
Towards interpretable policies in multi-agent
reinforcement learning tasks

Marco Crespi, Leonardo Lucio Custode[0000−0002−1652−1690], and
Giovanni Iacca[0000−0001−9723−1830]

University of Trento
Department of Information Engineering and Computer Science

Via Sommarive 9, 38123 Povo (TN), Italy
marco.crespi@studenti.unitn.it

{leonardo.custode,giovanni.iacca}@unitn.it

Abstract. Deep Learning (DL) allowed the field of Multi-Agent Rein-
forcement Learning (MARL) to make significant advances, speeding-up
the progress in the field. However, agents trained by means of DL in
MARL settings have an important drawback: their policies are extremely
hard to interpret, not only at the individual agent level, but also (and
especially) considering the fact that one has to take into account the
interactions across the whole set of agents. In this work, we make a step
towards achieving interpretability in MARL tasks. To do that, we present
an approach that combines evolutionary computation (i.e., grammatical
evolution) and reinforcement learning (Q-learning), which allows us to
produce agents that are, at least to some extent, understandable. More-
over, differently from the typically centralized DL-based approaches (and
because of the possibility to use a replay buffer), in our method we can
easily employ Independent Q-learning to train a team of agents, which
facilitates robustness and scalability. By evaluating our approach on the
Battlefield task from the MAgent implementation in the PettingZoo li-
brary, we observe that the evolved team of agents is able to coordinate
its actions in a distributed fashion, solving the task in an effective way.

Keywords: Reinforcement learning · Multi-agent systems · Grammati-
cal evolution · Interpretability

1 Introduction

In recent years, the application of Deep Learning (DL) to the field of Multi-Agent
Reinforcement Learning (MARL) led to the achievement of significant results in
the field. While DL allows to train powerful multi-agent systems (MASs), it
has some drawbacks. First of all, to exploit state-of-the-art deep reinforcement
learning (RL) algorithms, one often has to employ centralized approaches for
training [1], which limits the scalability of the system, i.e., no agents can be
added after the MAS has been trained. Moreover, deep RL methods suffer from
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an even worse drawback: the lack of interpretability1. In fact, in safety-critical
or high-stakes contexts, DL approaches cannot be employed as they are not
fully predictable [3–5] and, thus, they may exhibit unexpected behaviors in edge
cases. While interpretability in RL is an important concern, in MARL it is even
more important. In fact, in contrast to traditional RL setups where safety can
be assessed by inspecting the trained agent, in MARL not only do we need to
analyze each agent, but we also need to understand their collective behavior.

In this paper, we employ a recently proposed methodology [6] (originally
designed for single-agent tasks) for training an interpretable MAS. More specifi-
cally, we extend the setup proposed in [6] by creating a cooperative co-evolutionary
algorithm [7] in which each evolutionary process addresses the evolution of an
agent of the MAS. As a baseline, we also provide the results obtained when
a single policy is trained for all the agents in the MAS. We evaluate our ap-
proach on the Battlefield task from MAgent [8] (implemented in the PettingZoo
library [9]). The teams evolved with our approach are able to obtain promising
performances, eliminating the whole opponent team in up to 98% of the cases.

So, the main contribution of this paper are: 1) the extension of the ap-
proach presented in [6] to multi-agent reinforcement learning settings; 2) the
introduction of two approaches, a co-evolutionary one and single-policy one; 3)
a validation of the proposed methods on the Battlefield task.

The rest of the paper is structured as follows. In the next section, we briefly
overview the related work. In Section 3, we describe the proposed method. Then,
in Section 4 and 5 we present the experimental setup and the numerical results,
respectively. Finally, we draw the conclusions in Section 6.

2 Related work

In the following, we make a summary of the state-of-the-art in the field of MARL.
For a more complete review, we refer the reader to [1, 2, 10–12].

In a preliminary work [11], the authors explained the advantages of adopting
a multi-agent approach instead of a single, complex agent approach. Several
approaches have then been proposed for MARL. In [13] the authors compared
two function approximators in the iterated prisoner’s dilemma: a table-based
approach and a recurrent neural network (RNN). The experiments showed that
the agents based on the tabular approach were more prone to cooperate than
the ones trained using the RNN, indicating that the agents trained by using
the tabular approach had learned a better approximation of the Q function.
Littman [14] presented a novel algorithm based on Q-learning and minimax,
named “minimax Q”. This algorithm, in the experimental results, proved to be
able to learn policies that were more robust than the policies learned by Q-
learning. In [15] the authors made use of cooperative co-evolution with strongly-
typed genetic programming (GP) to evolve agents for a predator-prey game. The
evolved strategies were more effective than handcrafted policies.

1 In the rest of this paper, we will define as an interpretable system one that can be
understood and inspected by humans [2].
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Independent Q-learning (IQL) [16] is another convenient approach to MARL,
as it is scalable and decentralized. However, when using neural networks as func-
tion approximators for reinforcement learning, this method cannot be applied.
In fact, the need for a replay buffer does not make this method suitable in set-
tings with neural networks. To mitigate this issue, several approaches have been
proposed [17–21]. Other approaches circumvent this problem by using instead
the actor-critic model [22–26].

Recently, some approaches have been proposed to measure the interpretabil-
ity of a machine learning model. For instance, Virgolin et al., [27], propose a
metric of interpretability based on the elements contained in the mathematical
formula described by the model. In [28], the authors suggest that the computa-
tional complexity of the model can be used as a measure of interpretability. In
this paper we follow this approach, assuming that less complex models are easier
to interpret, see Section 5.1.

3 Method

The goal of our work is to produce interpretable agents that are capable of co-
operate to solve a given task. To do that, we evolve populations of interpretable
agents in the form of decision trees. To evolve these decision trees, we use the
same approach that was recently proposed in [6, 29]. In particular, we use the
Grammatical Evolution (GE) algorithm [30] to evolve a genotype made of in-
tegers that, by using a grammar translator, is converted into a decision tree.
However, we do not build the full decision tree. Instead, we only build the inner
structure (i.e., the tree without leaves). The reason behind this choice relies on
the fact that we want to exploit at their best the rewards given by the envi-
ronment, using them to train the state-action function embedded in the leaves.
Moreover, using Q-learning allows the agents to refine (and modify) their be-
havior in real-time, without having to wait for the next generation to improve
the performance, which is particularly useful in multi-agent settings.

Finally, it is important to note that our method employs a cooperative co-
evolutionary process [7], where each population optimizes the structure of the
tree for a particular agent of the environment.

3.1 Creation of the teams

To evaluate a genotype, we have to assess the quality of the corresponding phe-
notype when placed inside a team. Each agent (i.e., a member of the team) has
its own evolutionary process (i.e., there is a separate population for each agent in
the task). Thus, we assemble teams composed of one phenotype (i.e., a genotype
transformed into a decision tree) taken from each agent-local population.

Each agent-local population has Nind individuals, such that Nind different
teams are created. Each i-th team is formed by the corresponding i-th individuals
(one per each agent-local population), where i is an index ∈ [0, Nind − 1]. This
approach guarantees that each individual from each agent-local population is
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evaluated exactly once. Note that the selection operator, when applied, shuffles
the array of the individuals. This means that an individual from an agent-local
population is generally not always evaluated with the same individuals taken
from the other agent-local populations.

At the end of the evolutionary process, we form the final team by combining
the best individuals from all the agent-local populations. Moreover, by using an
adoption mechanism (described in Section 3.4), the structure of the best agents
may be shared between different agent-local populations.

3.2 Fitness evaluation

Once a team is created, it undergoesNep episodes of simulation of the task. In the
simulation phase, the agents perform IQL (with a dynamic ε-greedy exploration
approach) to learn the function that maps the leaves to actions. By using IQL,
each agent does not have to take into account the choices made by the other
agents, as these are modeled as part of the environment. Moreover, given a
sufficient number of episodes for the evaluation, the continuous learning of all
the agents results in a co-adaptation. After the simulation phase, the seventh
decile of the returns (i.e., the cumulative reward for each episode) received by
an agent is used as fitness. The choice of the seventh decile lies on the fact that
our fitness function is meant to describe the quality of a genotype as the quality
of the state-space decomposition function [6], which can only be measured when
the performance of the agent converges. While also the mean, the maximum,
and the median have been considered as aggregation functions to compute the
fitness, they have been discarded for the following reasons. Since the agents
initially use a high ε for the exploration, the initial returns have a significant
impact on the mean, thus they do not reflect the true quality of the genotype.
Using the median would also present problems: on the one hand, the median
would discard all the episodes in which the co-operation between the agents
was fruitful enough to receive high returns; on the other hand, since we expect
the returns to grow towards the end of the simulation phase, using the median
would mean that we take into account the performance of a not-fully-trained
agent. Finally, if we used the maximum to aggregate the returns, we would
give too much importance to spurious good performance that may occur in the
simulation (e.g., returns obtained just by randomly effective behaviors), without
taking into account the performance of the trained version of the agent. In a
preliminary experimental phase, the seventh decile represented a good trade-off
between the median and the maximum, reflecting more closely the performance
of the agents. The fitness evaluation process is described in Figure 1.

3.3 Individual encoding

Each individual is represented as a list of integers, where each integer indicates
the production to choose for the current rule (modulo the number of produc-
tions). Unlike the original version of GE, we do not use variable-length genotypes.
Instead, the genotype is a list that has fixed length. The process used to create
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Fig. 1. Block diagram of the fitness evaluation process.

decision trees from genotypes (i.e., lists of integers) is the following. Starting
from the first integer of the list, we apply the first (i.e., leftmost) non-expanded
rule from the current phenotype by using the production rule indicated by the
current integer (modulo the number of productions). The start symbol for the
grammar is called “dt”. The process can terminate in two different ways, depend-
ing on the case: (a) The phenotype does not contain any non-expanded rule: in
this case, the phenotype is simply returned; or (b) all the parameters from the
genotype have been converted into productions, but there are still non-expanded
rules: in this case, the missing branches of the trees are linked to novel leaves.

3.4 Operators

Mutation The mutation operator used in this work is the uniform mutation.
This operator mutates each gene of the genotype with a probability pgene. When
a gene of the genotype is selected for mutation, its next value is selected uniformly
∈ [0,M ], where M is a number significantly bigger than the maximum number
of choices in the grammar, to ensure that the productions are approximately
uniformly distributed.

Crossover The crossover operator used in this work is the one-point crossover
operator. This operator simply chooses a random splitting point for the two
fixed-length genotypes. Then, it produces two offspring by mixing the two sub-
strings of the genotypes.

Selection The individuals are selected by means of a tournament selection. This
operator creates Nind “tournaments” (i.e., random groups of st individuals taken
from an agent-local population). Then, for each tournament, the best individual
is selected to create the population for the next generation.
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Replacement Individuals in each population are replaced by their offspring,
(obtained through mutation or crossover) when the new individuals perform
better than their parents. If an individual is obtained through mutation, it will
replace its parent only if it reaches a better fitness. In case of crossover (which
involves two individuals and two parents) the individual of the offspring with
the best fitness replaces the parent with the worst fitness. This mechanism also
allows to systematically discard “adopted” individuals (see the next paragraph)
that perform worse than their parents in the new population.

Adoption The adoption of an individual happens at the end of each genera-
tion. An agent-local population is randomly chosen and its individual with the
highest fitness is selected. At this point, the selected individual is copied into
the other agent-local populations, replacing a randomly selected individual from
the offspring. The adopted individual’s parents are then assigned to the replaced
individual’s parents. The reason why we use this adoption mechanism lies in the
reward system of the specific BattleField environment (see Section 4.1). As men-
tioned by the authors of PettingZoo: “Agents are rewarded for their individual
performance, and not for the performance of their neighbors, so coordination is
difficult”2. This means that only agents capable of hitting or killing enemies (this
will become clearer in the next section) obtain a high fitness and the adoption
mechanism allows sharing “knowledge” across agent-local populations.

4 Experimental setup

4.1 Environment

We simulate a multi-agent environment by using the PettingZoo library [9].
More specifically, we use the Battlefield environment from the MAgent [8] suite.
A screenshot of the environment is shown in Figure 2.

In this task, there are two teams: the red team and the blue team. As the
name of the environment suggests, the goal of each team is to defeat the other
team by killing all of its members. The environment is an 80×80 grid. To win
the battle, the agents have to learn to collaborate with their team in order to
eliminate the enemies, and to move through the map to overcome walls and
obstacles.

Each agent has a perceptive field of 13×13 squares and can either move or at-
tack at each turn. The agents’ perception is composed of: local presence/absence
of an obstacle in a square; local presence/absence of a teammate/enemy in a
square; health points (hp) of the teammate/enemy in a square; global density
of teammates/enemies. A square represents a 7×7 quadrant of the environment.
Note that each agent’s local perception area corresponds to a circle with a radius
of six squares around that agent. Moreover, to simplify the learning phase (and
the interpretability of the agents evolved), we perform a pre-processing of these

2 https://www.pettingzoo.ml/magent/battlefield (accessed on 02/02/2022).

https://www.pettingzoo.ml/magent/battlefield
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Fig. 2. A screenshot from the
Battlefield environment.

Fig. 3. Maximum return (average ± std. dev.
across 10 runs of the proposed co-evolutionary ap-
proach) at each generation.

features, based on domain knowledge, in order to obtain higher-level features
that are then fed as inputs to the decision tree. The selected features, extracted
from the raw observations, are reported in Table 1. The “Abbreviation” column
shows the abbreviation that we will use throughout the text to refer to a specific
feature.

Both local and global density are calculated based on the active agents in
the environment, i.e., killed agents are not taken into account.

Each agent initially has 10 hp. When an agent attacks another agent (called
target), the target’s hp are decreased by 2 hp. Moreover, each turn increases the
agents’ health points by 0.1 hp (unless the agent already has already 10 hp).

An agent, at each step, can perform 21 discrete actions: no action; move to
any of the 8 adjacent squares; move to two squares on either left, right, up, down;
attack any of the 8 adjacent squares.

Table 2 shows the action that can be performed by the agent. As in Table 1,
the “Abbreviation” column shows how we refer to the actions in the remainder of
the text. The rewards obtained by the environment are the following: 5 points if
the agent kills an opponent; -0.005 points for each timestep (a time penalty, thus
the quicker the team wins, the higher the reward); -0.1 for attacking (to make
the agent attack only when necessary); 0.9 when the agent hits an opponent
(to give a quicker feedback to the agent, without having to wait for killing an
agent to obtain a positive reward that encourages hitting enemies); -0.1 if the
agent dies. At each timestep, the agent receives a combination of these rewards
based on the events that happened in the last timestep. For instance, if an agent
attacks and hits an enemy, it obtains a total reward of r = 0.9− 0.1− 0.005.

While there is no reward for collaboration, we decided to not alter the reward
function to encourage it, to preserve the original configuration of the environ-
ment. Note that we evolve only one of the two teams (the blue one), while the
other team (the red one) uses a random behavior for all the agents. This choice
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Table 1. Extracted features, their abbreviation
and their domain.

Feature Abbreviation Domain

Obstacle 2 squares above o2a {0, 1}
Obstacle 2 squares left o2l {0, 1}
Obstacle 2 squares right o2r {0, 1}
Obstacle 2 squares below o2b {0, 1}
Obstacle 1 square above-left o1al {0, 1}
Obstacle 1 square above o1a {0, 1}
Obstacle 1 square above-right o1ar {0, 1}
Obstacle 1 square left o1l {0, 1}
Obstacle 1 squares right o1r {0, 1}
Obstacle 1 square below-left o1bl {0, 1}
Obstacle 1 squares below o1b {0, 1}
Obstacle 1 squares below-right o1br {0, 1}
Allied global density above aga [0, 1]

Allied global density left agl [0, 1]

Allied global density same quadrant ags [0, 1]

Allied global density right agr [0, 1]

Allied global density below agb [0, 1]

Enemies global density above ega [0, 1]

Enemies global density left egl [0, 1]

Enemies global density same quadrant egs [0, 1]

Enemies global density right egr [0, 1]

Enemies global density below egb [0, 1]

Enemies local density above ela [0, 1]

Enemies local density left ell [0, 1]

Enemies local density right elr [0, 1]

Enemies local density below elb [0, 1]

Enemy presence above-left eal {0, 1}
Enemy presence above ea {0, 1}
Enemy presence above-right ear {0, 1}
Enemy presence left el {0, 1}
Enemy presence right er {0, 1}
Enemy presence below-left ebl {0, 1}
Enemy presence below eb {0, 1}
Enemy presence below-right ebr {0, 1}

Table 2. Actions that the agent
can perform.

Action Abbreviation

Move 2 squares above m2a

Move 1 square above-left m1al

Move 1 square above m1a

Move 1 square above-right m1ar

Move 2 squares left m2l

Move 1 square left m1l

No action mn

Move 1 squares right m1r

Move 2 squares right m2r

Move 1 square below-left m1bl

Move 1 squares below m1b

Move 1 squares below-right m1br

Move 2 squares below m2b

Attack above-left aal

Attack above aa

Attack above-right aar

Attack left al

Attack right ar

Attack below-left abl

Attack below ab

Attack below-right abr

has been made in order to provide a non-biased baseline policy, i.e., to prevent
the evolved policies from overfitting to a specific handmade policy for the red
team. Furthermore, we decided not to competitively co-evolve the policies for
both teams (blue and red) to reduce the complexity of the evolutionary process,
and focus on the interpretability of the evolved policy for the blue team. We
reserve this kind of investigations for future works. For each fitness evaluation,
Nep episodes are simulated, each of 500 timesteps.

4.2 Parameters

The parameters used for GE and Q-learning are shown in Table 3. To ensure that
the Q function tends to the optimal one, we employ a learning rate of α = 1

v ,
where v is the number of visits made to the state-action pair [31]. The grammar
for the GE algorithm is shown in Table 4. Note that we constrain the grammar
to evolve orthogonal decision trees, i.e., decision trees whose conditions are in
the form x < c, where x is a variable and c is a constant.
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Table 3. Parameters used for the
two algorithms (Grammatical Evolu-
tion and Q-learning) used in the exper-
imentation.

Algorithm Parameter Value

Grammatical
Evolution

Nind 60
Ngen 40
pxover 0.4
pmut 0.8
pgene 0.05

Genotype length 500
Selection Tournament

st 3

Q-learning

α 1/v
ε 1

Nep 400
decayε 0.99

Table 4. Grammar used to evolve the
decision trees. “|” denotes the possibil-
ity to choose between different produc-
tions; “dt” indicates the start symbol.

Rule Production

dt ⟨root⟩
root ⟨condition⟩ | leaf

condition
if ⟨input index⟩ < ⟨float⟩
then ⟨root⟩ else ⟨root⟩

input index [0, 33], step 1
float [0.1, 0.9], step 0.1

5 Experimental results

We perform 10 independent evolutionary runs to evolve the policy of each agent
in the blue team. Figure 3 shows the average maximum return (across the 10
runs) during the evolutionary process generation. The shaded area indicates the
standard deviation across runs. We should note that while the average trend did
not reach yet a plateau after the considered number of generations, we had to
limit the total duration of our runs due to constraints on the available computa-
tional resources. On average, one full run of our approach takes approximately
30 hours on a 16-core machine with parallelization at the level of the individual
evaluation.

Since the goal of the task is the elimination of the opponent team, we use two
metrics to analyze the results in a post-hoc test phase (i.e., after the evolution-
ary process): the number of opponents killed, and the agents’ returns over 100
unseen episodes. Table 5 shows the results of this test phase. For each of the 10
evolutionary runs, we report the statistics obtained with a team composed of the
best agents (one for each population) evolved in that run over unseen episodes.
The “Team kills” row shows the descriptive statistics of the number of enemies
killed in each episode. Note that a team is formed by 12 agents therefore in a
single episode the number of enemies killed is limited between 0 and 12. The
“Agents’ returns” row shows the descriptive statistics of the average returns of
all the agents in the team. The “Completed” column shows the percentage of
episodes in which the team was able to eliminate the entire opponent team.

We observe that, for most runs, the obtained teams are able to complete
the task (i.e., kill all the enemies) in most cases. In fact, the average number of
kills is very close to the maximum achievable value and the standard deviation
confirms that the behaviour of the teams is quite consistent.
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Table 5. Summary of the test results (co-evolutionary approach).

Run Type Mean Std Best Worst Completed

1
Team kills 11.96 0.20 12 11

96.0%
Agents’ returns 7.92 0.93 9.08 4.01

2
Team kills 11.85 0.62 12 8

94.0%
Agents’ returns 8.06 0.93 8.96 3.33

3
Team kills 11.98 0.14 12 11

98.0%
Agents’ returns 8.20 0.56 9.09 5.10

4
Team kills 11.97 0.22 12 10

98.0%
Agents’ returns 7.85 0.94 9.00 2.16

5
Team kills 11.81 0.73 12 7

91.0%
Agents’ returns 8.09 1.09 9.21 3.10

6
Team kills 11.91 0.71 12 5

97.0%
Agents’ returns 8.17 0.82 8.94 1.92

7
Team kills 8.98 1.60 12 4

1.0%
Agents’ returns 4.43 1.19 8.22 1.02

8
Team kills 11.65 0.77 12 9

79.0%
Agents’ returns 6.83 2.13 9.20 0.07

9
Team kills 11.15 1.46 12 5

63.0%
Agents’ returns 7.00 1.60 9.38 2.29

10
Team kills 11.9 0.46 12 8

93.0%
Agents’ returns 8.22 0.95 8.95 3.14

5.1 Interpretation

In this section we practically demonstrate the interpretability of the obtained
agents.

Figure 4 shows the decision tree of one of the agents evolved in one of the
evolutionary runs presented before. For space reasons, we cannot present all the
evolved agents from each run. However, similar considerations apply also to the
other evolved agents in the various runs.

By reading the decision tree in the figure, we can describe how the agent
moves in the environment. In the following, please remember that we evolve
only the blue agents’ behavior, and that these agents always start on the right
side of the environment (see Figure 2). To facilitate the description of the evolved
policy, we added an id to each node in the decision tree.

The selected agent moves up to the left (id 24) until the local density of
enemies below (id 6) or to the right (id 18) reaches a certain threshold. In both
cases the agent changes the direction and moves towards the enemies (ids 11 and
21). It also moves to the right (id 25) if there is a high global density of enemies
on its right (id 22). This means that this agent moves to the top left of the map
and intercepts the enemies it finds in that area. Another interesting behaviour
of this agent relies in the fact that it tries not to be on the front lines, in fact if
there is a high density of allies in the same quadrant (id 14) it tends to move to
the right (id 17), therefore from the direction from which its team started. This
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agent appears to behave like a “wing”: it moves above the enemies and tries to
eliminate the ones that try to move in the space between it and the allies below.

The attack actions are easy to understand: if an enemy is located in a certain
square, the agent simply attacks that square. There are two particular cases. One
is caused by the few visits of the leaf (id 9). The other one happens when there
is an enemy above the agent (id 16): in this case, the agent tries to escape to
the right (id 26), unless there is an obstacle in the above right square (id 19), in
which case it attacks the enemy (id 27). Since an obstacle can be either a wall or
an ally, this particular condition leads to two different behaviors. If the obstacle
is an ally, the agent helps to kill the opponent, otherwise it tries to escape on the
right. If the obstacle is present and is a wall, this means that the agent is located
on the left side of that wall, since there is no possibility to have an opponent
above while the agent is located next to a wall. This means that if there is a wall
on the right the agent cannot escape and has to fight. According to the role that
this agent appears to have, this behavior tells us that the agent tries to support
other allies in the area, while it retreats if enemies are trying to surround them.

This behavior is quite common, in fact in every run agents can be seen that
move to the top left of the environment and capture the enemies in that area.

Other interesting behaviours emerge from the observation of the teams in the
environment. A common behavior of the agents starting closer to the opponent
team is to go through the gap in the walls to reach the enemies. There are also
more complex behaviors. In some runs it is possible to see some agents moving to
the top of the environment, passing the walls from above and then descending
to hit the enemies they encounter. Much rarer is the reverse behavior, where
agents pass the walls from below and then move up.

5.2 Comparison with a non co-evolutionary approach

To provide a baseline for the proposed co-evolutionary approach, we also per-
formed experiments in the same environment using a single phenotype for the
entire team, i.e., by cloning the phenotype and assigning it to each member of
the team. The parameters used in these experiments are the same shown in Ta-
ble 3. Note that in this case each agent in the team shares the same decision
tree structure, but each one develops its own leaf by using IQL.

In this case, the fitness evaluation is realized using the average of the seventh
decile of the returns obtained by each agent over the training episodes. This
choice is motivated by the following rationale. Since the structure of the agents
is shared, we must favor the phenotype that, besides guaranteeing a high number
of kills, also gives high importance to agents that do not kill any enemy.

Table 6 shows the test results obtained by the agents evolved in each of
10 runs over 100 unseen episodes. We can compare these results with the ones
obtained in the co-evolutionary setup (shown in Table 5) by using the number
of kills at test time. In this regard, we observe that there is a large difference in
performance between the two setups, being the co-evolutionary clearly superior.
This indicates that, even though the agents have similar goals in both setups, the
co-evolutionary setup can indeed find much better solutions. This may be due
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Fig. 4. Decision tree of the selected agent. The “(*)” notation indicates that the leaf
has been visited a number of times that is not sufficient to train it, thus it can be seen
as a random action. The numbers in parentheses are the identifiers of the nodes.

to the fact that the adoption mechanism used in the co-evolutionary approach
allows for a quicker spreading of high-performing genotypes in the populations.

Another observation concerns the completion percentage: by looking at it,
it appears that the performance of the non co-evolutionary is much less robust
across runs. This suggests that the performance of this setup is heavily impacted
by the initialization, with only a few occasional runs achieving a satisfactory
completion percentage. A possible improvement of the non co-evolutionary setup
would be to include an ad hoc method, e.g. based on domain knowledge, to
provide a smarter initialization. We will consider this possibility in future works.

6 Conclusions and future works

Interpretability in AI is becoming a matter of concern for its applications in
safety-critical and high-stakes scenarios. In MAS, this need is even stronger, and
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Table 6. Summary of the test results (non co-evolutionary approach).

Run Type Mean Std Best Worst Completed

1
Team kills 0.51 0.74 3 0

0.0%
Agents’ returns -2.60 0.72 0.13 -3.47

2
Team kills 1.87 2.23 10 0

0.0%
Agents’ returns -1.15 1.66 4.27 -3.42

3
Team kills 11.03 1.20 12 6

45.0%
Agents’ returns 6.59 1.45 9.45 2.60

4
Team kills 11.55 1.33 12 5

87.0%
Agents’ returns 7.90 1.48 9.88 1.96

5
Team kills 8.08 2.81 12 1

14%
Agents’ returns 3.71 2.27 8.13 -2.23

6
Team kills 9.99 2.27 12 4

41.0%
Agents’ returns 6.00 1.95 9.22 0.81

7
Team kills 4.24 1.93 10 0

0.0%
Agents’ returns 1.50 1.44 5.46 -1.99

8
Team kills 11.16 2.01 12 2

81.0%
Agents’ returns 7.30 190 10.02 -0.25

9
Team kills 0.20 0.57 2 0

0.0%
Agents’ returns -3.08 0.48 -1.32 -3.56

10
Team kills 6.8 2.33 12 3

3.0%
Agents’ returns 3.00 1.74 7.29 -0.50

achieving it is even more challenging. In fact, in MAS, besides the need for the
interpretability of the agents, also the interpretability of their interactions is im-
portant. In this paper, we proposed a co-evolutionary approach to interpretable
RL in MARL settings. We evaluated our approach on the Battlefield environ-
ment from MAgent, obtaining promising results in most of the runs. In contrast,
a non co-evolutionary approach obtained poorer performance.

Future work includes: 1) evaluating the proposed approach on different tasks;
2) introducing the possibility of communication between agents (both symbolic
[32] and sub-symbolic [33]); 3) designing more efficient methodologies for training
interpretable MARL systems, including for instance using other RL algorithms
(different from Q-learning), and comparing them with existing methods, as well
as handmade problem-specific policies; and 4) performing a sensitivity analysis
for the proposed method.
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