-

ogy that addresses these issues, and answers two questions concerning VDMs: “Are VDMs

adequate to capture the discovery process of vulnerabilities?", and “which VDM is the best?".

The rest of this chapter is organized as follows. Section ?? presents terminology in this

chapter. Section 6.1 discusses an observation on the traditional methodology for conduct-

ing validation experiments for VDMs in the literature. Section 6.3 summarizes the proposed

methodology in a nut shell. Section 6.4 details the proposed methodology. Section 6.5 sum-

marizes the chapter.

6.1 An Observation on the Traditional Validation

Methodology

This section describes an observation on the traditional validation methodology for VDMs

and past valuation experiments following that method. We separate the observation into two

parts. First, we summarize the previous studies on VDMs and the methodology that is em-

ployed to perform the validation. Second, we summarize the actual results of the validation

performed in past studies and discuss some critical issues.
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6.1.1 The Traditional Methodology

Table 6.1 summarizes VDM validation studies. Each study is reported with its target VDMs

and the classes of software applications used to conduct the experiment. The table also re-

ports the validation methodology of the studies. VDMs have been validated in several soft-

ware classes spanning from server applications, browsers, to operating systems. These stud-

ies shared a common validation methodology which fitted VDMs to a single time horizon of

collected vulnerability data. They used χ2 test to determine whether a VDM fits actual data.

If the test returned p-value ≥ 0.05, they claimed the VDM to be a good fit to the data.

Thus, we employ the χ2 test in our methodology because it yields comparable results

between traditional single horizon analysis and ours (when the horizon is restricted to be

unique). Furthermore, χ2 test seems to be the most appropriate one among other goodness-

of-fit tests, such as Kolmogorov-Smirnov (K-S) test, and the Anderson-Darling (A-D) test.

The K-S test is an exact test; it, however, only applies to continuous distributions. An im-

portant assumption is that the parameters of the distribution cannot be estimated from the

data. Hence, we cannot apply it to perform the goodness-of-fit test for a VDM. The A-D test

is a modification of the K-S test that works for some distributions [NIS12a, Chap. 1] (i.e., nor-

mal, log-normal, exponential, Weibull, extreme value type I, and logistic distribution), but

some VDMs violate this assumption.

Moreover, many VDM classifications of past studies claimed that a VDM is a good fit to a

data set when the χ2 test returns p-value ≥ 0.05 because 0.05 is the significance level to rule

out models that surely do not fit. However it does not mean the models are good. We avoid

this pitfall by using the acceptance threshold of 0.80, and rejection threshold of 0.05. Other-

wise, a VDM is inconclusive. We further discuss about these thresholds in Section 6.4.2. Ad-

ditionally, we propose inconclusiveness contribution factor ω as a means to study the quality

of inconclusive VDM in the quality analysis.

Some studies [AM05b; AM08] employed Akaike Information Criteria (AIC) [Aka85], which

measures the relative quality of a statistical model for a given data set, to compare VDMs.

However, AIC gives no information about the absolute quality. It thus cannot be used to

determine the goodness-of-fit of VDM. Moreover, AIC varies with the number of free param-

eters of a VDM. Consequently, it might not be a good indicator to compare VDMs, because a

model with more free parameters naturally grants an advantage in AIC. Therefore we do not

use AIC, but rely on statistic tests to determine the goodness-of-fit and compare VDMs.

The predictability of VDMs were also discussed in some studies [AM06b; Woo11; You11]

by exploiting two measures, namely Average Error (AE) and Average Bias (AB) [Mal92]. How-
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Table 6.1: Summary of VDM validation studies.

Akaike Information Criteria (AIC) measures the relative quality of a statistical model for a given data set. Average Error (AE)

and Average Bias (AB) measure the average ratios between the actual data and the generated model.

Acronym: OS = operating system

Validation Method

Study Validated VDM Software Class Fit Model GoF test Predictability

Alhazmi et al.[Alh05] AML OS 1 horizon χ2 test –

Alhazmi et al.[AM05b] AML, AT, LP, RE, RQ OS 1 horizon χ2 test, AIC –

Alhazmi et al.[Alh07] AML, LN OS 1 horizon χ2 test –

Alhazmi et al.[AM06b] AML, LN Web Server 1 horizon χ2 test AE,AB

Alhazmi et al.[AM08] AML, AT, LN, LP, RE, RQ OS 1 horizon χ2 test, AIC –

Woo et al.[Woo06b] AML OS, Web Server 1 horizon χ2 test –

Woo et al.[Woo06a] AML Browser 1 horizon χ2 test –

Woo et al.[Woo11] AML OS, Web Server 1 horizon χ2 test AE,AB

Joh et al.[Joh08] AML, JW OS 1 horizon χ2 test –

Kim et al.[Kim07] AML, MVDM DBMS, Web Server 1 horizon χ2 test –

Younis et al.[You11] AML, YF Browser, OS, Web Server 1 horizon χ2 test AE,AB

Rescorla [Res05] RE, RQ OS 1 horizon unknown –

ever the application of AE and AB in these studies was inappropriate, because these mea-

sures were calculated for time points before the largest time horizon of the data set used

for fitting the VDMs. The authors used a VDM fitted to the data observed at time t0, and

measured its predictability at time ti < t0. In other words, this was not ‘prediction’ in the

common sense.

We avoid the above pitfall by analyzing the predictability of VDMs in a natural way. Con-

cretely, we fit a VDM to the data observed at time t0, and use the fitted model to evaluate

against data observed at time t j > t0.

6.1.2 The Validation Results of VDMs in Past Studies

Table 6.2 summarizes the validation results for VDMs. This table reports the p-values re-

turned by the goodness-of-fit test between generated curves and actual data. In Table 6.2,

p-values greater than or equal 0.80 (i.e., good fit) are bold, p-values between 0.05 and 0.80

(i.e., inconclusive-fit) are italic, otherwise it is a not-fit.

The AML model, inspired by the s-shape logistic model, is proposed by Alhazmi and

Malaiya [AM05b]. The idea behind is to divide the discovery process into three phases: learn-
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Table 6.2: Summary of VDM validation results (p-values) in the literature.

This table reports the returned p-values for the goodness-of-fit tests. The values are formatted to indicate the goodness-of-

fit of the VDM, particularly: blue,bold-good fit; italic-inconclusive; red-not fit.
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AML [Alh05] 2005 0.44 1 0.74 0.92 0.96

[AM05b] 2005 1 1 0.92

[Alh07] 2006 1 0.99 0.05 1 0.21 0.92 0.32

[AM06b] 2006 1 1 1 1

[Woo06b] 2006 1 1 1 1

[Woo06a] 2006 0.41 0 1

[Kim07] 2007 0.99 1

[AM08] 2008 0.43 1 1 0.15

[Joh08] 2008 0.81 0.85 0.83 0.66 0.96 0.94

[Woo11] 2011 1 0.65 1 1

[You11] 2011 0.73 0.98 0.70 1

AT [AM05b]∗ 2005 0 0 0

[AM08]∗ 2008 0 0 0 0

JW [Joh08] 2008 0.80 0.85 0.81 0.64 0.97 0.94

LN [Alh07]∗ 2006 0.93 0 1 0 0.95 0 0.08

[AM06b]∗ 2006 0 1 0 0.23

[AM08]∗ 2008 0 0 0 0

LP [AM05b]∗ 2005 1 0 0.97

[AM08]∗ 2008 0 0 0 0

RE [AM05b]∗ 2005 0.93 0 0.96

[Res05] 2005 0.29 0.33

[AM08]∗ 2008 0 0 0 0

RQ [AM05b]∗ 2005 0.92 0 1

[Res05] 2005 0.17 0.17 0.59

[AM08]∗ 2008 0 0.26 0 0.97

YF [You11] 2011 0.98 0.94 0.97 1

∗: the validation experiment is conducted by people who are not (co-)authors of the corresponding model.

ing phase, linear phase, and saturation phase. First, people need time to study the software,

so they discover less vulnerabilities. Second, when they understand the software, they can

discover more vulnerabilities. Finally, people lose interest in finding vulnerabilities when

the software is out of date. So cumulative vulnerabilities tend to be stable. However, the ob-

servation in Chapter 5 showed that this idea might not hold as vulnerabilities found for the

current version usually affect also earlier ones thus generating an increase of so-called “after-
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life" vulnerabilities1. Nonetheless, we still adopt their idea in the proposed methodology by

dividing software life time into three periods: young, middle-age, and old.

The AML model has been validated in several applications spanning in various software

classes, see Table 6.2, such as operating systems [Alh05; AM05b; Alh07; AM08], server ap-

plications [AM06b; Woo06b; Woo11], and browsers [Woo06a]. In most cases, AML was ei-

ther inconclusive-fit or good-fit. Notably, the goodness-of-fit of AML was different for the

same application across different studies. For instance, AML well fitted Win98 in [Woo06b;

Woo11] (p-value = 1), but inconclusively fitted Win98 in [Alh05] (p-value = 0.74) and [Alh07]

(p-value = 0.21). The difference between p-values in these experiments is non-negligible.

Such difference can be explained by the validation methodology based on a single horizon.

This is a clear evidence that goodness-of-fit of a model is changing overtime. Thus, fitting a

model to a single time horizon is potentially misleading. We cope with this issue by analyzing

the VDM goodness-of-fit during the entire life time of software.

Anderson [And02] proposed the AT model based on reliability growth models, but he did

not evaluate it. Other studies [AM05b; AM08] showed that AT is not appropriate.

Rescorla [Res05] proposed RQ and RE models. He validated them on WinNT 4.0, Solaris

2.5.1, FreeBSD 4.0 and RedHat 7.0. In all cases, the goodness-of-fit of these models were in-

conclusive since their p-value ranged from 0.17 to 0.59. Rescorla also discussed many short-

comings of NVD, but his study heavily relied on it nonetheless. We partially address these

shortcomings by taking into account other data sources.

6.2 Research Questions

In this chapter, we address the two following questions:

RQ3 How to evaluate the performance of a VDM?

RQ4 How to compare between two or more VDMs?

In order to satisfactorily answer the questions above, we must address the following is-

sues that potentially affected the validity of previous studies.

Vulnerability counting issue. This issue affected the vulnerability data collection process in

past studies. The issue has two folds: what counted as one vulnerability, and what considered

as one vulnerable software.
1After-life vulnerabilities of a version are ones discovered after the date when this version is out of support,

see also Chapter 5.
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• In the first fold, a vulnerability could be either an advisory report by software vendors

(e.g., MFSA), or a security bug causing software to be exploited (e.g., Mozilla Bugzilla),

or an entry in third-party data sources (e.g., an NVD entry, or CVE, alternatively). Some

entries may be classified differently by different entities: a third-party database might

report vulnerabilities, but the vendor security bulletin may not classify them as such.

Consequently, the number of vulnerabilities could be widely different depending on

the way of counting vulnerabilities, for instance, choosing different data sources. A

VDM could perfectly fit counts in a data source, but poorly fit counts in another one.

• In the second fold, some studies (e.g., [Woo06a; Woo11]) considered all versions of soft-

ware as a single entity, and counted vulnerabilities for it. Our previous study [Mas11]

showed that each Firefox version has its own code base, which may differ by 30% or

more from the immediately preceding one. The same applies to Chrome2. Another

example, Joh et al. [Joh08], in their experiment, showed that AML and JW curves fitted

for the ‘single’ Linux (i.e., all versions of Linux as a single entity), and those fitted for in-

dividual Linux versions (i.e., v6.0, v6.2) were utterly statistically different. Therefore, as

time goes by, we can no longer claim that we are counting vulnerabilities of the same

application.

Example 6.1 Figure 6.2(a) exemplifies the first fold of this issue, where a conceptual security

flaw could be counted differently if different data sources were used. This flaw concerns the

buffer overflow in Firefox v13.0. It is reported by: 1 entry in MFSA (MFSA-2012-40), 3 entries

in Bugzilla (744541, 747688, and 750066), and 3 CVEs in NVD (CVE-2012-1947, CVE-2012-

1940, and CVE-2012-1941). The cross references between these entries are illustrated as

directional connections. How many vulnerabilities should we count in this case?

Figure 6.2(b) visualizes the second fold of this issue in a plot of the cumulative vulnerabil-

ities of Firefox v1.0, Firefox v1.5, and Firefox v1.0-1.5 as a single entity. Clearly, the function

of the “global" version should be different from the functions of the individual versions.

Table 7.3 later in the next chapter shows how the choice of the counting method has

a massive impact on the results: by using the NVD alone, LN scores 45% of not-fit samples

(third-worst), while the YF model makes a 55% of good fits (best of all). However, by counting

the number of bugs correlated with number of NVD entries, i.e., NVD.NBug, the roles are

2By looking at the source code of Chrome (http://dev.chromium.org/Home), we found that after one

year the number of new components (i.e., body and header C++ files) increases more than 100%.

http://dev.chromium.org/Home
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MFSA

Bugzilla

NVD

MFSA-2012-40

CVE-2012-1940

CVE-2012-1941

744541

747688

750066

CVE-2012-1947

The arrow-headed lines indicates the cross-

references between entries.

(a) A conceptual security flaw in three data sources
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Figure 6.2: The two folds of the vulnerability counting issue.

reversed: LN exhibits a 41% of good fits (second bests), while YF shows a disastrous 50% of

not-fit samples (fourth worst).

Acceptance threshold issue. This issue affected the decision of past studies whether a model

was a good fit, or a bad fit to a data set based on the result of the χ2 test. Most of past studies

concluded a model was a good fit if the χ2 test returned p-value ≥ 0.05. However, 0.05 is the

threshold to reject a surely bad model. Yet, there is a long stretch from concluding that a

model is not surely a bad one to concluding that it is surely a good one.

Temporal goodness-of-fit issue. This issue impacted the ability of VDMs to explain history.

Previous studies took a snapshot of vulnerability data, and fitted VDMs to this entire snap-

shot. This made a brittle claim of fitness. Moreover, it could explain historical data but told

us nothing about future behavior. Yet, we are interested in the ability of VDMs to be a good
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“law of nature" that is valid across releases and time and to some predict extent the future.

Example 6.2 In Table 6.2, the p-values that AML fitted Win2K vulnerabilities in [Alh05;

Alh07] were 0.44 and 0.05, respectively. While the former is inconclusive, the latter is at the

border of rejection i.e., not fit. This is explained because AML was fitted to data sets at two

different time horizons in these experiments.

Comparison issue. This issue impacted the way past studies used to compare VDMs, where

comparison was relied directly on the absolute p-values yielded by the goodness-of-fit test.

The rule was: the higher p-value, the better model. However, the literature has shown that

such p-values have been changing over time, see Table 6.2. As a result, we might obtain

opposite conclusion if we compare VDMs at different time points.

6.3 Methodology Overview

We propose a methodology (see Table 6.3) to answer these questions. The methodology con-

sists of data collection and analysis steps to empirically assess different aspects of VDMs. It

addresses all above issues as follows:

• We address the vulnerability counting issue by considering different counting methods

on different vulnerability data sources. Hence, the performances of VDMs are evalu-

ated on average.

Moreover, we evaluate VDMs on vulnerability data of individual releases of evolving

applications, instead of considering all releases of an application as a single entity. The

rationale for this choice is discussed later in Section 6.4.1.

• We address the acceptance threshold issue by employing the Type-II error threshold

(i.e., 0.80) which is an considered desirable threshold [McK05, Chap.8] for the power

of the χ2 test to decide whether an estimated model is a good fit. We also use the

Type-I error threshold (i.e., 0.05) to reject models since it is widely used in not only the

literature, but also other disciplines.

• We mitigate the temporal goodness-of-fit issue by essentially analyzing the goodness-

of-fit of VDMs monthly until the date of data collection, instead of taking an arbitrary

time point in the lifetime of software. We also examine the ability of VDMs in predict-

ing the future trend.
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• We address the comparison issue by using statistical tests to compare VDMs based on

their quality of fitting historical data and their predictability of future trends.

Table 6.3: Methodology overview.

Step 1 Acquire the vulnerability data

DESC. Identify the vulnerability data sources, and the way to count vulnerabilities.

If possible, different vulnerability sources should be used to select the most

robust one. Observed samples then can be extracted from collected vulnera-

bility data.

INPUT Vulnerability data sources.

OUTPUT Set of observed samples.

CRITERIA CR1 Collection of observed samples

• Vulnerabilities should be counted for individual releases (possibly by

different sources).

• Each observable sample should have at least 5 data points.

Step 2 Fit the VDM to observed samples

DESC. Estimate the parameters of the VDM formula to fit observed samples as much

as possible. The χ2 goodness-of-fit test is employed to assess the goodness-

of-fit of the fitted model based on criteria CR2.

INPUT Set of observed samples.

OUTPUT Set of evaluated samples.

to be continued...
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Table 6.3: Methodology overview (continued).

CRITERIA CR2 The classification of the evaluated samples based on the p-value of a χ2

test.

• Good Fit: p-value ∈ [0.80,1.0], a good evidence to accept the model. We

have more than 80% chances of generating the observed sample.

• Not Fit: p-value ∈ [0,0.05), a strong evidence to reject the model. It

means less than 5% chances that the fitted model would generate the

observed sample.

• Inconclusive Fit: p-value ∈ [0.05,0.80), there is not enough evidence to

neither reject nor accept the fitted model.

Step 3 Perform goodness-of-fit quality analysis

DESC. Analyze the goodness-of-fit quality of the fitted model by using the temporal

quality metric which is the weighted ratio between fitted evaluated samples

(both Good Fit and Inconclusive Fit) and total evaluated samples.

INPUT Set of evaluated samples.

OUTPUT Temporal quality metric.

CRITERIA CR3 The rejection of a VDM.

A VDM is rejected if it has a temporal quality lower than 0.5 even by counting

Inconclusive Fits samples as positive (with weight 0.5). Different periods of

software lifetime could be considered:

• 12 months (young software)

• 36 months (middle-age software)

• 72 months (old software)

Step 4 Perform predictability analysis

to be continued...
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Table 6.3: Methodology overview (continued).

DESC. Analyze the predictability of the fitted model by using the predictability met-

ric. Depending on different usage scenarios, we have different observation

periods and time spans that the fitted model supposes to be able to predict.

This is described in CR4.

INPUT Set of evaluated samples.

OUTPUT Predictability metric.

CRITERIA CR4 The observation period and prediction time spans based on some possible

usage scenarios.
Observation Prediction

Scenario Period (months) Time Span (months)

Short-term planning 6–24 3

Medium-term planning 6–24 6

Long-term planning 6–24 12

Step 5 Compare VDM

DESC. Compare the quality of the VDM with other VDMs by comparing their tem-

poral quality and predictability metrics.

INPUT Temporal quality and predictability measurements of models in comparison.

OUTPUT Ranks of models.

CRITERIA CR5 The comparison between two VDM

A VDM vdm1 is better than a VDM vdm2 if:

• either the predictability of vdm1 is significantly greater than that of

vdm2,

• or there is no significant difference between the predictability of vdm1

and vdm2, but the temporal quality of vdm1 is significantly greater than

that of vdm2.

The temporal quality and predictability should have their horizons and pre-

diction time spans in accordance to criteria CR3 and CR4. Furthermore, a

controlling procedure for multiple comparisons should be considered.
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6.4 Methodology Details

This section discusses the details of our methodology to evaluate the performance of a VDM.

6.4.1 Step 1: Acquire the Vulnerability Data

The acquisition of vulnerability data consists of two sub steps: Data set collection, and Data

sample extraction.

During Data set collection, we identify data sources for the study. The classification of

data sources is presented in Table 3.2. For our purposes, the following features of a vulnera-

bility are interesting and must be provided:

• Unique ID (RID): is the identifier of a vulnerability.

• Discovery Date (TD): refers to the date when a vulnerability is reported to the database3.

• Affected Versions (VA): is a list of releases affected by a vulnerability.

• Reference Links (RREF): is a list of links to other sources.

Not every feature is available from all data sources. To obtain missing features, we can use

RID and RREF to integrate data sources and extract the expected features from secondary data

sources.

Example 6.3 Vulnerabilities of Firefox are reported in three data sources: NVD4, MFSA, and

Mozilla Bugzilla. Neither MFSA nor Bugzilla provides the Affected Versions feature, but NVD

does. Each MFSA entry has links to NVD and Bugzilla. Therefore, we could to combine these

data sources to obtain the missing data.

We address the vulnerability counting issue issue by taking into account different defi-

nitions of vulnerability. We collected different vulnerability data sets with respect to these

definitions. We collected vulnerability data for individual releases. Table 6.4 shows different

data sets in this work. They are combinations of data sources : third-party (i.e., NVD), ven-

dor advisory, and vendor bug tracker. The descriptions of these data sets for a release r are

as follows:

3The actual discovery date might be significantly earlier.
4Other third party data sources (e.g., OSVDB, Bugtraq, IBM XForce) also report Firefox’s vulnerabilities, but

most of them refer to NVD by the CVE-ID. Therefore, we consider NVD as a representative of third-party data

sources.
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Table 6.4: Formal definition of data sets.

Data set Definition

NVD(r ) {nvd ∈NVD|r ∈ nvd.VA}

NVD.Bug(r ) {nvd ∈NVD|∃b ∈BUG : r ∈ nvd.VA ∧b.RID ∈ nvd.RREF}

NVD.Advice(r ) {nvd ∈NVD|∃a ∈ADV : r ∈ nvd.VA ∧a.RID ∈ nvd.RREF}

NVD.NBug(r ) {b ∈BUG|∃nvd ∈NVD : r ∈ nvd.VA ∧b.RID ∈ nvd.RREF}

Advice.NBug(r ) {b ∈BUG|∃a ∈ADV,∃nvd ∈NVD : r ∈ nvd.VA ∧b.RID ∈ a.RREF ∧nvd.RID ∈ a.RREF∧
clustera(b.RID,nvd.RID)}

Note: nvd.VA ,nvd.RREF denote the vulnerable releases and references of an entry nvd, respectively. a.RID ,b.RID ,nvd.RID

denote the identifier of a, b, and nvd. clustera(b.RID ,nvd.RID) is a predicate checking whether b.RID and nvd.RID are located

next together in the advisory a.

• NVD(r): a set of CVEs claiming r is vulnerable.

• NVD.Bug(r): a set of CVEs confirmed by at least a vendor bug report, and claiming r is

vulnerable.

• NVD.Advice(r): a set of CVEs confirmed by at least a vendor advisory, and claiming r is

vulnerable. Notice that the advisory report might not mention r , but later releases.

• NVD.Nbug(r): a set of vendor bug reports confirmed by a CVE claiming r is vulnerable.

• Advice.NBug(r): a set of bug reports mentioned in a vendor advisory report, which also

refers to at least a CVE that claims r is vulnerable.

We do not use the NVD alone in our studies. We will later show in Chapter 9 that it may

contain significant errors to the point of tilting statistical conclusions.

For Data sample extraction, we extract observed samples from collected data sets. An

observed sample is a time series of (monthly) cumulative vulnerabilities of a release. It starts

from the first month since release to the end month, called horizon. A month is an appro-

priate granularity for sampling because week and day are too short intervals and are subject

to random fluctuation, see also [Sch09a] for a discussion. Additionally, this granularity was

used in the literature (e.g., studies listed in Table 6.1).

Let R be the set of analyzed releases and DS be the set of data sets, an observed sample

(denoted as os) is a time series (ts) defined as follows:

os= TS(r,d s,τ) (6.1)

where:
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• r ∈ R is a release in the evaluation;

• d s ∈ DS is the data set where samples are extracted;

• τ ∈ Tr =
[
τr

mi n ,τr
max

]
is the horizon of the observed sample, in which Tr is the horizon

range of release r .

In the horizon range of release r , the minimum value of horizon τr
mi n of r depends on the

starting time of the first observed sample of r . Here we choose τr
mi n = 6 for all releases so

that all observed samples have enough data points for fitting all VDMs. The maximum value

of horizon τr
max depends on how long the data collection period is for each release.

Example 6.4 IE v4.0 was released in September, 1997 [Wik12b]. The first month was Octo-

ber, 1997. The first observed sample of IE v4.0 is a time series of 6 numbers of cumulative

vulnerabilities for the 1st ,2nd , . . . ,6th months. Starting data collection on 01st July 2012, IE

v4.0 would have been released for 182 months, yielding 177 observed samples. The maxi-

mum value of horizon (τIEv4.0
max ) is 182.

6.4.2 Step 2: Fit a VDM to Observed Samples

We estimate the parameters of the VDM formula by a regression method so that the VDM

curve fits an observed sample as much as possible. We denote the fitted curve (or fitted

model) as:

vdmTS(r,d s,τ) (6.2)

where vdm is the VDM being fitted; os = TS(r,d s,τ) is an observed sample from which the

vdm’s parameters are estimated. (6.2) could be shortly written as vdmos.

Example 6.5 Fitting the AML model to the NVD data set of Firefox v3.0 at the 30th month,

i.e., the observed sample os = TS(FF3.0,NVD,30), generates the curve:

AMLTS(FF3.0,NVD,30) =
183

183 ·0.078 ·e−0.001·183·t +1

Figure 6.3 illustrates the plots of three curves AMLTS(r,NVD,30), where r is FF3.0,FF2.0, and

FF1.0. The X-axis shows months since release, and the Y-axis is the cumulative number of

vulnerabilities. Circles represent observed vulnerabilities. Solid lines indicate fitted curves.
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A,B,C are three parameters in the formula of the AML model: Ω(t ) = B
BCe−AB t+1

(see also Table 7.2)

Figure 6.3: Fitting the AML model to the NVD data sets for Firefox v3.0, v2.0, and v1.0.

In Figure 6.3, the distances of the circles to the curve are used to estimate the goodness-

of-fit of the model. To measure the goodness-of-fit, we employ Pearson’s Chi-Square (χ2) test

as aforementioned in Section 6.1. In this test, we calculate the χ2 statistic value of the curve

by using the following formula:

χ2 =
τ∑

t=1

(Ot −Et )2

Et
(6.3)

where Ot is the observed cumulative number of vulnerabilities at time t (i.e., t th value of the

observed sample); Et denotes the expected cumulative number of vulnerabilities which is

the value of the curve at time t . The χ2 value is proportional to the differences between the

observed values and the expected values. Hence, the larger χ2, the smaller goodness-of-fit.

If the χ2 value is large enough, we can safely reject the model. In other words, the model

statistically does not fit the observed data set. The χ2 test requires all expected values be at

least 5 to ensure the validity of the test [NIS12a, Chap. 1]. If there is any expected value less

than 5, we need to increase the starting value of t in (6.3) until Et ≥ 5.

The conclusion whether a VDM curve statistically fits an observed sample relies on the p-

value of the test, which is derived from χ2 value and the degrees of freedom (i.e., the number

of months minus one). Semantically, the p-value is the probability that we falsely reject the

null hypothesis when it is true (i.e., error Type I: false positive). The null hypothesis used

in past research paper is that “the model fits the data." [Alh07, page 225]. Therefore, if the

p-value is less than the significance level α of 0.05, we can reject a VDM because there is less

than 5% chances that this fitted model would generate the observed sample. This provides
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us a robust test to discard a model.

To accept a VDM, we exploit the power of the χ2 test which is the probability of rejecting

the null hypothesis when it is false. Normally, ‘an 80% power is considered desirable’ [McK05,

Chap. 8]. Hence we accept a VDM if the p-value is greater than or equal to 0.80. We have more

than 80% chances of generating the observed sample from the fitted curve. In other cases,

we should neither accept nor reject the model (inconclusive fit).

The criteria CR2 in Table 6.3 summarizes the assessment the goodness-of-fit based on

the p-value of the χ2 test.

In the sequel, we use the term evaluated sample to denote the triplet composed by an

observed sample, a fitted model, and the p-value of the χ2 test.

Example 6.6 In Figure 6.3, the first plot shows the AML model with a Good Fit (p-value =
0.993 > 0.80), the second plot exhibits the AML model with an Inconclusive Fit (0.05 < p-value =
0.417 < 0.80), and the last one denotes the AML model with a Not Fit (p-value = 0.0001 <
0.05). To calculate the χ2 test we refit the model each and every time. So we have 1,526 dif-

ferent parameters A, B and C for each good fit curve (see Figure 6.3). Notice how each set

of parameters is widely different. If we used the same parameters for different versions, we

would rarely obtain a good fit.

6.4.3 Step 3: Perform Goodness-of-Fit Quality Analysis

We introduce the goodness-of-fit quality (or quality, shortly) by measuring the overall num-

ber of Good Fits and Inconclusive Fits among different samples. Previous studies considered

only one observed sample in their experiment, the one with the largest horizon.

Let OS = {TS(r,d s,τ)|r ∈ R ∧d s ∈ DS ∧τ ∈ Tr } be the set of observed samples, the overall

quality of a model vdm is defined as the weighted ratio of the number of Good Fit and In-

conclusive Fit evaluated samples over the total ones, as shown:

Qω = |GES|+ω · |IES|
|ES| (6.4)

where:

• ES = {〈
os,vdmos, p

〉 |os ∈ OS
}

is the set of evaluated samples generated by fitting vdm

to observed samples;

• GES = {〈
os,vdmos, p

〉 ∈ ES|p ≥ 0.80
}

is the set of Good Fit evaluated samples;

• IES = {〈
os,vdmos, p

〉 ∈ ES|0.05 ≤ p < 0.80
}

is the set of Inconclusive Fit evaluated sam-

ples;
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• ω ∈ [0..1] is the inconclusiveness contribution factor denoting that an Inconclusive Fit

is ω times less important than a Good Fit.

The overall quality metric ranges between 0 and 1. The quality of 0 indicates a completely

inappropriate model, whereas the quality of 1 indicates a perfect one. This metric is a very

optimistic measure as we are essentially “refitting" the model as more data become available.

Hence, it is an upper bound value.

The factorω denotes the contribution of an inconclusive fit to the overall quality. A skep-

tical analyst would expectω= 0, which means only Good Fits are meaningful. Meanwhile an

optimistic analyst would set ω= 1, which mean an Inconclusive Fit is as good as a Good Fit.

The optimistic choice ω = 1 has been adopted by the model proponents in their proposal

while assessing the VDM quality (see Section 6.1).

The value of ω could be set based on either specific experiments, or an analysis on the

average p-value (p̄) of inconclusive cases. The idea of such analysis is that:

• If p̄ ≈ 0.05, the VDM most likely does not fit the actual data, ω= 0;

• if p̄ ≈ 0.80, more likely the case that the VDM well fits the data, ω= 1.

Therefore, we could approximate ω based on the average p-value as follows:

ω≈ p̄ −0.05

0.80−0.05
(6.5)

where p̄ is the average p-value of inconclusive evaluated samples. We have analyzed about

6,100 inconclusive evaluated samples, the average p-value: p̄ = 0.422. According to (6.5),

ω ≈ 0.5. It is consistent with the intuition that an Inconclusive Fit is as half-good as a Good

Fit. The choice of ω= 0.5 thus could be a good compromise.

Example 6.7 Among 3,895 evaluated samples of AML to IE, Firefox, Chrome, and Safari,

AML has 1,526 Good Fits, 1,463 Inconclusive Fits. The overall quality of AML with differentω

thus is:

Qω=0 = 1,526

3,895
= 0.39

Qω=1 = 1,526+1,463

3,895
= 0.77

Qω=0.5 = 1,526+0.5 ·1,463

3,895
= 0.58
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The overall quality metric does not capture peak performance in time. A VDM could

produce a lot of Good Fits evaluated samples for the first 6 months, but almost Not Fits at

other horizons. Unfortunately, the metric did not address this phenomenon.

To avoid this unwanted effect, we introduce the temporal quality metric which represents

the evolution of the overall quality over time. The temporal quality Qω(τ) is the weighted

ratio of the Good Fit and Inconclusive Fit evaluated samples over total ones at the particular

horizon τ. The temporal quality is formulated as follows:

Qω(τ) = |GES(τ)|+ω · |IES(τ)|
|ES(τ)| (6.6)

where:

• τ ∈ T is the horizon that we observe samples, in which T ⊆ ⋃
r∈R Tr is the subset of the

union of the horizon ranges of all releases r in evaluation;

• ES(τ) = {〈
os,vdmos, p

〉 |os ∈ OS(τ)
}

is the set of evaluated samples at the horizon τ;

where OS(τ) is the set of observed samples at the horizon τ of all releases;

• GES(τ) ⊆ ES(τ) is the set of Good Fit evaluated samples at the horizon τ;

• IES(τ) ⊆ ES(τ) is the set of Inconclusive Fit evaluated samples at the horizon τ;

• ω is the same as for the overall quality Qω.

To study the trend of the temporal quality Qω(τ), we use the moving average which is

commonly used in time series analysis to smooth out short-term fluctuations and highlight

longer-term trends. Intuitively each point in the moving average is the average of some ad-

jacent points in the original series. The moving average is defined as follows:

MAQω

k (τ) = 1

k

k∑
i=1

Qω(τ− i +1) (6.7)

where k is the window size. The choice of k changes the spike-smoothening effect: the higher

k, the smoother the spikes. Additionally, k should be an odd number so that variations in the

mean are aligned with variations in the data rather than being shifted in time.

Example 6.8 Figure 6.4 depicts the moving average for the temporal quality of AML and AT

models. In this example, we choose a window size k = 5 because the minimum horizon is six

(τr
mi n = 6), so k should be less than this horizon (k < τr

mi n); and k = 3 is too small to smooth

out the spikes.
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Figure 6.4: Moving average of the temporal quality of sample AML and AT models.

6.4.4 Step 4: Perform Predictability Analysis

The predictability of a VDM measures the capability of predicting future trends of vulner-

abilities. This essentially makes a VDM applicable in practice. The calculation of the pre-

dictability of a VDM has two phases, learning phase and prediction phase. In the learning

phase, we fit a VDM to an observed sample at a certain horizon. In the prediction phase, we

evaluate the qualities of the fitted model on observed samples in future horizons.

We extend (6.6) to calculate the prediction quality. Let vdmTS(r,d s,τ) be a fitted model at

horizon τ. The prediction quality of this model in the next δmonths (after τ) is calculated as

follows:

Q∗
ω(τ,δ) = |GES∗(τ,δ)|+ω · |IES∗(τ,δ)|

|ES∗(τ,δ)| (6.8)

where:

• ES∗(τ,δ) = {〈
TS(r,d s,τ+δ), vdmTS(r,d s,τ), p

〉}
is the set of evaluated samples at the hori-

zon τ+δ in which we evaluate the quality of the model fitted at horizon τ (vdmTS(r,d s,τ))

on observed samples at the future horizon τ+δ. We refer to ES∗(τ,δ) as set of evaluated

samples of prediction;
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• GES∗(τ,δ) ⊆ ES∗(τ,δ) is the set of Good Fit evaluated samples of prediction at the hori-

zon τ+δ;

• IES∗(τ,δ) ⊆ ES∗(τ,δ) is the set of Inconclusive Fit evaluated samples of prediction at

the horizon τ+δ.

• ω is the same as for the overall quality Qω.

Example 6.9 Figure 6.5 illustrates the prediction qualities of two models AML and AT start-

ing from the horizon of 12th month (τ= 12, left) and 24th month (τ= 24, right), and predict-

ing the value for next 12 months (δ = 0. . .12). White circles are prediction qualities of AML,

and red (gray) circles are those of AT.

In planning, the idea of 3-6-12-24 month rolling plan which has been widely adopted

in many fields such as banking, clinical trials, and economic planning. The basic idea is to

anticipate things in next 3, 6, 12. We report the predictability of VDMs in next 3, 6, and 12

months, but not in next 24 months because all VDMs do not perform well. For example, con-

sidering that a new version is shipped at least every quarter, we could envisage the following

sample scenarios:

• Short-term planning (3 months): we are looking for the ability to predict the trend

in next quarter, i.e., 3 months, to plan the short-term activities such as allocating re-

sources for fixing vulnerabilities.

• Medium-term planning (6 months): we are looking on what is going in next 6 months

for mid-term decisions such as whether to keep the current system or to go over the

hassle of updating it.

• Long-term planning (12 months): we would like to predict a realistic expectation for

vulnerability reports in the next one year to plan the long-term activities.

We should assess the predictability of a VDM not only along the prediction time span, but

also along the horizon to ensure that the VDM is able to consistently predict the vulnerability

trend in an expected period. To facilitate such assessment we introduce the predictability

metric which is the average of prediction qualities at a certain horizon.

The predictability of the curve vdmos at the horizon τ in a time span of ∆ months is de-

fined as the average of the prediction quality of vdmos at the horizon τ and its ∆ consecutive
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Figure 6.5: The prediction qualities of AML and AT at fixed horizons τ = 12 and 24 to some

variable prediction time spans.

horizons τ+1,τ+2, ...,τ+∆, as follows:

Predictω(τ,∆) = ∆+1

√√√√ ∆∏
δ=0

Q∗
ω(τ,δ) (6.9)

where ∆ is the prediction time span.

In (6.9), we use the geometric mean instead of the arithmetic mean because the temporal

quality is a normalized measure. The arithmetic mean of ratios might produce a meaningless

result, whereas the geometric mean behaves correctly [FW86].

6.4.5 Step 5: Compare VDMs

This section addresses the research question RQ4 concerning the comparison between VDMs

based on quality and predictability.

VDMs only make sense if they could predict the future trend of vulnerabilities. Hence

a VDM which perfectly fits the history data, but badly estimates the future trend even in a

short period, is utterly useless: a better model is the one that better forecasts the future.
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The comparison between two models vdm1 and vdm2 is done as follows. Let ρ1,ρ2 be

the predictability of vdm1 and vdm2, respectively.

ρ1 = {Predictω=0.5(τ,∆)|τ= 6..τmax ,vdm1}

ρ2 = {Predictω=0.5(τ,∆)|τ= 6..τmax ,vdm2}
(6.10)

where the prediction time span∆ could follow the criteria CR4; τmax = min(72,maxr∈R τ
r
max).

We employ the one-sided Wilcoxon rank-sum test to compare ρ1,ρ2. If the returned p-value

is less than the significance level α= 0.05, the predictability of vdm1 is stochastically greater

than that of vdm2. It also means that vdm1 is better than vdm2. If p-value ≥ 1−α, we con-

clude the opposite i.e., vdm2 is better than vdm1. Otherwise we have not enough evidence

either way.

If the previous comparison is inconclusive, we repeat the comparison using the value of

temporal quality of the VDMs instead of predictability. We just replace Qω=0.5(τ) for Predictω=0.5(τ,

∆) in the equation (6.10), and repeat the above activities.

When we compare models i.e., we run several hypothesis tests, we should pay attention

on the familywise error rate which is the probability of making one or more type I errors. To

avoid such problem, we apply an appropriate controlling procedure such as the Bonferroni

correction: the significance level by which we conclude a model is better than another one

is divided by the number of tests performed.

Example 6.10 When we compare one model against other seven models, the Bonferroni-

corrected significance level is: α=0.05 /7 ≈ 0.007.

The above comparison activities are summarized in the criteria CR5 (see Table 6.3).

6.5 Chapter Summary

This chapter has discussed an observation on the traditional validation methodology for

VDMs in the literature. The observations has revealed several issues in that methodology.

These issues might bias the outcomes of any validation experiments which follow the tra-

ditional methodology. Based on that observation, this chapter has proposed an empirical

methodology for conducting validation experiments for VDMs. The methodology consisted

of five steps which include two quantitative analyses: quality analysis and predictability

analysis. In each step, we proposed criteria as base lines to help analysts during the eval-
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uation of VDMs. Some of criteria however are not fixed, but could be change to match the

custom need of different usage scenarios of VDMs.

In the next chapter, we will describe an experiment to evaluate the performance of sev-

eral existing VDMs. The experiment follows the methodology described in this chapter. By

the experiment in the next chapter, we aim to test the validation methodology in this chapter.
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AN EVALUATION OF EXISTING

VULNERABILITY DISCOVERY MODELS

The previous chapter has proposed an empirical methodology to evaluate the per-

formance of VDMs. This chapter applies this method to conduct a validation experi-

ment to evaluate the performance of several existing VDMs. The experiment assesses

these VDMs in different usage scenarios in order to 1) study whether existing VDMs

are applicable in real (or close-to-real) world settings, and 2) understand which is the

superior VDM in which usage scenario. The results show that some models should be

rejected outright, while some others might be adequate to capture the discovery pro-

cess of vulnerabilities. Furthermore, among considered usage scenarios, the simplest

linear model is the most appropriate choice in terms of both quality and predictability

when a browser version is young. Otherwise, logistics-based models are better choices.

T
HIS chapter applies the methodology proposed in the previous chapter to evaluate

analyze to which extent existing VDMs could be employed in different usage sce-

narios that have been previously discussed in Chapter 6. The following VDMs are

evaluated in the experiment described in this chapter: AML, AT, JW, LN, LP, RE, RQ, and YF.

As apparent from Table 6.2, researchers often chose operating systems as target applica-

tions to validated VDMs, but paid little attention to other software classes, especially web

browsers. Moreover the discussion in Chapter 4 shows that web browsers are one of the

most important class of internet applications. Web browsers are one of the top-ten products

89
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which have much vulnerabilities recently. Additionally, operating systems, another top-ten

products, have been validated several times in the past (Table 6.1). Thus, in this validation

experiment, we validate VDMs on web browsers.

The rest of this chapter is organized as follows. Section 7.1 presents the research ques-

tions of this chapter. Section 7.2 describes the experiment setup. Section 7.3 reports and

discusses the outcomes of the experiment. Finally, Section 7.4 discusses the difference of re-

sults obtained by the traditional validation methodology and the one described in Chapter 6.

Section 7.5 discusses the threats to validity. Section 7.6 summarizes the chapter.

7.1 Research Questions

This chapter focuses on the following research questions:

RQ6 Is the proposed VDM evaluation methodology effective in evaluating VDMs?

RQ7 Among existing VDMs, which one is the best?

We answer the above questions by conducting a quality analysis and a predictability

analysis (see also Section 6.4.3 and Section 6.4.4) that follow the guidelines in the previous

chapter to evaluate the performance of VDMs, and to compare VDMs. While performing

these analyses, we set the inconclusiveness factor ω to 0.5 which could be considered as

a good compromise for inconclusive cases of goodness-of-fit (see the discussion why we

choose this value in Section 6.4.3). We use this setting to justify the applicability of a VDM

in this experiment, as well as to compare VDMs. Furthermore, the quality and predictability

metrics might be uniformly distributed from 0 to 1, where 0 indicates an completely inap-

propriate model while 1 means a perfectly fitted one. Hence we choose the mid point value

of 0.5 as a base line for the assessment of the applicability and the predictability. In other

words, we expect an appropriate (or adequate) VDM should have its quality and predictabil-

ity significantly greater than 0.5 i.e., above the average.

7.2 Experimental Setup

This section describes the software infrastructure and the descriptive statistics of observ-

able samples. The data sources of vulnerabilities are described in Table 4.1. We employ the

software infrastructure discussed in Section 4.1 to acquire vulnerability data for browsers.
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7.2.1 The Software Infrastructure

Figure 7.1 illustrates the software infrastructure for the experiment. In this figure, rectangles

denote the scripts. Arrows illustrate the direction of data flows. The infrastructure consists

of three scripts as follows:

• Data Resample script. This script takes the browsers’ vulnerability data (see Section 4.1)

for sampling observed data samples. The outcome of this script is a collection of ob-

served data samples representing for six data sets as described in Table 6.4. The ob-

served data samples are then piped to the VDM Model Fitting script.

• VDM Model Fitting script. This script takes observed data samples and performs model

fitting for all data samples to all VDMs. The output is a collection of evaluated samples

which are routed to the latter processor. The output of the script is a collection of

evaluated data samples.

• VDM Quality/Predictability Analysis script. This script takes the generated evaluated

samples and executes the quality, predictability analysis (see Step 3, Step 4). It also

executes the VDMs comparison (Step 5).

The schemas of the observed data samples and evaluated samples are described as fol-

lows:

Safari VDB

IE VDB

Firefox VDB

Chrome VDB

Data 

Resample

Evaluated Data 
Samples

VDM Model Fitting

VDM Quality/

Predictability 

Analysis

R 

scripts

Input/Output 
Dataset

Data
Flow

Observed 

Data Samples

Intermediate 

Data

Figure 7.1: The software infrastructure of the experiment.
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Observed Data Samples = (dataset, browser, version, horizon, dataPoints)

Evaluated Data Samples = (vdmModel, dataset, browser, version, horizon, p-value)

The feature dataset determines the way data were sampled; horizon, measured by months

since the release date of the corresponding version, is the time point when data is sampled;

dataPoints is a time series of monthly cumulative vulnerabilities since the first month to the

observed horizon; vdmModel is the estimated model of a particular VDM to an observed data

sample represented by browser, version, and horizon; p−value is the returned p-value by the

χ2 test for the goodness-of-fit of the estimated model to the observed data sample.

7.2.2 Collected Vulnerability Data Sets

Table 7.1 reports the descriptive statistics of observed samples in five collected data sets (see

Table 6.4). In the table, we use dashes (–) to denote the unavailability of some data sets for

some browsers due to the lack of data sources (see Table 4.1). The latest time horizon for

these data set is 30th June 2012. It means vulnerabilities reported after the date are not in

consideration. In total, we have collected 4,507 observed samples for 30 major releases of

browsers, i.e., Chrome v1.0–v12.0, Firefox v1.0–v5.0, IE v4.0–v9.0, and Safari v1.0–v5.0.

Notably, the above collected data sets are not independent each others, for instance

NVD.Bug andNVD.Advice are sub sets ofNVD. They represent for different ways of counting

vulnerabilities from the NVD data source. In our experiment we treat these data sets equally

and fit them all to VDMs to avoid the vulnerability definition bias (Section 6.2). This might

have the accumulative effect on the quality and predictability analysis.

However, this accumulative effect might be negligible because the later Table 7.3 report-

ing the statistics of evaluated samples shows an evidence that the responses of VDMs to these

Table 7.1: Descriptive statistics of observed data samples

Column names: med. - median, µ - mean, σ - standard deviation. Dash (–) means data set is not available due to missing

data sources.

Browser Releases NVD NVD.Bug NVD.Advice NVD.NBug Advice.NBug All Data Sets

Total med. µ σ Total med. µ σ Total med. µ σ Total med. µ σ Total med. µ σ Total med. µ σ

Firefox 8 378 42 47 30 378 42 47 30 378 42 47 30 378 42 47 30 378 42 47 30 1,890 210 236 148

Chrome 12 281 20 23 10 281 20 23 10 – – – – 281 20 23 10 – – – – 843 62 70 29

IE 5 573 130 115 59 – – – – 573 130 115 59 – – – – – – – – 1,146 260 229 118

Safari 5 314 60 63 35 – – – – 314 60 63 35 – – – – – – – – 628 120 126 69

Total 30 1,546 36 52 44 659 27 33 23 1,265 64 70 48 659 27 33 23 378 42 47 30 4,507 104 150 118
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Table 7.2: The VDMs in evaluation and their equation.

VDMs are listed in the alphabetical order. The meaning of the VDMs’ parameters are referred to their original work.

Model E quati on

Alhazmi-Malaiya Logistic (AML) [Alh05] Ω(t ) = B

BCe−AB t +1

Anderson Thermodynamic (AT) [And02] Ω(t ) = k

γ
ln(t )+C

Joh Weibull (JW) [Joh08] Ω(t ) = γ(1−e
−

(
t
β

)α
)

Linear (LN) Ω(t ) = At +B

Logarithmic Poisson (LP) [MO84] Ω(t ) =β0 ln(1+β1t )

Rescorla Exponential (RE) [Res05] Ω(t ) = N (1−e−λt )

Rescorla Quadratic (RQ) [Res05] Ω(t ) = At 2

2
+B t

Younis Folded (YF) [You11] Ω(t ) = γ

2

[
erf

(
t −τp

2σ

)
+erf

(
t +τp

2σ

)]

Note: erf() is the error function, erf(x) = 2p
π

∫ x

0
e−t 2

d t

data sets are very different.

7.3 An Assessment on Existing VDMs

We apply the methodology to assess the performance of existing VDMs (see also Table 7.2).

The experiment evaluates these VDMs on 30 releases of the four popular web browsers: IE,

Firefox, Chrome, and Safari. Here, only the formulae of these models are provided. More

detail discussion about these models as well as the meaning of their parameters are referred

to their corresponding original work.

In this assessment, we consider 8 out of 10 VDMs listed in the taxonomy (see Figure 6.1).

Two models MVDM and Effort-based AML (AML-E) are excluded because: 1) MVDM re-

quires additional data concerning source code analysis, i.e., the ratio of share code between

versions, which is only available for Chrome and Firefox; 2) AML-E uses a different approach

that attempts to use test-effort as the main factor instead of calendar time, which are not

comparable to other models.
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Table 7.3: The number of evaluated samples.

Column names: G.F - Good Fit, I.F - Inconclusive Fit, N.F - Not Fit.

Model NVD NVD.Bug NVD.Advice NVD.NBug Advice.NBug All Data Sets

Total G.F I.F N.F Total G.F I.F N.F Total G.F I.F N.F Total G.F I.F N.F Total G.F I.F N.F Total G.F I.F N.F

AML 1,375 43% 32% 24% 559 30% 48% 22% 1,064 49% 24% 27% 559 77% 12% 10% 338 62% 13% 25% 3,895 49% 28% 23%

AT 1,378 8% 18% 74% 559 10% 15% 75% 1,157 9% 17% 74% 559 8% 15% 77% 338 5% 38% 57% 3,991 8% 19% 73%

JW 1,344 39% 18% 44% 547 28% 30% 42% 1,019 64% 10% 26% 551 40% 14% 46% 336 60% 21% 19% 3,797 46% 17% 37%

LN 1,378 36% 19% 45% 559 20% 31% 49% 1,157 41% 16% 43% 559 41% 23% 36% 338 40% 15% 45% 3,991 36% 20% 44%

LP 1,377 42% 14% 43% 559 19% 34% 46% 1,069 46% 13% 41% 559 28% 20% 52% 338 33% 46% 20% 3,902 37% 20% 42%

RE 1,378 41% 14% 44% 559 20% 34% 46% 1,069 46% 13% 41% 559 13% 27% 60% 338 17% 30% 52% 3,903 33% 20% 47%

RQ 1,378 29% 20% 51% 559 24% 34% 43% 1,157 50% 10% 39% 559 14% 13% 74% 338 4% 2% 94% 3,991 30% 16% 53%

YF 1,358 55% 20% 25% 551 54% 29% 17% 966 71% 11% 19% 558 28% 22% 50% 338 14% 7% 78% 3,771 51% 18% 31%

Total 10,966 37% 19% 44% 4,452 26% 32% 43% 8,658 46% 14% 40% 4,463 31% 18% 51% 2,702 30% 22% 49% 31,241 36% 20% 44%

We follow Step 2 to fit the above VDMs to collected observed samples. The model fitting

relies on the function nls() of R [R D11]. The model fitting took approximately 82 minutes

on a dual-core 2.73GHz Windows machine with 6GB of RAM yielding 31,241 curves in total.

Notably, during the model fitting, nls() is unable to fit some models in some observed sam-

ples. Hence the number of generated curves are less than the number of observed samples

multiplied by the number of VDMs.

Table 7.3 reports the number of evaluated samples for each VDM in each data set. We

also report the percentage of Good Fit, Inconclusive Fit, and Not Fit in each data set. Appar-

ently, AML and YF obtain more Good Fits than other models, in relative percentage of the

number of evaluated samples in each data set. Additionally, VDMs obtain more Good Fits in

NVD.Advice than other data sets.

Subsequently, we perform the analysis on the quality and the predictability of VDMs ac-

cording to Step 3 and Step 4. We also execute Step 5 to compare VDMs.

7.3.1 Goodness-of-Fit Analysis for VDMs

The analysis is conducted on all evaluated samples based on all collected data sets. The

inconclusiveness contribution factor ω is set to 0.5 as described in CR3. As discussed, we

reuse the three-phase idea from the AML model to divide the life time of a browser into three

periods: young – when a browser is released for 12 months or less; middle-age – released for

13 – 36 months; and old – released more than 36 months.

Figure 7.2 exhibits the moving average (windows size k = 5) of the temporal quality Qω(τ).

We cut Qω(τ) at horizon 72 though we have more data for some systems (e.g., IE v4, FF v1.0):
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The X-axis is the number of months since release (i.e., horizon τ). The Y-axis is the value of temporal quality. The solid lines

are the moving average of Qω=0.5(τ) with window size k = 5. The dotted horizontal line at 0.5 is the base line to assess VDM.

Vertical lines are the marks of the horizons of 12th and 36th month.

Figure 7.2: The trend of temporal quality Qω=0.5(τ) of the VDMs in first 72 months.

the vulnerability data reported for versions released after 6 years might be not reliable, and

might overfit the VDMs. The dotted vertical lines marks horizons 12 and 36 corresponding

to browser age periods. The dotted horizon line at 0.5 is used as a base line to assess VDMs.

Figure 7.2 shows a clear evidence that both AT and RQ should be rejected since their

temporal qualities always sink below the base line. Other models may be adequate when

browsers are young. AML and LN look better than other models in this respect.

In the middle-age period, the AML model is still relatively good. JW and YF improve when

approaching month 36th though JW get worse after month 12th. The quality of both LN and

LP worsen after month 12th, and sink below the base line when approaching month 36th.

RE is almost below the base line after month 15th. Hence, in the middle-age period, AML,

JW, and YF models may turn to be adequate; LN and LP are deteriorating but might be still

considered adequate; whereas RE should clearly be rejected.



96 CHAPTER 7. THE EVALUATION OF EXISTING VDMS

Te
m

po
ra

l Q
ua

lit
y

0.0

0.2

0.4

0.6

0.8

AML AT JW LN LP RE RQ YF

●

●

●

●

●
●

●

●

●

● ●

●

●

Young (12 months)

AML AT JW LN LP RE RQ YF

●

●

●
●

●

● ●

●

●

●

Middle Age (36 months)

AML AT JW LN LP RE RQ YF

●

●

●

●

●

●
●

●

Old (72 months)

A horizonal line at value of 0.5 is used as the base line to justify temporal quality. Box plots are coloured with respect to the

comparison between the corresponding distribution and the base line: white - significantly above the base line, gray - no

statistical difference, dark gray - significantly below the base line (i.e., rejected).

Figure 7.3: The temporal quality distribution of each VDM in different periods of software

lifetime.

When browsers are old (36+ months), AML, JW, and YF deteriorate and dip below the

base line since month 48th (approx.), while others collapse since month 36th.

Figure 7.3 summarizes the distribution of VDM temporal quality in three periods: young

(before month 12th), middle-age (month 13th-36th), and old (month 37th-72nd). The red

horizonal line at 0.5 is the base line. We color these box plots according to the comparison

between the corresponding distribution and the base line as follows:

• white: significantly greater than the base line;

• dark gray: significantly less than the base line (we should reject the models);

• gray: not statistically different from the base line.

The box plots clearly confirm our observation in Figure 7.2. Both AT and RE models are all

significantly below the base line. AML, JW, and YF modes are significantly above the base

line when browsers are young and middle age, and not statistically different from the base

line when browsers are old. LN and LP models are also significantly good when browsers are

young, but are deteriorating in the middle-age period, and dip below the base line for old

browsers.

In summary, our quality analysis shows that:

• AT and RQ models should be rejected.
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• All other models may be adequate when browser is young. Only s-shape models (i.e.,

AML, YW, YF) might be adequate when browsers are middle-age.

• No model is good enough when the browsers are too old.

7.3.2 Predictability Analysis for VDMs

From the previous quality analysis, AT and RQ models are low quality. Hence, we exclude

these models from the predictability analysis. Furthermore, since no model is good when

browsers are too old, we analyze the predictability of these models only for the first 36 months

since the release of a browser. This period is still a large time if we consider that most recent

releases live less than a year [Chr12; Wik12a; Wik12b; Wik12c].

Predictability is a bi-dimensional function as it takes the horizon of data collection for

fitting and the prediction time. Figure 6.5 shows a graph where the horizon is fixed at 12 and

24 while the prediction time varies and the ability to predict invariably decreases as we move

further into the future.

In Figure 7.4 we keep the prediction time fixed and let the fitting horizon vary: our pur-

pose is to understand which is the best model for a given time horizon. As we can see from

the picture, the predictability lines go down (model is good at the beginning bug deteriorates

with software ages) as well as up (model is more appropriate for older software).

Figure 7.4 reports the moving average (windows size equals 5) for the trends of VDMs’

predictability along horizons in different prediction time spans. The horizonal line at 0.5 is

the base line to assess the predictability of VDMs (as same as the temporal quality of VDMs).

When the prediction time span is short (∆= 3 months, top-left corner), the predictability

of LN, AML, JW, and LP models is above the base line for young software (12 months). When

software is approaching month 24th, though decreasing the predictability of LN is still above

the base line, but goes below the base line after month 24th. The LP model is no different

with the base line before month 24th, but then also goes below the base line. In contrast,

the predictability of AML, YF and JW are improving with age. They are all above the base line

until the end of the study period (month 36th. Therefore, only s-shape models (AML, YF, and

JW) may be adequate for middle-age software.

For the medium prediction time span of 6 months, only the LN model may be adequate

(above the base line) when software is young, but becomes inadequate (below the base line)

after month 24th. S-shape models are inadequate for young software, but are improving

quickly as software ages. They become adequate after month 18th and keep this perfor-

mance until the end of the study period.
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A horizonal line at value of 0.5 is the base line to assess the predictability.

Figure 7.4: The predictability of VDMs in different prediction time spans (∆).

When the prediction time span is long (i.e., 12 months), LN is approximately around the

base line, while all other models sink below it for young browsers. In other words, no model

could be adequate for young browsers in this prediction time span. After month 18th, the

AML model goes above the base line, and after month 24th, all s-shape models are above the

base line.

When the prediction time span is very long (i.e., 24 months) no model is good enough as

all models sink below the base line.
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A directed connection from two nodes determines that the source model is better than the target one with respect to their

predictability (dashed line), or their quality (dotted line), or both (solid line). A double cirlce marks the best model. RQ and

AT are not shown as they are the worst models.

Figure 7.5: The comparison results among VDMs in some usage scenarios.

7.3.3 Comparison of VDMs

The comparison between VDMs follows Step 5. Instead of reporting tables of p-values, we

visualize the comparison results in terms of directed graphs where nodes represent models,

and connections represent the order relationship between models.

Figure 7.5 summarizes the comparison results between models in different settings of

horizons (τ) and prediction time spans (∆). A directed connection from two models deter-

mines that the source model is better than the target model in terms of either predictability,

or quality, or both. The connection line-style is as follows:

• Solid line: the predictability and quality of the source is significantly better than the
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Table 7.4: Suggested models for different usage scenarios.

Observation Prediction Best 2nd Best

Period (month) Time Span (month) Model Model(s)

6 – 12 3 (short-term) LN AML, JW

6 – 12 6 (medium-term) LN JW, LP

6 – 12 12 (long-term) LN LP

13 – 24 3 (short-term) AML YF

13 – 24 6 (medium-term) AML YF, LN

13 – 24 12 (long-term) AML YF, LN

target’s.

• Dashed line: the predictability of the source is significantly better than the target.

• Dotted line: the quality of the source is significantly better than the target.

By the word significantly, we means the p-value of the corresponding one-sided Wilcoxon

rank-sum test is less than the significance level. We apply the Bonferroni correction to con-

trol the multi comparison problem, hence the significance level is: α= 0.05/5 = 0.01.

Based on Figure 7.5, Table 7.4 suggests model(s) for different usage scenarios described

in CR4 (see Table 6.3).

In short, when browsers are young, the LN model is the most appropriate choice. This is

because the vulnerability discovery process is linear. When browsers are approaching middle-

age, the AML model becomes superior.

7.4 Discussion

This section compares our methodology to the traditional validation method described in

Section 6.1. For the traditional methodology: VDMs are fitted to the NVD data set at the

largest horizon. In other words, we use following observed samples to evaluate VDMs:

OSNVD = {
TS(r,NVD,τr

max)|r ∈ R
}

where R is the set of all releases mentioned in Section 7.2.2.

The fitting results are reported in Table 7.5. To improve readability, we report the cate-

gorized goodness-of-fit based on the p-value (see CR2) instead of the raw p-values. In this
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Table 7.5: A potentially misleading results of overfitting VDMs in the largest horizon of

browser releases, using NVD data sets

The goodness of fit of a VDM is based on p-value in the χ2 test. p-value < 0.05: not fit (×), p-value ≥ 0.80: good fit (X), and

inconclusive fit (blank) otherwise. It is calculated over the entire lifetime.

Firefox Chrome IE Safari

1 1.5 2 3 3.5 3.6 4 5 1 2 3 4 5 6 7 8 9 10 11 12 4 5 6 7 8 1 2 3 4 5

AML × × × X X × × X × X × X × X

AT × × × × × × × × × × × × × × × × × × × × × × × × × ×
JW × × X X X X X × × × × X X × X × X × × × × ×
LN × × × X × × × × × × × × X × × × ×
LP × × X X X X X × × × × × × × X × × X × × × ×
RE × × X X X X X × × × × × × × X × × X × × × ×
RQ × × × × × X × × × × × × × × × × × × X × × × × ×
YF × × X X X X X X X X X X X X × X X X × X × × × ×

table, we use a check mark (X), a blank, and a cross (×) to respectively indicate a Good Fit,

an Inconclusive Fit, and a Not Fit. Cells are shaded accordingly to improve the visualization

effect. Notably, as in the literature, an Inconclusive Fit is equivalent to a Good Fit, i.e., incon-

clusiveness contribution factor ω= 1.

The table shows that two models AT and RQ have a large number of Not Fits entries (90%

and 70% respectively); whereas other models have less than 50% Not Fits entries. Yet only the

YF model has more than 50% Good Fits entries. We observe that this is a very large time in-

terval and some systems have long gone into retirement. For example, FF v2.0 vulnerabilities

are no longer sought by researchers. They are a byproduct of research on later versions.

From Table 7.5, we might conclude: (1) AML and YF are the “best” model (YF is slightly

better than AML); (2) AT and RQ are the “worst”; and (3) other models are approximately

equal.

With reference to Table 7.6, the conclusions obtained by the traditional methodology are

clearly less informative than those by the proposed methodology. They both agree that AT

and RQ are the worst. However, our methodology provides statistical evidences about the

superior performance of LN and AML in different periods of browser life time, whereas the

traditional one does not. Our methodology therefore supports for selection of VDMs better
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than the traditional one.

An interesting issue is whether we need the full complexity of the methodology and could

attain the same insight by a reduced number of steps. As an example, we could have stopped

the analysis at Step 2, after the production of Table 7.3. However, this table could not also

distinguish between AML and YF. Moreover, it obfuscates the advantages of LN. Hence, in or-

der to obtain a sound evidence we really need to consider the subsequent steps that analyze

temporal quality and predictability.

In conclusion, our proposed methodology is better than the traditional one by providing

more sound evidences about the performance of VDMs in different usage scenarios along the

software life time.

7.5 Threats to Validity

Construct validity includes threats affecting the way we collect vulnerability data and the

way we generate VDM curves with respect to the collected data. Following threats in this

category are identified:

Bias in data collection. Similar to the observation in Chapter 5, we also apply the soft-

ware infrastructure described in Chapter 4. As discussed, it might have some construction

validity to the observation in this chapter. We inherit the mitigation described in Section 4.2

to reduce the bias in the collected data.

Bias in bug-affects-version identification. We do not completely known which bugs affect

which versions. We assume that a bug affects all versions mentioned in its linked NVD entry.

This might overestimate the number of bugs in each version. To mitigate this, we estimate

the latest release that a bug might impact, and filter all vulnerable releases after this latest.

Such estimation is done by the technique discussed in [Sli05; NM13c]. The potential errors

in NVD discussed in [NM13c] only affect the retrospective fitness of models over the long

term so only valuations after 36 months might be affected.

Bias in NVD. We determine the browser versions affected by a vulnerability by looking

at the “vulnerable versions” list in the NVD entry. If these entries are not reliable, we may

have bias in the analysis. We have manually confirmed accuracy for few NVD entries. As also

discussed in Section 5.3, an automatic large-scale calibration should be done. Indeed, we

have done such calibration in Chapter 9 where we report the bias in NVD, but we have not

yet revisited the findings in this experiment. This would be a part of future work.

Error in curve fitting. We fitted VDMs on data by using the Nonlinear Least-Square tech-

nique implemented in R [R D11] (nls() function). This might not produce the most optimal
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solution and may impact the goodness-of-fit of VDMs. To mitigate this issue, we addition-

ally employed a commercial tool i.e., CurveExpert Pro1 to cross check the goodness-of-fit in

many cases. The results have shown that there is no difference between R and CurveExpert.

Internal validity concerns the causal relationship between the collected data and the con-

clusion in the study. Our conclusions are based on statistical tests. These tests have their

own assumptions. Choosing tests whose assumptions are violated might end up with wrong

conclusions. To reduce the risk we carefully analyzed the assumptions of the tests to make

sure no unwarranted assumption was present. We did not apply any tests with normality

assumptions since the distribution of vulnerabilities is not normal.

External validity is the extent to which our conclusion could be generalized to other sce-

narios. Our experiment is based on the vulnerability data of some major releases of the four

most popular browsers covering almost all market shares. Therefore we can be quite con-

fident about our conclusion for browsers in general. However, it does not mean that our

conclusion is valid for other types of application such as operating systems. Such validity

requires extra experiments.

7.6 Chapter Summary

This chapter has presented an experiment to validate the empirical performance of VDMs.

The experiment followed the methodology described in Chapter 6 to assess eight VDM (i.e.,

AML, AT, LN, JW, LP, RE, RQ, and YF) on 30 major releases of four web browsers: IE, Firefox,

Chrome, and Safari. The outcomes of experiment, which are summarized in Table 7.6, have

revealed that:

• AT and RQ models should be rejected since their quality is not good enough.

• For young software, the quality of all other models may be adequate. Only the pre-

dictability of LN is good enough for short (i.e., 3 months and medium (i.e., 6 months)

prediction time spans, other models however is not good enough for latter time span.

• For middle-age software, only s-shape models (i.e., AML, JW, and YF) may be adequate

in terms of both quality and predictability.

1http://www.curveexpert.net/, site visited on 16 Sep, 2011

http://www.curveexpert.net/
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Table 7.6: Performance summary of VDMs.

Model Performance

AT, RQ should be rejected due to low quality.

LN is the best model for first 12 months(∗).

AML is the best model for 13th to 36th month (∗).

RE, LP may be adequate for first 12 months (∗∗).

JW, YF may be adequate for 13th to 36th month(∗).

(∗): in terms of quality and predictability for next 3/6/12 months.
(∗∗): in terms of quality and predictability for next 3 months.

• For old software, no model is good enough.

• No model is good enough for predicting vulnerabilities for a very long period (i.e., 24

months).

In conclusion, for young releases of browsers (6 – 12 months old) it is better to use a linear

model to estimate the vulnerabilities in the next 3 – 6 months. For middle age browsers (12 –

24 months) it is better to use an s-shape logistic model.

In the next chapter, we are going to address potential bias in NVD’s vulnerable versions

data feature by proposing a method that can identify code evidence for a vulnerability claim

– a claim that a version is vulnerable to a vulnerability. Also we test the proposed method

and assess the bias of vulnerability claims by NVD for Chrome and Firefox in the subsequent

chapter.
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AN EMPIRICAL METHOD TO ASSESS THE

VULNERABILITIES RETRO PERSISTENCE

This chapter describes an automated method that could identify evidences for the

existence of vulnerabilities in retro software versions. The method takes a list of vul-

nerabilities plus their corresponding security bugs, and looks for the evidences in the

code base of retro versions that are claimed to be vulnerable to these vulnerabilities.

Based on that, we could determine whether a vulnerability claim is spurious or not.

The method could be useful while evaluating the bias to the count-of-vulnerability-

based assessment of software compliance, or while evaluating the bias to scientific

studies that are built upon the information that which versions are affected by which

vulnerabilities.

F
OUNDATIONAL vulnerability analysis is usually based on a data feature called ‘vulner-

able software and versions’ (or vulnerable versions, shortly) of each CVE. This feature

specifies versions of particular applications that are vulnerable to the vulnerability

described in the entry. Figure 8.1 illustrates this feature of CVE-2008-7294 which lists all

Chrome versions before v3.0.195.24. It means this CVE affects Chrome v3.0 and all retro-

spective versions.

According to our analysis on foundational vulnerabilities, Chrome v2–v12 are rife with

foundational vulnerabilities, approximately 99.5%; whereas this number in Firefox v1.5–v12.0

is around 75%. A foundational vulnerability [OS06] is one that was introduced in the very

105
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Figure 8.1: The vulnerable software and versions feature of the CVE-2008-7294.

first version of a software (i.e., v1.0), but survived and is discovered later in newer versions.

In theory, foundational vulnerabilities have higher chance to be exploited than others be-

cause they are exposed to attack longer than others. By finding these vulnerabilities in v1.0,

attackers could use them to exploit recent versions (say, v18) at the release date. As the result,

foundational vulnerabilities are a source for zero-day exploits. A PCI DSS assessor would

then be right in claiming that Chrome v4 should lead to the security problem.

We however have noted an abnormality in the Chrome vulnerability data reported by

NVD. It seems that Chrome developers introduced lots of vulnerabilities in the initial ver-

sion, but almost no vulnerability was introduced in subsequent versions. This could be

true if the subsequent versions contained only bug fixes and few functional improvements

(i.e., few code changes). In contrast, the study on the evolution of Chrome code base (src.

chromium.org) has revealed that the number of source components1 of Chrome v12 is ap-

proximately as double as those of Chrome v4, i.e., about 100% new components has been

introduced in Chrome v12 since v4. This was such a huge change. Therefore, a possible

explanation for the abnormality is that: either yet more vulnerabilities in these Chrome ver-

sions have not been detected, or there is a problem in the vulnerability data of Chrome, or

1A component is a C++ source file plus its (optional) header file.

src.chromium.org
src.chromium.org
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both.

According to an archive document2, the information reported in this feature is “obtained

from various public and private sources. Much of this information is obtained (with permis-

sion) from CERT, Security Focus and ISS/X-Force". However, our private communications

with NIST, host of NVD, and software vendors, have revealed a “paradox": NIST claimed

vulnerable versions were taken from software vendors [NIS12b]; whereas, software vendors

claimed they did not know about this information [Moz11].

This ambiguity might result the over-counting of (foundational) vulnerabilities in older

versions of Chrome, Firefox and other software. This severely impacts not only academic

community e.g., [Res05; OS06; You11; Mas11; NM12c], but also industrial companies. For

instance, your products which embeds an old version of browser might lose compliance with

PCI DSS due to a large number of unfixed vulnerabilities. Then you might either update to

new version, or pay a fine, or be kicked out of the market. Unfortunately, these options are

all expensive.

This motivates our work that empirically validates the reliability of the NVD assessment

on the status of being vulnerable of retro software versions.

The rest of this chapter is organized as follows. Section 8.1 describes our research ques-

tions. Section 8.2 details our proposed validation method. Section 8.3 briefly discusses re-

lated studies in the field. Section 8.4 summarizes the chapter.

8.1 Research Questions

In this chapter, we address the following research question:

RQ5 How to estimate the validity of a vulnerability claim to a retro version of software?

A vulnerability claim is a statement by a data source that a particular software version is

vulnerable to a particular CVE. Figure 8.1 shows an example of the claims listed in an NVD

entry. A vulnerability claim to a software version is technically equivalent to a vulnerability of

this version. Thereby in this chapter, we shortly refer to vulnerability claim as vulnerability.

Also, we denote a vulnerability claim which is not correct as spurious vulnerability claims.

To understand whether a vulnerability claim is spurious i.e., answering RQ5, a straight-

forward way is to reproduce the malicious or undesirable behavior in the corresponding

2This page is removed, but can be accessed by URL http://web.archive.org/web/20021201184650/

http://icat.nist.gov/icat_documentation.htm

http://web.archive.org/web/20021201184650/http://icat.nist.gov/icat_documentation.htm
http://web.archive.org/web/20021201184650/http://icat.nist.gov/icat_documentation.htm
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software version. This is only possible for a few vulnerabilities for which a proof of concept

exploit exists, e.g., in metasploit (www.metasploit.com), and it can be used for automated

verification. This setup has been used for exploit kit verification [All13a] which only included

few hundred vulnerabilities. For large scale verification of NVD claims such strategies is not

feasible. At first NVD does not reveal enough detail information to carry out the exploits; sec-

ond, a manual verification of thousands of vulnerabilities is simply unfeasible. We therefore

need an automated approach to claim verification.

We propose a method that automatically identifies the code evidence of a vulnerability

in the code base of a particular version. From this evidence, we could estimate the correct-

ness of a vulnerability claim. The detail of the proposed method is elaborated further in

Section 8.2.

8.2 The Method to Identify Code Evidence for Vulnerability

Claims

The proposed method builds upon the work by Sliwerski et al. [Sli05], who attempted to de-

tect source lines of code that are responsible for general programming bugs. Though vulner-

abilities are also programming bugs, they have specific features. The major difference is that

vulnerabilities are mostly discovered after a software has been shipped to customers. Thus,

vulnerabilities affect not only software vendors themselves, but e.g., in case of browsers, mil-

lions of users worldwide. Successful exploits of vulnerabilities therefore might cause million-

dollar loss. This results in major differences between the proposed method and [Sli05] as

follows:

1. The proposed method could accept false positives (i.e., a version is claimed to be vul-

nerable, while it is not), but try to avoid false negatives (i.e., a version is claimed to be

clean, while it is vulnerable) as much as possible. In contrast, the approach by [Sli05]

tried to minimize false positives.

2. The proposed method focuses on the question: “which versions are truly affected by

which vulnerability claims?", which was not the concern of the approach by [Sli05].

Therefore, they could not answer this question.

Table 8.1 summarizes the proposed method. The method takes available vulnerability

data sources as a starting point. The output of each step is piped to its consecutive step. The

www.metasploit.com
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Table 8.1: Overview of the proposed validation method.

INPUT All available vulnerability data sources

STEP 1 Acquire vulnerability data Acquire vulnerabilities and their responsible security

bugs from vulnerability data sources.

STEP 2 Locate bug-fix commits Locate the lines of code responsible for vulnerabili-

ties by employing a repository mining approach.

STEP 3 Identify vulnerable code

footprints

Determine the LoCs that are modified to fix the vul-

nerability. We call these LoCs vulnerable code foot-

print.

STEP 4 Determine evidence for

vulnerability claims

Scan through the code base of every software version

for the vulnerable code footprints.

OUTPUT Vulnerability claims and their affected versions with evidence

output of the final step, which is also the method outcome, is a list of vulnerabilities with

their affected versions associated with code evidences.

In order to identify a version of the software where a vulnerability actually exists for sure,

we rely on the consistency of the development process by software manufactures. In partic-

ular, we make use of the following assumptions:

ASS8.1 The developers either mention bug ID(s) responsible for a vulnerability in the descrip-

tion of the commit that contains the bug fix, or mention the commit ID that fixes the

bug in the bug’s report.

ASS8.2 A bug-fix commit is for a single bug.

ASS8.3 A vulnerability claim about a software version is evidence-supported if either there

exists at least a vulnerable code-footprint for this vulnerability in the code base of this

version, or the vulnerability gets fixed by only adding new lines of code. Otherwise, a

vulnerability claim is spurious.

By making the above assumptions, we might face a number of threats to validity. An-

toniol et al. [Ant08] and Bird et al. [Bir09] discussed two potential biases corresponding to

ASS8.1: first, developers do not mention bug ID(s) in a bug-fix commit; second, developers

mention bug ID(s) in a non-bug-fix commit. Bird et al. [Bir09] also pointed that the latter

bias is negligible, while the former does exist.
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The second assumption ASS8.2 is important because if a bug-fix commit contains changes

for fixing multiple bugs (i.e., multiple-bug-fix commit), we cannot distinguish the lines of

code (LoCs) that were touched to fix which bugs. Consequently we might end up with a re-

sult that vulnerability claims corresponding to these bugs are valid in the same versions of

software, which is not necessary true. Therefore if the number of multiple-bug-fix commit is

too high, this will rise threat biasing the outcome of the proposed method.

Concern ASS8.3, it is not necessarily true that the changed LoCs are the vulnerable ones,

albeit they might have helped to remove the vulnerability. For example, a vulnerability that

could lead to SQL injection attack could be fixed by inserting a sanitizer around a user’s input

in another module. We will then consider all versions where this sanitiser is missing as vul-

nerable. This is not necessary true; for example previous versions might have used another

model for input and the latter model had proper input sanitizer. This is acceptable in this

context because we are trying to minimize false negatives, while accepting false positives.

Occasionally we could not find evidence neither in favor nor against a vulnerability claim.

This could happen because either the corresponding CVE does not have any responsible se-

curity bug due to the incompleteness of the data source, or the bug-fix commit of the re-

sponsible bug cannot be located due to the incompleteness of the method.

Hereafter, we elaborate the steps of the proposed method.

8.2.1 Step 1: Acquire Vulnerability Data

For validation purposes, we need to obtain security bugs responsible for CVEs, from which

we can establish traces from CVEs to the code base. A CVE entry provides a general descrip-

tion of a vulnerability. Such description usually contains less technical information, and

emphasize more about the impact of a vulnerability so that it could be understandable by

most users. A security bug, in the other side, provides a more technical data for software

developer to fix the bug.

There are two official ways to obtain corresponding security bugs of a CVE. First, each

CVE might have references to its corresponding security bugs. These references are reported

in the references feature of a CVE. Second, the official security advisories by software manu-

facture might report CVE and its corresponding security bugs.

Example 8.1 Figure 8.2(a) shows an example where the corresponding security bug of CVE-

2008-5015 is reported as in its references feature. In this example, it is a URL to a security bug

report 447579 of Firefox. For Firefox, bug report hyperlinks usually have two forms: https:
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(a) Report detail for CVE-2008-5015 (b) Report detail for MFSA-2008-51

Figure 8.2: Selected features from a CVE (a), and from an MFSA report (b).

//bugzilla.mozilla.org/show_bug.cgi?id=n (for single bug), or https://bugzilla.

mozilla.org/bug_list.cgi?=n,n (for bug list). For Chrome, the hyperlink to a bug report

is usually http://code.google.com/p/chromium/issues/detail?id=n. In these hyper-

links, n is an integer number indicating the bug ID.

Example 8.2 Figure 8.2(b) illustrates an example where CVE and its corresponding secu-

rity bug are reported by vendor advisory reports, e.g., MFSA for Firefox. The figure shows a

snapshot of an MFSA entry: MFSA-2008-51. The References section of this entry reports two

hyperlinks: one for a security bug (https://bugzilla.mozilla.org/show_bug.cgi?id=

447579), and another one for a CVE entry (CVE-2008-5015). So we heuristically assume that

this security bug is responsible for that CVE.

8.2.2 Step 2: Locate Bug-Fix Commits

This step takes the list of vulnerabilities and their corresponding security bug identifier de-

termined in the previous step to locate their corresponding bug-fix commits in the code

base. A bug-fix commit is a commit entry in the code base repository that contains changes

to fix a (security) bug. There are two popular techniques to locate bug-fix commits: reposi-

tory mining and bug-report mining.

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2008-5015
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Figure 8.3: Bug-fix commits

of Chrome (a) and Firefox

(b).

In each commit, the commit ID (i.e.,

revision ID), changed files, and fixed

bug ID are highlighted.

r41106 | inferno@chromium.org | 2010-03-10 02:03:43 +0100 

(Wed, 10 Mar 2010) | 10 lines

Changed paths:

   M /branches/249/src/chrome/browser/views/login_view.cc

Merge 40708 - This patch fixes [… text truncated for saving space]

BUG=36772

TEST=Try a hostname url longer than 42 chars to see that 

it wraps correctly and wraps to the next line.

(a) A Chrome bug-fix commit

changeset: 127761:88cee54b26e0

author: Justin Lebar <justin.lebar@gmail.com>

date: 2013-01-07 09:44 +0100

files: +|-|*dom/ipc/ProcessPriorityManager.cpp

desc: Bug 827217 - Fix null-pointer crash with webgl.can-

lose-context-in-foreground=false.

(b) A Firefox bug-fix commit

• The repository mining technique was introduced by Sliwerski et al. [Sli05] and adopted

by many other studies in the literature e.g., [Neu07; Shi11]. This technique parses com-

mit logs of the code base repository for the security bug IDs according to predefined

patterns. In our case, the commit logs mentioning security bug ID(s) are bug-fix com-

mits.

• The bug-report mining technique, adopted by Chowdhury and Zulkernine [CZ11], parses

a security bug report for bug-fix information. Such information includes changed lo-

cations in code base, which could be referred to as either links to bug-fix commits, or

links to particular revision of changed source files. In the latter case, we assume the

revision of changed source files is bug-fix commit.

Example 8.3 In Chrome, a bug-fix commit refers to bug IDs by the patterns BUG=n(,n)

or BUG=http://crbug.com/n, where n is the bug ID. In Firefox, bug IDs usually follow key-

words such as bug. Figure 8.3 exemplifies two bug-fix commits: one for Chrome, and another

one for Firefox. In each bug-fix commit, we highlight interesting information including the

revision ID of the bug-fix commit, the list of changed source files, and the bug ID fixed by the

commit.

These two techniques are complement each other since the advantage of a technique is

the disadvantage of the other. The repository mining technique requires access to commit
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logs which might not be publicly available. It could locate bug-fixes for undisclosed bug

reports – the advantage. However it might skip bug-fixes which do not mention explicitly

the security bug IDs (e.g., when merging from external repositories) – the disadvantage. On

the other hand, the bug-report mining technique could parse the bug report the bug-fixes

even if the bug IDs were not mentioned in these bug-fixes – the advantage. But it could not

locate bug-fixes for undisclosed bug reports, though these bug-fixes explicitly mention the

bug IDs – the disadvantage.

Example 8.4 For instance, bug-fixes for the WebKit module3 in Chrome usually do not con-

tain the bug IDs because they are merged from another repository.

With reference to ASS8.2, after identifying bug-fixes we should investigate the distri-

bution of number of bugs fixed per bug-fix commit to understand the potential impact of

multiple-bug-fix commits.

8.2.3 Step 3: Identify Vulnerable Code Footprints

This step takes bug-fix commits and annotates source files in the commits to determine vul-

nerable code footprints. A vulnerable code footprint is a piece of code which is changed (or

removed) in order to fix a security bug. The intuition to identify such vulnerable code foot-

prints is to compare the revision where a security bug is fixed (i.e., bug-fix commit) to its

immediate parent revision. Pieces of code that appear in the parent revision but not in the

bug-fixed revision are considered vulnerable code footprints.

Let r f i x be the revision ID of a bug-fix commit. We compare every file f changed in

this revision to its immediate parent revision4. We employ the diff command supported

by the repository to do the comparison. By parsing the comparison output, we can identify

the vulnerable code footprints. We ignore formatting changes such as empty lines, or lines

which contain only punctuation marks. Such changes occur frequently in all source files,

and therefore they do not characterize the changes to fix security bugs.

Example 8.5 Figure 8.4(a) illustrates an excerpt of the comparison between revision r 95730

and r 95731 of file url_fixer_upper.cc by using diff command. The command produces

3The module used by Chrome to render HTML pages
4In an SVN repository, the immediate parent of the revision r f i x is r f i x −1. In some other repository such

as Mercurial, the immediate parent is determined by performing the command parent
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Figure 8.4: Excerpts of the

output of diff (a), and of

the output of annotate (b).

$ svn diff -r 95730 -r 95731 url_fixer_upper.cc

@@ -540,3 +540,6 @@

   bool is_file = true;

+  GURL gurl(trimmed);

+  if (gurl.is_valid() && ...)

+    is_file = false;

   FilePath full_path;

-  if (!ValidPathForFile(...) {

+  if (is_file && !ValidPathForFile(...) {

start line index and number of lines 
of the left, and the right revisions

added line is preceded by a ‘+’

deleted line is 
preceded by a ‘-’

left revision right revision

(a) An excerpt of diff

$ svn annotate -r 95730 url_fixer_upper.cc

...

537:   15 initial.commit PrepareStringForFile...

538:   15 initial.commit

539:   15 initial.commit bool is_file = true;

541: 8536 estade@chromium.org FilePath full_path;

542:   15 initial.commit if (!ValidPathForFile(...)) {

543:   15 initial.commit  // Not a path as entered,

...

committed revision committer line contentline index

(b) An excerpt of annotate

an output in Unify Diff format where changes are organized in hunks. A hunk begins with

a header which is surrounded by double-at signs (@@), contains the start line index and

number of lines. Added lines, deleted lines, and unchanged lines are respectively preceded

by a plus sign, a minus sign, and a space character. The vulnerable code footprint is deleted

lines e.g., in this excerpt, which is line #542.

Next, we identify the origin of vulnerable code footprints i.e., the revision where the po-

tential bad code is introduced. Such origins are achieved by annotating the source file f at

immediate parent revision of the bug-fix commit. In an annotation of a source file, every in-

dividual line is annotated with meta-information such as the origin revision, the committed

time, and the author. The annotation is done by the annotate command of the repository

Example 8.6 Figure 8.4(b) presents an excerpt of the annotation of file url_fixer_upper.

cc at the immediate parent revision of the bug-fix commit, i.e., revision 95730. According to

this excerpt, the origin revision of vulnerable code footprint #542 in Example 8.5 is 15.
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Table 8.2: The execution of the method on few Chrome vulnerabilities.

CVE Reported

Versions

Bug ID Bug-fix Commits Footprint Versions w/

Evidence

2011-2822 v1–v13 72492 url_fixer_upper.cc1

(r 95731)

〈r 15,542〉 v1–v13

2011-4080 v1–v8 68115 media_bench.cc2

(r 70413)

〈r 26072,352〉,
〈r 53193,353〉

v3–v8

2012-1521 v1–v18 117110 – – –

1: chrome/browser/net/url_fixer_upper.cc 2: media/tools/media_bench/media_bench.cc

8.2.4 Step 4: Determine Vulnerability Evidences

This step scans through the code base of all version claimed to be vulnerable for the existence

of vulnerable code footprints. Such existence is the supported evidence for the claimed that

a version is actually vulnerable to a vulnerability. A special case is present when a CVE was

fixed by only adding new code. In this case, no vulnerable code footprint is detected. In this

scenario, we assume conservatively that all original LoCs of the file where a vulnerability is

fixed are all vulnerable code footprints. If a version contains the file, then it is vulnerable.

This solution does not introduce false negatives, but may let false positives survive. Indeed

notice that the version has been already claimed to be vulnerable. For a compliance per-

spective, this is acceptable albeit maybe costly.

Example 8.7 Table 8.2 shows a few validation examples of Chrome vulnerability claims.

CVE-2011-2822 is reported to affect Chrome v1 up to v13. Its responsible bug is 72492. In

Step 2, by scanning the log, the bug-fix commit is revision r 95731 of file url_fixer_upper.

cc. In Step 3, we diff revision r 95730 and r 95731 of this file (see Figure 8.4(a)). The vulnerable

code footprint is determined as {#542}. Then we annotate r 95730 of the file to get the revision

of the code footprint, which is {r 15} (see Figure 8.4(b)). In Step 4, we scan for this line in the

code base of all versions, and found it in v1 to v13. Finally, we identify the vulnerable versions

for this vulnerability, which are v1–v13.

Example 8.8 This example illustrates a case where the rule “version X and its previous ver-

sions are vulnerable” was applied. The description CVE-2012-4185 said:

“Buffer overflow in the nsCharTraits::length function in Mozilla Firefox before

16.0, Firefox ESR 10.x before 10.0.8, Thunderbird before 16.0, Thunderbird ESR
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10.x before 10.0.8, and SeaMonkey before 2.13 allows remote attackers to execute

arbitrary code or cause a denial of service (heap memory corruption) via unspeci-

fied vectors.”

By applying the above strategy, all versions from v1.0 – v15.0 are claimed as vulnerable to

this vulnerabilities. The corresponding bug for this CVE is 785753. This bug indicated that

it was a global-buffer-overflow in the nsCharTraits::length function. This bug was fixed

by changing the file netwerk/base/src/nsUnicharStreamLoader.cpp as follows.

if (NS_FAILED(rv)) {

- NS_ASSERTION(0 < capacity - haveRead,

- "Decoder returned an error but filled the output buffer! "

- "Should not happen.");

+ if (haveRead >= capacity) {

+ // Make room for writing the 0xFFFD below (bug 785753).

+ if (!self->mBuffer.SetCapacity(haveRead + 1, fallible_t())) {

+ return NS_ERROR_OUT_OF_MEMORY;

+ }

+ }

self->mBuffer.BeginWriting()[haveRead++] = 0xFFFD;

++consumed;

The plus (+) determines newly added lines, and the minus (-) indicates deleted lines. In this

case, the vulnerability’s cause might be the lack of a conditional check for a circumstance

that the Firefox developers did not think it would happen. It was fixed by adding the missing

check. We traced the original revision of the deleted line and found that it was introduced

since the revision 70061, and stayed there until revision 108991. We scanned through the

code based of Firefox v15 and downward for deleted lines. We could only found these deleted

lines in Firefox v6 to v15. Clearly, we could not say this vulnerability affects also Firefox v1.0

to v5.0 as claimed by this NVD entry.

8.3 Related Work

Sliwerski et al. [Sli05] proposed a technique that automatically locates fix-inducing changes.

This technique first locates changes for bug fixes in the commit log, then determines ear-

lier changes at these locations. These earlier changes are considered as the cause of the

later fixes, and are called fix-inducing. This technique has been employed in several studies
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[Sli05; Zim07] to construct bug-fix data sets. However, none of these studies mention how

to address bug fixes which earlier changes could not be determined. These bug fixes were

ignored and became a source of bias in their work.

Bird et al. [Bir09] conducted a study the level bias of techniques to locate bug fixes in code

base. The authors have gathered a data set linking bugs and fixes in code base for five open

source projects, and manual checked for the biases in their data set. They have found strong

evidence of systematic bias in bug-fixes in their data set. Such bias might be also existed

in other bug-fix data set, and could be a critical problem to any study relied on such biased

data.

Antoniol et al. [Ant08] showed another kind of bias that the bug-fixes data set might suffer

from. Many issues reported in many tracking system are not actual bug reports, but feature

or improvement requests. Therefore, this might lead to inaccurate bug counts. However,

such bias rarely happens for security bug reports. Furthermore, Nguyen et al. [Ngu10], in

an empirical study about bug-fix data sets, showed that the bias in linking bugs and fixes

is the symptom of the software development process, not the issue of the used technique.

Additionally, the linking bias has a stronger effect than the bug-report-is-not-a-bug bias.

Meneely et al. [Men13] studied the properties of so-called vulnerability-contributing com-

mits (VCC) which are similar to the commits containing vulnerability code footprints in this

chapter. Meneely et al. applied the similar method to identify security bug-fix commits, but

then they follow an ad-hoc approach to identify VCC. Thus, the identification of VCC for 68

vulnerabilities of Apache HTTP server took them hundreds of man-hours over six months.

Here, we have to deal with thousands of vulnerabilities.

8.4 Chapter Summary

This chapter presented a method to identify code evidence for vulnerability claims. The

method was inspired by the work of Sliwerski et al. [Sli05]. Sliwerski et al. [Sli05] aimed to

identify to code inducing fixes for bugs in general, meanwhile the proposed method focused

on the evidence of the present of vulnerabilities. Such objectives resulted in the significant

difference between the two methods: the method by Sliwerski et al. [Sli05] tried to reduce

false positives, while the proposed method aimed to reduce false negatives, and could accept

false positives.

The method took a list of vulnerabilities and their corresponding security bugs as input.

Then it traced the commits in the source code repository for the commits that fixed security

bugs. From these commits, it determined the so-called vulnerable code footprints which are
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changed LoCs to fix security bugs. Then it traced for the origin revision where vulnerable

code footprints were introduced. Finally it scanned the code base of individual versions to

determine the vulnerable status of these versions.

In the next chapter, we are going to check the effectiveness of the proposed method in the

sense that whether it can assess the vulnerabilities claims by NVD for Chrome and Firefox.

We also conduct experiments to see whether there is any bias in NVD vulnerability claims,

and how the potential bias might impact the conclusion of scientific studies relying on them.
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AN EMPIRICAL ASSESSMENT FOR THE

RETRO PERSISTENCE OF VULNERABILITY

CLAIMS BY NVD
This chapter applies the assessment method for the retro persistence of vulnerabili-

ties described in Chapter 8 to empirically assess the vulnerability claims by NVD for 33

major versions of Chrome and Firefox. We used the proposed method to validate the

folk knowledge that when inserting data in NVD, analysts apply overly a conserva-

tive rule “version X and its previous versions are vulnerable”. The experiment results

have shown that more than 30% of vulnerability claims to each of these versions are

spurious. As a result, many scientific studies claiming that vulnerabilities tend to be

foundational were not in reality due to the NVD marking scheme.

W
E in this chapter present an experiment to study whether the proposed assess-

ment method for the retro persistence of vulnerabilities actually works or not.

The experiment analyzes vulnerability claims by NVD for 33 major versions of

Chrome and Firefox. We aim to validate the folk knowledge that when making vulnerability

claims for each NVD entry, the NVD analysts apply overly a conservative rule “version X and

its previous versions are vulnerable.".

The rest of this chapter is organized as follows. Section 9.1 describes the chapter’s re-

search questions. Section 9.2 shows the analysis on the collected data for Chrome and Fire-

119
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fox. Section 9.3 reviews the impact of spurious vulnerability claims to two vulnerability stud-

ies. Section 9.4 presents potential threats to validity and how they are addressed. Section 9.5

summarizes this chapter.

9.1 Research Questions

In this chapter, we consider the following research questions:

RQ8 Is the proposed assessment method effective in assessing the retro persistence of vulnera-

bilities?

RQ9 To what extend are vulnerability claims by NVD trustworthy?

RQ10 To what extend does the bias in vulnerability claims by NVD (if any) impact conclusions

of a vulnerability analysis?

To study the effectiveness of the proposed assessment method i.e., answering RQ8, we

apply the proposed method to conduct an experiment assessing the number of spurious

vulnerability claims for 18 major versions of Chrome (i.e., v1.0–v18), and 15 major versions

of Firefox ( i.e., v1.0–v12.0). We measure the ability to assess the majority of vulnerability

claims of Chrome and Firefox. If the method could be able to assess at least two third of

vulnerability claims, it will be an evidence for the effectiveness of the proposed method.

We answer RQ9 by measuring the ratio of spurious vulnerability claims, which is here-

after referred to as error rate. In many analyses, a small error rate could be acceptable, but

other analyses might be biased. Suppose that we have two vulnerability samples X and Y

(for example, foundational vulnerabilities in Chrome and Firefox), we want to test whether

the outputs of a function f (e.g., mean, rank, standard error, or so) on X and Y are signif-

icantly different. The statistical test is basically a diff function measuring the chance that

f (X ) is different from f (Y ). Traditionally the significance level is 0.05 which means that if

diff ( f (X ), f (Y )) is greater than 0.95, we could conclude a significant difference. However, if

X contains more than 5% of errors, we are measuring diff ( f (X −0.05), f (Y )). If the errors are

not uniformly distributed, the errors might impact the output of f . Consequently, the eval-

uation of true diff might have passed from lower than 5% to greater than 5%. As the result,

the conclusion might not be statistically significant. From an industry perspective a greater

error rate that might introduces a notion of reasonable doubt to a compliance assessment.

We further examine the systematic characteristic of the spurious vulnerability claims

along the life time of each version – version age (i.e., the number of months since the release
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of particular versions). Industry-wise the presence of a systematic bias might lead to system-

atic deployment of over restrictive security measures or to the unwarranted preference of a

software over another.

We conduct another experiment to address RQ10. The experiment explores the effect of

spurious vulnerability claims to the validity of the studies on foundational vulnerabilities in

order to revisit the finding that the majority of vulnerabilities are foundational[OS06]. We

analyze the difference in the conclusions made in two different settings. The first setting

uses all vulnerabilities claimed by NVD. The second setting also uses vulnerabilities claimed

by NVD, but excludes all spurious ones.

9.2 The Assessing Experiment of Vulnerability Claims

We apply the proposed method to validate the trustworthiness of vulnerability claims by

NVD on Chrome and Firefox (answer for RQ9). For Firefox we obtain bug-fix commits by

using the repository mining technique because it discovered bug-fix commits for almost se-

curity bugs. For Chrome, we also use the repository mining technique for undisclosed secu-

rity bugs reports, and the bug-report mining technique for security bugs fixed in imported

projects (e.g., WebKit). These security bugs, as discussed, cannot be located by mining the

repository because their bug IDs were not mentioned in the bug-fix commits.

The implementation scripts of the method take approximately 14 days (i.e., 336 hours) on

a 2 x quad-core 2.83GHz Linux machine with 4GB of RAM to assess approximately 9,800 vul-

nerability claims for Chrome and Firefox. However it is still dramatically more efficient than

an ad-hoc approach adopted by Meneely et al. [Men13], which took six months to evaluate

68 vulnerabilities.

Hereafter, we present the software infrastructure for the experiment, and some statistics

of the experiment, as well as our analysis on the spurious vulnerability claims for these two

browsers.

9.2.1 The Software Infrastructure

Figure 9.1 presents the software infrastructure for the experiment that assesses the retro per-

sistence of Chrome and Firefox vulnerabilities. The body of this infrastructure consists of the

following scripts:

• Commit Log Parser. This script takes the commit logs of the source code repositories of

browsers, and vulnerability data of Chrome and Firefox (i.e., Chrome VDB and Firefox
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Figure 9.1: The software infrastructure for assessing the vulnerabilities retro persistence.

VDB, see Section 4.1) as inputs to produce the BugFixes data set. Because the reposi-

tory of Firefox was migrated from CVS to HG since version v3.5, we have three different

kinds of commit logs: Firefox CVS Commit Logs, Firefox HG Commit Logs, Chrome SVN

Commit Logs. These commit logs are text files. Thus, this script relies on particular

parsing script for each type of commit logs (i.e., CVS Log Parser, HG Log Parser, and

SVN Log Parser). The BugFixes data set maintains the links between security bugs to

particular source components that were touch to fix it.

• Code Tracer. This script consumes the BugFixes data set to produce the Code Footprint

data set, which maintains the links between a security bug to particular LoCs that po-

tentially contribute to the existence of this bug. For this purpose, this script looks for

the original version of modified LoCs of source components in BugFixes. This is done

thank to the repository servers via the Repository Utility scripts.

• Code Scanner. This script scans LoCs in Code Footprint in the code bases of all versions

of Chrome and Firefox to determine the earliest version affected by a security bug. This

is also done with the aid of repository servers via the Repository Utility scripts. The

outcome of this script is the Bug Verification Data data set.
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• Data Synthesizer. This script aggregates data from Chrome and Firefox vulnerabilities

plus the Bug Verification Data data set to produce Firefox Verified VDB, and Chrome

Verified VDB data sets. These data sets are basically the same as Firefox VDB, and

Chrome VDB plus extra information about the earliest version affected by each vul-

nerability. The aggregated data sets are then consumed by analysis scripts to produce

desired outputs for answering research questions.

The schemas of the data sets mentioned in Figure 9.1 are as follows:

BugFixes = (bugID, browser, repository, �xedCommit, component)

Code Footprint = (bugID, browser, repository, originalCommit, component, LoC)

Bug Verification Data = (bugID, browser, component, version, LoC)

Firefox Verified VDB = (bugID, bugDate, mfsaID, mfsaDate,

cveID, cveDate, minA�ectedVersion,

maxA�ectedVersion, estimatedMinVersion)

Chrome Verified VDB = (bugID, bugDate, cveID, cveDate,

minA�ectedVersion, maxA�ectedVersion, estimatedMinVersion)

9.2.2 Descriptive Statistics

Table 9.1 presents the numbers of CVEs affecting Chrome and Firefox by April 2013. Particu-

larly, there are 768 CVEs affecting Chrome, and 876 CVEs affecting Firefox. Out of those, 728

Chrome CVEs (94.8%), and 730 Firefox CVEs (83.3%) have at least one responsible security

bug. These CVEs make a total of 9,800 vulnerability claims to 18 major versions of Chrome

(v1–v18), and 15 major versions of Firefox (v1.0–v12.0).

The detailed outcomes of the experiment for vulnerability claims in individual versions

of Chrome and Firefox are reported in Table 9.2, Table 9.3, respectively. On average, each

version of Chrome has about 309 vulnerability claims. Of these, approximately 28.6% are

unverifiable, and 35.9% are found spurious by our method. The average number of vulnera-

Table 9.1: Descriptive statistics for vulnerabilities of Chrome and Firefox

Number of CVEs Total

verifiable w/o resp. bugs w/o bug-fix

Chrome 554 (72.1%) 40(5.2%) 174(22.7%) 768

Firefox 681 (77.7%) 146(16.7%) 49(5.6%) 876
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Table 9.2: Descriptive statistics of vulnerability claims of Chrome.

Unverifiable Verifiable

Release Total w/o resp. bug w/o bug-fix w/ evidence spurious

Chrome v1 526 5.9% 22.1% 34.8% 37.3%

Chrome v2 512 3.9% 22.7% 36.1% 37.3%

Chrome v3 504 3.6% 22.8% 38.7% 34.9%

Chrome v4 498 3.4% 22.5% 43.0% 31.1%

Chrome v5 455 1.1% 22.2% 38.9% 37.8%

Chrome v6 405 1.2% 24.0% 43.0% 31.9%

Chrome v7 391 1.3% 24.6% 42.2% 32.0%

Chrome v8 371 1.3% 24.5% 43.7% 30.5%

Chrome v9 337 1.5% 26.4% 42.7% 29.4%

Chrome v10 304 1.3% 28.0% 40.1% 30.6%

Chrome v11 273 1.8% 26.0% 38.1% 34.1%

Chrome v12 239 2.1% 25.5% 38.1% 34.3%

Chrome v13 217 1.8% 25.3% 36.9% 35.9%

Chrome v14 177 2.3% 22.6% 32.2% 42.9%

Chrome v15 121 4.1% 24.8% 38.0% 33.1%

Chrome v16 112 3.6% 25.0% 26.8% 44.6%

Chrome v17 88 4.5% 27.3% 20.5% 47.7%

Chrome v18 35 5.7% 48.6% 5.7% 40.0%

Mean(std.dev) 309 (155) 2.8% (1.5%) 25.8% (5.8%) 35.5% (9.3%) 35.9%(5.1%)

bility claims per each version of Firefox is slightly less than Chrome, about 283. Comparing

to Chrome, vulnerability claims per each Firefox version are less unverifiable (10.3%), and

slightly less spurious (31.5%).

As suggested in Step 2 (see Section 8.2.4), we investigate the distribution of fixed bugs

per bug-fix commit to understand the unwanted effect of multiple-bug-fix commits that po-

tentially biases the experiment outcomes. Figure 9.2 shows these distributions for Chrome

(left) and Firefox (right). In almost all cases for Chrome and in over 90% for Firefox, a bug-fix

commit only contain fixes for one bug. Clearly developers of both Chrome and Firefox are

really focused on fixing security bugs; they fix each security bug individually, and commit the

bug-fix to the repository when a bug is fixed. This consistent behavior makes the unwanted
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Table 9.3: Descriptive statistics of vulnerability claims of Firefox.

Unverifiable Verifiable

Release Total w/o resp. bug w/o bug-fix w/ evidence spurious

Firefox v1.0 454 12.3% 6.2% 32.6% 48.9%

Firefox v1.5 461 12.6% 6.3% 38.8% 42.3%

Firefox v2.0 469 7.0% 5.5% 45.6% 41.8%

Firefox v3.0 388 4.6% 6.4% 45.1% 43.8%

Firefox v3.5 336 3.0% 6.5% 53.0% 37.5%

Firefox v3.6 310 2.9% 7.4% 52.3% 37.4%

Firefox v4.0 253 0.8% 8.3% 62.8% 28.1%

Firefox v5.0 230 0.0% 8.3% 67.4% 24.3%

Firefox v6.0 220 0.0% 7.7% 68.2% 24.1%

Firefox v7.0 210 0.0% 7.6% 68.1% 24.3%

Firefox v8.0 203 0.5% 7.9% 66.5% 25.1%

Firefox v9.0 196 0.0% 7.7% 66.8% 25.5%

Firefox v10.0 176 0.0% 8.0% 67.0% 25.0%

Firefox v11.0 175 0.0% 8.0% 70.3% 21.7%

Firefox v12.0 165 0.0% 8.5% 69.7% 21.8%

Mean(std.dev) 283 (108) 2.9% (4.3%) 7.4% (0.9%) 58.3% (12.2%) 31.4% (9.0%)
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Figure 9.2: The number of bugs per bug-fix commit in Chrome (a) and in Firefox (b).

effect of multiple-bug-fix commit negligible in our experiment.

We further investigate the complexity of a security bug-fix commit in two aspects: the
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Figure 9.3: The complexity of bug-fix commits by number of source components (a) and by

number of vulnerable code footprints (b).

number of source components touched to fix a bug, and the number of vulnerable code foot

prints. The intuition behind this investigation is that a less complex bug-fix commit will

generate less bias in the experiment outcome.

Figure 9.3(a) reports the distributions of source components touched per bug-fix commit

for Chrome (left) and Firefox (right). In Chrome, 77% of the cases a security bug gets fixed

by touching at most four components, and 38% are fixed by touching only one component.

Meanwhile, in Firefox, 76% are fixed by touching at most two components, and up to 63% of

the cases are fixed by touching one component. Moreover, in terms of touched components,

the number of complicated security bugs which require touching over ten components is
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about 11% in Chrome, and only 4% in Firefox. In short, bug-fix commits touching one com-

ponent take the largest portion in both Chrome and Firefox. They are majority in Firefox, but

are not in Chrome nonetheless.

Figure 9.3(b) exhibits the histograms of vulnerable code footprints per bug-fix commit

for Chrome (left) and Firefox (right). In Chrome, 78% security bugs have up to 40 vulnerable

code footprints, of those 53% have up to 10 footprints. In Firefox, 76% security bugs have

up to 60 footprints, 10-footprint (or less) security bugs are only 38%. Here we can see an

opposite observation between Chrome and Firefox, 10-footprint security bugs are majority

in Chrome, but are not in Firefox, although they also take the largest portions in the distri-

butions of both Chrome and Firefox.

On average, for two-third of Chrome security bugs, each has 15.26 vulnerable code foot-

prints, and gets fixed by touching 1.84 components. Those numbers for Firefox are 21.18

and 1.17. Apparently, security bugs are local phenomena, which might help to reduce the

potential bias in the proposed method.

9.2.3 The Analysis on the Spurious Vulnerability Claims

Table 9.2 and Table 9.3 show a non-negligible amount of unverifiable vulnerability claims

for both Chrome and Firefox, approximately 28.6% and 10.3% respectively. The error rate

measured by the ratio of the spurious vulnerability claims to the total ones in each analyzed

version could be significantly worse. At best all, these unverifiable vulnerability claims are

not spurious. The measured error rate is therefore the lower bound of the actual value. In the

sequel, we define two error rates: optimistic error rate (OER) and pessimistic error rate (PER).

OER(v) = |spurious(v)|
|vulnerabilities(v)| (9.1)

PER(v) = |spurious(v)|+ |unverifiable(v)|
|vulnerabilities(v)| (9.2)

where v is a version; |spurious(v)|, |unverifiable(v)|, and |vulnerabilities(v)| are the number

of spurious, unverifiable, and total vulnerabilities of v .

From (9.2) and (9.1), it is clearly that the PER is always greater than the OER. Thus the

OER is the lower bound of the actual error rate. If the OER is bad, the actual error rate and

the PER are even worse.

We study the systematicness of the error rates. The study period covers first 36 months

of each version because the version life cycle (i.e., interval between two consecutive major



128 CHAPTER 9. THE ASSESSMENT OF THE NVD VULNERABILITY CLAIMS

●
● ●

● ●
● ●

● ●
● ●

● ●
●

● ●

● ●
● ●

●

●

● ●

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

E
rr

or
 R

at
e

●
● ●

● ●
● ●

● ●
● ●

● ●
●

● ●

● ●
● ●

●

●

● ●

Version Age

● optimistic (OER)

(a) Chrome

● ●

●

●

●

● ●
● ●

● ●
●

●

● ●

●

●

●

●
●

●

●
● ●

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

E
rr

or
 R

at
e

● ●

●

●

●

● ●
● ●

● ●
●

●

● ●

●

●

●

●
●

●

●
● ●

Version Age

● optimistic (OER)

(b) Firefox

Version age is the number of months since the release of a particular version. A red (dark) circle is the average OER of all

versions in their particular age. The bars are the standard errors.

Figure 9.4: The average error rates (with error bars) of Chrome (a) and Firefox (b) along the

lifetime of individual versions.

versions) is quite short for recent versions of Firefox [Wik13] and all versions of Chromes

[Chr13].

Figure 9.4 illustrates the evolution of the OER along the version age i.e., the number of

months since the release date of individual versions. The circles in the figure indicate the

mean values; and the vertical bars determine the standard errors. The lines the linear model

showing the global trends.

For Chrome, Figure 9.4(a) exhibits a growing trend of OER along the development of ver-

sion age. The magnitude of the mean OER is mostly around 0.2 to 0.4. The error bars are

quite small in most of the cases, which means there are less variant among OER of individual

versions. It means the number of spurious vulnerability claims in analyzed Chrome versions

are remarkable. This phenomenon is consistent during the version life time.

The story of Firefox illustrated in Figure 9.4(b) develops in a different direction: the global

trend of OER is slightly going down as long as the versions are in the market. The magnitude

of the mean OER is smaller, mostly from 0 to 0.2 with few outlines. The small error bars in

most cases also indicate the small variance of OER of individual Firefox versions.

Clearly the vulnerability claims of Firefox are more reliable than those of Chrome since

the ratio of spurious vulnerability claims for Firefox is smaller than Chrome’s. Moreover, the

error rate of Firefox tends to decrease overtime, whereas the error rate of Chrome tends to

move up.
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These inconsistent behaviors between two competing browsers could be potentially ex-

plained by the process that vulnerability claims are done. According to the private commu-

nication with NVD, the NVD analysis team do not perform any tests to determine which ver-

sions are affected by which CVEs. The vulnerability claims are derived from the CVE descrip-

tion by MITRE (www.mitre.org), release notes by software vendors, and additional data by

third-party security researchers. Therefore, to ensure completeness, all versions before a ver-

sion X are claimed vulnerable to a CVE if its description says something like: “version X and

before” or “X and ‘previous’ versions”. Apparently, in this case the NVD analysis team received

more detailed information for Firefox than for Chrome.

In summary, the experiment has provided evidences for the non-negligible error in the

vulnerability claims made by NVD to retrospective versions of Chrome and Firefox. This is

potentially the result of an unreliable process of making vulnerability claims. This evidence

therefore recommends a careful revision of scientific studies and, especially, any compliance

assessments that are relied upon such vulnerability claims.

9.3 The Impact of Spurious Vulnerability Claims

The previous analysis in Section 9.2.3 has shown a significant amount of spurious vulnera-

bility claims do exist. This section investigates the potential impact of spurious vulnerability

claims (RQ10) to scientific analyses based on such data. For this purpose, we examine two

studies about the majority of foundational vulnerabilities and the trend of foundational vul-

nerabilities.

9.3.1 The Majority of Foundational Vulnerabilities

A foundational vulnerability is a vulnerability which is introduced in the very first version

(i.e., v1.0), but continues to survive in next versions. In this section we revisit the claim on

the majority of foundational vulnerabilities: “Foundational vulnerabilities are the majority in

each version of both Chrome and Firefox". The claim could be formulated into the following

hypothesis.

H9.1A+ More than 50% of vulnerabilities of a version are foundational.

The subscript A+ indicates H9.1A+ is an alternative hypothesis. It means that if the re-

turned p-value of a statistic test is less than the significant level 0.05, we could reject the null

hypothesis and accept the alternative one.

www.mitre.org
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After a long evolution progress, modern versions of software might be completely dif-

ferent from the initial one. Obviously, foundational vulnerabilities should not be found in

these modern versions. Thus, the claim about the majority of foundational vulnerabilities

is eventually false. Therefore we relax the concept of foundation vulnerability to inherited

vulnerability, see also Section 5.2. An inherited vulnerability of a version X is a vulnerability

affecting X and its preceding versions. The claim about the majority of foundational vul-

nerabilities is relaxed to the claim about the majority of inherited vulnerabilities, which is

“Inherited vulnerabilities are the majority”. Similarly, we test the following hypothesis:

H9.2A+ More than 50% of vulnerabilities in a version X also exist in version X-1.

H9.3A+ More than 50% of vulnerabilities in a version X also exist in version Y which is older

than X at least 6 month.

The hypothesis H9.2A+ follows exactly the definition of inherited vulnerabilities. Mean-

while, the hypothesis H9.3A+ considers the short-cycle release policy where software ven-

dors try to ship a new version in a relative short period (e.g., less than 2 months per version).

Due to this policy, two consecutive versions might not have enough significant difference in

their code base. We assume that two versions which are different at least 6 month would

have significant changes in their code base.

We test these hypotheses in two data sets: one for all vulnerability claims by NVD, and

another one for vulnerability claims excluding ones which are found spurious by the pro-

posed method. To the brevity, we shortly refer to the former as NVD data set, and refer to the

latter as Verified NVD data set.

We could use either one-sided t-test or one-sided Wilcoxon signed-rank test. The former

tests on the mean, but requires the ratios to be normally distributed. The latter does not re-

quires normality, but tests on the median instead. Therefore, we first check the normality of

the ratios by the Saphiro-Wilk test. If the normality test returns p-value greater than 0.05, the

ratios are normally distributed. Then we will use t-test to check the hypothesis. Otherwise,

we will use Wilcoxon signed-rank test.

Figure 9.5 reports the distributions of foundational vulnerability claims for Chrome (a)

and Firefox (a), reported by both NVD (left) and Verified NVD (right) data sets. Clearly, in

these versions, foundational vulnerability claims are dominant, approximately 99% and 75%

per each version in Chrome and Firefox, respectively. The most remarkable difference be-

tween two data sets is that the amount of vulnerability claims (both foundational and non-

foundational) in the Verified NVD data set is dramatically lower than the NVD data set. This
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The dates in the X axis are the release dates.

Figure 9.5: Foundational vulnerabilities by NVD: all vulnerability claims (left) and spurious

vulnerability claims excluded (right).

is because of the high number of spurious vulnerability claims found in each version, see

Table ??. From the figure, foundational vulnerabilities are no longer dominant, especially for

Firefox v4.0 and onward.

Figure 9.6 reports the ratios of inherited vulnerabilities in individual versions of Chrome

and Firefox. In Figure 9.6(a), we count the inherited vulnerabilities of a version X from all

its preceded versions, see H9.2A+. Meanwhile, in Figure 9.6(b), we only count inherited vul-

nerabilities from preceded versions which are at least 6 month older, see H9.3A+. In this

figure, circles and squares denote the ratios of inherited vulnerabilities counted from NVD

and Verified NVD data sets, respectively.

From Figure 9.6 we can observed a similar phenomenon in the foundational vulnera-

bilities. In NVD data set, inherited vulnerabilities are dominant in both ways of counting.
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Figure 9.6: The ratios of inherited vulnerabilities in Chrome and Firefox.

However, they might be no longer dominant in Verified NVD data set. There is a weird data

point in Chrome’s: the number of inherited vulnerabilities in Figure 9.6(b) is 0. It is because

the interval between Chrome v1.0 and v2.0 was less than 6 months. By applying the counting

method described in H9.3A+, Chrome v2.0 does not have any inherited vulnerabilities.

We run the Shapiro-normality test on vulnerabilities data. Sometimes, it rejects the null

hypothesis (i.e., data is not normality, p-value = 0.07 · 10−6 – Chrome, NVD), sometime it

does not (i.e., data is normality, p-value = 0.95 – Firefox, NVD). Therefore, we use Wilcoxon

signed-rank test to check the hypotheses. The outcomes of the hypothesis tests are reported

in Table 9.4. Notice that the reported p-values are for rejecting the null hypothesis. Therefore,

if p-value < 0.05, we accept the alternative hypothesis, and reject it otherwise.

Table 9.4 shows that if we rely on the NVD data set, all the hypotheses are accepted with

strong evidences (i.e., p-values are almost zero). However, if we use the Verified NVD data

set, which is NVD data set excluded the spurious vulnerability claims, we obtain the opposite

conclusions in most cases. It is therefore an evidence for the significant impact of spurious
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Table 9.4: The Wilcoxon signed-rank test results for the majority of foundational and inher-

ited vulnerabilities.

Numbers in parentheses are p-values returned by the Wilcoxon signed-rank test for the corresponding hypothesis. If

p-value < 0.05, the null hypothesis is rejected, it means we accept the alternative hypothesis. Otherwise, we reject the

alternative hypothesis.

Hypothesis NVD Verified NVD

Chrome Firefox Chrome Firefox

H9.1A+ More than 50% of vulnerabilities of a ver-

sion are foundational

Accept
(0.01 ·10−2)

Accept
(0.06 ·10−3)

Reject
(1.00)

Reject
(1.00)

H9.2A+ More than 50% of vulnerabilities in a ver-

sion X also exist in version X-1

Accept
(0.01 ·10−2)

Accept
(0.05 ·10−2)

Accept
(0.03)

Reject
(0.16)

H9.3A+ More than 50% of vulnerabilities in a ver-

sion X also exist in version Y which is

older than X at least 6 month

Accept
(0.01 ·10−1)

Accept
(0.05 ·10−2)

Reject
(0.85)

Reject
(0.67)

vulnerability claims to the study on the majority of foundational/inherited vulnerabilities.

Many foundational/inherited vulnerabilities do not really exist. They are a phenomenon

which can be better explained by the policy “version X and previous versions are vulnerable"

as discussed above.

9.3.2 The Trend of Foundational Vulnerability Discovery

In this study, we replicate the experiment described by Ozment and Schechter [OS06] to

study the existence and direction of trend in the discovery of foundational vulnerabilities.

We employ Laplace test for trend [NIS12a, Chap. 8] which was also used in [OS06] to search

for a trend quarterly during the browser age.

The Laplace test computes the Laplace factor which compares the centroid of the ob-

served discovery times with the mid-point of the observation period. This factor approxi-

mates the standardized normal random variable (e.g., z-score). The following formula shows

how the Laplace factor z is computed.

z =

p
12n

n∑
i=1

(
ti − T

2

)
n ·T

(9.3)
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where n is the number of foundational vulnerabilities discovered within the observation pe-

riod T ; ti is the interval (e.g., in days) between the discovery time of the i -th vulnerability

and the beginning time of the observation period. The interpretation of the Laplace factor z

is as follows:

• z > 1.96: there is a significant upward trend in the period T with 95% confidence.

• z <−1.96: there is a significant downward trend in the period T with 95% confidence.

• −1.96 ≤ z ≤ 1.96: there is either an upward trend (z > 0) or a downward trend (z < 0) in

the data, but the trend is not significant. Statistically speaking, we conclude there is no

trend in the observation period.

When the Laplace test indicates a significant trend (either increasing or decreasing trend)

in a certain time period, we call it an event. In a certain period, an event could be detected in

both data sets, i.e., NVD and Verified NVD, by the Laplace test. Sometimes, an event could

only be detected in only one data set. We refer to the former as common event, and the latter

as inconsistent event.

We want to determine whether spurious vulnerability claims have a significant impact

on the trends of foundation vulnerability discovery. For this purpose, we first perform the

Laplace test for quarterly trends of foundational vulnerabilities discovery along the age of in-

dividual versions in two data sets: NVD and Verified NVD. Then, for each version, we count

the number of inconsistent events. If the numbers of inconsistent events in all versions are

significantly different from 0, we could conclude a significant impact of spurious vulnerabil-

ity claims on the foundational vulnerability trends. In other words, we test the following null

hypothesis:

H9.40 The mean of inconsistent events in all individual versions is not significantly different

from 0.

We run the experiment on versions of Chrome and Firefox. In the experiment, we mea-

sure the interval ti of the i -th vulnerability by the number of days. However the published

dates of NVD are a poor approximation for the discovery dates of vulnerabilities [Res05;

Ozm05]. It is because when the NVD security team receive the vulnerability reports, they

usually wait for software vendors to fix the vulnerabilities before announcing the NVD en-

tries. Therefore, we approximate the discovery dates of vulnerabilities by the dates when

the bug reports corresponding to vulnerabilities were filed. By doing so, we assume that if a
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NVD: all vulnerability claims (with spurious ones); Verified NVD: vulnerability claims without spurious ones.

Figure 9.7: The actual discovery trends of foundational vulnerabilities.

Table 9.5: Number of events (i.e., significant quarterly trends)

Inconsistent Event

Browser Common Event Only NVD Only Verified NVD Total

Chrome (v2–v18) 23 (61%) 5 (13%) 10 (26%) 38 (100%)

Firefox (v1.5–v12.0) 5 (18%) 22 (78%) 1 (4%) 28 (100%)

Total 28 (42%) 27 (41%) 11 (17%) 66 (100%)

vulnerability is discovered by a white-hat researcher, he/she will notify (direct or indirectly)

software vendors as soon as possible. Then a bug report will be filed. For vulnerabilities

discovered by black-hat, we have no glue about the actual discovery dates.

Figure 9.7 reports the actual trends of foundational vulnerabilities for both Chrome (v5),

exemplified in Figure 9.7(a), and Firefox (v3.0), exemplified Figure 9.7(b). In this figure, the

solid line presents the trend reported by NVD, and dashed line indicates trend reported by

Verified NVD. For Chrome, the NVD trend and Verified NVD trend have similar shape, but

different from the magnitude. Meanwhile, for Firefox, these trends are clearly different in

both shape and magnitude.

We run the Laplace test for quarterly trends of foundation vulnerabilities of Chrome and

Firefox. Figure 9.8 reports the Laplace factors for Chrome v5.0. The figure shows the different
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Figure 9.8: The Laplace test for quarterly trends in Chrome v5 foundation vulnerabilities.
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Figure 9.9: The Laplace test for quarterly trends in Firefox v3.0 foundation vulnerabilities.

outcomes of Laplace test by including or excluding spurious vulnerability claims (i.e., NVD

and Verified NVD data sets, respectively). Before month 12th, NVD reports two significant

increasing trends; Verified NVD reports one extra significant increasing trend, which will be

missed if we look at NVD. In contrast, after month 12th, NVD reports other two significant

trends, which do not appear in Verified NVD.

The Laplace factors for Firefox is reported in Figure 9.9. This figure also remarks the

difference of the Laplace outcomes between NVD and Verified NVD. The former reports

a significant trend during the life time of Firefox v3.0. This trend however disappear in the

latter data set. The complete Laplace tests for quarterly trend for Chrome and Firefox could

be found in the Appendix A.1, Figure A.1–A.2.

Table 9.5 summarizes the number of events identified by the Laplace test. This table re-
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Figure 9.10: The distribution of inconsistent events in NVD and Verified NVD.

ports the total number of common events (the second column), the number of inconsistent

events including events observed only in NVD (the third column), and events observed only

in Verified NVD (the forth column) in all analyzed versions of Chrome and Firefox. The table

shows that for Chrome, there are a lot of common events between two data sets (26 events

– 59%). This could be explained by the similarity of shape between the actual trends for

Chrome in both data sets (see Figure 9.7(a)). However, we can still observed the difference

between to data sets by looking at the number of inconsistent events (18 inconsistent events

– 41%). This difference is sharpen in the case of Firefox, the number of common events

is small (7 events – 20%), while the numbers of inconsistent event is large (28 inconsistent

events – 80%).

The breakdown distributions of inconsistent events in individual versions of Chrome and

Firefox are illustrated in Figure 9.10. Interested readers are referred to Appendix A.1, Ta-

ble A.1–A.2 for absolute numbers of the distributions.

We additionally run statistic test to see whether the numbers of inconsistent events in

individual versions of Chrome and Firefox are different from zero, see H9.40. The Shapiro-

Wilk normality test rejects the null hypothesis for both Chrome (p-value = 0.005) and Firefox

(p-value = 0.006). It means these distributions are not normal. Thus we rely on Wilcoxon

singed-rank test to check H9.40. The outcome of the Wilcoxon test also rejects H9.40 for

both Chrome (p-value = 0.003) and Firefox (p-value = 0.001). This means that the numbers

of inconsistent events are significantly greater than 0. In other words, it is an evidence for the
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significant impact of spurious vulnerability claims on the analysis about the quarterly trends

of foundational vulnerability discovery.

9.4 Threats to Validity

Construct validity includes threats affecting the approach by means of which we collect and

verify vulnerabilities. Threats in this category come from the assumptions as follows.

Bias in vulnerability data set. We apply the software infrastructure described in Chap-

ter 4. Thus the study in this chapter has a number of validity threats described in Section 4.2.

We also apply the mitigation procedures in Section 4.2 to minimize the threats.

Biases in bug-fix commit data. As outlined previously, there are two potential biases on

bug-fix commit data [Bir09]: the developers do not mention the bug ID in a bug-fix com-

mit; and the developers mention a bug ID in a non-bug-fix commit. To evaluate the impact

of the latter bias, we performed a qualitative analysis on some bug-fix commits and found

that all are actually bug fixes. This confirms the finding in [Bir09] for this type of bias. As

for the former bias, we check the completeness of the bug-fix commits for vulnerabilities. As

discussed, about one fourth of vulnerabilities are unverifiable (see also Table 9.1). We op-

timistically assumed that these vulnerabilities are not spurious. Therefore, our conclusions

are the lower bound of the real errors.

Bias in the validation method. The method assumption ASS8.3 is apparently syntactical

and might not cover all the cases of bug fixes since it is extremely hard to automatically un-

derstand the root cause of vulnerabilities. Therefore, the method classifies a NVD-reported

vulnerability of a particular version as correct while it may be a false-positive. Again it only

makes our conclusion lower bound of the real error, thus it make our case stronger.

Bias in the method implementation. It is possible that the implementation of the vali-

dation method has some bugs, causing bias in the identification of vulnerability evidences.

To minimize such problem, we employ multi-round test-and-fix approach where we ran the

program on some vulnerabilities, then we manually checked the output, and fixed found

bugs. We repeated this until no bug was found. Finally, we randomly checked the output

again to ensure there was no mistake.

Internal validity concerns the causal relationship between the collected data and the con-

clusion. Our conclusions are based on statistical tests. These tests have their own assump-

tions which may be violated by the data. To reduce the risk we carefully analyzed the as-
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sumptions of the tests: for instance, we did not apply any tests with normality assumption

since the distribution of vulnerabilities is not normal.

External validity is the extent to which our conclusion could be generalized to other ap-

plications. We tested the proposed method on browser but we did not use in any way this

information. The method could be used and the experiment could be replicated on different

software.

9.5 Chapter Summary

This chapter described an experiment applying the assessment method described in Chap-

ter 8 to assess the retro persistence validity of vulnerability claims by NVD for Firefox and

Chrome. The experiment has assessed 1,235 out of 1,644 CVEs (∼ 75%) in 33 versions of

Chrome and Firefox. The assessment took approximately 14 days. It is an evidence that the

proposed method is not only effective (i.e., majority of vulnerabilities have been assessed),

but also efficient (i.e., in comparison with 6 months for 68 vulnerabilities by using an ad-hoc

method [Men13]).

The experiment results have pointed out that about 30% of vulnerabilities claims by NVD

for Chrome and Firefox are spurious. It is also an evidence for the overdose of the rule “ver-

sion X and its previous versions are vulnerable” while marking which versions are vulnerable

to which vulnerabilities. In other words, retro versions of Chrome and Firefox have less vul-

nerabilities than they were reported.

We further have conducted other experiments to see to what extend spurious vulnerabil-

ity claims impact scientific vulnerability studies. In these experiments, we have revisited the

observation about the majority of foundational vulnerabilities in Chapter 5. By eliminating

all spurious vulnerabilities, we found that foundational vulnerabilities are no longer the ma-

jority in security landscape of individual versions of Chrome and Firefox. We even relaxed

the constraint to see whether inherited vulnerabilities are the majority. Again, we found only

a weak evidence that it is the case, but probably it is due to the short-cycle release policy cur-

rently adopted by software vendors. In another experiment analyzing the quarterly trends of

foundational vulnerabilities by using Laplace test, we have also noticed a significant different

between the reported trends by using the data with and without the spurious vulnerability

claims. These experiments have presented evidences that spurious vulnerability claims did

significantly impact the outcomes of scientific vulnerability studies.
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In the next chapter, we are going to describe the observation on the correlation between

dependency metrics and the vulnerable status of source components.
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CONCLUSION

This chapter summarizes the observations, findings, as well as invented artifacts

presented in previous chapters of the dissertation. Based on that, the chapter also

discusses future research directions that could be leveraged by the outcomes of this

dissertation.

F
ROM the objective of the dissertation is to independently and systematically validate

an empirical models concerning vulnerabilities, we have presented several observa-

tions and artifacts serving for the objectives. This chapter summarizes the key points

of such observations and artifacts (Section 10.1), and discusses potential future research

based on the results of this dissertation (Section 10.2).

10.1 Summary of Contributions

Inspiring by the following key observations in the literature: an inadequate amount of dis-

cussion about the quality of data source in empirical experiments on vulnerabilities, and

critical issues in the traditional validation methodology for VDMs, as well as the lack of in-

dependent evaluation for proposed VDMs, we have conducted several activities and exper-

iments aiming at filling the observed gaps. Here are the main contributions of the disserta-

tion.

141
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A systematic survey on the usage of vulnerability data sources. We have conducted a sur-

vey about empirical vulnerability studies in past eight years from 2005 to 2012. The survey

included 59 publications, which were referred to as primary studies, in international work-

shops, conferences/symposium, and journals. The survey focused on the usage of vulnera-

bility data sources in the past. Concretely, it addressed the following research questions:

RQ1 Which are the popular data sources for vulnerability studies?

RQ2 Which data sources and features are used for which studies?

To find out the answers, the survey has presented a qualitative analysis the data usage in

59 collected primary studies. The analysis showed that third-party data sources were pre-

ferred more than other data sources in conducting empirical vulnerability studies. Among

several data sources, NVD was the most popular one, which was used in approximately 62%

of primary studies across different research topics. Among features of data sources, Affected

Versions (VA) and Announced Date (TA) are the most frequently used features in the collected

primary studies.

An empirical methodology for the evaluation of the performance of VDMs. The observa-

tion on past studies in the field of VDM has pointed several critical biases in the traditional

methodology, which were widely adopted in the literature, to evaluate the performance of

VDMs. These biases included: vulnerability definition bias – which concerned the way vul-

nerability was understood and counted, multi-version software bias – which concerned the

consideration of all versions of evolving software as a single entity, acceptance threshold bias

– which concerned how VDMs were either accepted or rejected while fitting on a data set,

and overfitting bias – which concerned the way VDMs were used in predicting future vulner-

ability trends.

These biases have impacted the outcomes of past evaluation experiments. Hence, we

have worked out on an empirical methodology that took into consideration all above issues

to address the two fundamental research questions in the field:

RQ3 How to evaluate the performance of a VDM?

RQ4 How to compare between two or more VDMs?

The methodology proposed two quantitative metrics: temporal goodness-of-fit quality, and

predictability. The former indicates how well a VDM could fit existing vulnerability data.

The latter determines how well a VDM could predict the future trends of vulnerabilities. The
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methodology included a sequence of fully-discussed steps, which consisted of criteria and

justification in each step, that took input exactly as same as the input of the traditional eval-

uation methodology to produce more informative and precise outputs than the traditional

methodology. Additionally, the proposed methodology enabled a statistic-powered com-

parison between VDMs, which are undoubtedly better than the traditional one. The effec-

tiveness of the proposed methodology has been evaluated in an evaluation experiments on

several versions of mainstream web browsers.

An evaluation and comparison on the empirical performance of existing VDMs. As an

effort to evaluate the effectiveness of the proposed methodology to evaluate VDM perfor-

mance, we have conducted an evaluation experiment on thirty versions of mainstream web

browsers: Chrome, Firefox, Internet Explorer, and Safari. The experiment considered eight

VDMs: AML, AT, LN, JW, LP, RE RQ, and YF. The experiment focused on the following research

questions:

RQ6 Is the proposed VDM evaluation methodology effective in evaluating VDMs?

RQ7 Among existing VDMs, which one is the best?

By effective we meant the methodology could be able to evaluate VDMs and produce desired

results. The experiment has showed that AT and RQ model should not be used due to their

consistently low quality along the browser lifetime. Other models might be adequate. In-

terestingly, for young versions of browsers (no more than 12 months since the release date)

the simplest model – the LN model – was the best in terms of quality and predictability. For

middle age browsers (12 – 36 months), the AML model became the winner.

An empirical method for the assessment of vulnerabilities retro persistence. We pro-

posed an empirical method to identify code evidence for vulnerability claims. By this method,

we aimed to answer the following research question:

RQ5 How to estimate the validity of a vulnerability claim to a retro version of software?

The proposed method took a list of vulnerabilities and their corresponding security bugs as

input. Then it traced the commits in the source code repository for the commits that fixed

security bugs. From these commits, it determined the so-called vulnerable code footprints

which are changed LoCs to fix security bugs. Then it traced for the origin revision where

vulnerable code footprints were introduced. Finally it scanned the code base of individual
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versions to determine the vulnerable status of these versions. The outcome of the proposed

method will provide a better insight about the security landscape of retro versions of soft-

ware.

An assessment on the bias of vulnerability claims by NVD for Chrome and Firefox. We

have conducted an experiment applying the assessment method described in Chapter 8.

The experiment assessed the retro persistence validity of vulnerability claims by NVD for

Firefox and Chrome. The purposes of the experiment are to answer the following research

questions:

RQ8 Is the proposed assessment method effective in assessing the retro persistence of vulnera-

bilities?

RQ9 To what extend are vulnerability claims by NVD trustworthy?

RQ10 To what extend does the bias in vulnerability claims by NVD (if any) impact conclusions

of a vulnerability analysis?

Similar to evaluation experiment for VDMs, by the word “effective”, we wanted to know whether

the proposed assessment method is able to assess the majority of vulnerabilities. The exper-

iment has assessed the retro persistence of more than 75% (1,235 out of 1,644 CVEs) vul-

nerabilities in 33 versions of Chrome and Firefox in approximately 14 days. It is an evidence

that the proposed method is not only effective (i.e., majority of vulnerabilities have been as-

sessed), but also efficient (i.e., in comparison with 6 months for 68 vulnerabilities by using

an ad-hoc method [Men13]).

The experiment results have pointed out that about 30% of vulnerabilities claims by NVD

for Chrome and Firefox are spurious. It is also an evidence for the overdose of the rule “ver-

sion X and all of its previous versions are vulnerable” while marking which versions are vul-

nerable to which vulnerabilities. In other words, retro versions of Chrome and Firefox have

less vulnerabilities as they were reported.

We further have conducted other experiments to see to what extend spurious vulnerabil-

ity claims impact scientific vulnerability studies. In these experiments, we have revisited the

observation about the majority of foundational vulnerabilities in Chapter 5. By eliminating

all spurious vulnerabilities, we found that foundational vulnerabilities are no longer the ma-

jority in security landscape of individual versions of Chrome and Firefox. We even relaxed

the constraint to see whether inherited vulnerabilities are the majority. Again, we found only
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a weak evidence that it is the case, but probably it is due to the short-cycle release policy cur-

rent adopted by software vendors. In another experiment analyzing the quarterly trends of

foundational vulnerabilities by using Laplace test, we have also noticed a significant different

between the reported trends by using the data with and without the spurious vulnerability

claims. These experiments have presented evidences that spurious vulnerability claims did

significantly impact the outcomes of scientific vulnerability studies.

10.2 Limitation and Future Directions

Based on the limits of the presented experiments (i.e., threats to validity), and the observa-

tion on past work, this section discusses the limitations as well as future directions of re-

search as follows.

10.2.1 The Need of Experiment Replication

An obvious limitation to the dissertation is that all experiments in this dissertation are con-

ducted on the vulnerability data of web browsers, but not other kinds of software appli-

cations. Though we have discussed why we target web browsers in the experiments – see

Chapter 4, it still rises an external threat to the validity, which has been discussed at the end

of each experiment presented in the dissertation, see Section 5.3, Section 7.5, Section 9.4.

However, this threat is unavoidable not only in this dissertation, but also in other empiri-

cal studies. Therefore, one of a future work is to replicate the experiments in other kinds of

applications such as operating systems, server applications, database management systems.

10.2.2 The Need of a Maturity Model for Vulnerability Data

An empirical study of vulnerabilities usually consists of following common steps: security

researchers raise hypothesis, acquire necessary vulnerability data, test their hypothesis, and

report the result. In this process, the quality of data source strongly affect the quality of the

study. This has been confirmed in the experiment testing the impact of spurious vulner-

ability claims to the outcomes of an analysis, see Section 9.3. Therefore, it is necessary to

have a model to qualitatively or quantitatively assess the quality of a data set, as well as the

reliability of an experiment based upon a data set.

The conversations between me and other researchers agreed that such model is not only

important for empirical vulnerability studies, but also to other empirical experiments which
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are based upon a data set. However, we have also agreed that it is impossible to have a silver-

bullet solution to qualify the quality of data set in a general sense. Hence, a maturity model

which takes into account particular characteristics of vulnerability studies, and focuses only

on vulnerability studies will make sense.

We have conducted a preliminary study in this direction, and have proposed a model

where we could evaluate the maturity of data set along different dimensions, such as the

coverage of data samples in terms of volume and time, the representation of data source, as

well as the documentation of the data collection by the data source provider. Obviously, the

result is still very preliminary and needs more effort to be accomplished.
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A.1 Details of Laplace Test for Quarterly Trends of

Foundational Vulnerabilities

This section presents the complete output of the Laplace test of quarterly trends for founda-

tional vulnerability discovery in Chrome, see Figure A.1, and in Firefox, see Figure A.2. These

figures are organized as a table of plots where each browser version occupies a row. The first

column is a plot describing the actual trends of vulnerability discovery along version age.

In this plot, the solid line represents the trend of all vulnerability claims by NVD – the NVD

data set, and the dashed line represents the similar trend, but excluding spurious vulnera-

bility claims identified by the proposed method – the Verified NVD data set. The plots in the

two last columns illustrate the Laplace factors z, see (9.3), for quarterly trends in NVD and

Verified NVD data sets, respectively.
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Figure A.1: Laplace test for trend in quarterly foundational vulnerability discovery for

Chrome

(to be continued in next page)
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Figure A.1: Laplace test for trend in quarterly foundational vulnerability discovery for

Chrome (to be continued in next page)
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Figure A.2: Laplace test for trend in quarterly foundational vulnerability discovery for
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Figure A.2: Laplace test for trend in quarterly foundational vulnerability discovery for

Firefox (continued from previous pages)
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Table A.1: Inconsistent events in Laplace test for quarterly trends in Chrome.

Numbers in the second and third columns are the version ages (in month) when the

Laplace factors indicate significant trends.

Inconsistent Events

Release NVD data set Verified NVD data set Count

Chrome v1 18, 21 36 3

Chrome v2 27 – 1

Chrome v3 12 21 2

Chrome v4 – 27 1

Chrome v5 15, 24 3 3

Chrome v6 6, 15 2

Chrome v7 – 9 1

Chrome v8 – 3 1

Chrome v9 3 – 1

Chrome v10 – – 0

Chrome v11 – 3, 12 2

Chrome v12 – 6 1

Chrome v13 – – 0

Chrome v14 – – 0

Chrome v15 – – 0

Chrome v16 – – 0

Chrome v17 – – 0

Chrome v18 – – 0
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Table A.2: Inconsistent events in Laplace test for quarterly trends in Firefox.

Numbers in the second and third columns are the version ages (in month) when the

Laplace factors indicate significant trends.

Inconsistent Events

Release NVD data set Verified NVD data set Count

Firefox v1.0 93, 99 30, 54, 69 5

Firefox v1.5 57, 81, 87 – 3

Firefox v2.0 69, 75 – 2

Firefox v3.0 9, 57 – 2

Firefox v3.5 42 24 2

Firefox v3.6 27 – 1

Firefox v4.0 21 – 1

Firefox v5.0 18 – 1

Firefox v6.0 18 – 1

Firefox v7.0 9, 15 – 2

Firefox v8.0 9, 15 – 2

Firefox v9.0 6, 12 – 2

Firefox v10.0 6, 12 – 2

Firefox v11.0 – – 0

Firefox v12.0 3, 9 – 2
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