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Introduction: Understanding drug exposure at disease target sites is pivotal to
profiling new drug candidates in terms of tolerability and efficacy. Such
quantification is particularly tedious for anti-tuberculosis (TB) compounds as
the heterogeneous pulmonary microenvironment due to the infection may
alter lung permeability and affect drug disposition. Murine models have been a
longstanding support in TB research so far and are here used as human surrogates
to unveil the distribution of several anti-TB compounds at the site-of-action via a
novel and centralized PBPK design framework.

Methods: As an intermediate approach between data-driven pharmacokinetic
(PK) models and whole-body physiologically based (PB) PK models, we propose a
parsimonious framework for PK investigation (minimal PBPK approach) that
retains key physiological processes involved in TB disease, while reducing
computational costs and prior knowledge requirements. By lumping together
pulmonary TB-unessential organs, our minimal PBPK model counts 9 equations
compared to the 36 of published full models, accelerating the simulation more
than 3-folds in Matlab 2022b.

Results: The model has been successfully tested and validated against 11 anti-TB
compounds—rifampicin, rifapentine, pyrazinamide, ethambutol, isoniazid,
moxifloxacin, delamanid, pretomanid, bedaquiline, OPC-167832, GSK2556286
- showing robust predictability power in recapitulating PK dynamics in mice.
Structural inspections on the proposed design have ensured global identifiability
and listed free fraction in plasma and blood-to-plasma ratio as top sensitive
parameters for PK metrics. The platform-oriented implementation allows fast
comparison of the compounds in terms of exposure and target attainment.
Discrepancies in plasma and lung levels for the latest BPaMZ and HPMZ
regimens have been analyzed in terms of their impact on preclinical
experiment design and on PK/PD indices.

Conclusion: The framework we developed requires limited drug- and species-
specific information to reconstruct accurate PK dynamics, delivering a unified
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viewpoint on anti-TB drug distribution at the site-of-action and a flexible fit-for-
purpose tool to accelerate model-informed drug design pipelines and facilitate
translation into the clinic.

KEYWORDS

minimal PBPKmodel, mPBPK, antituberculosis agents, modeling, simulation, tuberculosis,
model informed drug development

Introduction

With a claim of 1.6 million lives and 10.6 million new infected
cases in 2021 (World Health Organization, 2022), tuberculosis (TB)
is among the leading global-health issues of modern days. The
historical standard of care treatment, as well as the latest FDA-
approved regimens against resistant strains, are highly intensive,
with scarce patient compliance and severe adversary effects reported
(Gillespie et al., 2014; Jindani et al., 2014). Therefore, there is an
urgent need for innovation to shorten anti-TB regimes, without
compromising safety and efficacy criteria, to finally increase the
success rate and alleviate the toll placed on individuals and the
healthcare system (World Health Organization, 2022).

In this sense, although no true animal reservoirs for
Mycobacterium tuberculosis exist (Dharmadhikari and Nardell,
2008), several preclinical organisms are found susceptible to the
TB infection and thus used for investigative TB studies. To date,
animal models of active pulmonary TB have remarkably enhanced
our understanding of TB pathogenesis, host/pathogen interaction,
and immune system contribution, as well as guided the design of
antimicrobial regimens (Dharmadhikari and Nardell, 2008).
Common thread of these preclinical contributions is the rich
collection of measurements at both systemic and peripheral
tissues that have served as soil for generating hypothesis on
either drug or disease, supplementing the paucity and sparsity of
intra-pulmonary clinical data. In this regard, PK samples in animal
lungs combined with in silico predictive technologies are
instrumental to unveil anti-TB drug attainment in
Mycobacterium habitat, questioning the paradigm of considering
plasma exposure as a surrogate of TB site-of-action levels.

At present, most of these computational PK suites are tailored to
each compound of interest; hence they may lack a systems viewpoint
across drug classes and investigators. The specificity of these model-
design choices, which are grounded on the expertise of the modeler
in balancing qualitative assessments and quantitative estimations,
can hamper unbiased drug comparisons and reproducibility. These
tools leverage pharmacokinetic (PK), population pharmacokinetic
(popPK), and physiologically-based pharmacokinetic (PBPK)
approaches, and have proved to be exceptional virtual labs to
characterize and quantify drug absorption, distribution,
metabolism, and excretion (ADME) processes involved in the
intricate TB pathology (Lyons et al., 2013; El-Khateeb et al.,
2021; Humphries et al., 2021). PK and popPK models are well
suited for easy-to-get and easy-to-read prediction of PK parameters
and for covariate identification, but their top-down nature lacks a
biological counterpart as species- or drug-specific information is not
accounted for (Jones and Rowland-Yeo, 2013). In contrast, PBPK
frameworks are appreciated for capturing mechanistic and
biochemically-informed PK profiles based on prior knowledge

e.g., blood flow distributions or transport processes, but they
come at the cost of a higher number of parameters and longer
development and simulation time (Gerlowski and Jain, 1983; Läer
and Khalil, 2011; Shebley et al., 2018). As an intermediate technique,
simplified versions of PBPK models are increasingly gaining
momentum to reduce the dimensionality of full-body multi-
compartment PBPK, while retaining reliable physiological
attributes (Bloomingdale et al., 2021; Yau et al., 2023). Following
the law of parsimony, these models lump tissues and organs
according to suitable metrics, such as dynamical similarities or
steady-state partitioning, to generate a more tractable analysis
and to facilitate parameter estimation. We refer to (Coxson and
Bischoff, 1987; Bernareggi and Rowland, 1991; Nestorov et al., 1998;
Dokoumetzidis and Aarons, 2009; Pilari and Huisinga, 2010; Lin
et al., 2016; Yau et al., 2023) for overviews of the available lumping
strategies.

In the present study, we propose a data-driven minimal PBPK
model (mPBPK) in mice that can simultaneously support several
anti-TB drugs by focusing on transversal ADME and TB-hallmark
features. As only one out of four literature-available mice strains
here included—BALB/c, Swiss-derived, C57BL/6, and C3HeB/FeJ -
can develop human-like lesions, the model treats the pulmonary
compartment as a general site-of-action for TB. The work seeks to
deliver a unified viewpoint and standardized protocol to compare
candidates on desirable preclinical plasma and lung PK metrics. We
have benchmarked the novel design on literature-available PK

FIGURE 1
A visual representation of the minimal PBPK model. The model
consists of nine compartments, eight of which describing: arterial and
venous blood, gut, splenic, liver, lung, kidney, and the lumped
compartment “other”. In addition, there is a compartment to
account for the oral dose disposition. Black lines represent exchange
between the compartments. Grey lines represent the first-order
clearance.

Frontiers in Pharmacology frontiersin.org02

Reali et al. 10.3389/fphar.2023.1272091

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1272091


datasets of eleven drugs, both marketed—isoniazid (INH),
pyrazinamide (PZA), ethambutol (EMB), moxifloxacin (MOX),
rifampicin (RIF), rifapentine (RPT), delamanid (DEL),
pretomanid (PRE), and bedaquiline (BDQ)—and in clinical
development—GSK2556286 (G286) and OPC-167832 (OPC).
Through the calibrated model, we query the optimality of
standard workflows for drug-sorting administration and drug
target attainment at the site-of-action.

Materials and methods

mPBPK model design and assumptions

We designed a minimal mathematical framework that depicts drug
disposition across the murine body through a set of nine ordinary
differential equations (ODEs). A visual representation of the minimal
model can be found in Figure 1. The model results from an iterative
application of the lumping strategy, as detailed in (Nestorov et al., 1998;
Ryu et al., 2022), to reduce the computational complexity and increase
the focus on the tissue of interest pertaining to the drug’s anticipated
mechanism and sites of action. At each step, parallel connected tissues
not involved in ADME processes—namely, adipose, bone, brain, heart,
muscle, gonads, and skin—were incrementally lumped and the reduced
model was validated via a visual predictive comparison with the original
model outputs. The lumping criterium was data-driven and applied to
the above TB-unessential tissues and organs regardless of their
perfusion rates, body proximity, or functionality (Ryu et al., 2022).
The connections involving the liver, spleen and pancreas were pooled
into the splenic compartment to simplify the chain of compartments.
Model simulations supported the definition of a lumped compartment,
named “other”, that summarizes all eight tissues, allowing for a 77%
reduction in the number of physiological variables in the ODE system
(Stader et al., 2019). First and second-order kinetics for oral absorption,
total clearance, compartment outflows, and possible gut-mediated
reabsorption were evaluated during model development via
goodness-of-fit (GOF).

In the final model (Figure 1), the dynamics of drug
concentration in the arterial and venous circulatory system are
described by Eqs 1 and 2.

dCab

dt
� 1
Vab

Qlu · Clu

Kplu
· BP−Qlu · Cab( )

Equation 1. Differential equation describing the drug
concentration in the arterial blood. Since the blood is assumed to
flow in and out the lungs Qlu = Qsp + Qha + Qgu + Qki + Qot.

dCvb

dt
� 1
Vvb

Qot · Cot

Kpot
· BP+Qki · Cki

Kpki
· BP + Qli · Cli

Kpli
· BP − Qlu · Cvb( )

Equation 2. Differential equation describing the drug
concentration in the venous blood.

where BP is the blood-to-plasma ratio, Vab and Vvb are arterial
and venous blood volumes, Qlu, Qot, Qki, Qli and Kplu, Kpot, Kpki,
Kpli are, respectively, the blood flow and the tissue-to-plasma
partition coefficient for lung, lumped compartment, kidneys, and
liver. Since all blood was assumed to flow in and out the lungs, the
relationship Qlu = Qsp + Qha + Qgu + Qki + Qot holds to fulfill mass-

conservation law, with Qsp, Qha, and Qgu blood flows for splenic,
hepatic artery, and gut compartments (see Figure 1).

Drug dynamics within non-eliminating compartments - lung,
lumped, spleen, and gut -, is governed by the difference in drug
uptake and output terms, which are driven by blood flows and
partition coefficients, respectively. The corresponding equations are
therefore Eqs 3–6.

dClu

dt
� 1
Vlu

Qlu · Cvb − Qlu · Clu

Kplu
· BP( )

Equation 3. Differential equation describing the drug
concentration in the lung compartment.

dCot

dt
� 1
Vot

Qot · Cab − Cot

Kpot
· BP( )( )

Equation 4. Differential equation describing the drug
concentration in the “other” compartment.

dCsp

dt
� 1
Vsp

Qsp · Cab − Csp

Kpsp
· BP( )( )

Equation 5. Differential equation describing the concentration
in the spleen compartment.

dCgu

dt
� 1
Vgu

Ka·Cor · F+Qgu · Cab − Cgu

Kpgu
· BP( )( )

Equation 6. Differential equation describing the concentration
in the gut compartment.

where Vsp, Vgu are the volumes and Kpsp, Kpgu are the partition
coefficients for splenic and gut, respectively, while Ka and F are the
rate of absorption and the drug bioavailability.

Observe that Equation 3, the first term of Equation 1, and the last
term of Equation 2 model the pulmonary loop with the arterial and
venous bloodstream, while Equation 6 reflects the oral route of
administration. Indeed, an oral dose compartment with exponential
decay and with full release into the gut compartment was included to
mimic the oral ingestion and described in Equation 7.

dCor

dt
� − Ka · Cor · F( )

Equation 7. Differential equation describing the concentration
in the oral dose compartment.

Tissues involved in drug elimination processes, liver and
kidneys, present a negative term in the differential equation that
specifies hepatic or renal clearance as in the following Eq. 8 and
Eq. 9.

dCli

dt
� 1
Vli

⎛⎝Qha · Cab+Qgu · Cgu

Kpgu
· BP+Qsp · Csp

Kpsp
· BP−Qli · Cli

Kpli
· BP

−CL · 1 − CLR( ) · Cli · fup
⎞⎠

Equation 8. Differential equation describing the concentration
in the liver compartment.

dCki

dt
� 1
Vki

Qki · Cab − Cki

Kpki
· BP( ) − CL · CLR · Cki · fup( )
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Equation 9. Differential equation describing the concentration
in the kidney compartment.

Here, CL is the total body clearance, CLR is the renal clearance
fraction, and fup is the fraction unbound in plasma. Note that, as
plasma contributes most to the blood protein component, fup was
assumed to be a good approximator of blood free-fraction and used
in Eq. 8 and Eq. 9 to scale clearance outflows, capturing the part of
the drug that can be eliminated.

The model was implemented in Matlab R2022b (The
MathWorks Inc., 2022) and simulated via odes15 function to
generate all the simulations contained in the manuscript. The
included plots have been produced in Matlab and R 4.2.0.

Model physiological and physicochemical
parameters

The mPBPK model includes 25 parameters, divided into
physiological information and drug physicochemical properties
(see Supplementary Table S1 and Lee et al., 2020). The
distribution volumes and specific blood flow rates refer to
0.025 kg representative mice and were taken from the
literature (Brown et al., 1997; Ruark et al., 2014; Lee et al.,
2020). Partition coefficients were calculated via the in silico
Rodgers and Rowland (RR) equations (Rodgers, Leahy, and
Rowland, 2005; Rodgers and Rowland, 2006), according to
the chemical type of the drug under investigation (neutral,
monoprotic acid or base, diprotic acid or base, zwitterions).
For the lumped compartment, which has no physiological
counterpart, we set the volume and the blood flow as the sum
of those lumped in generating it (Nestorov et al., 1998), and the
partition coefficient as their median. Drug-specific chemical
properties required for the RR method—the octanol:water
partition coefficient (clogP), the vegetable oil:water partition
coefficient (logD), the negative log10 of disassociation constants
(pKa1, pKa2), affinity constant, the intracellular pH of red blood
cells, the blood-to-plasma ratio (BP), and the free fraction in
plasma (fup)—were extracted from the literature, internal
sources, and DrugBank. Supplementary Table S1 contains the
full set of drug-related parameters, PK information, in vitro
pharmacodynamic (PD) metrics, and references to the sources.
Complementary physiological information on the fractional
tissue volumes of extra-, intra-cellular water, neutral lipids,
and neutral phospholipids and the tissue concentration of
acidic phospholipids, extracellular albumin, or lipoprotein
came from (Ruark et al., 2014). When preclinical data
regarding tissue penetration, particularly in infected tissues,
were available, the corresponding RR-predicted partition
coefficients were adjusted to better match in vivo tissue-to-
plasma concentration ratio in accordance with the literature
protocol (Bruzzese et al., 2000; Lyons et al., 2013; Ezuruike et al.,
2022; Ryu et al., 2022). For the drugs for which no mice time
series or aggregated lung data is available, we adjusted the
plasma-to-lung RR-predicted partition coefficients exploiting
literature interspecies ratios (Ezuruike et al., 2022).
GSK2556286 is the only compound for which lung data is
completely not available due to its early developmental stage,
thus no refinement to the RR predictions was applied.

Data

The model was trained and validated on literature data retrieved
from published articles and datasets for 11 anti-TB compounds, -
rifampicin (RIF, R), rifapentine (RPT, P), pyrazinamide (PZA, Z),
ethambutol (EMB, E), isoniazid (INH, H), moxifloxacin (MOX, M),
delamanid (DEL), pretomanid (PRE, Pa), bedaquiline (BDQ, B),
OPC-167832 (OPC), GSK2556286 (G286). Literature PK
experiments were conducted on TB infected murine models for
BDQ, PZA, RIF, INH, EMB, and G286. The remaining compounds
(RPT, MOX, DEL, PRE, and OPC) are based on the literature on
uninfected mice PK assumed to show limited differences in terms of
exposure with infected mice.

Data types spanned from aggregated PK information—area-
under-the-curve (AUC), concentration peak (Cmax), time of peak
(Tmax)—to sparse or dense time series. In this latter case, if PK time
series were not tabulated within the publications, they were
digitalized using WebPlotDigitizer (Rohatgi, 2022).
Supplementary Table S2 summarizes the data sources used to
develop and test the model. Plasma or serum PK measurements
were multiplied by BP to obtain observations in venous blood and
suit model structure for the estimation step. The tissue density to
convert drug tissue concentration from µg/g to µg/mL as for plasma
was set to 1 g/cm3.

Parameters identification, calibration, and
uncertainty quantification

Out of the 25 model parameters, the rate of absorption Ka and
the total clearance CL only were calibrated from mouse PK data. A
structural identifiability investigation was run on these two
parameters with the Matlab toolbox GenSSI (Chiş et al., 2011) to
ensure that the minimality of the framework had mitigated the
general PBPK model identifiability issues (Läer and Khalil, 2011;
Shebley et al., 2018; Shebley et al., 2018; Peters and Dolgos, 2019;
Peters and Dolgos, 2019).

A Matlab implementation of the Covariance Matrix
Adaptation—Evolution Strategy (CMA-ES) method, a state-of-
the-art evolutionary algorithm (Hansen N, 2006; Auger and
Hansen, 2012; Hansen, 2016), was used for calibrating the model.
The optimization algorithm was initialized considering a population
of sixteen individuals randomly sampled from a uniform
distribution spanning the admissible domain and repeated in a
multi-start approach. To handle comparable residuals and to
ensure that the fitting protocol was not biased, we shaped the
objective function as a weighted absolute distance between the
predictions and the experimental data. We suitably bounded the
parameter search space to guarantee biological-meaningful
estimations and to ease the model calibration. To handle
comparable residuals and to ensure that the fitting protocol was
not biased, we shaped the objective function as a weighted absolute
distance between the predictions and the experimental data. We
suitably bounded the parameter search space to guarantee
biological-meaningful estimations and to ease the model calibration.

The uncertainty of the parameter estimates and the model
output was quantified through Monte Carlo simulations
considering 1,500 pairs of (CL, Ka) randomly generated
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parameters (Supplementary Figures S1–S4) (Gentle, 2009). The
samples were drawn from two independent lognormal
distributions (Carlo et al., 2023) centered in the best estimates
with a coefficient of variation of 30% as in (Lyons et al., 2013)
and bounded inside the admissible space of parameters.

Sensitivity analysis

A drug-specific local sensitivity analysis was performed on
AUC, Cmax, Tmax, and PK profile of plasma and lung
compartments to determine the most sensitive parameters for
the mPBPK model. Body weight, cardiac output, tissue-to-
plasma partition coefficients for lung, kidney, liver, gut, and
spleen, rate of absorption, bioavailability, total body clearance,
fraction of renal clearance, blood-to-plasma ratio, and plasma free
fraction were included in the analysis. Fractional volumes and
flows were excluded to not bias the physiological normalization
constraint via single perturbation. The sensitivity scores were
measured using the logarithmic sensitivity approach (LSA)
computed with a perturbation of 1% of the reference parameter
value (Wu et al., 2008; Zi, 2011). This method comes with the great
advantage of being dimensionless, which allows us to easily
compare model parameters with different units of measure.
Mathematically, if X is the chosen metric and p is the
parameter of interest, the LSA was calculated as in Equation 10:

PKmeasureLSA p( )� ∂log X t, p( )( )
∂log p( ) �

∂X t, p( ) · 1
X t,p( )

∂p · 1
p

� ∂X t, p( )
∂p

· p

X t, p( )
Equation 10. The equation to compute the relative logarithmic

sensitivity index for a parameter p.
where the first term in the last chain of equalities can be well

approximated by the first-order finite difference (Saltelli et al., 2007;
Simoni et al., 2019).

To better summarize the parameter influences on the model, we
only considered the maximum sensitivity index reported for each
parameter and PK measure on plasma and lung across the drugs.
Model rates that are functions of the perturbed parameter have been
updated accordingly along the procedure to retain all chemical and
biological dependencies in the analysis.

Computational time comparison

The model was benchmarked in terms of computational time
with a reference full-body PBPK model available in Matlab
SimBiology (Peters, 2008; Stader et al., 2019; MathWorks
SimBiology Team, 2023). The benchmark was computed by
simulating isoniazid, for which the full-PBPK physiological
parameters were obtained from (MathWorks SimBiology Team,
2023) using the same physicochemical properties used in the
mPBPK. The minimal and full PBPK models were simulated
10 times with a mean elapsed time of 0.0848 +/- 0.0098 and
0.2639+/- 0.0306 s, respectively, under the same ode15s setting
and PK conditions (14 daily doses of 25 mg/kg). A comparative

plot for the simulation time is available in Supplementary Figure S5.
Visual predictive check ensured that the global behavior of the full-
body PBPK model was retained.

Results

Model description

We designed a novel parsimonious physiologically based
pharmacokinetics model to describe anti-TB drug ADME in the
mouse. Starting from the works of (Jones and Rowland-Yeo, 2013;
Stader et al., 2019; Lee et al., 2020), we iteratively lumped
compartments that are marginally involved in pulmonary TB
infection to streamline the model diagram. As a result of an
extensive validation step, adipose, brain, bone, heart, muscles,
pancreas, and skin were grouped together in a compartment
called “other”, whilst interstitial spaces were embedded into
corresponding tissues and organs. The lumped compartment
closely resembles the clustering identified by (Yau et al., 2023) to
reduce PBPK models based on rat tissue composition.

The final reduced model, whose diagram is shown in Figure 1,
includes nine compartments. Eight of them are physiologically-
derived, venous blood, arterial blood, lung, kidney, liver, spleen,
gut, and lumped tissues, whilst one is treatment-specific to
accommodate the oral route of administration. In contrast to
(Ryu et al., 2022), we kept systemic bloodstreams and lungs
separated to gain PK insights into the target tissue and fit the
experimental data. The gut, spleen, liver, and kidney, which
are pivotal or contributor tissues for absorption, distribution,
and elimination phases, were explicitly modeled. First-order
reactions for absorption and elimination processes and for
drug exchange among compartments were found to best
support the PK datasets. Mechanisms of gut-reabsorption did
not lead to substantial fit improvements and thus were discarded
for parsimony. Rodgers and Rowland’s method was chosen for
tissue-to-plasma partition coefficient computation since
comparative studies demonstrated its enhanced performances
across both drug classes (>70% compounds within threefold of
experimental values) and tissues (from 66.1% in the brain to
92.7% accuracy in the heart) (Jones et al., 2011; Graham et al.,
2012). Under the experimental setting of plasma and lung sample
collection, the proposed design satisfies the global structural
identifiability criterium for the two parameters to estimate,
i.e., absorption and total clearance rates, mitigating one of the
major drawbacks ascribed to whole-body PBPK models (Chiş
et al., 2011; Läer and Khalil, 2011; Peters and Dolgos, 2019). In
addition, compared to a reference full-body PBPK model (Peters,
2008; Stader et al., 2019), our ODE system can be simulated more
than three times faster, which results in a substantial speed up
that enables larger what-if investigations.

Model calibration and validation

We tested our minimal PBPK model on a variety of compounds
with several doses in training and validation (Frechen and Rostami-
Hodjegan, 2022). The uncertainty on the outputs was estimated
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through Monte Carlo simulations and all the successive analyses
leveraged the 1500-mice virtual population (VP) generated with this
technique. The details are provided in the Methods section.

The model’s performance for six anti-TB compounds, including
isoniazid, rifapentine, pyrazinamide, moxifloxacin, bedaquiline, and
pretomanid, in both training and validation is presented in

FIGURE 2
(A) Visual predictive check of the mPBPKmodel for six drugs in plasma and lung. The figure shows the performance in training and validation for the
mPBPK model in plasma and lung. All figures show the median of the simulated VP (solid line) and the five and ninety-five percentiles (shaded area); dots
represent the experimental data at each time point (or their mean if multiple measurements were available). Red refers to the training sets in plasma, blue
to the training sets in lungs, and grey are the validation sets. INH—isoniazid (training 25 mg/kg, validation 5 mg/kg); RPT—rifapentine (training
15 mg/kg, validation 20 mg/kg); PZA—pyrazinamide (training 150 mg/kg, validation 150 mg/kg); MOX—moxifloxacin (training 100 mg/kg, validation
100 mg/kg); BDQ—bedaquiline (training 25 mg/kg, validation 25 mg/kg); PRE—pretomanid (training 25 mg/kg, validation 100 mg/kg). (B) Correlation
plots between observed and best-fit predicted AUCs and Cmax, color-coded for drugs and shape-coded for compartments. Solid lines are the
theoretical perfect agreement reference lines (bisector), while the dashed linesmark the 1.5- and two-fold from reference. Observed AUCs are computed
via the trapezoidal rule.
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Figure 2A and summarized in Table 1. All the panels display the
median of the simulated VP (solid line), five and ninety-five
percentiles (shaded area) and the PK observables (red dots) when

literature-accessible. If no time series were available, the model was
trained on AUC and Cmax static data. In parallel, Table 1 reports the
corresponding quantitative description of the mentioned

TABLE 1 Predicted versus observed AUC and Cmax in plasma and lung for the 6 drugs at the training and validation doses visualized in Figure 2.

Drug Dose
(mg/kg)

Train Val. Plasma AUC0-t
(mg*h/L)

Plasma CMAX (mg/L) Lung AUC0-t (μg*h/g) Lung CMAX (μg/g)

Obs. Pred. Obs. Pred. Obs. Pred. Obs. Pred.

INH 5 √ 9.93 12.38 (7.27–19.58) 4.91 5.03 (4.11–5.76) 9.7 11.97 (7.63–16.76) 4.44 5.48 (4.48–6.28)

25 √ 58.56 54.93 (35.01–76.86) 22.93 25.17
(20.57–28.83)

63.89 59.87 (38.17–83.78) 25.28 27.44
(22.42–31.43)

RPT 15 √ 503.7 562.38
(437.79–654.06)

16.94 16.66
(15.79–17.21)

NA 714.22
(555.99–830.65)

NA 21.16
(20.06–21.86)

20 √ 657.84 749.79
(583.83–872.07)

21.94 22.21
(21.06–22.95)

NA 952.24
(741.45–1,107.53)

NA 28.21
(26.74–29.15)

PZA 150 √ √ 346.1 358.37
(211.54–557.40)

161.2 121.81
(97.25–141.88)

262.8 231.01
(136.36–359.30)

93.6 78.52
(62.69–91.46)

MOX 100 √ 23.58 21.09 (11.82–36.96) 14.18 11.80 (7.79–16.74) NA 48.73 (27.31–85.38) NA 27.26
(18.00–38.66)

200 √ 34.84 42.19 (23.64–73.92) 20.04 23.60
(15.58–33.46)

NA 94.77 (65.16–149) NA 54.53
(41.67–72.65)

BDQ 25 √ √ 35.9 30.83 (16.31–57.08) 2.72 1.58 (0.94–2.49) 635.9 527.56
(279.06–976.65)

23.3 27.07
(16.00–42.54)

PRE 25 √ 50.9 62.16
(35.63–100.17)

6 6.18 (4.5–7.87) 139.9 170.32
(97.64–274.48)

17.8 16.94
(12.53–21.57)

100 √ 327.6 248.61
(142.52–400.70)

36.81 24.74
(18.28–31.49)

NA 681.19
(390.51–1,097.93)

NA 67.78
(50.09–88.27)

Median, five and ninety-five-percentile intervals are reported. AUC0-t refers to AUC0-24 for all drugs except INH and PZA for which an AUC0-8 was computed as in the data. Abbreviations: INH

- isoniazid; RPT - rifapentine; PZA - pyrazinamide; MOX - moxifloxacin; BDQ - bedaquiline; PRE - pretomanid.

FIGURE 3
Sensitivity analysis indexes color-coded by relevant PK metrics with row-aligned jittered dots representing the 11 drugs. Drug labels are omitted to
provide a unified analysis and improve the visualization.
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compounds, providing the median, five, and ninety-five percentiles
of the AUC and Cmax across all training and validation doses.
Comprehensive accuracy plots of the model-predicted AUC and
Cmax compared to the observed data for all compounds and dosages
are shown in Figure 2B. For a full visualization of the model’s
performance and a summary of observed and predicted PK indexes,
we refer to Supplementary Figures S1–S4 and Supplementary
Table S3.

The minimal design can correctly reconstruct the PK dynamics,
AUC, and Cmax for all the considered compounds, supporting
several drug classes (including diarylquinolines, rifamycins,
fluoriquinolones, nitroimidazooxazines, and carbostyril
derivative) and mechanisms of action (inhibition of cell wall
synthesis, fatty acids synthesis, ATP generation, DNA replication,
RNA synthesis, and cholesterol catabolism) at once with comparable
prediction accuracy. Aggregating both training and validation in the
statistics, 100% Cmax and 97.87% AUC lay within the two-fold
difference from the observed values, meeting the reference model-
fidelity criterium (Wagner et al., 2015). Only the plasma AUC of
GSK286 18 mg/kg, employed here for validation, exceeds the two-
fold values, whereas all other doses are well captured. Moreover,
89.36% of the AUC and 95.74% of Cmax are within 1.5-fold.

The local sensitivity analysis we performed on the model listed
AUC and Cmax as the most informative measures in terms of model
response to perturbations. Tmax proved to have a quasi-null
sensitivity, whilst PK profiles were well-summarized by AUC and
Cmax. As shown in Figure 3, sensitivity indexes spanned the
[-1.9557, 1.0264] and [-1.53757, 1.1453] intervals for AUC and
Cmax, respectively, with fup, BP, CL, BW, Kpli, Kplu, F, Ka, Kpot, and
Kpki resulting as the overall top ten sensitive parameters. The result
agrees with (Yau et al., 2020) on the pivotal role of fup and BP in
mechanistically driving the drug disposition as captured by our
physiological framework.

The sensitivity ranking points out the necessity of coherent
literature sources and shared databases to compute tissue-to-plasma
partition coefficients and to set a priori fixed parameters. In
particular, the analysis calls for a standardized procedure in the
experimental measurement of fup and BP to increase the reliability
and transversality of PBPK-based models. Furthermore, the high
sensitivity of the estimated parameter CL enhances the identifiability
achievement of our minimal design and the consequent reliability of
the results.

Support for experimental designs

After a broad validation and structural inspection of the
minimal PBPK model, we compared compound levels in the
systemic circulation and in the target tissue at literature human-
equivalent doses (Bartelink et al., 2017; Chen et al., 2017; Pieterman
et al., 2021; Mudde et al., 2022), discussing the impact of the
sampling site on predicted efficacy indexes at steady state. As
depicted in Figure 2, bedaquiline exhibited the greatest
penetration in the lungs, with a steady-state AUC more than
17 times higher compared to plasma, in accordance with the
literature (Irwin et al., 2016; Muliaditan and Della Pasqua, 2022;
Mehta et al., 2023). Ethambutol, delamanid, pretomanid, and
moxifloxacin also showed increased lung exposure, although to a

lesser extent, with lung-to-plasma ratios ranging from
approximately 2.3–4.6 (Strydom et al., 2019; Mehta et al., 2023).
OPC, G286, isoniazid, and rifapentine demonstrated comparable
lung and plasma AUCs (with ratios between 1.09 and 1.46), whereas
rifampicin and pyrazinamide showed a reduction of the ratio to
0.44 and 0.66, respectively, mirroring clinical results (Strydom et al.,
2019). Furthermore, most of the considered drugs showed a full
washout within a single dosage interval in both plasma and lung. In
contrast, as depicted in Supplementary Figure S6, model-based
simulations for RPT and BDQ suggested an accumulation in the
target tissue that stabilizes after 2 weeks of daily administration.

Motivated by the differential plasma-to-lung partitioning at
steady-state, a comprehensive compartmental evaluation of the
pharmacodynamic target attainments was conducted for each
drug at human equivalent doses. We analyzed four in vitro
potency metrics associated with various bacterial growth and
persistence conditions of wild-type M. tuberculosis
(Supplementary Table S1). Namely, we considered the minimum
inhibitory concentration (MIC50) to reduce bacterial growth by
50%, the minimum bactericidal concentration to kill 90% viable
bacteria under aerobic, nutrient-rich conditions (MBC90), the
minimum concentration required to inhibit 90% growth in
macrophage (MacroIC90), and the minimum bactericidal
concentration achieving a one-log kill of non-replicating bacteria
under hypoxic, nutrient-rich conditions (Wayne Cidal
concentration or WCC90) (Wayne and Hayes, 1996;
Lakshminarayana et al., 2015). Whilst the first two metrics are
aspecific, MacroIC90 and WCC90 are derived from media that
mimic fibrotic and hypoxic intra-lung portions, respectively, thus
representing harder-to-treat histopathological scenarios. In
accordance with the literature (Strydom et al., 2019; Ernest et al.,
2021; Mehta et al., 2023) the investigation has been carried out by
comparing total drug levels in plasma and lungs with chosen cutoffs,
leaving plasma-protein-binding correction factors out. To be noted,
the 10% fetal bovine serum (FBS) added to the medium employed
for MacroIC90 intrinsically accounts for protein binding limiting
possible binding-related biases (Robertson et al., 2021).

Table 2 collects the first, second, and third quartiles of the
simulated plasma and target tissue coverage at steady-state, i.e., time
above metrics, for the mice virtual population, while Supplementary
Figure S7 provides the corresponding full visualization. As shown in
Table 2, for 4 compounds—rifapentine, delamanid, OPC, and
G286—the efficacious time in plasma was a good indicator for
lungs, with 95% virtual population having relative discrepancies
between the two compartments smaller than 10% for all available
sterilizing and bactericidal metrics. Pretomanid, isoniazid, and
rifampicin showed a similar trend under all bacterial conditions
except WCC90, which resulted in around 48%, 12%, and −25%
relative change of the lung efficacious time against the systemic
circulation as reported in Table 2.

Time above targets was consistently higher at the disease-site-of-
action compared to plasma for moxifloxacin and ethambutol, with
an increase between 14%-48% and 45%–112%, respectively, across
the metrics. Notably, ethambutol did not exceed the
WCC90 concentration in plasma, but it did for 2.4 h on average
in lungs. In this sense, the most remarked mismatches, with null
efficacious hours in plasma and 24 in lungs, characterized PK/PD
indexes of bedaquiline, which would partner the hypothesis of a TB-
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specific lack of correlation between plasma PK and efficacy scores as
claimed in (Dartois, 2014). Together with rifampicin, pyrazinamide
was the only other compound with longer efficacious intervals in the
systemic circulation rather than at the target tissue (relative change
from ~8% to ~16%).

Overall, bedaquiline, rifapentine, rifampicin, delamanid, and
pretomanid showed a longer efficacious time than the other
compounds, achieving at least 17 h of coverage at the site of
action for all potency metrics (Table 2). In contrast,
moxifloxacin, pyrazinamide, and ethambutol had the worst
performances, with a maximum of ~5.5, 8, and 9 h only above
pharmacodynamic targets, respectively. Isoniazid and OPC
demonstrated 11 h of effectiveness in lungs on average, with
some exceptions depending on the potency metric used. For
instance, isoniazid was effective above the WCC90 threshold for
less than 2 h on average, while OPC maintained effectiveness above
the MacroIC90 threshold for two-thirds of the entire day. G286, for
which only MIC90 was available, resulted above this value for more
than 10 h both in plasma and lung.

By extension, we adapted previous pharmacodynamic analysis
to drug regimens, which is the common therapeutic setting for TB.
Although themodel does directly account for drug-drug interactions
(DDIs) since data were retrieved from single agent experiments, the
use of a virtual population with up to 30% variation in absorption
and clearance allows for covering the effects of mild-to-moderate

DDI in the dynamics and mitigating possible biases. We examined
the HRZE regimen, which is the gold standard treatment, and two
promising cocktails, BPaMZ and HPMZ, recently tested in the
SimpliciTB and Study 31/A5349 multicenter phase 3 trials
(Salinger et al., 2019; Tweed et al., 2019; Dorman et al., 2021).
We considered the reference protocol of simultaneous drug
administration routinely used in clinics and we worked under the
stringent setting with a drug being above the target at a certain time
if 95% of its VP fulfills the condition. Figure 4 compares the number
of compounds and the percentage of the dosing interval time in
which the three regimens reach the pharmacodynamic cutoffs at
steady-state. Consistently, the target attainment at the disease site-
of-action was found to be higher for both HPMZ and BPaMZ than
for HRZE, due to the superior performance of rifapentine,
bedaquiline, and pretomanid. With a 100% coverage scored in
lungs, both regimens ensure one compound to always reach the
critical concentration under all bacterial conditions, while for HRZE
this percentage can drop to around 50%. Apart from the
WCC90 assay, against which the target attainment of two
compounds simultaneously is guaranteed for around 55% of the
day only, BPaMZ overall contributes with two compounds being
effective the entire dosing interval, standing out with respect to the
one-third day signed by HPMZ andHRZE. Notably, within themost
hard-to-treat scenario mimicked here by the WCC90 metric,
BPaMZ and HPMZ outperformed the standard of care regimen

TABLE 2 Target attainment in plasma and lungs of the considered compounds at human equivalent doses in terms of hours and relative change between plasma
and lungs.

Comp. RPT RIF BDQ DEL PRE INH OPC G286
(*)

PZA MOX EMB

MIC50 Plasma 24
(24–24)

24 (24–24) 24
(24–24)

24
(24–24)

24
(21.7–24)

11.5
(7.2–18.3)

11.6
(8.1–17.2)

10.2
(7.2–14.3)

5.7 (3.7–9) 4.9
(3.6–6.9)

5.5
(3.8–7.9)

Lung 24
(24–24)

24 (24–24) 24
(24–24)

24
(24–24)

24 (24–24) 11.6
(7.3–18.6)

12.4
(8.6–18.4)

10.6
(7.5–15)

4.8
(3.1–7.6)

5.6
(4.1–7.8)

8.2
(6–11.8)

Δ (%) 0 0 0 0 0 0.87 6.9 3.92 −15.79 14.29 49.09

MBC90 Plasma 24
(24–24)

24 (24–24) 0 (0–0) 24
(24–24)

24
(21.3–24)

11.3
(7.1–18.1)

11.6
(8.1–17.2)

NA 6.2 (4–9.8) 4.6
(3.4–6.4)

6
(4.2–8.6)

Lung 24
(24–24)

24
(22.9–24)

24
(21.8–24)

24
(24–24)

24 (24–24) 11.5
(7.2–18.3)

12.4
(8.6–18.4)

NA 5.3
(3.4–8.4)

5.3
(3.9–7.4)

8.7
(6.3–12.5)

Δ(%) 0 0 inf 0 0 1.77 6.9 NA −14.52 15.22 45

MacroIC90 Plasma 24
(24–24)

24
(20.3–24)

24
(21–24)

24
(22.4–24)

24 (19–24) 12.2
(7.6–19.5)

17.4
(11.8–24)

NA 9
(5.8–14.3)

3.2
(2.4–4.6)

2.7
(1.3–4.2)

Lung 24
(24–24)

23.6
(16.8–24)

24
(24–24)

24
(24–24)

24
(22.4–24)

12.3
(7.7–19.7)

18.1
(12.3–24)

NA 8.2
(5.2–12.9)

3.9
(2.9–5.5)

5.7
(4–8.2)

Δ(%) 0 −1.66 0 0 0 0.82 4.02 NA −8.89 21.88 111.11

WCC90 Plasma 24
(24–24)

22.8
(15.3–24)

0 (0–5.60) NA 12.6
(8.3–19.4)

1.7
(0.9–2.9)

NA NA 5.8
(3.7–9.1)

1.9
(1.3–2.9)

0 (0–0)

Lung 24
(24–24)

17.10
(11.2–24)

24
(24–24)

NA 18.4
(12.6–24)

1.9
(1.1–3.1)

NA NA 4.9
(31–7.7)

2.8
(2–3.9)

2.4
(1.1–3.8)

Δ (%) 0 −25 inf NA 47.62 11.76 NA NA −15.52 47.37 inf

The table shows the median time in which the compounds are above the PDmetrics and the corresponding five and ninety-five percentiles values computed from the virtual population. NA: not

available; inf: result of the relative error formula when the baseline is 0. For GSK-2556286, only MIC90 was available and has been used in place of the MIC50 for this analysis. Abbreviations:

RPT—rifapentine; RIF—rifampicin; BDQ—bedaquiline; DEL—delamanid; PRE—pretomanid; INH—isoniazid; OPC - OPC-167832; G286 - GSK2556286; PZA—pyrazinamide;

MOX—moxifloxacin; EMB—ethambutol; MIC50 - minimum inhibitory concentration to reduce bacterial growth by 50%; MBC90 - the minimum bactericidal concentration to kill 90% viable

bacteria under aerobic, nutrient-rich conditions; MacroIC90 - the minimum concentration required to inhibit 90% growth in macrophage; WCC90 - minimum bactericidal concentration

achieving a one-log kill of non-replicating bacteria under hypoxic, nutrient-rich conditions; Comp—compartment.
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with an around two-fold longer time interval counting all regimen
compounds above the efficacy threshold.

Overall, these preclinical results suggest that the latest regimens
are likely to achieve faster bacterial burden reduction through a
longer effective time at the site-of-action, confirming the clinical
evidence.

Discussion

Recently, minimal-PBPK models have made an impact in
pharmacometrics as powerful tools to bridge top-down and
bottom-up approaches (Cao and Jusko, 2012; Mavroudis et al.,
2019; Bloomingdale et al., 2021; Mehta et al., 2023). By retaining
essential compartments for absorption, metabolism, and clearance,
our mPBPK has demonstrated its capability to accurately predict the
PK dynamics of eleven anti-TB compounds with diverse MOAs and
across several drug classes, regardless of their chemical
characteristics or development stage. Acknowledging the

significance of target-centric approaches, the model offers
valuable insights into the quantitative aspects of lung PK in mice,
which are proven to be crucial for optimizing dose-finding and
target attainment studies. As there can be significant differences
between plasma and lung levels for certain drugs, pulmonary-based
experimental protocols could enhance drug exposure at the site of
action, preventing resistance mechanisms by targeting different
bacterial subpopulations simultaneously (Ernest et al., 2021;
Landersdorfer and Nation, 2021; Allué-Guardia et al., 2022;
Chesov et al., 2022; Mehta et al., 2023). In this regard, the
considered four in vitro potencies, namely MIC50, MBC90,
MacroIC90, and WCC90, allowed a comprehensive investigation
of the pharmacodynamic properties of each compound against both
replicating and persistent bacteria to cover standard and hard to
treat TBrelated infections. (Lakshminarayana et al., 2015).

At human-equivalent doses, bedaquiline, rifapentine,
delamanid, pretomanid, and rifampicin showed the top
5 coverage at the site-of-action, with most metrics met for almost
the entire day. These results were well-recapitulated when drugs

FIGURE 4
Number of compounds and percentage of time above the different efficacy targets in plasma and lungs for the regimens HRZE, BPaMZ, and HPMZ.
MIC50 stands for theminimum inhibitory concentration to reduce bacterial growth by 50%, whileMBC90, MacroIC90, andWCC90 refer to theminimum
bactericidal concentration to kill 90% viable bacteria under aerobic, nutrient-rich conditions, within the macrophage, and under hypoxic, nutrient-rich
condition, respectively.
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were simulated within regimens, with HPMZ and BPaMZ
combinations displaying higher combined target attainment
compared to reference HRZE. These findings, in line with clinical
results, suggest that these Phase 3 regimens can achieve a longer
effective time for more compounds, providing better PD indexes
against different bacteria populations. In terms of regimen
experimental protocols, model-based simulations indicate that
compounds with a long half-life in the lungs, such as
bedaquiline, rifapentine, or pretomanid, ensure adequate coverage
along the whole therapeutic window and may allow the staggered
administration of remaining components. Such a staggered
approach could be implemented to reduce the risk of drug-drug
interactions (DDIs) or, in large-scale pre-clinical settings, to allow
scientists to schedule experiments more effectively or conveniently.
Overall, these results advocate for the use of mechanistic and semi-
mechanistic PK models, like PBPK or our mPBPK, that can quantify
the achieved exposure in the site-of-action. These models may
contribute to better tuning novel regimens improving their
design and effectiveness or for dose optimization to achieve
optimized coverage of efficacious windows (Ernest et al., 2021;
Muliaditan et al., 2022; Mehta et al., 2023).

Our model can provide novel quantitative perspectives of the
disposition of anti-TB drugs in mice. However, certain limitations
need to be addressed. Firstly, the model currently lacks a detailed
description of intra-pulmonary TB lesions, since most available
datasets in the literature are based on BALB/c mice, which do
not develop TB granulomas. As a result, the model was designed
to support drug disposition up to the lung compartment to maintain
consistency across the analysis. To improve the model, we plan to
incorporate a parsimonious description of drug diffusion into TB
pulmonary cellular lesions and caseum, utilizing promising C3HeB/
FeJ mice (Bouté et al., 2017) or New ZealandWhite rabbit datasets to
validate the updated design. Indeed, the model would benefit of
more standardized data sources including only infected animals.

Secondly, the model could be enhanced to consider enzyme-
mediated reactions to account for drug-to-drug interactions, which
are known to affect the PK profiles of certain compounds when
administered together. The inclusion of enzyme-dependent
reactions would also improve the target attainment analysis and
increase the model performance on drugs that may scale non-
linearly at higher doses. However, this would deviate from the
minimal design we are interested in and would significantly
increase the number of parameters.

Thirdly, the model could be extended to include the description
of active metabolites, which may contribute to capturing multi-
phasic clearances and may be relevant for efficacy investigation.
Within the analyzed drug set, only the N-monodesmethyl
metabolite (M2) of BDQ would be worth of specific modeling
efforts as it is active and abundant, while the efficacy of other
catalyzed products is already implicitly recapitulated in the potency
metrics of the corresponding parental drugs. Here, we partnered
with previous literature by choosing a unique minimal model
diagram that can reconstruct all the PK profiles of the included
parental drugs only, leaving the inclusion of M2 metabolite for
future model extension and refinement.

Last, the model translational capabilities are limited to one species
only. Although mice have been workhorses in TB preclinical and
translational research, accounting for other preclinical organisms,

such as rabbits, could be beneficial to empower the predictability of
the platform. In this regard, leveraging the present results, we first plan
to develop a rabbit-dedicated version of the mPBPK model to draw
model scalability relationships and assess species dependencies. Derived
information will be then employed to upgrade PK predictions to
humans, delivering a final clinical rendering of the mPBPK
framework and a full interactive translational tool.

Despite these limitations, which may guide further
developments and refinements, our all-in-one model delivers
a convenient tool for comparing multiple compounds,
promoting a system view in terms of tissue penetration and
efficacy. The model requires a limited amount of prior
knowledge and has a faster simulation time compared to full-
body PBPK models, making it suitable for supporting large-scale
what-if analysis, pre-clinical scenarios simulations, and clinical-
oriented optimization queries on anti-TB compounds and
regimens. It provides a flexible tool for model-informed drug
design pipelines to speed up the development of novel anti-
tuberculosis agents from bench to clinic.
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