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Abstract
A property of weak stationarity of a matrix valued differential form at superdensity points 
of its vanishing set is proved. This result is then applied in the context of the Maurer–Car-
tan equation.

Keywords Superdensity · Non-integrable exterior differential systems · Non-solvable 
systems of PDEs · Maurer–Cartan equation

Mathematics Subject Classification 58A15 · 58A10 · 28A75 · 58A30

1 Introduction

The main result of this work (cf. Theorem 3.1) establishes a property of weak stationarity 
of a matrix valued continuous differential form at the superdensity points of its vanishing 
set. To make this statement more understandable, we now recall very briefly some defini-
tions and properties (referring the reader to Section 2, for a more complete presentation). 
Let us consider an M-dimensional Ck manifold M and recall that a matrix valued Cp differ-
ential h-form on M is a square matrix whose entries are Cp differential h-forms on M . The 
classical formalism for differential forms, i.e., wedge product, exterior differentiation, inte-
gration and pullback, extends naturally to matrix valued differential forms (cf. Section 2.2). 
In this extended formalism it is easy to introduce a notion of distributional exterior deriva-
tive, which will be denoted by � (cf. Definition 3.1). We also recall that, if E is a subset of 
M , then P ∈ M is said to be an m-density point of E relative to M if there is a C1 chart 
(W,Φ) such that P ∈ W and

where LM and Br(Φ(P)) are, respectively, the Lebesgue measure on ℝM and the ball of 
radius r centered at Φ(P) . We observe that this definition does not depend on the choice of 
the coordinate chart (cf. Section 2.4).

L
M(Br(Φ(P)) ⧵Φ(E ∩W)) = o(rm) ( as r → 0+),
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We are now able to state more precisely than before the result in Theorem 3.1: Let M  
be an M -dimensional  C2  manifold and let �  be a matrix valued C0  differential form on M  
which has the distributional exterior derivative ��  of class C0 .  Then we have  (��)Q = 0 ,  
whenever Q  is an (M + 1) -density point of  {P ∈ M | �P = 0}.

In Section 4, by a simple application of Theorem 3.1, we provide a new proof of the 
following property in the context of Frobenius theorem about distributions (cf. [5, Theo-
rem 1.3] and [6, Corollary 5.1]): Let  D  be a non-involutive C1  distribution of rank M  on 
a C2  manifold N  .  Then, for every M- dimensional C1  open submanifold M  of N  ,  the 
tangency set of M  with respect to D  has no (M + 1)- density points relative to M.

Section 5 presents an application of Theorem 3.1 in the context of Maurer–Cartan equa-
tion. To explain what we are talking about, let us first consider a matrix Lie subgroup G of 
Gl(L,ℝ) with Lie algebra � and denote its Maurer–Cartan form by ΓG . Recall that ΓG is a 
left-invariant �-valued smooth differential 1-form on G and

We have the following well-known theorem, due to Cartan (cf [9, Theorem 1.6.10]):  Let 
M  be a smooth manifold and let �  be a �- valued smooth differential 1- form on M  veri-
fying the Maurer–Cartan equation

 Then for all P ∈ M  there exist a neighborhood U  of P  and a smooth map f ∶ U → G  
such that  f ∗ΓG = �|U.

Relatively to this context, we will provide a structure result for the sets

under the assumption that � does not verify the Maurer–Cartan equation (1.1). In particu-
lar, let M be an M-dimensional C2 manifold and let � be a ℝL×L-valued C1 differential 
1-form on M such that (d�)Q ≠ −(� ∧ �)Q for all Q ∈ M . Obviously this condition pre-
vents the possibility of � being locally a C1 pullback of ΓG (cf. Remark 5.1). More inter-
esting information on the content of {f ∗ΓG = �|U} is given in Corollary 5.2, namely:  If 
U ⊂ M  is open and f ∶ U → G  is a map of class C1 ,  then U  does not contain (M + 1)

- density points of {f ∗ΓG = �|U}.

2  Basic notation and notions

2.1  Basic notation

The coordinates of ℝM are denoted by (x1,… , xM) so that dx1,… , dxM is the standard basis 
of the dual space of ℝM . For simplicity, we set Di ∶= �∕�xi and dx ∶= dx1 ∧⋯ ∧ dxM . 
If p is any positive integer not exceeding M, then I(M,  p) is the family of integer 
multi-indices � = (�1,… , �p) such that 1 ≤ 𝛼1 < ⋯ < 𝛼p ≤ M . Given a generic map 
Φ ∶ A → ℝ

n and v ∈ ℝ
n , we set for simplicity {Φ = v} ∶= {P ∈ A |Φ(P) = v} . Let LM 

and Hs denote, respectively, the Lebesgue measure and the s-dimensional Hausdorff 
measure on ℝM . The open ball of radius r centered at x ∈ ℝ

M will be denoted by Br(x) . 
Let ℝL×L be the vector space of all L × L real matrices and Gl(L,ℝ) be the Lie group of 

dΓG = −ΓG ∧ ΓG.

(1.1)d� = −� ∧ �.

{P ∈ U | (f ∗ΓG)P = �P}
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nondegenerate matrices in ℝL×L . The Lie algebra of Gl(L,ℝ) will be denoted by ��(L,ℝ) . 
Since ℝL×L ≃ ℝ

L2 we can denote the natural coordinates on Gl(L,ℝ) by the matrix nota-
tion (zij).

2.2  Manifolds, differential forms

In relation to this topic, we will adopt the notations commonly used in the main biblio-
graphic references (see, e.g., [10, 12]). We report here, quickly, just a few of them.

Let M be an M-dimensional Ck manifold. Then a Ck differential h-form (respectively, 
Ck
c
 differential h-form, i.e., Ck differential h-form with compact support) on M is a map 

� ∶ M → ΛhT∗M with the following property: If

is any local representation of � , then f� is of class Ck (respectively,  Ck
c
 , i.e., Ck with com-

pact support). For any given P ∈ M , we will use the standard notation �P instead of �(P) . 
As we did for real-valued maps, let us set {� = 0} ∶= {P ∈ M |�P = 0} for simplicity. 
The set of all Ck differential h-forms (respectively, Ck

c
 differential h-forms) on M is denoted 

by CkF
h(M) (respectively, Ck

c
F

h(M)).
Let M be a Ck imbedded submanifold of a Ck manifold N  and let � ∶ M ↪ N  be the 

inclusion map. If � ∈ Ck−1F
h(N) , then Ck−1 differential h-form �∗� (i.e., the restriction of 

� to M ) will be denoted by �|M.
We also need matrix-valued differential forms, i.e., matrices whose entries are differen-

tial forms. If M is a Ck manifold and L is a positive integer then MatLC
pF

h(M) is the set 
of all L × L matrices

For the sake of convenience, we will sometimes (e.g., in Section  5 below) refer to the 
members of MatLC

pF
h(M) by simply calling them Cp differential h-forms as well. The 

subset of MatLC
pF

h(M) whose members have all the entries in Cp
cF

h(M) is denoted by 
MatLC

p
cF

h(M) . If � = (�(ij)) ∈ MatLC
p
cF

h(M) then we set supp(�) ∶= ∪i,jsupp(�ij).
If � = (�(ij)) ∈ MatLC

pF
h(M) , then we define

for all P ∈ M and v1,… , vh ∈ TPM . If p ≥ 1 , we define the exterior differentiation 
d ∶ MatLC

pF
h(M) → MatLC

p−1F
h+1(M) by

Observe that d is linear and d◦d = 0 . If N  is another Ck manifold and f ∶ M → N  is a Cp 
map, the pullback

∑
�∈I(M,h)

f�dx� (dx� ∶= dx�1 ∧⋯ ∧ dx�h )

(�(ij)) =

⎛⎜⎜⎝

�(11) ⋯ �(1L)

⋮ ⋱ ⋮

�(L1) ⋯ �(LL)

⎞⎟⎟⎠
, with �(ij) ∈ CpF

h(M).

�P ∶= (�
(ij)

P
), �P(v1,… , vh) ∶= (�

(ij)

P
(v1,… , vh))

d(�(ij)) ∶= (d�(ij)).

f ∗ ∶ MatLC
pF

h(N) → MatLC
p−1F

h(M)
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is defined as follows

The exterior product of two matrix-valued differential forms

is the matrix-valued differential form � ∧ � ∈ MatLC
pF

l+m(M) whose entries are defined 
by

A trivial computation shows that differentiating the exterior product of matrix-valued dif-
ferential forms yields the usual formula (provided k ≥ 1):

A matrix-valued differential form � = (�(ij)) ∈ MatLC
0F

M(M) is said to be integrable on 
M if every �(ij) is integrable on M . In this case we set

Let us recall that a C1 Riemannian manifold (M, g) with the associated Riemannian dis-
tance function is a metric space whose topology coincides to the original manifold topol-
ogy, cf. [10, Theorem 13.29]. Hence one can define the corresponding s-dimensional Haus-
dorff measure Hs

g
 , cf. [8, Section 2.10.2], [13, Chapter 12]. The open metric ball of radius r 

centered at P ∈ M will be denoted by Bg(P, r).

2.3  Hausdorff measure on manifolds

For the convenience of the reader, we recall the following well-known properties of the 
Hausdorff measure Hs

g
 on a C1 Riemannian manifold (N, g):

• If s = dimN  , then Hs
g
(B) = Vg(B) for all Borel sets B ⊂ N  , where Vg denotes the 

standard volume form of (N, g) , cf. [8, Section 3.2.46], [13, Proposition 12.6].
• If M is a C1 imbedded submanifold of N  and gM denotes the induced metric, then one 

has Hs
gM

(B) = H
s
g
(B) for all Borel sets B ⊂ M , cf. [13, Proposition 12.7].

• If g denotes the standard Euclidean metric on ℝN , then one obviously has Hs
g
= H

s . In 
particular, HN

g
 is the N-dimensional Lebesgue measure.

Another property which follows readily from [8, Section 3.2.46] is this one.

Proposition 2.1 Let N  be a C1 manifold, E ⊂ N  and s ∈ [0,+∞) . The following are 
equivalent: 

(1) For every C1 chart (W,Φ) of N  , one has Hs(Φ(W ∩ E)) = 0.

f ∗(�(ij)) ∶= (f ∗�(ij)).

� = (�(ij)) ∈ MatLC
pF

l(M), � = (�(ij)) ∈ MatLC
pF

m(M)

(� ∧ �)(ij) ∶=

L∑
q=1

�(iq) ∧ �(qj).

d(� ∧ �) = d� ∧ � + (−1)l� ∧ d�.

∫
M

� ∶=

(
∫
M

�(ij)

)
.
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(2) For every C1 Riemannian metric g on N  , one has Hs
g
(E) = 0.

(3) There exists a C1 Riemannian metric g on N  such that Hs
g
(E) = 0.

2.4  Superdensity

Also the following proposition is a consequence of [8, Section 3.2.46], cf. [5, Proposi-
tion 3.3].

Proposition 2.2 Let N  be an N-dimensional C1 manifold, E ⊂ N  , P ∈ N  and 
m ∈ [N,+∞) . The following are equivalent: 

(1) There is a C1 chart (W,Φ) of N  such that P ∈ W and 

(2) For every C1 Riemannian metric g on N  , one has 

(3) There exists a C1 Riemannian metric g on N  such that 

Definition 2.1 If any or, equivalently, all of the conditions of Proposition 2.2 are satisfied, 
then we say that P is an m-density point of E (relative to N  ). The set of all m-density points 
of E is denoted by E(m) , cf. [5].

Remark 2.1 Let N  and E be as in Proposition 2.2. The following facts occur:

• Every interior point of E is an m-density point of E , for all m ∈ [N,+∞) . Thus, 
whenever E is open, one has E ⊂ E

(m) for all m ∈ [N,+∞).
• If N ≤ m1 ≤ m2 < +∞ , then E(m2) ⊂ E

(m1) . In particular, one has E(m) ⊂ E
(N) for all 

m ∈ [N,+∞).
• Let {Ej}j∈J be any family of subsets of N  and m ∈ [N,+∞).

– One has 

– If J is finite, then 

– If J is countable infinite, then (2.1) can fail to be true, e.g., N = ℝ
2 and 

L
N(Br(Φ(P)) ⧵Φ(E ∩W)) = o(rm) ( as r → 0+).

H
N
g
(Bg(P, r) ⧵ E) = o(rm) ( as r → 0+).

H
N
g
(Bg(P, r) ⧵ E) = o(rm) ( as r → 0+).

(⋂
j∈J

Ej

)(m)

⊂
⋂
j∈J

E
(m)

j
;

(2.1)
(⋂

j∈J

Ej

)(m)

=
⋂
j∈J

E
(m)

j
;
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Remark 2.2 For convenience of the reader, we recall some known results in the special case 
when N = ℝ

N (which actually could be easily generalized):

• If E ⊂ ℝ
N is LN-measurable then: x ∈ E(N) if and only if x is a Lebesgue density 

point of E, hence LN(EΔE(N)) = 0 . In particular, it follows that (E(N))(N) = E(N).
• If E ⊂ ℝ

N , then E(m) is LN-measurable, for all m ∈ [N,+∞) (cf. [3, Proposition 3.1]).
• Every open set U ⊂ ℝ

N can be approximated in measure by uniformly N-dense 
closed subsets of U . More precisely: For all C < L

N(U) there exists a closed set 
F ⊂ U such that LN(F) > C and F(m) = � for all m > N (obviously one has F(N) ⊂ F 
and LN(F ⧵ F(N)) = 0 ), cf. [4, Proposition 5.4].

• Let N ≥ 2 and E ⊂ ℝ
N be a set of finite perimeter, so that HN−1(𝜕∗E) < +∞ (where 

�∗E is the reduced boundary of E, cf. [11, Theorem 15.9]). Then LN(E ⧵ E(m0)) = 0 , 
with 

 cf. Theorem 1 in [7, Section 6.1.1] (compare also [2, Lemma 4.1]). Moreover, the num-
ber m0 is the maximum order of density common to all sets of finite perimeter. More 
precisely, the following property holds (cf. [3, Proposition 4.1]): For all m > m0 there 
exists a compact set Fm of finite perimeter in ℝN such that LN(Fm) > 0 and F(m)

m
= �.

3  The main result

Throughout this section M and k will denote an M-dimensional manifold and the regu-
larity class of M , respectively. We will assume k ≥ 1 , if not otherwise stated.

Remark 3.1 Let l ≤ M and � ∈ MatLC
0F

l(M) . Then � = 0 if and only if

for all � ∈ MatLC
k
c
F

M−l(M).

From Remark 3.1, we get immediately the following proposition.

Proposition 3.1 Let � ∈ MatLC
0F

h(M) , with h ≤ M − 1 , satisfy the following prop-
erty: there exists � ∈ MatLC

0F
h+1(M) such that ∫

M
� ∧ d� = ∫

M
� ∧ � , for all 

� ∈ MatLC
k
c
F

M−h−1(M) . Then � is uniquely determined.

Definition 3.1 Let the assumptions of Proposition 3.1 be verified. Then we say that � has 
the distributional exterior derivative (DED) in MatLC

0F
h+1(M) . The latter is defined as 

�� ∶= (−1)h+1� , so that

Ej ∶= B1∕j(O) (j = 1, 2,…).

m0 ∶= N + 1 +
1

N − 1
,

∫
M

� ∧ � = 0
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for all � ∈ MatLC
k
c
F

M−h−1(M).

Remark 3.2 Let l be an integer such that 1 ≤ l ≤ k . Then a standard approximation argu-
ment shows that MatLC

k
c
F

M−h−1(M) is dense in MatLC
l
c
F

M−h−1(M) , with respect to 
Cl topology. Hence in Definition 3.1 we can equivalently assume that (3.1) holds for all 
� ∈ MatLC

l
c
F

M−h−1(M).

The following propositions state some expected properties. We observe that the first 
three are trivial.

Proposition 3.2 If � ∈ MatLC
0F

h(M) has the DED in MatLC
0F

h+1(M) and U ⊂ M is 
open, then �|U has the DED in MatLC

0F
h+1(U) and �(�|U) = (��)|U.

Proposition 3.3 If � ∈ MatLC
1F

h(M) then � has the DED in MatLC
0F

h+1(M) and 
�� = d�.

Proposition 3.4 Let �,� ∈ MatLC
0F

h(M) have the DED in MatLC
0F

h+1(M) . Then, for 
all a, b ∈ ℝ , the matrix-valued differential form a� + b� ∈ MatLC

0F
h(M) has the DED in 

MatLC
0F

h+1(M) and �(a� + b�) = a �� + b ��.

Proposition 3.5 Let M be of class Ck , with k ≥ 2 . If � ∈ MatLC
0F

h(M) has the DED in 
MatLC

0F
h+1(M) , then �� has the DED in MatLC

0F
h+2(M) and �(��) = 0.

Proof Let � ∈ MatLC
0F

h(M) have the DED in MatLC
0F

h+1(M) . Then, by Definition 3.1 
and Remark 3.2 (with l = k − 1 ), we obtain

for all � ∈ MatLC
kF

M−h−2(M) .   ◻

Remark 3.3 Combining Proposition 3.3 and Proposition 3.5, we obtain the following 
property: If k ≥ 2 and � ∈ MatLC

1F
h(M) , then d� has the DED in MatLC

0F
h+2(M) and 

�(d�) = 0.

Proposition 3.6 Let M be of class Ck , with k ≥ 2 . Moreover consider a C2 manifold N  , a 
C1 map f ∶ M → N  and � ∈ MatLC

1F
h(N) , with h ≤ M − 1 . Then f ∗� has the DED in 

MatLC
0F

h+1(M) and �(f ∗�) = f ∗(d�).

Proof Consider � ∈ MatLC
k
c
F

M−h−1(M) . Then for all x ∈ supp(�) there exists an open 
set V(x) ⊂ M and a countable family {f (x)

j
} ⊂ C2(V(x),N) such that f (x)

j
→ f  (as j → ∞ ) 

with respect to C1(V(x),N) topology. Since supp(�) is compact, there exists a finite set 
{x1,… , xN} ⊂ supp(𝜑) such that

(3.1)∫
M

� ∧ d� = (−1)h+1 ∫
M

�� ∧ �

∫
M

�� ∧ d� = (−1)h+1 ∫
M

� ∧ d(d�) = 0 = (−1)h+2 ∫
M

0 ∧ �

(3.2)supp(𝜑) ⊂ V ∶= ∪iV
(xi).
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By [12, Theorem 2.2.14] we can find {𝜂1,… , 𝜂N} ⊂ C2(M) such that

If we extend every f (xi)
j

 arbitrarily to all of M and define

then fj|V → f |V (as j → ∞ ) with respect to C1(V,N) topology. Moreover we have

Hence, letting j → +∞ , we obtain

that is (by (3.2))

The conclusion follows from the arbitrariness of � .   ◻

Let us now state and prove the main result.

Theorem  3.1 Let M be of class Ck , with k ≥ 2 . Moreover let h ≤ M − 1 and consider 
� ∈ MatLC

0F
h(M) which has the DED in MatLC

0F
h+1(M) . If define

then (��)Q = 0 for all Q ∈ Z
(M+1)
�

.

Proof First of all, set for simplicity Br ∶= Br(0) ⊂ ℝ
M and let � ∈ (0, 1) . Then consider 

g ∈ C2
c
(B1) such that 0 ≤ g ≤ 1 , g|B�

≡ 1 and

For r > 0 , define gr ∈ C2
c
(Br) as

and observe that (for all x ∈ Br and i = 1,… ,M)

Now consider an arbitrary Q ∈ Z
(M+1)
�

 and let (U,Φ) be a C2 coordinate chart on M such 
that Q ∈ U and Φ(Q) = 0 ∈ ℝ

M . Observe that

𝜂i ≥ 0, supp(𝜂i) ⊂ V
(xi),

∑
i

𝜂i|V = 1.

fj ∶=
∑
i

�if
(xi)

j
∈ C2

c
(M,N) (j = 1, 2,…)

∫
V

f ∗
j
(d�) ∧ � = ∫

V

d(f ∗
j
�) ∧ � = (−1)h+1 ∫

V

(f ∗
j
�) ∧ d�.

∫
V

f ∗(d�) ∧ � = (−1)h+1 ∫
V

(f ∗�) ∧ d�

∫
M

f ∗(d�) ∧ � = (−1)h+1 ∫
M

(f ∗�) ∧ d�.

Z� ∶= {P ∈ M | �P = 0}

|Dig| ≤ 2

1 − �
(i = 1,… ,M).

gr(x) ∶= g
(
x

r

)
, x ∈ Br

(3.3)|Digr(x)| = 1

r

||||Dig
(
x

r

)|||| ≤
2

r(1 − �)
.



1419Weak stationarity of a matrix valued differential form at…

1 3

by Definition 2.1.
Now set for simplicity U ∶= Φ(U) and let � ∈ MatLC

2F
M−1−h(U) be chosen arbitrarily. 

Obviously there must be (F(ij)

�
) ∈ MatLC

0F
0(U) such that

hence, for all i, j, we have (provided r is small enough)

Recalling (3.3), we obtain

On the other hand, the triangle inequality yields

It follows that

(3.4)L
M(Br ⧵Φ(Z� )) = o(rM+1) ( as r → 0+)

(3.5)[(Φ−1)∗(��)] ∧ � = (F
(ij)

�
dx),

|||||�Br

gr F
(ij)

�
dx
|||||
=
|||||�Br

gr ([(Φ
−1)∗(��)] ∧ �)(ij)

|||||
=
|||||�Φ−1(Br)

(gr◦Φ) ((��) ∧ (Φ∗�))(ij)
|||||

=
|||||�Φ−1(Br)

((��) ∧ [(gr◦Φ)Φ∗�])(ij)
|||||

=
|||||�Φ−1(Br)

(� ∧ d[(gr◦Φ)Φ∗�])(ij)
|||||

≤ |||||�Φ−1(Br)⧵Z�

(� ∧ d(gr◦Φ) ∧ Φ∗�)(ij)
|||||

+
|||||�Φ−1(Br)⧵Z�

(gr◦Φ) (� ∧ Φ∗(d�))(ij)
|||||

=
|||||�Br⧵Φ(Z� )

([(Φ−1)∗�] ∧ dgr ∧ �)(ij)
|||||

+
|||||�Br⧵Φ(Z� )

gr ([(Φ
−1)∗�] ∧ d�)(ij)

|||||
.

|||||�Br

gr F
(ij)

�
dx
|||||
≤ CL

M(Br ⧵Φ(Z� ))

(
1

r(1 − �)
+ 1

)
.

|||||�Br

gr F
(ij)

�
dx
|||||
≥ |||||�B�r

gr F
(ij)

�
dx
|||||
−
|||||�Br⧵B�r

gr F
(ij)

�
dx
|||||

=
|||||�B�r

F
(ij)

�
dx
|||||
−
|||||�Br⧵B�r

gr F
(ij)

�
dx
|||||
.
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Then, by first letting r → 0+ (and recalling (3.4)) and then letting � → 1− , we obtain 
F
(ij)

�
(0) = 0 (for all i, j). The conclusion follows from the identity (3.5) and the arbitrariness 

of � .   ◻

The following simple corollary of Theorem 3.1 will be useful below.

Corollary 3.1 Let M and N  be two C2 manifolds, let f ∶ M → N  be a C1 map and 
� ∈ MatLC

1F
h(N) , with h + 1 ≤ M ∶= dimM . Moreover consider � ∈ MatLC

0F
h(M) 

which has the DED in MatLC
0F

h+1(M) and define

Then (��)Q = (f ∗d�)Q , for all Q ∈ A
(M+1)

f ,�,�
.

Proof Define � ∶= � − f ∗� ∈ MatLC
0F

h(M) and observe that Af ,�,� = Z� , hence

Moreover, by Proposition 3.4 and Proposition 3.6, the form � has the distributional exterior 
derivative in MatLC

0F
h+1(M) and

The conclusion follows from Theorem 3.1.   ◻

4  Applications I

From Corollary 3.1 we can easily derive [6, Theorem  3.1], which states a low-density 
property for the integral set of a submanifold with respect to a non-integrable exterior dif-
ferential system. Before showing this application, let us briefly set the context. Consider 
a C2 manifold N  and an arbitrary family O of C1 differential forms on N  . Moreover let 
f ∶ U ⊂ ℝ

M
→ N  (where U is open), be any imbedding of class C1 and define

Then [6, Theorem 3.1] states that

Now let VM(O)y denote the set of all M-dimensional integral elements of O at y ∈ N  (cf. 
Definition 1.1 in Section 1 of [1, Chapter III] and the first definition in Section 1 of [14, 
Chapter III]) and assume that

Af ,�,� ∶= {P ∈ M |�P = (f ∗�)P}.

A
(M+1)

f ,�,�
= Z

(M+1)
�

.

�� = �� − f ∗d�.

I(f ,O) ∶=
⋂
�∈O

{f ∗� = 0}.

U ∩ I(f ,O)(M+1) ⊂
⋂
𝜔∈O

{f ∗d𝜔 = 0}.
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We naturally expect that condition (4.1) prevents the existence of interior points in I(f ,O) , 
but the structure of I(f ,O) can be described more precisely by using the notion of super-
density. Indeed in [6, Corollary 3.2], which follows trivially from [6, Theorem  3.1], we 
have proved that one has

We can finally apply Corollary 3.1 to prove the following result, which in turn served to 
prove [6, Theorem 3.1] very easily.

Theorem 4.1 (Theorem 3.2 of [6])

Let � ∈ C1F
h(N) and f ∶ U ⊂ ℝ

M
→ N  (where U is open) be a C1 map. Then

for every � ∈ C1F
h−1(U).

Proof Observe that � ∶= (d�) ∈ Mat1C
0F

h(U) has the DED in Mat1C
0F

h+1(U) and 
�� = 0 , by Remark 3.3. Hence and by Corollary 3.1 (with L = 1 ) we get (f ∗d�)Q = 0 for 
all Q ∈ A

(M+1)

f ,(�),�
= U ∩ {d� = f ∗�}(M+1) .   ◻

Remark 4.1 If O is a family of linearly independent C1 differential 1-forms defining a distri-
bution D of rank M on N  (cf. [10, Chapter 19]), then, for all y ∈ N  , the M-plane Dy is the 
only M-dimensional integral element of O at y, i.e., VM(O)y = {Dy} . Hence:

• The set I(f ,O) coincides with the tangency set of f(U) with respect to D;
• The condition (4.1) is verified if and only if D is non-involutive at each point of N  , cf. [10, 

Proposition 19.8].

Thus the structure identity (4.2) proves that if D is non-involutive at each point of N  then 
the following property holds: For every M-dimensional C1 open submanifold M of N  , the 
tangency set of M with respect to D has no (M + 1)-density points relative to M , cf. [5, Theo-
rem 1.3] and [6, Corollary 5.1].

5  Applications II, The context of Maurer–Cartan form

Let us consider any matrix Lie subgroup G of Gl(L,ℝ) with Lie algebra � ⊂ ��(L,ℝ) and 
let � ∶ G → Gl(L,ℝ) be the inclusion map. Then let � ∈ MatLC

∞F
1(Gl(L,ℝ)) be defined at 

z = (zij) ∈ Gl(L,ℝ) as

and define the Maurer–Cartan form of G as

(4.1)For all y ∈ N and Σ ∈ VM(O)y there is � ∈ O such that (d�)y|Σ ≠ 0.

(4.2)U ∩ I(f ,O)(M+1) = �.

U ∩ {d𝜆 = f ∗𝜔}(M+1) ⊂ {f ∗d𝜔 = 0}

�z ∶= (zij)
−1(dzij)

ΓG ∶= �∗� ∈ MatLC
∞F

1(G).
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Observe that � is the Maurer–Cartan form of Gl(L,ℝ) . Recall that ΓG is left-invariant, takes 
values in � and satisfies the Maurer–Cartan equation, that is

cf. [9, Section 1.6].

Remark 5.1 Consider a C2 manifold M , � ∈ MatLC
1F

1(M) and assume that the following 
property holds: For all P ∈ M there exist a neighborhood U of P and a C1 map f ∶ U → G 
such that f ∗ΓG = �|U . Then, first of all, � takes values in � . Moreover, by Proposition 3.3, 
Proposition 3.6 and (5.1), one has

that is

Relative to the opposite implication, it is well known that a �-valued smooth differential 
1-form satisfying the Maurer–Cartan equation is always, at least locally, a smooth pullback 
of the Maurer–Cartan form. In fact the following theorem holds, cf [9, Theorem 1.6.10].

Theorem 5.1 (Cartan) Let M be a smooth manifold and let � be a �-valued smooth dif-
ferential 1-form on M satisfying the identity d� = −� ∧ � . Then for all P ∈ M there exist 
a neighborhood U of P and a smooth map f ∶ U → G such that f ∗ΓG = �|U . Moreover, if 
f1, f2 ∶ U → G are any two smooth maps with this property, then there exists a ∈ G such 
that f2(Q) = af1(Q) for all Q ∈ U.

Remark 5.1 shows that, if M is a C2 manifold and � ∈ MatLC
1F

1(M) , the occurrence 
of condition

prevents the possibility of � being locally a C1 pullback of the Maurer–Cartan form ΓG . 
Thus, whatever the choice of C1 map f ∶ U ⊂ M → G , the set {f ∗ΓG = �|U} cannot have 
interior points. In Corollary 5.2 below we provide a structure result for this set, under 
assumption (5.2), by using superdensity.

Now we provide an application of Corollary 3.1, which is the natural counterpart in this 
context of Theorem 4.1 in Section 4.

Theorem 5.2 Let M be an M-dimensional C2 manifold and let � ∈ MatLC
0F

1(M) have the 
DED in MatLC

0F
2(M) . Moreover, let U ⊂ M be open and consider a C1 map f ∶ U → G . 

Then (��)Q = −(� ∧ �)Q for all Q ∈ U ∩ {f ∗ΓG = �|U}(M+1).

Proof Let Q ∈ U ∩ {f ∗ΓG = �|U}(M+1) and observe that

by continuity. We observe also that, by Proposition 3.2, �|U has the DED in MatLC
0F

2(U) 
and �(�|U) = (��)|U . If we now apply Corollary 3.1 with

(5.1)dΓG = −ΓG ∧ ΓG,

d(f ∗ΓG) = �(f ∗ΓG) = f ∗(dΓG) = −f ∗(ΓG ∧ ΓG) = −(f ∗ΓG) ∧ (f ∗ΓG)

(d�)|U = −(� ∧ �)|U.

(5.2)(d�)Q ≠ −(� ∧ �)Q, for all Q ∈ M

(5.3)(f ∗ΓG)Q = �Q,
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then we get

Hence, by recalling (5.1) and (5.3), it follows that

  ◻

Theorem 5.2 and Proposition 3.3 yield immediately the following property.

Corollary 5.1 Let M be an M-dimensional C2 manifold and let � ∈ MatLC
1F

1(M) . 
Moreover, let U ⊂ M be open and consider a C1 map f ∶ U → G . Then 
(d�)Q = −(� ∧ �)Q for all Q ∈ U ∩ {f ∗ΓG = �|U}(M+1).

Hence:

Corollary 5.2 Let M be an M-dimensional C2 manifold and let � ∈ MatLC
1F

1(M) be 
such that (d�)P ≠ −(� ∧ �)P for a certain P ∈ M . Then there exists a neighborhood U 
of P such that U ∩ {f ∗ΓG = �|U}(M+1) = � for all C1 maps f ∶ U → G . In particular, if 
condition (5.2) is verified and f ∶ U → G is any C1 map (with U ⊂ M open), then one 
has U ∩ {f ∗ΓG = �|U}(M+1) = �.
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