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A B S T R A C T   

We design a set of satisficing heuristic algorithms that mimic the online information retrieval behavior of rational 
decision makers (DMs) as reflected in their click through rates (CTRs). We illustrate how basic heuristic algo-
rithms formalizing binary decision trees composed by 21 nodes and requiring DMs to observe one satisficing 
alternative lack the structural capacity to characterize the retrieval process. The algorithm requiring DMs to 
observe two satisficing alternatives –formalizing binary decision trees composed by 111 nodes – provides a 
sufficient approximation to their CTRs. Adding a third alternative – accounting for 351 nodes – delivers an almost 
identical set of CTRs to those displayed by DMs. The mimicking quality of the heuristic algorithms prevails as 
alternatives are added up to include the ten ranked within the first page of search results, incorporating 2,047 
nodes to formalize the corresponding retrieval process. The set of algorithms bridges the gap between purely 
rational decision theory and heuristic behavior, illustrating how the CTRs observed can be generated by rational 
DMs performing a sequential search process while aiming to observe two or three satisficing alternatives. The 
decision-tree algorithmic structures presented are sufficiently malleable to introduce any potential modification 
to the beliefs and preferences of DMs and study its consequences in terms of CTRs.   

1. Introduction 

How much information do people set up to retrieve when performing 
a search online, and, more importantly, are searches purely random or 
follow a predetermined pattern? The initial answer to these questions 
was provided empirically and described users clicking on an average of 
two pages per search query (Jansen et al., 1998). More than twenty years 
later, the research across disciplines has focused on the reasons behind 
the clicking behavior of users but not on the actual complexity of their 
information retrieval processes (Miranda & Miah, 2023; Schmitt et al., 
2018; Utku Özmen & Yucel, 2019; Zanganeh & Hariri, 2018). 

However, this latter feature is extremely important for companies 
operating online since, besides the characteristics of the alternatives 
described in the snippets, the information retrieval capacity of users and 
subsequent complexity of the search process condition the expected 
success of their products. The intuition on which this idea is based fol-
lows from the search engine marketing literature (Rosário & Dias, 
2023). Clearly, the ability of firms to locate their products among the 
initial results delivered by a search engine conditions their probability of 
success, a feature that justifies the prices paid for search engine opti-
mization and marketing services. 

In this regard, if decision makers (DMs) are willing to evaluate two 
alternatives out of those composing the first page of search results, the 
change in evaluation probability from shifting across ranking positions 
can be computed by comparing the corresponding click through rates 
(CTRs). This calculation is, at the same time, conditioned by the fact that 
DMs set out to observe two satisficing products. If DMs were to shift from 
two to three satisficing alternatives due to a modification in their in-
formation retrieval capacities or the features of the corresponding 
recommender system, the change in CTRs and subsequent clicking 
probabilities should be computable and far from trivial. This quality is 
complemented by the actual value of the different probabilities, which 
does not only affect the evaluation of a given alternative but those of the 
subsequent ones composing the decision tree. 

The current paper addresses these questions and simulates sequential 
retrieval processes of different complexity calibrated to the actual CTRs 
displayed by the users so as to identify those that can replicate the actual 
behavior observed. The literature on decision systems follows a different 
methodology. It is typically based on the design of experimental sce-
narios used to compare the behavioral results obtained with the 
empirical ones observed among users (Speier-Pero, 2019). This analyt-
ical framework is also generally applied in the information systems 
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literature when focusing on e-commerce (Sun et al., 2020). A recent 
research trend utilizes behavioral data to extrapolate the main attributes 
of users and improve the training of deep-learning models designed to 
predict their CTRs (Li et al., 2020), which have been highlighted as an 
important categorization quality by computer scientists (Qin et al., 
2020). 

The current model proceeds in the opposite direction, designing a 
benchmark algorithm determined by the CTRs of online users that can 
then be empirically tested via experimental research. The evaluation 
structure defining the algorithm is sufficiently malleable to simulate the 
effect on the retrieval behavior derived from any modification in the 
preferences of DMs, providing a relevant framework of reference 
required in the information and expert systems literatures (Hong et al., 
2021; Zhang et al., 2020). 

The main objective of the paper is to define an algorithmic bench-
mark framework that can be used to simulate the behavior of different 
types of users – categorized by their information assimilation capacities 
– as they proceed through the alternatives ranked by a search engine. 
The algorithm encompasses the main features defining the characteris-
tics of the alternatives and the information retrieval behavior of users, 
their preferences, and subsequent decisions. In this regard, the main 
intuition on which the design of the algorithm is based differs from the 
standard approach developed in the computer science literature (Wang 
et al., 2019). More precisely, the algorithm builds on a rational 
sequential decision model that generates information retrieval processes 
consistent with those observed in real-life settings (Advanced Web 
Ranking, 2021). 

We define an intuitive decision theoretical model that relates the 
cutoff values determining the evaluation behavior of DMs to the distance 
in terms of semantic similarity between the descriptions observed in the 
snippets and the ideal ones considered by the user ( Di Caprio et al., 
2022a; Tavana et al., 2015a). The model assumes that, when performing 
a search, users do not have any information regarding the potential re-
sults obtained. If some predefined preferences exist, for instance, if users 
have a favorite website from where to acquire the information, then this 
predefined knowledge implies that they are not in an uncertain setting 
anymore but focus on a decision already made. 

That is, we implicitly assume that if users have a favorite set of 
websites, they are part of the bookmarks defined in the corresponding 
browser. As a result, the model assigns a uniform convolution to the 
groups of variables composing the characteristics defining the alterna-
tives. The formal model is kept sufficiently intuitive to highlight the 
complexity of the search process defined by DMs, who must consider 
combinations of the variables defining the characteristics, both observed 
and potential, together with the number of satisficing alternatives aimed 
to be observed. 

The intuition provided by the decision theoretical model demon-
strates how the information retrieval algorithm can incorporate the 
behavioral profiles of different types of DMs and describe their expected 
search patterns. In this regard, the resulting prescriptive environment 
can be used as a benchmark relative to which categorize DMs when 
training any of the machine learning techniques commonly used in the 
artificial intelligence literature. 

The algorithm delivers a set of CTRs that replicate those observed in 
real-life settings. The benchmark framework provided by the algorithm 
allows to study the sequential modifications in the CTRs following from 
an increase in the information assimilation capacities of DMs. This type 
of scenario cannot be analyzed using trivial algorithms designed to 
mimic the CTRs but not to account for the interactions across observa-
tions and alternatives arising through the different search paths that 
may be defined by DMs as they retrieve information. 

We illustrate the substantial differences existing between these 
trivial algorithms and the one introduced in the current paper, which is 
based on the different binary decision trees that can be defined by the 
alternatives composing the first page of results delivered by a search 
engine. In particular, we focus on the capacity of the algorithm to 

replicate the behavior of DMs as the complexity of their information 
retrieval processes is enhanced from a simple tree based on one alter-
native and consisting of 21 nodes to a complete one based on the whole 
set of alternatives and composed by 2047 nodes. 

2. Literature review 

The capacity of search engines to store large amounts of data has 
allowed researchers to analyze the online information retrieval behavior 
of users without facing the drawbacks derived from the observer bias 
phenomenon (Baclawski, 2018). The sequential evaluation of alterna-
tives following the order of the ranking provided by search engines has 
been consistently recognized and validated through eye-tracking tech-
nology (Lorigo et al., 2008; Luo et al., 2011; Lewandowski & Kammerer, 
2021; Wu & Yu, 2020). 

Aside from small differences across time periods, the retrieval 
behavior of DMs is both consistent and biased towards the first two al-
ternatives composing the ranking (Chitika, 2013; Dean, 2019). In 
addition, almost all clicks per search query are concentrated on the first 
page of results provided by the search engine (Advanced Web Ranking, 
2021). This type of behavior relates to the substantial trust that DMs 
place on the rankings delivered by the engines (Epstein & Robertson, 
2015; Guan & Cutrell, 2007; Silverstein et al., 1999). 

The traditional approach to the information retrieval processes of 
DMs focuses on the behavior of individuals following the postulates of 
rational decision making (Di Caprio & Santos-Arteaga, 2021; Ren & 
Huang, 2018). However, the importance that the cognitive limits and 
assimilation capacities of DMs have on their retrieval behavior has been 
consistently highlighted in the literature (Basu, 2018; Joseph & Gaba, 
2020; Victorelli et al., 2020; Yu et al., 2017). As a result, the satisficing 
approach to the behavior of boundedly rational DMs when retrieving 
information has gained relevance in experimental frameworks (Kabiawu 
et al., 2016; Lim, 2013; List & Alexander, 2017). This latter line of 
research has been complemented and validated through the analysis of 
empirical phenomena such as information overload (Walgrave & 
Dejaeghere, 2017) and choice regret (Schwartz, 2005). 

Sequential search algorithms are therefore conditioned by the 
number of alternatives that users are willing to evaluate or the number 
of satisficing ones that they are aiming to find. The literature on infor-
mation management has acknowledged the importance that the capacity 
of users to assimilate information has for the retrieval process. However, 
this feature has not been incorporated into the corresponding models. 

For instance, Chen and Macredie (2010) reviewed the literature on 
human factors considered to be fundamental for the development of web 
applications, namely, gender, previous knowledge, and the cognitive 
qualities of users. In this regard, the development of recommender 
system is indeed based on the evidence available to extrapolate the 
preferences of users (Sharma et al., 2021) together with the relative 
valence of the topics describing the alternatives (Mishra et al., 2023). 
Similarly, the logical and semantic capacity of users has constituted one 
of the main challenges addressed when developing search engines 
(Shepherd, 2007). These constraints prevail nowadays and have been 
recently addressed through semantic query expansions within fuzzy 
ontology frameworks (Jain et al., 2021). 

A similar intuition follows when considering an information supply 
perspective. For example, Kim et al. (2008) analyzed the importance 
that strategic positioning has for firm performance within an e-business 
context, a feature conditioning their relative position within the output 
results provided by a search engine. Sutanto et al. (2018) studied the 
impact that the retrieval behavior of knowledge workers had on work 
efficiency and concluded that retrieving knowledge from a self-made 
system did not foster efficiency due to the biased perceptions of workers. 

All in all, the importance assigned to the cognitive capacities of DMs 
together with the empirical CTRs observed in real-life settings lead to 
the question of whether a rational sequential behavior is compatible 
with the cognitive limits imposed by the information retrieval processes 

D. Di Caprio and F.J. Santos-Arteaga                                                                                                                                                                                                      



International Journal of Information Management Data Insights 4 (2024) 100229

3

(Ham et al., 2019; O’Brien et al., 2020). We illustrate how both ap-
proaches, namely, a fully rational evaluation process and a heuristic 
mechanism limiting the number of alternatives considered by DMs, are 
compatible within a real-life information retrieval setting. The literature 
does not consider interactions between both approaches and tends to 
present them as excluding processes (Bossaerts & Murawski, 2015; Yang 
et al., 2015). We illustrate how rational sequential decision processes 
can be combined with heuristic mechanisms to identify and mimic the 
retrieval patterns observed in online search environment. 

2.1. Contribution: how complex are online information retrieval 
processes? 

We present a series of decision-tree algorithms of varying structural 
complexity based on increasingly demanding satisficing requirements 
assigned to DMs. The algorithms range from relatively simple frame-
works composed by 21 nodes to complex structures accounting for the 
whole set of 2047 nodes that DMs may face as they retrieve information 
from the first page of results displayed by a search engine. 

Fig. 1 describes the organic CTRs reported by Dean (2019) and those 
derived from international desktop searches in Advanced Web Ranking 
(2021). The similarity in the distribution of CTRs across alternatives 
through the different time periods is remarkable. We must highlight the 
fact that Dean (2019) does not consider clicks located in the second page 
of results due to their low CTRs, a quality verified by Advanced Web 
Ranking (2021), where the CTR of the alternative located in the eleventh 
position equals 0.95. The remaining alternatives composing the second 
page of results describe a descending tendency relative to this latter 
value. 

The benchmark algorithm can be extended to incorporate additional 
alternatives, increasing the complexity of the subsequent decision trees 
considerably. The combinatorial requirements from adding one alter-
native to the analysis, namely, defining and simulating a tree composed 
by 4095 nodes, clearly outweigh the benefits derived from the addi-
tional explanatory capacity of the algorithm. 

In addition to the satisficing heuristic, a unique constraint is imposed 
when designing the algorithms, namely, the trust placed by DMs in the 
ranking delivered by the search engine (European Commission, 2016; 
Pan et al., 2007). 

We define a stochastic retrieval process where DMs face complete 
uncertainty regarding the alternatives provided by the engine after 
performing a search. A uniform distribution is used to formalize the lack 
of information over the characteristics of the alternatives, whose re-
alizations determine the retrieval behavior derived from the search 
process. Thus, the nodes of the decision tree, which represent the al-
ternatives displayed by the engine, are assigned uniform densities – 
though the results presented are independent of this assumption. Sets of 

1,000,000 queries are simulated per algorithm to validate their capacity 
to mimic the retrieval behavior of DMs as reflected in their CTRs. In the 
current setting, CTRs represent the ratio of DMs who click on a specific 
alternative composing the ranking to the number of total queries 
performed. 

Basic algorithms built on independent evaluations do not allow to 
incorporate the dynamic behavior of users observed in real-life envi-
ronments, namely, going back to previous options after evaluating some 
of the alternatives, or just going forward and backward in the ranking to 
get an overall idea before deciding what to click. The benchmark algo-
rithms introduced in the current paper account for this possibility, since 
they consider all the potential evaluation paths that may be defined by 
DMs as they proceed through the ranking delivered by the engine. 

We summarize below the main contributions of the algorithmic 
framework defined in the current paper:  

1. The algorithms are designed to describe a sequential information 
retrieval process that replicates the online search behavior of users 
when proceeding through a set of alternatives. That is, rational users 
are assumed to read the snippets, evaluate the information provided, 
and select the alternatives to click depending on the distance be-
tween the characteristics defining the alternatives – both observed 
and expected – and their preferred ones.  

2. The algorithms incorporate each potential decision made together 
with the resulting paths that may be generated by DMs as they 
evaluate the alternatives composing the ranking. This feature allows 
to differentiate DMs according to the number of alternatives they aim 
to evaluate, which conditions the set of potential paths that may be 
followed through their retrieval processes.  

3. The algorithms generate complete information retrieval processes 
based on the subjective preferences, beliefs, and assimilation ca-
pacities defining the behavior of DMs. The values of the CTRs 
observed empirically have been used to determine the probabilities 
assigned to the DMs clicking on the different alternatives.  

4. In order to illustrate the complexity inherent to the formalization of 
the retrieval behavior of DMs, we introduce a simple algorithm that 
replicates the empirical CTRs of users but does not consider the 
sequential interactions that may arise among the evaluations and 
alternatives as DMs define the set of potential search paths when 
retrieving information.  

5. The information assimilation capacities of DMs have been modified 
to illustrate the interactions arising through different sequential 
retrieval processes as well as the requirements necessary to generate 
the CTRs observed in real-life settings. 

All in all, the subjective retrieval capacities of DMs determine the 
complexity of the processes described through the algorithms, an 
important quality when relating the characteristics of DMs to the 
thresholds defined at each decision node. The next section presents a 
decision theoretical model that incorporates the behavioral character-
istics of DMs into the generation of the evaluation thresholds. 

3. A simple information retrieval model 

The structure of the benchmark algorithm is based on a series of 
factors that determine the probability of clicking on a given alternative 
according to its relative ranking position. Such a feature has been 
complemented by the introduction of a decision theoretical model that 
accommodates this type of behavior and relates it to the design of the 
algorithm. 

The decision theoretical model considers explicitly the possibility of 
consulting websites to gain additional information when describing the 
threshold values that define the evaluation behavior of DMs through the 
algorithm. These threshold values are determined by the utility gain that 
may be obtained through the information retrieved from a given alter-
native relative to the potential utility derived from acquiring 

Fig. 1. CTRs across time periods: Dean (2019) versus Advanced Web 
Ranking (2021). 
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information on the next alternative ranked by the engine. 
More precisely, the formal model defines the cutoff values as a 

function of the characteristics composing the alternatives, the subjective 
preferences of DMs, and their trust on the ranking results obtained. Note 
that the model provides a description of how to relate the cutoff values 
to the preferences of DMs. A geometric distribution could be used to 
determine the decreasing sequence of trust in the alternatives instead of 
the empirical CTRs obtained by Dean (2019). In this regard, the model 
and the algorithms are sufficiently flexible to incorporate any modifi-
cation to the beliefs and preferences of DMs. 

3.1. Formalization and technical assumptions 

Assume that the alternatives are defined via tuples (x1, x2,y1, y2) ∈

X2
1 × X2

2, which describe two different types of characteristics taking 
values in nonempty sets X1 and X2, with x1, x2 ∈ X1 and y1, y2 ∈ X2. In 
particular, the characteristics defining the alternatives can either be 
evaluated through the snippets, X1, or require additional information 
retrievable from the corresponding links, X2. This categorization con-
stitutes an application of the search and experience attributes charac-
terized by Gönsch (2020) when evaluating products. 

An evaluation and decision model requires defining a preference 
relation ≥ on Xi, i = 1,2, which is a reflexive, complete, and transitive 
binary relation on Xi. A utility function ui : Xi→R representing ≥ on Xi 

preserves the order defined by the preference relation, satisfying x′ ≥ x″ 

⇔ ui(x′) ≥ ui(x″), ∀x′,x″ ∈ Xi. 
We identify X1 and X2 with closed real subintervals X1 = [xm

i , xM
i ], i =

1, 2, and X2 = [ym
j , yM

j ], j = 1, 2, such that 0 < xm
i < xM

i and 0 < ym
j 

< yM
j . We introduce increasing and continuous additive utility functions 

denoted by u : X2
1 × X2

2→R, such that u(x1,x2,y1,y2) = u1(x1,x2) + u2(y1,

y2), ∀(x1,x2,y1, y2) ∈ X2
1 × X2

2, where uk describes the subjective utility 
of the DM defined on the set X2

k , k = 1,2. 
We also interpret Xi as a continuous random variable and assign a 

probability function fXi : Xi→[0, 1] to each set of characteristics. That is, 
DMs assign a probability fXi (xi) to the fact that the realization of the ith 
characteristic of an alternative that is evaluated randomly equals xi ∈ Xi. 
The random variables will be assumed to be independent, though this 
assumption can be modified to allow for correlated characteristics. 

Whenever utility functions are non-linear, the analysis must rely on 
the reference benchmark provided by the certainty equivalent value, cei 

= u− 1
i (Ei), instead of the expected utility,Ei. 

3.2. Convolution of two random variables 

The next set of computations requires defining the convolution of 
two uniform random variables, which consists of the density assigned to 
their sum. That is, assume that XA,XB ∈ R, both uniformly defined on the 
interval [0,1], have associated the following density 

fXA (x) = fXB (y) =
{

1, if0 ≤ x, y ≤ 1
0, otherwise 

The sum of both variables Z = XA + XB has the following density 
function 

fZ(z) =
∫∞

− ∞

fXA (z − y)fXB (y)dy  

with z = x+ y. Given the fact that the uniform densities are defined 
within the interval [0,1], the previous density function simplifies to 

fZ(z) =
∫1

0

f (z − y)dy  

with 

f (z − y) =
{

1, if 0 ≤ z − y ≤ 1
0, otherwise  

implying that z − 1 ≤ y ≤ z. The integrals defining the convolution are 
determined by the interval scenarios 0 < z < 1 and 1 < z < 2, defined for 
two uniform random variables. The integration limits follow from z - l <
y < z and the fact that y is defined through the z interval described 
above. The subsequent equation of the convolution is given by 

fZ(z) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∫z

0

dy, if 0 ≤ z ≤ 1

∫1

z− 1

dy, if 1 ≤ z ≤ 2

0, otherwise  

which simplifies to 

fZ(z) =

⎧
⎨

⎩

z, if 0 ≤ z ≤ 1
2 − z, if 1 ≤ z ≤ 2
0, otherwise 

This density allows us to work within a two-dimensional setting that 
defines a unique crossing point between the functions determining the 
retrieval behavior of DMs. The next subsection illustrates how this 
crossing point can be derived from a formal decision theoretical envi-
ronment designed according to the standard principles of expected 
utility theory. 

3.3. Retrieval utilities 

The functions representing the expected utilities that DMs derive 
from their information retrieval processes formalize their behavior 
when reading the snippets and evaluating a given alternative, J. That is, 
after evaluating the initial characteristics of an alternative, the DM must 
decide between clicking on the link and retrieving further information 
about the alternative or moving on to the next alternative in the ranking. 
The corresponding decision is based on the values x1, x2 ∈ X1 observed 
for J and, therefore, conditioned by the convolution of the characteris-
tics defining the different alternatives. 

We have simplified the presentation assuming alternatives composed 
by two characteristics within each set X1 and X2. This assumption re-
quires defining the convolution of the densities assigned to the charac-
teristics together with a subjective utility based on the relative distance 
between each characteristic and the most preferred evaluation subjec-
tively defined by DMs. 

The initial utility function focuses on the characteristics of the al-
ternatives described in the snippets, xi ∈ X1, i = 1, 2, and their value 
relative to the best potential realization considered by the DM, xM

i . Note 
that the DM must also account for the set of realizations of the second 
characteristic, yj ∈ [ym

j , yM
j ], j = 1,2, with yj ∈ X2, that may be observed 

when evaluating the alternative further. The corresponding expected 
utility is therefore defined as follows 

U(z1, z2)=
def u1(z1) +

∫

z2∈Z2

μ2(z2)(u2(z2)) dz2 (1)  

with 

u1(z1) =
1
i

∑

i

(
xi − xm

i

xM
i − xm

i

)

, xi ∈ X1 (2)  

E2 =

∫

z2∈Z2

μ2(z2)(u2(z2)) dz2 =
1
j

∫

z2∈Z2

f (z2)
∑

j

(
yj − ym

j

yM
j − ym

j

)

dz2, yj ∈ X2 (3) 
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Several basic remarks follow.  

• In order to keep notation consistent, we define z1 =
∑2

i=1

(
xi − xm

i
xM

i − xm
i

)
and 

z2 =
∑2

j=1

(
yj − ym

j
yM

j − ym
j

)

, implying that there are two different sets of 

double characteristics, one directly observable, the other requiring a 
click on the corresponding link. Triples could be defined per char-
acteristic set without increasing significantly the complexity of the 
presentation, but the main qualitative results would remain 
unchanged.  

• We have assumed risk neutral DMs endowed with linear utility 
functions to formalize the evaluation metric within each character-
istic. This assumption could be easily relaxed, and the shape of the 
utility functions generalized, making use of the certainty equivalent 
values in place of the expected utilities. However, this extension 
would simply complicate the presentation without modifying the 
main intuition provided or qualitative results obtained.  

• The uncertainty faced by DMs when evaluating the characteristics is 
formalized through a uniform density of potential realizations, 
which are distributed within [xm

i , xM
i ] and [ym

j , yM
j ] for i, j = 1,2. The 

uniform probability distribution reflects the highest information 
entropy faced by DMs regarding the results obtained from the search 
engine (Di Caprio et al., 2022b; Tavana et al., 2015b). 

The expected utility derived from evaluating the initial set of char-
acteristics from one of the alternatives composing the ranking is defined 
as follows 

U(z1, z2)=
def 1

i
∑

i

(
xi − xm

i

xM
i − xm

i

)

+
1
j

∫

z2∈Z2

f (z2)
∑

j

(
yj − ym

j

yM
j − ym

j

)

dz2 (4) 

Similarly, the expected utility obtained from a random evaluation of 
one of the alternatives within the ranking equals 

C(z1, z2,Φ)=def
∫

z1∈Z1

μ1(z1)(u1(z1)) dz1 + Φ
∫

z2∈Z2

μ2(z2)(u2(z2)) dz2 (5) 

Adapting Eq. (3) and substituting the corresponding expression 
within Eq. (5) we obtain an extended equation directly comparable with 
U(z1, z2)

C(z1,z2,Φ)=def 1
i

∫

z1∈Z1

f (z1)
∑

i

(
xi − xm

i

xM
i − xm

i

)

dz1 +
Φ
j

∫

z2∈Z2

f (z2)
∑

j

(
yj − ym

j

yM
j − ym

j

)

dz2

(6)  

where Φ ∈ [1, 2] has been introduced as a compensation mechanism to 
account for the uncertainty inherent to the characteristics defining the 
alternatives, a subset of which remains unknown through the initial 
evaluation process (Herrmann, 2015). The trust placed by DMs on the 
rankings delivered by the search engines implies that Φ can be assumed 
to increase with the alternatives located in lower ranking positions. 

Consider the case where the individual characteristics composing X1 
and X2 are uniformly distributed within the interval [0,10], leading to a 
normalized expected value of 0.5 for both z1 and z2. It therefore follows 
that U(z1, z2) is a linear function defined within [0.5,1.5], and C(z1, z2,

Φ) ∈ [1,1.5], the value of Φ ∈ [1,2] depending on the trust placed on the 
corresponding alternative being able to fulfill the subjective preferences 
of the DM. 

We have designed this formal environment to identify the value of 
Φ ∈ [1,2] such that U(z1, z2) and C(z1, z2,Φ) cross at the value of z1 
generating the empirical CTRs observed for each alternative based on 
their positions within the ranking. That is, the value of Φ subjectively 
defined by DMs generates the value of z1 that determines their retrieval 
behavior per alternative. We could therefore interpret (2 − Φ) as the 
subjective degree of trust assigned to each alternative based on its 

relative ranking position. 
Consider the convolution of two initial characteristics, xi ∈ X1, i = 1,

2, and the largest and smallest CTRs observed empirically by Dean 
(2019) – described in Fig. 1 and, more specifically, the second column of 
Table 3.  

• The value of Φ required to obtain a z1 cutoff such that fZ(z1) = 0.68 
is derived as follows. The value of z1 delivering the probability mass 
required is given by z1 = 1.2. We normalize this value within Fig. 1 
to z1 = 0.6 and solve U(z1, z2) = 0.6 + 0.5 = 0.5 + 0.5Φ = C(z1, z2,

Φ) for Φ = 1.2.  
• The same intuition applies when fZ(z1) = 0.97, which is solved for 

z1 = 1.7551. Its normalized value, z1 = 0.8776, is used to find the 
value of Φ = 1.7552 solving 1.3776 = 0.5+ 0.5Φ. 

Fig. 2 illustrates both thresholds as defined by U(z1, z2) and C(z1,z2,

Φ), together with the basic reference case for Φ = 1. 
We must emphasize the fact that the model has been defined to 

complement the design of the retrieval algorithms and provide addi-
tional intuition when studying the online behavior of users. That is, the 
model is not an exhaustive analysis of the generation of evaluation 
thresholds and the corresponding retrieval probabilities, but an intuitive 
formalization of the complexities involved within seemingly simple 
decision processes. 

The algorithmic evaluation scenarios defined allow for the intro-
duction of signals and modifications in the beliefs of DMs as the retrieval 
process develops. This possibility emphasizes the complexity inherent to 
the search and evaluation processes defined by DMs. The heuristic 
mechanism validated numerically does not imply simplistic behavior on 
the side of DMs but defines a selective feature allowing to shortlist the 
alternatives closest to their preferences. 

4. On the complexity of evaluation processes 

The empirical analyses of online information retrieval behavior 
describe users who follow sequential decision-tree processes (Henda-
hewa & Shah, 2017). However, researchers seem reticent to formalize 
the subsequent decision-tree algorithmic structures. This lag in the 
literature may be due to the belief that the incorporation of heuristic 
mechanisms following from bounded rationality assumptions results in 
trivial decision-making environments. This would be the case if we were 
to simulate ten independent random realizations, assign one to each 
alternative and omit any incentives resulting from the observations 

Fig. 2. Evaluation thresholds determined by the main (Φ, z1) reference pairs.  
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retrieved. Such an assumption would imply that DMs do not follow any 
predetermined search strategy but click randomly on pages indepen-
dently of the results obtained through the sequential search process. 

More precisely, consider the definition of the main variable used to 
analyze the behavior of DMs when retrieving information online. The 
CTRs obtained from a given number of search queries, n, are defined as 
follows 

Assume that a DM only checks the first two alternatives displayed by 
the search engine. The resulting string of data describing the behavior of 
the DM would consist of vectors with ten entries where the first two are 
different from the remaining ones, which could be assigned a value of 
zero or any predetermined default one for analytical purposes. Consider 
now the behavior of a DM who sets out to select two satisficing alter-
natives among those displayed within the first page of results described 
by the engine. 

The retrieval process of the second DM is considerably more complex 
than that of the first one. Indeed, the second DM will evaluate the al-
ternatives in the order displayed by the engine and select the first two 
that satisfy the predetermined requirement. Clearly, these alternatives 
are not necessarily the ones located in the first two positions within the 
ranking and could be located anywhere within it. That is, the fact that 
DMs trust the ranking displayed by the engine does not mean that they 
follow it blindly, simply that they proceed through the results in the 
order displayed by the engine and then apply their corresponding se-
lection criteria when deciding which alternatives to click. 

The above intuition implies that a basic retrieval algorithm 
mimicking the CTRs observed empirically can be easily defined. Each 
run of the algorithm is naturally considered to represent a search query 
by a user. Thus, given the definition of CTR, a basic algorithm such as 
those presented in Figs. 3 and 4 – but extended to incorporate ten in-
dependent evaluations – would suffice to generate the CTRs observed 
empirically. We simply need to assume that DMs assign a predetermined 
probability to clicking on each alternative. Note, however, that the 
retrieval process and the algorithm lack any interaction across obser-
vations. That is, assume that the DM evaluates two alternatives whose 
characteristics are expected to perform above a given predetermined 
threshold. The corresponding search process is limited to any two al-
ternatives selected ex ante by the DM from the initial ranking. As a 

result, the behavior of the DM remains unaltered by the actual evalua-
tions observed. 

Assume now that the DM aims at observing two alternatives that 
display satisficing evaluations. Accounting for this possibility requires 
defining an algorithm that considers all the potential paths that may be 
followed by the DM. The corresponding algorithm should account for an 
increasingly complex decision tree incorporating all the binary decision 

nodes that may arise from the information retrieval process of DMs 
(Schulz, 2008). 

Table 1 describes the main differences – in terms of decision nodes – 
among the algorithms required to simulate the basic retrieval process 
with independent evaluations, a standard binary tree, and the complete 
retrieval process where DMs aim at evaluating a given number of sat-
isficing alternatives. The binary tree and the complete evaluation sce-
nario define the same retrieval process when considering the whole set 
of alternatives composing the first page of results. In this case, the de-
cision tree defined to replicate the CTR behavior of DMs is composed by 
210 − 1 = 1023 binary decision nodes and has a total of (

∑10
n=12n)+ 1=

2047 nodes. 
Thus, even when implementing a heuristic mechanism where DMs 

aim at finding two satisficing alternatives out of a total of ten, each 
characteristic set composed by two independent random variables, the 
subsequent retrieval process requires considering 55 potential binary 
decisions. 

4.1. Decision trees and satisficing algorithms 

The stochastic sequential evaluation structure of the algorithm is 
built as follows. We assign a random uniform realization within [0, 1] to 
each alternative as DMs proceed through the ranking displayed by the 
engine. Each alternative is also assigned a cutoff value, ci, i = 1, ...,10, 
based on its position within the ranking. The behavior of DMs is deter-
mined by the value of each realization relative to the cutoff assigned to 
the corresponding alternative. 

That is, when considering the first alternative composing the 
ranking, the DM either clicks on the link provided or proceeds with the 

Fig. 3. Code of the basic algorithm evaluating two alternatives but lacking 
interactions across variables and evaluations. 

CTR of alternative i =
Number of users clicking on the link to alternative i

Number of users performing a search
, i = 1, ..., n.

Fig. 4. Code of the basic algorithm evaluating three alternatives but lacking 
interactions across variables and evaluations. 
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second alternative. The decision is based on the alignment between the 
preferences of the DM and the information displayed, namely, clicks 
result from the realization being higher than the cutoff value. The 
remaining part of the sequential process is defined similarly, with the 
DM considering two paths per potential decision node. The retrieval 
process is therefore defined by a sequential decision-tree structure of 
binary choices whose complexity increases as the DM proceeds through 
the ranking. 

We design a series of satisficing heuristic algorithms that interrupt 
the information retrieval process when DMs observe a predetermined 
number of alternatives aligning with their subjective preferences. The 
basic satisficing algorithm assumes that DMs conclude the retrieval 
process after observing one alternative aligning with their preferences. 
Further algorithms are defined requiring DMs to observe two, three and 
ten alternatives aligning with their preferences. Figs. 1–3 describe the 
information retrieval processes followed by DMs when considering one, 
two and three satisficing alternatives before concluding their search, 
respectively. 

For instance, Fig. 6 illustrates the evaluation scenario where DMs 
aim at observing two satisficing alternatives through their information 
retrieval processes. The intuition describing the process follows from the 
information retrieval behavior of a DM who observes and evaluates al-
ternatives in the order provided by the search engine. The retrieval 
process ends after the DM observes two alternatives aligning with his 
preferences that deliver a sufficient – satisficing – level of utility. As 
explained in Section 3, this level is determined subjectively by each DM, 
who will conclude the search after retrieving information from the first 
ten alternatives provided by the engine even if he has been unable to 
identify two satisficing ones. 

Consider once again the information retrieval process described in 
Fig. 6. Note that, if the first two alternatives deliver the satisficing utility 
requested, the retrieval process ends with the DM having clicked on the 
first and second alternatives. Thus, if all DMs apply the same behavioral 
rule based on the assumption that, given their ranking positions, the first 
two alternatives deliver the highest potential utility, we should observe 
all DMs clicking on the first two alternatives and ending their searches 
right after. 

The behavior observed would therefore consist in all DMs clicking on 
the first two alternatives, each one of them receiving half the clicks and 
accounting for half the average traffic share. The CTRs would be equal to 
100 % for each alternative, since they are both clicked by DMs on each 
query search. However, this is not what can be observed in the data 
(Chitika, 2013; Dean, 2019), with DMs retrieving information from the 
whole set of alternatives composing the first page of results provided by the 
engine. In this regard, Fig. 6 describes the potential scenarios that may 
arise as any of the first two alternatives, or both, fail to deliver the utility 
required by the DMs. Figs. 5 and 7 describe similar retrieval settings, with 
DMs aiming for a total of one or three satisficing alternatives being 
observed throughout their evaluation processes, respectively. 

In order to provide additional intuition, Fig. 8 presents a simplified 
version of the codified structure of the algorithm accounting for three 
satisficing alternatives, that is, ending the retrieval process when the DM 
observes three alternatives aligning with his preferences. As already 

emphasized, the complexity of the heuristic algorithms ranges from the 
simplest one – requiring a unique satisficing alternative and composed 
by ten decision nodes – to the (210 − 1) nodes defining the algorithm that 
requires ten satisficing alternatives, namely, the binary evaluation of all 
the alternatives ranked within the first page of results delivered by the 
search engine. 

Tables A2 and A3 within the supplementary appendix section pro-
vide the MATLAB codes used to simulate the satisficing frameworks with 
two and three alternatives, respectively. The increase in the complexity 
of the code is evident, as well as the subsequent imposition on the 
computational abilities of DMs. As explained in the previous subsection, 
Figs. 3 and 4 present the algorithms corresponding to the independent 
retrieval processes focusing on evaluating two and three alternatives, 
respectively. Their relative simplicity becomes particularly evident 
when compared to the algorithms presented in the appendix sections. 

Table 1 
Complexity inherent to the different types of retrieval processes.   

Number of alternatives 1 2 3 4 5 6 7 8 9 10 

Binary Tree Binary decision nodes 1 3 7 15 31 63 127 255 511 1023 
Number of final nodes 2 4 8 16 32 64 128 256 512 1024 
Total number of nodes 3 7 15 31 63 127 255 511 1023 2047 

Independent Binary decision nodes 1 2 3 4 5 6 7 8 9 10 
Number of final nodes 2 4 6 8 10 12 14 16 18 20 
Total number of nodes 3 6 9 12 15 18 21 24 27 30 

Complete Binary decision nodes 10 55 175 385 637 847 967 1012 1022 1023 
Number of final nodes 11 56 176 386 638 848 968 1013 1023 1024 
Total number of nodes 21 111 351 771 1275 1695 1935 2025 2045 2047  

Fig. 5. Satisficing heuristic framework with one satisficing alternative.  
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The subsequent tables composing the appendix illustrate the substantial 
increment in the complexity of the retrieval processes assumed on the 
DMs as a higher number of alternatives are incorporated into their sat-
isficing objectives. 

We run several simulations illustrating the performance of the al-
gorithms and their main differences relative to a basic retrieval 

framework delivering similar CTR results. The simulations have been 
designed to highlight the actual complexity involved in the formaliza-
tion of the information retrieval process when considering the whole set 
of interactions across evaluations and alternatives. 

The set of benchmark algorithms is sufficiently flexible to account for 
the effects of strategic signals received at any point throughout the 

Fig. 6. Satisficing heuristic framework with two satisficing alternatives.  

Fig. 7. Satisficing heuristic framework with three satisficing alternatives.  
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Fig. 8. Summary of the codified structure of the algorithm requiring three satisficing alternatives.  
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information retrieval process. Any type of behavioral modification can 
be incorporated into the analysis to illustrate its expected effect on the 
set of resulting CTRs. This feature constitutes a significant advantage 
over the simpler algorithms that do not account for the set of potential 
interactions across evaluations and alternatives arising through the 
sequential information retrieval process of DMs. 

4.2. Categorizing evaluation processes 

The next result provides important intuition regarding the catego-
rization difficulties that follow from the different retrieval processes 
generated. That is, the basic algorithm defining DMs that perform in-
dependent searches and the complete one – where DMs search for a 
given number of satisficing alternatives – converge to the same sto-
chastic framework and produce identical CTRs. 

Consider a basic retrieval process based on the realizations from ten 
independent random variables uniformly distributed in [0, 1], where 
each alternative is assigned a cutoff value within this interval deter-
mining the evaluation behavior of DMs. The law of large numbers im-
plies that simulating a sufficiently large number of realizations would 
indeed lead to a percentage of clicks identical to the threshold values 
defined. The complete algorithm, where DMs evaluate ten alternatives 
out of a total of ten, leads to the same retrieval structure. That is, DMs 
will consider all ten alternatives per query, leading to a stochastic 
structure whose CTRs converge to those defined by ten independent and 
unrelated trials. However, as can be intuitively understood, the retrieval 
behavior is substantially different in both cases, the latter being closer to 
the actual rational behavior considered by economists and decision 
theorists, while the former lacks a structured search strategy. 

Proposition. The basic algorithm – defining the independent eval-
uation of n alternatives – and the complete one, where DMs aim to 
observe n satisficing alternatives from a given set, deliver the same CTRs 
when DMs set out to observe n satisficing alternatives out of a total of n. 

Proof. Consider the retrieval setting with ten alternatives. The proof 
relies on noting that, when aiming to observe ten satisficing alternatives, 
the probability of evaluating each one of them equals one, leading to the 
same stochastic framework as the basic algorithm, where ten alterna-
tives are evaluated with probability one. The observations retrieved 
determine the clicking decisions when compared to the corresponding 
threshold values. ■ 

Thus, while generating CTRs identical to those observed in real life 
environments is an almost trivial problem, incorporating the set of po-
tential interactions across evaluations and alternatives requires defining 
a much more complex algorithmic structure. This result provides valu-
able intuition when considering search processes based on less than ten 
satisficing alternatives, since, as will be illustrated in the next section, 
the complete algorithm delivers the required CTRs when DMs set out to 
observe three satisficing alternatives out of a total of ten. 

5. Numerical analysis and main findings 

The algorithms have been calibrated using the values provided by 
Dean (2019), who analyzed five million queries to derive the CTRs on 
the organic alternatives ranked by Google within the first page of results. 
The cutoff values assigned to each node of the tree correspond to the 
observed CTRs, which, therefore, define the probability of clicking on an 
alternative. The CTRs obtained by Dean (2019) are presented in the 
second column of Table 3, while the corresponding set of cutoff values is 
summarized in the first column of Table 2 and given by 

[c1, c2, c3, c4, c5, c6, c7, c8, c9, c10] = [0.68, 0.75, 0.81, 0.86, 0.90, 
0.94, 0.96, 0.97, 0.97, 0.97] 

Table 2 describes intuitively the behavior of DMs. In particular, this 
table presents realizations from the different algorithmic scenarios 
simulated, each of its columns representing the search query results 
obtained by a DM and his subsequent information retrieval behavior. 

It may seem naturally plausible to assume that DMs stop retrieving Ta
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information after observing one alternative aligning with their prefer-
ences. The third column of Table 3 has been introduced to refute this 
type of reasoning. The intuition behind this result is straightforward and 
follows from the differences between CTRs and the distribution of 
probability through the nodes composing the retrieval process, which 
binds the sum of clicks on the alternatives to a value of one. This 
constraint is however inherent to the structure of the basic algorithm 
considering a unique satisficing alternative. 

The remaining columns of Table 3 compare the CTRs obtained by 
Dean (2019) with those delivered by the heuristic algorithms requiring 
two, three and ten satisficing alternatives. We have executed one million 
runs of the algorithms per information retrieval scenario. A noticeable 
result is the fact that the performance of the algorithm with two sat-
isficing alternatives constitutes a sufficient approximation to the CTRs 
observed, while adding a third alternative provides an almost identical 
set of CTRs. That is, the heuristic algorithms have the capacity to 
replicate the behavior observed when accounting for three satisficing 
alternatives. The mimicking capacity of the algorithms displays mar-
ginal improvements as we increase the number of satisficing alterna-
tives, though it is clearly not necessary to consider the 2047 nodes 
composing the algorithm with ten alternatives to simulate the actual 
behavior of DMs. 

Fig. 9 presents the retrieval profiles generated through increasingly 
complex evaluation scenarios. Note how two satisficing alternatives 
already deliver a retrieval framework similar to the limit case with ten 
alternatives. Thus, as already illustrated, we do not require overly 
complex retrieval frameworks or DMs endowed with highly enhanced 
assimilation capacities to generate the CTRs observed empirically. Each 
scenario within the figure accounts for 300 queries, each of them 

amounting for up to 10 realizations, depending on the scenario analyzed 
and the value of the random realizations observed. Whenever an alter-
native is not evaluated or a realization does not lead to a click, a value of 
zero is assigned to the corresponding matrix entry. 

A more concise illustration of the intuition described in Fig. 9 is 
provided in Fig. 10, which describes the absolute value of the difference 
between the CTRs reported by Dean (2019) and those obtained from one 
million runs of the benchmark algorithms per information retrieval 
scenario. Note how the significant differences observed in the scenario 
with one alternative are quickly smoothed as a second and third alter-
native are incorporated by the DM into the corresponding evaluation 
processes. We conclude the analysis by noting that these results are in 
accordance with the empirical evidence presented by Jansen et al. 
(1998) and Baeza-Yates (2005), who found that users tend to click an 
average of two pages per search query. 

As stated at the beginning of this section, the numerical simulations 
performed are based on CTRs retrieved from organic search outcomes 
delivered by Google. We must note that the results presented are not 
constrained to this type of search engine but apply to any search process 
where DMs must evaluate a set of characteristics and decide whether 
they want to click on the corresponding link or prefer to proceed with 
the next alternative. This would be the case when considering vertical 
search engines such as TripAdvisor. 

That is, CTRs have been translated into clicking probabilities that 
define the cutoff points corresponding to each alternative according to 
its position within the ranking – and subsequent decision tree –. How-
ever, these points could be endogenously defined as part of the decision 
retrieval model presented in Section 3. In other words, this model in-
troduces a basic decision setting defined to illustrate how the cutoff 
values can be related to the formal information retrieval and evaluation 
criteria of DMs. The model could be extended to consider explicitly the 
interactions among the characteristics defining the different alternatives 
and their evaluations, together with the potential realizations of the 
characteristics defining the alternatives remaining to be observed 
(Tavana et al., 2016a, 2016b). This type of retrieval framework would 
allow to modify specific characteristics of each alternative – conditioned 
by their relative importance to DMs – and analyze the resulting evalu-
ation scenarios, widening the set of strategic signaling environments 
that could be defined by the firms or economic agents whose products 
are ranked by the engine. 

6. Discussion: on retrieval processes and assimilation capacities 

The results described in the previous section highlight an important 
problem from a modelling viewpoint with implications regarding the 
information assimilation capacities of DMs and their subsequent 
formalization in decision sciences. The results shed light on the possi-
bility that DMs do not follow a sequential structured search – where the 
information retrieved conditions the subsequent evaluation paths – but 
perform a simple search determined by a set of independent pre-
determined cutoff values. 

Table 3 
CTRs differences across satisficing scenarios.    

Number of Satisficing Alternatives 

Ranking position Dean (2019) One Two Three Four Five Six Seven Eight Nine Ten 

1 31.7 31.93 32.04 32.02 32.01 32.04 32.02 32.00 31.90 32.00 32.02 
2 24.7 17.01 24.98 24.99 24.97 25.03 24.96 24.96 25.01 24.91 24.98 
3 18.7 9.67 17.44 18.97 18.98 19.00 19.01 18.97 19.02 19.01 19.03 
4 13.6 5.76 11.79 13.83 13.96 14.01 14.03 13.99 13.96 13.95 13.98 
5 9.5 3.55 7.85 9.64 9.97 10.04 10.03 10.05 10.04 9.98 9.99 
6 6.2 1.93 4.45 5.69 5.99 6.01 6.02 5.98 5.99 6.02 6.02 
7 4.1 1.20 2.85 3.75 3.97 3.97 3.98 4.02 4.02 4.00 3.99 
8 3.1 0.88 2.10 2.79 2.96 2.98 3.00 3.04 3.03 2.94 2.98 
9 3 0.83 2.04 2.77 2.95 3.00 3.00 3.02 2.98 2.99 3.00 
10 3 0.82 2.00 2.76 2.94 3.01 3.00 2.99 3.01 3.01 3.00  

Fig. 9. Retrieval profiles corresponding to increasingly complex 
retrieval scenarios. 
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Given the fact that DMs tend to click on two pages per search query 
(Baeza-Yates, 2005; Jansen et al., 1998), assuming two independent 
observations would clearly not generate the CTRs derived from real-life 
scenarios but concentrate them on the first two alternatives composing 
the ranking. A comparison of the basic and complete algorithms illus-
trating this feature – with a 0.5 threshold value assigned to each alter-
native – is presented in Table 4, where the mimicking capacities of the 
corresponding retrieval frameworks can be compared. It seems intui-
tively plausible to conclude that the retrieval behavior of DMs is not 
based on basic evaluation processes, a conclusion reinforced when 
considering less than ten satisficing observations. 

That is, information retrieval processes cannot be composed by a 
series of independent evaluations. DMs must consider – to some extent – 
the interactions across observations and alternatives arising from the set 
of potential paths that may be defined when proceeding through the 
ranking. In this way, we can reconcile the value of the CTRs observed in 
real-life environments with a sequential retrieval process where DMs 
aim at observing a given number of predetermined alternatives. 

Besides illustrating the rationality inherent to these processes, the 
benchmark algorithms allow to analyze the consequences derived from 
introducing external modifications to the retrieval strategies of DMs. 

They also highlight the different assimilation capacities defining the 
behavior of DMs and whether differences across retrieval strategies can 
be identified and categorized accordingly. The set of evaluations 
considered by DMs and conditioning their retrieval behavior includes 
the different characteristics defining each alternative together with the 
potential observations that may be retrieved. 

We address the question of how many satisficing alternatives must be 
considered by DMs to generate the CTRs observed in real-life settings. As 
illustrated in Table 3, a retrieval algorithm calibrated to the empirical 
CTRs delivers the required values when DMs aim at observing three 
satisficing alternatives, with two alternatives constituting a sufficient 
approximation. The correlation analysis presented in Table 5 demon-
strates how the CTRs obtained are identical when considering three or 
more alternatives and sufficiently close when accounting for two. That 
is, we can validate the intuition that information retrieval strategies are 
neither trivial nor require substantial assimilation capacities on the side 
of DMs. 

The search processes generated display information retrieval stra-
tegies that mimic the data available to computer scientists when cate-
gorizing the corresponding behavior through machine learning 
techniques (Qin et al., 2020). The algorithms deliver two different 

Fig. 10. Absolute value of the difference between the CTRs reported by Dean (2019) and those obtained from one million runs of the benchmark algorithms per 
retrieval scenario. 

Table 4 
CTR differences between retrieval processes with a 0.5 threshold value per alternative.   

Number of Satisficing Alternatives  

Basic Benchmark 

Ranking position One Two Three Ten One Two Three Ten 

1 50.07 49.97 50.04 49.93 50.00 49.99 50.08 50.00 
2 – 50.01 49.98 49.99 25.03 49.96 49.96 50.04 
3 – – 49.99 49.96 12.45 37.45 50.11 49.98 
4 – – – 50.00 6.26 24.98 43.74 50.17 
5 – – – 49.91 3.13 15.63 34.42 49.98 
6 – – – 49.95 1.58 9.40 24.96 49.97 
7 – – – 49.99 0.78 5.49 17.13 50.00 
8 – – – 49.90 0.39 3.14 11.34 49.89 
9 – – – 50.04 0.20 1.78 7.23 49.93 
10 – – – 50.08 0.09 0.98 4.45 49.99  
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strings of data. In addition to the pages clicked by DMs, common to any 
study computing the CTRs of users, the algorithms provide a numerical 
representation of the evaluations determining their retrieval behavior. 
This information is not generally available, with most empirical studies 
aiming to extrapolate the preferences and evaluations of DMs from the 
data observed (Li et al., 2020; Wang et al., 2019). However, in the 
current setting, we obtain a numerical evaluation of each characteristic 
observed by the DMs, as well as the resulting actions in terms of clicking 
behavior. 

The capacity of the benchmark algorithms to incorporate signals or 
any type of strategic behavior into the information retrieval process of 
DMs is novel to the current setting. That is, the algorithms allow to 
modify the beliefs or behavior of the DM at any exact point through the 
retrieval process and analyze the resulting consequences in terms of 
CTRs. The results presented in Table 4 provide intuition regarding the 
consequences derived from these strategic modifications throughout the 
search and evaluation process. Clearly, the difference in CTRs across 
retrieval scenarios is significant. Incorporating or eliminating a sat-
isficing alternative shifts substantially the evaluation probabilities of 
those alternatives located in intermediate and lower ranking positions. 

These results define two potential strategies that should be analyzed 
in future research. First, as stated in the introduction, the prospective 
benefits and costs derived from inducing relative shifts in the ranking 
position of the alternatives could be quantified and compared across a 
variety of retrieval scenarios. These changes would have a direct effect 
on the alternatives defining the corresponding node and all those located 
through the subsequent branches of the decision tree. Second, the 
preferences of DMs could be modified, inducing a change in their 
evaluation probabilities at any node composing the decision tree. The 
resulting probabilities are comparable across scenarios, providing firms 
whose products define the corresponding alternatives with the capacity 
to design marketing strategies depending on the scenario considered and 

the relative position of their products. 
We conclude by noting that the decision model described in the 

paper does not consider the formation of preferences among DMs or the 
factors determining their choices. The strategies of firms to try biasing 
the choices of consumers towards their products have been consistently 
analyzed in the search engine marketing literature (Rosário & Dias, 
2023). Future research should therefore analyze the strategic framework 
conditioning the retrieval behavior of DMs and their potential con-
sumption choices. 

In this regard, intuition can be drawn from the CTRs summarized in 
Tables 3 and 4. Consider the benchmark algorithm framework and the 
differences in CTRs described in both tables. If DMs evaluate a lower 
number of alternatives while exhibiting a higher rejection probability, 
they will tend to focus only on the four initial results displayed by the 
search engine. 

This latter extension would lead the research into the domain of 
preference manipulation. Deciding what information to gather as well as 
the number of sources consulted based on the information already 
retrieved – formalized together with the limited capacity of DMs to 
assimilate information and search for alternative sources – delineates 
another potential line of research (Di Caprio & Santos-Arteaga, 2011). 
For instance, Epstein et al. (2017) illustrated how the search engine 
manipulation effect could be smoothed by issuing alerts to DMs, though 
it could only be eliminated by alternating the results of the search. They 
also concluded that this manipulation effect could impact multiple 
decision-making areas and suggested the regulation of search engines. 

Current literature developments incorporate the effect of artificial 
intelligence on the information retrieval behavior of DMs (Verma et al., 
2021). This recent research trend also analyzes the importance of 
corporate digital responsibility when shifting from Industry 4.0 to In-
dustry 5.0 (Kraus et al., 2022; Pappas et al., 2023). The latter integrates 
digital technologies with the problem-solving capacity of DMs, 

Table 5 
Pearson correlation between the CTRs obtained by Dean (2019) and the benchmark algorithms per retrieval scenario.    

Dean One Two Three Four Five Six Seven Eight Nine Ten 

Dean Pearson Correlation 1 .954** .999** 1.000** 1.000** 1.000** 1.000** 1.000** 1.000** 1.000** 1.000**  
Sig. (2-tailed)  .000 .000 .000 .000 .000 .000 .000 .000 .000 .000  
N 10 10 10 10 10 10 10 10 10 10 10 

One Pearson Correlation .954** 1 .963** .951** .951** .951** .951** .952** .951** .952** .951**  
Sig. (2-tailed) .000  .000 .000 .000 .000 .000 .000 .000 .000 .000  
N 10 10 10 10 10 10 10 10 10 10 10 

Two Pearson Correlation .999** .963** 1 .998** .998** .998** .998** .998** .998** .998** .998**  
Sig. (2-tailed) .000 .000  .000 .000 .000 .000 .000 .000 .000 .000  
N 10 10 10 10 10 10 10 10 10 10 10 

Three Pearson Correlation 1.000** .951** .998** 1 1.000** 1.000** 1.000** 1.000** 1.000** 1.000** 1.000**  
Sig. (2-tailed) .000 .000 .000  .000 .000 .000 .000 .000 .000 .000  
N 10 10 10 10 10 10 10 10 10 10 10 

Four Pearson Correlation 1.000** .951** .998** 1.000** 1 1.000** 1.000** 1.000** 1.000** 1.000** 1.000**  
Sig. (2-tailed) .000 .000 .000 .000  .000 .000 .000 .000 .000 .000  
N 10 10 10 10 10 10 10 10 10 10 10 

Five Pearson Correlation 1.000** .951** .998** 1.000** 1.000** 1 1.000** 1.000** 1.000** 1.000** 1.000**  
Sig. (2-tailed) .000 .000 .000 .000 .000  .000 .000 .000 .000 .000  
N 10 10 10 10 10 10 10 10 10 10 10 

Six Pearson Correlation 1.000** .951** .998** 1.000** 1.000** 1.000** 1 1.000** 1.000** 1.000** 1.000**  
Sig. (2-tailed) .000 .000 .000 .000 .000 .000  .000 .000 .000 .000  
N 10 10 10 10 10 10 10 10 10 10 10 

Seven Pearson Correlation 1.000** .952** .998** 1.000** 1.000** 1.000** 1.000** 1 1.000** 1.000** 1.000**  
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000  .000 .000 .000  
N 10 10 10 10 10 10 10 10 10 10 10 

Eight Pearson Correlation 1.000** .951** .998** 1.000** 1.000** 1.000** 1.000** 1.000** 1 1.000** 1.000**  
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000  .000 .000  
N 10 10 10 10 10 10 10 10 10 10 10 

Nine Pearson Correlation 1.000** .952** .998** 1.000** 1.000** 1.000** 1.000** 1.000** 1.000** 1 1.000**  
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000 .000  .000  
N 10 10 10 10 10 10 10 10 10 10 10 

Ten Pearson Correlation 1.000** .951** .998** 1.000** 1.000** 1.000** 1.000** 1.000** 1.000** 1.000** 1  
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000 .000 .000   
N 10 10 10 10 10 10 10 10 10 10 10  

** Correlation is significant at the 0.01 level (2-tailed). 
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enhancing their ability to deal with and solve complex problems (Vas-
silakopoulou et al., 2023). The algorithms introduced in the current 
paper can be easily incorporated into these frameworks of analysis, 
allowing also for fuzzy extensions in the design of retrieval strategies 
coupled with credibility considerations, both of which are particularly 
relevant when accounting for sustainable scenarios (Pappas & Wood-
side, 2021; Santos-Arteaga et al., 2023). 

7. Conclusion 

We have defined a series of benchmark heuristic algorithms that 
mimic the information retrieval behavior of DMs and compared the 
CTRs obtained through different evaluation scenarios determined by the 
alternatives displayed on the first page of results delivered by a search 
engine. We have also demonstrated the enhanced performance of these 
algorithms when compared to a direct implementation of basic retrieval 
techniques. A formal information retrieval model has been introduced to 
relate the cutoff values defining each evaluation step of the algorithms 
to the preferences of DMs. We have illustrated how both processes can 
be compatible, combining the main ideas from rational decision making 
theory and bounded rationality within a verifiable context of online 
search behavior. 

The benchmark algorithms have been designed using simple 
behavioral constraints, allowing for the integration of complex strate-
gies incorporating signals, subjective beliefs, and exogenous preference 
shocks to the information retrieval process of DMs. The benchmarking 
quality of the algorithms allows to simulate a substantial number of 
potential scenarios describing the effects from changes in the willingness 
of DMs to click on a given set of alternatives. As a result, we can quantify 
the expected adjustments in CTRs arising from different modifications 
introduced at any point through the information retrieval process of 
DMs. One of the main drawbacks inherent to the structure of the 
benchmark algorithms relates to the complexity that results from the 
inclusion of additional alternatives in the retrieval process of DMs. 

We conclude by emphasizing that the algorithms are sufficiently 
malleable to consider the content of the websites linked together with 
the description provided by the engine as the features of the alternatives 
aligning with the preferences of DMs. In this regard, a second stage per 
node could be incorporated to the different decision-tree structures, 
doubling the number of nodes composing the algorithms and the sub-
sequent retrieval probabilities. Note also that the resulting prescriptive 
environment can be used as a benchmark relative to which DMs can be 
categorized when training any of the deep learning techniques 
commonly applied in the artificial intelligence literature. 
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Lorigo, L., Haridasan, M., Brynjarsdóttir, H., Xia, L., Joachims, T., Gay, G., et al. (2008). 
Eye tracking and online search: Lessons learned and challenges ahead. Journal of the 
American Society for Information Science and Technology, 59, 1041–1052. 

Luo, W., Cook, D., & Karson, E. J. (2011). Search advertising placement strategy: 
Exploring the efficacy of the conventional wisdom. Information & Management, 48, 
404–411. 

Miranda, A., & Miah, S. J. (2023). Designing an innovative unified contextual 
architecture for improving information retrieval service in healthcare organizations. 
Information Development, 39(2), 235–247. 

Mishra, R. K., Jothi, J. A. A., Urolagin, S., & Irani, K. (2023). Knowledge based topic 
retrieval for recommendations and tourism promotions. International Journal of 
Information Management Data Insights, 3(1), Article 100145. 

O’Brien, H. L., Arguello, J., & Capra, R. (2020). An empirical study of interest, task 
complexity, and search behaviour on user engagement. Information Processing & 
Management, 57(3), Article 102226. https://doi.org/10.1016/j.ipm.2020.102226 

Pan, B., Hembrooke, H., Joachims, T., Lorigo, L., Gay, G., & Granka, L. (2007). In Google 
we trust: Users’ decisions on rank, position, and relevance. Journal of Computer- 
Mediated Communications,, 12, 801–823. 

Pappas, I. O., Mikalef, P., Dwivedi, Y. K., Jaccheri, L., & Krogstie, J. (2023). Responsible 
digital transformation for a sustainable society. Information Systems Frontiers, 25, 
945–953. 

Pappas, I. O., & Woodside, A. G. (2021). Fuzzy-set qualitative comparative analysis 
(fsQCA): Guidelines for research practice in information systems and marketing. 
International Journal of Information Management, 58, Article 102310. 

Qin, J., Zhang, W., Wu, X., Jin, J., Fang, Y., & Yu, Y. (2020). User behavior retrieval for 
Click-Through Rate prediction. In Proceedings of the 43rd International ACM SIGIR 
conference on research and development in information retrieval (SIGIR ’20) (pp. 
2347–2356). New York, NY, USA: Association for Computing Machinery.  

Ren, H., & Huang, T. (2018). Modeling customer bounded rationality in operations 
management: A review and research opportunities. Computers & Operations Research, 
91, 48–58. 

Rosário, A. T., & Dias, J. C. (2023). How has data-driven marketing evolved: Challenges 
and opportunities with emerging technologies. International Journal of Information 
Management Data Insights, 3(2), Article 100203. 

Santos-Arteaga, F. J., Di Caprio, D., Tavana, M., & Cerda Tena, E. (2023). A credibility 
and strategic behavior approach in hesitant multiple criteria decision-making with 
application to sustainable transportation. IEEE Transactions on Fuzzy Systems, 31(2), 
460–474. 

Schmitt, J. B., Debbelt, C. A., & Schneider, F. M. (2018). Too much information? 
Predictors of information overload in the context of online news exposure. 
Information, Communication & Society, 21(8), 1151–1167. 

Schulz, F. (2008). Trees with exponentially growing costs. Information and Computation, 
206, 569–578. 

Schwartz, B. (2005). The paradox of choice: Why more is less. Harper Perennial.  
Sharma, S., Rana, V., & Kumar, V. (2021). Deep learning based semantic personalized 

recommendation system. International Journal of Information Management Data 
Insights, 1(2), Article 100028. 

Shepherd, S. J. (2007). Concepts and architectures for next-generation information 
search engines. International Journal of Information Management, 27(1), 3–8. 

Silverstein, C., Marais, H., Henzinger, M., & Moricz, A. (1999). Analysis of a very large 
web search engine query log. Association for Computing Machinery Special Interest 
Group on Information Retrieval Forum, 33, 6–12. 

Speier-Pero, C. (2019). Using aggregated data under time pressure: A mechanism for 
coping with information overload. Journal of Decision Systems, 28, 82–100. 

Sun, H., Fan, M., & Tan, Y. (2020). An empirical analysis of seller advertising strategies in 
an online marketplace. Information Systems Research, 31, 37–56. 

Sutanto, J., Liu, Y., Grigore, M., & Lemmik, R. (2018). Does knowledge retrieval 
improves work efficiency? An investigation under multiple systems use. International 
Journal of Information Management, 40, 42–53. 

Tavana, M., Di Caprio, D., & Santos Arteaga, F. J. (2016a). Modeling sequential 
information acquisition behavior in rational decision making. Decision Sciences, 47 
(4), 720–761. 

Tavana, M., Santos-Arteaga, F. J., Di Caprio, D., & Tierney, K. (2016b). Modeling signal- 
based decisions in online search environments: A non-recursive forward-looking 
approach. Information & Management, 53(2), 207–226. 

Tavana, M., Di Caprio, D., & Santos Arteaga, F. J. (2015a). An ordinal ranking criterion 
for the subjective evaluation of alternatives and exchange reliability. Information 
Sciences, 317, 295–314. 

Tavana, M., Di Caprio, D., Santos Arteaga, F. J., & O’Connor, A. (2015b). A novel 
entropy-based decision support framework for uncertainty resolution in the initial 
subjective evaluations of experts: The NATO enlargement problem. Decision Support 
Systems, 74, 135–149. 
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