
PhD Dissertation

International Doctorate School in Information and
Communication Technologies

DISI - University of Trento

Desiree: a Refinement Calculus for
Requirements Engineering

Feng-Lin Li

Advisor:

Prof. John Mylopoulos

Università degli Studi di Trento

January 2016

Abstract

The requirements elicited from stakeholders suffer from various afflictions, including in-
formality, incompleteness, ambiguity, vagueness, inconsistencies, and more. It is the task
of requirements engineering pREq processes to derive from these an eligible (formal, com-
plete enough, unambiguous, consistent, measurable, satisfiable, modifiable and traceable)
requirements specification that truly captures stakeholder needs.

We propose Desiree, a refinement calculus for systematically transforming stakehold-
er requirements into an eligible specification. The core of the calculus is a rich set of
requirements operators that iteratively transform stakeholder requirements by strengthen-
ing or weakening them, thereby reducing incompleteness, removing ambiguities and vague-
ness, eliminating unattainability and conflicts, turning them into an eligible specification.
The framework also includes an ontology for modeling and classifying requirements, a
description-based language for representing requirements, as well as a systematic method
for applying the concepts and operators in order to engineer an eligible specification from s-
takeholder requirements. In addition, we define the semantics of the requirements concepts
and operators, and develop a graphical modeling tool in support of the entire framework.

To evaluate our proposal, we have conducted a series of empirical evaluations, in-
cluding an ontology evaluation by classifying a large public requirements set, a language
evaluation by rewriting the large set of requirements using our description-based syntax, a
method evaluation through a realistic case study, and an evaluation of the entire framework
through three controlled experiments. The results of our evaluations show that our ontol-
ogy, language, and method are adequate in capturing requirements in practice, and offer
strong evidence that with sufficient training, our framework indeed helps people conduct
more effective requirements engineering.

Keywords
[Requirements Problem, Requirements Ontology, Description-based Syntax, Requirements
Operators, Goal-oriented Requirements Engineering]

Acknowledgement

This thesis would not have been possible without the help of several important people 1.
I would also like to recognize and thank colleagues, friends and family for their help and
efforts during these past four years.

To John Mylopoulos, my supervisor, thank you for your sagacious guidance on every
piece of my work, for your great enthusiasm and support that has encouraged my research
over the last four years. Thank you, Prof. John Mylopoulos, with a four-year research
training, I gained a more wonderful view and a much deeper understanding of the things
in the same world. In short, thank you for helping me get to where I am now.

To Lin Liu, my co-supervisor, thank you for encouraging me to pursue my Ph.D.
degree, for your insightful guidance and constructive suggestions on my work, for your
great help in the evaluation of our framework.

To Alexander Borgida, Giancarlo Guizzardi, Renata Guizzardi, and Jennifer Horkoff,
my main colleagues, thank you for your large amount of efforts put on the discussions,
and for your insightful and useful comments and suggestions. Especially, Prof. Alexander
Borgida has helped a lot on the semantics of the framework, Prof. Giancarlo Guizzardi
and Renata Guizzardi have helped a lot on the ontological foundation part, Jennifer
Horkoff has helped a lot on the requirement operators.

To Paolo Giorgini (University of Trento), Barbara Pernici (Politecnico di Milano), and
Alexander Borgida (Rutgers University), the professors of my thesis committee, thank you
for accepting the invitation to participate in.

To Mauro Poggianella, thank you for your help in developing the prototype tool.
To my colleagues in the research group of Software Engineering and Formal Methods,

University of Trento, thank you for helping me in conducting the controlled experimen-
t in University of Trento; to my colleagues in the Institute of Information System and
Engineering, School of Software, Tsinghua University, thank you for volunteering to par-
ticipate in and for helping me to organize the two controlled experiments in Tsinghua
University. I apologize for not listing your names.

Last, but definitely not least, to my wife and family. For your unconditional love and
support, and for always taking care of me.

To all of you, my many thanks, grazie mille !

1As for research funding, this research has been funded by the ERC advanced grant 267856 “Lucretius:
Foundations for Software Evolution”, unfolding during the period of April 2011 - March 2016. It has also
been supported by the Key Project of National Natural Science Foundation of China (no. 61432020).

Contents

1 Introduction 1
1.1 Requirements Engineering . 2

1.1.1 RE in Traditional Software Development 2
1.1.2 RE in Agile Software Development 3

1.2 The RE Problem . 5
1.2.1 Problem Definition . 5
1.2.2 Existing Solutions . 6

1.3 Our Research Objectives . 9
1.4 Overview and Contribution . 11
1.5 Structure of the Thesis . 18
1.6 Published Papers . 19

2 State of the Art 21
2.1 Requirements Ontology . 21

2.1.1 Functional Requirements (FRs) . 22
2.1.2 Non-functional Requirements (NFRs) 23

2.2 Requirements Specification and Modeling Language 25
2.2.1 Requirements Specification Language 26
2.2.2 Requirements Modeling Language 31

2.3 Requirements Transformation . 34
2.3.1 Structural and Object-Oriented Decomposition 35
2.3.2 Goal-Oriented Refinement and Operationalization 36
2.3.3 Problem-Oriented Decomposition and Reduction 39
2.3.4 Others Aspects . 42

2.4 Chapter Summary . 44

3 Research Baseline 45
3.1 Goal-Oriented Requirements Engineering 45

i

ii Contents

3.2 Ontological Foundations . 47
3.3 Chapter Summary . 50

4 Ontological Interpretation of Requirements 51
4.1 Requirements . 51
4.2 Functional Requirements (FRs) . 52

4.2.1 Representing FRs . 55
4.2.2 Refining Functions . 56

4.3 Non-functional Requirements (NFRs) . 57
4.3.1 NFRs as Quality Requirements . 58
4.3.2 QRs vs. Softgoals . 62
4.3.3 Refining QRs . 62
4.3.4 Operationalizing QRs . 63
4.3.5 Satisficing QRs . 64

4.4 Practical Implications . 66
4.4.1 Distinguishing between FRs and NFRs 66
4.4.2 Addressing Inconsistency between Quality Models 67
4.4.3 The Satisfaction of QRs . 68

4.5 Chapter Summary . 68

5 The Desiree Framework 69
5.1 Requirements Concepts . 69
5.2 Requirements Operators . 72
5.3 A Transformation Methodology . 78

5.3.1 Informal Phase. 78
5.3.2 Interpretation Phase. 81
5.3.3 Smithing Phase. 82

5.4 Chapter Summary . 85

6 The Semantics of Desiree 87
6.1 The Semantics of the Desiree Language . 87
6.2 The Semantics of the Requirement Operators 94

6.2.1 Entailment Semantics . 95
6.2.2 Fulfillment Semantics . 103

6.3 Chapter Summary . 105

Contents iii

7 The Desiree Tool 107
7.1 Overview . 107

7.1.1 The Textual Editor . 109
7.1.2 The Graphical Editor . 110
7.1.3 The Reasoning Component . 111

7.2 An Illustrative Example . 112
7.3 Chapter summary . 113

8 Evaluation 115
8.1 The PROMISE Requirements Dataset . 115
8.2 Evaluating the Requirements Ontology . 116
8.3 Evaluating the Requirements Language . 118

8.3.1 Evaluating the Language Expressiveness 118
8.3.2 Evaluating the Need of the U, G, O Operators 119
8.3.3 Lessons Learned . 120

8.4 Evaluating the Methodology . 126
8.4.1 Meeting Scheduler: Modeling . 126
8.4.2 Meeting Scheduler: Reasoning . 130

8.5 Evaluating the Desiree Framework . 132
8.5.1 Experiment Setup . 132
8.5.2 Research Question . 133
8.5.3 Experiment Design . 134
8.5.4 Data Collection . 136
8.5.5 Descriptive Statistics . 137
8.5.6 Hypothesis Testing . 139
8.5.7 Analysis . 144
8.5.8 Feedback . 146
8.5.9 Threats to Validity . 147

8.6 Chapter summary . 149

9 Conclusion and Future Work 151
9.1 Contributions . 151
9.2 Limitations . 153
9.3 Future Work . 155

Bibliography 157

iv Contents

A Quality Mapping 173

B Graded Membership 177
B.1 Prototype Points . 177
B.2 Prototype Intervals . 178

C The Desiree Syntax 183

D The Semantics of the U operator 185

E Detailed Requirements Issues 189
E.1 Meeting Scheduler . 189

E.1.1 Project Background . 189
E.1.2 The Chosen Stakeholder Requirements 189
E.1.3 Issues in the Chosen Requirements 190

E.2 Realtor Buddy . 195
E.2.1 Project Background . 195
E.2.2 The Chosen Stakeholder Requirements 195
E.2.3 Issues in the Chosen Requirements 196

F Desiree Feedback 203
F.1 The Desiree Questionnaire . 203
F.2 Questionnaire Report . 206

List of Tables

1.1 The building blocks of the Desiree framework 11

2.1 The classification of requirements specification languages 26

4.1 The domain and codomain of 10 frequent qualities in our evaluation 61

5.1 An overview of the requirements operators 72

6.1 The semantics of Desiree descriptions . 88
6.2 The semantics of requirement operators . 96

8.1 Statistics of the PROMISE requirements data set 116
8.2 The classification scheme for the ontology evaluation 116
8.3 The ontological classification of the 625 requirements 117
8.4 The statistics of satisfaction type . 120
8.5 Implicit presence of the U, G, O operators on the 370 NFRs 120
8.6 Example queries over the Meeting Scheduler requirements specification . . 131
8.7 Seven kinds of requirements issues . 133
8.8 The Statistics of the reference issues in the two testing projects 135
8.9 The design of the three controlled experiments 136
8.10 Statistics of collected data: discussions, texts and models 137
8.11 Statistics of issues identified by participants in the three experiments . . . 138
8.12 Detailed number of issues identified by the 16 participants in experiment one140
8.13 Detailed number of issues identified by the 15 participants in experiment two140
8.14 Detailed number of issues identified by the 29 participants in experiment

three . 141
8.15 Statistical p-value for issues identified by participants 142
8.16 Analyzing experiment three: p-values, statistics, and effect 143
8.17 Effect analysis for experiment three . 144

v

vi List of Tables

A.1 The basic quality-related functions . 174

C.1 The BNF style Desiree syntax . 183

E.1 Number of requirements issues in the Meeting Scheduler project 190
E.2 Detailed requirements issues in the Meeting Scheduler project 191
E.2 Detailed requirements issues in the Meeting Scheduler project 192
E.2 Detailed requirements issues in the Meeting Scheduler project 193
E.2 Detailed requirements issues in the Meeting Scheduler project 194
E.3 Number of requirements issues in the Realtor Buddy project 196
E.4 Detailed requirements issues in the Realtor Buddy project 196
E.4 Detailed requirements issues in the Realtor Buddy project 197
E.4 Detailed requirements issues in the Realtor Buddy project 198
E.4 Detailed requirements issues in the Realtor Buddy project 199
E.4 Detailed requirements issues in the Realtor Buddy project 200
E.4 Detailed requirements issues in the Realtor Buddy project 201

F.1 Participants’ feedback on the learnability of the two methods 206
F.2 Participants’ feedback on the usability of the two methods 207
F.3 Participants’ feedback on the usefulness of the two methods 207
F.4 Participants’ feedback on the complexity of the two methods 207
F.5 Participants’ feedback on the usability of the Desiree tool 207
F.6 The statistics of the participants’ work experience in experiment three . . . 208

List of Figures

2.1 A simple problem diagram (adapted from [48]) 40

3.1 A simple example of the Techne syntax . 46
3.2 A fragment of UFO representing function and quality related categories . . 48

4.1 The ontological meaning of function (adopted from [78]) 52
4.2 Function individual, function type and function manifestation 54
4.3 The ontological meaning of quality (adopted from [78]) 58
4.4 The eight product qualities in ISO/IEC 25010 (with refinements) 60
4.5 Two-dimensional Voronoi and collated Voronoi diagrams (adapted from [54]) 65

5.1 The requirements ontology . 70

7.1 The usage of the Desiree tool . 107
7.2 The architecture of the Desiree tool . 108
7.3 The textual editor . 109
7.4 The graphical editor . 110
7.5 An illustrative example for the Desiree method (with stereotypes on nodes) 113
7.6 An example DL query . 114

8.1 The overall functionality of the Meeting Scheduler project 129
8.2 Example Usability NFRs of the Meeting Scheduler project 129

B.1 The graded membership functions for Low, Medium and High 181

vii

Chapter 1

Introduction

“The requirements for a system, in enough detail for its development,
do not arise naturally; instead, they need to be engineered and have
continuing review and revision.”

— T.E. Bell and T.A. Thayer

In general, software or software-intensive systems are designed for solving real-world
problems. For example, a meeting scheduler is designed for scheduling meetings, and
probably also for managing resources (meeting rooms, room equipments); an online flight
reservation system is designed for distributing airline tickets in a more efficient way, and
providing promotional or profitable services to customers. To make sure that a software(-
intensive) system correctly solves a real-world problem, we need to clearly understand
and define what things we need to achieve in the word (requirements), what conditions
will the system be built on (domain assumptions/properties), and what the system needs
to do in order to meet the requirements (specification).

As problems nowadays are often complicated, getting the problem right is not easy, and
sometimes surprisingly difficult. For example, when designing an online flight reservation
system, we need to consider various kinds of customers (e.g., first-class, business-class,
economic-class, adults, kids, infants), different kinds of nationalities (that may need spe-
cial kinds of in-flight meals), special kinds of consignments (e.g., pets, baby carriages,
wheelchairs), etc. It is the task of Requirements Engineering (RE) to discover, under-
stand, analyze and formulate the requirements that the system we are designing needs
to fulfill, the context in which the system will be used, and the functions and quali-
ties that the system needs to operationalize. Put differently, Requirements Engineering
bridges the gap between the initial recognition of a problem and the task of building a
software(-intensive) system to address that problem.

1

2 Chapter 1. Introduction

In this chapter, we review the role of Requirements Engineering in software develop-
ment, and discuss the RE problem. At the end, we present an overview of this thesis’s
proposal: Desiree, a refinement calculus for addressing the RE problem (we refer to the
calculus as requirements calculus in the rest of the thesis, since the objects of refinement
here are requirements).

1.1 Requirements Engineering

Requirements Engineering (RE) was born in the middle of ’70s [131], partially thanks to
Ross and his SADT proposal (Structured Analysis and Design Technique [144], a language
for communicating ideas), and partially thanks to others who established that the rumored
‘requirements problems’ are a reality [23]. In their seminar work [145], Ross and Schoman
have defined ‘requirements definition’ (the early name of requirements engineering) as
“a careful assessment of the needs that a system is to fulfill”, and pointed out that it
must deal with “context analysis” (why a system is needed, based on current or foreseen
conditions), “functional specification” (what the system is to be, in terms of functions
that the system must accomplish), and “design constraints” (how the functions are to be
designed and implemented). Later work by Zave [177] has further developed this idea
and suggested that RE also needs to correlate the real-word (contextual) goals for, the
functions of, and the constraints on a software system to precise specifications of software
behavior, and concern their evolution over time.

These definitions suggest that the subject of RE is inherently broad [165]: it needs to
deal with the discovery of requirements (requirements elicitation), the analysis of domain
assumptions/properties (domain analysis), the check of requirements deficiencies such as
inadequacy, incompleteness and inconsistency (requirements analysis), documentation,
the management of requirements and specifications, etc.

Roughly, these activities be categorized into two processes [132][135]: (1) the process
of eliciting stakeholder requirements/needs; and (2) the process of developing elicited
stakeholder requirements into a requirements specification that can serve as the basis
for later on system development activities. In addition, evolution/change management,
shall also be seriously considered as stakeholder requirements/needs appear to be more
changeable nowadays [114].

1.1.1 RE in Traditional Software Development

In traditional software development processes (e.g., waterfall model [146]), requirements
engineering is presented as the first phase, followed by others, such as design, implemen-

1.1. Requirements Engineering 3

tation, testing and maintenance. In such development processes, business analysts (or
requirements engineers) have to mediate between customers and software engineers: they
translate informal requirements elicited from customers into a formal specification that
can be handed over to software engineers for downstream development.

RE has been argued be to be of key importance to traditional software development
processes for two main reasons: (1) the cost of fixing errors in later software development
process is much higher that that in the RE process, e.g. Boehm and Papaccio [26] reported
that it costs 5 times more to detect and fix requirements defects during design, 10 times
more during implementation, 20 times more during unit testing and up to 200 times more
after system delivery; (2) poor requirements are the leading factor of project failure, as
shown in the empirical evaluations and investigations below.

Software requirements have been recognized as a real problem since the ’70s. In their
early empirical study, Bell and Thayer [23] have reported that software requirements, of
both small and large systems, are often incorrect, ambiguous, inconsistent, or incomplete.
In the sequel, more studies have confirmed the requirements problems [76][92][170]. One
broadly circulated report is the survey over a total of 8380 projects in 350 US companies,
which is conducted by the Standish Group in 1994 [76]. The survey revealed that 31.1% of
the investigated projects were failed, and 52.7% of them were challenged (e.g., offering only
partial functionalities, being over budget or over time). Poor requirements, such as the
lack of user involvement, requirements incompleteness, changing requirements, unrealistic
expectations and unclear objectives, were identified as the major source of problems (47%).
Similarly, in a survey conducted with 3800 organizations over 17 countries in Europe, most
software problems are in the area of requirements specifications (50%) and requirements
management (50%) [92].

More recently, in a survey of 12 UK companies [82], it was reported that require-
ments problems accounted for 48% of all software development problems (2002). In 2014,
the Project Management Institute (PMI) has conducted a comprehensive survey with
more than 2,000 practitioners, and found that 47% of unsuccessful projects failed to meet
goals due to poor requirements management, including interpreting and clearly articulat-
ing requirements, aligning them to the strategic vision for projects, communicating with
stakeholders, dealing with ambiguities, etc. [136].

1.1.2 RE in Agile Software Development

Agile software development is a collection of lightweight software development methods
(e.g., scrum [153]) evolved in the middle ’90s in reaction to the heavyweight waterfall-

4 Chapter 1. Introduction

oriented methods [1]. As suggested in the Agile Manifesto [4], agile development encour-
ages creating minimum amount of documentations needed to accurately guide developers
and testers (note that it does not mean no documentation). That is, one does not need
to prepare a comprehensive requirements document when starting a software project.

Due to its lightweight nature, agile development has enjoyed much attention in recent
years. By checking Standish Group’s report in 2010 and 2012, one may notice that they
have suggested “agile process” as a factor of success to small projects (with less than $1
million in labor content) [122]. Also, a recent IT survey in 2014 [15] revealed that 52% of
the 231 respondents responded that their teams were using agile development.

One may feel that requirements engineering is not important any more in nowadays
software development at first sight. However, this is not the case. First, agile development
has strong assumptions (e.g., all stakeholder roles, including customers and users, can be
reduced to one single role) and is not applicable to all projects, especially mission-critical
projects [169]. For example, we would obviously not like our air traffic control, transporta-
tion, power plant, medical operation or e-banking systems to be obtained through agile
development of critical parts of the software [169]. Second, agile development has its own
challenges, e.g., the very limited documentation would make a software system hard to
maintain [133], the ignorance of non-functional requirements would result in major issues
as the system matures and becomes ready for larger-scale deployment [32], etc.

More importantly, agile development also needs requirements engineering. Through a
survey over 12,000 software projects between 1984 and 2003, Jones [100] has shown that
almost any project includes some RE activities, whatever its type and size. Specifically,
Wiegers et al. [172] have pointed out that “agile projects require fundamentally the same
types of requirements activities as traditional development project”, and the difference is
that “detailed requirements are not documented all at once at the beginning of an agile
project, and will be developed in small portions through the entire project”.

In an industrial keynote “Agile RE – recipe for success or project wish-list?” 1 in REF-
SQ 2015, a solution designer from 1&1 Internet, Germany has shared their experiences on
adopting agile development (which is not successful). He pointed out that “pure scrum
is over-simplistic in complex, commercial environment”, and RE is needed for several
objectives, e.g., completeness, consistency, model-driven elicitation and analysis.

In agile development, requirements are often specified as user stories, which are allo-
cated to specific iterations of for implementations [172]. As such, in each iteration, the
allocated user stories need to be further analyzed, clarified, specified and verified. This
new characteristic of agile development indicates that traditional RE needs to be adapted:

1http://refsq.org/2015/files/2015/04/Rogers.pdf

1.2. The RE Problem 5

to embrace agile processes, RE shall be able to produce small requirements specifications,
which can be easily modified and integrated with requirements specifications produced
in other iterations, before and after. That is, a requirements specification shall be easily
modifiable (i.e., offering effective support for evolution/change management).

1.2 The RE Problem

Upon elicitation, requirements are typically mere informal approximations of stakeholder
needs that the system-to-be must fulfill. It is the task of the requirements engineering
process to transform these requirements into a specification that describes formally and
precisely the functions and qualities of the system-to-be. However, this is complicated by
the very nature of requirements elicited from stakeholders, which are often ambiguous,
incomplete, unverifiable, unattainable/unsatisfiable, etc. In our earlier studies on the
PROMISE requirements data set [129], we found that 3.84% of all the 625 (functional
and non-functional) requirements are ambiguous [115], 25.22% of the 370 non-functional
requirements (NFRs) are vague, and 15.17% of the NFRs are potentially unattainable
(e.g., they implicitly or explicitly use universals like “any” as in “any time”) [116].

1.2.1 Problem Definition

The problem of transforming informal stakeholder requirements into precise specifications
(i.e., the requirements problem) was elegantly characterized by Jackson and Zave [98] as
finding the specification S that for certain domain assumptions DA satisfies the given
requirements R, and was formulated as in Eq. 1.1.

DA,S |ù R (1.1)

This formulation determines what does it mean to successfully complete RE: once
the specification S is found such that Eq. 1.1 holds, the requirements problem will be
solved [102]. The transformation of requirements to specifications, or alternatively, the
derivation of specifications from requirements, is thus of key importance to RE: the process
will determine the quality of requirements (e.g., are they complete enough? are they
measurable? etc.), and the way how requirements are specified will influence requirements
management (e.g., if well structured, the resulting requirements specification could have
good modifiability and traceability). In fact, this is the core problem of RE.

Jackson and Zave have distinguished between a machine (a software system) and its

6 Chapter 1. Introduction

environment, and stated that a machine can affect, or can be affected by the environment
only when they have some shared phenomena, which are events or states located at the
interface/boundary of the machine [98]. Take a turnstile at the entry to a zoo for example,
inserting a coin and pushing the barrier to its intermediate position are shared phenomena,
entering the zoo is merely an environment phenomenon, and the lock and unlock of the
turnstile are only machine phenomena.

Based on this, they distinguish between requirements and specifications as follows: a
“requirement” states desired property in the environment – properties that will be brought
about or maintained by the machine; a “specification” for the machine is restricted to im-
plementable behaviour of a machine that can ensure the satisfaction of the requirements,
and can only be written in terms of shared phenomena. Further, they define “domain
assumption” as an indicative property of the environment irrespective of whether we build
the machine or not [178]. As such, ideally, a specification shall not refer to private phe-
nomena in the environment, because a machine has no access to them; it also shall not
include private phenomena in the machine, which shall be in the design.

We favor this distinction, as it makes the requirements problem quite clear, and sug-
gests the need of a systematic methodology for transforming stakeholder requirements
into specifications. Note that this distinction between (stakeholder) requirements and
(software) specifications is sometimes captured using other terms, e.g., user requirements
(needs) vs. (software) system requirements as in Maiden [121]. Moreover, we general-
ize a machine (a pure software system) in Jackson and Zave’s characterization [98] to a
software ecosystem, as the solution for a real-world problem often involves other agents
(e.g., other software systems, or human beings) in addition to the software system we
are designing. That is, by specification, we mean software ecosystem specification, in
which a function will not necessarily be performed by the software system being designed.
For example, maintaining a software will be performed by software maintainers, who are
external agents.

1.2.2 Existing Solutions

Predictably, there has been much work on transforming informal stakeholder requirements
to a formal specifications, going back to the early ’90s and before [35][142][63][50]. Some
of this work exploited AI techniques such as expert systems [35] and natural language
processing (NLP) [142]. Others proposed guidelines for developing formal specifications
from informal requirements [63]. However, the RE problem has not been addressed effec-
tively and has remained open, as attested by current requirements engineering practice,

1.2. The RE Problem 7

where word processors and spreadsheets continue to constitute the main tools for engi-
neering requirements. For example, according to a webcast audience poll2 conducted by
Blueprint Software System in 2014, more than 50% of the participants said that they are
using documents and spreadsheets for conducting requirements engineering. To address
the poor support offered by such vanilla tools, there have been many RE tools (e.g.,
Rational DOORS [3]) that support RE-specific activities, such as elicitation, specifica-
tion and traceability management. However, the existing RE tools mainly focus on the
management of individual requirements, and pay little attention to the transformation of
requirements to specifications.

Generally speaking, current solutions have (some of) the following deficiencies:

• Leaving out non-functional requirements. In traditional structural analysis
and object-oriented analysis, non-functional requirements (NFRs) are generally left
outside [168]. Early work by Fraser et al. [63] have proposed guidelines for devel-
oping VDM specifications from Structural Analysis (mostly Data Flow Diagrams).
More recently, Giese at al. [67] have tried to relate informal requirements specified
in UML use cases to formal specifications written in Object Constraint Language
(OCL). Seater et al. [154] have discussed how to derive system specifications from
Problem Frame descriptions through a series of incremental problem reduction. Such
approaches focused on functional requirements (FRs), but left out non-functional
ones (NFRs), a very important class of requirements in RE.

• Lacking a unified language for representing both FRs and NFRs. Although
a multitude of langues have been proposed for specifying requirements, few of them
offer a syntax for both functional and non-functional requirements. For example,
EARS (the Easy Approach to Requirements Syntax) [125] is designed mainly for
functional requirements (FRs), while Planguage [68] is a keyword-driven language
developed for writing measurable quality requirements. Similarly, the NFR Frame-
work (NFR-F) [37] has proposed to use “softgoals” (goals without clear criteria for
success) to capture NFRs, and offered a simple syntactic form for softgoals; however,
it does not offer a companion syntax for goals, which are used to model functional
requirements. Natural language is known to everyone and can be used to specify any
kind of requirements, but many experiences have shown that requirements written
in natural language is inherently vague and error prone [57][25][109][174][105].

• Lacking capture of interrelations based on requirements details. Often, in
2http://www.blueprintsys.com/lp/the-business-impact-of-poor-requirements/

8 Chapter 1. Introduction

current RE research (e.g., goal modeling approaches such as i* [176]) and practice
(e.g., RE tools such as Rational DOORS [3]), individual requirements are treated as
propositions, and traces between requirements are done on the basis of propositional
(whole) requirements without considering requirements details. This treatment has
several flaws: (1) the establishment and maintenance of traces is quite laborious
and need to be done manually [159], resulting in poor modifiability of requirement
specifications and making change/evolution management harder 3; (2) some kinds
of relations have been missing in current RE techniques [117], e.g., the existential
dependency relation between qualities and functions as in “the processing time of
file search shall be less than 30 seconds”; (3) requirements specification/modeling
languages do not have precise links to the domain vocabulary, hence the vocabulary
is often used inconsistently throughout the whole specification, e.g., (“interest rate”
vs. “loan interest”) [159].

• Lacking support for weakening requirements. Goal-oriented techniques, such
as KAOS [50], i* [176], Tropos [30], and Techne [101], have provided an elegant
way for going from high-level strategic goals to low-level technical goals through
AND/OR refinements, and finally tasks (aka functions) through operationalization.
In these classic goal modeling frameworks, the AND/OR refinements are generally
strengthening: the resulting sub-goal(s) of a refinement logically imply the refined
goal, or, alternatively, the resulting set of sub-goal(s) has less solutions than the re-
fined goal 4. However, stakeholder requirements are sometimes practically unattain-
able and need to be relaxed. For example, is it possible to require every surveyed
user to agree that the system under test is attractive? Is it possible to require a file
search function to take less than 30 seconds all the time? How about if there are
some exceptions (e.g., when having heavy workload)? In such cases, a weakening
from 100% of the individuals in a domain to x% p0 x 100q is needed. These kinds
of weakening refinements are not supported by current goal-oriented techniques.

• Lacking support for incremental formalization. Formal languages have been
advocated for specifying requirements specifications as they have a clear syntax and

3Approaches for dynamic link generation have been proposed but they suffer from a certain level of
imprecision, and user evaluation over the generated links is necessary [39].

4Strengthening can be interpreted as shrinking the solution space (reducing the choices for satisfying)
a requirement: if a requirement r is strengthened to a set of sub-goals (one or more), say rs, then each
solution for rs is also a solution for r, not vice versa. For example, the refinement of the goal G “trip
be scheduled” into “airline ticket be booked” and “hotel be booked” is a strengthening, because G can be
refined to other alternatives, e.g., “train ticket be booked” and “hostel be booked”.

1.3. Our Research Objectives 9

semantics, and support automatic analysis such as ambiguity detection, inconsisten-
cy check and verification. However, their limitations are also obvious: they are hard
to write and understand for non-experts. To alleviate the pain of directly writing
formal specifications, many controlled natural languages (CNLs) based (e.g., Fuchs
et al. [64], Konrad et al. [108]) and natural language processing (NLP) based ap-
proaches (e.g., Fantechi et al. [59], Gervasi et al. [66]) have been suggested. In such
approaches, NL requirements are first mapped to an intermediate representation,
which is then further translated into targeted formal specification language(s).

One important issue with these approaches is that they just deal with what stake-
holders have stated and do not support refining either stakeholder requirements or
formalized specification, probably giving rise to requirements inadequacy, incom-
pleteness and incorrectness. Moreover, the NLP-based techniques inevitably suffer
from the incompleteness issue (e.g., missing information from the original require-
ments documents), being challenged in the RE field [24].

1.3 Our Research Objectives

We have reviewed the role of Requirements Engineering in nowadays software development
in section 1.1, and discussed the RE problem and the deficiencies of current solutions to
it in section 1.2. As we can see, although many efforts have been put on the RE problem,
it has not been addressed effectively and has remained open. We want to tackle this
problem in this thesis.

We specify our research objective as follows.

Research objective: to develop a holistic framework for incrementally trans-
forming stakeholder requirements into an eligible (formal, complete enough, u-
nambiguous, consistent, measurable, attainable, modifiable and traceable) spec-
ification.

We decompose the research objective into four research questions (RQs):

RQ1: What are the proper concepts for modeling requirements?

We follow the commonly accepted classification of requirements as functional (FRs) and
non-functional (NFRs). We provide ontological interpretations for these two kinds of
requirements, and accordingly proposing an ontological classification of all requirements.
Specifically, we treat FRs as requirements referring to functions and NFRs as requirements

10 Chapter 1. Introduction

that refer to qualities, and look to foundational ontologies (e.g., the Unified Foundational
Ontology [78], UFO for short) to tell us precisely what functions and qualities are, respec-
tively. Further, we propose new concepts to capture what have been traditionally called
NFRs but do not refer to qualities.

RQ2: What are the proper representation for capturing requirements?

Based on our ontological interpretation for requirements, and inspired by AI frames and
Description Logics (DL) [20], we propose to use a description-based representation for
requirements, both functional and non-functional. We treat a requirement as a descrip-
tion consisting of a set of constituent parts rather than a simple propositional sentence.
As such, we allow analysts/engineers to reference the already defined constituent parts
of another requirement when specifying the current one, and to refine any constituent
part of a requirement description by using proper requirements operators (introduced for
addressing RQ3). We also provide precise semantics for this language by using set theory.

RQ3: How to transform stakeholder requirements into an eligible specifica-
tion?

To address this question, we revise the classic ideas of AND/OR refinements and opera-
tionalization in existing goal modeling techniques, which allow us going from high-level
goals to low-level goals, and finally functions (aka tasks). To make sure that resulting
specification is eligible (i.e., formal, complete, unambiguous, measurable, attainable, and
consistent), we propose a set of new requirements operators based on our language for
requirements, and offer a methodology for applying the operators to incrementally trans-
form stakeholder requirements into an eligible specification.

RQ4: How well is this approach when applied to realistic settings?

When an approach is proposed, it needs empirical evidence to assess its effectiveness. To
assess our framework, we shall conduct thorough evaluation to verify whether it is help-
ful in conducting requirements engineering. Specifically, we shall evaluate whether (1)
our classification of requirements (functional vs. non-functional) is adequate in covering
requirements; (2) our syntax is sufficiently expressive in capturing requirements; (3) the
methodology is effective in transforming stakeholder requirement to an eligible specifica-
tion; and (4) the whole approach can indeed help people to perform better requirements
analysis, i.e., identifying and addressing more requirements issues during requirements
analysis.

1.4. Overview and Contribution 11

1.4 Overview and Contribution

We propose Desiree, a requirements calculus for systematically transforming stakeholder
requirements into a specification. The framework includes six main building blocks: (1) an
ontology for classifying requirements; (2) a language for representing requirements; (3) a
set of requirements operators for transforming (refining or operationalizing) requirements;
(4) a methodology for applying the operators on requirements concepts; (5) a prototype
tool in support of the entire framework; (6) a set of empirical evaluations conducted to
evaluate the framework. The relations between the building blocks and the contributed
research questions are shown in Table 1.1.

Table 1.1: The building blocks of the Desiree framework
Id Building blocks Contributed research questions
1 An ontology for requirements RQ1
2 A language for requirements and semantics RQ2
3 A set of requirements operators and semantics RQ3
4 A methodology for applying operators RQ3
5 A prototype tool RQ4
6 A set of empirical evaluations RQ4

We overview now each building block, showing its contribution in advancing the state
of the art.

• An Ontology for Requirements. In general, we take a goal-oriented perspective
and capture stakeholder requirements as goals (G). We have 8 kinds of concepts
except the most general goal: 3 sub-kinds of goals (i.e., requirements), 4 sub-kinds of
specification elements, and domain assumptions. Orthogonally, these 8 requirements
concepts can be classified into into four categories: (1) function-related; (2) quality-
related; (3) content-related; and (4) domain assumptions.

– Function-related requirements. If a requirement specifies a desired state, and
needs some functions to make it true (e.g., “airline tickets be booked”), it is a
functional goal (FG); if a requirement specifies what the software ecosystem
shall do (e.g., “the system shall allow users to book airline tickets”), it is a
function (F); if a requirement constrains the situation of a function (e.g.,
“only managers are allowed to activate pre-paid cards”), it is a functional
constraint (FC).

12 Chapter 1. Introduction

– Quality-related requirements. If a requirement refers to a quality and specifies
a vague quality region (e.g., “the file search function shall be fast”), it is a
quality goal (QG); if a requirement refers to a quality but has a measurable
quality region (e.g., “the file search function shall take less than 30 sec.”), it is
a quality constraint (QC).

– Content-related requirements. We use a content goal (CTG) to specify a set
of properties of a real world entity (e.g., “a student shall have Id, name and
GPA”), and a state constraint (SC) specify the system state that represents
the desired word entity/sate, capturing conventional data requirements (e.g.,
the student record table shall include three columns: Id, name and GPA).

– Domain assumptions. We use “domain assumption” (DA) to describe the
environment of the system-to-be (e.g., “the system shall have a functioning
power supply”) or domain knowledge (e.g., “Tomcat is a web server”).

Contribution in advancing the state of the art. Our ontological interpreta-
tion for requirements clarifies the concepts of functional and non-functional require-
ments, enabling us to (1) effectively distinguish between FRs and NFRs; (2) address
the inconsistency between quality classifications; (3) reasonably measure the satis-
faction of “good-enough” NFRs. It also offers support for designing requirements
specification language. In our ontology, we have revised the concept “functional
goal” in the Core Ontology for Requirements Engineering (aka CORE) [102][103],
the state of the art requirements ontology, and enriched this CORE ontology with
new requirements concepts “functional constraint”, “content goal” and “state con-
straint”. Moreover, we have validated our ontology for requirements by classifying
all the 625 requirements in the PROMISE requirements set [129]. To the best of
our knowledge, our evaluation is the first attempt of applying an ontology for re-
quirements to realistic requirements data.

• A Description-based Language for Requirements. We propose a description-
based language for representing requirements, both functional and non-functional.
We treat a FR/NFR as a description consisting of slot-description pairs, and capture
the intention of an entity (e.g., a physical object, a software function) to be in
certain state/situation by using an assertion-like syntax. We define the semantics
for the syntax using set theory, and capture part of the meaning by automatically
translating the syntax into DL [20]. With the support of off-the-shelf reasoners
(e.g., Hermit [157]), we are able to query the interrelations between requirements

1.4. Overview and Contribution 13

(e.g., what kinds of requirements will be affected if we change a function?), detect
inconsistencies (e.g., “user” as a physical entity in the real word vs. “user” as an
information entity stored in a system), and “what-if” analysis (e.g., what kinds of
elements in a model will be affected if some Function, FCs, or QCs are fulfilled while
others are not).

Descriptions, inspired AI frames and DL, have the general form “Concept slot1 :
D1 ¡ ... slotn : Dn ¡” where Di is a description that restricts sloti. For example,
the requirement R1 “the system shall be able to backup data at weekdays” can be cap-
tured as “Backup actor : tthe systemu ¡ object : Data ¡ when : Weekday ¡”.
This form offers intuitive ways to strengthen or weaken5 requirements. For in-
stance, R1 can be strengthened into “Backup actor : tthe systemu ¡ object :
Data ¡ when : tMon, Wed, Friu ¡”, or weakened into “Backup actor :
tthe systemu ¡ object : Data ¡ when : Weekday _ tSatu ¡”. With this syn-
tax, the interrelations between qualities and functions can be captured by writing
“Quality inheres in : Function ¡”, or more elegantly, “Quality pFunctionq”.
For example, the requirement “the file search function shall take less than 30 sec.”
can be denoted as “Processing time pFile searchq ::¤ 30 psec.q”, where “::” means
taking value in the region “r0, 30 psec.qs”. The syntax for each requirement concept
is sketched as follows.

– Functions (Fs) have the syntactic form “F :� FName slot : D ¡�”, where
“FName” is the function name that describes the desired capability, “*” means
zero or more. For example, the requirement “the system shall allow users to
book airline tickets” can be captured as “F1 :� Book actor : User ¡

object : Airline ticket ¡”. Both functional goals (FGs) and functional
constraints (FCs) have an assertion-like syntax. For example, “airline tickets
be booked” will be captured as an FG “FG1 :� Airline ticket : Booked”;
“only managers are able to activate pre-paid cards” can be captured as an FC
“FC1 :� Active object : Prepaid card ¡ : actor : ONLYManager ¡”.

– Quality goals (QGs) have the form “QG :� Q pSubjT q :: QRG”, meaning
that each quality (of type “Q”) shall map its subject/bearer (of type “SubjT”),
if exist, to a quality value that is in the desired region “QRG”. For example,

5Weakening a requirement means that one will have more choices to satisfy that requirement, while
strengthening means the opposite. In this sense, traditional AND- and OR-refinements can be generally
taken as strengthening. In fact, current goal modeling techniques rarely allow modelers to weaken a
requirement, which is a distinguishing feature of this work. This will be further discussed when defining
the semantics of operators.

14 Chapter 1. Introduction

the requirement “the file search function shall be fast” can be captured as
“QG1 :� Processing time pFile searchq :: Fast”. Here “File search” is a
function that is defined elsewhere. Quality constraints (QCs) have the same
syntax as QGs, but with measurable quality regions. For example, “QC1 :�
Processing time pFile searchq ::¤ 30 psec.q”.

– Content goals (CTGs) and state constraints (SCs) share an assertion-like
syntax. For example, “CTG1 :� Student : has id : ID ¡ has name :
Name ¡ has gpa : GPA ¡” and “SC2 :� Student record : ID :
String ¡ name : String ¡ GPA : Float ¡”.

– Domain assumptions (DAs) have a syntax similar to that for FCs. For
instance, “DA1 :� tthe systemu : has power : Power ¡” or “DA2 :=
Tomcat : Web server”.

Contribution in advancing the state of the art. Our description-based rep-
resentation for requirements makes several contributions: (1) unlike many formal
languages that are able to capture only functional requirements (e.g., Linear Tem-
poral Language, Z and Software Cost Reduction, see a summary and discussion
in [166]), our language is able to represent both functional and non-functional re-
quirements; (2) our description-based syntax facilitates the identification of require-
ments issues such as incompleteness, ambiguity and unverifiability because it drives
analysts/engineers to think about the properties (slots) of a function capability (e.g.,
actor, object, means, etc.), the cardinality of the description of a slot, the quantifica-
tion of a vague quality region, etc. (see the analysis in Section 8.5.7 for more detail);
(3) our syntax suggests operational guidelines for refining requirements, e.g., one can
specialize the description of a slot in a function (F) description via an “IsA” hier-
archy, or refine a QG/QC via standard quality hierarchies like the ISO/IEC 25010
standard [93]; (4) it captures the interrelation between requirements based on re-
quirements details, especially the existential dependency relation between qualities
and functions, which has been missing in current RE techniques [117]; moreover, this
allows us to systematically identify the requirements to be affected when changes oc-
cur to a requirement specification (i.e., requirements specifications will have better
modifiability).

• Requirements Operators. We introduce a set of of 8 operators for refining or op-
erationalizing requirements, mainly inspired by our representation for requirements.
For refinement, we have “Reduce”(Rd),“Interpret”(I), “Focus”(Fk), “deUniversal-

1.4. Overview and Contribution 15

ize”(U), “Scale”(G), and “Resolve” (Rs); for operationalization, we have “Oper-
ationalize”(Op) and “Observe”(Ob). The Rd and Op operators are adapted from
existing goal modeling techniques, while the other 6 operators are newly proposed
in this thesis. These 8 operators can be applied as follows.

– The “Reduce” (Rd) operator is used for refining a higher-level modeling element
to lower-level elements of the same type. That is, we allow reducing a goal to
goals, a FG to FG(s), an F to F(s), etc. For example, the goal G1 “collect
real time traffic info” can be reduced to G2 “traffic info be collected” and G3

“collected traffic info be in real time”.
– The “Interpret” (I) operator is used for disambiguating a requirement (if need-

ed), and encoding a goal written in natural language using our syntax. For ex-
ample, the ambiguous goal G1 “notify users with email” can be disambiguated
and encoded as F2 “Notify object : User ¡ means : Email ¡” (another
possible interpretation is Notify object : User has email : Email ¡¡).

– “Focus” (Fk), “de-Universalize” (U) and “Scale” (G) are used for refining
QGs/QCs: Fk refines QGs/QCs via quality type or subject type (e.g., for the
QG “Security ptthe systemuq :: Good”, one can focus the quality type “Secu-
rity” to its sub-dimensions like “Integrity”, or focus the subject “{the system}”
into its parts, e.g., “{the data storage}”); U is used to relax a QG/QC such
that it is no longer expected to hold for 100% of the individuals in the subject
domain (e.g., “the file search function take less than 30 sec. all the time ” to
“(at least) 80% of the time”); G is used to enlarge or shrink the quality region
of a QG/QC (e.g., enlarging “r0, 30 psec.qs” to “r0, 35 psec.qs” or shrinking it to
“r0, 25 psec.qs”). In addition, the Ob operator is used to operationalize subjec-
tive QGs such as “the interface shall be simple” into QCs by asking obervers,
in order to make them measurable.

– The “Operationalize”(Op) is used to operationalize a FG as F(s) and/or FC(s),
e.g., the operationalization of the FG “User access : Controlled” as functions
“Authenticate object :: User ¡” and “Authorize object :: User ¡”;
operationalize a QG as QC(s) to make it measurable, or operationalize the
QG as F(s) and/or FC(s) to make it implementable; operationalize a CTG as
SC(s). Note that any goal (G, FG, QG, or CTG) can be simply operationalized
as a domain assumption, i.e., assuming it to be true.

– The “Resolve” (Rs) operator is used to solve conflicts between requirements,
which are captured by using the “conflict” relation. Note that by conflict we

16 Chapter 1. Introduction

do not necessarily mean logical inconsistency, but can also be other kinds such
as normative conflict or infeasibility.

Contribution in advancing state of the art. Our set of 8 operators enables
us to: (1) go from informal to formal through disambiguating natural language
requirements, and translating them into the Desiree syntax; (2) repeatedly refine
requirements and specification-elements, which are written in Desiree syntax, mak-
ing them complete enough, measurable, and consistent; (3) waken requirements if
they are too hard or costly to attain, making them practically satisfiable. The in-
cremental transition from informal to formal and the weakening of requirements are
lacking in current RE techniques.

• Transformation Methodology. We provide a three-staged methodology for ap-
plying the operators to transform stakeholder requirements into an eligible specifi-
cation. We outline the important steps as follows.

– The informal phase. In this phase, we identify the concern of each stakeholder
requirement, and use Rd to separate its concerns if a requirement has multiple
ones (i.e., it is complex). Meanwhile, if conflicts are found, we capture the
conflicting requirements by using the “Conflict” relation.

– The interpretation phase. In this phase, we use the I operator to disambiguate
stakeholder requirements (if needed), classify and encode each atomic stake-
holder requirement (i.e., a requirement with a single concern) by using our
description-based syntax. In this phase, we allow interpreting stakeholder re-
quirements as sub-kinds of goals (FG, QG, CTG) or directly as specification
elements (F, FC, QC, SC).

– The smithing phase. In this phase, we incrementally refine the structurally
specified goals (FG, QG, and CTG) and operationalize them as specification
elements. Moreover, if needed, we keep refining specification elements (F, FC,
QC, and SC). Specifically,

∗ FGs, FCs, CTGs, SCs can be refined by using the Rd operator.
∗ QGs and QCs can be refined by using Fk, relaxed using U and G.
∗ Conflicts can be resolved by using the Rs operator.
∗ FGs, QGs, CTGs can be operationalized as corresponding specification

elements by using the Op operator (as discussed in the requirements op-
erators sub-section above).

1.4. Overview and Contribution 17

Contribution in advancing state of the art. The methodology tells ana-
lysts/engineers when to use which operator, in order to remove ambiguities and
vagueness, reducing incompleteness, eliminating unattainability and conflict, turn-
ing informal requirements into an eligible specification. The existing goal-oriented
frameworks often lack such a methodology, especially guidelines for going from in-
formal to formal and weakening requirements during requirements analysis.

• Prototype Tool. We have developed a prototype tool in support of the Desiree
framework, including all 9 requirements concepts, the 8 operators and the trans-
formation process. The tool includes three key components: (1) a textual editor,
which allows analysts to write requirements using our language; (2) a graphical
editor, which allows analysts to draw models through a graphic interface; (3) a
reasoning component, which (partially 6) translates requirement specifications, ei-
ther texts or models, to DL ontologies, and make use of existing reasoners (e.g.,
Hermit [157]) to perform reasoning tasks such as interrelations query, inconsistency
check, and “what-if” analysis.

Contribution in advancing state of the art. The prototype tool supports
the entire framework, and provides hints for applying requirements operators. It
automatically translates the Desiree syntax to DL [20], allowing us to do some
interesting reasoning (see Section 8.4 for more detail).

• Empirical Evaluations. We have conducted a set of empirical evaluations to
assess our proposal, including case studies and controlled experiments. We use the
PROMISE requirements set [129] as our requirements and projects repository.

– We evaluated the coverage of our ontology for requirements by classifying all
the 625 requirements, functional and non-functional, in this repository.

– We evaluated the expressiveness of our language by rewriting the 625 require-
ments in the data set.

– We evaluated the effectiveness of our methodology by conducting a realistic
“Meeting Scheduler” case study chosen from the data set.

– We evaluated the effectiveness of the entire Desiree framework by conducting
a series of three controlled experiments, using two testing projects chosen from
the data set: “Meeting Scheduler” and “Realtor Buddy”.

6The translation does not support expressions with nested U operators.

18 Chapter 1. Introduction

Contribution in advancing state of the art. The evaluations show that our
ontology and language are adequate in capturing requirements, our methodology is
effective in engineering requirements specifications from stakeholder requirements.
The controlled experiments provide strong evidence that Desiree can indeed help
people to conduct better requirements analysis (i.e., identifying and addressing more
issues when transforming requirements into specifications). These empirical eval-
uations also allow us to identify the limitations of our language, and give useful
feedback on improving the methodology and tool.

1.5 Structure of the Thesis

The remainder of the thesis is structured as follows:

• Chapter 2 summarizes the state of the art related to our work. We mainly review the
related work on requirements ontologies/classifications, requirements specification
and modeling, and requirements transformation (i.e., deriving specifications from
requirements).

• Chapter 3 presents the research baseline of this thesis, including (1) goal-oriented
requirements engineering; and (2) the ontological foundations of functions and qual-
ities.

• Chapter 4 introduces the ontological interpretations of requirements. We first pro-
vide an ontological interpretation for functional and non-functional requirements
based on the ontological meaning of functions and qualities, and then accordingly
propose a syntax for representing both of them.

• Chapter 5 presents the Desiree framework, which includes a set of requirements
concepts, a set of requirement operators, a description-based syntax for represent-
ing these concepts and operators, and a systematic methodology for transforming
stakeholder requirements into an eligible requirements specification.

• Chapter 6 presents the semantics of the Desiree framework. We first define the se-
mantics of requirements concepts and operators, and then discuss the partial trans-
lation of Desiree syntax to DL ontologies.

• Chapter 7 introduces a prototype tool. In this chapter, we introduce the key com-
ponents and features of our prototype tool. This tool supports the entire Desiree
framework, including concepts, operators, methodology and reasoning.

1.6. Published Papers 19

• Chapter 8 presents a set of empirical evaluations, which are conducted in order to
evaluate: (1) the coverage of our requirements ontology; (2) the expressiveness of
our language; (3) the effectiveness of our methodology; (4) the effectiveness of the
entire framework.

• Chapter 9 concludes the thesis by listing the contributions and limitations of the
Desiree framework, and sketches directions for further research.

1.6 Published Papers

We list here published work related to this thesis, ordered by date of publication.

• Feng-Lin Li, Jennifer Horkoff, John Mylopoulos, Lin Liu, and Alexander Borgida.
Non-Functional Requirements Revisited. iStar’13, pp. 109-114, 2013.

• Renata Guizzardi, Feng-Lin Li, Alexander Borgida, Giancarlo Guizzardi, Jennifer
Horkoff, and John Mylopoulos. An ontological interpretation of non-functional re-
quirements. FOIS’14, pp. 344–347, 2014.

• Feng-Lin Li, Jennifer Horkoff, John Mylopoulos, Renata SS Guizzardi, Giancarlo
Guizzardi, Alexander Borgida, and Lin Liu. Non-functional requirements as quali-
ties, with a spice of ontology. RE’14, pp. 293–302, 2014.

• Feng-Lin Li, Jennifer Horkoff, Alexander Borgida, Giancarlo Guizzardi, Lin Liu,
and John Mylopoulos. From Stakeholder Requirements to Formal Specifications
Through Refinement. REFSQ’15, pp. 164–180, 2015.

• Jennifer Horkoff, Fatma Baak Aydemir, Feng-Lin Li, Tong Li, and John Mylopou-
los. Evaluating Modeling Languages: An Example from the Requirements Domain.
ER’14, pp. 260–274, 2014.

• Jennifer Horkoff, Tong Li, Feng-Lin Li, Mattia Salnitri, Elsa Cardoso, Paolo Giorgi-
ni,John Mylopoulos, and Joo Pimentel. Taking goal models downstream: A sys-
tematic roadmap. RCIS’14, pp. 1–12, 2014.

• Jennifer Horkoff, Tong Li, Feng-Lin Li, Mattia Salnitri, Evellin Cardoso, Paolo
Giorgini, and John Mylopoulos. Using Goal Models Downstream: A Systematic
Roadmap and Literature Review. IJISMD 6(2):1–42, 2015.

20 Chapter 1. Introduction

• Feng-Lin Li, Jennifer Horkoff, Lin Liu, Alexander Borgida, Giancarlo Guizzardi,
and John Mylopoulos. Engineering Requirements with Desiree : An Empirical
Evaluation. Submitted to CAiSE’16.

• Feng-Lin Li, Alexander Borgida, Giancarlo Guizzardi, Jennifer Horkoff, Lin Liu, and
John Mylopoulos. Desiree: a Requirements Calculus for the Requirements Problem.
To be submitted to RE’16.

Chapter 2

State of the Art

The state of the art in our research area can be generally classified into three categories:
(1) requirements ontologies/classifications; (2) requirements specification and modeling;
(3) requirements transformation (i.e., deriving specifications from requirements). We
review these sub-areas and assess their adequacy in addressing the RE problem.

2.1 Requirements Ontology

An initial conceptualization for RE was offered by Jackson and Zave [98] nearly two
decades ago, founded on three basic concepts: requirement, specification and domain
assumption. Based on this characterization, the classical requirements problem is defined
as finding the specification S consistent with the given domain assumptions DA to satisfy
the given requirements R. For example, to satisfy the requirement “make online payment”
(R), a software or service needs to support a function “pay with credit card” (S) under
the (implicit) domain assumption of “having a credit card with available credits” (DA).

On observing that this initial characterization leaves out important notions such as
non-functional requirements, Jureta et al. [102][103] have proposed the CORE ontology
based on goal-oriented requirements engineering (GORE), which is founded on the premise
that requirements are stakeholder goals. Based on the understanding that functional
requirements (FRs) describe what the system should do, whereas non-functional ones
(NFRs) describe how well the system should perform its functions [134], the CORE
ontology distinguishes between non-functional and functional requirements using qualities
introduced in the DOLCE foundational ontology [123]: (1) a requirement is non-functional
if it refers to a quality; further, this requirement will be a softgoal if it is vague for agreed
success, or, alternatively, a quality constraint if it is clear for success; (2) a requirement is

21

22 Chapter 2. State of the Art

a functional goal if it refers to a perdurant (something accumulates parts over time, e.g.,
a process, an event) and does not refer to a quality.

Since its proposal in 2008, the CORE ontology has enjoyed considerable attention, and
has served as the baseline of new research directions in RE [101][118]. However, in our
experience, it has several deficiencies in classifying requirements. First, it is ineffective
on capturing requirements that refer to neither qualities nor perdurants, but endurants
(whose proper parts are wholly present at any time, e.g., physical objects). For exam-
ple, “the user interface shall have menu buttons for navigation”, where “menu buttons”
are endurants. We could classify this requirement as a general goal, but can not further
specialize it since it is neither functional nor non-functional according to CORE. This is
insufficient if we want to transform such requirements into a specification. Second, it is d-
ifficult to capture requirements that are vague for success but do not refer to qualities. For
example, requirements such as “attract customers” and “increase sales” refer to perdu-
rants (processes/events) rather than qualities, and are accordingly classified as functional
goals. However, this conclusion contradicts Jureta et al. [103]’s claim that “functional
goals are Boolean, i.e., true or false” since these examples, like softgoals, have no clear-
cut criteria for success. Third, requirements could refer to both qualities and functions.
For example, although we can classify the requirement “the system shall collect real-time
traffic information” as a softgoal according to CORE (“real-time”, i.e., timeliness, is a
quality of traffic information), we are still left with the question “is it only an NFR?”.
It seems to be a combination of functional and non-functional concerns, which should be
refined into distinct sub-goals.

Also, ontologies of specific domains, for which requirements are desired, have been em-
ployed in RE mainly for activities (e.g., requirements elicitation [104] and evolution [120])
or processes (e.g., [58]). These efforts, however, are not proposals for an ontological anal-
ysis of requirements notions. In fact, few researchers have attempted to ontologically
analyze requirements. Our goal here is in the ontological classification and conceptual
clarification of different requirement kinds.

2.1.1 Functional Requirements (FRs)

In RE, there is a broad consensus on how to define “functional requirements” (FRs) [71]:
the existing definitions focus on either functions (what a system shall do) [55][160][141]
or behaviors (inputs, outputs, and the relations between them) [51][172]. For example,
Robertson et al. [141] define an FR as a requirement that describes an action a (software)
product must take; while Davis [51] defines FRs as “those requirements that specify the

2.1. Requirements Ontology 23

inputs (stimuli) to the system, the outputs (responses) from the system, and behavioral
relationships between them”. As a (software) function often includes input and out-
put [45][173], these two threads of definitions (“what kinds of functions a software system
shall have” and “what kinds of behavior a software system shall exhibit”) are compati-
ble: a function can be treated as an input-output relation, and be specified using input,
output, and maybe other things such as pre-, post- and trigger conditions as in Letier et
al. [113].

There are two points to be noted about these definitions for functional requirements.
First, they focus narrowly on the software part of the system to be designed, and do
not consider its environment. For example, how can one classify the requirement “the
product shall be supported by the corporate support center”, which specifies a function
(“support”) that will not be performed by the system but by an external agent (“the
corporate support center”) in a system-to-be ecosystem? Second, they do not acknowledge
that a requirement can be a mix of concerns (e.g., having more than one function/quality,
or including both functions and qualities). For instance, how to classify the requirement
“the system shall have standard menu buttons for navigation”? This one has several
concerns: (1) it refers to a (software) system function “navigate pusersq”; (2) it restricts
the way to implement the function to “use menu buttons”; (3) it requires the menu buttons
to be “standard”, which is about qualities (e.g., size, color).

2.1.2 Non-functional Requirements (NFRs)

Unlike FRs, “non-functional requirements” (NFRs) is debatable in RE: despite the wide
acceptance of their importance and the many efforts devoted to them, there is still no
ultimate consensus on what NFRs are and how to capture them [71].

NFRs Definition. Recently, there are two important reviews on NFRs by Martin
Glinz [71] and Chung et al. [36]. Glinz [71] surveyed 13 NFR definitions, and suggested
his own on the basis of attributes and constraints. However, his definition focuses on
only (software) system NFRs, and does not consider project and process requirements
(e.g., development, deployment, maintenance, etc.). Moreover, his proposal does not offer
methodological guidance for designing language and method for capturing NFRs.

After analyzing a list of NFR definitions, Chung et al. [36] defined FRs as mathematical
functions of the form f : I Ñ O (I and O represent the input and output of f), and NFRs
as anything that concern characteristics of f , I, O or relationships between I and O. This
definition, accordingly, will treat constraints over functions (FCs) as NFRs, e.g., “updates
of the database can only be performed by managers” is a functional constraint (it requires

24 Chapter 2. State of the Art

the system to check who is updating, and is not about the quality of updating), but an
NFR according to Chung et al. [36]’s definition.

NFRs Classification. NFRs are often classified into sub-categories. For example, the
IEEE Std 830 [45] classifies NFRs into interface requirements, performance requirements,
attributes and design constraints, and documents them in a separate section from FRs
using natural language. Similarly, the Volere template [141] categories NFRs as look
and feel, usability and humanity, performance, operational and environmental, maintain-
ability and support, security, cultural and political, and legal requirements, and captures
requirements (functional and non-functional) sentences as informal text using a structured
template which includes attributes like ID, requirements type, description, rationale, fit
criterion, etc.

There are several deficiencies in such approaches. First, they classify requirements
strictly as functional or non-functional, leading to difficulties when classifying require-
ments that mix both functional and quality concerns (as shown in our evaluation in Sec-
tion 8.2, also observed in the work of Svensson et al. [164]). Second, the sub-categories of
NFRs in these approaches are open-ended, and would probably change as time, domain, or
researcher varies. Third, such approaches document FRs and NFRs separately, hence do
not capture the interrelations between them and do not reflect the cross-cutting concerns
of NFRs (i.e., an NFR could refer to multiple system functions, parts or artifacts).

NFRs as Qualities. Quality is the most popular term adopted to specify NFRs. Many
efforts have been made towards modeling and classifying qualities, resulting in fruitful
quality models. The well-known models include McCall et al. [46], Boehm et al. [27],
ISO/IEC 9126-1 [10], ISO/IEC 25010 [93], etc., in which qualities and their interdepen-
dencies are usually organized in a hierarchical structure. One issue with these quality
models is that they, even the well-known ones, are neither terminologically nor categor-
ically consistent with each other [36]. For example, “understandability” is a sub-quality
of “usability” in ISO/IEC 9126-1 [10], but is a sub-class of “maintainability” in Boehm
et al. [27]. The inconsistency in the classifications of software qualities has been also
observed in comparative studies over quality models, e.g., [11].

Although Chung et al. [36] have suggested be aware of some of the well-known classi-
fication schemes and consider one or more to adopt with some tailoring, we are still left
with the question: why these quality models differ from, and sometimes even conflict with
each other?

NFRs as Softgoals. In goal-oriented approaches, the NFR framework [37] and i* [176]

2.2. Requirements Specification and Modeling Language 25

have used “softgoals” (goals without clear criteria for success) to model non-functional
requirements. However, goals lacking a clear criterion of satisfaction (i.e., softgoals) turn
out to be not always NFRs – most early requirements, as elicited from stakeholders are
also “soft”. For instance, when a stakeholder says “Upon request, the system shall schedule
a meeting”, this is also vague and needs to be made more firm: do we allow requests for
any time (e.g., weekends)? Should the system notify participants about the scheduled
meeting? Should it account for contingencies (e.g., power outage)? etc. Similarly, NFRs
are not necessarily vague, e.g., the “the processing time of file search shall be less than 30
seconds” is an NFR but is clear for success.

So, softgoals constitute a useful abstraction for early (vague) requirements, both func-
tional and non-functional, rather than just non-functional ones. However, this conclusion
begs the next question: what then are non-functional requirements, how do we model
them and how do we use these models in RE processes?

2.2 Requirements Specification and Modeling Lan-
guage

In RE, great efforts have been placed to designing effective language for capturing require-
ments, resulting in various kinds of requirement specification and modeling techniques,
including (1) natural language (NL); (2) requirements specification (RS) templates, e.g.,
the IEEE Std 830 [45], the Volere template [141]; (3) writing guidelines, e.g., Alexander
et al. [14], Wiegers et al. [172]; (4) structured languages, e.g., EARS (the Easy Approach
to Requirements Syntax) [125], Planguage [68]; (5) controlled natural languages, e.g.,
ACE [64], Gervasi et al. [66]; (6) visual modeling languages, e.g., SADT TM (Structured
Analysis and Design Technique [144], UML [148], KAOS [50], the NFR Framework (NFR-
F) [37], i* [176]; (7) formal languages, e.g., RML [75][74], VDM (Vienna Development
Method) [62], Linear Temporal Logic [50], and SCR (Software Cost Reduction) table [85].

We classify these techniques according to their formalities (informal, semi-formal and
formal), and show the classification result in Table 2.1. There are two points to be noted.
First, we take the viewpoint that modeling is broader than specification: a specification
describes the behavior of software system, which is a particular type of model – behavior
model; in addition to behavior model, the models of a software system include many other
kinds, e.g., architecture model, deployment model, responsibility model, etc. Second,
writing guidelines by themselves are not languages, but empirical rules that help people
to use languages. So, we do not classify them into any of the formality categories.

26 Chapter 2. State of the Art

Table 2.1: The classification of requirements specification languages
Type Kind Formality Examples

Guideline Writing Guidelines – Alexander et al. [14], Wiegers et al. [172]

Specification

Natural Language Informal English
RS Template Semi-formal IEEE Std 830 [45], Volere [141]

Structured Language Semi-formal EARS [125], Planguage [68]
Controlled NL Semi-formal ACE [64], Gervasi et al. [66]

Formal Language Formal RML [75], SCR [85], VDM [62]

Modeling
Structural Analysis Semi-formal SADT TM [144]
Object Orientation Semi-formal UML [148]
Goal Orientation Semi-formal KAOS [50], NFR-F [37], i* [176]

2.2.1 Requirements Specification Language

When considering the use of a specification language for representing requirements, there
are several candidates: (1) natural language, which is known to every one but error prone,
(2) formal languages, which are precise but hard to understand for non-experts; (3) semi-
formal/structured languages, which are proposed with the purpose of mediating natural
and formal languages.

Natural Language. A common way to express requirements is to use natural language
(NL). According to a survey conducted in 2004 by Luisa et al. [119], 79% of the 151
respondents have reported that their previous requirements documents were written in
natural language, while only 16% and 5% of them reported the use of structured and
formal languages, respectively. Natural language is easy to use and understand, and can
serve as the common ground of everyone involved in software development processes, e.g.,
customers, analysts, engineers, etc.

However, many experiences have shown that requirements written in natural lan-
guage are inherently vague and error prone [57], leading to various kinds of issues such
as ambiguity, incompleteness and inconsistency [25][109][174][105]. As mentioned earlier,
we have found that 3.84% of all the 625 requirements (functional and non-functional) in
the PROMISE requirements set are ambiguous [115], 25.22% of the 370 non-functional re-
quirements (NFRs) are vague, and 15.17% of the NFRs are potentially unattainable [116].
For example, the requirement “the system shall be able to send meeting notification via
Email and SMS” is ambiguous because it can be interpreted in two ways: (1) a meeting
notification need to be sent via both Email and SMS; (2) the system needs to support
these two means, but a meeting notification only needs to be sent by one of them. More-

2.2. Requirements Specification and Modeling Language 27

over, this requirement is incomplete: it is unclear who can send meeting notifications and
to whom the notifications will be sent since such information is missing.

Requirements Specification (RS) Templates. Templates such as the IEEE Rec-
ommended Practice for Software Requirements Specifications [45] and the Volere Re-
quirements Specification Template [141] represent the most basic types of tool used for
requirements engineering. Using such RS templates, requirements are usually represented
as requirements sentences (e.g., a set of “the system shall” statements), and are list-
ed under different sections of a requirements document. For example, in the IEEE Std
830 template [45], section 3.2 is suggested for specifying functional requirements, while
the rest of section 3 is used to document different types of NFRs. Further, the Volere
template [141] has provided a structure around requirements sentences, and use a set of
attributes such as ID, requirements type, description, rationale, and fit criterion to specify
individual requirements.

RS templates are useful in classifying and documenting individual requirements, but
they offer very limited support for requirements management (e.g., FRs and NFRs are
documented separately, the interrelations between them are hence scattered in RS docu-
ments and are difficult to trace).

Writing Guidelines. To help people write better requirements, writing guidelines have
been suggested [14][171][172]. These approaches usually use a set of properties of good
requirements (e.g., the IEEE Std 830 [45], or the semiotic quality framework [110]) as
criteria, and provide a set of operational guidelines. For example, Alexander et al. [14]
have offered a list of guidelines for writing good requirements (e.g., use simple direct
sentences, use a limited vocabulary) and a set of “DO NOT” rules (e.g., do not ramble,
do not make mixed requirements). Similarly, after discussing each characteristic in the
IEEE Std 830 [45], Wiegers et al. [172] have provided a set of guidelines for reducing
or eliminating requirements issues. For example, the authors listed a set of terms that
may lead to ambiguity (e.g., “and”, “or”), and suggested a symmetry strategy for reduc-
ing incompleteness (e.g., for an “if” statement, we need to look for the corresponding
“else” statement). In general, these techniques are often informal, and lack a systematic
methodology and tool support.

Structured Languages. Structured languages such as EARS [125] and Planguage [68],
have been proposed based on practical experiences, intending to reduce or eliminate cer-
tain kinds of requirements issues (e.g., ambiguity and vagueness).

A generic structure for requirements from the EARS approach is shown in Eq. 2.1,

28 Chapter 2. State of the Art

where “[]” means optional, “xy” indicates parameters to be instantiated. EARS also in-
cludes additional syntax constructs for event-driven, unwanted behavior, state-driven,
optional and complex requirements. For example, the requirement “If the computed air-
speed fault flag is set, then the control system shall use modelled airspeed” is an example
of “unwanted behavior” requirements. EARS is developed mainly for specifying function-
al requirements and has been reported effective on reducing ambiguity, vagueness and
wordiness [125].

rpre-conditions rtriggers the xsystemnamey shall xsystem responsey (2.1)

The planning language (i.e., Planguage [68]), proposed by Tom Glib [38] and widely
used in industry, uses a set of keywords such as tag (a unique, persistent identifier),
scale (the scale of measure used to quantify the requirement, e.g., time, temperature,
speed), meter (the process or device used to establish location on a scale, e.g., watch,
thermometer, speedometer) and must (the minimum level required to avoid failure) to
write measurable quality requirements. Following is an example use of the Planguage for
specifying the NFR “the processing of order shall be fast” 1.

Tag: Order Processing Time
Scale: Time

Meter: Measured from the click on the “Submit Order” but-
ton to the display of the “Order Complete” message

Must: 5 seconds

Evidences [125][99] have shown that these approaches are effective on their intended
use. However, they are designed exclusively for only FRs or NFRs, and are not for both of
them. The interrelations between functional and non-functional requirements (e.g., NFRs
could introduce FRs [71], NFRs could depend on FRs [117]) have been also missing.

Formal Languages. In software development, stakeholder needs, which are inherent-
ly informal, will be finally transformed into software, which is inherently formal [109].
Since the transition from informal ideas to formal specifications is inescapable, formal
languages have been advocated for specifying requirements specifications [109]. Example
formal requirements specification languages include RML [75][74], VDM (Vienna Devel-
opment Method) [62], SCR (Software Cost Reduction) table [85], KAOS [50] (with Linear
Temporal Logic as its formalism, also does Formal Tropos [65]), etc.

1http://www.iaria.org/conferences2012/filesICCGI12/Tutorial%20Specifying%20Effective%20Non-
func.pdf

2.2. Requirements Specification and Modeling Language 29

Formal specification languages have been advocated because they have a clear syn-
tax and semantics, and promise much more sophisticated analysis such as ambiguity
detection [64], inconsistency check [66], animation of a specification, and validation of a
specification against certain properties [65]. Nevertheless, they suffer from major short-
comings [166]: (1) they require high expertise, are hard to write, understand and com-
municate, and are not really accessible to practitioners and customers; (2) they mainly
focus on functional aspects, and leave out non-functional ones, a very important class of
requirements in RE. Interested readers can refer to van Lamsweerde [166][169] for a de-
tailed review of (semi-formal and) formal approaches used for requirements specifications.

Controlled Natural Languages. To bridge the gap between natural and formal spec-
ification languages, “intermediate” languages, which are relatively easy to use and un-
derstand, and can be automatically translated into a formal language, have been sug-
gested. In this direction, controlled natural languages (CNLs), which are sub-sets of
natural languages and are obtained by restricting the grammar and vocabulary of NLs
in order to reduce or eliminate ambiguity and complexity [2], have enjoyed much atten-
tion [66][64] [108][125][68].

Some of these approaches require users to write requirements using controlled gram-
mars and vocabularies (e.g., Fuchs et al. [64], Konrad et al. [108]); some of them employ
natural language processing (NLP) techniques to extract useful information from NL re-
quirements according to some grammar rules and vocabularies (e.g., Fantechi et al. [59],
Gervasi et al. [66]). In either way, full NL requirements are first mapped to a intermediate
(restricted) representation, at which point ambiguities are resolved. This intermediate re-
sult is then further mapped into targeted formal specification language(s) for subsequent
automatic analysis.

Fuchs et al. [64] have proposed ACE (Attempto Controlled English), a CNL with a
domain-specific vocabulary and a restricted grammar, aiming to reduce ambiguity and
vagueness inherent in full natural language software system specifications. For example,
ACE syntax disambiguates the statement “The driver stops the train with the defect
brake” as either “The driver stops the train with the defect brake” (according to their
interpretation rule, “with the defect brake” modifies the verb “stop”) or “The driver stops
the train that has a defect brake”. With a supporting tool, their ACE specifications can
be translated to discourse representation structures (DRS) – a syntactical variant of full
first-order predicate logic, allowing some reasoning tasks such as query answering and
abductive reasoning.

Konrad et al. [108] have offered a structured English grammar in support of real-time

30 Chapter 2. State of the Art

requirements specification patterns. Requirements expressed in their syntax are mapped
to three commonly used real-time temporal logics with a tool support: metric temporal
logic (MTL), timed computational tree logic (TCTL) and real-time graphical interval
logic (RTGIL), enabling quantitative reasoning about time.

Fantechi et al. [59] have proposed NL2ACTL, a prototype tool for automatic transla-
tion of NL requirements sentences into formulae of the action-based temporal logic ACTL,
allowing the behavioural and logical properties of reactive systems to be checked. The
translation process includes two phases: requirements sentence analysis and formula gen-
eration. In the first, useful pieces of information units are extracted from input sentences
according to their grammar rules; the generation phase composes these pieces into ACTL
formulae. During the translation, ambiguities are reflected in the possible generation of
more than one ACTL formula.

Similarly, Ambriola et al. [16] have presented Cico, a tool that supports the automatic
construction of (semi-)formal models (e.g., data-flow diagrams, entity-relation diagrams)
through extracting information from NL requirements text. More recently, Gervasi et
al. [66] have employed the Cico algorithm to automatically transform NL requirements
into propositional logic formulae, enabling inconsistency check.

The key idea of the Cico algorithm is the parsing rules, which consist of three parts: a
template/pattern M to be matched in input NL requirements sentences, an action A that
records the intended semantics of the matched fragment (as a node in a NLP parse tree),
and a substitution S that replaces the matched fragment in the input sentence. Using
the parsing rules, the extracted information will be in a representation specified by the
template/pattern M , and can be used to construct (semi-)formal models [16] or will be
translated to propositional logic formulae [66].

In general, CNLs combine the advantages of both natural and formal languages: on
one hand they are practically accessible to engineers/analysts and customers, on the
other hand they can be (automatically) mapped to formal specification language(s) for
certain kinds of automatic analysis. However, these approaches do not support refining
stakeholder requirements: they assume stakeholders know what they need, and what they
said are in enough detail and can be directly specified. This assumption is not always
true, as pointed out by Robertson et al. [141]: “your customers will not always give you
the right answer; sometimes it is impossible for customers to know what is right, and
sometimes they just do not know what they need”.

One issue with the NLP-based techniques is that they can not ensure completeness
(e.g., does a constructed model includes all the elements specified in NL requirements?
does the approach detect all the ambiguites/inconsistencies?), which has been challenged

2.2. Requirements Specification and Modeling Language 31

in RE [24]: “It is important to understand the limitations of NLP-based tools for RE,
because although good but imperfect performance is often helpful to the analyst, in certain
circumstances it is of no help to the analyst at all. It may even make his or her job harder”.

2.2.2 Requirements Modeling Language

Requirements modeling languages usually use graphical notations to capture requirements
at different levels of abstraction 2. Representative requirements modeling techniques in-
clude (SADT TM) [144], UML [148], and Goal models [50][176]. Clearly, modeling lan-
guages have several advantages: (1) graphical notations are easy to understand and com-
municate; (2) the capability of modeling requirements at intermediate levels of abstraction
contributes to better managing requirements, especially when there is a large amount of
requirements; (3) different diagrams can provide complementary and interrelated views
of the same system [166][140].

Structural Analysis. Structured Analysis and Design Technique (SADT TM) [144] –
a language for communicating ideas, is probably the first graphical language used for
modeling and communicating requirements. SADT assumes that the world consists of
activities and data, both of which are represented as boxes and arrows. According to
SADT, each activity consumes some data (input), represented by an incoming arrow at the
left-hand side of the activity box, produces some data (output), represented by an outgoing
arrow at the right-hand side. In addition, each activity has associated data controls its
execution (control, represented by an incoming arrow on the upper part of the box) and
some external agent that executes it (mechanism, represented by an incoming arrow on the
bottom part). Data is modeled in a dual fashion, i.e., having activities as its input, output,
control and mechanism 3. SADT has served as the starting point of other structured
analysis techniques, e.g., the popular data flow diagrams [53]. According to Mylopoulos
et al. [131], SADT TM and other proposals [23] that established the “requirements problem”
have instituted the field of requirements engineering in the 70’s.

Object Orientation. With the programming paradigm being shifted from structured
programming to object orientation in the 90’s, object-oriented techniques such as Object-
Oriented Systems Analysis (OOSA) [128], Object-Oriented Analysis [40] and the Object-
Oriented Modeling Technique (OMT) [147] have been proposed. These approaches were
consolidated into UML [148].

2Requirements modeling languages are often graphic, but can also be textual (e.g., RML [75]).
3Here “mechanism” will be interpreted as devices for storage, representation, implementation, etc.

32 Chapter 2. State of the Art

Use case, a UML concept that represents the externally visible functionalities of the
system-to-be, has been widely used for representing requirements. Use cases capture
functional/behavior requirements by describing sequences of interactions (including the
mainline sequences, different variations on normal behavior, the exceptional conditions
that can occur with such behavior, together with the desired responses) between external
actors and the system under consideration [148]. Use case diagrams, a kind of UML
behavior diagrams, structure use cases through three kinds of relations: generalization,
include, and extend [148].

Use cases have been widely used in practice [119]. However, it is worth pointing out
that: (1) use cases capture only part of the requirements (i.e., functional requirements),
and leave out non-functional ones (e.g., user interface requirements, data requirements,
quality requirements) [41]; (2) use cases have their own deficiencies (e.g., UML is insuffi-
cient in capturing the structure between use cases) [70].

Many efforts have been made to use or extend use cases for capturing non-functional
requirements, e.g., combining use case with the NFR framework (NFR-F) [49][163], using
misuse case to elicit quality requirements [86][87]. Cysneiros et al. [49] model NFRs as
softgoals, and use the NFR framework [37] to refine softgoals and finally operationalize
them to attributes or functions in UML classes, aiming to ensure that the designed con-
ceptual models reflect the desired NFRs. Similarly, Supakkul et al. [163] use the NFR
framework to model and refine NFRs, and associate NFRs with use cases through a set
of association points and propagation rules. These approaches combine two modeling
techniques, namely UML and NFR-F. Our proposal, instead, intend to offer a unified
language for representing both functional and non-functional requirements. Moreover, as
these approaches have used NFR-F to handle NFRs, they suffer from the same problems
as NFR-F does, e.g., softgoals are not the proper concept for modeling NFRs.

Herrmann et al. [86][87] have proposed MOQARE (misuse-oriented quality require-
ments engineering) for eliciting quality requirements. Their approach is based on misuse
cases – inverted use cases to denote functions that a system should not allow [158]. They
use the ISO 9126-1 quality standard [10] as a check list to identify a core set of quality
attributes (QAs) that has essential influence on business goals, and derive quality goals
from these QAs by adding affected assets. They then describe misuse cases that could
threats the derived quality goals, and define countermeasures, some of which are quality
goals, for each misuse case. They have noticed that quality attributes depend on assets,
but they do not offer a syntax for quality goals. Also, they focused on eliciting, instead
of refining quality requirements.

Constantine and Lockwood [47] have proposed essential use cases (EUC) to overcome

2.2. Requirements Specification and Modeling Language 33

the limitation of use case (UC) on user interface design. The key difference between
EUC and UC is that EUC captures user intentions and system responsibilities, instead
of lower-level user actions and system responses. For example, to withdraw money from
an ATM, a use case will describe a sequence of interactions “insert card; enter PIN ;
enter amount; take card; take cash”, while an EUC only include an abstract interaction
sequence “identify self ; make selection; take cash”.

kamalrudin et al. [106] have discussed about improving requirements quality based on
EUC interaction patterns. They first translate NL requirements into a set of abstract
interaction sequences, based on which EUC models are constructed. They then compare
these extracted EUC models to the “best practice” examples of EUC interaction pattern
templates, in order to identify incompleteness, inconsistencies, and incorrectness. To be
practically useful, this approach needs a large set of standard EUC interaction patterns
(the authors have 30 templates when they published their work in 2011).

Goal Orientation. Realizing the limitations of OOA techniques, e.g., focusing on the
software alone and lacking support for reasoning about the software ecosystem made of
software and its environment, leaving out non-functional requirements, lacking of rationale
capture, etc., van Lamsweerde and his colleagues [168] have suggested to use the concept
“goal”, which represents the objective a system under consideration should achieve, to
capture requirements, and accordingly proposed KAOS [50], which stands for “Knowledge
Acquisition in autOmated Specification”, or, alternatively, “Keep All Objectives Satisfied”.

KAOS [50] constitutes the landmark goal-oriented technique for RE. It offers four
complementary and interrelated views on the whole system, not just the software part
of it: (1) goal model, which captures stakeholder goals/needs and the derived require-
ments needed to achieve them; (2) responsibility model, which describes the assignment
of requirements and expectations to each agent (human being or automated agents); (3)
object model, which defines the concepts and their relations in the application domain;
(4) operation model, which describes the behaviors that agents need to exhibit in order
to fulfill their requirements.

At the same period, Mylopoulos et al. [130] have proposed the NFR framework (NFR-
F), which uses “softgoals” (goals without a clear-cut criteria for success) to capture
non-functional requirements. They also provided a simple syntactic form for softgoal-
s: “type rtopics” (e.g., “Processing time [File search]”, where “Processing time” is a type
and “File search” is a topic), and several operators for decomposing softgoals. These ideas
are further extended into a monograph [37].

These two frameworks pioneered in promoting goal-oriented requirements engineering

34 Chapter 2. State of the Art

(GORE). For example, KAOS has been employed in many other proposals for deriving
functional specification from stakeholder goals (e.g., Hassan et al. [83], Aziz et al. [19]),
and NFR-F has been widely adopted for capturing non-functional requirements (e.g.,
i* [176], Tropos [30], and Techne [101]).

Note that goal oriented analysis and OOA are complementary. As pointed out by
Mylopoulos et al. [131], “(goal oriented techniques) focus on the early stages of require-
ments analysis and on the rationalization of development processes, (object oriented tech-
niques) on late stages of requirements analysis (and design, as they define all the objects
and activities mentioned in the detailed requirements for the new system)”. The KAOS
methodology gives an excellent sample of how these two types of analyses complement
each other: OOA (e.g., object model) starts with where goal-oriented requirements elab-
oration process (goal model) ends [168].

Goal-oriented requirements engineering (GORE) is advocated for multiple reason-
s [167]: (1) goals drive the elaboration of requirements, justifying requirements (i.e.,
providing a rationale for requirements) and providing a criterion for requirements com-
pleteness (a requirement specification is complete if all the goals can be achieved from the
specification); (2) goal models allowing refining from high-level strategic goals to low-level
technical goals through AND/OR refinements, providing a natural mechanism for struc-
turing requirements and allowing reasoning about alternatives. In addition, goal-oriented
techniques treat NFRs in depth [36].

We agree with these claims about the advantages of GORE. However, goal orient-
ed techniques also have some of the deficiencies we have discussed in Section 1.2.2. We
present here the two flaws of current GORE techniques at the language level (flaws at
the method level will be discussed in Section 2.3.2). First, goal oriented techniques lack
a unified language for representing both functional and non-functional requirements, ex-
cept natural language that is error prone. Second, they treat individual requirements
as propositions (wholes) and trace between requirements based on propositional (whole)
requirements without considering requirements details, hence missing some kinds of inter-
relation between requirements (e.g., the existential dependency relation between qualities
and functions) and making the requirements chang/evolution management (e.g., how to
precisely identify the possibly affected requirements for requirements changes) harder.

2.3 Requirements Transformation

The nature of software or software intensive systems is to resolve real-world problems
(from stakeholders). In software development, problems are represented as the require-

2.3. Requirements Transformation 35

ments for and the accompanying domain assumptions about the environment of the system
to be designed. To resolve a problem, the engineering of a specification that it is able to
satisfy the given requirements under the given domain assumptions is of key importance.
Often, the engineering of a specification from requirements is done through requirements
transformation, which includes decomposition, refinement, operationalization, etc.

2.3.1 Structural and Object-Oriented Decomposition

The early SADT TM proposal [144] has already suggested useful structural decomposition
mechanisms for decomposing a software system into activities and data. In SADT, struc-
tural decomposition is done by following a top-down manner, along strictly either the
activity or the data dimension. That is, a software system will be decomposed into a SA
activity (resp. data) diagram consisting of six or fewer activities (resp. data boxes), each
of which will further become an activity (resp. data) diagram in its own right with its
own internal structure. This decomposition process is recursive, and ends when a proper
level of detail is achieved. Note that SADT forces six or fewer pieces of things (activities
or data boxes) and does not allow leaving nothing out at any decomposition stage. That
is, if a subject is broken into six or fewer pieces, every single thing of the subject must go
into exactly one of those (non-overlapping) pieces.

These ideas of structural decomposition are further developed into functional decom-
position, one of the key features of structured analysis that has its roots in SADT TM [149].
Starting with a verb or verb phrase that describes the function of the system, a first-level
decomposition would separate the top-level function into first-level sub-functions, which
are mutually exclusive and could be totaly exhaustive. Each of these functions can be
decomposed into level-two functions that are part of it, and so forth [149].

In object-oriented development (OOD), the decomposition of a system is based on ob-
jects. This is fundamentally different from traditional functional decomposition: instead
of decomposing a system into modules that denote functions, object-oriented method
structures the system around the objects in the model of reality [28]. Specifically, the
important steps of OO development includes: (1) identify objects and their attributes;
(2) identify the operations suffered and required for each object; (3) establish the visibility
of each object in relation to other objects; (4) establish the interface of each object; (5)
implement each object. That is, in OO development, a module in a system denotes an
object or class of objects from the problem space, rather than a function [28].

On one hand, structural decomposition allows us to decompose functions following
a process-oriented manner. On the other hand, object-oriented decomposition enables

36 Chapter 2. State of the Art

us to effectively analyze real-world entities and their interrelations. However, as pointed
out by van Lamsweerde [166], both approaches have limited scope: they focus on the
software system alone (i.e., WHAT a software system shall do), and do not consider its
environment (e.g., WHY does the system need to achieve a specific requirement, WHO is
responsible for satisfying certain requirements). Moreover, they do not support capturing
non-functional requirements and reasoning about alternatives.

2.3.2 Goal-Oriented Refinement and Operationalization

With the proposal of “goals”, which drive the elaboration and justify the completeness
of requirements, for capturing stakeholder requirements in the ’90s, goal-oriented require-
ments engineering (GORE) has been playing a key role in tackling the RE problem.
Goal-oriented techniques, such as KAOS [50], NFR-F [37], i* [176], Tropos [30], and
Techne [101], capture stakeholder requirements as goals, use AND/OR refinement to refine
high-level (strategic) goals into low-level (operational) goals, and use operationalization
to operationalize low-level goals as tasks (aka functions) [111].

KAOS. As a pioneering goal-oriented modeling framework, KAOS [50] has proposed to
use goal models for capturing the rationale for requirements, and responsibility models
for defining the assignment of individual requirements to different agents in a software
ecosystem. In KAOS, goals elicited from stakeholders are formalized using LTL (Linear
Temporal Logic), and can be refined to sub-goals through a set of refinement patterns,
and operationalized as specifications of system operations (pre-, post- and trigger condi-
tions) by following a set of formal derivation rules [113]. Due to the support for formal
specifications, this transformation process has been extended by many other researchers
for deriving formal system specifications (e.g., the B language) from KAOS goal models,
e.g., [19][83].

There are three points to be noted. First, KAOS does facilitate the derivation of
functional system specification from stakeholder goals, but it does not offer effective sup-
port for specifying and refining NFRs (in fact, KAOS adopts “softgoals” from the NFR
framework [37] to capture NFRs). Second, KAOS assumes that stakeholder requirements
are in enough detail and can be directly formalized [12]. That is, KAOS does not support
incrementally going from informal stakeholder requirements (which can be incomplete)
to (complete enough) formal requirements specification. Third, the refinements in KAOS
are strengthening, and weakening of requirements is not supported. For example, KAOS
does not allow relaxing “the file search function shall take less than 30 seconds (all of the
time)” to “(at least) 80% of the time”.

2.3. Requirements Transformation 37

The NFR Framework. The NFR framework (NFR-F), proposed in 1992 [130] and ex-
tended into a monograph [37], was the first proposal to treat NFRs in depth. NFR-F uses
“softgoals” to capture NFRs and offers a simple syntactic form for softgoals: “type rtopics”.
The framework offers operators for decomposing softgoals along the “type” and “topic” di-
mension (AND/OR), and contribution links (Help, Hurt, Make, Break) for linking software
design elements or lower-level techniques to softgoals. For example, the softgoal “Security
[Account]” can be decomposed into “Confidentiality [Account]” and “Integrity [Account]”
along the type dimension (“Security”); or, alternatively, “Security [Golden account]” and
“Security [Silver account]” along the topic dimension (“Account”).

Further, NFR-F provides “softgoal interdependency graph” (SIG), which graphically
structures softgoals, softgoal refinements (AND/OR), softgoal contributions, softgoal op-
erationalization (operationalizing softgoals as lower-level design elements or techniques
for satisficing them) and claims (design rationale for softgoal refinements). Using an ac-
companying label propagation algorithm, analysts/engineers can check which alternative
is better to satisfy the non-functional requirements for the system-to-be [118].

The use of “softgoals” for modeling NFRs has been adopted by many other proposals,
e.g., i* [176], Tropos [30], and Techne [101]. However, in our observation, this treatment
has some flaws: (1) “softgoal” is not the proper concept for modeling NFRs: softgoals can
be used to model also early vague FRs, while NFRs are not necessarily “soft” (vague),
as we have discussed in section 2.1.2; (2) NFR-F acknowledges relations between “type”
and “topic”, but does not go into depth in analyzing the interrelations between FRs and
NFRs, e.g., the topic “Account” in the softgoal “Security [Account]” could be the object
operated by a function; (3) NFR-F is a process-oriented approach for dealing with NFRs
and focuses on rationalizing the development process in terms of NFRs (e.g., justify design
decisions) [130], but does not push for measurable and testable NFR specifications.

i*/Tropos. The i* [176] framework proposes an agent-oriented approach for RE cen-
tering on the intentional properties (e.g., goals, abilities, beliefs, and commitments) of
agents/actors. The framework offers two kinds of models: the Strategic Dependency (SD)
model and the Strategic Rationale (SR) model. An SD model captures the dependencies
among actors in an organizational context; an SR model describes the the rationale be-
hind such dependencies, and provides information about how actors achieve their goals
and softgoals. SR models use three types of links to structure modeling elements, such as
goals, softgoals, tasks, and resources: (1) decomposition (AND-refinement), a goal/task
can be decomposed into sub-goals, sub-tasks, etc.; (2) means-ends (OR-refinement), a goal
can be operationalized as alternative tasks; (3) contribution (Help, Hurt, Make, Break),

38 Chapter 2. State of the Art

a softgoal can be satisficed by other goal(s), softgoal(s), or task(s). In addition, i* also
uses softgoals as criteria for choosing better alternatives.

The i* framework has served as the basis of Tropos [30], an agent-oriented software
development methodology. Tropos guides the development of agent-based software sys-
tem from early and late requirements analysis through architecture and detailed design
to implementation. Tropos uses the i* framework to represent and reason about require-
ments and architecture styles, and maps i* concepts to the Belief-Desire-Intention (BDI)
agent architecture for implementation (e.g., actor as agent, resource as belief, goal and
softgoal as desire, task as intention) [34]. Formal Tropos (FT) [65], the formal counterpart
of Tropos, has offered an intermediate language for specifying i* models. Further, FT
translates the intermediate representation into LTL, supporting automatic verification of
early requirements, including animation, consistency check, possibility checks (if some
expected scenarios are excluded) [65].

The i* framework adopts “softgoals” from the NFR framework for capturing NFRs 4,
suffering from similar problems as the NFR framework does. Like KAOS, Formal Tropos
also lacks support for incrementally going from informal to formal. Both i* and Tropos
do not support weakening requirements.

GBRAM. The goal-based requirements analysis method (GBRAM) [17] includes two
important activities: goal analysis and goal evolution. Goal analysis is about the identi-
fication of goals from various information sources such as diagrams, textual statements,
interview transcripts, and followed by classification. Goal evolution concerns the elab-
oration, refinement, and operationalization of the identified goals into operational re-
quirements specifications. GBRAM provides a set of heuristics for goal evolution: (1)
refine: eliminating redundancies, reconciling/merging synonymous goals (e.g., “Meeting
arranged” and “Meeting scheduled” are synonymous and can be reconciled); (2) elaborate:
identifying goal obstacles, and analyzing scenarios and constraints, in order to uncover
hidden goals and requirements; (3) operationalize: translating goal information into a
requirements specification.

Techne. Jureta et al. [102] interpreted softgoals as goas referring to qualities but are
vague for success, and used quality constraints (QCs), which refer to qualities but are
clear for success, to quantify softgoals. These ideas were introduced into Techne [101], a
requirements modeling language for handling preferences and conflict.

The abstract Techne syntax, as introduced in [101], consists of several requirements
4Note that i* does not acknowledge the dependency relation between types and topics, and simply

use natural language to describe softgoals.”

2.3. Requirements Transformation 39

concepts: goals (g), softgoals (s), tasks (t), domain assumptions (k), and quality con-
straints (q). The framework provides three relations between elements: inference (I),
conflict (C), and priority (P). If a premise element (g, s, q, or t), e.g., e1, infers a conclu-
sion element, e, this means that the achievement of e can be inferred from the achievement
of e1. Multiple premise elements, e.g., e1 ... en, can individually infer the same conclusion
element, e, and this is treated as a (non-exclusive) OR, where achievement of any e1 ...
en means e is achieved. Multiple premise elements can also be aggregated together to
infer a conclusion element, e. The aggregation is described using functions of arbitrary
complexity captured by associated domain assumptions (k). The most common aggre-
gation is AND, meaning e1 ... en must all be achieved for the e to be achieved. For
simplicity, [101] suggests that a concrete syntax may be used to represent OR and aggre-
gation via AND (i.e., OR and AND inferences). Conflict (C) and priority (P) relations
map a single element to a single element. Relating elements via conflict means that these
elements cannot be satisfied simultaneously. Priorities between elements mean that one
element has a higher priority than another.

Techne has restricted non-functional requirements to quality requirements (softgoals
and quality constraints), partially addressing the question “what are the proper concept
for modeling NFRs?”. The issue is only partially addressed because Techne does not
answer “what are the requirements that are traditionally not functional but do not refer
to qualities?”. In addition, Techne treats its modeling elements as propositions, lacking
support for capture of interrelation between requirements based on requirements details.

To sum up, goal-oriented techniques provide an elegant way for going from high-
level goals to low-level goals through AND/OR refinement, and finally functions (i.e.,
tasks) through operationalization. Some of the approaches have used formal languages
to formalize requirements specifications (e.g., KAOS, Formal Tropos), enabling certain
automatic requirements analysis. However, these existing goal modeling techniques have
some common deficiencies at the method level: (1) they do not support incrementally
improving requirements quality and going from informal to formal; (2) they do not support
weakening of requirements.

2.3.3 Problem-Oriented Decomposition and Reduction

The problem frames (PF) approach concretizes many of Jackson’s ideas on the char-
acterization of requirements engineering (e.g., requirements R, specifications S, domain
assumptions DA, and their interrelations) [96], and offers a framework for representing,
classifying and analyzing software problems. In this approach, a software problem is re-

40 Chapter 2. State of the Art

garded as a requirement within a real-world context (i.e., a problem consists of two parts:
the requirement and the context) 5, and the solution to the problem is to develop a ma-
chine – a software running in a computer – that ensures the satisfaction of the requirement
in the given context [48].

Problem frames begin with understanding the problem to be solved through the devel-
opment of a context diagram, which identifies relevant problem domains in the real world
(the world is decomposed into many problem domains [95]) and the machine to be built,
and the interconnections thereof. The problem will be captured in a problem diagram,
which is developed from the context diagram by associating a requirement with (a subset
of) the domains. The end-product of problem analysis is a specification that is able to
satisfy the given requirement in the given context [48].

Figure 2.1 represents a simple problem (adapted from [48]) that needs a machine
(the solution) to control a device (the problem domain/context) such that a certain work
regime (the requirement) is satisfied. The link between the controller machine (CM) and
the device indicates the shared phenomena between these two domains. Here the shared
phenomena are commands (switch “on” and “off ”) that are issued by the controller ma-
chine (indicated by the “!” symbol) and observed by the device. The arrowhead link
indicates the states of the device (i.e., problem world properties) that are constrained
by the requirement (depicted as a dotted oval). The domain descriptions and the state-
ments of requirement, which can be described using un-prescribed notations (e.g., natural,
structured or formal languages, any of them), are not included in the program diagram.
Another important notion in problem frames is adequacy argument, which argues that the
derived specification satisfies the stated requirement in the given context.

Controller

Machine
Device

Work

regime

CM!{on,off} {is_on, is_off}

(machine) (problem domain)

Context diagram

Problem diagram

(requirement)

Figure 2.1: A simple problem diagram (adapted from [48])

Indeed, many real-world problems are complex, being reflected by complex context
5The requirement (what is desired, i.e., optative properties of the environment) and the context (what

is given, i.e., indicative properties of the environment) are separated and kept distinct in problem frames.

2.3. Requirements Transformation 41

diagrams, where requirements are initially abstract and far from any machine phenom-
ena [48][139] (recall that a requirement states desired properties in the context of the
machine, while a specification describes the behavior of a machine at its interfaces with
the problem world, i.e., the connected problem domains) [81]). In such cases, the initial
problem needs to be transformed, such that the derived requirements (of new problems)
become closer to a machine specification. To support this, there have been two forms of
problem transformation: problem decomposition and problem reduction/pregression [48].

Problem decomposition. Problem decomposition allows the transformation of a com-
plex problem into smaller and simpler ones, the solution of each would contribute to the
original problem. The most basic type of decomposition is to match the problem un-
der consideration to already known problem frames [97] (e.g., the Workpieces frame, the
Required Behaviour frame, the Commanded Behaviour frame, the Information Display
frame and the Transformation frame). Jackson [97] has offered a number of decomposition
heuristics for decomposing problems, with problem projection being one of them.

Problem projection is very similar to data table projection in relational databases [80]:
a projection of a relational database table is a new table consisting of a subset of columns,
a projection of a problem is a sub-problem with a subset of the problem domains. That
is, the context of the sub-problem is a projection of the context of the original problem,
limiting the domains and/or phenomena needed to describe the sub-problem.

Rapanotti et al. [137] have proposed “Architecture Frame” (AFrame) for decomposing
problems. In their approach, an AFrame is a Problem Frame (characterising a problem
class) that provides a collection of template diagrams for sub-problem decomposition.
They offered two AFrames, namely “the Pipe-and-Filter Transformation Frame” and “the
Active Store Transformation Frame” for decomposing the “Key Word in Context” (KWIC)
problem.

Closely related to problem decomposition is the composition of the solutions to sub-
problems. In the composition process, interactions between sub-problems (e.g., consis-
tency, precedence, interference and scheduling [97]) could arise if they share a problem
domain or the machine domain. This issue is akin to “feature interaction”[31], and has
been addressed to some extent [48].

Problem reduction/progression. Problem reduction/progression allows to simplify
the context of a problem by removing some (one or more) of the domains and re-express
the requirement using the phenomena in the remaining domains [48]. By iterative reduc-
tion/progression, a requirement gradually moves closer toward the machine phenomena.

42 Chapter 2. State of the Art

Early work by Jackson and Zave [98] has discussed some principled elements of a method
for deriving a specification from requirements. In line with this, Rapanotti et al. [139][138]
have offered a set of systematic transformation rules for achieving the same purpose.

Problem reduction/pregression shares a similar idea with other approaches for deriving
specifications from requirements, e.g., goal-oriented approaches. In goal models, high-level
strategic goals can be treated as expressions of requirements about the world, while low-
level technical goals represent technical requirements for a software system to satisfy [139].
In this sense, the shift from essential use cases (EUCs) [47], which capture use intentions
and system responsibilities, to use cases [148], which capture user actions and system
responses, is also in line with this view.

The problem frames approach offers a clear characterization for the key concepts in
requirements engineering, namely requirements, specifications, and domain assumptions
(context or environment). Nevertheless, this approach does not distinct the taxonomic
dimension for the “requirement” concept – the distinction between functional and non-
functional requirements, which is widely accepted in the RE field. Indeed, this approach
is more generally seem as an conceptual framework in which many other techniques (e.g.,
goal-oriented approaches) may work together [48].

2.3.4 Others Aspects

We briefly summarize some other techniques related to requirements transformation in
this subsection, including feature models, quality quantification, and empirical evaluation.

Feature models. In the original FODA (Feature Oriented Domain Analysis) proposal,
feature is defined as a prominent or distinctive user-visible aspect, quality, or characteristic
of a software system [107]. Other researchers treat a feature as either a unit of functional-
ity [60] or a cohesive set of requirements [84]. After investigating the existing definitions,
Classen et al. [38] have defined the concept “feature” from a RE perspective: a feature is
a triplet f � pR,W, Sq, where R represents the requirements the feature f satisfies, W
the assumptions the feature takes about its environment, and S its specification.

Feature models (FMs) are widely used to model the variability of a software system
in terms of features (depicted as boxes) and feature dependencies (depicted as directed
links) [152]. FMs structure features into multiple levels of increasing detail, often in
the form of tree or directed acrylic graph (DAG), where the root feature represents a
complete system [107]. When decomposing a feature in to sub-features, several kinds
of decomposition operators can be used: mandatory (sub-feature is required), optional
(sub-feature is optional), or (at least one of the sub-features need to be selected) and xor

2.3. Requirements Transformation 43

(exactly one of the sub-features must be selected). Two kinds of feature dependencies,
requires and excludes, are also commonly used. There are many variants of FMs, interested
readers can refer to [151][152] for a survey.

Feature models offer a rich set of operators for decomposing software systems, func-
tionalities, entities, qualities, etc. These ideas, e.g., “inclusive or” vs. “exclusive or”,
“mandatory” vs. “optional”, can be also applied to goal models [101]. Note that FMs have
a similar issue with goal models: feature specifications focus on the functinoal/behavior
aspect (e.g., [84][60][156]), but leave out non-functional concerns.

Quality quantification. Quality quantification is an important step in deriving measur-
able and testable quality requirements. It is similar to goal refinement and operational-
ization: a quality is often decomposed to several sub-qualities and then quantified using
metrics [94]. For example, the quality “usability” can be decomposed into “learnability”,
“operability”, “accessibility”, etc., according to ISO/IEC Std 9126-1 [10]; further, “learn-
ability” can be measured by using metrics such as “learning time” and “help frequency”
according to ISO/IEC Std 9126-2 [94].

An issue associated with quality quantification is how to elicit meaningful numbers.
Commonly, numbers can be obtained by asking stakeholders or investigating competing
products. However, in our empirical evaluation of Techne [89], we found that stakeholders
had some difficulty in quantifying softgoals into quality constraints. Often stakeholders
responded with “it depends”, meaning that techniques capturing domain context (e.g.,
subjects/bearers) of qualities are needed (this is also applicable when investigating com-
petitors).

Moreover, non-functional or quality requirements are known as “good enough”, i.e.,
their satisfaction is not make-or-break. For example, if a customer states that the cost
of trip is low if takes less than 500 Euros, how about if the trip takes 520 Euros finally?
Is it still “low”? Fuzzy logic has been employed to capture such partial satisfaction of
quality requirements [22]; however, the fuzzy membership functions are either difficult to
elicit [175] or constructed by inventing made-up numbers [22].

Empirical evaluation. In RE, many empirical evaluations have been conducted to
assess the utility of some languages or methods, but mainly on their expressiveness and
effectiveness [56][89]. For example, Estrada et al. [56] have evaluated the i* framework
by using three industrial case studies, and reported good expressiveness and domain
applicability, but poor modularity and scalability of i*. Horkoff et al. [89] have used three
studies to evaluate Techne, and reported some challenges related to both expressiveness

44 Chapter 2. State of the Art

and effectiveness (e.g., it is difficult to capture contributions between softgoals).
Al-Subaie et al. [12] have used a realistic case study to evaluate KAOS and its sup-

porting tool, Objectiver, with regarding to a set of properties of requirements, introduced
in Davis et al. [51] and the IEEE Std 830-1998 [45]. They reported that KAOS is helpful
in detecting ambiguity and capture traceability. However, they also pointed out that
the formalism of KAOS is only applicable to goals that are in enough detail and can be
directly formalized.

Work by Matulevicius et al. [124] is quite relevant. In their evaluation, the authors have
compared two goal modeling languages, namely i* and KAOS. Beside the quality of lan-
guages themselves, they also compared the models generated by using the two framework
with regarding to a set of qualitative properties in the semiotic quality framework [110].
Their findings indicate a higher quality of the KAOS language (not significant), but a
higher quality of the i* models (note that the participants are not required to write for-
mal specifications with KAOS). They also found that the goal models produced by both
frameworks are evaluated low at several aspects, including verifiability, completeness and
ambiguity.

These evaluations show that stakeholder requirements initially captured in goal mod-
els are of low quality and error prone. The quality of such requirements models needs
to be improved, no matter the models will be formalized or not later. That is, tech-
niques for improving the quality of requirements captured in traditional goal models, and
incrementally transforming stakeholder requirements to formal specifications are needed.

2.4 Chapter Summary

In this chapter, we have reviewed the state of the art in our chosen research area, including
requirements ontologies, requirements specification and modeling, and requirements trans-
formation. We have discussed their strengthens and limitations, assessing their adequacy
in addressing the RE problem. We also justified the need of techniques for addressing
the common deficiencies of current techniques (for this RE problem), such as lacking a
unified language for representing both FRs and NFRs, lacking capture of interrelations
based on requirements details, lacking support for weakening requirements, and lacking
support for incremental formalization.

Chapter 3

Research Baseline

This thesis builds on two important threads of research: (1) goal-oriented requirements
engineering; and (2) foundational ontologies. We adopt some of the important concepts
(e.g., functional goal, softgoal, quality constraint) from GORE techniques, re-interpret
them based on fundamental concepts such as function and quality that are defined in the
unified foundational ontology (UFO), and accordingly propose an ontology for classify-
ing and a description-based syntax for representing requirements. We also adapt some
conventional goal refinement operators (e.g., AND/OR), revise them and propose several
new operators in order to offer effective support for transforming requirements.

3.1 Goal-Oriented Requirements Engineering

The rise of goal orientation as a research paradigm for requirements engineering (GORE)
is founded on the premise that requirements can be modeled and analyzed as stakeholder
goals. According to this view, functional requirements are modeled as hard goals with a
clear-cut criterion for fulfillment, while non-functional requirements (NFRs) are modeled
as soft goals (aka softgoals) with no such criterion [130], hence their name. This paradigm
served as research baseline for i* [176] and Tropos [30], and has also enjoyed much broader
attention within the RE community during the past decades.

Goal oriented approaches also offer useful operators for transforming requirements,
e.g., AND/OR refinement for refining higher-level goals to lower-level goals, and opera-
tionalization for operationalizing goals as functions. For example, with AND-refinement,
we can decompose a problem into smaller ones, e.g., “trip be scheduled” can be refined to
“accommodation be booked” and “ticket be booked”; with OR-refinement, we are able to
capture alternatives, e.g., “accommodation be booked” can be refined to “hotel be booked”

45

46 Chapter 3. Research Baseline

or “hostel be booked”; with operationalization (note that current GORE techniques do
not distinguish between AND and OR structures on operationalization), low-level goals
will be operationalized as functions to be performed by the system-to-be, e.g., “book hotel
through credit card”. We capture this simple example in the first fragment of Fig. 3.1
using Techne [101], the state of the art goal-oriented modeling framework.

<<Goal>>

G_0 := Trip be scheduled

<<Goal>>

G_1 := airline ticket be
booked

<<Goal>>

G_2 := hotel be booked

<<Goal>>
G_3 := train ticket be

booked

<<Goal>>

G_4 := hostel be booked

<<Goal>>

G_0 := trip be scheduled

<<Goal>>

G_2 := accommodation be
scheduled

<<Goal>>

G_1 := ticket be scheduled

<<Goal>>

G_3 := airline ticket be
booked

<<Goal>>

G_4 := train ticket be
booked

<<QG>>
QG_5 := the processing time

of file search shall be
acceptable

<<QC>>
QC_6 := the processing time
of file search shall be less than

30 seconds

<<Func>>

F_7 := book hotel with
credit card

<<Goal>>

G_5 := hotel be booked

<<Goal>>
Goal_3 := Hostel be

booked

(1)

(3)(2)

Figure 3.1: A simple example of the Techne syntax

Techne has used the “inference” link to model both traditional AND/OR refinements
(and also operationalization): if multiple premise elements (goals, softgoals, tasks, quality
constraints), e.g., e1 ... en, can individually infer the same conclusion element, e, then
it is a (non-exclusive) OR; if multiple premise elements aggregated together can infer
a conclusion element, e, it is an AND. As in Fig. 3.1, a directed arrow represents an
“inference” link, a black circle indicates an aggregation. The use of “inference” in Techne
is more expressive than traditional AND/OR refinement. For example, we could have
either G1 “airline ticket be booked” and G2 “hotel be booked” ({G1, G2}) or G3 ‘‘train
ticket be booked” and G4 “hostel be booked” ({G3, G4}) inferring G “trip be scheduled”, as
shown in the second fragment of Fig. 3.1. Traditionally, one needs to first OR-decompose
G into two (fake) intermediate goals, with each of them being further AND-decomposed.

Techne [101] has further developed the concepts. In Techne, softgoals (we rename this
concept as quality goal, and use QG for a shorthand) are restricted to goals that are vague

3.2. Ontological Foundations 47

and refer to qualities, e.g., “the processing time of file search shall be acceptable”; quality
constraints (QC), which are goals that refer to qualities and are clear for success, e.g.,
“the processing time of file search shall be less than 30 seconds”, are used to operationalize
softgoals. For example, as in the third fragment of Fig. 3.1, the inference link between
QC6 and QG5 means that the former quantifies the latter. In addition, Techne offers two
relations, “conflict” and “priority”, for capturing inconsistency between, and preferences
over requirements.

This work adapts and revises important concepts (goals, tasks, softgoals, and quality
constraints) and relations (inferences, conflict) in Techne. Based on these, we propose a
requirements ontology, offer a unified syntax for representing and a set of operators for
transforming the requirements concepts in the proposed ontology.

3.2 Ontological Foundations

The fundamental concepts, “function” and “quality”, are of key importance to our re-
quirements ontology, language and operators. In this section, we look to the Unified
Foundational Ontology (UFO) [78] to tell us precisely what functions and qualities are 1.

Over the years, UFO has been successfully employed to provide ontological seman-
tics and methodological guidelines, as well as for analyzing and redesigning modeling
languages, standards and reference models in domains ranging from Software Engineering,
Enterprise Modeling, Telecommunications, Bio-informatics, among others 2.

We present here (Figure 3.2) only a fragment of the UFO ontology containing the cat-
egories that are related to function and quality. We illustrate these categories and some
relevant relations with UML diagrams. These diagrams express typed relations (repre-
sented by lines with a reading direction pointed by “ ” or “¡”) connecting categories
(represented as rectangles), cardinality constraints for these relations, subsumption con-
straints (represented by open-headed arrows connecting a sub-category to its subsuming
super-category), as well as disjointness constraints relating sub-categories with the same
super-category, meaning that these sub-categories do not have common instances. These
diagrams are used here primarily for visualization. The reader interested in an in-depth
discussion and formal characterization of UFO is referred to [78].

1We have also considered DOLCE [123], another foundational ontology that aims at capturing the
ontological categories underlying natural language and human common sense. We choose UFO because:
(1) UFO is compatible with DOLCE, at least in the ontology fragment relevant for this thesis; (2)
UFO offers a more complete set of categories to cover some important aspects of the domain we target,
especially regarding the analysis of quality spaces, situations and goals.

2See http://nemo.inf.ufes.br/en/publications for publications on the different UFO applications.

48 Chapter 3. Research Baseline

Entity

Concrete Individual

Substantial Moment

Intrinsic Moment

Situation

Endurant Perdurant (Event))

Disposition

*

*

activates >

*

1..*

< manifested by

1

1..*

< inheres in

Universal

Quality Universal

Quality

Abstract Individual

Quality Structure

Quality Domain Quality Dimension

Quality Region

Quality Value

Function

1 2..* composed by >

1 1

Has value

1

1..*

< member of

1

constituted by >
1 1

associated with
disjoint

{disjoint}

{disjoint}

{disjoint}

{disjoint}

{disjoint}

1...* 1

Instantiates [::]

1..*

1

Instantiates [::]

1..*

Figure 3.2: A fragment of UFO representing function and quality related categories

UFO distinguishs between individuals and universals. Individuals are entities that
exist in reality possessing a unique identity, while universals are patterns of features that
are repeatable in a number of different individuals. A concrete individual can be either
an endurant or a perdurant. Endurants 3 do not have temporal parts, and persist in time
while keeping their identity (e.g. a person) while perdurants (also referred to as events) are
composed of temporal parts (e.g. an execution of a software function). Substantials are
existentially independent endurants (e.g. a person or a system). Moments, in contrast,
are existentially dependent on other individuals, inhering in these individuals (e.g. the
skill of a person, the performance of a system). Inherence (symbolized as “inh”) is a type
of non-reflexive, asymmetric and anti-transitive existential dependent relation connecting
a moment to its bearer/subject. We focus here on intrinsic moments, i.e., moments that
are dependent on one single individual (e.g., a skill of a person, a capability of a system).

Note that most distinctions made for individuals, mutatis mutandis, also apply to
universals; thus, we have the counterparts: substantial universal, moment universal and
intrinsic moment universal. As shown in Figure 3.2, a quality universal is defined as an
intrinsic moment universal that is associated to a quality structure, which can be either a
quality dimension or a quality domain (a set of integral quality dimensions).

3By convention, if the word “universal” is not part of a term, then the term is assumed to refer to a
particular.

3.2. Ontological Foundations 49

Function. UFO categories functions as a sub-category of intrinsic moments, i.e., exis-
tentially dependent entities, and considers functions as particular types of dispositions
(capacities, capabilities) exhibited by an entity [79]. For example, the disposition of a
magnet m to attract metallic material would depend on and be exhibited by that specific
magnet m. Functions (or more generally, dispositions) are potential (realizable) property
instances manifested through the occurrence of an event that happens if a specific situ-
ation/state obtains. For example, given a situation in which m is in the presence of a
particular metallic object (at a certain distance, of a certain mass), the disposition of the
magnet will be manifested by the movement of the object towards the magnet. If the
activating situation does not hold, functions may never be manifested. For example, the
disposition of the magnet m to attract metallic material will not be manifested if it is
never close to any magnetic material. The occurrence of the event, in turn, brings about
a certain situation in the real world [88].

Moreover, in UFO, most perceived events are polygenic, i.e., when an event is occur-
ring, there are a number of dispositions of different participants being manifested at the
same time. For example, a manifestation event above will involve the capacities of both
the magnet and the metallic object.

Quality. In UFO (also DOLCE [123]), a quality is defined as a basic perceivable or
measurable characteristic that inheres in and existentially depends on its bearer/subject.
As shown in figure 3.2, a quality instantiates a quality universal and has a quality value in
a quality structure (either a quality domain or a quality dimension) associated with that
quality universal. Moreover, as an intrinsic moment, a quality inheres in individuals.

UFO’s notions of quality structure, quality dimension and quality domain are based on
the work of Gardenfors [72][73]. According to this work, for all perceivable or conceivable
quality universal, there is an associated quality structure in human cognition. For exam-
ple, height, mass, and response time are associated with one-dimensional structures; other
quality universals such as color, taste, and usability are represented by several dimensions.
For instance, color can be represented in terms of the dimensions of hue, saturation and
brightness; usability in RE is composed of learnability, operability, accessibility, among
other dimensions. And, a set of integral dimensions that are separable from all other
dimensions constitute a quality domain 4 [72].

In pace with DOLCE [123], if a quality universal is associated to a quality domain,
4Gardenfors [72] differentiates integral and separable quality dimensions: “certain quality dimensions

are integral in the sense that one cannot assign an object a value on one dimension without giving it a
value on the other. For example, an object cannot be given a hue without giving it a brightness value.
Dimensions that are not integral are said to be separable, as for example the size and hue dimensions.”

50 Chapter 3. Research Baseline

its instances bear sub-qualities that take values in each of the dimensions of that domain.
That is, UFO allows qualities to inhere in other qualities. For instance, the color of an
individual apple is itself a bearer for individual qualities of hue, saturation and brightness
(e.g., the hue of the color of the apple).

A quality region is a convex region C of a quality structure (i.e. either a dimension
or a domain); C is convex if and only if: for all pairs of points px, yq in C, all points
between x and y are also in C [72]. The value of a quality individual can be represented
as a point in a quality domain. UFO names this point a quality value (which DOLCE
calls “quale” [123]). For example, a color quality c of an apple a takes its value in a
three-dimensional quality domain constituted of the quality dimensions hue, saturation
and brightness. It is relevant to highlight that in UFO both physical (e.g., color, height,
shape) and nominal quality types (e.g., social security number, the economic value of an
asset) are sorts of quality universals and, hence, are associated with quality structures.

3.3 Chapter Summary

In this chapter, we briefly reviewed the baseline of our research, including: (1) Techne,
the state of the art goal-oriented modeling framework, based on which we developed our
requirements concepts and operators; (2) the ontological meaning of the fundamental
concepts such as function and quality, which are of key importance for understanding,
defining, classifying, representing and transforming requirements.

Chapter 4

Ontological Interpretation of
Requirements

We have seen that the traditional definitions of functional requirements focus narrowly
on the software part of the system to be designed and do not consider its environment,
and the classifications of non-functional requirements differ from, sometimes even conflict
with each other. These observations beg some basic questions: what are functional and
non-functional requirements? how to classify (and represent) them?

In this section, we try to answer these two questions through ontologically interpreting
functional and non-functional requirements. Based on the ontological interpretation of
requirements, we then accordingly providing a requirements ontology for classifying and
a syntax for representing requirements in practice.

4.1 Requirements

In general, we are in line with Jackson and Zave [98] that a “requirement” states a desired
property in the environment – properties that will be brought about or maintained by the
system to be designed, and model requirements as goals as in goal-oriented requirements
engineering (GORE). We follow the common categorization of requirements as functional
and non-functional (i.e., FRs and NFRs). Specifically, we take FRs as requirements that
refer to functions, and NFRs as requirements on qualities. We then go deeper to capture
the ontological meaning of function and quality, and use it to interpret functional and
non-functional requirements.

51

52 Chapter 4. Ontological Interpretation of Requirements

4.2 Functional Requirements (FRs)

We take that a functional requirement (FR) refers to a function (capability or capacity)
that has the potential to manifest certain behavior in a particular situation and bring
about a certain effect in the real world. In other words, an FR requires a certain entity,
often the system-to-be in software engineering, but can also be other agents in the software
ecosystem, to bear a function of a given type.

As shown in Fig. 4.1, ontologically, a function would come with the following associated
information [78][79]: (1) function – the nature of the required capability; (2) situation
(state of affairs) – the conditions under which the function can be activated; often this
includes pre-conditions (characterizations of the situation), triggers (the event that brings
about that situation), but also actors (agents), objects, targets, etc.; (3) event – the
manifestations or occurrences of the function; (4) effect (post-conditions) – situations that
are brought about after the execution of the function; and (5) subject – the individual(s)
that the function inheres in. For example, in the requirement “the system shall notify the
realtor in a timely fashion when a seller or buyer responds to an appointment request”, the
“notify” function, which inheres in “the system”, will be activated by the situation “when a
seller or buyer responds to an appointment request”; and, its manifestation, a notification
event, will bring about the effect “realtors be notified”; moreover, the notification event
is required to occur in a timely fashion (a quality of the notification).

Perdurant (Event) Function

*

*
activates >

* 1..* manifested by >

1

1..*

< inheres in

Situation

Concrete Individual

< brings about

Functional
Requirement

refers to >

* 1

1

*

Figure 4.1: The ontological meaning of function (adopted from [78])

There are five points to be noted about the ontological meaning of function. First, a
function is ontologically a disposition (capability or capacity), an existentially dependent
characteristic (specifically, an intrinsic moment, see Fig 3.2) that can only exist by inher-
ing in its subject/bearer. For example, the “keyword search” function of an online shop
would depend on that specific system. In practice, the subject of a function is defaulted

4.2. Functional Requirements (FRs) 53

as the system to be designed, and often omitted. This restricts the scope of functional
requirements to software system functions, and leaves out FRs that are related to soft-
ware systems life-cycle (e.g., development, deployment, or maintenance requirements) and
software system environment. Explicitly considering the subject of a function allows us
to incorporate such functional requirements. For example, the requirement “the prod-
uct shall be supported by the corporate support center” is also an FR since it specifies a
“support” function that inheres in “the corporate support center”, an external agent in a
system-to-be ecosystem.

Second, being a disposition (capability or capacity), a function can be manifested by
the occurrence of perdurants (e.g., events, processes) of a given type. That is, a function
by itself is not a set of events or processes, but is realizable through the occurrence of
a set of events or processes. So, contra Jureta et al. [103], we take that FRs refer to
perdurants (events or processes) only indirectly, i.e., by referring to a function, which
being a disposition is realizable through the occurrence of perdurants of a given type. For
example, the “keyword search” function of an online shop will be manifested by a process
of matching an input key-word with the list of keywords in the system in a particular
situation (when the keyword is given and the search button is clicked by a user) and
brings about a certain effect (the matched product will be displayed to the user).

Third, a function can be manifested only in particular situations, and can also fail to
be manifested. For example, the requirement “only managers are able to activate pre-paid
card” states that the “activate pre-paid card” function can be activated only if “the actors
are managers”, and would fail to be activated in other cases. When manifested, a function
is manifested through the occurrence of events, which in turn would bring about a certain
situation (state) in the world. For example, the execution of the “activate pre-paid card”
would bring about the state “pre-paid card be activated” in the real world.

Forth, in UFO [78], most perceived events are polygenic, i.e., when an event is occur-
ring, there are a number of dispositions of different participants being manifested at the
same time. For example, a manifestation event (i.e., an execution) of the product search
function will involve the capacities of both the system and a user. The understanding
of manifesting events of functions as polygenic enables us to systematically elaborate re-
quirements. For example, in software development, we can design the capacities of the
system (a search function), but make assumptions about the capacities of the user (e.g.,
the user is not visually impaired, the user masters a certain language).

Fifth, a function is an individual (instance, in object-oriented terms), not a type
(class). For example, when mentioning “Google search”, we are refereing to a particular
search function that has the Google web-site as its subject/bearer. Apparently, “Yahoo!

54 Chapter 4. Ontological Interpretation of Requirements

search”, another function individual, is different from “Google search” although they share
the same function type “Search”. To make it easier to understand, we show the relations
among function type, function (individual), and function manifestation in Fig. 4.2. Note
that our view of functions as individuals does not contradict with the view of functions
as “action schemas” in the programming world: a function individual is of a particular
function type, and can be manifested by a set of executions.

Function
Type

Manifestation
(Executions)

Function
(Individual)

E.g.,
Google Search#1
Google Search#2
…
Yahoo! Search#1
…

E.g., Search E.g.,
Google Search,
Yahoo! Search,
…

instance of manifested by

Figure 4.2: Function individual, function type and function manifestation

In practice, a functional requirement (a requirement that refers to a function) often
specifies only some of the constituting components. For example, an FR may just specify a
desired function (i.e., capability), or only describe a desired state (situation) in the world,
or merely constrain the situation under which a function can be activated. Based on our
observations, we accordingly specialize functional requirements into three sub-categories:

1. Functional goal (FG): a function goal specifies a desired state in the real world that
is fulfilled through one or more functions. For example, the functional goal “student
records be managed” specifies a desired state “managed”, and will be operationalized
by functions such as “add”, “update” and “remove” student records.

2. Function (F): a function specifies a desired capability, and necessary information
for completing its manifestation. For example, to execute the function “the system
shall be able to send meeting notification”, we need to know “who will send”, “send
to whom”, and “how many notifications will be sent at a time”. Often, a function
implies a functional goal, i.e., a desired state that will be brought about through its
manifestation (“meeting notifications be sent”, in this case).

3. Functional constraint (FC): a functional constraint constrains the situation in which
a function can be manifested. That is, an FC is usually stated as a restriction on
the situation of a function. For example, in the function “users shall be able to
update the time schedule”, one may impose a constraint “only managers are allowed
to perform the update”.

4.2. Functional Requirements (FRs) 55

4.2.1 Representing FRs

As we can see in these examples, FGs, Fs and FCs cannot be simply taken as propositions,
as some goal modeling techniques (e.g., i* [176], Techne [101]) have it. Rather, they
are descriptions. Inspired by this observation, we use “ sloti : Descriptioni ¡” pairs
(SlotDs) as in Eq. 4.1, where a description Di restricts a slot si, to capture them. Similarly,
we specify intended situations using “ s : D ¡” pairs, and capture the intention of
something to be in a situation (state) using “: ” (mechanically, this symbol is taken as
description subsumption). In addition, we assign names to expressions using “:=” for
later reference.

Concept slot1 : Description1 ¡ ... slotn : Descriptionn ¡ (4.1)

Using this syntax, the “student records be managed” example is modeled as FG1 in
Eq. 4.2, where “Student record” indicates a set of student records, and “Managed” is the
desired state and refers to an associated set of individuals that are in this specific state.

FG1 :� Student records : Managed; (4.2)

Functional constraints and functional goals are similar: both of them require certain
entities (e.g., objects, functions) to be in some intended situations. The difference is that
a functional constraint constrains a situation under which a function will be manifested,
while a function goal represents a desired state that will be brought about through the
manifestation of a function. As above, we use a similar syntax to capture “only managers
are allowed to perform the update” as FC2 in Eq. 4.3, which means that the executions
of the update function is subsumed by things that only have managers as their actors.

FC2 :� Update object : Time schedule ¡
: actor : ONLY Manager ¡;

(4.3)

In practice, when a function is manifested (i.e., executed), it would have properties of
different participants being manifested at the same time [78]. For example, an execution
of “send meeting notification” will involve participants like the system, the sender, the
receivers, and meeting notifications. This means that in addition to the desired capability,
many pieces of information (e.g. descriptions of its actor, object, and trigger) can be
associated with the description of a function. For example, “the system shall be able to
send meeting notification” can be captured as F3 in Eq. 4.4.

56 Chapter 4. Ontological Interpretation of Requirements

F3 :� Send subject : tthe systemu ¡ actor : Organizer ¡
 object :¥ 1Notification ¡;

(4.4)

We distinguish a function (i.e., an individual) from its manifestation (i.e., a set of
executions) by using curly brackets: we use “{F}” to indicate a function individual, and
“F” to represent a set of its executions. In the “send meeting notification” example, F3

indicates a set of executions of the function, and “{F3}” means the capability of sending
meeting notification. Similarly,“{the system}” indicates a singleton.

4.2.2 Refining Functions

Our description-based syntax offers intuitive ways for refining requirements. In general,
there are four kinds of basic operations: (1) adding a “ s : D ¡” pair (SlotD); (2)
removing a “ s : D ¡” pair; (3) refining the description of a slot; (4) refining a slot.
For example, the requirement “the system shall allow users to search meeting rooms”,
captured as a function F4�1 in Eq. 4.5, can be refined to F4�2 by adding a SlotD “
parameter : Room capacity ¡”, or be refined to F4�3 by specializing the description of
the slot “actor” from “User” to “Organizer”. An example of refining a slot is to refine
“dependency” to “goal dependency” or “task dependency” as in i* [176].

F4�1 :� Search subject : tthe systemu ¡ actor : User ¡
 object : Meeting room ¡

F4�2 :� Search subject : tthe systemu ¡ actor : User ¡
 object : Meeting room ¡ parameter : Room capacity ¡

F4�3 :� Search subject : tthe systemu ¡ actor : Organizer ¡
 object : Meeting room ¡

(4.5)

When refining requirements we distinguish between strengthening and weakening: a
strengthening shrinks the solution space of a requirement (i.e., reducing the choices for
satisfying a requirement), while weakening is the opposite. For instance, the require-
ment “the system shall be able to back up data at weekdays”, captured as a function
“FB1 := Backup actor: {the system}¡ object: Data¡ when: Weekday¡”, can be
strengthened into “FB2 := Backup actor: {the system}¡ object: Data¡ when:
{Mon, Wed, Fri}¡” (it is a strengthening because FB2 excludes the solutions that are
able to backup data at Tuesday or Thursday, thus having less solutions), or weakened in-
to “FB3 := Backup actor: {the system}¡ object: Data¡ when: Weekday _ Sat¡”

4.3. Non-functional Requirements (NFRs) 57

(it is a weakening because FB3 includes extra solutions that are able to backup data
at Saturday, thus having more solutions). In addition, slot-description (SlotD) pairs
“ s : D ¡” allow nesting, hence “ object: Data¡” can be strengthened to “ object:
Data associated with: Student¡¡”. In general, a requirement can be strengthened by
adding slot-description pair(s), or by strengthening the description of a slot. Weakening
is the converse of strengthening.

4.3 Non-functional Requirements (NFRs)

Conversely to FRs, we treat NFRs as requirements referring to qualities, i.e., an NFR
requires a certain entity to bear a quality or exemplify a quality of a given type. To be more
specific, we treat NFRs as requirements that require qualities to take values in particular
quality regions in their corresponding quality spaces. In order to distinguish requirements
that refer to qualities from traditional NFRs, we call them quality requirements (QRs). We
will cover what have been traditionally called NFRs but do not directly refer to qualities
in Section 5.1.

As shown in Fig. 4.3, a quality is ontologically defined as a basic perceivable or mea-
surable characteristic that inheres in and existentially depends on its subject (a concrete
individual) [78]. The subject can be an object, process, action/task, goal, as well as col-
lectives 1 of objects, processes, and so on. Like function, quality is also an individual (i.e.,
instance), e.g. “cost#1” represents the cost of a specific trip. Each quality has a quality
type QT (alternatively, quality universal, e.g., “Cost”), which is associated with a quality
space QS (alternatively, quality structure, e.g., “EuroValues”). UFO also differentiates a
quality, e.g. “cost#1”, from its value, e.g., “1000 e”, which is a point or region in a region
of the corresponding quality space. In the rest of this thesis, we use the terms “quality
type” and “quality space”, which are more familiar and acceptable to RE audiences, rather
than “quality universal” and “quality structure”.

The notion of quality space, adopted from UFO, is based on the notion of “Conceptual
Space” put forth by Gardenfors [72]. In this theory, quality spaces should be understood
literally, given that these structures are endowed with geometrical and topological prop-
erties. For instance, associated with the quality type “Cost” we can have a “EuroValues”
space, an one-dimensional structure isomorphic to the positive half-line of 2-place decimal
numbers; other quality types such as “Color”, “Security” and “Usability” are associated
with multi-dimensional spaces, with proper constraints on the constituting dimensions

1We can treat a set of individuals as a whole, i.e., a special individual.

58 Chapter 4. Ontological Interpretation of Requirements

Concrete Individual)
1

1..*

< inheres in

Quality Universal
(Quality Type)

Quality

Abstract Individual

Quality Structure
(Quality Space) Quality Region

Quality Value
1 1 has value

1

1..*

< member of

1

constituted by >

1 1

< associated with

{disjoint}

1..*

1

Instantiates [::]

1..*

Quality
Requirement

1

*
refers to >

Figure 4.3: The ontological meaning of quality (adopted from [78])

(reflecting the geometry of the space at hand). Moreover, UFO views a quality space as
consisting of regions with sub-regions. So a trip might have “Low” cost, with “Very Low”
being a sub-region.

4.3.1 NFRs as Quality Requirements

We simplify the rich quality theory by treating a quality Q (be ontologically correct, Q is a
quality type) as a mapping (mathematical function) that takes an individual subject subj
of type SubjT, to a quality value (point or region) in Q’s codomain (quality space). For
example, as a mapping, the quality “usability” takes its subject, say a software system
“the E-movie manager”, to a region “good” in its quality space. We refer interested
readers to Appendix A for the mathematic detail about quality mapping.

Representing QRs. Adopting a qualities-as-mappings perspective, we capture an NFR
as a quality requirement (QR) that constrains a quality mapping Q to take values in a
desired region QRG of its quality space for its subject type SubjT . As quality regions can
be either vague (e.g., “fast”, “low”) or measurable (e.g., [0, 5 (Sec.)]), hence QRs can be
accordingly vague or measurable. We accordingly specialize QRs into two sub-categories:

1. Quality goals (QGs), whose quality regions are vague.

2. Quality constraints (QCs), whose quality regions are clearly specified.

As QRs are requirements referring to qualities, one must understand which quality
it is and in which individual it inheres. Take, for instance, the requirement “The user
interface must have a standard format”. The quality in this case is “format”, while the
subject/bearer is “the user interface”; “standard” is a particular region in the interface
format’s quality space. Sometimes, the quality may not be explicit, e.g. “The product

4.3. Non-functional Requirements (NFRs) 59

should conform to the American Disabilities Act”, in which case the quality is “regulatory
compliance” and the subject is “the product”.

We capture QRs through using the notation in Eq. 4.6, which is an abbreviation
of “@x.instance of px, SubjT q Ñ subregion of pQpxq, QRGq”, meaning that for each
individual subject x of type SubjT , the value of Qpxq should be a sub-region of (including
a point in) QRG.

Q pSubjT q :: QRG (4.6)

Using this syntax, the QR “The product shall return (file) search results in an accept-
able time” can be modeled as QG1 in Eq. 4.7. QCs use the same syntax, but must involve
measurable regions. For example, a corresponding quality constraint for QG5 is shown in
the same example, as QC5.

QG5 :� Processing timepFile searchq :: Acceptable
QC5 :� Processing timepFile searchq :: ¤ 8 pSec.q

(4.7)

QRs can be defined over both subject types and individual subjects. In this example
above, the subject “file search” is a type, not an individual (in object-oriented terms, a
class, not an instance); here we refer to a set of its instantiations, i.e., a set of file searches.
The expression of QG5 (QC5) implies a set of QGs (QCs), each of which requires a specific
run “file search#” to take a processing time value in the acceptable region (¤ 8 Sec.).
Therefore, QG5 (QC5) is interpreted as “for each file search, its processing time shall be
acceptable (¤ 8 Sec.)”.

Consider another QR: “The interface shall be intuitive”. In this case, the subject of the
requirement is an individual subject, a singleton: “Understandability ({the interface}) ::
Intuitive”, where “Understandability” is a quality (type), “Intuitive” is the desired quality
region in the its associated quality space where the ease of understanding is intuitive.

Often, a subject can be restricted by qualifiers, acting as relative clauses, e.g., go-
ing from “activate (a pre-paid card) within 5 sec.” to “activate a prepaid card¡ by
Administrator¡ via the Administration section¡ within 5 sec.”. We extend the basic
syntax introduced in Eq. 4.6 by allowing its subject type SubjT to be restricted by qual-
ifiers that consist of “ slot : description ¡” pairs referring to SubjT (or descriptions,
when nested). As such, we are able to define particular sets of individual subjects, over
which we can talk about concerned qualities. For example, “activate”, the subject of the
requirement “activate (a pre-paid card) within 5 sec.”, is a software function and can be
qualified by the attributes “object”, “actor” and “means”, as in Eq. 4.8. It represents the
set of activations performed by administrators through the admin section.

60 Chapter 4. Ontological Interpretation of Requirements

Activate pcard1 :�Activate object : Prepaid card ¡

 actor : Administrator ¡ means : Administration section ¡

QG6 :�Processing timepActivate pcard1q ::¤ 5pSec.q

(4.8)

Quality domains and codomains. The concept of quality in UFO [78] refers to a broad
category of intrinsic properties of entities that can be projected on a quality space (roughly,
the basis of a measurement structure that becomes the codomain of the associated quality
mapping [13]). Examples can be found in every domain, including color, shape, length,
atomic number, electric charge, etc.

For our purposes, we adopt the quality model proposed by ISO/IEC 25010 [93] as
our reference. This standard distinguishes two categories of qualities: “qualities in use”
and “product qualities”, with five and eight qualities, respectively. Fig. 4.4 shows the
eight product qualities and their refinements. For example, “Usability” is refined into
“Learnability”, “Operability”, “Accessibility”, etc.

ISO/IEC25010

Functional
Suitability

Functional completeness

Functional correctness

Functional appropriateness

Reliability
Availability

Recoverability

Fault tolerance

Maturity

Usability

Learnability

Operability

User error protection

Appropriateness recognizability

User interface aesthetics

Accessibility

Security
Integrity

Non-repudiation

Accountability

Confidentiality

Authenticity

Compatibility
Interoperability

Co-existence

Portability Installability

Adaptability

Replaceability

Maintainability

Reusability

Modularity

Analysability

Modifiability

Testability

Performance
efficiency Resource utilization

Time behaviour

Capacity

Figure 4.4: The eight product qualities in ISO/IEC 25010 (with refinements)

Domains and codomains of qualities are key components in the specification of an
NFR. For a specific quality, the set of subject types that it can be applied to constitutes
its domain, and the union of all the possible values will form its codomain (quality space).

4.3. Non-functional Requirements (NFRs) 61

On one hand, the domain of a software quality can be any aspect of a software system,
including its constituents (code, architecture, requirements, etc.), the software processes
that created it, its runtime environment, and the like. On the other hand, standards such
as ISO/IEC 9126-1 [10] and 25010 [93] are helpful, up to a point, in defining a codomain for
qualities. For example, “Availability” is defined as “degree to which a system, product or
component is operational and accessible when required for use”. Hence it will be associated
with a codomain that is a scale ranging from 0% to 100%.

We show in Table 4.1 possible domains and codomains of 10 frequently used qualities
in our evaluation (more details can be found in Section 8.2).

Table 4.1: The domain and codomain of 10 frequent qualities in our evaluation

Quality (Type) Domain Codomain

Operability {a system} {time to operate}
{ease of operating: easy, hard ...}

Availability {a system} {0% 100%}

Processing/Response time {functions/tasks} {time interval}
{slow, ... fast, ...}

Scalability {a system} {simultaneous transactions}

Learnability {a system} {time to learn}
{ease of learning}

Frequency {functions/tasks} {numbers per time unit}
Understandability {a system} {ease of understanding}

Modifiability {a system} {time to modify}
Look and feel {a system} {degree of preferences}

The structure of the codomains of some qualities may be complex, and can differ
depending on their subjects. For example, according to the ISO/IEC 25010 standard [93],
the codomain of “usability” is a six-dimensional space, with each of its sub-qualities being
one dimension. Of course, stakeholders may only be concerned with some of these sub-
qualities, in which case a “usability” QG should be refined accordingly. For example, if
only “learnability”, “operability”, and “accessibility” are of concern, then the codomain
of usability becomes three-dimensional.

By differentiating a quality (type) from the quality spaces it can be projected on,
we can account for the possibility of having multiple quality spaces (with measurement
structures derived from them) for the same quality (type) [13]). Thus such a quality
(type) could map an individual subject to different quality values in their respective
quality spaces. For example, as shown in Table 4.1, “Learnability” can map “a system”

62 Chapter 4. Ontological Interpretation of Requirements

to either “easy/good” or “x minutes of training” in different quality spaces.

4.3.2 QRs vs. Softgoals

In our view, the distinction between FRs and NFRs is orthogonal to that of hardgoals and
softgoals. Traditionally, hardgoals and softgoals are informally differentiated depending
on whether they have clear-cut criteria for success (the former) or not (the latter) [176].
Here, we take the following stance on these concepts, capturing their distinction as follows:
a hardgoal can be objectively satisfied by a given set of situations (states of affairs). In
contrast, a softgoal is an initial and temporary vague expression of intention before the
goal at hand is properly refined. As such, we are not able to determine a priori the set of
situations that satisfy a softgoal, i.e., its truth-making conditions.

For example, “design the system’s main menu” is a high-level goal and it can be con-
sidered vague (and thus modeled as a softgoal). In addition to capturing high-level vague
goals, softgoals are also useful when capturing and analyzing vague QRs. As previously
mentioned, a QR is a requirement (goal) referring to a quality (type). In this case, a
softgoal refers to a vague quality region, meaning that although we are aware that such
region exists in the quality space, we do not know where the boundaries of that region ex-
actly are. For instance, consider that the aforementioned requirement is now refined into
a QR: “The menu buttons must have standard format”. At first, the system’s stakeholders
and analyst may have difficulties in mapping standard to a specific region in the interface
format quality space. As the analysis moves forward, vague QRs are continuously refined
and operationalized, and hence such vagueness generally disappears.

The NFR framework [37] models NFRs as softgoals that are not clear for success, and
on the other side, the CORE ontology [103] treats FRs as hardgoals i.e. goals whose
satisfaction have a determinate truth-value. However, we claim that these definitions
of FR/NFR and hardgoal/softgoal are, in fact, orthogonal, allowing us to identify FRs
that are softgoals as well as NFRs that are in fact hardgoals. Moreover, the categories
of FR and NFR are not disjoint, indicating that a requirement can fall into both cate-
gories. See Section 4.4.1 for some interesting examples that illustrate the usefulness of
this orthogonality principle.

4.3.3 Refining QRs

Making QRs measurable often involves refinement operations, which make the resulting
requirement(s) more precise and/or measurable than the original one. Often, the refine-
ment of a QR consists in conceptually deconstructing the QR’s referred qualities. Our

4.3. Non-functional Requirements (NFRs) 63

characterization of qualities offers several ways to refine a quality requirement:

• One way to do this is to identify the sub-qualities of the quality associated with the
QR. As an example of refining a QR “The menu buttons must have standard format”
by decomposing its quality, “Format”, with respect to buttons may, for instance,
be decomposed into “Size”, “Shape”, and “Color”. Considering “Size”, it may be
further decomposed into “Height” and “Width”. Hence, a further refinement could
be “The menu buttons must have standard height and width”.

• A second way is to identify whether the quality associated with the QR is a resultant
quality, which can be conceptually reduced to qualities of parts of the subject/bearer.
For instance, we could refine the QR “The user interface must have standard format”
by reducing the quality at hand in terms of qualities of parts of the subject (“the
interface”). Since the interface is usually composed of buttons, fields, icons etc.,
“The menu buttons must have standard format” illustrates a possible refinement of
the requirement.

• A third way is to refine, shrink or enlarge, the expected quality region. For example,
we can shrink the expected quality region “good” in the QR “the system shall have
a good usability” to “very good”, or enlarge the region “[0, 3 (Sec.)]” in “the file
search function shall take less than 3 sec.” to “[0, 5 (Sec.)]”.

Keep in mind that if we refine a quality requirement by following the first and second
way, the refinement is usually a weakening. This is because we often care about only some
sub-qualities of the original quality or some parts of the original subject when refining a
QR. For example, the refinement from “The menu buttons must have standard format”
to “The menu buttons must have standard size” is a weakening since we only care about
“standard size” and leave out “standard shape” and “standard color”. In the case we care
about all the sub-qualities or all the parts (e.g., we also need to consider “standard shape”
and “standard color” 2), the refinement will be an equating (i.e., the solution space does
not change). When following the third way, an enlarging of the desired quality region is a
weakening while a shrinking is a strengthening: intuitively, it is easier (resp. harder) for
a quality value to be located in a larger (resp. smaller) region.

4.3.4 Operationalizing QRs

To make QRs measurable, we need to operationalize them by constraining the referred
qualities so that these qualities take values in measurable quality regions. That is, oper-

2We assume that “Format” only has three sub-qualities: “Size”, “Shape”, and “Color”.

64 Chapter 4. Ontological Interpretation of Requirements

ationalizing QRs as quality constraints (QCs).
We may operationalize the QR “The menu buttons must have standard length and

width” by defining the quality constraint “The menu buttons must have height 0.75 cm and
width 1.75 cm”. While in this example, qualities are constrained to have specific quality
values, in other cases, operationalization of a QR may concern a region, as in “The search
functionality must be efficient”, operationalized by “The search results shall be returned
within 30 seconds after the user enters search criteria”. In our framework, the value
“efficient” here is associated to a region in the time quality dimension, comprehending
quality values from 0 to 30 seconds.

Note that terms such as “efficient” and “low” may refer to different quality regions,
depending on the type of the subject. For instance, take the requirement “Learning to
operate the login function must be efficient”. This QR may be operationalized by “The
user should learn how to operate the login function within 3 minutes”. Thus “efficient”
for learning the login function and for returning search results (previous example) may
map to different regions in the time quality dimension.

4.3.5 Satisficing QRs

Consider the satisfaction of a quality constraint (QC) as a math function, which results
in “1” (if the QC is satisfied) and “0” (if unsatisfied). The key point to determine the
satisfaction of a QC is to understand if the measured or perceived quality value is a
member of the region to which the QC is associated. If yes, the satisfaction function
returns “1” and otherwise, it returns “0”. For example, considering “The search results
shall be returned within 30 seconds after the user enters search criteria” (constraint defined
region: [0, ¤ 30 (Sec.)]), if the runtime measurement of a search duration results in 25
seconds, the QC is satisfied; if the result is 32 seconds, then it is not.

However, this may be too strong a condition. Perhaps a 32 second response is “good
enough”. In many cases, “good enough” performance is sufficient, i.e., degree of fulfillment
of a QC is what matters, rather than black-or-white fulfillment. Thus, in order to capture
the intended semantics of many QRs communicated by stakeholders, the satisfaction
function should not be a binary function but should instead return a graded satisfaction
value in the interval between “0” and “1”.

To account for such phenomena, we use the “graded membership” theory, proposed by
Decock et al. [52] and based on the Gardenfors’s conceptual space theory [72]. In Garden-
fors [72], the definition of quality region in the quality space is based on a combination
of prototype theory [143] and the mathematical technique of Voronoi diagrams [18]. Pro-

4.3. Non-functional Requirements (NFRs) 65

totype theory claims that some instances of a concept are more representative or typical
than others (thus termed prototypes). Thus, the prototype of a quality is nothing other
than a point in its quality space. Creating Voronoi diagrams is a very general technique
and can be applied to any metrical space in order to divide the space into cells. Each cell
has a center, and contains all and only those points that lie no closer to the center of any
other cell than to its own (see Fig. 4.5 (A) for an illustration). Combining prototype the-
ory and this technique consists in defining Voronoi diagrams by using quality prototypes
as their central points.

Figure 4.5: Two-dimensional Voronoi and collated Voronoi diagrams (adapted from [54])

To overcome the limitations in dealing with gradable concepts (e.g., “low”, “relatively
low”, “adequately low”, and “very low”), Douven et al. [54] extend this approach by
assuming that conceptual spaces may contain prototypical regions rather than isolated
prototypical points. Using these prototypical regions, they develop a technique to generate
what they call Collated Voronoi Diagrams. This technique starts by considering the set
of all possible selections of exactly one prototypical point from each prototypical region.
Each selection can be used to generate a different diagram of the quality space QS.
Let us call the set of all these diagrams VQS. The Collated Voronoi Diagram can be
generated by projecting all elements in VQS onto each other (thus overlaying the resulting
diagrams). Fig. 4.5 (B) depicts this idea. In the resulting diagram, the regions created
by the tessellation have thicker borders than in the traditional Voronoi diagrams.

Decock and Douven [52] point out that Fig. 4.5 (B) is misleading in making one think
that the transition from a crisp region (i.e., one of the white polygons/polyhedrons in
the figure) to a borderline region is itself sharp, and provide a method for making the
transition smooth. Their main idea is illustrated with the following example: suppose we
have four prototypical regions, each consisting of two points {a, b}, {c, d}, {e, f } and
{g, h}, and representing a prototype region (i.e., a concept such as “low”, “medium”, and

66 Chapter 4. Ontological Interpretation of Requirements

“high”). Now, suppose we generate the VQS in the manner previously explained (i.e., VQS
would contain 2 � 2 � 2 � 2 � 16 members in this case). The graded membership of a
particular point p in the quality space QS to a concept X (with degree D) is defined as:
the number of members of VQS that locate p in the cell associated with X divided by the
total number of members of VQS. For example, as in Fig. 4.5 (C), the point i belongs to
the concept associated with {a, b} with a degree 0.5, since 8 of the 16 members of VQS
locate i in the cell associated with {a, b}. Similarly, j, belongs to that concept with a
degree of 0.25.

By adopting the “graded membership” view, the satisfaction of a QC for a subjec-
t/bearer subj is defined by the membership of the observed quality value of subj in the
region QRG. For the details about how to calculate graded membership, we refer inter-
ested readers to Appendix B.

4.4 Practical Implications

4.4.1 Distinguishing between FRs and NFRs

In RE, there are two general criteria for distinguishing between functional and non-
functional requirements, both of which are based on the premise that functional require-
ments (FRs) specify what a software system shall do (i.e., its functions): one takes the
stance that non-functional requirements (NFRs) specify how well the system should per-
form its functions (i.e., qualities) [134], the other is to treat everything that is not an FR
(i.e., not related to what a system shall do) as an NFR (i.e., as a sort of dispersive class
defined by negation) [37]. However, when put into practice, both criteria are deficient.
For instance, how does one classify Ex.1 below, which specifies a function (“support”)
that will not be performed by the system but by an external agent (“the corporate sup-
port center”)? One may treat it as an NFR by following the second criterion, but this is
conceptually incorrect. In fact, Ex.1 will be classified as an FR in our proposal (because
it requires a function of an entity in the system-to-be ecosystem).

Ex.1: The product shall be supported using the corporate support center.
Ex.2: The system shall have a standard navigation button for navigation.
Ex.3: The system shall help administrators to analyze failures/exceptions.
Ex.4: The transportation system shall collect real-time traffic information.

Jureta et al. [103] have made the first step in grounding this distinction on qualities
in the foundational ontology DOLCE [123]. As we have discussed in Section 2.1, their

4.4. Practical Implications 67

requirements ontology still has deficiencies: it is not able to categorize requirements like
Ex.2 (referring to neither qualities nor perdurants), Ex.3 (referring to a perdurant but
being vague for success) and Ex.4 (referring to both perdurants and qualities).

Our guideline for distinguishing between FRs and NFRs: if a requirement refers
to a quality type, then it is non-functional; if it refers to a function (in the
ontological sense), then it is functional.

Adopting this guideline, we can easily classify Ex.2 as functional, because it concerns a
“navigation” function that is exhibited by the navigation button. Note that the distinction
between FR and NFR is orthogonal to the one between hardgoal and softgoal. Hence,
an FR can be vague while an NFR can also have a clear satisfaction criterion. For
instance, Ex.3 is an FR but one that has a subjective criterion of satisfaction. Moreover,
the classes of FRs and NFRs are not mutually exclusive. For example, Ex.4 specifies
a desired function “collect traffic information” but also refers to a quality (timeliness)
of “collecting traffic information”. This is also the case for Ex.3: in addition to the
“navigation” function, it also constrains the way of navigating users through navigation
buttons (an FC), and require the navigation button to be standard (a QR).

We have evaluated the guideline by applying it to the PROMISE requirements dataset
[129], which includes 625 requirements (255 FRs and 370 NFRs) crossing 15 software
projects. We found that most of the original security NFRs are often functional. For
example, “The website shall prevent the input of malicious data”, originally labeled as a
security NFR, should actually be a FR since it refers to a “prevent” function. The result
suggests that our ontological interpretation is effective in distinguishing between FRs and
NFRs in practice. For more details on the evaluation, interested readers can refer to
Section 8.2.

4.4.2 Addressing Inconsistency between Quality Models

In the literature, when mentioning a quality, existing quality standards such as ISO/IEC
25010 [93] usually do not consider its subject/bearer; that is, we do not know whose qual-
ity it is or the quality of what. In our observation, the missing of subjects (of qualities)
can be an important factor that leads to inconsistency when classifying qualities. For
example, the “understandability” quality can be associated with many different aspects
of a product, e.g., terminologies, user interface, architecture, code or documents. When
taking a user’s perspective (e.g., the understandability of the user interface), “under-
standability” will be classified as a sub-quality of “usability” as in ISO/IEC 9126-1 [10];
however, when taking a developer’s perspective (e.g., the understandability of the code

68 Chapter 4. Ontological Interpretation of Requirements

or the architecture of a software system), it will be a sub-class of “maintainability” as in
Boehm et al. [27].

As we can see, the consideration of the subject of a quality contributes to addressing
the inconsistency between quality hierachies/models. Note that the quality standards do
classify qualities into categories, e.g.,“product quality” or “quality in use” as in ISO/IEC
25010 [93]. However, categories are not the subjects/bearers of qualities: a quality exis-
tentially depends on particular things such as entities, processes, events. etc.

4.4.3 The Satisfaction of QRs

Specifying QRs can be quite useful in practice since, in many cases (as exemplified in
Section 4.3.5, it may be enough to “almost” reach the satisfaction of an QR. For instance,
suppose that the associated quality value region “low” of the QR “the cost of trip from
A to B at time period T shall be low” is represented by two prototype values 500e and
700e. Similarly, we can use 800e and 1000e , and 1200e and 1500e to represent the
region “medium” and “high”. Given the three prototype regions, the VQS will include 8
simple diagrams. Now if we have a cost value as 740e , then we will have 6 out of 8
diagrams classify it to the region “low”. Thus, that QR is satisfied to a degree of 0.75.
Interested readers can refer to the calculation details at Appendix B.

The interesting point here is that we can use prototype values to represent a region,
and then adopt (collated) Voronoi diagrams to reason about the graded membership
without the need of inventing made-up numbers as that in fuzzy logic [22].

4.5 Chapter Summary

In this chapter, we have discussed about the ontological meaning of functional and non-
functional requirements, and accordingly sketch a description-based syntax for their rep-
resentation. Our ontological interpretation of requirements provides conceptual clarifica-
tion, and enables us to clearly distinguish between functional and non-functional require-
ments. Also, our characterization of qualities contributes to addressing the inconsistency
between quality hierarchies/models. Moreover, as we have seen, it offers support for rea-
soning about the satisfaction of quality requirements, designing requirement modeling
languages, and refining/operationalizing requirements.

Chapter 5

The Desiree Framework

In the previous chapter, we have provided an ontological interpretation for functional and
non-functional requirements, and sketched a syntax for their representation. Based on
this, in this chapter, we present the Desiree framework, including a set of requirement
concepts, a set of requirements operators, a description-based syntax for representing
these concepts and operators, and a systematic methodology for applying the concepts and
operators in order to transform stakeholder requirements into a requirements specification.

5.1 Requirements Concepts

The core notions of Desiree, classified according to the RE problem (requirement R,
specification S, and domain assumption DA), are shown in Fig. 5.1. As in goal-oriented
RE, we capture stakeholder requirements as goals. We have 3 sub-kinds of goals, 4
sub-kinds of specification elements (those with stereotype “Specification Element”), and
domain assumptions, all of which are subclasses of “Desiree Element”. These concepts are
derived from our ontological interpretation in the previous chapter and our experiences
on examining the large PROMISE requirements set [129]. In the sequel, we use examples
from this set to illustrate each of these concepts and relations (see Table C.1 in Appendix C
for the full syntax).

Functional Goal, Function and Functional Constraint. A functional goal (FG)
states a desired state, and is operationalized to one or more functions (F). For example, the
goal “student records be managed” specifies the desired state “managed”. As mentioned
in Section 4.2.1, we capture the intention of something to be in a certain state (situation)
by using the symbol “: ”. So this example is interpreted as a functional goal “FG1 :=
Student record : Managed” (here “Managed” refers to an associated set of individuals

69

70 Chapter 5. The Desiree Framework

«DesireeElement»
Goal

«Goal»
FunctionalGoal

«Goal»
QualityGoal

«SpecificationElement»
Function

«SpecificationElement»
FunctionConstraint

«SpecificationElement»
QualityConstraint

OperationalizedTo
1

*

ReduceTo 1
1..*

OperationalizedTo
1

* ReferTo

11

OperationalizeTo1 1..*

ScaleTo; deUniversalizeTo
1

1

FocusTo

1

1..*

«Goal»
ContentGoal

OperationalizeTo1 1

«SpecificationElement»
StateConstraint

OperationalizeTo1 *

ReduceTo

1

1..*

InterpretTo

1

1

ScaleTo; deUniversalizeTo

1

1

ReferTo
1

*

ReferTo
1

OperationalizeTo
1

*

OperationalizeTo

*

«DesireeElement»
SpecificationElement

InterpretTo
1

1

ReferTo

1

*

DesireeElement

InterpretTo

1 1

InterpretTo

1

1
«DesireeElement»
DomainAssumption

Conflict
1

*

ReferTo

1

*

ReferTo1 *

Figure 5.1: The requirements ontology

that are in this specific state). This FG will be operationalized using functions such as
“add”, “update” and “remove” on student records.

As most perceived events in UFO [78] are polygenic, i.e., when an event is occurring,
there are a number of dispositions of different participants being manifested at the same
time, many pieces of information (e.g. actor, object, and trigger) can be associated
with the desired capability when specifying a function (F). For example, an execution of
“product search” will involve participants like the system, a user, and product info. That
is, “the system shall allow users to search products” can be operationalized as a function
“F1 := Search subject: {the system}¡ actor: User¡ object: Product¡”. Moreover,
we can further add search parameters by adding a slot-description pair “ parameter :
Priduct name ¡”.

A functional constraint (FC) constrains the situation under which a function can
be manifested. As above, we specify intended situations using “ s : D ¡” pairs and
constrain a function or an entity involved in a function description to be in such a situation
using “: ”. For example, “only managers are able to activate debit cards” can be captured
as “FC1 := Active object: Debit card¡ : actor: ONLY Manager¡”.

Quality Goal and Quality Constraint. We treat a quality as a mapping function
that maps its subject to its value. Quality goal (QG) and quality constraint (QC) are
requirements that require a quality to have value(s) in a desired quality region (QRG).
In general, a QG/QC has the form “Q (SubjT) :: QRG”. For instance, “the file search

5.1. Requirements Concepts 71

function shall be fast” will be captured as a QG “Processing time (File search) :: Fast”.
There are three points to be noted. First, QGs and QCs have the same syntax, but

different kinds of QRGs: regions of QGs are vague (e.g., “low”) while those of QCs are
often measurable (e.g., “[0, 30 (Sec.)]”, but see Example 5 in Section 5.2 for a more
complex expression). Second, a quality name indicates a quality type, not a quality
instance. By applying a quality type (e.g., “Processing time”) to an individual subject
x of type SubjT (e.g., a run of search, say search#1), we first get a particular quality
q# (e.g., processing time#1), and then the associated quality value of q#. Third, when
the subject is represented as individuals, we use curly brackets to indicate a set, e.g.,
“{the system}”.

Content Goal and State Constraint. A content goal (CTG) often specifies a set of
properties of an entity in the real word, including both attributes and qualities, and these
properties need to be represented by a system-to-be. To satisfy a CTG, a system needs
to be in a certain state, which represents the desired world state. That is, concerned
properties of real-world entities should be captured as data in the system. We use a state
constraint (SC) to specify such desired system state.

For example, to satisfy the CTG “A student shall have Id, name and GPA”, the
student record database table of the system must include three columns: Id, name and
GPA. This example can be captured as a content goal “CTG1 := Student : has id: ID¡
 has name: Name¡ has gpa: GPA¡” and a state constraint, “SC2 := Student record
: ID: String¡ Name: String¡ GPA: Float¡”.

Domain Assumption. A domain assumption (DA) is an assumption about the oper-
ational environment of a system. For instance, “the system will have a functioning power
supply”, which will be captured as “DA1 := {the system} : has power: Power¡” using
our language. Note that the syntax for DAs is similar to that for FCs. The difference is
that an FC requires a subject to possess certain properties (e.g., in certain situations),
while a DA assumes that a subject will have certain properties. In addition, DAs in our
framework are also used to capture domain knowledge, e.g., “Tomcat is a web server” will
be captured as “DA2 := Tomcat : Web server”.

According to Zave and Jackson’s categorization of requirements (R), specification (S)
and domain assumptions (DA), our requirements can be accordingly classified as: (1)
(stakeholder) requirements, including Goal, FG, QG, and CTG; (2) (requirements) spec-
ification, including F, FC, QC, and SC; and (3) DA. Further, in our ontology, traditional
non-functional requirements will be distributed into the following five kinds of elements:
QGs, QCs, CTGs, SCs or FCs. That is, what have been traditionally called NFRs but

72 Chapter 5. The Desiree Framework

do not refer to qualities can be CTGs, SCs or FCs.

5.2 Requirements Operators

In this section, we introduce the set of requirements operators used for transforming re-
quirements, which are inspired by traditional goal modeling techniques, and the syntactic
form and semantics of our language. For example, since a QG/QC has the form “Q
(SubjT) :: QRG”, there can be different ways of refining it, based on whether Q, SubjT,
or QRG is adjusted. In addition, since the semantics of such formulas have the form “@
x/SubjT”, we also need to consider de-Universalizing them. Moreover, as qualities are
measurable or observable properties of entities, we should also be able to add information
about the observers who observe the quality.

In general, Desiree includes two groups of operators (8 kinds in total): refinement
and operationalization. An overview of these operators is shown in Table 5.1, where
“#” means cardinality, “m” and “n” are positive integers (m ¥ 0, n ¥ 2). As shown,
“Reduce”, “Interpret”, “de-Universalize”, “Scale”, “Focus” and “Resolve” are sub-kinds
of refinement; “Operationalize” and “Observe” are sub-kinds of operationalization.

In the Desiree framework, refinement operators are applied in the same category of
elements: they refine goals to goals, or specification elements to specification elements.
Operationalization operators map from goals to specification elements. Note that the
“Interpret” operator is special: we allow interpreting a goal (requirement) as a sub-kind
of goal or a specification element. In addition, we do not support refinements from
specifications to goals (i.e., requirements).

Table 5.1: An overview of the requirements operators

Requirements Operators #InputSet #OutputSet

Refinement

Reduce (Rd) 1 1...m
Interpret (I) 1 1

de-Universalize (U) 1 1
Scale (G) 1 1
Focus (Fk) 1 1...m

Resolve (Rs) 2...n 0...m

Operationalization Operationalize (Op) 1 1...m
Observe (Ob) 1 1

Reduce (Rd). “Reduce” is used to refine a composite element (goal or specification

5.2. Requirements Operators 73

element) to simple ones, a high-level element to low-level ones, or an under-specified
element to a complete enough ones. For instance, the composite goal G1 “collect real time
traffic info” can be reduced to G2 “traffic info be collected” and G3 “collected traffic info
be in real time”.

The signature of operator “Rd” is shown in Eq. 5.1, where “E 1” is a goal (e.g., goal,
FG, QG, CTG) or a specification element (e.g., F, FC, QC, SC). It takes as input an
element E 1 and outputs a non-empty set (indicated by ℘1, where ℘ represents power-set)
of elements that are exactly of the same kind (with optional DAs). That is, we only
allow reducing from goal to goal (not its sub-kind), FG to FG, F to F, etc; we also allow
making explicit domain assumptions when applying the “Rd” operator. For example,
when reducing G1 “pay for the book online” to G2 “pay with credit card”, one needs to
assume DA3 “having a credit card with enough credits”. This refinement can be captured
as “Rd (G1) = {G2, DA3}”.

Rd : E 1 Ñ ℘1pE
1 \DAq (5.1)

The “Rd” operator allows us to refine an element (a goal or a specification element)
to several sub elements; hence it captures AND-refinement in traditional goal modeling
techniques. To capture OR-refinement, we can apply the reduce operators several times,
according to the different ways that a goal can be refined. For example, we will have two
refinements “Rd (G1) = {G2}” and “Rd (G1) = {G3}” when reducing G1 “search products”
to G2 “search by product name”, and to G3 “search by product number”, separately. As a
result, “Rd” gives rise to a relation, not a (math) function.

Interpret (I). The “I” operator allows us to disambiguate a requirement by choos-
ing the intended meaning, classify and encode a natural language requirement using our
description-based syntax. For example, a goal G1 “notify users with email” can be inter-
preted as F2 “Notify object: User¡ means: Email¡”. Note that G1 is ambiguous since
it has another interpretation F3 “Notify object: User has email: Email¡¡. In such
situation, analysts/engineers have to communicate with stakeholders in order to choose
the intended interpretation.

We show the signature of “I” as a partial function in Eq. 5.2. Here G is a goal, FG,
QG and CTG are its subclasses, SE is a specification element, which can be F, FC, QC,
or SC. Using this syntax, the “notify user” example will be written as “I (G1) = F2”
(suppose that “F2” is the intended meaning).

I : GÑ pFG\QG\ CTG\ SEq (5.2)

74 Chapter 5. The Desiree Framework

Focus (Fk). The Fk operator is a special kind of “Reduce”, and is used for refining a
QGC 1 (QG/QC) to sub-QGCs, following special hierarchies of its quality type or subject,
e.g., dimension-of, part-of. For instance, for QG1 “Security ({the system}) :: Good”, the
quality type “Security” can be focused to its sub-dimensions, e.g., “Confidentiality”, the
subject “the system” can be replaced by some of its parts, e.g., “the data storage module”.
The key point of applying Fk is that if a quality goal QG1 is focused to QG2, then QG1

would logically imply QG2. For instance, if the system as a whole is secure, then its data
storage module is secure, too.

The Fk operator has the signature as in Eq. 5.3. In general, it replaces the quality
type (resp. subject type) of a QGC with given Qs (resp., SubjTs), and returns new
QGCs. Using this syntax, the focus of QG1 to a sub-goal QG3 “Security ({data storage})
:: Good” can be obtained as “Fk (QG1, {data storage}) = {QG3}”.

Fk : QGC � ℘1pQq Ñ ℘1pQGCq

Fk : QGC � ℘1pSubjT q Ñ ℘1pQGCq
(5.3)

Scale (G). In general, the G operator is used to enlarge the boundary of the quality
region (QRG) of a QG/QC, in order to tolerate some deviations of quality values (i.e.,
relaxing the QG/QC to some degree). For instance, we can relax “fast” to “nearly fast”,
or “in 30 seconds” to “in 30 seconds with a scaling factor 1.2 ”. The G operator can be
also used to shrink the region of a QG/QC, strengthening the quality requirement. For
example, we can replace a region “good” with a sub-region “very good”, or more cleanly,
replace “[0, 30 (Sec.)]” with “[0, 20 (Sec.)]”. Based on the two cases, we specialize the
“scale” operator into “scale down” (Gd, relaxing through enlarging a QRG) and “scale
up” (Gu, strengthening through shrinking a QRG) accordingly.

The two scaling operators have the syntax as in Eq. 5.4. They take as input a QG
(resp. QC), a qualitative (resp. quantitative) factor and return another QG (resp. QC).

G : QG�QualitativeFactor Ñ QG

G : QC �QuantitativeFactor Ñ QC
(5.4)

Using this syntax, the relaxation of “fast” to “nearly fast” can be captured as in
Example 1, and the enlarging of “[0, 30 (Sec.)]” to “[0, 36 (Sec.)]” through a pair of
scaling factors “(1, 1.2)” can be written as in Example 2.

Qualitative factors can be used to either strengthen (e.g., “very”) or weaken (e.g.,

1A QGC is a QG or a QC, and models a QR; that is, a QGC is the structured version of a QR, which
is in natural language.

5.2. Requirements Operators 75

—Example 1—
QG1�1 := Processing time (File search) :: Fast
QG1�2 := Gd (QG1�1, nearly)
—Example 2—
QC2�1 := Processing time(File search) :: [0, 30 (Sec.)]
QC2�2 := Gd (QC2�1, (1, 1.2))

“nearly”, “almost”) QGs, scaling their regions up and down, respectively. Quantitative
factors are real numbers. We restrict ourselves to single-dimensional regions, which are
intervals of the form rBoundlow ... Boundhighs. When enlarging a quality region, the
scaling factor for Boundlow shall be less than or equal to 1.0, and the factor for Boundhigh
shall be greater than or equal to 1.0; when shrinking a region, opposite constraints must
hold. Note that a region can be enlarged or shrunk, but not can be shifted. For example,
we do not allow the change from “[10, 20]” to “[15, 25]”, which is a shift. This is because
we want to ensure the subsumption relation between regions when scaling them.

de-Universalize (U). U applies to QGs and QCs to relax quality requirements, such
that it is no longer expected to hold “universallly”, i.e., not to hold for 100% of the
individuals in a domain. For example, going from QG3�1 “(all) file searches shall be fast”
to QG3�2 “(at least) 80% of the searches shall be fast” in Example 3.

—Example 3—
QG3�1 := Processing time (File search) :: Fast
QG3�2 := U (?X, QG3�1, inheres in: ?X¡, 80%)

Note that a QGC (QG/QC) description has a built-in slot “inheres in”, relating
a quality to the subject to which it applies. For example, the right-hand side (RHS) of
QG3�1, “Processing time (File search)”, is actually “Processing time inheres in: File search¡”.
The syntax of U refers to a subset “?X” of the subject concept by pattern matching, using
the SlotD “ inheres in: ?X¡”. Hence the above relaxation will be captured as in Example
3, where “?X” represents a sub-set of “File search”.

The general signature of the U operator is given in Eq. 5.5.

U : varId�QGC � SlotD � r0%...100%s Ñ QGC (5.5)

Sometimes we want to capture relaxations of requirements over requirements, for ex-
ample, “system functions shall be fast at 90% of the time”, relaxed to “(at least) 80% of
the system functions shall be fast at least 90% of the time”. For this, we use nested U , as

76 Chapter 5. The Desiree Framework

in Example 4 below. Here, “?F” is a sub-set of system functions (i.e., “?F” matches to
“System function”), and “?Y” is a sub-set of executions of a function in “?F” (i.e., “?Y”
matches to the description “Run run of: ?F¡”).

—Example 4—
QG4�1 := Processing time (Run run of: System function¡) :: Fast
QG4�2 := U (?F, QG4�1, inheres in: run of: ?F¡¡, 80%)
QG4�3 := U (?Y, QG4�2, inheres in: ?Y¡, 90%)

U applies to only QGs and QCs. If one wants to specify the success rate of a function,
one can first define a QC, e.g., “Success (File search) :: True”, and then apply U .

Resolve (Rs). In practice, it could be the case that some requirements can stand by
themselves, but will be conflicting when put together, since they cannot be satisfied
simultaneously. Note that by conflict, we do not necessarily mean logical inconsistency,
but can also be other kinds like normative conflict or unfeasibility given the state of
technology. For example, the goal G1 “use digital certificate” would conflict with G2

“good usability” in a mobile payment scenario. In Desiree, we use a “conflict” relation to
capture this phenomenon, and denote it as “Conflict ({G1, G2})”.

The “Rs” operator is introduced to help deal with such conflicting requirements: it
takes as input a set of conflicting requirements (more than one), while the output captures
a set of compromise (conflicting-free) requirements, determined by the analyst. In the
example above, we can replace G2 by G12 “acceptable usability” or drop G1.

The signature of Rs is shown in Eq. 5.6. Here we do not impose cardinality constraints
on the output set, allowing stakeholders to totally drop the conflicting requirements when
it is really necessary. Using this, we can write the resolution of this conflict as “Rs ({G1,
G2}) = {G1, G12}” or “Rs ({G1, G2}) = {G2}”.

Rs : ℘1pEq Ñ ℘pEq (5.6)

Operationalize (Op). The Op operator is used to operationalize goals into specifica-
tion elements. In general, Op takes as input one goal, and outputs one or more spec-
ification elements. For instance, the operationalization of FG1 “Products : Paid” as
F2 “Pay object: Product¡ means: Credit card¡” and DA3 “Credit card : Hav-
ing enough credit” will be written as “Op (G1) = {F2, DA3}”.

The generalized syntax of Op is shown in Eq. 5.7.

5.2. Requirements Operators 77

Op : FGÑ ℘pF \ FC \DAq

Op : QGÑ ℘pQC \ F \ FC \DAq

Op : CTGÑ ℘pSC \DAq

Op : Goal Ñ ℘pDAq

(5.7)

Note that one can use Op to operationalize a QG as QC(s) to make is measurable, as
Fs and/or FCs to make it implementable, or simply by connecting it to DA(s), assuming
the QG to be true.

Observe (Ob). The Ob operator is employed to specify the means, measurement in-
struments or human used to measure the satisfaction of QGs/QCs, as the value of slot
“observed by”. For instance, we can evaluate “be within 30 seconds” by assigning a
stopwatch or assess a subjective QG “the interface shall be simple” by asking a set of
observers. The Ob operator has the signature shown in Eq. 5.8.

Ob : pQG\QCq �ObserversÑ QC (5.8)

Consider now the requirement “(at least) 80% of the surveyed users shall report the
interface is simple”, which operationalizes and relaxes the “the interface shall be simple”.
The original goal will be expressed as QG5�1 in Example 5. To capture the relaxation,
we first use Ob, asking a set of surveyed users to observe QG5�1, and then use U , to
require (at least) 80% of the users to agree that QG5�1 hold. Here, the set variable “?S”
represents a subset of surveyed users.

—Example 5—
QG5�1 := Style ({the interface}) :: Simple
QC5�2 := Ob (QG5�1, Surveyed user)

= QG5�1 observed by: Surveyed user¡
QC5�3 := U (?S, QC5�2, observed by: ?S¡, 80%)

ReferTo. We use the “ReferTo” relation to capture the interrelations between Fs, FCs
QGs, QCs, CTGs and SCs. In general, an F could refer to some CTGs or SCs, e.g.,
“F1 := Search object: Product info¡” (“product info” indicates a CTG); a QG/QC can
take an F as its subject, containing its executions to be in certain time limitation, e.g.,
“Processing time (F1) :: [0, 30 (Sec.)]”; an FC could constrain an entity or a function
involved in a function description, e.g., “F1 : actor: ONLY Registered user¡” (only
registered users can search); a CTG could refer to other SCs, e.g., when defining an

78 Chapter 5. The Desiree Framework

attribute “has product parameter”, we will need another SC “Product parameter”.
The capture of such interrelations contributes to improving the modifiability and trace-

ability of a requirements specification. For example, by translating a requirements speci-
fication with our syntax into a DL specification, we are able to performs queries such as
“what functions does a quality refer to?”, “what qualities are of concern for a function?”,
and “what functions will an entity be involved in?”. That is, we can easily know what
kinds of qualities will be affected if we change a function, what kinds of functions will be
affected if we change the schema of an entity (i.e., an SC), etc. We will discuss this in
detail in Section 8.4.

5.3 A Transformation Methodology

The Desiree approach takes as input informal stakeholder requirements, and outputs
an eligible specification through incremental applications of the requirements operators.
In general, the method consists of three major phases: (1) an informal phase, where
composite requirements are broken down into goals representing single requirements and
high-level requirements are reduced to low-level ones; (2) an interpretation phase, where
each informal goal is structurally specified, along with its relationships to other goals;
(3) a smithing phase, where requirements operators are iteratively applied on structurally
specified goals to derive an eligible (complete enough, unambiguous, measurable, mutually
consistent, satisfiable, modifiable, traceable) specification.

5.3.1 Informal Phase.

In this phase, each requirement is simply treated as a proposition and captured as a goal
(G). The main tasks of requirement engineers here are to: (1) identify key stakeholder
concerns and determine their classifications according to the requirements ontology of
Fig. 5.1; (2) de-couple composite concerns to make them atomic, and (3) refine high-level
requirements to low-level ones in the spirit of goal-oriented refinement techniques.

Step 1: Identify key concerns and determinate classifications. We ask the question
“what does a goal (requirement) G concern?” to determine its classification, and provide
some operational guidelines as follows.

• If G refers to several concerns, e.g., multiple functions, multiple qualities, or a mix
of functions and qualities/content, then it is a composite goal and needs to be
decoupled. For example, “the system shall be able to interface with most DBMSs”

5.3. A Transformation Methodology 79

is composite since it refers to a function “interface with” and a universality quality
“most” over the set of DBMSs.

• If G requires an entity to be in a certain state, and will be fulfilled through one or
more functions, then it is a functional goal FG. For example, “order be paid” is an
FG since it requires the entity “order” to be in a state, and could be operationalized
as functions such as “pay with credit card” and “pay with debit card”.

• If G refers to only function(s), then it is a function F. For convenience, we treat a
functional requirement as a function (F) rather than a functional goal (FG). For ex-
ample, the requirement “the system shall be able to send meeting notification”, which
states an implicit functional goal “meeting notification be sent”, will be preferably
classified as a function.

• If G constrains the situation of a function (e.g., actor, object, pre-condition, etc.),
then it is an functional constraint FC. For example, “the students added to a course
shall be registered”. Note that an FG differs from an FC in that an FG is operational-
ized as function(s) to be newly designed (or, alternatively, represents a desired state
that will be brought about through the manifestation of a function) while an FC
constrains certain function(s) already exist in a design (or, alternatively, constrains
a situation under which a function will be manifested).

• If G refers to only quality(-ies), then it is a quality requirement (QR). Further, if it
is vague for success, then it is a quality goal QG; if it is clear for success, then it is
a quality constraint QC.

• If G describes the attributes a real-world entity shall possess, then it is a content
goal CTG. For example, “a meeting room (in the real world) has room number,
room type, capacity”.

• If G defines the columns a data table shall have or the attributes of an information
entity shall exhibit, then it is a state constraint SC. For example, “a meeting room
record (an information entity) shall include room number, room type, capacity”.

• If G makes an assumption about the environment of a system or describes domain
knowledge, then it is a domain assumption DA. For example, “the product will be
used in an office environment”, or “MVC is a design pattern”.

Step 2: Separate Concerns. In case a goal (requirement) G is a combination of con-
cerns, its concerns need to be separated by using the “Reduce” (Rd) operator.

80 Chapter 5. The Desiree Framework

• If G is a mix of function and quality, it can be reduced into two goals G1 and G2,
with G1 concerning the function while G2 concerning the quality. For example, the
DBMS example shall be decomposed into G1 “the system shall be able to interface
with DBMSs” and G2 “most of the DBMSs”.

• If G refers to sibling functions or qualities, it shall be separated such that each
resulting goal concerns one function/quality. For example, “the system shall allow
entering, storing and modifying product formulas” shall be decomposed into G1 “the
system shall allow entering ...”, G2 “... storing ...”, and G3 “... modifying ...”.

• If G refers to nested qualities, we decouple them starting from the innermost layer.
For example, the goal “at least 90% of the tasks shall be completed within 5 seconds”
can be decoupled into two goals: G1 “processing time within 5 seconds”, and G2 “G1

shall be fulfilled for more than 90% of tasks”.

• If G is a mix of function and content, we derive two goals: a goal that describes
the content using corresponding attributes, and a goal that operates on the content.
For example, to capture the requirement “display date and time”, we will have G1

that describes an entity “calendar” using attributes date and time, and G2 “display
calendar”.

• If G includes purposes or means, it shall be decomposed to different goals. For
example, for “the product shall create an exception log of product problems for
analysis”, we will have a goal G1 “analyze product problems” being refined to G2

“create an exception log”.

Step 3: Refine Requirements. In this step, we refine high-level goals to low-level ones
by utilizing the Rd operator. For example, the goal G0 “trip be scheduled” can be reduced
to G1 “accommodation be booked” and G2 “ticket be booked” (“Rd (G0) = {G1, G2}”);
At the same time, if conflicts are found, we capture the conflicting requirements by using
the “Conflict” relation.

In this informal phase, the resulting elements of step 2 and 3 are still natural language
goals (i.e., have not been specialized into sub-kinds of goals or specification elements).
For each of the resulting goals, we just keep in mind its classification, and will classify
and structuralize it in the later interpretation phase.

5.3. A Transformation Methodology 81

5.3.2 Interpretation Phase.

In this phase we encode each goal in accordance with its classification. In general, the
syntactic forms for the 8 kinds of concepts (FG, F, FC, QG, QC, CTG, SC, and DA)
can be classified into three categories: (1) “FName s : D ¡�” (F), where “FName”
is the function name, “ s : D ¡�” indicates one or more slot-description pairs; (2) “Q
(SubjT) :: QRG” (QG/QC), where “Q” is a quality type, “SubjT” is the subject type
that a quality type refers to, and “QRG” is the desired quality region; (3) “Subsumee
: Subsumer” (FG, FC, CTG, SC, DA), where “Subsumee” refers to a subject that is of
concern, and “Subsumer” is a desired state, situation or property.

• Functions. To specify a function, we often need to find out its actor, object, and
sometimes its target, pre-, post- and trigger conditions. For example, “the product
shall be able to send meeting notifications” can be captured as “F1 := Send subject:
the system¡ object: ¥ 1 Meeting notification¡”. Note that this requirement is
incomplete since necessary information like “who will send” is missing, and will be
further refined in the later smithing phase.

• Quality Goals and Quality Constraints. The three key elements of a QG/QC include
quality, subject and desired quality region. Note that the subject can be either a bare
function/entity or a complex description. For example, for “90% of the maintainers
shall be able to integrate new functionality into the product in 2 work days’ ’, there
are two qualities: “operating time” for an integration process and “universality” for
the set of maintainers. We thus define two QCs: “QC1 := Operating time (Integrate
 actor: Maintainer¡ object: New functionality¡ target: {the product}¡) :: ¤
2 (work day)”, and “QC2 := U (?M, QC1, inhere in: Integrate actor: ?M¡¡,
90%)”.

• Functional Goals and Functional Constraints. For an FG, we need to identify the
entity that is of concern and the desired state. For example, for the functional
requirement ‘‘The product shall have a customizable look and feel”, the concerned
entity is “the interface”, and the desired state is “customizable”. This requirement
can be accordingly captured as “FG1 := {the interface} : Customizable”. An FC
can be structured in a similar way. For example, for “when a conference room is
reserved, the scheduler shall be updated”, we can write “FC2 := Update object:
Scheduler¡ : trigger: Reserve object: Room¡¡”. That is, by “FC2”, we
constrain the “Update” function to be in a state “having room reservations as its
trigger”.

82 Chapter 5. The Desiree Framework

• Content Goals and State Constraints. CTGs and SCs share a similar syntax. For
example, “the system shall display date and time” will be captured as a CTG
“Calendar : has date: Date¡ has time: Time¡” and an F “Display actor:
{the system}¡ object: Calendar¡”.

• Domain Assumption. A DA can also be specified using description subsumption, like
that for an FC. For example, “the system will be used in an Windows environment”
can be captured as “{the system} : has environment: Windows¡”.

The interpretation process facilitates the identification and resolution of requirements
issues such as incompleteness, ambiguity and unverifiability because it drives analysts/
engineers to think about the properties (slots) of a function capability (e.g., actor, object,
means, etc.), the cardinality of the description of a slot, the quantification of a vague
quality region, etc. For example, a trained analyst/engineer could find that “download
contact information for client” is ambiguous since it can be mapped into “Download
 object: Client contact information ¡” or “Download object: Contact information¡
 beneficiary: Client¡”. In such situation, stakeholders have to identify the intended
meaning(s). We refer interested readers to our evaluation in Section 8.5 for more detail.

5.3.3 Smithing Phase.

In this phase, the structured goals (FG, QG, CCTG) are incrementally refined and opera-
tionalized using the requirements operators, to derive a complete (enough), unambiguous,
measurable, satisfiable, and consistent requirements specifications.

Functional goals, functions and functional constraints. FGs can be refined by
using “Rd”, and finally operationalized as Fs, FCs, DAs, or combinations thereof with
“Op”. Our understanding of manifesting events of functions as polygenic enables us to
systematically operationalize FGs. Take the example of “the system shall be able to notify
realtors with a notification message”, which implies an functional goal “FG0 := Realtor
: Notified” (i.e., realtors be notified). What kind of effect is required to satisfy FG0?
Is it the case that FG0 is satisfied by merely a message being sent by the system? Or,
alternatively, does this goal also require the message to be properly received by realtors? In
the former case, we only need to design a function “F1 := Send subject: {the system}¡
 object: Notification message¡ target: Realtor¡” and simply assume certain capacities
on receiving by adding an assumption “DA2 := Participant : has capability: Receive
 object: Notification message¡¡” (denoted as “Op (FG0) = {F1, DA2}”). In the latter
case, we should design both the sending and receiving functions.

5.3. A Transformation Methodology 83

When functional goals are operationalized as functions and/or functional constraints,
the derived specification elements can be further refined by using “Rd”. In general, a
function can be reduced by refining a slot, the description of a slot, or adding/removing a
“ s : D ¡” pair; a functional constraint can be reduced according to domain knowledge.
Note that an application of Rd can be either an AND-refinement or an OR-refinement. For
example, the function F1 “Book object: Ticket¡” can be AND-reduced to F2 “ object:
Airline ticket¡” and F3 “ object: Train ticket¡” (denoted as “Rd (F1) = {F2, F3}”);
alternatively, F1 can be reduced to F2 or be reduced to F3 (denoted as Rd (F1) = {F2}
and Rd (F1) = {F3}). These two refinements are interpreted differently: the former means
that both airline and train ticket are needed (in a trip) while the later indicates that only
one kind of ticket is needed in a trip.

Quality goals and quality constraints. QGs can be refined using “Fk”, operational-
ized as QCs using “Op”/“Ob”, and as Fs and/or FCs using “Op”, and relaxed using
“U” and “Gd” (or strengthened with “Gu”). In theory, the operationalization and the
relxation/strengthen of a QG can be intertwined. For convenience, we suggest first oper-
ationalize a QG as QC(s) and then relax/strengthen the derived QC(s) if needed.

We focus QGs in two ways: via the quality type Q or via the subject type SubjT. For
example, the QG “Usability ({the product}) :: Good” can be focused into “Learnability
({the product}) :: Good” and “Operability ({the product}) :: Good” by following the
quality hierarchy in ISO/IEC 25010 [93]. These quality goals can be further refined
along subject hierarchy. For example, a meeting scheduler often has functions like “set
up meeting” and “book meeting room”, so the quality “Learnability” can be further
applied to these functions, obtaining QGs “Learnability ({Set up meeting}) :: Easy”
and “Learnability ({Book conference room}) :: Easy” (the use of curly brackets means a
function individual, not its executions).

When operationalizing QGs, vague by nature, to measurable QCs, we suggest using
“prototype values” to help define quality regions. For example, to operationalize the
QG “the learning time of meeting scheduler shall be short”, we first ask stakeholders
“how long is short?” Their answers provide prototype values. We can then use the
“graded membership” theory discussed in 4.3.5 and the obtained prototype values to
derive corresponding regions (defined by graded membership functions).

In our Desiree framework, a QG can also be operationalized as functions or func-
tional constraints, through which it becomes implementable. For example, the QG
“Look and feel ({the interface}) :: Professional” (the system shall have a professional
interface) can be operationalized as function constraints such as “Navigation : means:

84 Chapter 5. The Desiree Framework

Standard button¡” (the system shall use standard button for navigation) and “Term :
 defined in: Realtor community¡” (the system shall use terms that are defined in the
realtor community).

We use the “Observe” operator to operationalize a subjective QG as QC(s). Using this
operator, we delegate the quantifying and measuring process to observers. For example,
the subjective QG “QG1 := Style ({the interface}) :: Simple” will be operationalized
as a QC “QC2 := Style ({the interface}) :: Simple observed by: Surveyed user¡” by
employing surveyed users as observers: “Ob (QG1, Surveyed user)”.

Note that when the vague region of a QG is made measurable by specifying a QC,
the QC is still not operational until the measuring instrument is specified. For example,
if we have “QC1 := Processing time(File search) :: [0, 30 (Sec.)]” we will need to specify
a measuring device by applying the “Ob” operator: QC2 := Ob (QC1, Stopwatch) =
Processing time(File search) :: [0, 30 (Sec.)] observed by: Stopwatch¡.

In the case that a QG/QC is practically un-satisfiable, we use the operators “U”, “G”,
or a composition thereof to relax it to an acceptable degree. For instance, the requirement
“all the tasks shall be finished within 5 seconds”, captured as “QC1 := Processing time
(Tasks) :: ¤ 5 (Sec.)”, can be relaxed by using the “Gd” operator: “QC2 := Gd (QC1, (1,
1.2))” (all the task shall be in the region r0, 5� 1.2 pSec.qs = r0, 6 pSec.qs), or U : “QC3

:= U (?X, QC1, inheres in: ?X¡, 90%)” (90% of the tasks shall be within 5 seconds),
or even both “QC4 := U (?X, QC2, inheres in: ?X¡, 90%) :: 90%” (90% of the tasks
shall in the region r0, 6 pSec.qs). When relaxing a quality requirement, we suggest first
operationalize it as a QC if it does not have a measurable region, and then apply the U

operator to that QC.

Content goals and state constraints. CTGs can be operationalized as SC(s) through
“Op”. When operationalizing CTGs, properties of real-world entities being characterized
will be mapped to corresponding machine states, often data base schemas. For example,
the CTG “Student : has id: String¡ has name: String¡ has GPA: Float¡” will
be operationalized as a SC “Student record: id: String¡ name: Varchar¡ GPA:
Float¡”. State constraints can be further reduced by using the “Rd” operator, if needed.

Conflicts. Conflicts can be resolved by using the “Rs” operator. We currently provide
two mechanisms for resolving a conflict: (1) drop some of the conflicting requirements;
(2) weaken some of the conflicting requirements, e.g., applying the “U” or “Gd” operator
to QGs/QCs, or applying the “Rd” operator to weaken a function. For example, we can
weaken a function “Sort object: Score¡ order: DESC ¡” to “Sort object: Score¡

5.4. Chapter Summary 85

 order: ASCE _ DESC ¡” (by allowing both ascending and descending, we can have
more alternative solutions).

5.4 Chapter Summary

In this chapter, we have presented Desiree, which includes a rich collection of requirements
concepts, operators, a description-based syntax for representing and a methodology for
applying these concepts and operators, in order to transform stakeholder requirements
into a an eligible (formal, complete enough, unambiguous, consistent, measurable, and
practically satisfiable, modifiable, traceable) requirement specification.

Our framework has introduced several new concepts, namely “(composite) goal”,
“functional constraints”, “content goal” and “state constraint”, that are not captured
in traditional goal modeling techniques. Our framework also offers several useful oper-
ators, “Observe”, “de-Universalize”, “Scale”, for operationalizing and weakening quality
requirements. Our description-based syntax facilitates the identification of requirements
issues such as “ambiguity”, “incompleteness”, “un-satisfiable”. The framework will be
evaluated through a series of evaluations, as shown in Chapter 8.

86 Chapter 5. The Desiree Framework

Chapter 6

The Semantics of Desiree

In this chapter, we provide the formal semantics of our language and operators. The
former will be done using set theory, while the later will transform or relate formulas. In
addition, we capture part of the meaning of our language and operators by translation into
Description Logic (DL) [20], specifically, OWL 2 Web Ontology Language (OWL2) [77],
in order to obtain a decidable reasoning with requirements.

DL is a family of knowledge representation (KR) formalisms that first defines relevant
concepts and relations (captured as roles, in our case, slots) of a domain, then use these
concepts and relations to specify properties of individuals occurring in the domain [20]. In
DL, both concepts and roles (properties in OWL2 [77]) are first-class modeling elements,
which can be either primitive or composite, and can be automatically classified in a
subsumption hierarchy, checked for consistency, etc.

Choosing DL as our computational logic enables us to systematically manage the
interrelations between requirements (especially those between FRs and NFRs), detect in-
consistences in requirements, perform “what-if” analysis on requirements, etc. Moreover,
we can make use of existing reasoners to perform these tasks, and do not need to code
our own reasoning tool.

6.1 The Semantics of the Desiree Language

Translation of Desiree descriptions. We show the syntax of Desiree descriptions in
the third column of Table 6.1 (see Table C.1 in Appendix C for the full syntax). In the
forth and fifth column, we give the the translation of Desiree descriptions to set-theoretic
and DL expressions, using the recursive function T and L, respectively. When formalizing
the semantics, as in Z [161], we start from atomic sets/types, for which elements we may

87

88 Chapter 6. The Semantics of Desiree

do not know the structure. In our syntax, these correspond to Names (e.g., Concept-
Names, RegionNames) and RegionExpressions (i.e., intervals and enumeration values);
slots are binary relations (the inverse of a slot s, is denoted as s�1); ElementIdentifiers
are constants. When translating into DL: Thing is the universal concept, Nothing is the
bottom concept; elements of slots are roles (properties); ElementIdentifiers are individu-
als, RegionExpressions (i.e., intervals and enumeration values) are DL data ranges, and
all Names are DL concepts.

Table 6.1: The semantics of Desiree descriptions
Id Description D T (D) L(D)
1

Sl
ot

D

 s : D ¡ tx|@y.spx, yq Ñ y P T pDq ^ |spx,T pDqq| � 1u @s.LpDq [� 1 s.LpDq
2 s : ¤ n D ¡ tx|@y.spx, yq Ñ y P T pDq ^ |spx,T pDqq| ¤ nu @s.LpDq [¤ n s.LpDq

3 s : ¥ n D ¡ tx|@y.spx, yq Ñ y P T pDq ^ |spx,T pDqq| ¥ nu @s.LpDq [¥ n s.LpDq

4 s : � n D ¡ tx|@y.spx, yq Ñ y P T pDq ^ |spx,T pDqq| � nu @s.LpDq [� n s.LpDq

5 s : n D ¡ tx|@y.spx, yq Ñ y P T pDq ^ |spx,T pDqq| � nu @s.LpDq [� n s.LpDq

6 s : SOME D ¡ tx|@y.spx, yq Ñ y P T pDq ^ Dy.spx, yqu @s.LpDq [D s.LpDq

7 s : EXIST D ¡ tx|Dy.spx, yq ^ y P T pDqu D s.LpDq

8 s : ONLY D ¡ tx|@y.spx, yq Ñ y P T pDqu @s.LpDq

9 SlotD1 SlotD2 T pSlotD1q [T pSlotD2q LpSlotD1q [LpSlotD2q

10

C
on

ce
pt

ConceptName ConceptName ConceptName
11 SlotD T pSlotDq LpSlotDq

12 {ElemId1 ...} {ElemId1 ...} {ElemId1u \ ...
13 D.s tx|Dy.s�1px, yq ^ y P T pDqu Ds�1.LpDq

14 D1 D2 T pD1q [T pD2q LpD1q [LpD2q

15 D1 _D2 T pD1q \ T pD2q LpD1q \LpD2q

16 D1 �D2 tx|x P T pD1q ^ x R T pD2qu LpD1q [Lp D2q

17

R
gE

xp
r RegionName RegionName RegionName

18 rAtomicV al1, AtomicV al2s tx|AtomicV al1 ¤ x ¤ AtomicV al2u ¥ AtomicV al1 [¤ AtomicV al2

19 {AtomicV al1 ...} {AtomicV al1 ...} {AtomicV al1u \ ...
s: Slot; D: Description; Concept: Desiree concept; RgExpr: region expression; |M | denotes the cardinality of the
set M, spx,Mq :� ty|px, yq P s^ y PMu, and the inverse of s, s�1 :� tpx, yq|py, xq P su.

We start with nine basic rules for translating slot-description pairs (SlotDs), the key
constructor of our language (rule 1 � 9). By default, a slot relates an individual to one
instance that is of and only of type D, a description that will be further defined (rule 1).
Also, a SlotD could have modifiers such as “¤ n”,“¥ n”, “� n”, “n” (“n” is a positive
integer), “SOME”, “EXIST”, or “ONLY” constraining its description (rule 2 � 9). For
instance, “ register for: ¥ 3 Class¡” represents a set of individuals that register for only
classes and have registered for at least three classes, and will be translated into the DL
expression “(@ register for.Class) [(¥ 3 register for.Class)”. Two adjacent SlotDs will be
translated into their intersection (rule 9).

As shown in Table 6.1, a description D can be defined in various kinds of ways, such as
an atomic concept name (denoting a set, e.g., “Student record”), a slot-description (requir-
ing its value to belong to a nested description, e.g., “ register for : ¥ 3 Class ¡”, as we

6.1. The Semantics of the Desiree Language 89

have shown before), or a set of individuals (e.g., the description “Interoperable DBMS”
can be represented by a set of individuals “{MySQL, Oracle, MsSQL}”); it can also
be built using set constructors: intersection (represented by sequencing, e.g., “Studen-
t gender: Male¡”, which captures “male students”), union, and set difference (rule
14 � 16). The expression D.s (rule 13) is useful for describing the set of individuals
related to elements of D by s. For instance, to capture “the collected traffic info shall be
in real time”, we at first define a function “F1 := Collect object: Traffic info¡”, and
then use “F1.object”, which is translated in to “D object�1. F1” (object�1 is the inverse of
object), to refer to collected, instead of all, traffic info.

In addition, a description D can be a region expression (rule 17 � 19), which can
be a region name (e.g., “low”, “fast”), a mathematical region expression (e.g., “¥20”, as
in “Student gender: Male¡ age: ¥20¡”, which captures “male students older than
20 ”), or a set of enumeration values (e.g., “Student gender: Male¡ age: {20}¡”, which
captures “male students who are 20-years-old”).

Translation of requirements concepts. In general, a goal G will denote a formula
with a truth value. Elements of G that are not in any subclass correspond to nullary
predicates or propositions. Two subclasses of G, namely FG and CTG, are formulae of
the form as Desc in Eq. 6.1, where C and D are concepts defined using our language. The
same kinds of formulae are used to express FCs, SCs, and DAs. The semantics of such
formulae are closed formulae as AXDesc in Eq. 6.1, and the translation of such formulae
to DL axioms can be done according to DLAxiomDesc in Eq. 6.1.

Desc :� C : D

AXDesc � @x.x P T pCq Ñ x P T pDq

DLAxiomDesc � LpCq � LpDq

DLConceptDesc � Dsubsumee.LpCq [Dsubsumer.LpDq

(6.1)

In addition, we translate formulae of the syntactic form “C : D” in to DL concepts as
DLConceptDesc in Eq. 6.1, where “subsumee” and “subsumer” are reserved object prop-
erties that have “LpCq” and “LpDq” as ranges (fillers), respectively. We do this mainly
for reasoning about the subsumption between input and output elements of requirements
operators (to be discussed later in Section 6.2).

For example, the semantics of the FC “Data table : accessed by: ONLY Manager¡”
will then emerge as “@x/Data table @y accessed by (x, y) Ñ y P Manager”, where “@x{C”
is a shorthand for “@x.x P C”. Further, this FC will be translated to the DL axiom “Da-

90 Chapter 6. The Semantics of Desiree

ta table � @ accessed by.Manager”. At the same time, we associate with this subsumption
axiom a DL concept “D subsumee.Data table [subsumer.(@ accessed by.Manager)”. In
the rest of this section, we focus on the semantics of the other three kinds of requirement
concepts, namely Functions, QGs and QCs.

Translation of Functions. In Desiree, a function description consists of a function
name and a list of optional slot-description pairs (SlotDs). Ontologically, it represents a set
of manifestations (i.e., runs) of a capability. For example, the expression “F1 := Activate
 actor: Manager¡ object: Debit card¡” says that each run of F1 is an activation with
a manager as its actor and a debit card as its object. Our description translation gives
the semantics of F1 as AXF1 in Eq. 6.2, where “||” denotes the cardinality of a set, and
“spx,Cq” represents a set “ty|px, yq P s^ y P Cu”.

AXF1 � @x.F1pxq Ñ Activatepxq

^ p@y.actorpx, yq Ñ y PManagerq ^ |actorpx,Managerq| � 1
^ p@y.objectpx, yq Ñ y P Debit cardq ^ |objectpx,Debit cardq| � 1

(6.2)

Note that we can not define the semantics of F1 as AX 1
F1 in Eq. 6.3, and restrict “actor”

and “object” to be global functional slots (i.e., having only one instance of its description).
This is because these slots may have multiple instances of their descriptions in other
requirements in the same specification. For example, in the same specification, there
could be another function “F2 := Activate actor: Manager¡ object: ¥ 1 Debit card¡”,
where the “object” slot relates an execution of F2 to a set of (¥ 1) debit cards. That is,
F2 allows a manager to activate debit cards in a batch mode.

AX 1
F1 � @x.F1pxq Ñ Activatepxq

^ p@y.actorpx, yq Ñ y PManagerq ^ Dy.actorpx, yq

^ p@y.objectpx, yq Ñ y P Debit cardq ^ Dy.objectpx, yq

(6.3)

In general, the semantics of a function specified as “Fe := FName s : D ¡” can be
generalized as in Eq. 6.4.

AXFe � @x{Fe Ñ FNamepxq

^ p@y.spx, yq Ñ y P T pDqq ^ |spx,T pDqq| � 1
(6.4)

When translating a function description to DL, the function name will be a sub-class
of “Function”, which has a necessary condition “@ manifested by.SubjT [D manifest-

6.1. The Semantics of the Desiree Language 91

ed by.SubjT” (i.e., Function � @ manifested by.SubjT [D manifested by.SubjT) 1, where
“manifested by” is a functional slot, “SubjT” is a concept defined using our language;
that is, an execution will be exhibited by exactly one function individual, and according-
ly exhibited by the subject that the function individual inheres in; the slot-description
pairs will be translated according to rule 1 � 9 in Table 6.1. For example, the function
description F1 above will result in the declaration of concept F1 as in Eq. 6.5.

F1 � Function[Activate

[@actor.Manager [� 1 actor.Manager

[@object.Debit card [� 1 object.Debit card
(6.5)

Generally, a function description Fe as above will be translated into a DL concept Fe
as in Eq. 6.6.

Fe � Function[FName[@s.LpDq [� 1s.LpDq (6.6)

A function expression is a description, not an assertion. To assert whether a function
has been implemented or not, we add an assertion Assert F for each function description
F as in Eq. 6.7, where “has function” is a functional slot. We say that a function has been
implemented if the subject of concern has such a desired function (capability). A subject is
often a system to be designed, but can also be other agents in the software ecosystem, e.g.,
developers, testers and maintainers. As an example, to assert the “activate debit card”
function F1, the subject of which is the system-to-be, we use the following assertion:
“{the system} : has function: EXIST {F1}¡”. The semantics and the corresponding
DL translation of such assertions are generalized in Eq. 6.7.

Assert F :� SubjT : has function : EXIST tF u ¡

AXAssert F � @s.s P T pSubjT q

Ñ s P tx|Dy.has functionpx, yq ^ y P tF uu

DLAssert F � LpSubjT q � D has function.tF u

(6.7)

There are three points to be noted. First, we use “SubjT : has function: EXIST
{F} ¡” instead of “SubjT : has function: {F}¡”. This is because a function individual
can only inheres in one particular subject, while a subject could possess many function

1Alternatively, we can say “{Function}� @ inheres in.SubjT[D inheres in.SubjT”, where “inheres in”
is also a functional slot. The difference is that “Function” indicates a set of manifestations (executions),
while “{Function}” represents a function capability (an individual). We suggest use “Function” here for
convenience.

92 Chapter 6. The Semantics of Desiree

individuals. Therefore, we can not constrain all the function individuals possessed by a
subject to be of the same type; i.e., we can not have “@ s/SubjT (@ y.has function(s, y)
Ñ y P {F})”, which is part of the semantics of “SubjT : has function: {F}¡”.

Second, we distinguish between a function individual tF u and its manifestations F : we
use “SubjT : has function: EXIST {F} ¡” rather than “SubjT : has manifestation:
EXIST F ¡”. This is because a function (capability) could have been implemented but
not manifested if its activating situation does not hold. For example, a web site may have
a keyword search capability, but will not be manifested if nobody use it.

In addition, the distinction between function (capability) and its manifestations allows
us to specify requirements on the function (capability) itself. For example, on one hand,
we can require the “schedule meeting” function of a meeting scheduler (its manifestations,
i.e., executions) to be fast; on the other hand, we can also require the function (capability)
itself to be easy to learn. These two requirements can be captured as QG2�2 and QG2�3

in Eq. 6.8, respectively. Their semantics will be discussed later.

F2�1 :� Schedule actor : Organizer ¡ object : Meeting ¡

QG2�2 :� Processing time pF2�1q :: Fast
QG2�3 :� Learnability ptF2�1uq :: Good

(6.8)

Translation of QGs and QCs. A QGC (QG/QC) is a requirement that requires a
quality to take its value in a desired region. For example, the quality constraint “QC3

:= Processing time (File search) :: [0, 30 (sec.)]” requires each run of file search to take
less than 30 seconds. Its semantics will be expressed by the formula AXQC3 in Eq. 6.9,
where “inheres in” and “has value in” are reserved binary predicates used to express the
semantics of QGC.

AXQC3 � @s{File search @q{Processing time inheres inpq, sq

Ñ has value inpq, time regionpx, 0, 30, Sec.qq
(6.9)

This can be generalized to QGCs, which have the syntax “Q (SubjT) :: QRG”, by
Eq. 6.10.

AXQGCe � @s{T pSubjT q @q{T pQq inheres inpq, sq

Ñ has value inpq,T pQRGqq
(6.10)

A QG has a qualitative region, e.g., “fast”, which is imprecise and is translated to a
primitive concept, e.g., “Fast”. A QC has a quantitative region, which is a mathematically
specified precise region. Because OWL2 [77] supports one-dimensional primitive types

6.1. The Semantics of the Desiree Language 93

only (that is, it cannot represent points in R3), we restrict ourselves to single-dimensional
regions, which are intervals of the form rBoundlow, Boundhighs on the integer or decimal
line.

Note that as with function descriptions, QG and QC are not assertions (true or false),
and will be translated to DL concepts. In general, QGs (resp. QCs) will be subclasses of
the concept QG (resp. QC) that has necessary conditions “Q [@ inheres in.SubjT [D

inheres in.SubjT [@ has value in.QRG [D has value in.QRG”, where “QRG” can be a
region name, an interval, or a set of enumeration values, “inheres in” and “has value in”
are functional slots. Here we overload the notation “has value in”: it is an object property
in the case of QGs but a data property in the case of QCs.

As such, the above quality constraint QC3 be translated into the DL concept QC3 as
in Eq. 6.11.

QC3 � QC[Processing time

[@inheres in.F ile search[Dinheres in.F ile search

[@has value in.pp¥ 0q [p¤ 30qq [Dhas value in.pp¥ 0q [p¤ 30qq
(6.11)

Generally, a QGC in the form of “QGCe := Q(SubjT) :: QRG” is semantically equiv-
alent to “Q inheres in: SubjT¡ has value in: QRG¡”, and will be translated to the
DL concept as in Eq. 6.12.

QGCe � QGC[LpQq

[@inheres in.LpSubjT q [Dinheres in.LpSubjT q

[@has value in.LpQRGq [Dhas value in.LpQRGq

(6.12)

If, in addition, one wants to assert that the quality constraint QC3 is satisfied, then one
needs to assert that all objects in “File search” shall have quality values in that range,
using the axiom AssertQC3 in Eq. 6.13, where “has quality” is the inverse property of
“inheres in”.

AssertQC3 :� File search :
 has quality : EXIST Processing time

 has value in : r0, 30pSec.qs ¡¡
(6.13)

The semantics and the corresponding DL translation of AssertQC3 are shown in Eq.
6.14, where “has unit” is a functional object property.

94 Chapter 6. The Semantics of Desiree

AXAssertQC3
� @s{File search Dq has qualityps, qq

^ q P Processing time

^ q P tx|@y.has value inpx, yq Ñ y P r0, 30s
^ D y.has value inpx, yqu

^ q P tx|@y.has uintpx, yq Ñ y P Second

^ D y.has uintpx, yqu

DLAssertQC3
� File search �

D has quality.pProcessing time

[@ has value in.pp¥ 0q [p¤ 30qq
[D has value in.pp¥ 0q [p¤ 30qq
[@ has uint.Second

[D has uint.Secondq

(6.14)

The general version of this axiom, its semantics and DL translation are shown in
Eq. 6.15.

AssertQGCe :� SubjT :
 has quality : EXIST Q

 has value in : QRG ¡¡

AXAssertQGCe
� @s{T pSubjT q Dq has qualityps, qq

^ q P T pQq

^ q P tx|@y.has value inpx, yq Ñ y P T pQRGq

^ Dy.has value inpx, yqu

DLAssertQGCe
� LpSubjT q � Dhas quality.pLpQq

[@has value in.LpQRGq [Dhas value in.LpQRGqq

(6.15)

6.2 The Semantics of the Requirement Operators

In our Desiree framework, there are two kinds of semantics for the operators. The first
kind is “entailment” semantics. When refining a goal G1 to G2,

1. If each solution for G2 is also a solution for G1, then G2 entails G1 (denoted as G2

|ù G1), and this refinement is a strengthening;

6.2. The Semantics of the Requirement Operators 95

2. If each solution for G1 is also a solution for G2, then G1 entails G2 (denoted as G1

|ù G2), and this refinement is a weakening;

3. In case G1 and G2 mutually entail each other (denoted as G1
.
� G2), we say that

the two goals are equivalent and we term this refinement equating.

For example, the refinement from G1 “the system be secure” to G2 “the data storage
be secure” is a weakening, because any solution sol that can fulfill G1, can also fulfill G2,
but not vice versa. This also means that there are potentially fewer solutions for G1 than
for G2. This entailment semantics is of importance to requirements refinement: we need
to weaken a requirement if it is too strong (e.g., practically unsatisfiable, and conflicting)
and constrain it if it is arbitrary (e.g., ambiguous, incomplete, and vague).

The second kind is “fulfillment” semantics: for each operator, we consider the propa-
gation of fulfillment from its output elements to its input one(s). For example, in the case
a goal G1 “the system be secure” is refined to (only) G2 “the data storage be secure”, we
say that if G2 is fulfilled, then G1 is also fulfilled. Note that fulfillment is different from
entailment: in this example, G2 does not entail G1, but the fulfillment of G2 indicates
the fulfillment of G1. This fulfillment semantics is of importance to the “what-if” analysis
in goal-oriented requirements models, e.g., what kinds of elements in your model will be
affected if some Function, FCs, or QCs are fulfilled while others are not?

6.2.1 Entailment Semantics

In the Desiree framework, an application of any requirements operator will be one of the
three kinds of refinements: strengthening, weakening or equating. An overview of the
entailment semantics of each operator is shown in Table 6.2.

There are two points to be noted. First, a requirement operator that is ambiguous as
to its strength status needs an additional argument to make the appropriate choice. We
use ‘)’ for a strengthening, ‘(’ for a weakening, and ‘ .�’ for an equating. For example,
because an application of “Reduce” can be a strengthening or an equating, we could denote
the reduce from G1 to G2 as Rd (G1,)) = {G2} if the refinement is a strengthening, Rd

(G1, () = {G2} if it is a weakening, and Rd (G1, .�) = {G2} if it is an equating 2. Second,
we distinguish between “Realtors”, operators that assert relationships between existing
elements (“Interpret”, “Reduce”, “Operationalize”, and “Resolve”), and “Constructors”,

2This additional argument will be filled in by our supporting tool based on analysts’/engineers’ se-
lection of requirements operators. For example, the tool will add “)” as a strengthening indicator to a
refinement if an analyst/engineer choose “Reduce (AND/OR refinement)”, or “ .�” if an analyst/engineer
choose “Reduce (Separate concerns)”.

96 Chapter 6. The Semantics of Desiree

Table 6.2: The semantics of requirement operators

Refinement Operators

Strengthening

Interpret (Disambiguation)
Reduce (AND- and OR-refinement)

Reduce (Adding a SlotD, specializing the description of a slot)
Scale up (Shrinking QRG)

Operationalize (Goal as F, FC, QC, SC with optional DA)
Observe

Weakening

de-Universalize
Scale down (Enlarging QRG)

Focus (Partial set of sub-elements)
Reduce (Removing a SlotD, generalizing the description of a slot)

Resolve
Operationalize (Goal as only DA)

Equating
Interpret (Encoding)

Reduce (Separating concern)
Focus (Full set of sub-elements)

operators that construct in a precise way new elements from their arguments (“Focus”,
“Scale”, “Observe”, “de-Universalize”).

We discuss each operator in detail in this sub-section. Specifically, for each operator,
we first introduce the entailment (stengthening/weakening) semantics, and then discuss
about the DL translation such that we can use DL subsumption to simulate entailment.
For realtors, we simply constrain the output elements to be subsumed by the input ele-
ment(s) in case of a strengthening, and add the subsumption axiom in reverse in case of
an equating. For constructors, output elements are constructed from input elements by
following specific ways; once translated in to DL concepts using the rules introduced in
Section 6.1, a DL reasoner (e.g., Hermit [157]) is able to infer the subsumption relation-
s between input and output elements. However, for some constructors, the entailment
and DL subsumption are not conformative. For example, when focusing QG1 “Securi-
ty ({the system}) :: Good” to QG2 “Security ({the data module}) :: Good”, we have
QG1 |ù QG2 (i.e., if the system is secure, then its date module is also secure); however,
when translated into DL expressions, we will have QG2 � QG1 as “the data module” is
part of “the system” (if we capture this as tthe data moduleu � tthe systemu). There-
fore, we will use some tricks when applying such constructors in order to obtain confor-
mative DL subsumptions with regarding to their entailment semantics.

6.2. The Semantics of the Requirement Operators 97

Relators. Four out of the eight operators, namely “Interpret”, “Reduce”, “Operational-
ize”, and “Resolve”, are relators. These operators need to have their arguments ready, and
then relate an input element to the corresponding output element(s) that are of concern.
For example, given an ambiguous goal G, what the “Interpret” operator does is to choose
one intended meaning from its multiple possible interpretations (i.e., the possible interpre-
tations are already there, what we need to do is to discover them and choose the intended
one from them). This is similar for “Reduce” or “Operationalize”: choosing one kind of
refinement/operationalization from multiple possible refinements/operationalizations 3.

Reduce (Rd). In general, an application of “Rd” is a strengthening, but can also be
an equating or a weakening. In general, traditional “AND” and “OR” refinements are
strengthening. For example, when reducing a goal G1 “trip be scheduled” to G2 “hotel be
booked” and G3 “airline ticket be booked”, a solution that can satisfy both G2 and G3 can
also satisfy G1, but not the opposite since G1 can be satisfied by other solutions (e.g.,
“hostel be booked” and “train ticket be booked”). In this situation, we have Rd (G1, ‘)’)
= {G2, G3}, which asserts G2, G3 |ù G1.

When reducing a complex requirement (a requirement with multiple concerns) to
atomic ones (a requirement with a single concern), the refinement is an equating. For
example, the reduction of G1 “the system shall collect real time traffic info” to G2 “traffic
info be collected” and G3 “collected traffic info shall be in real time”. In this case, having
Rd (G1, ‘ .�’) = {G2,G3} asserts G2, G3

.
� G1.

When applying “Reduce” to a function description, the adding of a slot-description
pair (SlotD) or a specialization of the description of a slot is a strengthening, while the
removing of a SlotD or the generalization of the description of a slot is a weakening. For
example, the refinement from “F1 := Book object: Ticket¡” to “F 11 := Book object:
Airline ticket¡” is a strengthening since F1 can be fulfilled by any solution that is able
to book a ticket (e.g., airline ticket, bus ticket, train ticket, etc.), but F 11 can only be
fulfilled if a solution is able to book an airline ticket. That is, F 11 has fewer solutions. This
refinement can be captured as Rd (F1, ‘)’) = {F 11}, which asserts F 11 |ù F1.

We use DL subsumption to simulate the entailment semantics of “Reduce”: if it is used
as a strengthening, we constrain the intersection of the output elements to be subsumed
by the input element; if it is used as an equating, we add an extra subsumption axiom,
restricting the input element as a sub-class of the intersection of the output elements. For
example, for “trip be scheduled”, we specify G2 [G3 � G1; for “collect real time traffic

3“Reduce” or “Operationalize” can be applied to an input element more than one time. In an applica-
tion, a parent element can be refined/operationalized to multiple sub-elements. This captures traditional
AND. The multiple applications captures traditional OR.

98 Chapter 6. The Semantics of Desiree

info”, we use both G2 [G3 � G1 and G1 � G2 [G3.
In the case of refining a function description, the subsumption between input and

output elements can also be inferred by a DL reasoner: (1) when adding or removing a
SlotD to the structured description (e.g., the corresponding DL concept of “Book object:
Airline ticket¡ means: Credit card¡” will be subsumed by that of “Book object: Air-
line ticket¡”); (2) when specializing or generalizing the description of a slot, and the
relation between descriptions are given (e.g., if we have Airline ticket � Ticket, a DL
reasoner is able to infer that F 11 � F1).

The DL translation for the “Reduce” operator can be also applied to the other three re-
altors, namely “Interpret”,“Operationalize”, and “Resolve”. Therefore we will not discuss
the DL translation for these operators.

Interpret (I). In Desiree, an interpretation of an ambiguous or under-specified require-
ment is a strengthening, and an encoding of a natural language requirement is an equating.
This is because an ambiguous/under-specified requirement has more than one interpreta-
tion, hence possessing more solutions. For example, when an ambiguous goal G1 “notify
users with email” is interpreted into G2 “notify users through email”, each solution for
G2 could also be a solution for G1, but not vice versa: G1 has another interpretation G3

“notify users who has email”, a solution for G3 can fulfill G1, but not G2. In the case
we simply encode a (natural language) requirement using our syntax, the encoding is an
equating because the solution space does not change. Therefore, for two Desiree elements
E1 and E2, we have E2 |ù E1 if I (E1, ‘)’) = E2, or E2

.
� E1 if I (E1, ‘ .�’) = E2.

Operationalize (Op). Operationalization is similar to reduction “Rd”. In Desiree, the
“Op” operator is overloaded in several ways. When operationalizing an FG to Function,
FCs, DAs, or combinations thereof, or operationalizing a QG to QC(s) by making clear
its vague region, to F and/or FCs to make it implementable, or operationalizing a CTG
to SC(s) it is a strengthening. In case a goal is merely operationalized as DA(s), it is a
weakening (a DA can be simply treated as true and can be fulfilled by any solution; that
is, the solution space is enlarged to infinite when operationalizing a goal merely as DAs).

Resolve (Rs). An application of the “Resolve” operator to a set of conflicting require-
ments Si will produce a set of conflict-free requirements So. Being a weakening, such a
refinement will be denoted as “Rs(Si, ‘(’) = So”. A conflict among a set of requirements
means that they cannot be satisfied simultaneously; that is, there is an empty set of so-
lutions for Si. Once resolved, then there should be some possible solutions; that is, there
is a non-empty set of solutions for So. Hence this adds the meta-statement Si |ù So.

We do not add any DL subsumption axioms for an application of Rs. This is because

6.2. The Semantics of the Requirement Operators 99

when we constraining the intersection of the input elements Si to be subsumed by the
intersection of the output elements So, we are actually specifying a trivial subsumption
H � Eo1 [...[Eon, where “Eo1 ... Eon” are elements of So. This is needless.

Constructors. The remaining four operators, namely “Focus”, “Scale”, “Observe”, “de-
Universalize”, are constructors. These operators take as input Desiree elements (specif-
ically, QGs or QCs) and necessary arguments, and create/construct new elements, for
which entailment can be computed by logic.

Focus (Fk). The Fk operator narrows the scope of a quality or subject by following
certain hierarchies , e.g., “dimension-of” “part-of”, and makes a QGC easier to fulfill. Its
application leads to a weakening (e.g., focusing “security” to a sub-set of its dimensions,
say “confidentiality”, “the system” to some of its sub-parts “interface”), but sometimes an
equating (e.g., focusing “security” to the full set of its sub-dimensions, “confidentiality”,
“integrity” and “availability”). In the former case, where Fk (QGC1, Qs/SubjTs, ‘(’) =
QGCpartial (QGCpartial is a sub-set of the potential resultant QGCs), we have QGC1 |ù

QGCpartial; in the latter case, where Fk (QGC1, Qs/SubjTs, ‘ .�’) = QGCfull (QGCfull is
the full-set of the the potential resultant QGCs), we have QGC1

.
� QGCfull, i.e., QGC1

|ù QGCfull and QGCfull |ù QGC1.
To have conformative DL subsumptions, we use a trick when applying the Fk operator:

as shown in Eq. 6.16, when focusing QG4�1 via subject type, its subject will be expanded
to “{the system} _ {the data module}” rather than be replaced by “{the data module}”.
As such, when QG4�1 and QG4�2 are translated to DL concepts, we will have the DL
subsumption QG4�1 � QG4�2, which conforms to the entailment QG4�1 |ù QG4�2. This
trick is also used when focusing a QGC via its quality type.

QG4�1 :� Security ptthe systemuq :: Good
QG4�2 :� Fk pQG4�1, tthe data moduleuq

� Security ptthe systemu _ tthe data moduleuq :: Good
(6.16)

Scale (G). The G operator is used to enlarge or shrink quality regions. When enlarging
a region of QGC1 to QGC2, e.g., scale “fast” to “nearly fast” or “[0, 30 (Sec.)]” to “[0,
40 (Sec.)]”, logic gives QGC1 |ù QGC2 (i.e., it is a weakening). When shrinking a region
of QGC1 to QGC2, e.g., strengthen “fast” to “very fast” or “[0, 30 (Sec.)]” to “[0, 20
(Sec.)]”, logic implies QGC2 |ù QGC1 (i.e., it is a strengthening).

When scaling qualitative regions of QGs, analysts/engineers may declare as DA axioms
concerning relations between them. For example, the region “fast” can be relaxed to

100 Chapter 6. The Semantics of Desiree

“nearly fast” or strengthened to “very fast”, the relations between them would be very fast
� fast � nearly fast. When regions to be scaled are mathematically specified, a DL
reasoner is able to automatically infer the subsumption relations. For example, “[0, 30]”
is subsumed by “[0, 40]”. Therefore, by translating the resulting QGCs to DL concepts
as we have done for QGs/QCs in Section 6.1, we are able to obtain conformative DL
subsumptions, i.e., QGC1 � QGC2 when QGC1 |ù QGC2 and QGC2 � QGC1 when
QGC2 |ù QGC1.

de-Universalize (U). The U operator is used for weakening. For example, instead of
requiring all the runs of file search to take less than 30 seconds, we can relax it to 80% of
the runs to be so by applying U . Formally, the semantics of QG5�2, derived from QG5�1,
is expressed as AXQG5�2 in Eq. 6.17.

QG5�1 :� Processing timepFile searchq :: Fast
QG5�2 :� Up?X,QG5�1, inheres in :?X ¡, 80%q

� Processing timepFile search _ pct : r80%, 100%sq :: Fast
AXQG5�2 � D?X{℘pFile searchqp|?X|{|File search| ¡ 0.8

^ @s{?X @q{Processing time inheres inpq, sq

Ñ has value inpq, Fastqq

(6.17)

Semantically, QG5�1 is equivalent to the description “Processing time inheres in:
File search¡ has value in: Fast¡”. Through pattern matching, we are able to identify
that “?X” represents a sub set of “File search”, with which the required percentage “[80%,
100%]” will be associated. When expanding the description, we use a trick: the subject of
QG5�2 will be “File search _ pct: [80%, 100%]¡” rather than “File search pct: [80%,
100%]¡”.

In general, the semantics of a QGC that is applied with U (UQGC for short), of the
form “U (?X, Q (SubjT) :: QRG, inheres in: ?X¡, Pct)”, is given in Eq. 6.18, where a
percentage “Pct” indicates a region [Pct, 100%]. We can see that if QGC1 is relaxed to
QGC2 by U , logic gives QGC1 |ù QGC2.

AXUQGC � D?X{℘pT pSubjT qq p|?X|{|T pSubjT q| ¡ Pct

^ @s{?X @q{T pQq inheres inpq, sq

Ñ has value inpq,T pQRGqqq

(6.18)

We translate a UQGC to the DL concept as in Eq. 6.19.

6.2. The Semantics of the Requirement Operators 101

UQGCe � UQGC [LpQq

[@inheres in.pLpSubjT q \ p@pct.LpPctq [Dpct.LpPctqqq

[Dinheres in.pLpSubjT q \ p@pct.LpPctq [Dpct.LpPctqqq

[@has value in.LpQRGq

[Dhas value in.LpQRGq

(6.19)

In this way, the U operator would have the property as shown in Eq. 6.20, where
0% ¤ Pct2 Pct1 ¤ 100%. That is, if QGC1 is relaxed to QGC2 by U, we will have QGC1

� QGC2. We can see now that the trick of using “File search _ pct: [80%, 100%]¡”
instead of “File search pct: [80%, 100%]¡” helps us to derive this DL subsumption. In
fact, if we use the latter expansion (i.e., “File search pct: [80%, 100%]¡”), we will get
the opposite subsumption (i.e., QGC2 � QGC1), which is not intended in our case.

Up?X,QGC, inheres in : ?X ¡, P ct1q

� Up?X,QGC, inheres in : ?X ¡, P ct2q
(6.20)

In some cases, the U operator may be nested. For example, “(at least) 80% of the
system functions shall be fast at least 90% of the time”. To capture this requirement, we
first define a quality goal QG6�1 as in Eq. 6.21, and apply U twice to obtain QG6�3.
In this example, QG6�3 will be expanded as in Eq. 6.21, which can be translated to DL
expressions according to the rules in Table 6.1. We refer interested readers to Appendix D
for detail about the semantics.

QG6�1 :� Processing timepRun run of : System function ¡q :: Fast
QG6�2 :� U p?F, QG6�1, inheres in : run of : ?F ¡¡, 80%q

� Processing timepRun run of :
System function_ pct : r80%, 100%s ¡¡q :: Fast

QG6�3 :� U p?Y, QG6�2, inheres in : ?Y ¡, 90%q
� Processing timepRun run of :
System function_ pct : r80%, 100%s ¡¡
_ pct : r90%, 100%s ¡q :: Fast

(6.21)

Note that our DL translation is not able to capture the entailment semantics of nested
U , which is expressed by using second-order (even higher-order) logic. For example, our
DL translation is able to infer that G1 |ù G2, where G1 is “the file search function shall

102 Chapter 6. The Semantics of Desiree

take less than 30 seconds (at least) 80% of the time”, and G2 is “the file search function
shall take less than 30 seconds (at least) 70% of the time”. However, it can not tell the
entailment between G3 “80% of the system functions shall be fast at 90% of the time” and
G4 “90% of the system functions shall be fast at 80% of the time”.

Observe (Ob). An application of Ob to a QGC will append a SlotD “ observed by:
Observer¡” to the QGC, and hence strengthen it. That is, we will have QGC2 |ù QGC1

when applying the Ob operator to QGC1: ObpQGC1, Observerq = QGC2
4. For example,

by applying Ob, QG7�1 “Style ({the interface}) :: Simple” becomes “QC7�2 := QG7�1

 observed by: Surveyed user¡”, the semantics of which is shown in Eq. 6.22.

AXQC7�2 � @o{Surveyed user @s{tthe interfaceu @q{Style

pinheres inpq, sq Ñ observed bypq, oqq

Ñ has value inpq, Simpleq

(6.22)

To obtain the general semantics of Ob, we only need to replace the specific quality
type (e.g., “Style”), subject type (e.g., “the interface”), quality region (e.g., “Simple”),
and observer (e.g., “surveyed user”) with general Q, SubjT, QRG and Observers, as in
Eq. 6.23.

AXQGCOb
� @o{T pObserverq @s{T pSubjT q @q{T pQq

pinheres inpq, sq Ñ observed bypq, oqq

Ñ has value inpq,T pQRGqq

(6.23)

The generalized DL expression for Ob can be obtained by translating “L(QGC) [@

observed by.L(Observer) [1 observed by.L(Observer)”, where “QGC” is the QG/QC to
be observed, “Observer” is set of users who are observing. Here, “observed by” is not a
functional property since an individual could be observed by more than one observer. As
such, for an application of Ob, i.e., ObpQGC1, Observerq = QGC2, we accordingly have
the DL concept subsumption axiom QGC2 � QGC1.

In the above example, QC7�2 is hard to satisfy since it requires all the surveyed users
to agree that the interface is simple. In practice, it is often relaxed by using U . For
instance, we could have “QC7�3 := U (?O, QC7�2, observed by: ?O¡, 80%)”, which
requires only 80% of the users to agree. We show the semantics of QC7�3 in Eq. 6.24.

4We do not use “)” as an argument because an application of Ob is always a strengthening.

6.2. The Semantics of the Requirement Operators 103

AXQC7�3 � D?O{℘pSurveyed userq.r|?O|{|Surveyed user| ¡ 0.8
^ @o{?O @s{tthe interfaceu @q{Style

pinheres inpq, sq Ñ observed bypq, oqq

Ñ has value inpq, Simpleqs

(6.24)

6.2.2 Fulfillment Semantics

We briefly discuss the fulfillment semantics according to the mapping relation between
an operator’s input and output. In general, we have two classes of operators: (1) “one-
to-one”(“I”, “U”, “G”, and “Ob”); and (2) “one-to-many” (“Rd”, “Fk”, and “Op”). In
general, a Desiree operator can be applied to an input element more than one time; in
one of those possible applications, some operators relate an input element to one output
element, while the others relate an input element to a set of (¥ 1) output elements. Note
that the ““Rs”“ operator does not possess fulfillment semantics because its input elements
are conflicting and cannot be fulfilled at the same time.

When a Desiree element E1 is refined/operationalized to another, say E2, the fulfill-
ment of E2 would imply that of E1. Formally, it can be expressed as “@E1 DE2 P1pE1, E2q^

fulfilledpE2q Ñ fulfilledpE1q“, where “P1“ is one of the four operators: “I”, “U”,
“G”, and “Ob”. When E1 is refined/operationalized to a set of elements ES, then each
element in ES shall be fulfilled to make E1 fulfilled. This can be formally stated as
“@E1 D ES P2pE1, ESq^fulfilledpESq Ñ fulfilledpE1q“, where “P2“ is a one of the three
operators, “Rd”, “Fk”, and “Op”, and “fulfilledpESq �def @e.e P ES Ñ fulfilled peq”.

We use “Interpret” and “Reduce” as the representatives to discuss the DL translation
for the fulfillment semantics, which is inspired by Horkoff et al. [90].

One-to-one. “Interpret” is a “one-to-one“ operator. When a goal G1 is interpreted to
another, e.g., G2, we say that the fulfillment of G2 would imply that of G1. Formally, it
can be denoted as “@G1 DG2 interpret topG1, G2q ^ fulfilledpG2q Ñ fulfilledpG1q”. To
have this inference, we add an assertion as in Eq. 6.25: a Fulfilled Thing is a Thing that is
related (specifically, interpreted, scaled, observed, or de-Universalized) to at least one Ful-
filled Thing. When G1 is interpreted to G2, we write a DL axiom G1 � D interpret to.G2.
As such, in the case G2 is satisfied (i.e., G2 � Fulfilled Thing), a DL reasoner will infer
that G1 � Fulfilled Thing.

104 Chapter 6. The Semantics of Desiree

Fulfilled Thing � D relate to.Fulfilled Thing

relate to one � relate to

interpret to � relate to one

(6.25)

One-to-many. “Reduce” is a one-to-many operator. For a reduce refinement, to fulfill
the parent goal, all its sub-goals need to be fulfilled. This meaning can be formally stated
as “@G1 DGset reduce to pG1, Gsetq ^ fulfilledpGsetq Ñ fulfilledpG1q”. To capture such
inference, we define ALL Fulfilled Thing as a sub-concept of Fulfilled Thing (Eq. 6.26).
An element is an ALL Fulfilled Thing only if all the elements related (specifically, re-
duced, focused, or operationalized) to it are fulfilled (Eq. 6.26). In the case a goal G1

is reduced to G2 and G3, we need the following DL axioms: “G1 � D reduce to.G2”,
“G1 � D reduce to.G3”, and “G1 � � 2 reduce to.Thing”. Now if G2 and G3 are satisfied,
i.e., G2 � Fulfilled Thing and G3 � Fulfilled Thing, then a DL reasoner will give the
inference G1 � ALL Fulfilled Thing � Fulfilled Thing.

ALL Fulfilled Thing � Fulfilled Thing

ALL Fulfilled Thing � @relate to many.Fulfilled Thing

relate to many � relate to

reduce to � relate to many

(6.26)

The other operators can be handled in a similar way. Take the “Operationalize”
operator for example, we only need to: (1) add an DL assertion “operationalize to �
one to many” for the operator; (2) capture each operationalization using DL subsump-
tions, e.g., we will have “G1 � D operationalize to.F2”, “G1 � D operationalize to.F3”
and “G1 � � 2 operationalize to.Thing” for the operationalization “OppG1q � tF2, F3u”.

As pointed by Horkoff et al. [90], although this fulfillment reasoning is supported by
existing goal-model reasoners [69][155], DL formulation allows exploration of less restric-
tive prorogation (intermediate form between AND and OR). For example, if a goal G in
AND-operationalized to 4 functions, we can relax the fulfillment of G as such: if at least
3 functions are fulfilled, then G is fulfilled. This is akin to setting a threshold for the
degree of fulfillment of a “good-enough” QR (e.g., if a QR is fulfilled to a degree of 0.75,
then it is said to be fulfilled) and can be done by using DL quantified number restriction
as in Eq. 6.27.

Approximate Fulfilled Thing � Fulfilled Thing

Approximate Fulfilled Thing � ¥ 3 relate to many.Fulfilled Thing
(6.27)

6.3. Chapter Summary 105

6.3 Chapter Summary

In this chapter, we have formalized the semantics of our Desiree language and operators.
For the language, we have provided the semantics by using set-theoretical expressions, and
translated it to DL expressions in order to get a decidable reasoning with requirements.
For the operators, we have discuss two kinds of semantics: entailment semantics, which of
importance to requirements refinement; and fulfillment semantics, which is of importance
to the “what-if” analysis in goal-oriented requirements models, e.g., what kinds of elements
in your model will be affected if some Function, FCs, or QCs are fulfilled while others are
not? We have also discussed about how to use DL subsumption to simulate these two
kinds of semantics.

106 Chapter 6. The Semantics of Desiree

Chapter 7

The Desiree Tool

In this chapter, we present a prototype tool that is developed in support of our Desiree
framework. We first give an overview of the tool, and then introduce its key components
in detail, and at last show an example model, demonstrating how to capture requirements.

7.1 Overview

We show the usage of our Desiree tool in Fig. 7.1. The Desiree tool consists of three
key components: (1) a textual editor, which allows analysts/engineers to write require-
ment using our language; (2) a graphical editor, which allows users to draw requirements
models through a graphic user interface; (3) a reasoning component, which translates
requirements (texts or models) to OWL2 ontologies, and make use of existing reasoners
(e.g., Hermit [157]) to perform reasoning tasks.

The Reasoning Component

 Requirements Knowledge
 (OWL2 Ontology)

The Textual Editor

Textual
Requirements

The Graphical
Editor

 Requirements
Models

Transformation

(2) Partial Translation

(1) Write SRS
or Draw

Requirements
Model

(3) Reasoning over Resultant
Requirements Ontologies

Analyst/
Engineer

E.g., interrelation query,
inconsistency check,

‘’what-if’’ analysis

Figure 7.1: The usage of the Desiree tool

107

108 Chapter 7. The Desiree Tool

We present the architecture of our Desiree tool in Fig. 7.2. As a Rich Client Platform
(RCP) application, the Desiree tool is developed based on the Eclipse SDK 4.4.1 1. Among
the major components, the textual editor is developed based on Xtext 2.7.3 2, a framework
for developing domain specific languages; the graphical editor is developed based on EMF
2.10.2 3 (Eclipse Modeling Framework), an Eclipse-based modeling framework for data
modeling and code generation, and GEF 3.9.100 4 (Graphical Editing Framework), which
provides technology to realize rich graphical editors and views; the reasoning component is
developed based on OWL API 3.2.4.1806 5, a Java API and reference implementation for
creating, manipulating and serialising OWL Ontologies, and Hermit 1.3.8 6, a Java-based
reasoner for DL ontologies.

Eclipse SDK

Xtext EMF GEF

Textual
Editor

Graphical
Editor

Reasoning
Component

Desiree

Middleware
framework

Platform

Hermit
OWL
API

Figure 7.2: The architecture of the Desiree tool

The Desiree Tool supports the following functionalities:

1. Writing textual requirements specifications using the description-based syntax.

2. Creating graphical requirements models using graphic notations.

3. Transforming textual requirements specifications to graphical requirements models,
and vice versa.

4. Supporting automatic layout of modeling elements.

5. Dynamically creating user-defined views, i.e., analysts/engineers are able to model
the requirements of a project in multiple modeling views (canvas pages) as needed,
instead of only one.

1http://archive.eclipse.org/eclipse/downloads/drops4/R-4.4.1-201409250400/
2https://eclipse.org/Xtext/
3http://eclipse.org/modeling/emf/
4https://eclipse.org/gef/
5http://owlapi.sourceforge.net/
6http://hermit-reasoner.com/

7.1. Overview 109

6. Laying the modeling elements in a view, i.e., analysts/engineers can choose to show
what kinds of elements.

7. Transforming requirements models to OWL2 ontologies, and allowing analysts/engineers
to perform reasoning tasks such as interrelations query, inconsistency check, and
“what-if” analysis over the resultant requirements ontologies.

7.1.1 The Textual Editor

Our textual editor offers several useful features: (1) syntax coloring, highlighting keywords
in our language (e.g., the name of requirement concepts and operators, which are colored
as red in in Fig. 7.3); (2) content assistance, providing users with syntactic hints for our
language (e.g., the drop-down box in Fig. 7.3 suggests the syntactic candidates for the
description of the slot “object” when defining “Func 7”); (3) error checking, reporting
syntax errors in requirements, e.g., the small pop-up window in Fig. 7.3 says that a “)”
symbol is missing in the expression of “QG 9”.

Figure 7.3: The textual editor

110 Chapter 7. The Desiree Tool

7.1.2 The Graphical Editor

The graphical editor supports all the 9 requirements concepts and 8 operators of the De-
siree framework, and allows analysts/engineers to write requirements using our syntax.
As shown in Fig. 7.4, the graphical editor includes a set of tooling views 7: (1) the navi-
gator, which displays the resources (e.g., folders, files) of a Desiree project; (2) the global
outline, which organizes all the modeling elements (concepts and operators) of a Desiree
model, which can be distributed in multiple canvas pages (modeling views); (3) the can-
vas page (modeling view), where analysts/engineers could draw their graphical diagrams;
(4) the palette, which shows the graphical notations of the concepts and operators that
analysts/engineers can use to build requirements models; (5) the local outline, which or-
ganizes the modeling elements (concepts and operators) in one canvas page (modeling
view); (6) the editing view, where analysts/engineers are able to edit the concept nodes
that are located in a canvas page (modeling view).

(2)

(3)

(4)

(1)

(5)

(6)

Figure 7.4: The graphical editor

7We distinguish between tooling views and modeling views: a tooling view is a view of the Desiree
tool while a modeling view is a view of a requirements model that resides in the Desiree tool.

7.1. Overview 111

Note that a Desiree requirements model consists of multiple modeling views (canvas
pages), e.g., the model in Fig. 7.4 consists of two modeling views, “Page-0” and “Page-
1”. For a requirements model, the global outline differs from a local outline in that the
former sketches all the elements in the model (i.e., all the elements in its constituting
canvas pages) while the latter outlines only the element in a specific canvas page.

Our graphical modeling tool provides several practical features: (1) it is able to trans-
form textual requirements written in our syntax to graphical models with automatic
layout, decreasing the efforts of analysts/engineers on drawing large models; (2) it main-
tains a central repository for each requirement model, and allows analysts/engineers to
dynamically create views as needed (e.g., one can create a view for an important function
and its refinement), aiming to address the scalability of large models; (3) it allows ana-
lysts/engineers to filter models by choosing specific requirement concepts or refinements
(e.g., one can choose to see only the reduce refinements in a user-defined modeling view).

7.1.3 The Reasoning Component

This component includes two parts: (1) a parser that is built on OWL API and translates
requirements (texts or models) specified using our language to OWL2 ontologies; (2) a
reasoning module that makes use of an existing reasoner, i.e., Hermit [157], to perform
reasoning tasks. The translation to OWL2 captures part of the semantics of our lan-
guage (as its expressiveness is much weaker, e.g., the expressions of nested U cannot be
supported), but this translation still allows us to do some interesting reasoning such as
interrelations query, inconsistency check, and “what-if” analysis.

Interrelations query. Our description-based syntax captures a rich set of interrela-
tions between requirement. For example, the QC “Processing time (F1) :: ¤ 10 (Sec.)”
(the processing time of searching meeting room records shall be less than 10 seconds)
specifies a quality “Processing time” that inheres in a function “F1 := Search actor:
Meeting organizer¡ object: Meeting room record¡” (the system shall allow meeting
organizers to search meeting room records), which refers to another content requirement
“Meeting room record : has id: String¡ has name: String¡ has type: String¡” (a
meeting room record shall includes id, name and type). Using the reasoning power of
DL subsumption, we can ask “what kinds of functions does the quality processing time
inheres in?”, “what kinds of qualities do users concern about the search function (F1) ?”,
“what kinds of functions operate on meeting room records?”, so on and so forth.

Inconsistency check. Once a requirements specification is translated into an OWL2
ontology, we are able to identify possibly inconsistent issues by utilizing the DL reasoning

112 Chapter 7. The Desiree Tool

power. For example, in the Nursing Scheduler project chosen from the PROMISE re-
quirements dataset [129], there are two potentially inconsistent requirements: “Student
personal information : accessed by: ONLY Authorized user¡ ” (only authorized users
shall have access to students’ personal information) and “Student personal information
: accessed by: ONLY {Dr Susan Poslusny, Dr Julie Donalek}¡ ” (Dr Susan Poslusny
and Dr Julie Donalek are the only people who shall have access to students’ personal
information). In this case, the Hermit reasoner would imply that Dr Susan Poslusny and
Dr Julie Donalek are authorized users. If they are not, the Hermit reasoner would report
an inconsistency.

“What-if” analysis. We have discussed the fulfillment semantics for each operator in
Section 6.2.2 and how to simulate the fulfillment semantics using DL translation. The DL
formulation allows us to reason about “what if some specification elements (e.g., Fs, FCs,
QCs or SCs) are fulfilled, how about the goals that they are derived from?”. To express
that a specification element SE is fulfilled, we add a DL axiom “SE � Fulfilled Thing”
for each element. For example, if a goal G1 “ticket be booked” is operationalized into
a function F2 “Book object: Ticket¡”, which is further AND-reduced to F3 “Book
 object: Airline ticket¡ means: Credit card¡” and F4 “Book object: Bus ticket¡
 means: Cash¡”, we can ask “what if F3 and F4 are fulfilled, how about G1 ?” by
adding “F3 � Fulfilled Thing” and “F4 � Fulfilled Thing”. The Hermit reasoner is
then able to infer whether F2 and G1 are subclasses of “Fulfilled Thing” or not.

7.2 An Illustrative Example

We use a simple requirement “The system shall collect real time traffic info” to illustrate
the use of our three-staged Desiree method and tool.

The informal stage. We first capture this requirement as a goal G0. We then identify
its concerns by asking “what does it concern?”: a function “collect”, a quality “timeliness”
of collected traffic info, and a content concern “traffic info”. We then accordingly reduce
G0 to G1, G2 and G3 by using the “Reduce” operator, as shown in in Fig. 7.5.

The interpretation stage. At this stage, we interpret G1 to a functional goal FG4, G2

to a quality goal QG7, G3 to a content goal CTG9, and encode the derived goals using
our Desiree syntax. This step is conducted by employing the “Interpret” operator.

The smithing stage. At this stage, we operationalize the structurally specified goals
into specification elements. For example, we operationalize FG4 “Traffic info : Collect-
ed” into a function “Func5 := Collect actor: {the system}¡ object: Traffic info¡
 means: Fixed sensor¡” and a domain assumption “DA6 := Fixed sensor : Installed”.

7.3. Chapter summary 113

<<Goal>>

G_0 := The system shall collect
real time traffic info

<<Goal>>
G_1 := The system shall

collect traffic info

<<Goal>>

G_3 := Traffic info shall include
vehicle location and speed

<<Goal>>

G_2 := Collected Traffic info
shall be in real time

<<CTG>>

CTG_9 := Traffic_info :< <has_location:
String><has_speed: String>

<<SC>>

SC_10 := Traffic_info_record :<
<location: String><speed: String>

<<FG>>
FG_4 := Traffic_info :<

Collected

<<Func>>

Func_5 := Collect <actor:
{the_system}> <object:
Traffic_info><means:

Fixed_sensor>

<<DA>>

DA_6 := Fixed_sensor
:< Installed

<<QG>>

QG_7 := Timeliness
(Func_5.object) :: Real_time

<<QC>>

QC_8 := Latency
(Func_5.object) :: <= 1 (min)

Rd

I
II

Op

Op

OpRfto

Rfto

Figure 7.5: An illustrative example for the Desiree method (with stereotypes on nodes)

There are two “refer to” relations in this model. The fist link means that the function
“Func5” operates on “Traffic info”, which is defined in “CTG9”; the second one indicates
that the quality goal “QG7” takes the object of “Func5” (i.e., traffic info collected by
“Func7”, not traffic info in general) as subject, constraining it to be in real time.

Once we have derived the specification from requirement(s), our tool can automati-
cally translate it into an OWL2 ontology, based on which we are able to perform some
interesting reasoning tasks. For example, we can check which requirements are related to
“Traffic info” as shown in Fig. 7.6. We are also able to perform inconsistency check and
“what-if” analysis over the resultant ontology piece, but in Protégé 8, an open-source on-
tology editor and framework. The graphical representation for these two reasoning tasks
will be developed in our next step work.

7.3 Chapter summary

In this chapter, we have introduced a prototype tool developed in support of the Desiree
framework, and demonstrated how to capture requirements by using the Desiree method
within the tool. We will use this tool for our experimental evaluations in the Section 8.

8http://protege.stanford.edu/

114 Chapter 7. The Desiree Tool

Figure 7.6: An example DL query

Chapter 8

Evaluation

In this chapter, we present a set of empirical evaluations conducted to evaluate our pro-
posal, including (1) the coverage of our requirements ontology; (2) the expressiveness of
our description-based language; (3) the applicability of our methodology; and (4) the
effectiveness of the entire Desiree framework.

8.1 The PROMISE Requirements Dataset

The PROMISE (PRedictOr Models in Software Engineering) [129] dataset includes 625
requirements collected from 15 software development projects 1. Among the 625 require-
ments, 255 items are marked as functional requirements (FRs) and the remaining 370
non-functional requirements (NFRs) items are classified into 11 sub-categories, such as
Security, Performance and Usability. Classification counts are shown in Table 8.1.

These requirements were developed by DePaul University Master’s students as part
of a 10-week RE course project (in 2007, probably). The students were told to only write
functional requirements for one feature, but to write a more general set of extra-functional
requirements. They are also required to use the Volere template [141], which requires the
categorization of requirements by quality type, to write NFRs. Approximately 80% of
the students in this class have two or more years of experience in the IT industry.

We use this requirements set for our evaluation. We classify all the 625 requirements
to assess the coverage of our requirements ontology, rewrite all of them to evaluate the ex-
pressiveness of our description-based language. We conduct a realistic Meeting Scheduler
case study, which is selected from this set, to demonstrate our methodology. We use two
of the projects, Meeting Scheduler and Realtor Buddy, for our controlled experiments, to

1http://openscience.us/repo/requirements/requirements-other/nfr.html

115

116 Chapter 8. Evaluation

Table 8.1: Statistics of the PROMISE requirements data set

Sub-kind Counts
Functional Functional (F) 255

Non-functional

Usability (US) 67
Security (SE) 66

Operational (O) 62
Performance (PE) 54

Look and Feel (LF) 38
Availability (A) 21
Scalability (SC) 21

Maintainability (MN) 17
Legal (L) 13

Fault tolerance (FT) 10
Portability (PO) 1

Total - 625

evaluate the entire Desiree framework.

8.2 Evaluating the Requirements Ontology

We went over the full dataset, identified the key concern(s) of each requirement and clas-
sified them using our proposed classification guidelines. Our classification includes five
basic categories: “functional requirements (FR1)”, “functional constraints (FC)”, “quali-
ty requirement (QR)”, “content requirements (CTR)” and “domain assumptions (DA)”,
which will be accordingly modeled using the modeling elements shown in Table 8.2.

Table 8.2: The classification scheme for the ontology evaluation

Classification Type Modeling Elements
Functional requirement (FR1) Functional goal (FG) _ Function (F)

Functional constraint (FC) Functional constraint (FC)
Quality requirement (QR) Quality goal (QG) _ Quality constraint (QC)

Content requirement (CTR) Content goal (CTG) _ State constraint (SC)
Domain assumption (DA) Domain assumption (DA)

At this moment, we did not distinguish between functional goals (FGs, e.g., “meeting
notification be sent”) and functions (Fs, e.g., “the system shall be able to send meeting

8.2. Evaluating the Requirements Ontology 117

notification”), “quality goals (QGs)” and “quality constraints (QCs)”, and “content goals
(CTGs)” and “state constraints (SCs)”, and delay these distinctions to the follow-up
interpretation (modeling) process/stage.

Note that “functional constraints (FCs)” are function related requirements. We sepa-
rated them from functional requirements since they need more attention in practice (see
the analysis of the classification result). As such, we use the symbol “FR1” to indicate
functional requirements (FR) without functional constraints. We show our classification
counts in Table 8.3, where “+” indicates a combination of concerns within a requirement
(e.g., FR1+QR means a mix of FR1 and QR).

Table 8.3: The ontological classification of the 625 requirements
Kind Org. FR1 QR FC CTR FR1+QR FC+QR FR1+FC FR1+CTR DA

Functional 255 183 6 9 21 1 0 6 29 0
Usability 67 7 46 2 0 11 1 0 0 0
Security 66 11 2 39 0 9 2 3 0 0

Operational 62 14 10 13 0 10 2 6 0 7
Performance 54 3 43 1 0 4 1 1 0 0

Look and Feel 38 9 20 0 1 6 2 0 0 0
Availability 21 0 20 1 0 0 0 0 0 0
Scalability 21 1 19 0 0 0 0 1 0 0

Maintainability 17 1 10 3 0 2 1 0 0 0
Legal 13 1 11 1 0 0 0 0 0 0

Fault tolerance 10 4 4 0 0 2 0 0 0 0
Portability 1 0 0 0 0 0 0 0 0 1

Total 625 234 191 69 22 46 9 17 29 8
Org.: original classification; FR1: functional requirement (except FC); FC: functional con-
straint; QR: quality requirement; CTR: content requirement; DA: domain assumption

From each row of table 8.3, we can see how the original categorization of requirements
is distributed across our ontological classification. For example, from the original 255
FRs, we identified 183 FR1s, 6 QRs, 9 FCs, 21 CTRs, 1 FR1+QR, 6 FR1+FCs, and 29
FR1+CTRs. Here 51 out of the 255 (20%) FRs concern content. We found that most of
the original security NFRs are often functional (FR1) or functional constraint (FC) related
(the third row): 97% of them (66 in total) are identified as FR1s, FCs, or combination
with other concerns (11 FR1s, 39 FCs, 9 FR1+QRs, 2 FC+QRs, and 3 FR1+FCs). For
example, “only managers are able to deactivate user accounts”, originally classified as a
security NFR, should actually be a functional constraint (FC). This is because the system
needs to check whether the actor is a manager or not when the deactivation function is

118 Chapter 8. Evaluation

accessed. In the PROMISE requirements set, there are many requirements of the form
“only users with role¡ are allowed to perform action¡ or access asset¡”. In addition,
we discovered that 16.16% of the requirements (101/625) mix multiple concerns (i.e., with
“+” in their labels).

Examining the data more closely, we found that 148 out of the 191 QRs (148/191,
77.49%) are classified under usability, performance, availability, look and feel, and scal-
ability. We further analyzed the 246 quality-related NFRs (191 QRs, 46 FR1+QRs and
9 FC+QRs), and identified 67 unique qualities with 327 occurrences. The most frequent
ones are operability, availability, processing/response time, and scalability. That is, these
kinds of quality requirements may appear more frequently in a requirements specification.

Our evaluation shows that functional constraints (FCs), content requirements (CTRs),
and the mix of concerns such as FR1+FC, FR1+QR, and FR1+CTR are not trivial and
need more attention in practice. The results also provide evidence that our requirements
ontology is adequate for covering requirements in practice.

8.3 Evaluating the Requirements Language

8.3.1 Evaluating the Language Expressiveness

After classification, we rewrote the set of all 625 requirements using our language to
evaluate its expressiveness. In this step, we separated the concerns of a requirement if it
was composite, and encoded it by using the description-based syntax. Our syntax was able
to capture all 625 requirements, resulting in 1276 statements (nearly double the amount
of original requirements), including 419 FGs/Fs, 313 FCs, 375 QGs/QCs, 90 CTGs, and
79 DAs. Note that there are 7 instance-level constraints (7/625, 1.12%) identified in
the evaluation. We were able to express these constraints by using the “same as” DL
constructor [44]; however, the use of “same as” imposes severe limitations on reasoning.

The counts of each type of statement in our language does not strictly correspond to
the classification counts in Table 8.3. For example, we have 22 CTRs and 29 FR1+CTRs
in Table 8.3, but ultimately 90 rather than 51 CTGs in this run. This is because the orig-
inal dataset includes many composite and nested requirements, such as sibling functions,
nested qualities and content. For example, there are two CTGs, namely “billing informa-
tion” and “contact information”, in the requirement “users shall be able to update their
billing and contact information”. We broke these up into separate requirements when
encoding them. In addition, we treated domain knowledge as domain assumption(s). For
instance, “Open source examples include Apache web server Tomcat” was captured as

8.3. Evaluating the Requirements Language 119

“DA := Tomcat : Web server ^ Open source”.
Our language and guidelines facilitate the identification of ambiguity. In the interpre-

tation process, we identified 24 ambiguous requirements (24/625, 3.84%), and eliminated
the ambiguity by choosing the most likely interpretation. For example, “notify users with
email” will be encoded as “notify object: user¡ means: email¡”. Note that although
we could have found some ambiguities by reading natural language requirements text,
using a more ad-hoc, less systematic approach, such an approach would likely cause us
to miss many ambiguities; as such naive approaches do not force the user to carefully an-
alyze and classify the requirement text. This is evidenced in our controlled experiments
in Section 8.5. Furthermore, once ambiguities are found, an ad-hoc approach would not
tell us what to do when an ambiguous requirement is found. Our approach provides a
systematic way for not only identifying but also dealing with ambiguities in requirements.

Our language and guidelines also contribute to making requirements more accurate
and complete. For example, for a rather informal statement “the product shall make
the users want to use it”, we can identify its focus by asking “what does it concern?”,
and restate it as a quality goal “QG1 := Attractiveness ({the product}) :: Good”, which
can be further refined/operationalized, e.g., “QC2 := Number of users ({the product}
 period: One week after its launch¡) :: ¥ 1000”. Moreover, to satisfice QG1, we may
need to design in the system certain functions and/or functional constraints, e.g., “the
product shall use site maps for navigation”, which can be captured as “F3 := Navigate
 actor: {the product}¡ object: User¡” and “FC4 := F3 : means: Site map¡”.

8.3.2 Evaluating the Need of the U, G, O Operators

We focused on analyzing the 370 NFRs in the PROMISE requirements set, in order to
evaluate the need of the three operators, namely “de-Universalize”(U), “Scale”(G) and
“Observe”(O), which are introduced for relaxing quality requirements (QGs and QCs).

Our analysis of the 370 NFRs resulted in 481 requirements statements, which were
further classified as shown in Table 8.4. Note that a statement can be tagged with more
than one type, e.g., “all users shall be authenticated” is practically unsatisfiable, but also
measurable, thus the sum of this classification is greater than 481 (in fact, 567). In this
classification, we found 15.17% (86/567) of the statements to be practically unsatisfiable,
25.22% (143/567) vague and only 58.73% (333/567) measurable.

We analyzed the implicit application of U, G, and O to the 481 requirements state-
ments. For example, “80% of the users shall report the user interface is simple” captures
an observation (i.e., an application of O) and a de-Universalization (U). We show these

120 Chapter 8. Evaluation

Table 8.4: The statistics of satisfaction type

Satisfaction Type #NFRs
Ambiguous 5

Unsatisfiable 86
Vague 143

Measurable 333
Total 567

counts in Table 8.5: 50 U (i.e., stating percentages), 10 G, and 16 O.

Table 8.5: Implicit presence of the U, G, O operators on the 370 NFRs

Weakening operators #NFRs
de-Universalize (U) 50

Scale (G) 10
Observe (O) 16

Total 76

Among the 481 statements, 86 of them (in addition to the 50 implicit presence of U)
implicitly or explicitly use universal quantifiers, e.g., “all”, “any” and “each”. They are
counted as (potentially) unsatisfiable in Table 8.4, and likely need to be relaxed by using
U. Also, 36 subjective statements are identified, e.g., “look”, “readability”, “usefulness”,
etc., indicating that at least another 20 requirements (except the 16 presence of O) should
be observed by using O. Lastly, G could be applied to unsatisfiable, vague or measurable
requirements, thus all the 476 items (except the 5 ambiguous ones) are candidates for the
G operator, but only 10 actually (implicitly) used it (e.g., “almost all”, “fast enough”).
For example, “the interface shall be appealing” as found in the dataset, is clearly gradable.

Our analysis shows that many NFRs are (practically) unsatisfiable, vague, and sub-
jective, demonstrating the need for the operators as introduced in our language.

8.3.3 Lessons Learned

When rewriting the set of all 625 natural language requirements, we observed several
important phenomena, including instance-level constraints, contextualized requirements,
temporal relations, the use of “AND”, “OR”, and universal quantifiers. We discuss them
in detail below.

8.3. Evaluating the Requirements Language 121

Instance-level Constraints. In the interpretation process, we have found 20 (20/625,
3.20%) instance-level constraints. For 13 out of the 20 items, we are able to capture them
by using role chain, which is composed of DL roles (i.e., slots) through the composition
operator (�) [20]. For example, the requirement “administrators shall be able to add a
student who has registered for a clinical class to a clinical lab section for that class” can
be captured as in Example 1 below. We first define F1, which includes three established
relations (slots): “registered for” (domain: Students; co-domain: Clinical classes), “asso-
ciated with” (domain: Lab sections; co-domain: Clinical classes) and “added to” (domain:
Students; co-domain: Lab sections), and then use FC1 to reflect the restriction: the set
of student who have been added to a lab section that is associated with a class, shall be
subsumed by the set of students who have registered for that class.

—Example 1—
F1 := Add actor: Administrator¡ object: Student registered for: Clini-

cal class¡¡ target: Lab section associated with: Clinical class¡¡
FC1 := added to � associated with : registered for

To express the other 7 examples (7/625, 1.12%), we use the “same as” DL construc-
tor [29], which is more generally known as “role value map” [150]. For example, “Managers
shall be able to move a student from one clinical lab section to another clinical lab section
corresponding to the same clinical class” can be captured as in Example 2, where we
use “same as” to reflect “the same clinical class” restriction. Note that the “same as”
constructor would cause the problem of undecidability on its general form [150], and thus
imposing limitations on reasoning.

—Example 2—
F2 := Move actor: Manager¡ object: Student¡ source: Lab section

 associated with: Clinical class¡¡ target: Lab section associated
with: Clinical class¡¡

same as (source � associated with, target � associated with)

One alternative way is to use SWRL rules [91]. For instance, we can write the rule
as shown in Example 3: if the lab sections y and z are different and belong to the same
clinical class c, then a student x can be moved from y to z. Each time when moving a
student x from lab section y to z, the system needs to check whether both in lab section
(?x, ?y) and moveable (?x, ?z) hold.

Contextualized Requirements. In the evaluation, we have found 40 contextualized
requirements (40/625, 6.40%), which specify pre-conditions (15/40) or triggers (25/40).

122 Chapter 8. Evaluation

—Example 3—
SWRL3 := Student(?x) ^ Clinical class(?c) ^ Clinical section (?y) ^ Clini-

cal section (?z) ^ differ from (?y, ?z) ^ belong to class (?y, ?c) ^
belong to class (?z, ?c) ^ in lab section (?x, ?y) ñ moveable (?x, ?z)

In general, we can treat a pre-condition/trigger as a property of a corresponding function,
an denote it as a slot-description pair of that function. For example, “the system shall
notify the realtor in a timely fashion when a seller or buyer responds to an appointment re-
quest” can be captured as “Notify subject: {the system}¡ target: Realtor¡ trigger:
Respond subject: Seller _ Buyer¡ target: Appointment request¡¡”). If we plan to
accommodate evolutionary changes (e.g., adding a pre-condition/trigger to a function)
in the future, it is better to specify contextualized requirements by using functional con-
straints as shown in Example 4.

—Example 4—
F4�1 := Notify subject: the system¡ target: Realtor¡

FC4�2 := F4�1 : trigger: Respond subject: Seller _ Buyer¡ target:
Appointment request¡¡

Temporal Relations. In the evaluation, we have identified 6 requirements (6/625,
0.96%) that involve temporal relations, such as “after”, “before”, “prior to”, “since” and
“until”. We capture these temporal relations as axioms or slots.

1. If a temporal constraints is imposed on two functions, we capture each FR as a
function and model the temporal relation as a link between them. For example,
“the website shall authorize credit card payment before allowing a user to stream a
movie” can be captured as in Example 5.

—Example 5—
F5�1 := Authorize actor: {the product}¡ object: Credit info associated

with: User ¡¡
F5�2 := Stream subject: {the product}¡ actor: User¡ object: Movie¡

Before (F5�1, F5�2)

2. If a temporal constraint is imposed on a function and a timepoint/state, we capture
such temporal relation as a slot of the corresponding function. For instance, “the
system shall allow on demand generation of IQA (Inventory Quantity Adjustment)
documents since certain point of time” can be captured as in Example 6.

8.3. Evaluating the Requirements Language 123

—Example 6—
F6�1 := Generate subject: {the product}¡ object: IQA document¡ since:

Certain time point¡
FC6�2 := F6�1 : trigger: Requested¡

The Use of “AND” in NL Requirements. We found in our evaluation the use of
“AND” in 206 requirements (206/625, 32.96%). This simple but common conjunction
word has many different kinds of interpretations.

1. Sibling functions, qualities or subjects (62/206, 30.10%): we capture them as sepa-
rate functions, QGs or QCs. For instance, the requirement “The system shall allow
managers to add, update and delete students” can be captured as three functions,
which are shown in Example 7.

—Example 7—
F7�1 := Add subject: {the system}¡ actor: Manager¡ oject: Student¡
F7�2 := Update subject: {the system}¡ actor: Manager¡ oject: Student¡
F7�3 := Delete subject: {the system}¡ actor: Manager¡ oject: Student¡

2. Conjunct information that needs to be integrated (59/206, 28.64%): we capture
them as content goals (CTGs, akin to UML classes). For example, to capture the
requirement “the system shall display movie title, actor, and director”, we first define
a CTG and then specify a function as in Example 8.

—Example 8—
CTG8�1 := Movie detail info : has title: String¡ has actor: Person¡ has di-

rector: Person¡
F8�2 := Display actor: {the system}¡ object: Movie detail info¡

3. Conjunct information that needs to be separated (33/206, 16.02%): we use “_”
and reduce it to separate functions. For example, “users shall be able to update
their billing and contact information” can be captured as in Example 9, where F9

is OR-reduced into F9�1 and F9�2. Note that here “OR (_) ” means alternatively
at run-time, and F9�1 and F9�2 need to be implemented at design time.

4. Set of individuals (12/206, 5.83%): we define them as new types of entities based on
set. For example, “the system must be able to interface with the following browsers:
IE 5.x, 6.0, Netscape 6.x, 7.x, 8.x, and Firefox 1.0 (6 kinds of browsers in total)”
can be captured as in Example 10.

124 Chapter 8. Evaluation

—Example 9—
F9 := Update actor: User¡ object: Billing info _ Contact info ¡

F9�1 := Update actor: User¡ object: Billing info¡
F9�2 := Update actor: User¡ object: Contact info¡

—Example 10—
DA10�1 := Required Browser � {IE 5.x, 6.0, Netscape 6.x, 7.x, 8.x, Firefox 1.0}
F10�2 := Interface actor: {the system}¡ object: Required Browser¡

QC10�3 := Number of browser kind (F10�2.object) :: {6}

5. Logic “OR” (13/206, 6.31%): we use “_”. For instance, for “the system will notify
affected parties when changes occur affecting clinical, including but not limited to
clinical section capacity changes, and clinical section cancellations”, either kind of
changes would trigger the notification (see Example 11).

—Example 11—
F11�1 := Notify actor: {the system}¡ object: Affected parts¡

FC11�2 := F11�1 : trigger: Occur subject: Capacity change _ Cancellation¡¡

6. Logic “AND” (15/206, 7.28%): we use the “^”. For example, “the product shall
be able to be operated in a repair facility during dirty and noisy conditions” can be
captured in Example 12.

—Example 12—
QG12 := Availability ({the product} location: Repair facility¡ situation:

Dirty ^ Noisy¡): 100%

7. Compound words: we define them as concepts (12/206, 5.83%). For example, “look
and feel” indicates an interface, “between 8 AM and 6 PM” means a period, etc.

The Use of “OR” in NL Requirements. We found in our evaluation the use of
“OR” in 52 requirements (52/625, 8.32%). Being similar with “AND”, the term “OR” in
NL requirements also has different kinds of interpretations.

1. Sibling functions, qualities or subjects (6/52, 11.54%): we define separate functions,
QGs or QCs. For example, “the system shall update or create new property listings”
is captured in Example 13, akin to the first interpretation of “AND” (Example 7).

2. Conjunct content that needs to be separated (17/52, 32.70%): we use “_”. For
example, “the system shall allow user to search for movies by title, actor or director”

8.3. Evaluating the Requirements Language 125

—Example 13—
F13�1 := Update actor: {the system}¡ object: property listing¡
F13�2 := Create actor: {the system}¡ object: New property listing¡

can captured as in Example 14 (F14 is OR-reduced to F14�1, F14�2 and F14�3), which
is similar to the third interpretation of “AND” (Example 9).

—Example 14—
F14 := Search subject: {the product}¡ object: Movie¡ param: title _ actor

_ director ¡
F14�1 := Search subject: {the product}¡ object: Movie¡ param: Title ¡
F14�2 := Search subject: {the product}¡ object: Movie¡ param: Actor ¡
F14�3 := Search subject: {the product}¡ object: Movie¡ param: Director ¡

3. Sets of individuals (2/52, 3.84%): we define them as new types of entities based on
set. For example, “the product shall be able to interface with a database management
system such as Oracle DB2 MySql or HSQL”. We can capture such requirements as
in Example 10.

4. Logic “OR” (22/52, 42.31%): we use “_”. For instance, “the product shall prevent
a player from viewing the offensive or defensive grids of the other player”. In this
example, the opponent’s status can be either offensive or defensive, but not both
(see Example 15).

—Example 15—
F15 := Prevent subject: {the product}¡ object: Player¡ target: View ob-

ject: (Offensive grid _ Defensive grid) associated with: Opponent¡¡¡

5. Compound word (5/52, 9.61%): we define them as concepts. For example, “himself
or herself ”, “his or her status”, etc.

The Use of Universal Quantifier in NL Requirements. In our evaluation, we
found that 115 requirements (115/625, 18.40%) have used universal quantifiers such as
“all”, “any”, “100%”, “every” and “each” (86 of them are in the 370 NFRs, see Table 8.4).
The use of universal in a requirement is dangerous, meaning, fulfillment of the requirement
is often practically unrealizable or at least expensive. Accordingly, we need to use the U
operator to relax the universality (i.e., we require only a certain percentage of the set of
subjects to satisfy a requirement). For example, the quality requirement “the processing
time of all tasks shall be less than 5 seconds”, captured as “QC1 := Processing time

126 Chapter 8. Evaluation

(Tasks) :: ¤ 5 (Sec.)”, can be relaxed by U: “QC2 := U (?X, QC1, inheres in: ?X¡,
90%)”, requiring 90% of the tasks shall take less than 5 seconds.

On the other hand, sometimes stakeholders may need to impose constraints on a whole
set rather than part of them. For example, “the owner shall have free access to all of the
streaming movies”. It is a strict “all” here because it is unreasonable if an owner cannot
access some of his/her streaming movies. At such situation, we use FCs to specify the
universality requirement, as shown in Example 16.

—Example 16—
F16�1 := Access actor: Owner¡ object: Streaming movie¡ mode: Free¡

FC16�2 := F16�1.object : accessedBy: Owner¡

8.4 Evaluating the Methodology

We performed a case study on the Meeting Scheduler(MS) project, adopted from the
PROMISE dataset, to illustrate how our method can be applied to realistic requirements.

8.4.1 Meeting Scheduler: Modeling

The Meeting Scheduler (MS) project has 74 requirements, including 27 FRs and 47 N-
FRs. Functionally, the meeting scheduler is required to create meetings, send meeting
invitations, book meeting rooms, book room equipment, and so on. The non-functional
requirements cover different aspects of the system, such as “Usability”, “Configurability”,
“Look and feel”, “Inter-operability”, “Security”, and “Maintainability”.

We classified the 74 requirements according to our requirement ontology, obtaining
34 FR1s, 5 FCs, 18 QRs, 3 FR1+FCs, 9 FR1+QRs, 4 FC+QRs, and 1 DA (74 in total).
We captured each requirement as a goal, separated the concerns of a goal if needed, and
then encoded them by using our description-based syntax. In this interpreting process,
we identified several kinds of requirements issues, such as ambiguous, incomplete, unveri-
fiable, and unsatisfiable. We resolved these kinds of issues by using the set of our provided
operators (e.g., “Interpret”, “Reduce”, “Operationalize/Observe”, and “de-Universalize”)
to make them unambiguous, complete (enough), verifiable, and practically satisfiable.

• Incomplete. We found 22 incomplete requirements 2 (22/74, 29.73%). A require-
ment is incomplete if necessary information is missing for its implementation. For

2In this case study, we counted the number of problematic requirements instead of the number of
issues in each requirement, which is the case in our follow-up controlled experiment.

8.4. Evaluating the Methodology 127

example, the requirement R1 “The product shall be able to send meeting notifications
via different kinds of end-user specified methods”, captured as “F2 := Send actor:
{the product}¡ object: Meeting notification¡ means: User defined method¡”,
is incomplete since several pieces of information is missing: (1) Who will send? (2)
Send to whom? and (3) Send how many notifications at a time? With Desiree, we
are able to add the missing information through updating slot-description pairs by
applying the “Reduce” operator: “Send actor: Participant¡ object: ¥ 1 Meet-
ing notification¡ target: Organizer¡ means: User defined method¡”. Here “¥
1” indicates a set, and “User defined method” needs to be further refined.

• Ambiguous. We identified 4 ambiguous requirements (4/74, 5.41%). For example,
the above requirement R1 is ambiguous because it is unclear whether a notification
message will be sent by all the specified methods or only one of them at run-time.
In our framework, this requirement will be captured as F2 (as above), which can be
AND-reduced (resp. OR-reduced) into different functions, e.g., RdpF2q � tF3, F4u,
where F3 is “Send means: Email¡” and F4 is “Send means: SMS¡” (resp.
RdpF2q � tF3u and RdpF2q � tF4u), which corresponds to the first (resp. the
second) interpretation.

• Un-verifiable. We identified 19 unverifiable requirements that use vague or subjec-
tive words such as “multiple”, “various” and “intuitive” (19/74, 25.69%). We make
these kinds of requirements measurable by applying the “Operationalize” or the
“Observe” operator. If a requirement is objective, we use “Operationalize”. For ex-
ample, the QR “the product shall be able to interface with various kinds of DBMSs”
will be operationalized as a QC “Kinds of interoperable DBMS ({the product}) ::
{MySQL, SQLServer, HSQL}”. If a requirement is subjective, we use “Observe”.
For example, the QR “the product shall have an intuitive interface” will be opera-
tionalized as a QC “Understandability ({the product}) :: Intuitive observed by:
Surveyed user¡” by observing, which can be further relaxed to make it practically
satisfiable.

• Un-satisfiable. We found 8 practically un-satisfiable requirements (8/74, 10.81%). A
requirement is (practically) un-satisfiable if it is too costly or technically unfeasible
to implement it. This issue is often caused by the un-restricted use of universals such
as “all”, “any”, “every” and “100%”. In our framework, we make such requirements
practically satisfiable by using the “de-Universalize” operator. For example, the
QR “the search function shall take less 5 seconds (every time)”, captured as a QC

128 Chapter 8. Evaluation

“Processing time (Search) :: ¤ 5 (Sec.)”, will be relaxed as “U (?X, Processing time
(Search) :: ¤ 5 (Sec.), inhere in: ?X¡, 95%)”, which requires the search function
to take less than 5 seconds at 95% of the time. Here the variable “?X” indicates a
sub-set of the search runs.

• Redundant. We identified 6 redundant requirements (6/74, 8.11%). For example,
the requirement “The product shall allow an organizer to invite other employees to
meetings” repeats “The product will notify employees of meeting invitations”. We
choose to model the more complete requirement (e.g., the formmer) and abandon
the less complete one (e.g., the latter).

• Inconsistent Terms. We found term inconsistencies in 5 requirements with regarding
to the rest ones (5/74, 6.76%). A term inconsistency arises when different terms are
used to refer to the same (type of) thing, e.g., “meeting confirmation” vs. “meeting
acknowledgement” (1 occurrence), “the system” vs. “the product” (2 occurrences)
and “meeting agenda” vs. “meeting schedule” (1 occurrence), or the same term is
used for referring to different kinds of things, e.g., “meeting room” as a real-world
object vs. “meeting room” as an information object (1 occurrence). We address the
first kind of issue by adding a DA axiom that equating two concepts (e.g., “DA1

:= Meeting agenda � Meeting schedule”), and address the second kind of issue by
defining different concepts (e.g., “meeting room” for real-world objects, and “meeting
room record” for information objects).

We finally obtained a specification, which consists of 58 functions, 54 QCs, 10 FCs, 8
SCs and 13 DAs (143 elements in total). We show the overall functionality and an example
category of NFRs (i.e., usability requirements) of the meeting scheduler project in Fig. 8.1
and Fig. 8.2, respectively. The full case study can be found at https://goo.gl/oeJ9Fi.

Here, each modeling element has an associated stereo type (e.g., “ QG¡¡” in-
dicates a quality goal), the “I”, “Rd”, “Op”, “Ob”, “U” links represent the applica-
tions of “Interpret”, “Reduce”, “Operationalize”, “Observe”, and “de-Universalize”, re-
spectively. A “Rfto” link means that a modeling element refer to another, e.g., the
function “F1 := Record object: Meeting entry¡ actor: {the product}¡” refers to
a content goal “CTG1 := Meeting entry : has subject: String¡ has meeting type:
String¡ has date: Calendar¡ has content: String¡ has location: String¡”.

The use of a small black circle with a “Rd” (resp. “Op”) link represents an “AND-
Reduce” (resp. “AND-Operationalize”). For example, the function “F14�1 := Reserve
 object: Equipment¡ actor: Organizer¡” is AND-reduced to “F14�2 := Record object:

8.4. Evaluating the Methodology 129

<<Goal>>
Goal_1 := The product
shall record meeting

entries

<<Func>>
F_1 := Record <object:

Meeting_entry> <actor:
{the_product}>

<<CTG>>

CTG_1 := Meeting_entry :< <has_subject:
String><has_meeting_type: String><has_date:

Calendar><has_content:
String><has_location: String>

<<SC>>
SC_1 := Meeting_entry_record :<
<subject: String><meeting_type:

String><date: Calendar><content:
String><location: String>

<<Goal>>

Goal_A1_1 := Schedule meetings

<<Goal>>

Goal_A1_2 := Create
meetings

<<Goal>>

Goal_12 := The product shall allow
an organizer to invite other

employees to meetings

<<Func>>

F_12 := Send <object: >=1
Meeting_invitation> <actor:

Organizer> <target: Employee>

<<Goal>>
Goal_24 := The product shall be
able to send meeting notifications

via different kinds of end-user
specified methods

<<Func>>
F_24 := Send <object:

Meeting_invitation> <actor:
{the_product}> <means:

Method>
<<Func>>

F_24_1 := Send <object: >=1
Meeting_invitation><subject:

{the_product}> <actor:
Organizer> <means: Email>

<<Func>>

F_24_2 := Send <object: >=1
Meeting_invitation> <actor:

{the_product}> <actor:
Organizer> <means: SMS>

<<Goal>>
Goal_A13_1 := Reserve

meeting room

<<Func>>
F_13_1 := Reserve <object:
Meeting_room> <actor:

Organizer>

<<Func>>
F_13_2 := Update <object:

Room_schedule
<associated_with:

Meeting_room>> <actor:
{the_product}>

<<Goal>>

Goal_A14_1 := Reserve
room equipment

<<Func>>
F_14_1 := Reserve <object:

Equipment><actor:
Organizer>

<<Func>>

F_14_2 := Record <object:
Transportation_status

<associated_with: Equipment>>
<actor: {the_product}>

<<FC>>
FC_27 := Status <associated_with:
Unreserved ∧ Meeting_room> :<

<has_value: {available}>

<<Goal>>
Goal_18 := The product shall

display room equipment according
to search parameters

<<Func>>
F_18 := Search <object:

Room_equipment> <actor:
Organizer> <parameter:

Search_parameter>

<<Func>>
F_18_1 := Search <object:

Room_equipment>
<actor: Organizer>

<parameter:

<<Func>>
F_18_2 := Search <object:
Room_equipment><actor:
Organizer> <parameter:

Room_capacity>

<<Goal>>

Goal_19 := The product shall
display meeting rooms according

to search parameters

<<Func>>

F_19 := Search <object:
Meeting_room> <actor:
Organizer> <parameter:

Search_parameter>

<<Func>>

F_19_1 := Search <object:
Meeting_room> <actor:
Organizer> <parameter:

Equipment_name>

<<Func>>
F_19_2 := Search <object:
Meeting_room> <actor:
Organizer> <parameter:

Equipment_type>

<<Func>>
F_22 := Notify <actor:
{the_product}> <object:

Equipment_transport_request>
<target: Building_personnel>

<<QG>>

QG_42 := Understandability
({F_19}) :: Intuitive

<<QC>>

QC_42 := U (var_O,
Understandability ({F_19}) ::
Intuitive <observed_by :

Web_user>, <observed_by :
var_O>, 80%)

I

Op

Rd

Rd

I

I

Rd

Rd

I

Rd

I

Rd

Rfto

I

Rd
Rd

I

Rd

Rd

Rfto

Ob

Rfto

Figure 8.1: The overall functionality of the Meeting Scheduler project

<<QG>>

QG_35_1 := Attractiveness
({the_product}) :: High

<<QG>>

QG_35_2 := Frequency (Use
<object: {the_product}> <period:
2_week_post_launch>) :: Regular

<<QG>>

QG_A_35 := Usability
({the_product}) :: Good

<<QC>>
QC_35_3 := U (var_O, Frequency

(Use <object: {the_product}>
<period: 2_week_post_launch>) ::

Regular <observed_by :
Surveyed_user>, <observed_by :

var_O>, 80%)

<<QG>>
QG_36_1 := Learnability
({the_product} <ref_actor:

User>) :: Easy

<<Func>>
F_36 := Reserve <actor:

User><object:
Conference_room>

<<QC>>
QC_36_2 :=

Learning_time (F_36) ::
<= 5 (minute)

<<QC>>
QC_36_3 := U (var_X,

Learning_time (F_36) :: <= 5
(minute), <inheresIn : var_X>,

90%)

<<Func>>

F_40 := Set_up <object:
Meeting> <actor: User>

<<QC>>
QC_40 :=

Learning_time (F_40) ::
<= 15 (minute)

<<QC>>
QC_40_1 := U (var_X,
Learning_time (F_40) ::

<= 5 (minute), <inheresIn
: var_X>, 90%)

<<Func>>

F_37 := Give <actor:
{the_product}> <object:

Feedback><when: Necessary>

<<QG>>
QG_37 := Accuracy

(F_37) :: Accurate

<<QC>>
QC_37_1 := U (var_O,

Accuracy (F_37) :: Accurate
<observed_by : Surveyed_user>,
<observed_by : var_O>, 80%)

<<QG>>
QG_A57_1 := Operability
({the_product}) :: Good

<<Func>>
F_57 := Add <object:
New_user> <target:

{the_system}>

<<QC>>

QC_57 := Operating_time
(F_57) :: <= 10 (minutes)

<<QC>>
QC_57_1 := U (var_X,

Learning_time (F_57) :: <= 5
(minute), <inheresIn : var_X>,

90%)

<<Func>>
F_61_2 := Find <actor:

Registered_user><object:
Solution <key_to:

Problem>>

<<QC>>
QC_61_3 :=

Learning_time (F_61_2) ::
<= 5 (minute)

<<QC>>
QC_61_4 := U (var_X,

Learning_time (F_61_2) ::
<= 5 (minute), <inheresIn

: var_X>, 70%)

Rd

Ob

Rd

Op

Rfto

Op

U

Rfto

Op

U Rfto

ObOp

Rfto

U

Rfto

Op

U

Figure 8.2: Example Usability NFRs of the Meeting Scheduler project

130 Chapter 8. Evaluation

Transportation status associated with: Equipment¡¡ actor: {the product}¡” and
“F22 := Notify actor: {the product}¡ object: Equipment transport request¡ target:
Building personnel¡”. This means both F14�2 and F22 need to be fulfilled in order to make
F14�1 fulfilled.

To represent “OR-Reduce” (resp. “OR-Operationalize”), we applied the “Reduce” (re-
sp. “Operationalize”) operator more than one time (can be just one). For example, “F19 :=
Search object: Meeting room¡ actor: Organizer¡ parameter: Search parameter¡”
is reduced to “ F19�1 := Search object: Meeting room¡ actor: Organizer¡ parameter:
Equipment name¡” and “F19�2 := Search object: Meeting room¡ actor: Organizer¡
 parameter: Equipment type¡”, respectively. This means that a search can be per-
formed according to either an equipment name or an equipment type, but not both. In
the case both name and type are needed for a combined search, we can define a CTG
that with the two attributes as its slots, and then use the newly defined CTG as the
description of the “parameter” slot.

8.4.2 Meeting Scheduler: Reasoning

We kept the requirements (including 54 Goals, 3 FGs, 35 QGs and 8 CTGs), specifications
(including 58 functions, 54 QCs, 10 FCs, 8 SCs and 13 DAs), and the derivation process
(refinements and operationalizations) in a Desiree model, and translated the entire model
to OWL2 (OWL2 Web Ontology Language) [127].

To support this process, we have developed a translation component based on OWL
API 3 (as part of our Desiree tool) for systematically and automatically translating a
description-based specification into an OWL2-ontology. Interested readers can download
the resultant ontology 4, and import it to Protégé 5 to try some reasoning tasks as discussed
below. Alternatively, one can also try to do the reasoning tasks with our Desiree tool,
which has integrated the Hermit reasoner 6 [157].

The major benefit of translating a requirements specification to an OWL2-ontology is
the convenience of obtaining an overview of concerns (e.g., functions, qualities and entities)
and interrelations query: we are able to ask a list of questions as shown in Table 8.6
(technically, these questions will be translated into DL queries). For instance, we can ask
“ inheres in: {the product}¡” (an instantiation of Q2) to retrieve the set of qualities
that inhere in “the product”. Note that these questions are not exhaustive. If desired,

3http://owlapi.sourceforge.net/
4https://goo.gl/oeJ9Fi
5http://protege.stanford.edu/
6http://hermit-reasoner.com/

8.4. Evaluating the Methodology 131

we can ask more complex questions like “what functions are required to finish within 5
sec.?” in the form of “ has quality: Processing time has value in: ¤ 5 (sec.)¡¡”.

Table 8.6: Example queries over the Meeting Scheduler requirements specification

ID Concerned Questions Our Syntax
Q1 What kinds of subjects does a quality refer to? has quality: QualityName¡
Q2 What qualities are of concern for a subject? inheres in: SubjT¡
Q3 Who performs the function? is actor of: F¡
Q4 What is the function operating on? is object of: F¡
Q5 What functions do a subject is involved in? object: SubjT¡

A second benefit of such a translation is the identification of (some) inconsistencies.
For example, the term “user” in “users shall be able to register within 2 minutes” refers to
a person in the real world, but a symbolic or representational entity in the system in “man-
agers shall be able add users into the system”. Here, the former requirement refers to a
usability requirement (with regarding to a set of users), and the latter is a mix of function
and content concerns (what kinds of slots/properties shall be used to describe a user pro-
file?). To detect such inconsistencies, we add two axioms, “System function : object:
ONLY Infomration entity¡” and “Infomration entity (^) Real world entity : Nothing”,
constraining the object of a system function to be only information entities, which are
disjoint with real-world entities 7. When specifying the function “Register actor: User¡
 target: {the system}¡”, we will add a DA axiom “User : Real world entity”. If we
have another function “Add actor: Manager¡ object: User¡ target: {the system}¡”,
and all these descriptions are translated into DL formulae, a DL reasoner is able detect an
inconsistency therein: the term “User” cannot be both a real-world entity and an infor-
mation entity, which are disjoint classes, at the same time. Moreover, the identification of
such inconsistencies helps us to discover implicit or missing requirements, e.g., there is an
implicit content requirement about user profile in this example. In the Meeting Scheduler
project, we have identified 3 such inconsistencies, the other two are “meeting room” and
“room equipment” (being a real-world entity vs. being an information entity).

Since we have captured each requirement/operationalization using DL formulae, we
are also able to perform “what if” analysis on the resultant requirements ontology. To do
so, we add some extra DL axioms that assert certain specification elements to be fulfilled,
and then check whether the goal of concern is fulfilled. For example, as in Fig. 8.1, the goal
G19 “search meeting room” is interpreted as F19 “Search object: Meeting room¡ actor:

7Contra system functions, interface functions could act on real-world entities, e.g., “navigate users”.

132 Chapter 8. Evaluation

Organizer¡ parameter: Search parameter¡”, which is OR-deuced to F19�1 “Search ...
 parameter: Equipment name¡” and F19�2 “Search ... parameter: Equipment type¡”.
We assume F19�1 to be fulfilled by adding an axiom “F19�1 � Sulfilled Thing”, and then
check if G19 is fulfilled (i.e., whether “G19 � Sulfilled Thing” holds) by running the DL
subsumption reasoning task.

Another benefit, which is closely related to the interrelation management, is the sup-
port for impact analysis when changes occur. For instance, for security reasons, a stake-
holder may require their email to be invisible to others. Given this new requirement, we
can at first find out the functions that are related to emails through query (suppose that
we have “Fx := Send object: Meeting invitation¡ means: Email¡” through the query
“ means: Email¡”), and then add the new requirement according to some mechanism-
s (e.g., reduce Fx to F 1x := Send object: Meeting invitation¡ means: Email kind:
BCC¡¡”, making “blind carbon copy (bcc)” a nested SlotD that modifies “Email”, the
means of Fx). Next, we need to evaluate how this change would impact other elements
(e.g., the influence on the inhering performance qualities of Fx). This interesting topic
will be explored in the next steps of our work.

8.5 Evaluating the Desiree Framework

In this section, we describe a set of three controlled experiments, conducted to assess
whether the Desiree framework can indeed help people to conduct better requirement
analysis.

8.5.1 Experiment Setup

In the experiments, we compared Desiree with a Vanilla RE approach, where a participant
uses the characteristics of a good software requirement specification (SRS) adapted from
the IEEE standard 830-1998 [45] and a set of guidelines for writing good requirements in-
troduced in Wiegers et al. [172]. In the Vanilla method, participants manually go through
and improve stakeholder requirements using these desirable characteristics and guidelines.
This process approximates requirements walkthroughs using inspection checklists, and is
used as a baseline representing how requirements are improved in practice.

To prepare, we defined a set of requirements issues as in Table 8.7 by identifying the
inverse of each characteristic introduced in the IEEE standard [45]. Our experiments
check to see if people can identify more of these issues when refining stakeholder require-
ments with Desiree or with the Vanilla RE approach. We do not consider the “Ranked”

8.5. Evaluating the Desiree Framework 133

characteristic in our experiments, as Desiree currently does not support requirements pri-
oritization. We also do not compare Desiree with the Vanilla method on “Traceability”
because Desiree is a goal-oriented method, and as such it intrinsically supports require-
ments to requirements traceability (requirements to sources and requirements to design
traceability are out of scope for our experiments). In addition, we introduce “Unsatisfi-
able”, which is practically important but missing in the IEEE standard.

Table 8.7: Seven kinds of requirements issues

Issue Definition
Invalid (Inv) A requirement is invalid if it is not the one that stakeholders want.

Incomplete
(Icmp)

(1) incomplete requirement - a requirement is incomplete if necessary
information is missing for implementation; (2) incomplete specification:
an SRS is incomplete if any requirement is missing.

Ambiguous
(Amb) A requirement is ambiguous if it has more than one interpretation.

Unverifiable
(Vag) A requirement is vague if it specifies unclear or imprecise value regions.

Inconsistent
(Icns)

An SRS is inconsistent if there are: (1) conflicts between requirements;
(2) terms misuse or abuse.

Unmodifiable
(Umod)

An SRS is un-modifiable if its requirements are : (1) not structurally
organized (2) redundant; or (3) intermixed of several requirements

Unsatisfiable
(Unsat)

A requirement is practically unsatisfiable (attainable) if it is impossible
or too costly to fulfill.

In general, these issues can be classified into two categories: (1) issues of individu-
al requirements, including “Invalid”, “Ambiguous”, “Unverifiable”, and “Unsatisfiable”;
(2) issues of requirements specifications, including “Inconsistent”, and “Unmodifiable”.
Note that “Incomplete” can be further decomposed into “Incomplete Requirement” and
“Incomplete SRS”, which fall in these two categories, respectively.

8.5.2 Research Question

Our research question can be stated as: compared with the Vanilla method, can
Desiree help people to identify and address more requirements issues when
transforming stakeholder requirements to specifications?

We define the null hypothesis, H0, as: there is no statistical difference in the number
of requirements issues found when using Desiree (µD) vs. the Vanilla method (µV).
The alternative hypothesis, H1, is accordingly defined as: there is a positive statistical

134 Chapter 8. Evaluation

difference in the number of issues found using Desiree vs. the Vanilla method. These two
hypotheses can be formulated as Eq. 8.1.

H0 : µD � µV � 0;
H1 : µD � µV ¡ 0;

(8.1)

Similarly, we can define the null and alternative hypotheses for all the 7 kind of issues
defined in Table 8.7. For example, with regarding to “Ambiguity”, the null hypothesis
Hambiguous 0 can be stated as: there is no statistical difference in the number of ambiguity
issues found when using Desiree vs. the Vanilla method, and the alternative hypothesis
Hambiguous 1 can be stated as: there is a positive statistical difference in the number of
ambiguity issues found using Desiree vs. the Vanilla method.

8.5.3 Experiment Design

The experimental task was to transform a set of given stakeholder requirements into a
specification through refinements and operationalizations. To evaluate the differences in
their performance, each participant was required to perform the task twice: s/he uses the
Vanilla method on a project X in the first session, and then uses Desiree on another project
Y in the second session. In both sessions, the participants discussed with stakeholders
to elicit necessary information for addressing identified issues, and submitted a refined
specification. For example, one probably need further information to quantify “fast”,
which is vague. To keep independence between participants, they were asked to use
texting to communicate with the stakeholder instead of speaking aloud. All experimental
tasks were performed electronically and online.

The experiment was duplicated three times, the first at University of Trento, Italy, and
the second and the third at Tsinghua University, China. In each experiment, we used two
projects, Meeting Scheduler (MS) and Realtor Buddy (RB), which are selected from the
PROMISE requirements set [129], for the experimental task. We chose 10 requirements,
which cover some typical functionalities and qualities (e.g., search, usability), from each
project, and identified a list of issues for both projects. We also added some issues that
are newly 8 identified by participants into the reference issue lists in each experiment. We
show the statistics of these issues in Table 8.8, and refer interested readers to the detail
in Appendix E.1 and E.2.

There are three points to be noted. First, the number of “Invalid” issues is 0 since it
is hard to justify which requirement is not desired by original stakeholders who provided

8This means that participants have found issues that we failed to identify in advance for an experiment.

8.5. Evaluating the Desiree Framework 135

Table 8.8: The Statistics of the reference issues in the two testing projects

Experiment One Experiment Two Experiment Three
MS RB MS RB MS RB

Invalid - - - - - -
Incomplete 18 16 24 22 26 26
Ambiguous 2 4 4 6 4 5
Unverifiable 10 6 10 6 8 7
Inconsistency 2 3 3 3 3 4
Un-modifiable 3 4 4 6 4 4
Un-satisfiable 4 6 4 6 4 4
Total 39 39 49 49 49 50

the requirements set. Second, we have relatively more issues in experiment two since we
have incorporated more issues that are newly identified by participants in this experiment.
Third, observing that participants probably can not finish modeling or analyzing all given
requirements, we have removed 2 requirements from each project in experiment three (i.e.,
we had only 8 requirements in the third experiment) .

We summarize the design for the three experiments in Table 8.9. In experiment one, we
had 17 participants: Master’s students at the Department of Information Engineering and
Computer Science, University of Trento, taking the RE course at the spring term of 2015.
We also had 4 Ph.D. students or postdocs in the research group of Software Engineering
and Formal Methods playing the role of stakeholder. We assigned two stakeholders to a
project, and randomly separated the students into two teams, RG1 and RG2.

In the first session, we introduced the characteristics of a good SRS [45]and the text-
book technique [172] in 30 minutes, presented the domain knowledge of the two projects
in 10 minutes, and tested in 90 minutes. In this session, the group of students RG1 worked
on MS and RG2 worked on RB. In the second session, we introduced the Desiree frame-
work and its supporting tool in 40 minutes, and tested in 90 minutes. In this session, the
teams were given the other project.

In the second experiment, we had 18 volunteer participants: Master’s students at the
Institute of Information System and Engineering, School of Software, Tsinghua University.
Compared with experiment one, a few changes were made to the experimental design.
First, to improve the consistency of stakeholders’ answers, we randomly separated the 18
participants into 6 small teams of size 2 � 4 (the size varied as participants changed their
time schedules), and hired 1 constant stakeholder for all the 6 teams on the same project
(note that the 6 teams conducted the experiment one by one, not concurrently). Second,

136 Chapter 8. Evaluation

Table 8.9: The design of the three controlled experiments

Experiment One Experiment Two Experiment Three
Session One Two One Two One Two
Approach Vanilla Desiree Vanilla Desiree Vanilla Desiree
Trainer Same
Language Teaching + Testing:

English
Teaching: Chinese;

Testing: English
Teaching + Testing:
Chinese + English

Training 30 (min) 30 + 10 (min)
Method + Tool 60 (min) 60 + 60 (min)

Method + Tool 45 (min) 45 + 60 (min)
Method + Tool

Testing 90 (min) 90 (min) 90 (min) 90 (min) 90 (min) 90 (min)

based on our initial observations that the training time was too short, we increased the
Desiree training time from 40 minutes to 2 hours (1 hour for the method and 1 hour
for the tool). In addition, we had also updated the Desiree tool based on the feedback
collected in the first experiment, mainly on the usability aspect (e.g., copy and paste).

In the third experiment, we had 30 participants: Master’s students at the School
of Software, Tsinghua University, taking the RE course at the fall term of 2015. This
experiment replicates the first, with the only change on training time: 45 minutes training
for the Desiree method, and 60 minutes tutorial on the Desiree tool. Also, we hired 6
students who have already participated experiment two as our stakeholders (7 in total,
including the trainer). Similarly, stakeholders are randomly assigned to the two projects,
and students are randomly separated into two teams according to the two projects. The
teams were given different projects in the two sessions.

8.5.4 Data Collection

The statistics of data collected from the three experiments are summarized in Table 8.10.
There are three points to noted. First, in each session of the three experiments, a par-
ticipant was supposed to have a conversation, a refined requirements document and/or
a requirements model. Second, in each experiment, the output of the Vanilla session is
just documents while that of the Desiree session is a mix of models and documents: a
participant was required to refine unmodelled requirements using natural language, but
still following the Desiree method. In a few cases, participants submitted only models
or only texts in a Desiree session. Third, in the experiments, a few participants (e.g.,
in the Vanilla session of experiment three) have refined the given requirements without
communicating to stakeholders.

8.5. Evaluating the Desiree Framework 137

In the first experiment, we collected 16 complete samples. On average, participants
took 63 and 89.5 minutes to finish the task in session one and session two, respectively.
In session one, we collected 17 online discussions in Google Doc and 17 requirement
documents. In session two, we collected 16 online discussions, 11 Desiree models, and 14
requirement documents. Specifically, in session two, 5 participants had only documents
while 2 of them had only models.

Table 8.10: Statistics of collected data: discussions, texts and models

Experiment One Experiment Two Experiment Three
Vanilla Desiree Vanilla Desiree Vanilla Desiree

Time 63 (min) 89.5 (min) 78 (min) 94 (min) 62 (min) 97 (min)
Discussion 17 16 18 15 28 29

Requirements Document 17 14 18 12 30 23
Requirements Models - 11 - 15 - 29

Complete Sample 16 15 29

In the second experiment, we had 15 complete samples: 18 participants finished session
one, and 15 of them finished session two. On average, the participants took 78 and 94
minutes to finish their tasks in session one and two, respectively. For those who finished
session one, we collected 18 online discussions in Zoho Doc and 18 requirement documents;
for those who completed session two, we collected 15 online discussions, 15 Desiree models,
and 12 requirement documents.

In the third experiment, we had 29 complete samples: 30 participants finished session
one, and 29 of them finished session two. On average, the participants took 62 and 97
minutes to finish their tasks in session one and two, respectively. For those who finished
session one, we collected 28 discussions (24 online discussions in Wechat 9 and 4 face-to-
face ones that are recorded on papers) and 30 requirement documents (16 electronic and 14
handwritten ones); for those who completed session two, we collected 29 online discussions,
29 Desiree models, and 23 requirement documents. Note that we have allowed for face-
to-face conversations and handwritten requirement documents in the Vanilla session of
experiment three because some students did not bring their laptops

8.5.5 Descriptive Statistics

We carefully went through participants’ discussions and refined requirements (including
both documents and models) to check how many issues they have found in the experi-

9http://www.wechat.com/en/

138 Chapter 8. Evaluation

ments. We say a participant has identified an issue if either of the two conditions hold.

1. A participant has asked a corresponding question, e.g., we gave a count of identified
unverifiable issue if someone has asked “how to measure fast?”.

2. A participant has eliminated an issue in his/her refined requirements specification,
either documents or models, although s/he did not ask any related question. For
example, a participant has eliminated a term inconsistency in the RB project by
changing “the product” to “the system” without asking any questions.

To keep consistency, the trainer performed the evaluation for all the three experiments.
We show the average percentage of identified issues of participants with regarding to each
kind of issue in Table 8.7. We see that in experiment one, on average, a participant
was able to find more issues with Desiree than with the Vanilla approach (33.49% vs.
29.17%), but discovered fewer issues with regarding to ambiguous and unverifiable issues.
In experiment two, as the training time for Desiree increased from 40 minutes to 2 hours,
we can see that the participants performed better in general: they found more issues in
total (45.71% vs. 32.11%). Experiment three has provided similar evidence as experiment
two: with acceptable training time, participants are able to find more issues with the
Desiree approach (36.75% vs. 25.89%).

Table 8.11: Statistics of issues identified by participants in the three experiments

Experiment One Experiment Two Experiment Three
Vanilla Desiree Diff Vanilla Desiree Diff Vanilla Desiree Diff

Incomplete 15.84% 19.49% 3.65% 27.30% 31.64% 4.34% 21.49% 30.77% 9.28%
Ambiguous 25.00% 20.31% -4.69% 32.22% 54.44% 22.22% 12.93% 38.45% 25.52%
Inconsistent 10.42% 12.50% 2.08% 6.67% 8.89% 2.22% 16.09% 16.38% 0.29%
Unverifiable 88.75% 81.46% -7.29% 81.33% 92.67% 11.34% 79.37% 90.27% 10.90%

Unmodifiable 20.83% 46.88% 26.05% 9.44% 43.33% 33.89% 3.45% 47.41% 43.96%
Unsatisfiable 3.65% 11.46% 7.81% 10.56% 50% 39.44% 3.45% 24.14% 20.69%

Total 29.17% 33.49% 4.32% 32.11% 45.71% 13.60% 25.89% 36.75% 10.86%

These statistics are calculated based on the number of issues identified by participants
and the reference number of issues in the testing projects using Eq. 8.2, where Pcte,m is
the average percentage of identified issues of type e with a method m in an experiment
(e.g., Pctunverifiable, Desiree represents the average percentage of identified unverifiable is-
sues when using Desiree, and has the value of 90.27% in experiment three as shown in
Table 8.11), Ni, e, m, p is the number of issues of type e identified by a participant i with

8.5. Evaluating the Desiree Framework 139

method m on a project p (e.g., N1, unverifiable, Desiree, MS represents the number of unveri-
fiable issues identified by participant 1 when working on the MS project with the Desiree
method), REFe, p is the reference number of issue e in a project p (e.g., REFunverifiable, MS

represents the reference number of unverifiable issues in the MS project), Kp is the number
of participants that work on a project p (e.g., KMS represents the number of participants
that work on the MS project). Meanwhile, we show the detailed numbers of issues i-
dentified by participants in experiment one, two, and three in Table 8.12, Table 8.13,
Table 8.14, respectively.

Pcte,m � p
¸

p � tMS,RBu

Kp̧

i�1
Ni,e,m,p{REFe,pq{p

¸
p � tMS,RBuKpq (8.2)

One may notice that the participants in experiment one has a poorer performance on
two indicators: the percentage of identified “ambiguous” and “unverifiable” issues. This
is because the training time of 40 minutes is too short for the participants to master the
Desiree framework, as attested by the fact that they have only modeled 2.08 requirements
(out of 10) in the Desiree tool on average. In fact, many students have spent a lot of
time struggling with the syntax and the tool, and did not have enough time to analyze
the requirements themselves. Given sufficient training time (2 hours in experiment two,
1 hour 45 minutes in experiment three), we can see the participants generally performs
better when using Desiree vs. the Vanilla method.

One last thing to mention is that the learning of Desiree varies from individual to
individual. In the third experiment, we found that 24 out of the 29 (82.76%) has better
performance when using the Desiree method, but the rest (5/29, 17.24%) have slightly
poorer performance (note that the overall performance of the 29 participants increased
from 25.89% to 36.75%). This can be caused by individuals’ learning ability (see further
discussion in Section 8.5.9).

8.5.6 Hypothesis Testing

We statistically analyzed the participants’ differences in terms of identified issues when
using Desiree vs. the Vanilla approach. Since we have far less than 30 participants in
experiment one and two, and our Shapiro-Wilk Normality [7] tests showed that the par-
ticipants’ differences in experiment three are not normally distributed on 3/7 of the issue
indicators, we employed both paired Student’s t test [8] and Wilcoxon Signed-Rank test
(WSR) [9] for our one-tailed hypothesis testing.The paired T test assumes that the differ-
ences between pairs (repeated measurements on a sample, before and after a treatment)

140 Chapter 8. Evaluation

Table 8.12: Detailed number of issues identified by the 16 participants in experiment one
Project Incomplete Ambiguous Inconsistent Unverifiable Unmodifiable Unsatisfiable Total
V D V D V D V D V D V D V D V D

UT01 MS RB 7/18 6/16 0/2 1/4 0/2 0/3 10/10 6/6 0/3 1/4 0/4 2/6 17/39 16/39
UT02 MS RB 1/18 2/16 0/2 0/4 0/2 1/3 3/10 2/6 2/3 3/4 0/4 0/6 6/39 8/39
UT03 MS RB 3/18 3/16 1/2 0/4 0/2 1/3 9/10 5/6 2/3 3/4 0/4 0/6 15/39 12/39
UT04 MS RB 3/18 6/16 0/2 1/4 0/2 0/3 9/10 6/6 0/3 2/4 0/4 2/6 12/39 17/39
UT05 MS RB 2/18 4/16 1/2 1/4 0/2 1/3 8/10 5/6 0/3 3/4 0/4 0/6 11/39 14/39
UT06 MS RB 4/18 4/16 1/2 2/4 0/2 0/3 9/10 6/6 1/3 2/4 1/4 0/6 16/39 14/39
UT07 MS RB 2/18 0/16 1/2 0/4 0/2 0/3 9/10 5/6 2/3 0/4 0/4 1/6 14/39 6/39
UT08 RB MS 2/16 3/18 1/4 0/2 0/3 1/2 5/6 2/10 0/4 1/3 1/6 0/4 9/39 7/39
UT09 RB MS 1/16 4/18 0/4 0/2 1/3 0/2 6/6 9/10 0/4 1/3 0/6 0/4 8/39 14/39
UT10 RB MS 1/16 2/18 1/4 0/2 0/3 0/2 6/6 8/10 0/4 0/3 0/6 0/4 8/39 10/39
UT11 RB MS 3/16 4/18 1/4 1/2 1/3 1/2 6/6 10/10 1/4 2/3 0/6 1/4 12/39 19/39
UT12 RB MS 2/16 4/18 2/4 1/2 0/3 0/2 6/6 9/10 0/4 2/3 0/6 0/4 10/39 16/39
UT13 RB MS 3/16 3/18 0/4 0/2 1/3 0/2 6/6 9/10 0/4 1/3 0/6 2/4 10/39 15/39
UT14 RB MS 5/16 2/18 1/4 1/2 0/3 0/2 6/6 9/10 2/4 2/3 0/6 0/4 14/39 14/39
UT15 RB MS 2/16 4/18 1/4 1/2 1/3 0/2 6/6 8/10 1/4 2/3 0/6 1/4 11/39 16/39
UT16 RB MS 2/16 2/18 1/4 0/2 1/3 0/2 4/6 8/10 0/4 1/3 1/6 0/4 9/39 11/39
AVG - - 15.84% 19.49% 25% 20.31% 10.42% 12.5% 88.75% 81.46% 20.83% 46.88% 3.65% 11.46% 29.17% 33.49%
AVG: average; V : the Vanilla session; D: the Desiree session; x/y: x is the number of issues identified by a participant, y is the
reference number.

Table 8.13: Detailed number of issues identified by the 15 participants in experiment two
Project Incomplete Ambiguous Inconsistent Unverifiable Unmodifiable Unsatisfiable Total
V D V D V D V D V D V D V D V D

TS01 RB MS 5/22 12/24 3/6 2/4 1/3 2/3 6/6 10/10 4/6 2/4 1/6 2/4 20/49 30/49
TS02 RB MS 4/22 8/24 1/6 2/4 0/3 1/3 6/6 9/10 0/6 1/4 1/6 1/4 12/49 22/49
TS03 RB MS 8/22 11/24 2/6 2/4 1/3 0/3 6/6 9/10 1/6 2/4 1/6 2/4 19/49 26/49
TS04 MS RB 9/24 6/22 1/4 5/6 0/3 0/3 10/10 6/6 0/4 3/6 0/4 1/6 20/49 21/49
TS05 MS RB 9/24 5/22 2/4 4/6 0/3 0/3 8/10 6/6 0/4 3/6 0/4 4/6 19/49 22/49
TS06 MS RB 7/24 7/22 1/4 3/6 0/3 0/3 6/10 5/6 0/4 0/6 0/4 4/6 14/49 19/49
TS07 MS RB 8/24 9/22 1/4 2/6 0/3 0/3 9/10 6/6 0/4 3/6 0/4 3/6 18/49 23/49
TS08 RB MS 1/22 0/24 1/6 3/4 0/3 0/3 4/6 9/10 0/6 2/4 0/6 1/4 6/49 15/49
TS09 RB MS 4/22 9/24 1/6 2/4 0/3 0/3 6/6 9/10 0/6 2/4 0/6 1/4 11/49 23/49
TS10 MS RB 6/24 8/22 1/4 3/6 0/3 0/3 5/10 5/6 0/4 3/6 0/4 1/6 12/49 20/49
TS11 MS RB 8/24 7/22 1/4 3/6 0/3 0/3 8/10 6/6 0/4 1/6 0/4 3/6 17/49 21/49
TS12 MS RB 4/24 8/22 2/4 2/6 0/3 0/3 6/10 5/6 0/4 2/6 1/4 4/6 13/49 22/49
TS13 MS RB 8/24 4/22 1/4 3/6 1/3 0/3 5/10 6/6 1/4 3/6 0/4 4/6 16/49 21/49
TS14 RB MS 5/22 5/24 4/6 2/4 0/3 1/3 5/6 8/10 2/6 3/4 2/6 4/4 19/49 23/49
TS15 RB MS 9/22 10/24 2/6 3/4 0/3 0/3 6/6 10/10 0/6 2/4 3/6 3/4 20/49 28/49
AVG - - 27.3% 31.64% 32.22% 54.44% 6.67% 8.89% 81.33% 92.67% 9.44% 43.33% 10.56% 50% 32.11% 45.71%
AVG: average; V : the Vanilla session; D: the Desiree session; x/y: x is the number of issues identified by a participant, y is the
reference number.

8.5. Evaluating the Desiree Framework 141

Table 8.14: Detailed number of issues identified by the 29 participants in experiment three
Project Incomplete Ambiguous Inconsistent Unverifiable Unmodifiable Unsatisfiable Total
V D V D V D V D V D V D V D V D

TP01 MS RB 7/26 8/26 0/4 4/5 1/3 2/4 7/8 7/7 0/4 2/4 1/4 2/4 16/49 23/50
TP02 MS RB 8/26 8/26 1/4 3/5 1/3 1/4 8/8 6/7 0/4 2/4 1/4 0/4 19/49 18/50
TP03 MS RB 6/26 6/26 0/4 4/5 1/3 1/4 7/8 7/7 0/4 1/4 0/4 3/4 14/49 21/50
TP04 MS RB 9/26 10/26 0/4 5/5 0/3 1/4 6/8 7/7 0/4 4/4 0/4 0/4 15/49 23/50
TP05 MS RB 9/26 9/26 0/4 3/5 0/3 0/4 6/8 6/7 0/4 3/4 0/4 1/4 15/49 19/50
TP06 MS RB 9/26 8/26 0/4 1/5 0/3 0/4 7/8 6/7 0/4 1/4 0/4 0/4 16/49 15/50
TP07 MS RB 5/26 6/26 0/4 4/5 1/3 1/4 5/8 7/7 0/4 2/4 0/4 1/4 11/49 19/50
TP08 MS RB 8/26 7/26 1/4 2/5 0/3 1/4 7/8 6/7 0/4 2/4 1/4 1/4 17/49 17/50
TP09 MS RB 3/26 10/26 1/4 1/5 0/3 0/4 5/8 4/7 0/4 1/4 0/4 0/4 9/49 15/50
TP10 MS RB 2/26 7/26 0/4 1/5 1/3 0/4 5/8 5/7 0/4 1/4 0/4 0/4 8/49 13/50
TP11 MS RB 3/26 2/26 0/4 3/5 0/3 1/4 8/8 7/7 0/4 2/4 0/4 2/4 11/49 15/50
TP12 MS RB 8/26 12/26 0/4 2/5 0/3 0/4 1/8 6/7 0/4 2/4 0/4 0/4 9/49 20/50
TP13 MS RB 3/26 8/26 0/4 4/5 0/3 3/4 7/8 6/7 1/4 3/4 0/4 1/4 10/49 22/50
TP14 RB MS 7/26 3/26 0/5 2/4 1/4 0/3 6/7 7/8 0/4 2/4 0/4 1/4 14/50 13/49
TP15 RB MS 6/26 11/26 1/5 2/4 1/4 0/3 7/7 7/8 0/4 3/4 1/4 2/4 16/50 22/49
TP16 RB MS 4/26 10/26 1/5 1/4 0/4 0/3 6/7 8/8 0/4 2/4 0/4 2/4 11/50 21/49
TP17 RB MS 4/26 7/26 0/5 0/4 0/4 1/3 2/7 7/8 0/4 0/4 0/4 0/4 6/50 15/49
TP18 RB MS 6/26 7/26 1/5 0/4 0/4 1/3 3/7 6/8 0/4 2/4 0/4 0/4 10/50 14/49
TP19 RB MS 3/26 6/26 1/5 0/4 1/4 0/3 5/7 8/8 0/4 1/4 0/4 0/4 10/50 14/49
TP20 RB MS 5/26 5/26 2/5 0/4 2/4 1/3 7/7 8/8 0/4 3/4 0/4 1/4 16/50 15/49
TP21 RB MS 7/26 10/26 0/5 0/4 0/4 0/3 7/7 8/8 0/4 3/4 0/4 2/4 14/50 20/49
TP22 RB MS 3/26 4/26 2/5 0/4 1/4 0/3 6/7 8/8 1/4 2/4 0/4 2/4 12/50 14/49
TP23 RB MS 4/26 6/26 0/5 1/4 1/4 0/3 6/7 7/8 0/4 3/4 0/4 1/4 11/50 15/49
TP24 RB MS 7/26 17/26 0/5 2/4 1/4 2/3 6/7 8/8 0/4 2/4 0/4 1/4 14/50 30/49
TP25 RB MS 4/26 7/26 1/5 1/4 1/4 0/3 5/7 7/8 1/4 0/4 0/4 0/4 11/50 15/49
TP26 RB MS 6/26 8/26 2/5 0/4 1/4 0/3 6/7 5/8 0/4 0/4 0/4 0/4 15/50 13/49
TP27 RB MS 4/26 8/26 1/5 2/4 0/4 0/3 7/7 8/8 0/4 3/4 0/4 2/4 12/50 20/49
TP28 RB MS 3/26 8/26 1/5 2/4 0/4 0/3 7/7 8/8 0/4 1/4 0/4 0/4 11/50 18/49
TP29 RB MS 9/26 14/26 2/5 2/4 2/4 1/3 6/7 8/8 1/4 2/4 0/4 3/4 19/50 28/49
AVG - - 21.49% 30.77% 12.93% 38.45% 16.09% 16.38% 79.37% 90.27% 3.45% 47.41% 3.45% 24.14% 25.89% 36.75%
AVG: average; V : the Vanilla session; D: the Desiree session; x/y: x is the number of issues identified by a participant, y is the
reference number.

142 Chapter 8. Evaluation

are normally distributed, and is robust to moderate violation of normality [126]. As a
complement, the WSR test is a non-parametric alternative to the paired T test if the
differences between pairs are severely non-normal 10 [126].

Table 8.15: Statistical p-value for issues identified by participants

Experiment One Experiment Two Experiment Three
Paired T WSR Paired T WSR Paired T WSR

Incomplete 0.08331 0.03717 0.10593 0.1221 0.00007 0.00021
Ambiguous 0.75764 0.71403 0.00144 0.00288 0.00069 0.00145
Inconsistent 0.37845 0.37097 0.33507 0.30345 0.47585 0.66204
Unverifiable 0.91854 0.87966 0.01428 0.02747 0.00396 0.00519

Unmodifiable 0.00300 0.003 0.00001 0.00052 0.00001 0.00001
Unsatisfiable 0.07636 0.09583 0.00001 0.00032 0.00006 0.00013

Total 0.06068 0.05666 0.00001 0.00032 0.00001 0.00001

We report the p-values in Table 8.15 11. We can see that there is strong evidence that
Desiree can help people to identify more issues in general (the last row): for both tests, p-
value ¤ 0.00032 α � 0.05 (the common confidence level) in experiment two and three,
and p-value � 0.05 in experiment one. Specifically, there are strong evidence that the
Desiree framework is able to help people to identify more “Incomplete”, “Ambiguous”,
“Unverifiable”, “’Unmodifiable’, and “Unsatisfiable” issues (their p-values ¤ 0.05 in at
least two experiments). We also see that there is no evidence that Desiree can help people
to identify more “Inconsistent” issues (p-value ¡¡ 0.05) in all the three experiments.

Note that there is a potential risk of accumulated type I error [112] since we are
conducting multiple significance tests. A type I error means that we falsely reject the null
hypothesis due merely to random sampling variation [112]; that is, there is no significant
difference. An accumulated type I error means the probability of making one or more
type I errors out of the multiple tests. In our case we have 7 tests, the probability of
making one or more type I errors out of the 7 tests is much larger that 0.05 (indeed,
0.3017 12). Therefore, we applied the Bonferroni adjustment [5] to the p-values obtained
in experiment three, and show them in Table 8.16.

We also report here the related statistics, i.e., t values for the paired T tests, Z values
for the Wilcoxon Signed-Rank tests. The p-values can be interpreted as the probability,
under the assumption of the null hypothesis, of observing a result that is equal to or more

10http://www.biostathandbook.com/pairedttest.html
11Our hypothesis tests are conducted using the R software package (https://www.r-project.org/).
12This probability αm is calculated by αm � 1� p1� αqn, where α � 0.05, n is the number of tests.

8.5. Evaluating the Desiree Framework 143

Table 8.16: Analyzing experiment three: p-values, statistics, and effect

Paired T Test Wilcoxon Signed-Rank (WSR)
Pvalue Bonferroni t(28) Effect Pvalue Bonferroni Zvalue Effect

Incomplete 0.00007 0.00046 4.4302 0.82266 0.00021 0.0015 3.52263 0.64314
Ambiguous 0.00069 0.0048 3.5536 0.6599 0.00145 0.01017 2.97754 0.54362
Inconsistent 0.47585 1 0.06111 0.01135 0.66204 1 -0.41805 -0.07633
Unverifiable 0.00396 0.02773 2.8598 0.53105 0.00519 0.03631 2.5631 0.46796

Unmodifiable 0.00001 0.00001 8.6828 1.61236 0.00001 0.00002 4.57097 0.83454
Unsatisfiable 0.00006 0.00044 4.4458 0.82556 0.00013 0.00094 3.64313 0.66514

Total 0.00001 0.00001 6.5715 1.22030 0.00001 0.00008 4.24921 0.7758

extreme than an observed t-value (or Z-value). That is, the larger magnitude (positive
or negative) a t value is of, the lesser likelihood it will be observed. For example, in our
case, the probability of observing t(28) ¥ 6.5715 13 is less than 0.00001 (the adjusted
p-value of the paired T test in the last row of Table 8.16) if we assume no difference
between the Desiree group and the Vanilla group. The very small adjusted p-value (p-
value 0.00001 0.05) indicates a very strong evidence that the samples are not
from the null distribution, and we can reject the null hypothesis at the confidence level
α � 0.05. The Z-values of the Wilcoxon Signed-Rank test can be interpreted similarly.

We also analyzed the effect sizes (ES), which are shown Table 8.16. Effect size is
the magnitude of the difference between two groups, i.e., the magnitude of a treatment
effect [162]. We consider effect size because the significance analysis just says that the
Desiree method can help people to identify more issues when engineering requirements,
but we do not know to what degree it affects the participants. We calculated the effect
sizes for the hypothesis tests in experiment three using Eq. 8.3 [43], where M1 and M2

are the means of the two groups of samples, S1 and S2 are their standard deviations.

ES � d{
a
pd2 � 4q, d � pM1 �M2q{

a
pS2

1 � S2
2q{2 (8.3)

According to Cohen’s conventional criteria of “small” (effect size from 0.2 to 0.3),
“medium” (around 0.5), or “big” (0.8 to infinity) effect [43], our effect sizes for “Total”,
“Incomplete”, “Ambiguous”, “Unverifiable”, “Unmodifiable” and “Unsatisfiable” issues in
the third experiment fall into either the “medium” or the “large” category.

More specifically, Coe [42] has presented the interpretations of effect sizes ranging
from 0.1 to 3.0. According to Coe [42], an effect size of 0.8 means that the score of the

13Here 28 is the degree of freedom, obtained from n� 1 (n is the number of observations).

144 Chapter 8. Evaluation

average person in the experimental group is 0.8 standard deviations above the average
person in the control group, and hence exceeds the scores of 79% of the control group.
Take “Incomplete” that has an associated effect size of 0.82266 for example, the average
person in the experimental Desiree group (ranked 15th, 29 in total) will score higher than
23 � 29 � 79% of the students in the control Vanilla group (i.e., ranked 6th, also 29 in
total). Checking the data carefully, we found the participant ranked 15th in the Desiree
group was on a par with the participants ranked 5th � 7th in the Vanilla group (these
three participants have identified the same number of issues).

We calculated the predicated ranks within the Vanilla group for the average person in
the Desiree group on each type of issue in experiment three, and checked their actual ranks.
We show these results in Table 8.17. We can see that the predictions generally matches
well with the actual ranks (some of the actual ranks are better than the predictions). We
can also find that the predictions that are made based on the effect sizes provided by the
paired T test match better with the real situation.

Table 8.17: Effect analysis for experiment three

Paired T Test WSR Test
Effect Percentage Predicted Actual Predicted Percentage Effect

Incomplete 0.82266 79% 6th 5th � 7th 8th 73% 0.64314
Ambiguous 0.6599 76% 7th 1th � 4th 9th 69% 0.54362
Inconsistent 0.01135 50% 15th 16th 15th 50% -0.07633
Unverifiable 0.53105 69% 9th 8th � 12th 9th 69% 0.46796

Unmodifiable 1.61236 95% 1th 1th 6th 79% 0.83454
Unsatisfiable 0.82556 79% 6th 1th � 4th 7th 76% 0.66514

Total 1.22030 88% 3th 3th 6th 79% 0.7758

8.5.7 Analysis

In general, the results meet our expectations. In this subsection, we discuss the reasons
why Desiree can help people to find more requirements issues, and our observations in
the experiments.

Incomplete. In our observations, Desiree is helpful in identifying incomplete require-
ments issues mainly because: (1) the description-based syntax drives analysts/engineers
to think about the kinds of properties that shall be associated with the capability when
specifying a function; (2) the syntax facilitates the consideration of “which attributes shall
be used to describe the description (filler)?” when specifying a slot-description pair. This

8.5. Evaluating the Desiree Framework 145

helps to identify more missing slots/properties and missing content requirements, and
thus contributes to improving the incompleteness of individual requirements and require-
ments specifications, respectively. Take “the system shall be able to search meeting rooms
records” as an example, with Desiree, many participants were able to find the following
missing information: who can search? what kinds of search parameters shall be used?
Further, more participants have asked “what kinds of information shall a meeting room
record include?”, identifying a missing content requirement.

Ambiguous. Desiree offers operational rules for identifying potential ambiguities: (1)
checking the subject of a slot (property); (2) checking the cardinality of the description
of a slot in a function description. These rules are shown to be useful in our experiments.
For example, more students have identified the ambiguity in the requirement “the system
shall be able to download contact info for client”: is “for client” attached to the function
“download” or the entity “contact info”? More interestingly, for the requirement “the
system shall allow privileged users to view meeting schedules in multiple reporting views”,
after addressing the unverifiable issues of “privileged user” and “multiple”, several partic-
ipants have further asked “Shall these reporting views be opened simultaneously or not?”,
identifying an implicit ambiguity issue.

Unverifiable. We observed that the participants can easily find simple unverifiable
issues in given requirements, but tend to miss “deep” vague issues in stakeholders’ answers
when using the Vanilla method. With Desiree, the structuring of each requirement could
remind them about implicit unverifiable issues. For example, most of the participants
were able to justify “the product shall have good usability” as unverifiable, but few of
them realized that “the product shall be easy to learn for realtors”, which was given by
stakeholders as a refinement of the previous requirement, is still vague. With Desireee,
participants would keep asking “how to measure easy?”. That is, when using the Vanilla
method, participants were more likely to accept vague stakeholder answers, while using
Desiree, they were more likely to notice and correct vague responses.

Un-modifiable. Desiree requires analysts/engineers to identify the concerns of a re-
quirement, and separate them if there are several. This helps to avoid intermixed require-
ments. With Desiree, many participants were able to successfully decouple composite
requirements into simple ones. For example, they decoupled “the system shall be able to
generate a CMA (Comparative Market Analysis) report in acceptable time” into “generate
a CMA report” (F1 := Generate object: CMA report¡) and “the generation shall be in
acceptable time” (QG2 := Processing time (F1) :: Acceptable). Further, they were able to
capture interrelations between requirements by utilizing the Desiree tool. For example, in
the above example, the two elements are interrelated through the use of F1 as the subject

146 Chapter 8. Evaluation

of QG2. This enables us to systematically identifying the requirements to be affected
when updating a requirement.

Un-satisfiable. Desiree offers a “de-Universalize” operator for weakening requirements
in order to make them practically satisfiable. The supporting tool also provides hints for
relaxation when the “Observe” operator is applied. As such, the participants were able
to identify more potentially un-satisfiable issues. For example, when operationalizing the
QG “the search of meeting rooms shall be intuitive” by assigning surveyed users, many of
them have asked “how many percentage of the surveyed users shall agree?”

Inconsistent. Our framework assumes that conflicts are explicitly defined by analysts
and provides an “Resolve” operator to resolve them. As such, the framework does not
as yet offer much help in identifying inconsistency issues. However, if a requirements
specification is written using our syntax, we can translate it to an OWL2 ontology and
perform the inconsistency reasoning (to do this, we need relevant knowledge axioms, e.g.,
“Open” conflicts with “Close”, “Busy” conflicts with “Free”). Moreover, to keep the
consistency of terminologies, the Desiree tool has tried to be helpful on reusing defined
terminologies/concepts through syntax-based content assistance. However, its effect is
not demonstrated in these experiments. One possible reason is that the participants’s
proficiency on Desiree is insufficient since many students have pointed out that they need
more time to get familiar with the syntax.

8.5.8 Feedback

We have also conducted a survey on the learnability, usability, usefulness and complexity
of the two methods in each experiment. In general, the majority of the participants have
reported that the Desiree framework is useful or very useful, but is hard to learn.

1. In the first experiment, we have collected 13 responses. In this survey, the partici-
pants reported that the Desiree framework is complex (7/13), hard to learn (6/13),
hard to use (5/11), but useful/very useful (9/13).

2. In the second experiment, we have collected 14 responses. In this survey, the partic-
ipants also reported that the Desiree framework is complex (11/14) and useful/very
useful (12/14). More participants have reported that Desiree is neutral, instead of
hard, on its learnability (7/14) and usability (7/14).

3. In the third experiment, we have collected 24 responses. In the survey, the partici-
pants have reported that Desiree is complex (4/24) or neutral (8/24), hard to learn

8.5. Evaluating the Desiree Framework 147

(11/24), hard (7/24) or neutral (7/24) to use, and many reported that Desiree is
useful/very useful (20/24),

Specifically, the participants have reported that Desiree is useful because it offers a
structured way for classifying and representing requirements, and provides a systematic
method for reducing complex requirements. They also pointed out that the framework is
hard to learn mainly because of its grammar.

In addition, we have got positive comments from the participants in each experiment.

1. “Desiree embodies correctness check. It enforces you to think if what you
are doing is right, e.g., functional goals, quality goals”

2. “The method helps a lot when reducing the complex requirements and help
with the standard representation of those items. Nothing is useless. The
method makes the analysis process clearer more or less. ”

3. “The tool makes me thinking in the structural and the mind is more MECE
(Mutually Exclusive, Collectively Exhaustive)”

4. “I will use the method. Like refine the goals and split it into 3 kind of goal:
functional goal, quality goal and content goal. It is very useful for thinking
overall.”

5. “Maybe in the future I will use the Desiree to pick functional requirement
and non-functional (requirements) from a natural language (text).”

Interestingly, we have got feedback from the lecturer of the RE course, for which
the participants of the first experiments were registered. He told us that many students
became more analytical after the experience. When they were writing requirements, es-
pecially functional requirements, they followed a more structured approach. For example,
students would ask questions that they did not ask before, e.g., who performs a function,
and what is the purpose of a function. Interested readers can refer to Appendix. F for
our questionnaire report.

8.5.9 Threats to Validity

There are several threats to the validity of our evaluation.

1. Independence between participants. We have tried to minimize mutual interference
between participants in each experiment by: (1) assuming an exam scenario and
asking them to perform the experimental task individually; and (2) requiring them
to use texting to communicate with stakeholders instead of speaking aloud (we had
only 4 face-to-face conversations in the Vanilla session of experiment three since
these students did not bring their laptops).

148 Chapter 8. Evaluation

2. Assessment. The experiment results were evaluated by only one person. We have
used objective and consistent rules for making judgments, to minimize the impact
of individual subjectivity. For example, stakeholders may give inconsistent answers
to the same question “what is MLS (multiple listing service)”: a stakeholder may
take it as “what is the literal meaning of MLS”, and another one may understand
it as “what info shall a MLS include”. In this situation, we assume that all the
participants who asked this question have identified the corresponding issue, e.g., a
missing content requirement about MLS in this example.

3. The nature of participants. Most of the participants in our experiments are students,
but some of the participants in the third experiment are part-time master students.
The survey in the third experiment shows that 8 out of the 24 responded participants
(29 participants in total) have more than 1 year’s work experiences (5 out of the 8
are on RE). Compared to the participants who do not have work experiences, we
observed in experiment three that the experienced participants were able to learn
the Desiree framework more quickly, and identify requirements issues in a more
systematic way with Desiree. Also, holding the studies in two different universities
provides more confidence in the generalizability of our results. We could further
minimize this threat by conducting our experiment in an realistic industria setting.

4. Sample size. We have ran three experiments, and have collected 16, 15, and 29
complete samples, respectively. Especially, in the third experiment, the sample
size of 29 is relatively safe to assume the normality for paired T test (in fact, our
normality tests showed that the paired differences on 4/7 of the issue indicators
are normally distributed). Moreover, we have ran the Wilcoxon Signed-Rank test,
which does not assume any distribution of the population, as a complement of the
paired T test. The threat of generalizing our conclusion is relative low.

5. Training. In our experiments, the Desiree framework was taught by the designer;
and how the Vanilla RE method was taught may affect results. We have tried to
be fair in teaching and not bias the results.

6. Projects. The Desiree method can be more or less successful for different types of
projects, e.g., larger or more realistic. We have tried to mitigate this by using more
than one project.

7. Order. The Desiree method is used after the Vanilla method in each experimen-
t. Although each participant applied Desiree to a different project in the second

8.6. Chapter summary 149

task, s/he may have learned from the Vanilla application in her/his first task. We
could have done counterbalancing: some groups apply Vanilla then Desiree, and
others apply Desiree then Vanilla; however, this setup would have been difficult to
implement as part of the course design, with alternating tutorials and exercises for
different groups of students.

8.6 Chapter summary

In this chapter, we have presented a series of empirical evaluations conducted to evalu-
ate our proposal, including: (1) assessing the coverage of our requirements ontology by
applying it to all the 625 requirements in the PROMISE dataset [129]; (2) evaluating
the expressiveness of our description-based language by using it to rewrite all the 625
requirements in the dataset; (3) illustrating our methodology by performing a realistic
Meeting Scheduler case study; (4) evaluating the the effectiveness of the entire Desiree
framework through three controlled experiments. The evaluation results have suggested
that our ontology, syntax and methodology are adequate in capturing requirements in
practice, and have provided strong evidence that the Desiree framework indeed can help
people to perform better requirements engineering with a medium or big effect.

150 Chapter 8. Evaluation

Chapter 9

Conclusion and Future Work

In this thesis, we have proposed Desiree, a requirements calculus for incrementally trans-
forming stakeholder requirements into an eligible requirements specification, intending to
effectively address the requirements problem, which was characterized by Jackson and
Zave [98] as DA,S |ù R, i.e., finding the specification S that for certain domain assump-
tions DA entails given requirements R.

The Desiree framework includes a requirements ontology (a set of requirements con-
cepts), a set of requirement operators, a description-based syntax for representing these
concepts and operators, and a systematic methodology for applying the concepts and
operators in order to transform stakeholder requirements into a formal, complete enough,
unambiguous, consistent, measurable, satisfiable, modifiable and traceable requirements
specification. Moreover, we have evaluated the coverage of our requirement ontology, the
expressiveness of our requirements language, the applicability of our methodology, and
the effectiveness of the entire framework, through a series of empirical evaluations.

In this chapter, we conclude the thesis by summarizing its contributions, pointing out
its limitations, and sketching directions for further research.

9.1 Contributions

Our Desiree framework is designed for requirements engineers, who play the role of bridg-
ing stakeholders and system developers. Users of our framework need to have necessary
knowledge and/or need to be trained. Our Deisree approach can be used in traditional
software development processes, and can also be adapted into agile software development
processes as our description-based language captures a rich set of interrelations between
requirements and contributes to improve the modifiability of requirements specifications

151

152 Chapter 9. Conclusion and Future Work

fragments (in an agile development process, each iteration has certain allocated user sto-
ries, which need to be refined into requirement specification fragments, see our discussion
about the characteristics of agile RE in Section 1.1.2).

In general, the contributions of this work can be grasped from the research questions
that we have presented in Section 1.3 (see also Section 1.4).

RQ1: What are the right concepts for modeling requirements?

To answer the first research question, we have provided an ontological interpretation
of requirements based on the ontological meaning of functions and qualities, and accord-
ingly proposed a requirements ontology for classifying and modeling requirements. Our
ontological interpretation of requirements contributes to addressing a set of limitations in
the literature: (1) the narrow scope of existing definitions over functional requirements;
(2) conceptual dispute of what NFRs are and how to capture them; (3) the inconsisten-
cy between quality hierarchies/models; (4) the flawed distinction between functional and
non-functional requirements; (5) the difficulty on measuring the satisfaction of “good-
enough” NFRs. Our requirements ontology also addresses the discovered deficiencies in
CORE [103], the state of the art requirements ontology, e.g., functional requirements refer
to functions (capabilities) rather than their manifestations, requirements in practice can
be a mix of concerns. Moreover, our requirements ontology has been evaluated by using
realistic requirements in the public PROMISE requirements set [129], and was proved to
be adequate in capturing requirements in practice. To the best of our knowledge, our e-
valuation is the first attempt of applying a requirements ontology to realistic requirements
data.

RQ2: What are the proper representation for capturing requirements?

To answer the second question, we have proposed a description-based representation
for requirements. This description-based syntax offers several benefits: (1) it is able to
capture both functional and non-functional requirements; (2) it facilitates the identifi-
cation of requirements issues such as incompleteness, ambiguity and unverifiability, as
shown in our evaluation in Section 8.5; (3) it offers intuitive ways to refine requirements,
e.g., adding/removing a slot-description pair, generalizing/specializing the description of
a slot in a function description; (4) it is able to capture the interrelation between re-
quirements based on requirements detail rather than the whole requirement statement
(e.g., we can specify an FC over the object of a function description, or define a QG/QC
based on an F), this helps us to get an overview of NFRs that are associated with an
F, specify crosscutting concerns of NFRs, and document NFRs (e.g., FRs and NFRs are

9.2. Limitations 153

not separated anymore, as they are in the IEEE 830-1998 standard [45]). Moreover, we
have developed a prototype tool that is able to automatically translate the Desiree syntax
into Description Logics (DL) expressions, allowing users to query interrelations between
requirements and detect inconsistencies among requirements.

RQ3: How to engineer an eligible specification from stakeholder requirements? To

answer the third question, we have proposed a rich collection of requirements operators,
and a methodology for applying the operators on requirements concepts (written in nat-
ural language or the Desiree syntax) in order to transform stakeholder requirements into
an eligible requirements specification. Compared with current goal modeling techniques
such as KAOS [50], Tropos [30] and Techne [101], our framework offers two distinguishing
features: (1) it allows us to weaken requirements, e.g., enlarging the expected quality
region (“Scale”), or lowering the percentage over a set of individuals (“deUniversalize”);
(2) it enables us to incrementally going from incomplete to complete (enough), unveri-
fiable to verifiable, ambiguous to unambiguous, inconsistent/un-satisfiable to consisten-
t/satisfiable, and informal to formal. In addition, with the supporting tool, we are able
to translate requirements refinements/operationalization into DL axioms and perform
entailment and “what-if” (fulfillment) analysis by using DL subsumption.

RQ4: How well is this approach when applied to realistic settings?

To answer the forth question, we have conducted a series of empirical evaluations to
evaluate our proposal, including: (1) assessing the coverage of our requirements ontology
by applying it to all the 625 requirements in the PROMISE dataset [129]; (2) evaluating
the expressiveness of our description-based language by using it to rewrite all the 625
requirements in the dataset; (3) illustrating our methodology by performing a realistic
Meeting Scheduler case study; (4) evaluating the the effectiveness of the entire Desiree
framework through three controlled experiments. The evaluation results show that our
ontology and language are adequate in capturing requirements in practice, and provide
strong evidence that the tool-supported Desiree framework (including the ontology, op-
erators, syntax and methodology) indeed can help people to perform better requirements
engineering with a medium or big effect.

9.2 Limitations

Our approach also has several limitations on handling the following aspects.

• Built-in slots. Our language currently does not have a built-in set of slots, and may

154 Chapter 9. Conclusion and Future Work

result in different outputs when used by different users as they could use different
words for the same relation. For example, when specifying the relation between
“students” and “clinical class”, one may use “belong to” while others could use
“associated with”. One possible solution to this is to develop ontologies of software
systems and of application domains.

• Instance-level constraints. Our description-based language has difficulties on
capturing some instance-level constraints. For example, “Managers shall be able
to move a student from one clinical lab section to another clinical lab section cor-
responding to the same clinical class”. We have used the “same as” DL construc-
tor [29], which is more generally known as “role value map” [150] to express these
constraints (as discussed in Section 8.3.3). However, the “same as” constructor
would cause the problem of undecidability on its general form [150], and thus im-
posing limitations on reasoning. This is mainly because the semantics our language
is developed based on set-theory.

• Temporal constraints. Our language has limitations on handling temporal con-
straints. We currently represent temporal constraints with attributes such as “be-
fore”, “after”, and “concurrent”. However, the reasoning part of such representations
is severely limited. One possible way is to use temporal logic (e.g., use LTL as in
KAOS [50]) for representing and reasoning about these kinds of requirements.

• Algebraic constraints. In addition, our language is unable to capture algebraic
constraints such as “given an initial balance a, after a withdrawal of b, the balance
shall be a � b � c”. Our finding of temporal and algebraic constraints in realistic
requirements implies that maybe hybrid-logic is needed for representing a complete
requirements specification and reasoning over it.

• Nested de-Universalization. Our DL translation of refinement/operationalization
is not able to capture the entailment semantics of nested U , the semantics of which
is expressed by using second-order (even higher-order) logic. For example, our DL
translation is able to infer that G1 |ù G2, where G1 is “the file search function shall
take 30 seconds (at least) 80% of the time”, and G2 is “the file search function shall
take 30 seconds (at least) 70% of the time”. However, it can note tell the entailment
between G3 “80% of the system functions shall be fast at 90% of the time” and G4

“90% of the system functions shall be fast at 80% of the time”. This remains an
open question even for human-being, as we need to consider the size of each set the
the U operator is applied to, and also the importance of each set.

9.3. Future Work 155

• Simulation of entailment semantics. We have used DL subsumption to simu-
late the entailment semantics of requirements operators. However, for some oper-
ators, the DL subsumption between the input and output elements does not con-
form to their entailment semantics. For example, when focusing QG1 “Security
({the system}) :: Good” to QG2 “Security ({the data module}) :: Good”, we have
QG1 |ù QG2 (i.e., if the system is secure, then its date module is also secure);
however, when translated into DL expressions, we will have QG2 � QG1 if we re-
place the subject of QG1, “{the system}”, with its part, “{the data module}”, and
specify a DA “tthe data moduleu:¡tthe systemu”. We used some tricks when ap-
plying such operators, e.g., expanding the subject of QG1 to “{the data module} _
{the system}” instead of replacing it with its part, “{the data module}”.

• Prototype tool. We have developed a prototype in support of the Desiree frame-
work. However, the usability of the Desiree tool, and the accessability of the tutorial
for the Desiree approach (e.g., wiki, video, help manual) are still in need of improve-
ment.

• Evaluation. We have conducted a series of evaluations to evaluate the framework
(including its ontology, language, and methodology) using both case studies and
controlled experiments. However, we have not assessed our framework in a realistic
industrial setting (e.g., industrial case studies, sufficient professional participants).
As such, there is still some risk of generalizing our conclusion.

9.3 Future Work

There are many directions open for our future research. We discuss three most interesting
ones in particular in this section.

• Slot mining. As we have mentioned in Section 9.2, our framework currently does
not have a built-in set of slots, and may result in different outputs when used by dif-
ferent users. Instead of developing ontologies of software systems and of application
domains, another interesting idea is to adapt the frame elements of existing frames in
the Berkeley Framenet project [21][61], which extracts information about the linked
semantic and syntactic properties (frame elements) of English words (frames) from
large electronic text corpora. In general, a frame in FrameNet is akin to the “F-
Name” in our function descriptions, and the associated frame elements act as slots

156 Chapter 9. Conclusion and Future Work

of the function description. Based on this, we can statistically analyze requirements
texts in specific application domains, and accordingly elicit a set of frequent slots.

• Requirements extraction from user feedback. In our requirement ontology, we
have specialized requirements into three categories: (1) function-related, including
F, FG and FC; (2) quality-related, including QG and QC; (3) content-related, in-
cluding CTG and SC. We have also provided a description-based syntax for structure
them. The “ slot: description¡” structures provide useful guidelines for extract-
ing requirements from natural language texts (e.g., user feedback). Work has been
done on eliciting functional requirements from texts, e.g., Casagrande et al. [33];
however, few attention has been paid to eliciting non-functional requirements (e.g.,
quality requirements and content requirements) from texts. The extraction of re-
quirements (functional and non-functional) from texts, specifically, user feedback,
is of importance to software/service evolution.

• Requirements evolution. Our description-based language is able to capture a rich
set of interrelations between requirements, functional and non-funcitnoal. Therefore,
an interesting research direction is to systematically and automatically detect the
impact when changing a requirement. It will be very interesting to see how a
requirements knowledge base evolves with changing requirements, a major topic in
Software Engineering for the next decade.

Bibliography

[1] Agile software development. https://en.wikipedia.org/wiki/Agile_software_
development (last access: 2015-09-11).

[2] Controlled natural language. https://en.wikipedia.org/w/index.php?title=
Controlled_natural_language&oldid=680306143 (last access: 2015-09-22).

[3] IBM - Rational DOORS. http://www-03.ibm.com/software/products/en/
ratidoor (last access: 2015-09-03).

[4] Manifesto for Agile Software Development. http://www.agilemanifesto.
org/ (last access: 2015-09-08).

[5] Bonferroni correction, November 2015. https://en.wikipedia.org/w/index.
php?title=Bonferroni_correction&oldid=692500900 (last access: 2015-11-27).

[6] Lambda calculus, December 2015. https://en.wikipedia.org/w/index.php?
title=Lambda_calculus&oldid=695102662 (last access: 2015-12-14).

[7] Shapiro-Wilk test, October 2015. https://en.wikipedia.org/w/index.php?
title=Shapiro%E2%80%93Wilk_test&oldid=684247815 (last access: 2015-12-09).

[8] Student’s t-test, October 2015. https://en.wikipedia.org/w/index.php?
title=Student%27s_t-test&oldid=687517571 (last access: 2015-11-26).

[9] Wilcoxon signed-rank test, November 2015. https://en.wikipedia.org/w/
index.php?title=Wilcoxon_signed-rank_test&oldid=690943842 (last access:
2015-11-26).

[10] ISO/IEC 9126-1. Software engineering - Product quality - Part 1: Quality model.
ISO/IEC, 9126:2001, 2001.

157

https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/w/index.php?title=Controlled_natural_language&oldid=680306143
https://en.wikipedia.org/w/index.php?title=Controlled_natural_language&oldid=680306143
http://www-03.ibm.com/software/products/en/ratidoor
http://www-03.ibm.com/software/products/en/ratidoor
http://www.agilemanifesto.org/
http://www.agilemanifesto.org/
https://en.wikipedia.org/w/index.php?title=Bonferroni_correction&oldid=692500900
https://en.wikipedia.org/w/index.php?title=Bonferroni_correction&oldid=692500900
https://en.wikipedia.org/w/index.php?title=Lambda_calculus&oldid=695102662
https://en.wikipedia.org/w/index.php?title=Lambda_calculus&oldid=695102662
https://en.wikipedia.org/w/index.php?title=Shapiro%E2%80%93Wilk_test&oldid=684247815
https://en.wikipedia.org/w/index.php?title=Shapiro%E2%80%93Wilk_test&oldid=684247815
https://en.wikipedia.org/w/index.php?title=Student%27s_t-test&oldid=687517571
https://en.wikipedia.org/w/index.php?title=Student%27s_t-test&oldid=687517571
https://en.wikipedia.org/w/index.php?title=Wilcoxon_signed-rank_test&oldid=690943842
https://en.wikipedia.org/w/index.php?title=Wilcoxon_signed-rank_test&oldid=690943842

158 Bibliography

[11] Anas Bassam Al-Badareen, Mohd Hasan Selamat, Marzanah A. Jabar, Jamilah Din,
and Sherzod Turaev. Software Quality Models: A Comparative Study. In Software
Engineering and Computer Systems, pages 46–55. Springer, 2011.

[12] Huzam SF Al-Subaie and Tom SE Maibaum. Evaluating the effectiveness of a
goal-oriented requirements engineering method. In CERE’06, pages 8–19. IEEE,
2006.

[13] Andre Albuquerque and Giancarlo Guizzardi. An ontological foundation for concep-
tual modeling datatypes based on semantic reference spaces. In Research Challenges
in Information Science (RCIS), 2013 IEEE Seventh International Conference on,
pages 1–12. IEEE, 2013.

[14] Ian F. Alexander and Richard Stevens. Writing better requirements. Pearson Edu-
cation, 2002.

[15] Scott W. Ambler. 2014 Software Development at Scale Survey Results, 2014. http:
//www.ambysoft.com/surveys/stateOfITUnion2014Q2.html (last access: 2015-
09-05).

[16] Vincenzo Ambriola and Vincenzo Gervasi. Processing natural language require-
ments. In Automated Software Engineering, 1997. Proceedings., 12th IEEE Inter-
national Conference, pages 36–45. IEEE, 1997.

[17] Annie Antón and others. Goal-based requirements analysis. In Requirements Engi-
neering, 1996., Proceedings of the Second International Conference on, pages 136–
144. IEEE, 1996.

[18] Franz Aurenhammer. Voronoi diagrams – a survey of a fundamental geometric data
structure. ACM Computing Surveys (CSUR), 23(3):345–405, 1991.

[19] Benjamin Aziz, Alvaro Arenas, Juan Bicarregui, Christophe Ponsard, and Philippe
Massonet. From goal-oriented requirements to Event-B specifications. In First Nasa
Formal Method Symposium (NFM 2009), 2009.

[20] Franz Baader. The description logic handbook: theory, implementation, and appli-
cations. Cambridge university press, 2003.

[21] Collin F. Baker, Charles J. Fillmore, and John B. Lowe. The berkeley framenet
project. In Proceedings of the 17th international conference on Computational
linguistics-Volume 1, pages 86–90. Association for Computational Linguistics, 1998.

http://www.ambysoft.com/surveys/stateOfITUnion2014Q2.html
http://www.ambysoft.com/surveys/stateOfITUnion2014Q2.html

Bibliography 159

[22] Luciano Baresi, Liliana Pasquale, and Paola Spoletini. Fuzzy goals for requirements-
driven adaptation. In Requirements Engineering Conference (RE), 2010 18th IEEE
International, pages 125–134. IEEE, 2010.

[23] Thomas E. Bell and Thomas A. Thayer. Software requirements: Are they really a
problem? In Proceedings of the 2nd international conference on Software engineer-
ing, pages 61–68. IEEE Computer Society Press, 1976.

[24] Daniel Berry, Ricardo Gacitua, Pete Sawyer, and Sri Fatimah Tjong. The case for
dumb requirements engineering tools. In Requirements Engineering: Foundation for
Software Quality, pages 211–217. Springer, 2012.

[25] Daniel M. Berry, Erik Kamsties, and Michael M. Krieger. From contract drafting
to software specification: Linguistic sources of ambiguity. Technical report, Tech-
nical Report, School of Computer Science, University of Waterloo, Waterloo, ON,
Canada, 2003.

[26] Barry W. Boehm. Understanding and controlling software costs. Journal of Para-
metrics, 8(1):32–68, 1988.

[27] Barry W. Boehm, John R. Brown, and Hans Kaspar. Characteristics of software
quality. 1978.

[28] Grady Booch. Object-oriented development. Software Engineering, IEEE Transac-
tions on, (2):211–221, 1986.

[29] Alex Borgida and Premkumar Devanbu. Adding more “DL” to IDL: towards more
knowledgeable component inter-operability. In Proceedings of the 21st international
conference on Software engineering, pages 378–387. ACM, 1999.

[30] Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and John My-
lopoulos. Tropos: An agent-oriented software development methodology. Au-
tonomous Agents and Multi-Agent Systems, 8(3):203–236, 2004.

[31] Muffy Calder, Mario Kolberg, Evan H. Magill, and Stephan Reiff-Marganiec. Fea-
ture interaction: a critical review and considered forecast. Computer Networks,
41(1):115–141, 2003.

[32] Lan Cao and Balasubramaniam Ramesh. Agile requirements engineering practices:
An empirical study. Software, IEEE, 25(1):60–67, 2008.

160 Bibliography

[33] Erik Casagrande, Selamawit Woldeamlak, Wei Lee Woon, H. H. Zeineldin, and
Davor Svetinovic. NLP-KAOS for Systems Goal Elicitation: Smart Metering System
Case Study. Software Engineering, IEEE Transactions on, 40(10):941–956, 2014.

[34] Jaelson Castro, Manuel Kolp, and John Mylopoulos. Towards requirements-
driven information systems engineering: the Tropos project. Information systems,
27(6):365–389, 2002.

[35] Corine Cauvet, C. Proix, and Colette Rolland. ALECSI: An expert system for
requirements engineering. In Advanced Information Systems Engineering, pages
31–49. Springer, 1991.

[36] Lawrence Chung and Julio Cesar Sampaio do Prado Leite. On non-functional re-
quirements in software engineering. In Conceptual modeling: Foundations and ap-
plications, pages 363–379. Springer, 2009.

[37] Lawrence Chung, Brian A. Nixon, and Eric Yu. Non-Functional Requirements in
Software Engineering, volume 5. Kluwer Academic Pub, 2000.

[38] Andreas Classen, Patrick Heymans, and Pierre-Yves Schobbens. What’s in a feature:
A requirements engineering perspective. In Fundamental Approaches to Software
Engineering, pages 16–30. Springer, 2008.

[39] Jane Cleland-Huang, Raffaella Settimi, Oussama BenKhadra, Eugenia Berezhan-
skaya, and Selvia Christina. Goal-centric traceability for managing non-functional
requirements. In Proceedings of the 27th international conference on Software engi-
neering, pages 362–371. ACM, 2005.

[40] Peter Coad and Edward Yourdon. Object oriented analysis. 1991.

[41] Alistair Cockburn. Writing effective use cases. preparation for Addison-Wesley
Longman, 1999.

[42] Robert Coe. It’s the effect size, stupid: What effect size is and why it is important.
2002.

[43] Jacob Cohen. Statistical power analysis for the behavioral sciences. Academic press,
2013.

[44] William W. Cohen and Haym Hirsh. Learning the Classic Description Logic: The-
oretical and Experimental Results. KR, 94:121–133, 1994.

Bibliography 161

[45] IEEE Computer Society Software Engineering Standards Committee and IEEE-
SA Standards Board. IEEE Recommended Practice for Software Requirements
Specifications. IEEE, 1998.

[46] General Electric Company, Jim A. McCall, Paul K. Richards, and Gene F. Walters.
Factors in Software Quality: Final Report. Information Systems Programs, General
Electric Company, 1977.

[47] Larry L. Constantine and Lucy AD Lockwood. Software for use: a practical guide
to the models and methods of usage-centered design. Pearson Education, 1999.

[48] Karl Cox, Jon G. Hall, and Lucia Rapanotti. A roadmap of problem frames research.
Information and Software Technology, 47(14):891–902, 2005.

[49] Luiz Marcio Cysneiros and Julio César Sampaio do Prado Leite. Using UML to
reflect non-functional requirements. In Proceedings of the 2001 conference of the
Centre for Advanced Studies on Collaborative research, page 2. IBM Press, 2001.

[50] Anne Dardenne, Axel Van Lamsweerde, and Stephen Fickas. Goal-directed require-
ments acquisition. Science of computer programming, 20(1):3–50, 1993.

[51] Alan M. Davis. Software requirements: objects, functions, and states. Prentice-Hall,
Inc., 1993.

[52] Lieven Decock and Igor Douven. What Is Graded Membership? Noûs, 48(4):653–
682, 2014.

[53] Tom DeMarco. Structured analysis and system specification. Yourdon Press, 1979.

[54] Igor Douven, Lieven Decock, Richard Dietz, and Paul Égré. Vagueness: A concep-
tual spaces approach. Journal of Philosophical Logic, 42(1):137–160, 2013.

[55] I. EEE. Standard Glossary of Software Engineering Terminology. IEEE Software
Engineering Standards Collection, pages 610–12, 1990.

[56] Hugo Estrada, Alicia Mart́ınez Rebollar, Oscar Pastor, and John Mylopoulos. An
empirical evaluation of the i* framework in a model-based software generation en-
vironment. In CAiSE’06, pages 513–527. Springer, 2006.

[57] Fabrizio Fabbrini, Mario Fusani, Stefania Gnesi, and Giuseppe Lami. The linguistic
approach to the natural language requirements quality: benefit of the use of an

162 Bibliography

automatic tool. In Software Engineering Workshop, 2001. Proceedings. 26th Annual
NASA Goddard, pages 97–105. IEEE, 2001.

[58] R. A. Falbo and J. C. Nardi. Evolving a software requirements ontology. In XXXIV
Conferencia Latinoamericana de Informática, Santa Fe, Argentina, pages 300–309,
2008.

[59] Alessandro Fantechi, Stefania Gnesi, Gioia Ristori, Michele Carenini, Massimo
Vanocchi, and Paolo Moreschini. Assisting requirement formalization by means
of natural language translation. Formal Methods in System Design, 4(3):243–263,
1994.

[60] Amy P. Felty and Kedar S. Namjoshi. Feature specification and automated conflict
detection. ACM Transactions on Software Engineering and Methodology (TOSEM),
12(1):3–27, 2003.

[61] Charles J. Fillmore, Christopher R. Johnson, and Miriam RL Petruck. Background
to framenet. International journal of lexicography, 16(3):235–250, 2003.

[62] John Fitzgerald. Validated designs for object-oriented systems. Springer Science &
Business Media, 2005.

[63] Martin D. Fraser, Kuldeep Kumar, and Vijay K. Vaishnavi. Informal and formal
requirements specification languages: bridging the gap. Software Engineering, IEEE
Transactions on, 17(5):454–466, 1991.

[64] Norbert E. Fuchs, Kaarel Kaljurand, and Gerold Schneider. Attempto Controlled
English Meets the Challenges of Knowledge Representation, Reasoning, Interop-
erability and User Interfaces. In FLAIRS Conference, volume 12, pages 664–669,
2006.

[65] A. Fuxman, R. Kazhamiakin, M. Pistore, and M. Roveri. Formal Tropos: language
and semantics. University of Trento and IRST, 55:123, 2003.

[66] Vincenzo Gervasi and Didar Zowghi. Reasoning about inconsistencies in natural lan-
guage requirements. ACM Transactions on Software Engineering and Methodology
(TOSEM), 14(3):277–330, 2005.

[67] Martin Giese and Rogardt Heldal. From informal to formal specifications in UML.
In The Unified Modeling Language. Modeling Languages and Applications, pages
197–211. Springer, 2004.

Bibliography 163

[68] Tom Gilb. Competitive engineering: a handbook for systems engineering, re-
quirements engineering, and software engineering using Planguage. Butterworth-
Heinemann, 2005.

[69] Paolo Giorgini, John Mylopoulos, Eleonora Nicchiarelli, and Roberto Sebastiani.
Reasoning with goal models. In Conceptual Modeling – ER 2002, pages 167–181.
Springer, 2003.

[70] Martin Glinz. Problems and deficiencies of UML as a requirements specification lan-
guage. In Proceedings of the 10th International Workshop on Software Specification
and Design, page 11. IEEE Computer Society, 2000.

[71] Martin Glinz. On non-functional requirements. In Requirements Engineering Con-
ference, 2007. RE’07. 15th IEEE International, pages 21–26. IEEE, 2007.

[72] Peter GÃďrdenfors. Conceptual spaces: The geometry of thought. MIT press, 2004.

[73] Peter GÃďrdenfors. How to make the semantic web more semantic. In Formal
Ontology in Information Systems, pages 19–36, 2004.

[74] Sol Greenspan, John Mylopoulos, and Alex Borgida. On formal requirements mod-
eling languages: RML revisited. In Proceedings of the 16th international conference
on Software engineering, pages 135–147. IEEE Computer Society Press, 1994.

[75] Sol J. Greenspan, John Mylopoulos, and Alex Borgida. Capturing more world
knowledge in the requirements specification. In Proceedings of the 6th international
conference on Software engineering, pages 225–234. IEEE Computer Society Press,
1982.

[76] Standish Group and others. The CHAOS report. 1995.

[77] W3C Owl Working Group. OWL 2 Web Ontology Language Document Overview.
2009.

[78] Giancarlo Guizzardi. Ontological foundations for structural conceptual models. C-
TIT, Centre for Telematics and Information Technology, 2005.

[79] Giancarlo Guizzardi, Gerd Wagner, Ricardo de Almeida Falbo, Renata SS Guizzar-
di, and JoÃčo Paulo A. Almeida. Towards ontological foundations for the conceptual
modeling of events. In Conceptual Modeling, pages 327–341. Springer, 2013.

164 Bibliography

[80] Charles B. Haley, Robin C. Laney, and Bashar Nuseibeh. Using Problem Frames
and projections to analyze requirements for distributed systems. 2004.

[81] Jon G. Hall, Lucia Rapanotti, Michael Jackson, and others. Problem oriented
software engineering: Solving the package router control problem. Software Engi-
neering, IEEE Transactions on, 34(2):226–241, 2008.

[82] Tracy Hall, Sarah Beecham, and Austen Rainer. Requirements problems in twelve
software companies: an empirical analysis. IEE Proceedings-Software, 149(5):153–
160, 2002.

[83] Riham Hassan, Shawn Bohner, Sherif El-Kassas, and Mohamed Eltoweissy. Goal-
oriented, B-based formal derivation of security design specifications from security
requirements. In Availability, Reliability and Security, 2008. ARES 08. Third In-
ternational Conference on, pages 1443–1450. IEEE, 2008.

[84] Maritta Heisel and Jeanine Souquieres. A heuristic algorithm to detect feature
interactions in requirements. In Language Constructs for Describing Features, pages
143–162. Springer, 2001.

[85] Constance L. Heitmeyer, Ralph D. Jeffords, and Bruce G. Labaw. Automated
consistency checking of requirements specifications. ACM Transactions on Software
Engineering and Methodology (TOSEM), 5(3):231–261, 1996.

[86] Andrea Herrmann and Barbara Paech. Quality misuse. In Proc. 11th Int. Workshop
on Requirements Engineering: Foundation of Software Quality – REFSQ, volume 5,
pages 193–199, 2005.

[87] Andrea Herrmann and Barbara Paech. MOQARE: misuse-oriented quality require-
ments engineering. Requirements Engineering, 13(1):73–86, 2008.

[88] Robert Hoehndorf, Janet Kelso, and Heinrich Herre. Contributions to the formal
ontology of functions and dispositions: An application of non-monotonic reasoning.
ICBO, page 173, 2009.

[89] Jennifer Horkoff, Fatma BaÅ§ak Aydemir, Feng-Lin Li, Tong Li, and John My-
lopoulos. Evaluating Modeling Languages: An Example from the Requirements
Domain. In ER’14, pages 260–274. Springer, 2014.

Bibliography 165

[90] Jennifer Horkoff, Alex Borgida, John Mylopoulos, Daniele Barone, Lei Jiang, Eric
Yu, and Daniel Amyot. Making data meaningful: The business intelligence model
and its formal semantics in description logics. In On the Move to Meaningful Internet
Systems: OTM 2012, pages 700–717. Springer, 2012.

[91] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin Grosof,
Mike Dean, and others. SWRL: A semantic web rule language combining OWL and
RuleML. W3C Member submission, 21:79, 2004.

[92] Milagros Ibanez and Helmut Rempp. European user survey analysis. ESPITI project
report, February, 1996.

[93] ISO/IEC 25010. Systems and software engineering - Systems and software Quality
Requirements and Evaluation (SQuaRE) - System and software quality models.
Technical report, ISO/IEC, 2011.

[94] ISO/IEC TR 9126-2. Software engineering - Product quality - Part 2: External
metrics. Technical report, ISO/IEC, 2003.

[95] M. A. Jackson. Problem analysis using small problem frames. South African Com-
puter Journal, pages 47–60, 1999.

[96] Michael Jackson. Software requirements and specifications. Addison-Wesley Read-
ing, 1995.

[97] Michael Jackson. Problem frames: analysing and structuring software development
problems. Addison-Wesley, 2001.

[98] Michael Jackson and Pamela Zave. Deriving specifications from requirements: an
example. In ICSE’95, pages 15–24. ACM, 1995.

[99] Stephan Jacobs. Introducing measurable quality requirements: a case study. In
Requirements Engineering, 1999. Proceedings. IEEE International Symposium on,
pages 172–179. IEEE, 1999.

[100] Capers Jones. Variations in software development practices. Software, IEEE,
20(6):22–27, 2003.

[101] Ivan J. Jureta, Alex Borgida, Neil A. Ernst, and John Mylopoulos. Techne: Towards
a new generation of requirements modeling languages with goals, preferences, and

166 Bibliography

inconsistency handling. In 2010 18th IEEE International Requirements Engineering
Conference, pages 115–124. IEEE, 2010.

[102] Ivan J. Jureta, John Mylopoulos, and Stephane Faulkner. Revisiting the core on-
tology and problem in requirements engineering. In International Requirements
Engineering, 2008. RE’08. 16th IEEE, pages 71–80. IEEE, 2008.

[103] Ivan J. Jureta, John Mylopoulos, and Stephane Faulkner. A core ontology for
requirements. Applied Ontology, 4:169–244, 2009.

[104] Haruhiko Kaiya and Motoshi Saeki. Using domain ontology as domain knowledge
for requirements elicitation. In Requirements Engineering, 14th IEEE International
Conference, pages 189–198. IEEE, 2006.

[105] Massila Kamalrudin. Automated software tool support for checking the inconsisten-
cy of requirements. In Proceedings of the 2009 IEEE/ACM International Conference
on Automated Software Engineering, pages 693–697. IEEE Computer Society, 2009.

[106] Massila Kamalrudin, John Hosking, and John Grundy. Improving requirements
quality using essential use case interaction patterns. In Proceedings of the 33rd
International Conference on Software Engineering, pages 531–540. ACM, 2011.

[107] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer
Peterson. Feature-oriented domain analysis (FODA) feasibility study. Technical
report, DTIC Document, 1990.

[108] Sascha Konrad and Betty HC Cheng. Real-time specification patterns. In Proceed-
ings of the 27th international conference on Software engineering, pages 372–381.
ACM, 2005.

[109] Fabrice Kordon and others. Advances in Requirements Engineering: Bridging the
Gap between Stakeholders’ Needs and Formal Designs. In Innovations for Require-
ment Analysis. From Stakeholders’ Needs to Formal Designs, pages 15–24. Springer,
2008.

[110] John Krogstie. A semiotic approach to quality in requirements specifications. Pro-
ceedings of the IFIP TC8/WG8, 1:231–249, 2002.

[111] Alexei Lapouchnian. Goal-oriented requirements engineering: An overview of the
current research. University of Toronto, page 32, 2005.

Bibliography 167

[112] David C. LeBlanc. Statistics: concepts and applications for science, volume 2. Jones
& Bartlett Learning, 2004.

[113] Emmanuel Letier and Axel Van Lamsweerde. Deriving operational software speci-
fications from system goals. In Proceedings of the 10th ACM SIGSOFT symposium
on Foundations of software engineering, pages 119–128. ACM, 2002.

[114] Feng-Lin Li. Requirements-Driven Software Service Evolution. In Service-Oriented
Computing-ICSOC 2012 Workshops, pages 419–425. Springer, 2013.

[115] Feng-Lin Li, Jennifer Horkoff, Alexander Borgida, Giancarlo Guizzardi, Lin Liu,
and John Mylopoulos. From Stakeholder Requirements to Formal Specifications
Through Refinement. In REFSQ’15, pages 164–180. Springer, 2015.

[116] Feng-Lin Li, Jennifer Horkoff, John Mylopoulos, Renata SS Guizzardi, Giancarlo
Guizzardi, Alexander Borgida, and Lin Liu. Non-functional requirements as quali-
ties, with a spice of ontology. In RE’14, pages 293–302. IEEE, 2014.

[117] Feng-Lin Li, Jennifer Horkoff, John Mylopoulos, Lin Liu, and Alexander Borgida.
Non-Functional Requirements Revisited. In iStar, pages 109–114. Citeseer, 2013.

[118] Sotirios Liaskos, Sheila McIlraith, Shirin Sohrabi, John Mylopoulos, and others.
Integrating preferences into goal models for requirements engineering. In Require-
ments Engineering Conference (RE), 2010 18th IEEE International, pages 135–144.
IEEE, 2010.

[119] Mich Luisa, Franch Mariangela, and Novi Inverardi Pierluigi. Market research for
requirements analysis using linguistic tools. Requirements Engineering, 9(1):40–56,
2004.

[120] Bruno Nandolpho Machado, Lucas de Oliveira Arantes, and Ricardo de Almei-
da Falbo. Using Semantic Annotations for Supporting Requirements Evolution. In
SEKE, pages 185–190, 2011.

[121] Neil Maiden. User requirements and system requirements. Software, IEEE,
25(2):90–91, 2008.

[122] CHAOS Manifesto. Think Big, Act Small. The Standish Group International Inc,
2013.

168 Bibliography

[123] Claudio Masolo, Stefano Borgo, Aldo Gangemi, Nicola Guarino, and Alessandro
Oltramari. Ontology Library. Wonderweb deliverable D18, 33052, 2003.

[124] Raimundas MatuleviÄŊius and Patrick Heymans. Comparing goal modelling lan-
guages: An experiment. In REFSQ’07, pages 18–32. Springer, 2007.

[125] Alistair Mavin, Philip Wilkinson, Adrian Harwood, and Mark Novak. Easy approach
to requirements syntax (EARS). In Requirements Engineering Conference, 2009.
RE’09. 17th IEEE International, pages 317–322. IEEE, 2009.

[126] John H. McDonald. Handbook of biological statistics, volume 2. Sparky House
Publishing Baltimore, MD, 2009.

[127] Deborah L. McGuinness, Frank Van Harmelen, and others. OWL web ontology
language overview. W3C recommendation, 10(10):2004, 2004.

[128] Sally Shlaer Stephen J. Mellor and Sally Shlaer. Object-oriented systems analysis:
modeling the world in data. Yourdon, 1989.

[129] Tim Menzies, Bora Caglayan, Zhimin He, Ekrem Kocaguneli, Joe Krall, Fayola
Peters, and Burak Turhan. The PROMISE Repository of empirical software engi-
neering data. June 2012.

[130] John Mylopoulos, Lawrence Chung, and Brian Nixon. Representing and using non-
functional requirements: A process-oriented approach. Software Engineering, IEEE
Transactions on, 18(6):483–497, 1992.

[131] John Mylopoulos, Lawrence Chung, and Eric Yu. From object-oriented to goal-
oriented requirements analysis. Communications of the ACM, 42(1):31–37, 1999.

[132] J. David Naumann, Gordon B. Davis, and James D. McKeen. Determining informa-
tion requirements: a contingency method for selection of a requirements assurance
strategy. Journal of Systems and Software, 1:273–281, 1980.

[133] Jerzy Nawrocki, Michal Jaśınski, Bartosz Walter, and Adam Wojciechowski. Ex-
treme programming modified: embrace requirements engineering practices. In Re-
quirements Engineering, 2002. Proceedings. IEEE Joint International Conference
on, pages 303–310. IEEE, 2002.

[134] Barbara Paech and Daniel Kerkow. Non-functional requirements engineering-quality
is essential. In 10th International Workshop on Requirments Engineering Foundation
for Software Quality, 2004.

Bibliography 169

[135] Klaus Pohl. Requirements engineering: fundamentals, principles, and techniques.
Springer Publishing Company, Incorporated, 2010.

[136] PMI’s Pulse of the Profession. Requirements Management: a Core Competency for
Project And Program Succes. August 2014.

[137] Lucia Rapanotti, Jon G. Hall, Michael Jackson, and Bashar Nuseibeh. Architecture-
driven problem decomposition. In Requirements Engineering Conference, 2004.
Proceedings. 12th IEEE International, pages 80–89. IEEE, 2004.

[138] Lucia Rapanotti, Jon G. Hall, and Zhi Li. Deriving specifications from requirements
through problem reduction. IEE Proceedings-Software, 153(5):183–198, 2006.

[139] Lucia Rapanotti, Jon G. Hall, and Zhi Li. Problem reduction: a systematic
technique for deriving specifications from requirements. IEE Proc.âĂŤSoftware,
153(5):183–198, 2006.

[140] Suzanne Robertson and James Robertson. Models or natural language – which is
best for requirements?

[141] Suzanne Robertson and James Robertson. Mastering the requirements process: Get-
ting requirements right. Addison-wesley, 2012.

[142] Colette Rolland and Christophe Proix. A natural language approach for require-
ments engineering. In Advanced information systems engineering, pages 257–277.
Springer, 1992.

[143] Eleanor Rosch. Cognitive representations of semantic categories. Journal of exper-
imental psychology: General, 104(3):192, 1975.

[144] Douglas T. Ross. Structured analysis (SA): A language for communicating ideas.
Software Engineering, IEEE Transactions on, (1):16–34, 1977.

[145] Douglas T. Ross and Kenneth E. Schoman Jr. Structured analysis for requirements
definition. Software Engineering, IEEE Transactions on, (1):6–15, 1977.

[146] Winston W. Royce. Managing the development of large software systems. In pro-
ceedings of IEEE WESCON, volume 26, pages 328–388. Los Angeles, 1970.

[147] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, William E.
Lorensen, and others. Object-oriented modeling and design, volume 199. Prentice-
hall Englewood Cliffs, 1991.

170 Bibliography

[148] James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Modeling Language
Reference Manual. Pearson Higher Education, 2004.

[149] Andrew P. Sage and William B. Rouse. Handbook of systems engineering and man-
agement. John Wiley & Sons, 2009.

[150] Manfred Schmidt-Schauß. Subsumption in KL-ONE is undecidable. 1988.

[151] Pierre-Yves Schobbens, Patrick Heymans, and Jean-Christophe Trigaux. Feature
diagrams: A survey and a formal semantics. In Requirements Engineering, 14th
IEEE international conference, pages 139–148. IEEE, 2006.

[152] Pierre-Yves Schobbens, Patrick Heymans, Jean-Christophe Trigaux, and Yves Bon-
temps. Generic semantics of feature diagrams. Computer Networks, 51(2):456–479,
2007.

[153] Ken Schwaber. Scrum development process. In Business Object Design and Imple-
mentation, pages 117–134. Springer, 1997.

[154] Robert Seater, Daniel Jackson, and Rohit Gheyi. Requirement progression in prob-
lem frames: deriving specifications from requirements. Requirements Engineering,
12(2):77–102, 2007.

[155] Roberto Sebastiani, Paolo Giorgini, and John Mylopoulos. Simple and minimum-
cost satisfiability for goal models. In Advanced Information Systems Engineering,
pages 20–35. Springer, 2004.

[156] Pourrya Shaker, Joanne M. Atlee, and Shige Wang. A feature-oriented requirements
modelling language. In Requirements Engineering Conference (RE), 2012 20th IEEE
International, pages 151–160. IEEE, 2012.

[157] Rob Shearer, Boris Motik, and Ian Horrocks. HermiT: A Highly-Efficient OWL
Reasoner. In OWLED, volume 432, page 91, 2008.

[158] Guttorm Sindre and Andreas L. Opdahl. Templates for misuse case description.
In Proceedings of the 7th International Workshop on Requirements Engineering,
Foundation for Software Quality (REFSQ’2001), Switzerland. Citeseer, 2001.

[159] Michal Śmialek, Albert Ambroziewicz, Jacek Bojarski, Wiktor Nowakowski, and
Tomasz Straszak. Introducing a unified requirements specification language. Proc.
CEE-SET, 2007:172–183, 2007.

Bibliography 171

[160] Ian Sommerville. Software Engineering (8th Edition). Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2006.

[161] J. Michael Spivey and J. R. Abrial. The Z notation. Prentice Hall Hemel Hempstead,
1992.

[162] Gail M. Sullivan and Richard Feinn. Using effect size-or why the P value is not
enough. Journal of graduate medical education, 4(3):279–282, 2012.

[163] Sam Supakkul and Lawrence Chung. Integrating FRs and NFRs: A use case and
goal driven approach. framework, 6:7, 2005.

[164] Richard Berntsson Svensson, Thomas Olsson, and BjÃűrn Regnell. An investigation
of how quality requirements are specified in industrial practice. Information and
Software Technology, 55(7):1224–1236, 2013.

[165] Axel Van Lamsweerde. Requirements engineering in the year 00: a research perspec-
tive. In Proceedings of the 22nd international conference on Software engineering,
pages 5–19. ACM, 2000.

[166] Axel Van Lamsweerde. Building formal requirements models for reliable software.
In Reliable SoftwareTechnologiesâĂŤAda-Europe 2001, pages 1–20. Springer, 2001.

[167] Axel Van Lamsweerde. Goal-oriented requirements engineering: A guided tour. In
Requirements Engineering, 2001. Proceedings. Fifth IEEE International Symposium
on, pages 249–262. IEEE, 2001.

[168] Axel Van Lamsweerde and Emmanuel Letier. From object orientation to goal ori-
entation: A paradigm shift for requirements engineering. In Radical Innovations of
Software and Systems Engineering in the Future, pages 325–340. Springer, 2004.

[169] Axel Van Lamsweerde and others. Requirements engineering: from system goals to
UML models to software specifications. 2009.

[170] June Verner, Karl Cox, Steven Bleistein, and Narciso Cerpa. Requirements engi-
neering and software project success: an industrial survey in Australia and the US.
Australasian Journal of information systems, 13(1), 2007.

[171] Karl Wiegers. More about software requirements: thorny issues and practical advice.
Microsoft Press, 2005.

172 Bibliography

[172] Karl Wiegers and Joy Beatty. Software requirements. Pearson Education, 2013.

[173] Wiley. INCOSE Systems Engineering Handbook: A Guide for System Life Cycle
Processes and Activities. John Wiley & Sons, 2015.

[174] Hui Yang, Alistair Willis, Anne De Roeck, and Bashar Nuseibeh. Automatic de-
tection of nocuous coordination ambiguities in natural language requirements. In
Proceedings of the IEEE/ACM international conference on Automated software en-
gineering, pages 53–62. ACM, 2010.

[175] John Yen and W. Amos Tiao. A systematic tradeoff analysis for conflicting imprecise
requirements. In Requirements Engineering, 1997., Proceedings of the Third IEEE
International Symposium on, pages 87–96. IEEE, 1997.

[176] Eric Yu. Modelling strategic relationships for process reengineering. Social Modeling
for Requirements Engineering, 11:2011, 2011.

[177] Pamela Zave. Classification of research efforts in requirements engineering. ACM
Computing Surveys (CSUR), 29(4):315–321, 1997.

[178] Pamela Zave and Michael Jackson. Four dark corners of requirements engineering.
ACM transactions on Software Engineering and Methodology (TOSEM), 6(1):1–30,
1997.

Appendix A

Quality Mapping

We adopt the quality theory introduced in the Unified Foundational Ontology (UFO) [78],
which extends DOLCE [123]. In this theory, a quality is a basic perceivable or measurable
entity that inheres in a particular entity and is unable to exist independently from it. A
quality is a particular/ individual (e.g. “cost#”, the cost of a specific trip; by convention,
we use “#” to indicate individuals), and belongs to a quality type QT (e.g., “Cost”).
Moreover, this theory differentiates a quality, e.g. “cost#”, from its value, e.g. “1000 e”
which is called quality value QV and is located in a quality space QS with a specific
structure (simply, a quality space consists of regions with sub-regions).

Originally, this theory associates a quality, say “cost#”, of type “Cost”, to an indi-
vidual subject, e.g., “trip#”, of type “Trip”; and then associates with “cost#” a specific
value, say “1000 e”, in the quality space “EuroValues”. These associations are captured
by the predicates qt(cost#, trip#) and ql(1000 e, cost#). Also, the quality type “Cost”
and quality space “EuroValues” is associated through qs(Cost, EuroValues).

To interpret NFRs, this original proposal needs to be adapted: (1) qualities discussed
in RE are often not particulars, but rather quality types. For example, in the requirement
“the cost of trip shall be low”, the quality type “Cost” is applied to a subject type “Trip”,
which implies a set of its instances in the future rather than a single one; (2) an NFR
often constrains the desired quality value of a quality that inheres in a software-related
subject, requiring us to associate the subject (type), quality type, quality, and quality
value together through a unified characterization.

The key to these issues is to use functions that map from individuals to individual-
s, e.g., q̂tpCost, trip#q � cost#, instead of predicates that map individuals to Boolean
values, e.g. qtpcost#, trip#q � true. We firstly define the necessary types: the sub-
ject/bearer of a particular quality is an individual subject, e.g., a trip, and of type

173

174 Appendix A. Quality Mapping

SubjectType (SubjT), e.g., “Trip”; a set of such individual subjects is of type Power-
Set(SubjT), ℘pSubjT q for short; the type of a quality type is QualityTypeSet (QTS)
, with each element being a different quality type, e.g., “Cost”, “Color”, “Length”, etc.
We then define in Table A.1 the basic functions, which are based on the three predicates
in the original theory.

Table A.1: The basic quality-related functions

Math Function Meaning Examples
q̂s : QTS Ñ QS It associates a quality type QT in QTS with a rele-

vant quality space QS
q̂spCostq � EuroV alues

q̂t : QTS Ñ SubjT Ñ QT It associates an individual subject of type SubjT with
a particular quality of type QT in QTS

q̂tpCostqptrip#q � cost#

q̂l : QS Ñ QT Ñ QV It associates a particular quality of type QT with a
quality value QV in quality space QS

q̂lpEuroV aluesqpcost#q �
1000 pEuroq

Commonly, a function f is denoted as f : X Ñ Y , in which X and Y are types. By
the notation f : X Ñ Y Ñ Z, we are able to define a high-order function f that takes as
argument an element of X and returns as value a function f 1 : Y Ñ Z. For example, the
function q̂t : QTS Ñ SubjT Ñ QT in Table A.1 takes as argument a quality type “Cost”
and returns as value a function q̂tpCostq : SubjT Ñ QT . This returned function q̂tpCostq
in turn takes an individual subject of type SubjT (e.g. trip# of Trip), and returns a
particular quality of type QT (e.g., cost# of Cost).

Note that the function q̂t is partial – it is undefined if the given quality type QT is
not applicable to the individual subject of type SubjT. For example, q̂tpCostqpdream#4q
is undefined because dreams do not have costs. Similarly, q̂l is defined only if the given
quality space QS is connected to the quality type QT of a particular quality.

Based on the defined types and functions, we now are able to define a high-order and
partial function hasQV as Eq. A.1, in which x is an individual subject of type SubjT. It
can be used in our example as hasQV (Cost)(trip#) to obtain the cost value 1000 e, see
the reduction process in Eq. A.2, where “�β” indicates a β reduction [6].

hasQV : QTS Ñ SubjT Ñ QV � λQT.λx.q̂lpq̂spQT qqpq̂tpQT qpxqq (A.1)

This function deals with only individual subjects. Since a requirement usually concerns
a set of subject, e.g., a set of trips, we shall extend this formalization to handle types. For
this purpose, we apply hasQV pQT qpxq to all instances of a subject type SubjT, obtaining
the set of quality values for all the individuals. By function overloading, we are able
to introduce a new function but with the same name hasQV as shown in Eq. A.3 , in

175

which “℘pSubjT q” is the type of a set of individual subjects, “℘pQV q” is the type of
a set of quality values, “MAP ” is a type of iteration in which a math function (e.g.,
“λx.hasQV pQT qpxq”) is successively applied to elements of sequence (e.g., “SubjT”, we
treat the set of individuals of type SubjT as a sequence) in the same order as in Lisp 1.
It can be used as hasQV pCostqpTripq to get the set of cost values of all trips. We can
further overland hasQV as shown in Eq. A.4 to return a single QV, which can serve as
the standard for comparison, e.g., what does “low” mean to a trip?

hasQV pCostqptrip#q � ppλQT.λx.q̂lpq̂spQT qqpq̂tpQT qpxqq Costq trip#q
�β pλx.q̂lpq̂spCostqqpq̂tpCostqpxqq trip#q
�β q̂lpq̂spCostqqpq̂tpCostqptrip#qq
� q̂lpEuroV aluesqpq̂tpCostqptrip#qq
� q̂lpEuroV aluesqpcost#q
� 1000 pEuroq

(A.2)

hasQV : QTS Ñ ℘pSubjT q Ñ ℘pQV q �MAP pλx.hasQV pQT qpxq SubjT q (A.3)

hasQV : QTS Ñ ℘pSubjT q Ñ QV � averagepMAP pλx.hasQV pQT qpxq SubjT qq (A.4)

Note that we use function overloading instead of new functions for simplifying the syn-
tax of requirements language. For example, the requirement “the cost of trip shall be low”
(“hasQV pCostqpTripq :: Low”) and “the cost of this trip shall be low” (“hasQV pCostqptrip#q ::
Low”) have the same language structure, but refer to different subjects (a set of trips ver-
sus and an individual trip), also different values.

We simplify the function “hasQV ” by treating a quality type QT itself as a mapping
from its subject of type SubjT to a quality value. As such the two “low cost” examples
can be accordingly written as “CostpTripq :: Low” and “Costptrip#q :: Low”, and can be
generalized to the syntactic form “QT pSubjT q :: QRG”, which is equal to the one shown
in Eq. 4.6. There are two points to be noted: (1) we use “Q” instead of “QT” in Eq. 4.6 be-
cause it this more acceptable to the RE community; (2) when the subject is an individual,
e.g., “trip#”, we use curly brackets to indicate a singleton, e.g., “Costpttripuq :: Low”.

1http://jtra.cz/stuff/lisp/sclr/map.html

176 Appendix A. Quality Mapping

Appendix B

Graded Membership

In this chapter, we use a simple example QR “the cost of trip shall be low” to illustrate
the calculation of the graded membership of a specific cost value with regarding to the
desired quality region “low”, using the techniques of “Graded Membership” proposed by
Decock et al. [52].

B.1 Prototype Points

Suppose that the associated quality region “low” of the example QR is represented by
two prototype point values 500e and 700e. Similarly, we can use 800e and 1000e,
and 1200e and 1500e to represent the region “medium” and “high”. Given the three
prototype regions, we will have three sets of prototype points: Setlow � t500, 700u,
Setmedium � t800, 1000u, Sethigh � t1200, 1500u. Since “Cost” has a one-dimensional
structure that is isomorphic to the positive half-line of real numbers, a Voronoi diagram
can be constructed by selecting an element from each set (these elements form a comple-
tion) and calculating the median of each pair of prototype values (a pair of point values
should be in adjacent regions). In this example, we will have 8 completions.

1: {500, 800, 1200}
2: {500, 800, 1500}
3: {700, 800, 1200}
4: {700, 800, 1500}
5: {500, 1000, 1200}
6: {500, 1000, 1500}
7: {700, 1000, 1200}
8: {700, 1000, 1500}

177

178 Appendix B. Graded Membership

Take, for instance, the first completion {500, 800, 1200}, the corresponding diagram
that partition the cost value space will be ((500 + 800) / 2, (800 + 1200) / 2) = (650,
1000). That is, the “low”, “medium” and “high” region will be (0, 650], (650, 1000], and
(1000, 1000+), respectively. The 8 corresponding simple diagrams are listed as follows:

1: 0 ... 650 ... 1000 ...
2: 0 ... 650 ... 1150 ...
3: 0 ... 750 ... 1000 ...
4: 0 ... 750 ... 1150 ...
5: 0 ... 750 ... 1100 ...
6: 0 ... 750 ... 1250 ...
7: 0 ... 850 ... 1100 ...
8: 0 ... 850 ... 1250 ...

Now if we have a cost value 740 e, we will have 6 out of 8 diagrams (the 3rd � 8th

ones) classify it to the region low. Thus, the example QR will be satisfied to a degree of
0.75 in this case.

B.2 Prototype Intervals

Clearly, a prototype region may have infinitely many points. Hence the approach intro-
duced in Section B.1 (with limited points) will not work in this situation. Hence, we
introduce in this section how to calculate graded membership by using intervals (instead
of points) to represent prototype regions.

Let QS be an m-dimensional space (e.g., the cost space is one-dimensional, the RGB
color space is three-dimensional), with R = {r1, ..., rn} being the set of n prototype
regions in QS. By selecting a point pi (denoted as a m-tuple xi1, ..., xim¡, 1 ¤ i ¤ n)
from each region ri, we get a completion, which can be represented as a n�m-tuple x11,
..., x1m, ... xn1, ... , xnm¡. We denote the set of all completions as

±
pRq.

We define QSp,i in Eq. B.1 as the set of completions that determine Voronoi diagrams
which locate a value m-dimensional value p in a prototypical region ri. Note that a
point p is located in the region ri iff dpp, xi1, ..., xim ¡q dpp, xj1, ..., xjm ¡q for all
 xj1, ..., xjm ¡ P rj pi � jq , where d is the distance function.

QSp,i :� tx11, ..., x1m, ...xn1, ..., xnm|dpp, xi1, ..., ximq dpp, xj1, ..., xjmq

@ xj1, ..., xjm ¡ P rj pi � jqu
(B.1)

B.2. Prototype Intervals 179

The membership of a m-dimensional point p in a region ri can be defined as a measure
over a set of completions in terms of the volume occupied by the related set of coordinates
in the space Rn�m. Specifically, it can be calculated using Eq. B.2, in which M is the
membership function, µ is a function that calculates the volume of a set of completions.

MpQSp,iq � µpQSp,iq{µp
¹

pRqq (B.2)

We consider a one-dimensional space (m = 1) and two prototype regions r1 and r2.
Without loss of generality, we assume that the two regions are represented by intervals
[a, b] and [c, d] (a b c d). To determine the graded membership functions for
(concepts that are related to) r1 and r2, we need to look at the space R2 (n = 2, m = 1).
In this space, we have all the completions

±
pRq in the rectangle with vertices A � pa, cq,

B � pa, dq, C � pb, cq, and D � pb, dq, being coordinates x, y ¡ such that x P r1 and
y P r2. To locate a point p in the region r1, we need dpx � pq ¤ dpy � pq to hold, or
equivalently p� x ¤ y � p.

Note that if p � x � y � p, then p coincides with the Voronoi points of the diagram
generated by x, y ¡ P

±
pRq. These set of points form a line defined by p� x � y � p.

Thus the set QSp,ip x, y ¡q consists of all the points in the rectangle ABCD that lie
above this line. In this case,

±
pRq is the area of ABCD and QSp,i is the area of ABCD

that is above the line y � 2p� x. So, we have Eq. B.3.

MpQSp,iq � µpQSp,iq{µp
¹

pRqq

� µpQSp,iq{ppb� aqpd� cqq
(B.3)

Considering different situations b � a d � c, b � a � d � c and b � a ¡ d � c, we
are able to get the membership functions for the region r1 as shown in Eq. B.4a � B.4e,
Eq. B.5a � B.5d, Eq. B.6a � B.6e. Similarly, we can get the membership function for
r2.

Case 1: b� a d� c

$'''''''&
'''''''%

Mr1ppq �1 p pa� cq{2 (B.4a)
1� p2p� a� cq2{2pb� aqpd� cq pa� cq{2 ¤ p ¤ pc� bq{2 (B.4b)
p2d� a� b� 4pq{2pd� cq pc� bq{2 ¤ p ¤ pa� dq{2 (B.4c)
pb� d� 2pq2{2pb� aqpd� cq pa� dq{2 ¤ p ¤ pb� dq{2 (B.4d)
0 p ¡ pb� dq{2 (B.4e)

180 Appendix B. Graded Membership

Case 2: b� a � d� c

$''''&
''''%

Mr1ppq �1 p pa� cq{2 (B.5a)
1� p2p� a� cq2{2pb� aqpd� cq pa� cq{2 ¤ p ¤ pc� bq{2 (B.5b)
pb� d� 2pq2{2pb� aqpd� cq pa� dq{2 ¤ p ¤ pb� dq{2 (B.5c)
0 p ¡ pb� dq{2 (B.5d)

Case 3: b� a ¡ d� c

$'''''''&
'''''''%

Mr1ppq �1 p ppa� dqq{2 (B.6a)
1� p2p� a� cq2{2pb� apd� cq pa� cq{2 ¤ p ¤ pa� dq{2 (B.6b)
p2b� c� d� 4pq{2pb� aq pa� dq{2 ¤ p ¤ pc� bq{2 (B.6c)
pb� d� 2pq2{2pb� aqpd� cq pc� bq{2 ¤ p ¤ ppb� dqq{2 (B.6d)
0 p ¡ pb� dq{2 (B.6e)

Note that in a one-dimensional space with more than two prototype regions, the part
of the graded membership function that classify points to one side of a prototype region
depends on only that region and the adjacent one that lies in the same side. In such
situation, we only need to apply the above method to each pair of adjacent prototype
regions and then simply collate the obtained partial functions. For example, suppose that
there is a region additional r3. To get the membership function for r2, we will need to
consider the pair of r1 and r2, and r2 and r3. Once we get the two partial membership
functions for r2 separately, we could simply collate them to get the final one.

Now come back to our example, the cost space is one-dimensional (m = 1), and we
have n = 3 prototype regions “low”, “medium” and “high”. Suppose that the three regions
are represented by interval [500e, 700e], [800e, 1000e] and [1200e, 1500e], respectively.
By following the above introduced approach, we are able to get the membership function
for “low”, “medium”, and “high” as Eq. B.7a � B.7d, Eq. B.8a � B.8h, and Eq. B.9a
� B.9e , which are depicted in Fig. B.1. Given a cost value 740e, we can obtain its
membership: Mlow(740) = 0.595, and Mmedium(740) = 0.405.

$''''&
''''%

Mlowpcq �1 c 650 (B.7a)
1� p2c� 1300q2{80000 650 ¤ c ¤ 750 (B.7b)
p1700� 2cq2{80000 750 ¤ c ¤ 850 (B.7c)
0 c ¡ 850 (B.7d)

B.2. Prototype Intervals 181

$'''''''''''''''&
'''''''''''''''%

Mmediumpcq �0 c 650 (B.8a)
p2c� 1300q2{80000 650 ¤ c ¤ 750 (B.8b)
1� p1700� 2cq2{80000 750 ¤ c ¤ 850 (B.8c)
1 850 ¤ c ¤ 1000 (B.8d)
1� pc� 1000q2{30000 1000 ¤ c ¤ 1100 (B.8e)
8� c{150 1100 ¤ c ¤ 1150 (B.8f)
p2500� 2cq2{120000 1150 ¤ c ¤ 1250 (B.8g)
0 c ¡ 1250 (B.8h)

$'''''''&
'''''''%

Mhighpcq �0 c 1000 (B.9a)
pc� 1000q2{30000 1000 ¤ c ¤ 1100 (B.9b)
c{150� 7 1100 ¤ c ¤ 1150 (B.9c)
1� p2500� 2cq2{120000 1150 ¤ c ¤ 1250 (B.9d)
1 c ¡ 1250 (B.9e)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

low

Cost

M
(C

o
s
t)

medium high

Figure B.1: The graded membership functions for Low, Medium and High

182 Appendix B. Graded Membership

So far, we have discussed about one-dimensional conceptual space, like the ones for
length, weight, processing time, and availability. For multi-dimensional spaces (e.g., the
three-dimensional color space, the six-dimensional usability space), we need to first decom-
pose the multi-dimensional spaces into single-dimensional spaces (e.g., refining “Usability”
to its sub-qualities such as “Learnability”, “Operability”, which has a one-dimensional s-
pace such as “learning time” and “operation time”; if not, we can keep refining it), and
then use some mathematic rules (e.g., maximum, minimum, average, and others) for
propagating up the degree of fulfillment.

Appendix C

The Desiree Syntax

Table C.1: The BNF style Desiree syntax
Desiree Syntax

Descriptions:
(01) SlotD Ñ ‘ ’ Slot ‘:’ [(SOME | [¤ | ¥ | �] n)] Description ‘¡’ | SlotD SlotD
(02) Description Ñ Concept | Val | RegionExpr | DataType
(03) Concept Ñ ConceptName | SlotD | Concept ‘.’ Slot | Concept Concept | Concept

‘_’ Concept | Concept ‘�’ Concept | ‘{’ ElemId1 ... ‘}’
(04) RegionExpr Ñ RegionName | ‘[’ Bound ‘,’ Bound ‘]’ | ‘{’ V al1, ... ‘}’
(05) Bound Ñ IntVal | RealVal | MathExpression
(06) MathExpression Ñ ‘count’ ‘(’ Concept ‘)’ | ...
(07) DataType Ñ Integer | String | List | ...
Requirements:
(08) Req Ñ Goal | FG | QG | CTG
(09) Goal Ñ ‘Goal’ Concept
(10) FG Ñ Concept ‘: ’ Concept
(11) QG Ñ QualityName ‘(’ Concept ‘)’ ‘::’ RegionExpr
(12) CTG Ñ Concept ‘: ’ SlotD
Specifications:
(13) Spec Ñ Function | FC | QC | SC
(14) Function Ñ ‘Func’ Concept
(15) FC Ñ Concept ‘: ’ Concept
(16) QC Ñ QG [‘ observed by:’ Concept ‘¡’]
(17) SC Ñ Concept ‘: ’ SlotD
Domain Assumptions:
(18) DA Ñ Concept ‘: ’ Concept

1: “[]” means optional, “|” means alternatives.

183

184 Appendix C. The Desiree Syntax

Appendix D

The Semantics of the U operator

In this chapter, we use a set of QGCs to illustrate the semantics of combined U and
Ob (e.g., “60% of the observers shall agree that the search function is fast at 80% of the
time”), and nested U (e.g., “90% of the system functions shall be fast at 80% of the
time”). We use a formula “AXi” to specify the semantics of “QGCi” (0 ¤ i ¤ 9).

QG0 :� Response pSearchFnRunsq :: Fast
AX0 � @r{SearchFnRuns.@q{Response.pinheres inpq, rq

Ñ has value inpq, Fastqq

(D.1)

QG0 :� Response pSearchFnRunsq :: Fast
QG1 :� U p?X,QG0, inheres in :: ?X ¡, 80%q
AX1 � D?X{℘pSearchFnRunsq.p|?X|{|SearchFnRuns| ¡ 0.8

^ @r{?X.@q{Response.pinheres inpq, rq
Ñ has value inpq, Fastqqq

(D.2)

QG0 :� Response pSearchFnRunsq :: Fast
QG2 :� O pQG0, observed by :: Surveyed user ¡q
AX2 � @o{Surveyed user.@r{SearchFnRuns.

@q{Response.observed bypq, oq ^ rinheres inpq, rq

Ñ has value inpq, Fastqs

(D.3)

185

186 Appendix D. The Semantics of the U operator

QG0 :� Response pSearchFnRunsq :: Fast
QG1 :� U p?X,QG0, inheres in :: ?X ¡, 80%q
QG3 :� O pQG1, observed by :: Surveyed user ¡q
AX3 � @o{Surveyed user.D?X{℘pSearchFnRunsq.

r|?X|{|SearchFnRuns| ¡ 0.8^ @r{?X.@q{Response.
observed bypq, oq ^ pinheres inpq, rq

Ñ has value inpq, Fastqqs

(D.4)

QG0 :� Response pSearchFnRunsq :: Fast
QG1 :� U p?X,QG0, inheres in :: ?X ¡, 80%q
QG3 :� O pQG1, observed by :: Surveyed user ¡q
QG4 :� U p?O,QG3, observed by :: ?O ¡, 60%q
AX4 � D?O{℘pSurveyed userq.

r|?O|{|Surveyed user| ¡ 0.6
^ @o{?O.D?X{℘pSearchFnRunsq.
r|?X|{|SearchFnRuns| ¡ 0.8
^ @r{?X.@q{Response.observed bypq, oq
^ pinheres inpq, rq Ñ has value inpq, Fastqqss

(D.5)

QG5 :� Response pRuns run of :: SystemFns ¡q :: Fast
FoopT q � rλb.pRunspbq ^ Dc.run ofpb, cq ^ T pcqqs

AX5 � @r{FoopSystemFnsq.

@q{Response.inheres inpq, rq

Ñ has value inpq, Fastq

� @r{rλb.pRunspbq ^ Dc.run ofpb, cq ^ SystemFnspcqqs.

@q{Response.inheres inpq, rq

Ñ has value inpq, Fastq

� @r.pRunsprq ^ Dc.run ofpr, cq ^ SystemFnspcqq

Ñ r@q.Responsepqq.pinheres inpq, rq

Ñ has value inpq, Fastqqs

(D.6)

187

QG5 :� Response pRuns run of :: SystemFns ¡q :: Fast

QG6 :� U p?F,QG5, inheres in :: run of :: ?F ¡¡, 80%q

QG7 :� U p?Y,QG6, inheres in :: ?Y ¡, 90%q

AX6 � D?F {℘pSystemFnsq.|?F |{|SystemFns| ¡ 0.8^ @r{Foop?F q.

@q{Response.inheres inpq, rq Ñ has value inpq, Fastq

� D?F {℘pSystemFnsq.|?F |{|SystemFns| ¡ 0.8^

@r.pRunsprq ^ Dc.run ofpr, cq^?F pcqq

Ñ r@q{Response.inheres inpq, rq Ñ has value inpq, Fastqs

AX7 � D?F {℘pSystemFnsq.r|?F |{|SystemFns| ¡ 0.8^ @?f{?F.

D?Y {℘pFoopt?fuq.r|?Y |{|Foopt?fuq| ¡ 0.9

^ @r{?Y.@q{Response.inheres inpq, rq Ñ has value inpq, Fastqss

� D?F {℘pSystemFnsq.r|?F |{|SystemFns| ¡ 0.8^ @?f{?F.

D?Y {℘pλb.pRunspbq ^ Dc.run ofpb, cq ^ t?fupcqq.r|?Y |{|Foopt?fuq| ¡ 0.9

^ @r{Y.@q{Response.inheres inpq, rq Ñ has value inpq, Fastqss

� D?F {℘pSystemFnsq.r|?F |{|SystemFns| ¡ 0.8^ @?f{?F.

D?Y {℘pλb.pRunspbq ^ Dc.run ofpb, cq^?f � cq.

r|?Y |{|tb|pRunspbq ^ Dc.run ofpb, cq^?f � cqu| ¡ 0.9

^ @r{Y.@q{Response.inheres inpq, rq Ñ has value inpq, Fastqs

� D?F {℘pSystemFnsq.r|?F |{|SystemFns| ¡ 0.8^ @?f{?F.

D?Y.r@y.p?Y pyq Ñ pRunspyq ^ run ofpy, ?fqqq

^ r|?Y |{|tb|pRunspbq ^ run ofpb, ?fqqu| ¡ 0.9

^ @r{Y.@q{Response.inheres inpq, rq Ñ has value inpq, Fastqss

(D.7)

QG5 :� Response pRuns run of :: SystemFns ¡q :: Fast
QG8 :� U p?Y,QG5, inheres in :: ?Y ¡, 90%q
QG9 :� U p?F,QG8, inheres in :: run of :: ?F ¡¡, 80%q
AX8 � D?Y {℘pFoopSystemFnsqq.|?Y |{|FoopSystemFnsq| ¡ 0.9

^ @r{?Y.@q{Response.inheres inpq, rq Ñ has value inpq, Fastqs

AX9 � D?F {℘pSystemFnsq.r|?F |{|SystemFns| ¡ .8^ @?f{?F.
D?Y {℘pFoopt?fuqq.r|?Y |{|Foopt?fuq| ¡ 0.9
^ @r{?Y.@q{Response.inheres inpq, rq Ñ has value inpq, Fastqss

(D.8)

188 Appendix D. The Semantics of the U operator

Appendix E

Detailed Requirements Issues

E.1 Meeting Scheduler

In this section, we show the requirements that are chosen from the Meeting Scheduler
project and used for our controlled experiments, as well as the requirements issues (both
statistics and details) in them.

E.1.1 Project Background

The Meeting Scheduler (MS) system is designed for university research groups to schedule
meetings. In general, this system shall be able to create meeting entries, send meeting
notifications to students and teachers in a research group. The system shall be also able
to manage meeting room information. In addition, there is also a set of non-functional
needs, such as usability, performance and interoperability.

• Meeting Notification: a notification message that tells people a meeting is hap-
pening, without requiring their feedback or response.

E.1.2 The Chosen Stakeholder Requirements

We have chosen a set of 11 stakeholder requirements, which cover some typical function-
alities and qualities (e.g., search, usability), from the Meeting Scheduler project. We have
used 10/11, 10/11, 8/11 of the requirements (indicated by “Y” in Table E.1) in experiment
one, two, three, respectively.

1. The product shall be able to manage meeting room records;

189

190 Appendix E. Detailed Requirements Issues

2. The product shall allow for intuitive searching of conference rooms;

3. The product shall be able to provide the search results of meeting rooms in an ac-
ceptable time;

4. The product shall be able to send meeting notifications via different kinds of methods;

5. The product will allow privileged users to view meeting schedules in multiple report-
ing views;

6. The product shall work on a web server on multiple operating system;

7. The product shall have good interoperability;

8. The product shall have good usability;

9. The product shall use standard buttons for navigation;

10. The system shall be easy to maintain;

11. The product shall display meeting rooms according to search parameters.

E.1.3 Issues in the Chosen Requirements

We present the statistics and details of requirements issues in these chosen requirements
in Table E.1 and Table E.2, respectively.

Table E.1: Number of requirements issues in the Meeting Scheduler project
ID EX-1 EX-2 EX-3 Incomplete Ambiguous Inconsistent Unverifiable Unmodifiable Unsatisfiable Sum

Req.1 Y Y Y 4 - - - 1 - 5
Req.2 Y Y Y 2 1 1 1 1 1 7
Req.3 Y Y Y 4 - 1 1 - 1 7
Req.4 Y Y Y 6 1 - 1 1 - 9
Req.5 N Y N 2 1 - 1 - - 4
Req.6 Y Y Y 2 1 - 1 - - 4
Req.7 Y Y N 1 - - 2 - - 3
Req.8 Y Y Y 2 - - 2 - 1 5
Req.9 Y Y Y 3 1 - 1 1 - 6
Req.10 Y Y Y 3 - 1 1 - 1 6
Req.11 Y N N 1 - - 1 - - 2
Sum 10 10 8 30 5 3 12 4 4 58

1: EX-1: experiment one; EX-2: experiment two; EX-3: experiment three;
2: We have used 10/11, 10/11, 8/11 of the requirements (indicated by “Y”) in experiment one, two, three, respectively;

E.1. Meeting Scheduler 191

Table E.2: Detailed requirements issues in the Meeting Scheduler project

—General Questions—

ID In-Use Issues Stakeholder Answers

Q.1 — “the system” vs. “the product” (Inconsistent) Yes, they are

Q.2 — “meeting room” vs. “conference room” (Inconsis-
tent)

Yes, they are

Q.3 — “search results of meeting room” vs. “search re-
sults of meeting room information” (Inconsistent)

Yes, they are

Q.4 — What shall be included for a user profile? (In-
complete Collection)

A user profile shall include: Id, name, gender, role, e-
mail, and phone.

Q.4.1 — Are all of these attributes mandatory? Yes, all these attributes are required

Q.5 — What is the user of the system? (Incomplete Col-
lection)

Secretaries, Teachers, Students (normal students and
authorized students)

Q.5.1 — What is the responsibility of secretary? manage meeting room records

Q.5.2 — What is the responsibility of teacher? create meetings, invite for participants

Q.5.3 — What is the responsibility of authorized students? create meetings, invite for participants

Q.5.4 — What is the responsibility of normal students? receive meeting notifications

Q.6 — Who are surveyed users? Surveyed secretaries, teachers and students

Q.6.1 — The user that will do this usability test what kind
of background will have?

We assume that surveyed users are university secre-
taries, teachers and students.

—Req.1: The product shall be able to manage meeting room records;—

Q.1 YYY Who can manage? (Incomplete Individual) Secretaries

Q.2 YYY Who do you mean by “Manage”? (Incomplete
Abstract)

Add, update and delete meeting room records

Q.3 YYY What information shall a meeting room record
include? (Incomplete Collection)

Meeting room record shall include: room number, room
type, room location, room capacity, busy period (date
and time), and room equipment.

Q.4 YYY Busy period (Incomplete Collection) Data and time

Q.5 YYY Shall we separate add, update and delete? (Un-
modifiable)

Yes, they should be separated: the system shall add ...;
the system shall update ...; the system shall delete.

—Req.2: The product shall allow for intuitive searching of conference rooms;—

Q.1 YYY Who can search? (Individual Incompleteness) Meeting organizers (authorized students and teachers)

Q.1.1 — Does teacher needs to be authorized? No, no need

Q.2 YYY What are the search parameters? (Individual In-
completeness)

I want to search by room type, by room capacity, by
date and time

Q.3 NYY Can these parameters be combined? (Ambigu-
ous)

Yes, they should be combined: room type + date and
time; room capacity + date and time

Q.R — What information will be included in a meeting
room record? (Incomplete Collection)

See Q.3 in Req.1

Q.4 NYY Is “conference room” the same with “meeting
room”? (Inconsistent Term)

Yes, use “meeting room”

Q.R — What will be searched on? (Inconsistent Term) Meeting room records (Q.3 in Req.3)

Q.5.3 — Search on a list of meeting room records? Yes, a list of meeting room records, not a single one

192 Appendix E. Detailed Requirements Issues

Table E.2: Detailed requirements issues in the Meeting Scheduler project

Q.5 YYY How to measure “intuitive”? (Unverifiable) Surveyed users in a usability test agree thatthe repre-
sentation (UI design) of the search function are familiar
to them

Q.5.1 — What will be included in the representation? Search box, search field, and search button,

Q.5.2 — How to decide familiar or not? Do not need to worry about this. A respondent will
make his/her own judgment.

Q.6 YYY Do you mean all surveyed users? (Unsatisfiable) 80% of the surveyed users in a usability test

Q.7 NYY Search vs. the search shall be intuitive (Unmodi-
fiable)

Yes, separate them

—Req.3: The product shall be able to provide the search results of meeting rooms in an acceptable time;—

Q.1 YYY Acceptable is Unverifiable (Unverifiable) Less than 30 seconds.

Q.1.1 — Including 30 seconds? Yes, inclusive

Q.2 YYY Do you mean all the search executions? (Unsat-
isfiable)

90% of the search executions

Q.2.1 — Is it the average time? No, I mean 90% the time

Q.3 YYY Search results of meeting room or meeting room
information ? (Inconsistent Term)

Meeting room records.

Q.4 NYY What are the search results? (Incomplete Ab-
stract)

A set of meeting room records retrieved according to
certain search conditions.

Q.4.1 — Will you show the whole meeting room record or
some of the attributes? What will be displayed?

Display a sub set of attributes (we call them “meeting
room items”):room number, room type, room location,
and room capacity.

Q.5 YYY How to display the search results (Incomplete In-
dividual)

Display them in a table, each meeting room item in a
row

Q.6 NYY What shall be included for a user profile? (In-
complete Collection)

A user profile shall include: Id, name, gender, role, e-
mail, and phone.

Q.6.1 — Are all of these attributes mandatory? Yes, all these attributes are required

Q.7 NNY What is the user of the system? (Incomplete Col-
lection)

Secretaries, Teachers, Students (normal students and
authorized students)

—Req.4: The product shall be able to send meeting notifications via different kinds of methods;—

Q.1 YNY Who do you mean by “different”? (Unverifiable) 2 methods, SMS (Short Messaging Service) and Email;

Q.2 NYY Send notification via Email and SMS at the same
time? (Ambiguous)

No, separately.

Q.3 YYY Should the two methods be separated? (Unmod-
ifiable)

Yes.

Q.4 YYY Who can send meeting notification?(Incomplete
Individual)

Meeting organizer (authorized students and teachers)

Q.4.1 — Does teacher needs to be authorized? No, no need

Q.4.2 — Need to send reminder? When to send reminder? No need to send.

Q.5 YYY Who will receive meeting notification? (Incom-
plete Individual)

Meeting participants: team members, including stu-
dents and teachers

Q.5.1 — Can a meeting organizer send notification to
him/her?

Yes, he/she can, because he/she is a team member

E.1. Meeting Scheduler 193

Table E.2: Detailed requirements issues in the Meeting Scheduler project

Q.6 YYY Send to how many participants at a time? (In-
complete individual)

a set, at least 2,

Q.6.1 — At most? At most 1000

Q.7 NNY When to send? (Incomplete individual) After the meeting has been created

Q.8 YYY What information shall meeting notification in-
clude? (Incomplete collection)

Meeting notification shall include: meeting title, meet-
ing time (including data and time), and meeting loca-
tion.

Q.9 YYY Meeting time? (Incompleteness Collection) Data and time

—Req.5: The product will allow privileged users to view meeting schedules in multiple reporting views;—

Q.1 NYN Who are privileged users? (Incomplete Abstract) Authorized students and teachers

Q.1.1 — Does teacher needs to be authorized? No, no need

Q.2 NYN What are meeting schedules? What shall a meet-
ing schedule include? (Incomplete Collection)

It is a summary of meeting, it includes: meeting title,
meeting time, and location.

Q.3 NYN What do you mean by “multiple reporting view”?
(Unverifiable)

Calendar View and List View

Q.4 NYN View at the same time or not? (Ambiguity) No, separately

—Req.6: The product shall work on a web server on multiple operating system;—

Q.1 YYY What kind of web server? (Incomplete Abstract) Tomcat

Q.1.1 — Is the web server in house or rented? Rented

Q.2 YYY What do you mean by multiple? What specific
operating systems are you referring to? (Unveri-
fiable)

Windows XP, Windows 7, Ubuntu 15 04,
Mac OSX 10 8, Mac OSX 10 9, Mac OSX 10 10

Q.3 YYY Is it ambiguous? (Ambiguous) The product shall be able to run on a web server that
can run on the operating systems listed above

Q.4 YYY What does “work on” mean? (IncompleteAb-
stract)

Run on

—Req.7: The product shall have good interoperability;—

Q.1 YYN What do you mean by “good interoperability”?
(Unverifiable)

I mean two aspects: (1) The product shall be accessible
from different kinds of browsers; (2); as I stated in the
requirement that talks about “web server”.

Q.2 YYN What do you mean different kinds of browsers?
(Unverifiable)

At least the following kinds: Chrome 40 0,
Chrome 41 0, Chrome 42 0, Firefox 35 0, Firefox 36 0,
Firefox 37 0, Safari 8 0.

Q.3 NNN Browsers on which kind of OS? Desktop or mo-
bile? (Incomplete Individual)

Desktop and Mobile.

—Req.8: The product shall have good usability;—

Q.1 YYY Good usability is Unverifiable (Unverifiable) It is easy to learn for users ;

Q.2 NNY Easy to learn for what kind of users? (Incomplete
Abstract)

Meeting organizers (authorized students and teachers).

Q.2.1 — Does teacher needs to be authorized? No, no need

194 Appendix E. Detailed Requirements Issues

Table E.2: Detailed requirements issues in the Meeting Scheduler project

Q.3 YYY What do you mean by easy to learn? (Unverifi-
able)

Users in a beta test shall be able to successfully create
meeting entries within 10 minutes of learning;

Q.4 YYY Do you mean all users? (Unsatisfiable) 90% of users in a beta test

Q.5 YYY What information shall meeting entries include
(Incomplete collection)?

It shall include meeting title, meeting time, meeting
place, and a description

—Req.9: The product shall use standard buttons for navigation;—

Q.1 YYY What is standard? (Unverifiable) Standard style: dimension (length 30 pixels; width: 15
pixels) and color (grey background and black font).

Q.2 YYY Should all the buttons be standard or some of
them be standard (Ambiguous)?

All buttons shall be standard;

Q.3 YYY Navigating whom? (Incomplete Individual) Users shall be navigated; or navigate users; meeting or-
ganizers or creators

Q.4 YYY What kind of navigation? (Incomplete Individu-
al)

Back and forth

Q.5 NNY Is there a navigation requirement (Incomplete
Collection)

Yes, “the system shall be able to navigate users”

Q.6 YYY Should it be separated? (Unmodifiable) Yes

—Req.10: The system shall be easy to maintain;—

Q.1 NYY What do you mean by maintain? (Incomplete) Adding new features to the product.

Q.2 NYY For whom? (Incomplete Individual) Software maintainers

Q.3 YYY Easy is Unverifiable (Unverifiable) software maintainers are able to add new features into
the product within 2 working days

Q.4 YYY Do you mean all the software maintainers? (Un-
satisfiable)

No, I mean 90% of software maintainers are able to do
so

Q.5 NYY How to achieve good maintainability? (Incom-
plete Collection)

The product be designed using Design Patterns.

Q.5.1 — Which design patterns? MVC

Q.6 NNY Does “the system” and “the product” refer to the
same thing? (Inconsistent)

Yes, use “the product” for consistency

—Req.11: The product shall display meeting rooms according to search parameters;—

Q.1 YNN Display meeting room items, not meeting rooms,
or meeting room detailed informaiton (Inconsis-
tent Term)

Meeting room items (See Q.4.1 in Req.3)

Q.R — What are the search parameter? See Q.3 in Req.2

Q.R — Who can search? See Q.1 in Req.2

Q.R — Display a list of meeting room items? not a single
one?

See Q.5 in Req.3

Q.2 YNN What shall be included in meeing room item? (In-
complete Collection)

Id, name, type, capacity, location

1: The In-Use column is used to represent the experiments that an issue (question) was counted in. For example, a value of “NYY”
indicates that an issue was counted in experiment two and three, but not in experiment one. In addition, a value of “—” indicates
that an issue was not counted as a requirement issue.
2: The “Q.R” symbol indicates a repeated question.

E.2. Realtor Buddy 195

E.2 Realtor Buddy

In this section, we show the requirements that are chosen from the Realtor Buddy project
and used for our controlled experiments, as well as the requirements issues (both statistics
and details) in them.

E.2.1 Project Background

The Realtor Buddy (RB) project is an application designed for helping real estate agents
to sell properties. In general, the system shall allow the agent to manage property listing
information in the multiple list service (MLS). There are also requirements on the non-
functional aspects, such as look and feel, performance, and usability.

• Real Estate Agent: a real estate agent is a person who acts as an intermediary
between sellers and buyers of real estate/real property and attempts to find sellers
who wish to sell and buyers who wish to buy.

• Multiple Listing Service (MLS): a MLS is a suite of services that enables real
estate brokers to establish contractual offers of compensation (among brokers), fa-
cilitate cooperation with other broker participants, and is a facility for the orderly
correlation and dissemination of property/asset listing information to better serve
real estate broker’s clients, customers and the public.

• Comparative Market Analysis (CMA): a CMA report is an estimate of your
homeŠs value done by your real estate bro-ker to establish a listing/offer price when
you decide that you want to sell or buy a home or property. This service is always
offered free of charge and without obligation. A CMA should only be used as a
reference for deciding at what price you should list or buy your home for.

• Property Listing: a record of a property for lease or sale by an authorized real
estate broker.

E.2.2 The Chosen Stakeholder Requirements

We have chosen a set of 10 typical stakeholder requirements from the Realtor Buddy
project. We have used 10/10, 10/10, 8/10 of the requirements (indicated by “Y” in
Table E.3) in experiment one, two, three, respectively.

1. The system shall update or create new property listings in the MLS (Multiple Listing
Service);

196 Appendix E. Detailed Requirements Issues

2. The system shall allow a real estate agent to query MLS information;

3. The system shall display clear property images in the search results;

4. The product shall generate a CMA (Comparative Market Analysis) report in an
acceptable time;

5. The user shall be able to download appointments and contact information for clients;

6. The user interface shall have standard menus and buttons for navigation;

7. The product shall have high availability;

8. The system shall have a professional appearance;

9. The system shall have good usability;

10. The system shall be self-explanatory;

E.2.3 Issues in the Chosen Requirements

We present the statistics and details of requirements issues in these chosen requirements
in Table E.3 and Table E.4, respectively.

Table E.3: Number of requirements issues in the Realtor Buddy project
ID EX-1 EX-2 EX-3 Incomplete Ambiguous Inconsistent Unverifiable Unmodifiable Unsatisfiable Sum

Req.1 Y Y Y 7 1 - - 1 - 9
Req.2 Y Y Y 4 1 3 - - - 8
Req.3 Y Y Y 5 1 1 1 1 1 10
Req.4 Y Y Y 5 - - 1 1 1 8
Req.5 Y Y N 4 2 - - 1 - 7
Req.6 Y Y Y 3 2 - 1 1 - 7
Req.7 Y Y Y 1 - - 1 - 1 3
Req.8 Y Y N 1 - - 1 - 1 3
Req.9 Y Y Y 1 - - 2 - 1 4
Req.10 Y Y Y - - - 1 - 1 2
Sum 10 10 8 31 7 4 8 5 6 61

1: EX-1: experiment one; EX-2: experiment two; EX-3: experiment three;
2: We have used 10/10, 10/10, 8/10 of the requirements (indicated by “Y”) in experiment one, two, three, respectively;

Table E.4: Detailed requirements issues in the Realtor Buddy project

E.2. Realtor Buddy 197

Table E.4: Detailed requirements issues in the Realtor Buddy project

—General Questions—

ID Issues Stakeholder Answers

Q.R — Are “the system” and “the product” the same
thing? (Inconsistent Term)

Yes, they are

Q.R — Are “real estate agent”, “realtor”, “real estate a-
gency” and “real estate broker” the same concept?
(Inconsistent Term)

Yes, they are.

Q.R — “Query” vs. “Search” Yes, they are.

Q.4 — What is the query about? MLS information vs.
Property listing information

Yes, they are.

Q.5 — What is the user of the system? Realtors. The system is designed for relators, not for
internet users.

Q.6 — Who are clients? People who want to sell or buy homes; clients do not
directly use the system.

Q.7 — Who are surveyed users? We assume that surveyed users are from the real estate
industry (with at least 3 months experiences).

Q.R — What shall be included for a user profile? (In-
complete Collection)

A user profile shall include: Id, name, gender, role, e-
mail, and phone number.

Q.R.1 — All of the attributes mandatory? Yes, all these attributes are required

—Req.1: The system shall update or create new property listings in the MLS (Multiple Listing Service);—

Q.1 YYY Update what? New property listings? (Incom-
plete Individual)

Update property listings.

Q.2 YYY Who can update/create? (Incomplete Individual) Realtors

Q.3 NNY Can a real estate agent update othersŠ property
listing records? (Incomplete Individual)

No, he/she cannot update othersŠ records; he/she can
only update his/her property listing records.

Q.4 YYY What information shall property listing in-
cludes?(Incomplete Collection)

Property listing information shall include location, list-
ing price, property image, description, and property
specification.

Q.5 YYY What is the currency for listing price? (Incom-
plete Collection)

Euro; Float (two digitals)

Q.6 NYY What is the format of property image? (Incom-
plete Collection)

JPEG; width: 2”, length: 3”

Q.7 NNY Delete property listing info? (Incomplete Collec-
tion)

No, just give a mark if sold

Q.8 NYY Shall the two methods be supported or only one
of them? (Ambiguous)

Both of them shall be supported by the system

Q.9 YYY Should be separated? (Unmodifiable) Yes, it should be two requirements: update existing
property listings, create new property listing.

—Req.2: The system shall allow a real estate agent to query MLS information;—

Q.1 YYY What are the query parameters? What kind of
queries? (Incomplete Individual)

The query parameters:location and price

Q.2 NNY Should the two parameters be separated or com-
bined? (Ambiguous)

Query by location, query by price, query by location
and price

198 Appendix E. Detailed Requirements Issues

Table E.4: Detailed requirements issues in the Realtor Buddy project

Q.3 NYY Can anyone else query MLS information? Only
realtors? (Incomplete Collection)

No, only real estate agents

Q.4 NNY Can a real estate agent query MLS information
inserted by other agents? (Incomplete Individual)

Yes, he/she can search all the property listing info in
the MLS

Q.R — Do we need to delete a record when it has been
sold out?

No deletion, just a marking “Sold” (see Q.7 in Req.1)

Q.5 YYY What is the query about? Or what is MLS infor-
mation? (Inconsistent Term)

Hmm, it is property listing information.

Q.5.1 — What exactly does query mean? Retrieve the information according to parameters and
display them in a list

Q.6 YYY Are “real estate agent” and “realtor” the same
concept? What is a “real estate agent”? What is
real? (Inconsistent)

Yes, they are.

Q.R — What information shall a property listing in-
cludes? (Incomplete Collection)

See Q.4 in Req.1

Q.7 YYY Are “the system” and “the product” the same
thing? (Inconsistent Term)

Yes, they are the same thing.

Q.8 NYY User profile (user information) (Incomplete Col-
lection)

A user profile shall include id, name, user role, email,
phone number

—Req.3: The system shall display clear property images in the search results;—

Q.1 YYY What is “clear”? (Unverifiable) ¡� 300 dpi (dot per inch), i.e., ¡� 300 pixels per inch

Q.2 NYY What are search results? (Incomplete Abstract) A set of property listings retrieved according to certain
search parameters.

Q.3 NNY How to display the search results? (Incomplete
Collection)

Display the retrieved property listings in a list, each
property listing in a row.

Q.3.1 — Display all the attributes of a property listing? A sub set of attributes (we call them “property listing
itemsŠŠ): property location, listing price, property im-
age, and description

Q.4 NYY Eachproperty listing shall have an image or some
of them shall have an image? How many images
(Incomplete individuals)?

In the search result, it is better for eachproperty listing
to have an image, but it is possible that a property
listing does not have an image.

Q.4.1 — Does a property have how many images? A property listing can have more than one image, but
we only show one of them in the search results. To see
all the images, you need to click “view details”.

Q.5 NNY Which format of the image?(Incomplete Individ-
ual)

JPEG.

Q.6 YNY What is the size of the image?(Incomplete Indi-
vidual)

width: 2”, length: 3”

Q.6.1 — How long is an inch? 1 inch = 2.54 centimeter

Q.7 YYY Shall each image be clear (Ambiguous) Yes, each images shown in the search result shall be
clear

Q.8 NNY “Query” vs. “Search” Yes, they are.

Q.9 NYY display image; displayed image shall be clear.
(Unmodifiable)

Yes, they need to be separated

Q.10 YYN Shall all users agree that images are clear? (Un-
satisfiable)

90%

E.2. Realtor Buddy 199

Table E.4: Detailed requirements issues in the Realtor Buddy project

—Req.4: The product shall generate a CMA (Comparative Market Analysis) report in an acceptable time;—

Q.1 YYY How long is acceptable to you? (Unverifiable) Less than 30 seconds .

Q.1.1 — Including 30 seconds? Yes, including 30, � 30 seconds.

Q.2 YYY Is 31 seconds OK? I mean, how about if some-
times it takes 31 seconds? Or is “30 seconds” an
average time? (Unsatisfiable)

 � 30 seconds 90% of the time.

Q.3 YYY What should a CMA report include? (Incomplete
collection)

In general, a CMA report shall include Id, location, and
listing price

Q.3.1 — What is a CMA report? Please refer to the domain description document.

Q.4 YYY Which format? (Incomplete individual) PDF.

Q.5 NYY In which style? (Incomplete individual) “key: value” pairs

Q.6 NNY Generate a CMA report at a time or a set of CMA
reports at a time? (Incomplete Individual)

Generate one CMA report at a time

Q.7 NNY Who can generate? Realtors

Q.8 YYY Should I separate the requirement into two? (Un-
modifiable)

Yes, there are two requirements: “the system shall gen-
erate CMA report”, “the generation function shall take
less than 30 seconds”.

—Req.5:The user shall be able to download appointments and contact information for clients;—

Q.1 YYN What is “user”? (Incomplete Abstract) Realtors.

Q.2 YYN Download contact for the sake of client or down-
load client contact?(Ambiguous)

Download client contact information.

Q.2.1 — Who are clients? People who want to buy or sell homes.

Q.3 NYN Download appointments and contact information
at the same time?(Ambiguous)

No, download them separately.

Q.4 YYN What kind of contact information? What shall
be included in contact information?(Incomplete
Collection)

Name, Email, and Phone number.

Q.5 YYN What information shall be included in an appoint-
ment?(Incomplete Collection)

It shall include appointment time, appointment place,
and the names of participants.

Q.6 YYN Which format? (Incomplete Individual) PDF, for both.

Q.7 YYN Should it be separated into two require-
ments?(Unmodifiable)

Yes, it should be two requirements: “download appoint-
ments”, and “download client contact information”

—Req.6: The user interface shall have standard menus and buttons for navigation;—

Q.1 YYY What do you mean by standard? (Unverifiable) Standard style: dimension (length 30 pixels; width: 15
pixels) and color (grey background and black font).

Q.2 YYY Should buttons be standard? (Ambiguous) Yes, use the same dimension for both menus and buttons

Q.3 YYY Should all menus be standard or some of them?
(Ambiguous)

All of the menus shall be standard

Q.3.1 — Should all buttons be standard or some of them?
(Ambiguous)

All of the buttons shall be standard

200 Appendix E. Detailed Requirements Issues

Table E.4: Detailed requirements issues in the Realtor Buddy project

Q.4 NYY Is there a navigation requirement? Or shall I sep-
arate “navigation” from “using menus and but-
tons”? (Unmodifiable) (Incomplete Collection)

Yes, the system shall be able to navigate users by using
standard menus and buttons.

Q.5 NYY Navigation whom? (Incomplete Individual) Navigate realtors

Q.6 YYY What kind of navigation? (Incomplete Individu-
al)

Back and forth navigation

Q.7 YYY Shall menus and buttons be separated? (Unmod-
ifiable)

Yes

Q.7.1 — What is the standard color for menus? Gray background and black font

Q.7.2 — What is the standard color for buttons? Gray background and black font

Q.7.3 — What types of buttons? Back, and forth

Q.7.4 — Where will you put the menu? The left of the page

Q.7.5 — Where will you put the button? The button of the page

—Req.7: The product shall have high availability;—

Q.1 NNY What do you mean high availability? (Unverifi-
able)

The product shall be available for use 24 hours per day
365 days per year;

Q.2 YYY Do you mean available all the time? (Unsatisfi-
able)

It shall be available 99% of the time in a year (time unit:
hour)

Q.3 YYY What do you mean by “available for use”? (In-
completeAbstract)

Available online for realtors

—Req.8: The system shall have a professional appearance;—

Q.1 YYN What do you mean by professional? (Unverifi-
able)

Surveyed users in beta test agree that the appearance
is professional

Q.2 YYN Do you mean all surveyed user in the beta test?
(Unsatisfiable)

I mean 80% of the surveyed users in beta test

Q.3 YYN How to make it professional? (Incomplete Collec-
tion)

Use standard navigation menus and buttons

—Req.9: The system shall have good usability;—

Q.1 NNY What do you mean good usability? (Unverifiable) The product shall be easy for a realtor to learn;

Q.2 YYY What do you mean by easy? Easy is Unverifiable;
too general (Unverifiable)

Realtors shall be able to manage property listing infor-
mation within 10 minutes of learning.

Q.3 YYY What do you mean by “manage”? (Incomplete
Abstract)

add, delete, update and query property listing informa-
tion .

Q.4 YYY Do you mean all the relators? (Unsatisfiable) No, I mean 90% of the relators.

—Req.10: The system shall be self-explanatory;—

Q.1 YYY What do you mean by self explanatory? (Unver-
ifiable)

The terms used in the system can be naturally under-
standable by relators in the realtor community.

Q.2 YYY Do you mean naturally understandable by all the
relators? (Unsatisfiable)

No, I mean 90% of the relators in the relator community.

Q.2.1 — Do you mean all the words used in the system? Yes, all words shall be in realtorŠs terminological dic-
tionary.

E.2. Realtor Buddy 201

Table E.4: Detailed requirements issues in the Realtor Buddy project

1: The In-Use column is used to represent the experiments that an issue (question) was counted in. For example, a value of “NYY”
indicates that an issue was counted in experiment two and three, but not in experiment one. In addition, a value of “—” indicates
that an issue was not counted as a requirement issue.
2: The “Q.R” symbol indicates a repeated question.

202 Appendix E. Detailed Requirements Issues

Appendix F

Desiree Feedback

F.1 The Desiree Questionnaire

This is a questionnaire about the first method (method 1, used in Session 1) and the
second Desiree method (method 2, used in Session 2) 1. Please let us know how you think
about the two methods. We will keep improving our methodology and tool based on your
feedback, comments and suggestions. Thanks very much!

What is your education background? (only in experiment three)
l Bachelor
l Master
l Ph.D.
l Post doctor
l Other

Do you have any work experiences? (only in experiment three)
l No or Little (¤ 3 months)
l ¤ 1 Year (e.g., having some internship)
l 1 �¤ 3 Years
l 3 �¤ 5 Years
l 5 �¤ 10 Years
l ¡ 10 years

1Note that the first 4 questions are only used in experiment three, the other 14 questions have been
used in all the three experiments.

203

204 Appendix F. Desiree Feedback

What is your main working/researching/studying area? (only in experiment three)
Can be multiple, e.g., System Developing, Business Modeling, Testing

Do you have work experiences on RE before? (only in experiment three)
If yes, how many years?

1.How do you find the learnability of the first method?
l Very easy to learn
l Easy to learn
l Undecided / Neutral
l Hard to learn
l Very hard to Wlearn

2. How do you find the learnability of the second method?
l Very easy to learn
l Easy to learn
l Undecided / Neutral
l Hard to learn
l Very hard to learn

3. How do you find the usability of the first method?
l Very easy to use
l Easy to use
l Undecided / Neutral
l Hard to use
l Very hard to use

4. How do you find the usability of the second method?
l Very easy to use
l Easy to use
l Undecided / Neutral
l Hard to use
l Very hard to use

5. How do you find the usefulness of the first method for writing a good SRS?

F.1. The Desiree Questionnaire 205

l Very useful
l Useful
l Undecided / Neutral
l Not useful
l Useless

6. How do you find the usefulness of the second method for writing a good SRS?
l Very useful
l Useful
l Undecided / Neutral
l Not useful
l Useless

7. How do you find the complexity of the first method?
l Very simple
l Simple
l Undecided / Neutral
l Complex
l Very complex

8. How do you find the complexity of the second method?
l Very simple
l Simple
l Undecided / Neutral
l Complex
l Very complex

9. How do you find the usability of the Desiree tool?
l Very good
l Good
l Undecided / Neutral
l Bad
l Very bad

10. Which parts of the Desiree method are the most and least hard to you?

206 Appendix F. Desiree Feedback

11. Which parts of the Desiree method are the most and least useful to you?

12. Will you use the Desiree method when you are writing SRS in the future?
Parts of the method? Which parts?

13. Which parts of the Desiree tool work well?
Which parts of the Desiree tool do we need to improve

14. Do you have any other comments and suggestions?

F.2 Questionnaire Report

We have collected 13 (out of 16), 14 (out of 15) and 24 (out of 29) responses in experiment
one, experiment two, and experiment three. We report participants’ feedback in each
experiment on the learnability, usability, usefulness and complexity of the two methods
(Vanilla and Desiree) in Table F.1, Table F.2, Table F.3, Table F.4, respectively. We also
present participants’ feedback on the usability of the Desiree tool in Table. F.5. In these
tables, the numbers indicate the number of participants.

Table F.1: Participants’ feedback on the learnability of the two methods

Very Easy Easy Neutral Hard Very Hard Total

Experiment one Method 1 3 10 0 0 0 13
Method 2 0 3 3 6 1 13

Experiment two Method 1 1 10 2 1 0 14
Method 2 0 4 7 3 0 14

Experiment three Method 1 2 13 8 1 0 24
Method 2 2 8 3 11 0 24

F.2. Questionnaire Report 207

Table F.2: Participants’ feedback on the usability of the two methods

Very Easy Easy Neutral Hard Very Hard Total

Experiment one Method 1 5 6 1 0 0 12
Method 2 0 3 2 5 1 11

Experiment two Method 1 0 7 4 3 0 14
Method 2 0 6 7 1 0 14

Experiment three Method 1 2 12 10 0 0 24
Method 2 1 9 7 7 0 24

Table F.3: Participants’ feedback on the usefulness of the two methods

Very Useful Useful Neutral Not Useful Useless Total

Experiment one Method 1 2 8 3 0 0 13
Method 2 4 5 4 0 0 13

Experiment two Method 1 1 5 4 4 0 14
Method 2 5 7 2 0 0 14

Experiment three Method 1 4 10 8 2 0 24
Method 2 5 15 3 1 0 24

Table F.4: Participants’ feedback on the complexity of the two methods

Very Simple Simple Neutral Complex Very Complex Total

Experiment one Method 1 2 8 1 1 0 12
Method 2 0 2 3 7 1 13

Experiment two Method 1 0 9 3 1 1 14
Method 2 0 2 0 11 1 14

Experiment three Method 1 0 4 13 7 0 24
Method 2 4 8 8 4 0 24

Table F.5: Participants’ feedback on the usability of the Desiree tool

Very Good Good Neutral Bad Very Bad Total
Experiment one Desiree tool 1 3 6 2 1 13
Experiment two Desiree tool 3 9 2 0 0 14

Experiment three Desiree tool 2 11 8 3 0 24

208 Appendix F. Desiree Feedback

Especially, we have investigated the work experience of the participants in experiment
three. We show these statistics in Table. F.6.

Table F.6: The statistics of the participants’ work experience in experiment three

Work Experience RE Experience
No or Little (¤ 3 months) 11 No RE Experience 18

¤ 1 Year (e.g., having some internship) 5 RE Course 1
1 �¤ 3 Years 3 6 months 1
3 �¤ 5 Years 1 1 Year 1
3 �¤ 5 Years 3 2 Years 2

3 �¤ 5 10 years 1 3 Years 1
Total 24 Total 24

We have also got many interesting (textual) feedback for the question Q.10 � Q.14,
we present them as below. Note that the numbers in the “Id” column are just sequencing
numbers, not the identifiers of participants in our experiments.

Q.10: Which parts of the Desiree method are the most and least hard to you?

 Id Response

E
x
pe

ri
m
e
nt

 O
ne

1 i didnt understand it well

2 learn the syntax

3 To understand the usage is the hardest part, like when to use function goal and when to use the function constrain.

4 the distinction between the different quality goals was hard for me, but the goal and or link was easy

5 the syntax is very challenging

6 May be the links are abit strange, perhaps it would be better if you incorporate images as well on them. for a user to

know which one to use if they are mistaken else the other parts are ok

7 drawing the models

8 modelling

E
x
pe

ri
m
e
nt

 T
w
o

1
most hard part in the Desiree method is the grammar of the instructions

least hard part in the Desiree method is the representation of the relations between the concepts, the GUI helps a lot"

2 "Drawing. Reading."

3 To define the goal method between goal and functional goal ...

4 Learn to use the tool

5 It is the most hard for me to remember the syntax of the Desiree method.

6 every part is similar (general)

7 Grammar

8
The hardest part: How to recognize the type of goal. (classification)

The least hard part: It is easy to use the tool.

9 the most hard method: how to make sure my model is complete.

10
Most: Memorizing the grammars and steps (reduce, interpret and etc.)

Least: Drawing the diagram

11 The most hard part is the formula. The least hard is the interactive mode.

12 Tools

13 most hard: learning express method, applying new method

least hard: thinking in a more clear way

14 The grammar of the language is the most hard, and how to recognize whether it's a quality good or QC is the least hard.

E
x
pe

ri
m
e
nt

 T
h
re

e

1 Most: Syntax and grammar; Least: drawing

2 How to distinguish the different type goals? Like Content goal, quality goal, and function goal, or more

3 Desiree 画图作业

4 Usability

5 “Reduce” operation’s meaning and the using of DA

6
Most: how organize the model when the quality constrains are too many (e.g., the availability of system is 24 X 365

Least: basic use of Desiree tool

7 Goal definitions and splition, Goal reduce

8 Most: 了解定义 goal 的语法

9 分解需求，确定整体结构

10 Most: Grammar; Least: not sure.

11 Most: the relationship between the node; least: the grammar

12 Most: understand the grammar; least: operation of the tools

13 I think setting goals is simple, but operationalization is difficult, especially the grammar of the codes.

14 Most: Learning the tool.

15 the most hard: 对各种 relation 的使用；the least hard: 创建项目等基本操作

16 Grammar

17 Most: double “Ctrl + S” to save the files. Least: user habit likes eclipse

18 Most: building the relationship among the nodes; least: I don’t find anything not hard in it =_=

19 规范化的语言理解起来很困难，结果生成比较清晰

20 Most: 语法规则，Goal, FG, Func, QG, QC 之间的关系；Least: 结构化的过程，比如把一个 Goal 细化成 FG, QG, CG 等

21 None

22 Defining functional constraints.

Deriving functions from functions.

23 Dividing the requirement or goal into many and apply various method, makes much of the steps of RE clearer.

Q.11: Which parts of the Desiree method are the most and least useful to you?

 Id Response

E
x
pe

ri
m
e
nt

O
ne

1 The description is very useful for me.

2 not explored enough to judge on this

3 I hope the model is more useful, all the components, due to lack of experience it is difficult to judge me

4
identifying the professional requirements is possible with the Desiree method as it poses questions to your requirement

every time

E
x
pe

ri
m
e
nt

 T
w
o

1
“The method helps a lot when reducing the complex requirements and help with the standard representation of those

items. Nothing is useless. The method makes the analysis process clearer more or less. “

2 every easy to know about the non-functional part…

3 It is good. It is better if it is easier to learn the tool. (General)

4 It is the most useful for me to use the method to write reasonable and unambiguous SRSs.

5 every part is similar (General)

6 Content Goal

7 The most useful part: Practice drawing with the Desiree method. (refining)

8 the most useful method: to write the function requirement (structural description)

9
Most: Ensuring that all the details required in a good SRS will be considered.

Least: The graph layout function for the diagram is not quite helpful at the moment

10 The most useful part is the hint.

11 The pattern of how to write requrements (structural description)

12
most useful: clear thinking (structural description)

least useful: no

13
The method to reduce a complex requirement to several simple requirements is the most useful.

I cannot figure the least useful part.

E
x
pe

ri
m
e
nt

 T
h
re

e

1 Most: showing the graph; least: exporting the OWL

2 To find more questions by a very useful thinking way

3 Most: SRS

4 Imagine

5 Most: reduce; least: means

6

Most: the tool makes me thinking in the structural and the mind is more MECE (Mutually Exclusive, Collectively

Exhaustive)

Least: the tool includes many grammar, it will take times to get similar with it

7 Desiree uses specific grammar that is not openly defined, we need to set familiar with it first.

8 Most: 能够帮助明晰需求

9 可以更加明确需求的深层含义

10 Most: function, quality and content

11 Most: functional goal

12 Most: the way deal with requirements; least: not sure

13 Interpret function is most useful. It is easy to use and efficient. I can’t find a least useful method.

14 Talking with the stakeholder can help us learn these real requirements. I think it’s the most useful to me.

15 the most useful: 会显示项目需求的结束；the least useful: 无

16 Help finding ambiguous descriptions in natural language. Too complicated... Not that standard.

17 Most: reduce the goal into details; least: there is no guideline.

18
Most: the structure of the requirement can help understand the requirement better; Least: everything is useful I think,

but it’s too hard to learn. >_<

19 Most: 更清晰的理清思路；least: 生成的结果不是很直观

20 Most: 获取更具体，更准确，更全面的需求，通过结构化的方法。

21 Declaring & defining variables.

22

Learning is not much simple. It takes much workshops (at least 3 ~ 4). In every workshop/class focus on some parts must

be done.

Focusing on quality, functionality and domain leads to better understanding of RE.

Q.12: Will you use the Desiree method when you are writing SRS in the future?

 Parts of the method? Which parts?

 Id Response

E
x
pe

ri
m
e
nt

 O
ne

1 the Three-Stage Process can be useful for the future

2 Maybe, the function parts

3 I think I will use most of them

4
I would definitely use it is a good method.

mostly when writing functional requirements of the systems

5 most definitely, so far all parts are likely important

6 Maybe no.

7 If fully functioning....yes i will.

E
x
pe

ri
m
e
nt

 T
w
o

1
“I think I’ll take the methodology in analysis process. If there is no time constraints, maybe I will use the Desiree tool as

well. Use the standardized representation of the requirements, and the graph help with tracking the requirements.”

2 Maybe. I.D.K. (I don’t know)

3 i will try to use this method... on functional and non-functional part

4 Yes. It is helpful.

5 May be. Use the method to reduce complicate functional requirements and quality requirements.

6 May be

7 Yes. Drawing analysis tree.

8
Yes. It helps me refine requirements.

Recognizing goal and drawing.

9 yes!

10 Yes. Especially when trying to cover all the details in functional / quality / content goals

11 Yes, maybe in the future I will use the Desiree to pick functional requirement and non functional from a natural language.

12 Not very sure

13 Parts, thinking more methodically, but another way to express.

14 I will try the whole method in future.

E
x
pe

ri
m
e
nt

 T
h
re

e

1 Maybe not yet

2
Yes! To find more details and make the requirements specification more measurable and belieavable. Use the tool and

determine the goals and to be more details.

3 Yes, I will use SRS

4 No

5 Yes, maybe I will use the Desiree tool to analyze vague requirements

6
I will use the method. Like refine the goals and split it into 3 kind of goal: functional goal, quality goal and content goal. It

is very useful for thinking overall.

7 Maybe not, not used widely and publicly, but it’s a good tool to help thinking.

8 因为至今在工作中没有发现使用该工具的工作环境，因此应该不会使用。

9 在对一些较大规模的系统时

10 Function, quality and content

11 Function, quality, content

12 Maybe I will use the method, but not the tool …

13
If I work in this area in future, I will spend more time to learn this tool, and use it as much as I can. I think it’s

professional and can help me to find more details.

14 会用一部分，使用画图功能，但是不会画全部，画简单的，简化形式的图

15 应该不会

16 Maybe?

17 I’ll use the Desiree method. I think it’s useful for RE. I mean I’ll use all the methods.

18
Of course, but I will use it only to help me understand the requirement, while I won’t make any product or files from

Desiree.

19 会使用它的分解功能和步骤来完成需求分析工作，但是不会凭借它来完成工作。

20 Yes, I will. Specifying the requirements by the structural method.

21 I will use the Desiree tool to design.

22 Not at all

23 I would like to use Desiree method

24

It depends.

Alternative 1: Will try to grip the tool then there will be a strong motivation to use.

Alternative 2: How to get requirements Important parts to focus while collecting requirements.

Q.13: Which parts of the Desiree tool work well?

 Which parts of the Desiree tool do we need to improve?

 Id Response

E
x
pe

ri
m
e
nt

 O
ne

1 Some spellings should be revised. Error messages do not explain what is wrong, especially in the syntax checking

2
The relationships work very well, but it is very hard to update the description, the scroll doesn't work and we have to

manually save the description every time

3 No comment, lack of experience

4 so far the models I have tried to work on, do work very well

5
The links, to a new user i simply understand the reduce the others are difficult to know when to implement. may be am

quick to judge for i haven't explored enough

6 -When i update a root node , the child nodes do not update.

E
x
pe

ri
m
e
nt

 T
w
o

1

"Improve the interaction, for example the recognition of the joint point of the link. And the reference module should be

link to each other automatically by name. The grammar should applied more flexible. The layout of the diagrams should be

replace when it is near the boundary of the palette. Do well in the representation of the relations. The reduce, observe,

deuniversazlize helps a lot when analyzing "

2 "whole tool is work well... need to data entry too many place... if better have a copy function... :)"

3
It can separate the question to the detail and gain a specific requirement in the end. It can be better if it is easier to

learn.

4 All parts of Desiree tool work well. No sugesstion.

5 easy to handle

6 Grammar tips.

7 to be improved: (1) when i want to redo my operation, i can use "ctrl + z"

8
The grammar is quite helpful and rigorous. However it would be better if more tips / hints could be provided for the

users. Auto-complete will also be a good improvement for the future

9 Guide for the next step work well. The layout and interactive mode need to improve.

10 The idea of it. The learnability should be improved.

11 Not very well, we have to do many operations to express a simple fact.

12 I haven't used the tool for many times, I cannot answer this question

E
x
pe

ri
m
e
nt

 T
h
re

e

1 No buttons to delete subpages, no method to change the ID when it’s copied

2 UI convenient. Sometimes there some bugs show up like the components miss when you delete on other pages.

3 All, but I cannot use it very well

4
Notification.

Improve the accelerator key (递增的 ID)

5
The UI is friendly but it should be have more tooltips and hints, because the various numbers will be large, it is very hard

to remember all.

6
Interactions with requirements nodes are okay.

User experience needs to be improved. Always needs to copy from previous requirement node, should be better.

7 分解目标功能最好；继承目标描述方面需要优化

8 画图比较清晰流畅，但是一些结构间的自动化构图做的还不够。

9 Make it easier to learn to use

10 The tool should more easily to use.

11 It create subject easily. But need more tips about the grammar.

12
Most parts work well, but the grammar to describe the requirement is not flexible. It requires too much code, and brings

burden of memory.

13
我觉得这个工具本身是很好的。当用于处理一些较大型的项目，需要比较完善的文档时，这个工具将起到很大的作用。但是对于

一些快速迭代开发的项目，这个工具的功能过于冗余，不适合使用。

14 将需求明确分为了功能，质量，内容需求，针对不同需求分析。让画图更加简单，用 Desiree tool 耗费太多时间。

15 Hard to say..

16
Most parts of the Desiree tool work well. Only double “Ctrl + S” to save and cannot “Ctrl + Z” to revert (恢复) should be

improved.

17
The user interface is not friendly which is like being. Built ten years ago …… There should be some guide to teach users

how to use it, as well as explaining terms such as “Func”, “FG” …

18
Work well: 大体上都可以

Need to improve: 删除途中元素太麻烦；没有 tutorial, introduction.

19 画图不错 （复制有一定的 Bug）

20 User interface is not user friendly

21 Improvements need in linking different functions and other entities manually

22 It works good. The usability part must be focused.

Q.14: Do you have any other comments and suggestions?

 Id Response

E
x
pe

ri
m
e
nt

 O
ne

1 I think i should should have had enough time to work with the tool in order to give meaningful feedback

2 Improve the tool.

3 the time was too small to adapt the model, but I have positive comment regarding the tool which is good for me

4

providing user manuals for this tool so that one can use it easily.

Could you think of providing an auto generated report of the requirements after one feeding in all the required

information?

5

Desiree embodies correctness check. before you even start to draw you caution your self if what you are doing is the

right thing ie. functional goals, quality goals and chance of labeling functions and goals incorrectly are reduced which is

not likely with the first method and to me this is really very important.

Thank you for the experience of the tool. its indeed helpful

6 I think it will be a good tool to use when its fully functioning.

E
x
pe

ri
m
e
nt

 T
w
o

1 How to simplified the interaction when drawing and raise the standardization of the representation at the same time

2 this is a very good and useful tools... to define the requirement

3 No.

4 No.

5 No.

6 Disgree tool is very useful, maybe it’s better to improve it,make it ever closer to coding.

7 The test took too much time.

8 I think the Desiree tool can be a online-collaboration application, then many people can edit the same time.

9 A more friendly user interface will make this a wonderful tool for daily software requirement engineering!

10 No

11

I think I need more time to be familiar with the grammar and the tool. I think if we have time, maybe I will be more

familiar with the grammar and the tool if I take the sessions about them after the 1st test. Because I can have more

time to understand the grammar and practice with the tool

E
x
pe

ri
m
e
nt

 T
h
re

e

1 No.

2 可以有份中文对照

3 Thanks for teaching.

4 No, thanks for your work.

5 NA. Thanks for all your valuable teaching and efforts.

6 No

7 希望可以将 Desiree tool 开发的更加完善。

8 None

9 None

10 None ..

11
I think this tool is useful but hard to learn. If the tool uses more graphical interfaces. It will be more friendly and easy

to learn.

12 建议画图的时候可以选取 1 - 2 条覆盖面比较广的需求进行画图。不用全部都画出来。

13 挺好的

14 Next time don’t cost so much time please …

15 Teaching in double language is preferred.

16 It is a very useful software which should be strengthened in its interface and guide.

17 一个系统中元素（如一个 Function）的复用方式需要更灵活

18 No

19

Should provide help manual

Needs to provide tutorial

Auto links and manual links between different entities

20 Good work & thanks for sharing your knowledge. Will be in contact with you.

	Introduction
	Requirements Engineering
	RE in Traditional Software Development
	RE in Agile Software Development

	The RE Problem
	Problem Definition
	Existing Solutions

	Our Research Objectives
	Overview and Contribution
	Structure of the Thesis
	Published Papers

	State of the Art
	Requirements Ontology
	Functional Requirements (FRs)
	Non-functional Requirements (NFRs)

	Requirements Specification and Modeling Language
	Requirements Specification Language
	Requirements Modeling Language

	Requirements Transformation
	Structural and Object-Oriented Decomposition
	Goal-Oriented Refinement and Operationalization
	Problem-Oriented Decomposition and Reduction
	Others Aspects

	Chapter Summary

	Research Baseline
	Goal-Oriented Requirements Engineering
	Ontological Foundations
	Chapter Summary

	Ontological Interpretation of Requirements
	Requirements
	Functional Requirements (FRs)
	Representing FRs
	Refining Functions

	Non-functional Requirements (NFRs)
	NFRs as Quality Requirements
	QRs vs. Softgoals
	Refining QRs
	Operationalizing QRs
	Satisficing QRs

	Practical Implications
	Distinguishing between FRs and NFRs
	Addressing Inconsistency between Quality Models
	The Satisfaction of QRs

	Chapter Summary

	The Desiree Framework
	Requirements Concepts
	Requirements Operators
	A Transformation Methodology
	Informal Phase.
	Interpretation Phase.
	Smithing Phase.

	Chapter Summary

	The Semantics of Desiree
	The Semantics of the Desiree Language
	The Semantics of the Requirement Operators
	Entailment Semantics
	Fulfillment Semantics

	Chapter Summary

	The Desiree Tool
	Overview
	The Textual Editor
	The Graphical Editor
	The Reasoning Component

	An Illustrative Example
	Chapter summary

	Evaluation
	The PROMISE Requirements Dataset
	Evaluating the Requirements Ontology
	Evaluating the Requirements Language
	Evaluating the Language Expressiveness
	Evaluating the Need of the U, G, O Operators
	Lessons Learned

	Evaluating the Methodology
	Meeting Scheduler: Modeling
	Meeting Scheduler: Reasoning

	Evaluating the Desiree Framework
	Experiment Setup
	Research Question
	Experiment Design
	Data Collection
	Descriptive Statistics
	Hypothesis Testing
	Analysis
	Feedback
	Threats to Validity

	Chapter summary

	Conclusion and Future Work
	Contributions
	Limitations
	Future Work

	Bibliography
	Quality Mapping
	Graded Membership
	Prototype Points
	Prototype Intervals

	The Desiree Syntax
	The Semantics of the U operator
	Detailed Requirements Issues
	Meeting Scheduler
	Project Background
	The Chosen Stakeholder Requirements
	Issues in the Chosen Requirements

	Realtor Buddy
	Project Background
	The Chosen Stakeholder Requirements
	Issues in the Chosen Requirements

	Desiree Feedback
	The Desiree Questionnaire
	Questionnaire Report

