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ABSTRACT Support vector machines (SVMs) are widely usedmachine learningmodels, with formulations
for both classification and regression tasks. In the last years, with the advent of working quantum annealers,
hybrid SVMmodels characterized by quantum training and classical execution have been introduced. These
models have demonstrated comparable performance to their classical counterparts. However, they are limited
in the training set size due to the restricted connectivity of the current quantum annealers. Hence, to take
advantage of large datasets, a strategy is required. In the classical domain, local SVMs, namely, SVMs
trained on the data samples selected by a k-nearest neighbors model, have already proven successful. Here,
the local application of quantum-trained SVM models is proposed and empirically assessed. In particular,
this approach allows overcoming the constraints on the training set size of the quantum-trained models
while enhancing their performance. In practice, the fast local kernel support vector machine (FaLK-SVM)
method, designed for efficient local SVMs, has been combined with quantum-trained SVMmodels for binary
and multiclass classification. In addition, for comparison, FaLK-SVM has been interfaced for the first time
with a classical single-step multiclass SVMmodel. Concerning the empirical evaluation, D-Wave’s quantum
annealers and real-world datasets taken from the remote sensing domain have been employed. The results
have shown the effectiveness and scalability of the proposed approach, but also its practical applicability in
a real-world large-scale scenario.

INDEX TERMS Locality, quantum annealing (QA), quantum computing, support vector machines (SVMs).

I. INTRODUCTION
Support vector machines (SVMs) are supervised machine
learning models designed for binary classification tasks [1].
Specifically, an SVM aims to identify the optimal hyperplane
that effectively separates data samples belonging to dis-
tinct classes. However, with the introduction of kernel func-
tions, SVMs can go beyond linearly separable problems [2].
Furthermore, various formulations of the learning problem
exist, and also extensions to multiclass classification and

regression tasks [3], [4]. In the last years, with the increas-
ing popularity of the quantum annealing (QA) machines
produced by D-Wave [5], hybrid SVM models character-
ized by quantum training and classical execution have been
proposed. In detail, hybrid versions for binary classifica-
tion [6], multiclass classification [7], and regression [8] tasks
have been developed. These models have been evaluated
mainly in the remote sensing domain (see also [9], [10], and
[11]), showing comparable performance with respect to their
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classical counterparts. Nevertheless, due to the restricted
connectivity of the available quantum annealers, they are
limited in the training set size. Therefore, in order to leverage
large datasets, a strategy is necessary.
In the classical realm, reducing the number of input sam-

ples to a machine learning model through a locality tech-
nique, such as the k-nearest neighbors (k-NN) algorithm [12],
has proven to be successful, yielding performance improve-
ments compared to the base model. For instance, Blanzieri
and Melgani [13] proposed and empirically assessed the
kNNSVM classifier, namely, a local binary SVM trained on
data samples selected by a k-NN model, achieving good re-
sults. Moreover, local SVMs have been theoretically char-
acterized by researchers, such as Hable [14] and Meister
and Steinwart [15]. However, despite the accuracy improve-
ment and reduced training time per model (resulting from
the lower number of samples employed for training), an
SVM must be trained on the k-neighborhood of each test
sample, which is a significant bottleneck in terms of ex-
ecution time. To address this issue, Segata and Blanzieri
[16] developed the fast local kernel support vector machine
(FaLK-SVM), which relies on the usage of the cover tree data
structure [17].
In this work, the local application of quantum-trained

SVM models is proposed and empirically evaluated. Indeed,
local classically trained binary SVMs have already demon-
strated to be successful, and quantum-trained SVMs have
exhibited similar performance to their classical counterparts.
Moreover, the usage of local quantum-trained models, as op-
posed to global ones, represents a valid solution to the train-
ing set size limits imposed by the connectivity of the current
quantum annealers. In practice, FaLK-SVM [16], the method
for efficient local SVMs, has been interfaced with two
quantum-trained SVM models: the quantum-trained SVM
for binary classification (QBSVM) [6], and the quantum-
trained SVM for multiclass classification (QMSVM) [7].
In addition, for comparison, FaLK-SVM has been com-
bined for the first time with the Crammer–Singer SVM
(CS SVM) [3], the classical single-step multiclass SVM
model on which QMSVM is based. Hence, the addressed
tasks are binary and multiclass classification. For the empir-
ical evaluation, D-Wave’s quantum annealers and real-world
datasets belonging to the remote sensing domain have been
used.
The rest of this article is organized as follows. Section II

provides some background information. Section III presents
the proposed approach and the implementation details, and
Section IV deals with the experiments performed and the
results obtained. Finally, Section V concludes this article.

II. BACKGROUND
This section provides some background information about
QA, quadratic unconstrained binary optimization (QUBO)
problems and their embedding, quantum-trained SVMs, and
local SVMs.

A. QA, QUBO, AND EMBEDDING
QA is a heuristic search used to solve optimization prob-
lems [18], [19]. In particular, in QA, the optimal solution of a
given problem corresponds to the ground state of a quantum
system described by a Hamiltonian encoding the structure of
the problem. In this sense, QA is related to adiabatic quantum
computing, but there are some remarkable differences [20].
Specifically, let us consider the time-dependent Hamiltonian

H(t ) = �(t )HD + HP, t ∈ [0, τ ] (1)

where HP and HD are noncommuting operators on the n-
qubit Hilbert space (C2)⊗n called problem Hamiltonian and
transverse field Hamiltonian, respectively, � is a positive de-
creasing function that attenuates the contribution of HD, and
τ is the evolution time. Ideally, the annealing process drives
the quantum system toward the ground state of HP, which
is designed to represent the optimization problem. However,
due to the nonadiabaticity of the QA process (e.g., because
of thermalization effects), the system might end up being
trapped into a local minimum, requiring multiple iterations
in order to find the optimal solution.
QA can be physically realized by considering a network

of qubits arranged on the vertices of a graph (V,E ), with
|V | = n and whose edges E represent the couplings among
the qubits. Then, the problem Hamiltonian can be defined as
follows:

HP = H(�) :=
∑
i∈V

θiσ
(i)
z +

∑
(i, j)∈E

θi jσ
(i)
z σ ( j)

z (2)

where the real coefficients θi and θi j are arranged into the

matrix �, and σ
(i)
z is a 2n × 2n matrix that acts as the Pauli

matrix

σz =
(
1 0
0 −1

)
(3)

on the ith tensor factor and as the 2 × 2 identity matrix on the
other tensor factors. By definition, the set of eigenvalues of
the problem Hamiltonian (2) is the set of all possible values
of the cost function given by the energy of the well-known
Ising model

E(�, z) =
∑
i∈V

θizi +
∑

(i, j)∈E
θi jziz j (4)

where z = (z1, . . ., zn) ∈ {−1, 1}|V |. In practice, ideally, the
annealing procedure, also called cooling, drives the system
into the ground state of H(�), which corresponds to the spin
configuration encoding the solution

z∗ = argmin
z∈{−1,1}|V |

E(�, z). (5)

Given a problem, the annealer is initialized using a suit-
able choice of the weights �, and the binary variables zi ∈
{−1, 1} are physically realized by the outcomes of the mea-
surements performed on the qubits located on the vertices
V . This process is iterated multiple times to increase the
probability of finding the optimal solution. In order to solve
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a general optimization problem through QA, it is first neces-
sary to find an encoding of the objective function in terms of
the cost function (4), which is hard in general.
However, if the quantum architecture is able to provide a

fully connected graph (V,E ), then any QUBO problem can
be directly represented into the cost function by means of the
change of variables xi = zi+1

2 ∈ B = {0, 1}. Indeed, QUBO
problems are NP-hard problems of the form

argmin
x∈Bn

xTQx (6)

where Q is an upper triangular (or symmetric) matrix of real
values, and they can be rewritten as

xTQx =
n∑
i=1

qiix
2
i +

n∑
i=1

n∑
j=i+1

qi jxix j

=
n∑
i=1

qiixi +
n∑
i=1

n∑
j=i+1

qi jxix j (7)

where x2i = xi since xi ∈ B. In practice, the main diagonal
of Q contains the linear coefficients (qii), whereas the rest
of the matrix contains the quadratic ones (qi j). Although
QUBO problems are unconstrained by definition, it is actu-
ally possible to introduce constraints by representing them as
penalties [21].
In general, due to the sparseness of the available quantum

annealer topologies, a direct representation of the problem
is typically not possible. The solution consists in chaining
together multiple physical qubits that will act as a single
logical qubit. In this way, the connectivity of the annealer
graph is increased at the price of reducing the number of
logical qubits available and, consequently, the size of the
representable problems. However, there are also drawbacks
in terms of the quality of the obtained results and, more
in general, of performance [22]. For instance, qubit chains
might break during the annealing process. In particular, the
mapping of the problem variables on the annealer topology
is known as embedding.
In conclusion, by exploiting quantum effects, such as

quantum tunneling and superposition, QA represents an in-
teresting alternative to classical QUBO solvers.

B. QUANTUM-TRAINED SVM MODELS
Quantum-trained SVMs are classical SVMs trained with QA
and executed classically. In this article, the focus is on the
models for binary andmulticlass classification, whose details
are provided in the following.

1) QUANTUM BINARY SVM (QBSVM)
In the work by Willsch et al. [6], the standard formulation
of the binary SVM has been reframed as a QUBO problem,
as in (6). Training a binary SVM consists in the following
quadratic programming problem:

minimize E = 1

2

∑
nm

αnαmynymk (xn, xm) −
∑
n

αn

subject to 0 ≤ αn ≤ A,
∑
n

αnyn = 0 (8)

for N coefficients αn ∈ R, where {(xn, yn)} is the training set
of N examples, k(xn, xm) is the kernel function, and A is the
regularization parameter. The resulting classifier is defined
as

f (x) = sign

(∑
n

αnynk (xn, x) + b

)
(9)

where the bias b is chosen as

b =
∑

n αn(A− αn)
[
yn −∑

m αmymk(xn, xm)
]

∑
n αn(A− αn)

. (10)

Being already quadratic, this real-valued, constrained opti-
mization problem can be converted to a QUBO problem by
adding the constraints to the cost function as penalty terms
with a multiplier ξ , and encoding a discretized solution space
using K binary variables ai

αn =
K−1∑
k=0

BkaKn+k (11)

where B ∈ N is the base used for the encoding (any natural
value can be chosen). The corresponding QUBO problem
becomes

minimize
N−1∑
n,m=0

K−1∑
k, j=0

aKn+kQKn+k,Km+ jaKm+ j

QKn+k,Km+ j = 1

2
Bk+ jynym (k (xn, xm) + ξ ) − δnmδk jB

k

(12)

with δi j being the Kronecker delta.
Since this QUBO formulation might yield matrices not

embeddable in the available quantum annealers, Willsch
et al. [6] proposed the following approach. First, the dataset
is partitioned into L disjoint slices. Then, for each slice, the
decision functions of the S best solutions (in terms of energy)
obtained from the annealer are averaged. Lastly, the classi-
fier, which corresponds to an ensemble of SVMs, is defined
as

f (x) = sign

(
1

L

L−1∑
l=0

(
N−1∑
n=0

α(l)
n y

(l)
n k(x

(l)
n , x) + b

(l)

))
(13)

where α(l)
n and b

(l)
are the nth mean coefficient and the mean

bias for the lth slice. Actually, averaging the S best solution
can be used even in scenarios where dataset splitting is not
required.

2) QUANTUM MULTICLASS SVM (QMSVM)
In the same way as its classical counterpart, there are two
different approaches for extending QBSVM to multiclass
classification. The problem can be decomposed into multiple
binary problems and a QBSVM model can be trained on
each subproblem, combining the obtained classifiers in an
ensemble. Alternatively, a model trained to directly classify
examples among multiple classes should be defined. The
QMSVM approach proposed by Delilbasic et al. [7] is based
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on the CS SVM model [3], which consists in the following
optimization problem:

minimize E = 1

2

N−1∑
n1,n2=0

k(xn1 , xn2 )
C−1∑
c=0

τn1cτn2c

− β

N−1∑
n=0

C−1∑
c=0

δcynτnc

subject to
C−1∑
c=0

τnc = 0 ∀n, τnc ≤ 0 ∀n,∀c �= yn. (14)

Here, C is the number of classes, τnc ∈ [−1, 1] are the NC
problem variables, and β is a regularization parameter. The
resulting classifier is defined as

f (x) = argmaxc

N−1∑
n=0

τnck(xn, x). (15)

As for the binary case,K binary variables are used to redefine
the original optimization problem variables

τnc = −1 + 2

2K − 1

K−1∑
k=0

2kanCK+cK+k. (16)

After adding the constraints as penalty weights with a multi-
plier μ, the QUBO matrix is defined as

Qn1CK+c1K+k1,n2CK+c2K+k2

= δn1n2δc1c2δk1k2
2k1+1

2K − 1

×
(

−
N−1∑
n3=0

k(xn1 , xn3 ) − δc1yn1
(β + μ) − 2Cμ + μ

)

+ δc1c2
2k1+k2+1

(2K − 1)2
k(xn1 , xn2 ) + δn1n2

2k1+k2+2μ

(2K − 1)2
. (17)

To take advantage of the multiple solutions obtained from
the annealer, Delilbasic et al. [7] proposed the following
approach. First, each of the S best solutions (in terms of en-
ergy) is tested on a validation set (that may coincide with the
training set). Subsequently, a weighted average is performed.
More precisely, the weights of the solutions with an accuracy
above a predefined threshold are given by a softmax function
applied to the values multiplier · accuracys, with multiplier
being a real value and accuracys being the accuracy achieved
by the sth solution. Conversely, the weights of the other
solutions are set to zero. The resulting mean variables τ nc
are used in (15) to classify the new samples. Actually, this
approach allows also addressing larger datasets (part of the
dataset can be used only in the weighting step).

C. LOCAL SVMS
Reducing the number of input samples to a classical (binary)
SVM by means of a locality technique has demonstrated to
be successful. In 2006, Blanzieri and Melgani [13] proposed

and empirically evaluated the kNNSVM classifier, namely,
a local SVM trained on the samples selected by a k-NN
model, obtaining good results. Specifically, the k-NN and the
SVM must operate in the same transformed feature space.
However, for radial basis function (RBF) kernels (such as the
Gaussian kernel) and polynomial kernels with degree 1, the
Euclidean distance can be used as the distance metric for the
k-NN [13]. In addition, local SVMs have been theoretically
characterized by, for example, Hable [14] and Meister and
Steinwart [15]. Nevertheless, despite the accuracy enhance-
ment and the reduced training time per model (due to the
lower number of samples used for training), the kNNSVM
classifier requires to train an SVM for each test instance (un-
less the nearest neighbors belong to the same class), posing
a serious bottleneck in terms of execution time. To address
this issue, Segata and Blanzieri [16] devised the approach
outlined below.

1) FALK-SVM
FaLK-SVM [16] improves the execution time of the
kNNSVM classifier [13] by leveraging a data structure
proposed by Beygelzimer et al. [17] for efficient nearest-
neighbor operations, i.e., the cover tree. Essentially, the idea
consists in covering the training set with a set of local SVM
models, and predicting the label of a test instance with the
most suitable (pretrained) local model. More in detail, FaLK-
SVM is trained as follows: a cover tree is built on the training
set; the centers of the local SVMs are selected through the
cover tree, which allows the efficient retrieval of data samples
that are far from one another, limiting the overlap of the
local models; the local SVMs for which the local training set
does not contain only one class are trained. Specifically, the
selection procedure ends when each training sample belongs
to the k′-neighborhood of at least one center, where k′ < k is
a hyperparameter controlling the local models redundancy.
In addition, at training time, the association between each
training point and the center for which the neighbor ranking
of the given training point is the smallest is determined. In
this way, at prediction time, it is only necessary to identify
the nearest neighbor of the test instance in the training set
and execute the associated local model. Concerning the time
complexity, the training step has a worst-case complexity of
O(kN × max(logN, k2)), with k being the number of nearest
neighbors selected and N being the number of training sam-
ples, whereas the prediction of a new label has a complexity
of O(max(logN, k)).

In the same article, a variant of FaLK-SVM, denoted as
FaLK-SVMl, has also been presented. Essentially, FaLK-
SVMl incorporates a grid-search model selection procedure
that is run before the training of FaLK-SVM. In practice,
each combination of local model parameters is tested, us-
ing a custom κ-fold cross-validation, on m local models
with randomly selected centers. In this custom κ-fold cross-
validation, only the k′ nearest neighbors of the model center
are considered for the split into folds, whereas the remaining
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k − k′ samples of the k-neighborhood are added to the train-
ing set of each κ-fold iteration. Eventually, the parameter
configuration that maximizes the average accuracy of the m
models is selected and employed for all local models.

III. LOCAL QUANTUM-TRAINED SVMS
This section introduces the proposed approach and provides
details about the implementation.

A. APPROACH
Quantum-trained SVMs have exhibited performance simi-
lar to their classical counterparts [6], [7], [10]. However,
the restricted connectivity of the current quantum annealers
places constraints on the size of the trainable models. Various
strategies have been proposed to address this limitation and
exploit larger training sets, including the construction of en-
sembles of SVMs [6] and the weighting of the best solutions
(in terms of energy) retrieved by the annealer based on their
performance on a large validation set [7] (as illustrated in
Sections II-B1 and II-B2). The approach proposed here con-
sists in the localized application of quantum-trained SVM
models. Indeed, in the classical domain, local SVMs have
demonstrated superior performance compared to their global
counterparts (see Section II-C for more details). Further-
more, in this way, large training sets represent no more
an issue, as each local model is trained solely on the k-
neighborhood of the model center.
Essentially, in this work, FaLK-SVM, the method for

efficient local SVMs outlined in Section II-C1, has been
interfaced with two quantum-trained SVM models: the
quantum-trained SVM for binary classification detailed
in Section II-B1 (QBSVM), and the quantum-trained
SVM for multiclass classification detailed in Section II-B2
(QMSVM). The resulting workflow is straightforward. In
fact, the only difference compared to the standard FaLK-
SVM resides in the local models employed, which are trained
on a quantum annealer and run classically. Actually, another
innovative aspect of this study is the assessment of FaLK-
SVM with local single-step multiclass classification models,
such as QMSVM and CS SVM, which has been taken into
account for comparison (CS SVM is the basis of QMSVM, as
mentioned in Section II-B2). Indeed, FaLK-SVMhas already
been assessed in a multiclass classification task, but employ-
ing a one-against-one approach with local binary SVMs [23].

B. IMPLEMENTATION DETAILS
The approach described in the previous section has been
implemented building upon the FaLK-SVM implementation
provided by Segata [24]. Specifically, that implementation
of FaLK-SVM is written in C++, whereas the codes for QB-
SVM [25] and QMSVM [26] are written in Python, since
Python is the only language supported by D-Wave for inter-
acting with their quantum annealers. Therefore, to interface
FaLK-SVMwith the quantum-trainedmodels, a Python class
named PythonSVM has been implemented and embedded

within the FaLK-SVM C++ framework, allowing the exe-
cution of Python code within the C++ application. For this
purpose, the functions, types, and macros supplied by the
Python.h header file have been employed.

From an approach-related perspective, two aspects are
worth to be discussed. First, to reduce the training time,
the reuse of the QUBO matrix embeddings has been imple-
mented. Basically, when a QUBO matrix of a certain size is
submitted for the first time to the quantum annealer, the em-
bedding for a complete matrix of the same size is computed,
applied, and stored in memory. In all subsequent calls with
QUBO matrices of that size, the precomputed embedding is
retrieved and applied. This proves particularly advantageous
as the QUBO matrix size is the same for all local models.
Second, two notable features have been developed, although
they have not been used in the experiments presented here
(still, the code includes them). The first one is the local usage
of the techniques illustrated in Sections II-B1 and II-B2 for
leveraging larger datasets. This allows increasing the size of
the neighborhoods used for training local models, a parame-
ter otherwise limited by the connectivity of the annealer. The
second feature pertains to multiclass classification tasks and
consists in the dynamic selection of the local model based on
the number of classes present in a k-neighborhood. Indeed,
with two classes, QBSVM needs half of the binary variables
compared to QMSVM.
From a model-related perspective, some modifications

have been applied to the original implementations. On the
FaLK-SVM front, the computation of the performance
metrics and the criterion for assessing the class balance of
the m k-neighborhoods used in the local model selection
procedure (of FaLK-SVMl) have been extended tomulticlass
classification. Regarding the grid-search local model
selection, support for the parameters of the quantum-trained
models has been incorporated; in addition, the number of
folds κ for the internal custom κ-fold cross-validation (ten
by default) and the number of samples used to evaluate
the performance of the m models ( k

′
2 by default) have been

parameterized. Eventually, a data standardization procedure
has been introduced in the external canonical κ-fold
cross-validation provided for assessing the performance
of FaLK-SVM. On the local models front, a postselection
procedure has been implemented for the QBSVM’s bias (b).
Essentially, all values within the interval [−10,+10], with
a step of 0.1, are assessed on the training set to identify the
best one. Preliminary experiments have demonstrated that
this approach significantly outperforms the computation of b
by means of (10). Concerning CS SVM, a C implementation
of the model [27] has been utilized. In the local version,
the CS SVM executable files are directly invoked from the
Python code (after locally mapping the labels to {1, . . . ,C},
if necessary). Clearly, more efficient solutions are possible.
For example, in the large-scale experiment presented in
Section IV, a custom version of CS SVM has been employed
in the local setup. This more efficient version, trained with
a slightly modified C code and executed via a novel Python
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TABLE 1. (a) Local and (b) Global Methods Considered

TABLE 2. Number of Features and Selected Classes for Both Basis Datasets

code, cannot be fully distributed due to the licensing
constraints of the original CS SVM implementation [27].

IV. EMPIRICAL EVALUATION
This section deals with the methods evaluated, the datasets
employed, the experimental setup used, and the results
achieved. Specifically, the classical side of the experiments
has been run on a shared machine equipped with an Intel
Xeon Gold 6238R processor operating at 2.20 GHz and
125 GB of RAM. Instead, the quantum side has been run
on the Advantage system 5.3/5.4 provided by D-Wave, a
quantum annealer situated at Forschungszentrum Jülich.

A. METHODS
The methods taken into account in this study are reported
in Table 1. Specifically, four local methods [see Table 1(a)]
and four global methods [see Table 1(b)] have been consid-
ered here. The local ones are combinations of FaLK-SVMl
(the version of FaLK-SVM with the local model selec-
tion procedure detailed in Section II-C1) and different local
models: a binary and a multiclass classically trained SVMs,
namely, SVM and CS SVM, and their quantum-trained coun-
terparts, i.e., QBSVM andQMSVM.Notice thatFaLK-SVMl
(C) is the original FaLK-SVMl implementation; additional
information about the other local methods are available in
Section III. Regarding the global ones, they correspond to
the global application of the aforementioned classically and
quantum-trained SVM models. In particular, for the stan-
dard binary SVM, the implementation from LibSVM [28]
version 2.88 (the version used in the original FaLK-SVM
framework) has been employed. Instead, for QBSVM and
QMSVM, the strategies outlined in Sections II-B1 and II-B2
for handling big datasets have been utilized. Otherwise, they
could have not been trained on the considered datasets, given
the dataset sizes used.

B. DATASETS
The methods reported in Table 1 have been assessed on
datasets taken from the remote sensing domain, a domain
in which both FaLK-SVM and the quantum-trained SVMs
have already shown good performance [7], [9], [10], [23].
Specifically, the datasets employed here have been generated
from the SemCity Toulouse [29] and ISPRS Potsdam [30]
datasets, which consist of multispectral images with multi-
ple classes (and have been employed also in the QMSVM

article [7]). In practice, the task consists in predicting the
class of each pixel. Table 2 provides details on the number
of features and classes selected for binary and multiclass
classification for both datasets. In particular, for multiclass
classification, the number of classes has been restricted to
three in order to maximize the number of samples that could
be embedded in the annealer. Instead, the datasets sizes em-
ployed are experiment-dependent, thus they are presented in
Section IV-C. Regarding the datasets generation, an equal
(or approximately equal) number of samples for each class
have been randomly selected from tile 4 for Toulouse and
tile 6.9 for Potsdam, except in the large-scale experiment.
Indeed, in the last experiment, the training set has been cre-
ated by selecting an equal number of data points for each
class from each of the 24 Potsdam tiles labeled as training.
Moreover, two distinct test sets have been generated for it: the
former comprises data points randomly selected in the usual
way from Potsdam tile 5.13 (a nontraining tile); the latter,
intended for visualization, encompasses all the data points
belonging to the classes of interest within a 1000 × 1000
pixels square in the same tile.

C. EXPERIMENTAL SETUP
In this work, four experiments with different objectives have
been carried out. In detail, in the first experiment, the per-
formance of all considered binary classification methods is
assessed and compared. In the second one, the same is done
with the multiclass classification methods. Instead, in the
third experiment, the performance scaling of the local and
global fully classical methods (both binary and multiclass)
is analyzed; the methods involving quantum-trained models
have been omitted since the QA time consumption would
have been excessive. In the final experiment, the performance
of all multiclass classification methods, also the ones involv-
ing quantum-trained models, are assessed (and visualized)
on a large-scale dataset.
In the first three experiments, the performance of themeth-

ods has been evaluated using a κ-fold cross-validation proce-
dure with ten folds (κ = 10). In practice, the input dataset is
partitioned into κ subsets, also known as folds. Then, κ − 1
folds constitute the training set, whereas the remaining one
serves as the test set. This last step is iterated until each fold
has been utilized once as the test set. In particular, the strat-
ified κ-fold cross-validation, trying to preserve the original
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TABLE 3. Datasets Sizes for Each Experiment

TABLE 4. Parameters Values Used for (a) Binary and (b) Multiclass Classification Methods

class ratio in the folds, has been used here. In addition, to
have a fair comparison, the same datasets splits have been
employed for all methods. Conversely, in the final experi-
ment, no cross-validation procedure has been used, since the
input data were already divided into training set and test sets.
The datasets sizes used for each of the four experiments are
detailed in Table 3; as already explained in Section IV-B,
the large-scale experiment differs in the dataset generation
procedure employed. In addition, in all experiments, a data
standardization procedure (involving the subtraction of the
mean and the division by the standard deviation) has been
applied to the training and test data features before training
and running the (local/global) methods.
Regarding the parameters values employed for the various

methods, they are detailed in Table 4. Let us consider first the
binary classification methods [see Table 4(a)]. The training
neighborhood size (k) for the local methods has been set to
80, a value close to the maximum number of samples that
can be embedded in the present quantum annealers with the
QBSVM QUBO formulation (considering the values of B
and K, and finding the embedding for a complete matrix).
In addition, a relatively high degree of local models over-
lap (regulated by k′) has been utilized. Concerning FaLK-
SVMl’s local model selection, eight local models (m) and
five folds (κ internal) have been used; in addition, all k′
samples have been employed in the assessment of the m
local models. Specifically, the grid search has been applied
only to the Gaussian kernel width γ , to find the best value
between −0.5 and 1, with −0.5 corresponding to the usage
of the median of the distances in the neighborhood as the
kernel width. Therefore, with γ = −0.5, each local SVM
model could have a different kernel width value (more details
can be found in the FaLK-SVM article [16]). Conversely,

for the global methods, γ has been fixed to 1 (as their
implementations do not support the usage of the median
as the kernel width). To ensure a fair comparison between
classically and quantum-trained models, the SVM cost pa-
rameter (A) has been set to 3 (for QBSVM, A is determined
by B and K). Concerning the QBSVM-specific parameters,
the encoding basis (B) and the number of binary variables
per coefficient (K) have been set to small values, to enable
the embedding of an adequate number of training samples.
Furthermore, the penalty coefficient (ξ ) has been set to 1 (the
same value employed for QMSVM, where it is denoted as
μ), and the best 100 solutions found by the annealer have
been taken into account for averaging (S). Lastly, for the
global application of QBSVM, a stratified training data split
has been used, with each slice (except the last one) having a
number of samples equal to k.
Similar considerations apply to the multiclass classifica-

tion methods [see Table 4(b)]. Indeed, the training neighbor-
hood size (k) for the local methods has been set to 24, a value
close to the maximum number of samples that can be em-
bedded in the current quantum annealers with the QMSVM
QUBO formulation (considering the values ofC = 3 and K,
and finding the embedding for a complete matrix). Concern-
ing the local model selection, three folds (κ internal) have
been utilized, due the smaller number of samples involved.
Moreover, in the large-scale experiment, ten local models
(m) have been used instead of eight. Instead, the CS SVM
cost parameter (A) has been set to 1 for a fair compari-
son with the QMSVM-based methods. In fact, the following
relationship holds: A = 1/β. Regarding the QMSVM-
related parameters (K, μ, β, S), the same configuration em-
ployed in the QMSVM article [7] (where K is denoted as
B) has been used here. The accuracy threshold definition
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TABLE 5. QA Parameters

(thr = 0.2 ∗ min(acc) + 0.8 ∗ max(acc)) and the multiplier
value (10) for weighting the S best solutions returned by
the annealer (on the local k-neighborhood) have also been
adopted from that work. In contrast, the max_min_ratio used
to prune the small QUBO matrix coefficients has been set
to a high value (1000), rendering the pruning procedure in-
effective (the embedding is computed for a complete matrix
here). Eventually, for the global application of QMSVM, a
stratified random selection of the training samples has been
used, with a number of chosen samples equal to k.

The QA parameters employed in the experiments are de-
tailed in Table 5 (the default annealing schedule has been
used). Specifically, this is the same configuration used in the
QMSVM article [7]; the evaluation of different configura-
tions is left for future work. With the setup employed in this
article, training a single QBSVM model requires approxi-
mately 0.360 s of QA time (the number of binary variables
involved is 160). A slightly shorter time interval is necessary
for a QMSVM model (for which the number of binary vari-
ables is 144).

D. RESULTS
The performance metric chosen for the methods evaluation
is the classification accuracy, which is given by

accuracy = number of correctly classified samples

total number of samples
. (18)

In particular, in the first three experiments, employing the
κ-fold cross-validation, the accuracy calculated on the entire
dataset (considering the predictions from the κ models) is
reported. Given that a stratified κ-fold cross-validation has
been used, the folds may not have precisely the same number
of elements. Consequently, there could be a small discrep-
ancy between the reported accuracy and the average accu-
racy over folds. Nevertheless, this difference is negligible.
Conversely, in the last experiment, the accuracy achieved
on the two test sets is presented. Moreover, for the second
test set, which is not (class-)balanced, two additional metrics
are reported. These metrics are the balanced accuracy [31],
corresponding to the average recall over classes, and the
F1 score [32] (namely, the harmonic mean of precision and
recall) averaged over classes.

1) BINARY CLASSIFICATION
In the first experiment, the performance of the binary classi-
fication methods has been assessed. The results achieved are
reported in Table 6. In practice, in the case of Toulouse, all
methods have obtained good results, but the entirely classical
methods have demonstrated superior performance overall,
and the local methods have outperformed their global coun-
terparts. Conversely, in the case of Potsdam, the methods
have obtained worse results overall, with the classical SVM

achieving the best performance, and FaLK-SVMl (QB) out-
performing its classical counterpart (albeit not by much).
Concerning QBSVM, it has shown the worst performance
among the evaluated methods also in this case. Therefore, the
local application of QBSVM has proven effective. In fact, it
has achieved results not too far from, if not better than, its
classical counterpart.

2) MULTICLASS CLASSIFICATION
In the second experiment, the performance of the multiclass
classification methods has been assessed. The results are re-
ported in Table 7. Let us focus first on the smaller datasets
(size 150), for which the average number of local models
aligns with that of the binary classification methods in the
first experiment. Specifically, in the case of Toulouse, the
local methods have obtained the best results and the entirely
classical ones (both local and global) have outperformed
their quantum-trained counterparts. The overall results ob-
tained are good. Instead, in the case of Potsdam, the accu-
racy values are lower, yet the trend is similar. The exception
is represented by FaLK-SVMl (QM), which has performed
worse than not only FaLK-SVMl (CS) but also CS SVM.
Nevertheless, with larger datasets (size 500), FaLK-SVMl
(QM) has been the top-performing method, surpassing both
FaLK-SVMl (CS) andCS SVM.Regarding the performance-
based ordering of the other methods, it is the same. Over-
all, the larger dataset size has proven advantageous, partic-
ularly in the case of Toulouse. Eventually, even in this ex-
periment, the global quantum-trained model (QMSVM) has
exhibited the worst performance among the methods eval-
uated. In summary, this second experiment has proven the
efficacy of locally applying both classically and quantum-
trained single-step multiclass SVMs, with the quantum-
trained ones being slightly better in the case of larger
datasets. In general, the possibility for the quantum-trained
methods to outperform their classical counterpart is given by
the local averaging of the S best solutions, but the results
strictly depend on the quality of the solutions found by the
annealer.

3) PERFORMANCE SCALING (CLASSICAL METHODS)
In the third experiment, a performance scaling analysis has
been carried out on the classical (binary and multiclass) lo-
cal methods, taking into account their global counterparts
for comparison. In fact, in the previous experiments, FaLK-
SVMl (QB) and FaLK-SVMl (QM) have obtained results not
too far (except in one instance) from their classical counter-
parts, which can then be used as indicators of performance.
Moreover, the QA time consumption would have been exces-
sive for the available resources.
The results are showcased in Tables 8 and 9. Let us con-

sider binary classification (see Table 8) first. In the case
of Toulouse, the performance of both FaLK-SVMl (C) and
SVM has been quite stable while increasing the dataset
size, with little variations (worsening and improvement, re-
spectively) compared to the baseline size of 500. How-
ever, the accuracy values for dataset size 500 were already
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TABLE 6. Accuracy Achieved by Binary Classification Methods (columns) on Different Datasets (rows) of Size 500

TABLE 7. Accuracy Achieved by Multiclass Classification Methods (Columns) on Datasets (Rows) of Two Different Sizes

TABLE 8. Accuracy Achieved by Classical Binary Classification Methods (Columns) on Datasets With Different Sizes (Rows)

TABLE 9. Accuracy Achieved by Classical Multiclass Classification Methods (Columns) on Datasets With Different Sizes (Rows)

really high. In contrast, in the case of Potsdam, where the
initial performance was worse, an improvement has been
observed for both FaLK-SVMl (C) and SVM. Specifically,
the improvement has been more marked yet less consistent
for FaLK-SVMl (C), and less marked but more consistent
(after an initial drop) for SVM. Regarding multiclass classi-
fication (see Table 9), the scenario is the following: in both
cases (Toulouse and Potsdam), the performance of FaLK-
SVMl (CS) has almost always improved while increasing
the dataset size; conversely, the performance of CS SVM
has either significantly improved at the beginning and then
remained quite stable (Toulouse) or fluctuated around the
initial value (Potsdam). In addition, despite the slight drop
for sizes 2000 and 10 000, the enhancement for FaLK-SVMl
(CS) has been more marked for Toulouse. Essentially, this
experiment has proven that local methods can leverage larger

datasets, particularly FaLK-SVMl (CS), which has outper-
formed CS SVM in all tests. In contrast, FaLK-SVMl (C) has
been outperformed by SVM in almost all cases (albeit not by
much), but has shown good stability when its performance
has not improved (Toulouse).

4) LARGE SCALE (MULTICLASS)
In the last experiment, the performance of all multiclass clas-
sification methods has been assessed (without κ-fold cross-
validation) on a large-scale dataset based on Potsdam, featur-
ing one training set and two test sets (created as explained in
Section IV-B). The objective is to showcase the performance
achievable by locally applying quantum-trained SVM mod-
els in a large-scale real-world scenario. Due to the restricted
QA resources available, only multiclass classification and
Potsdam have been taken into account.
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FIGURE 1. Visualization of the results obtained by the multiclass classification methods on the second test set for the large-scale experiment. The
corresponding performance metrics are provided in Table 11. Color legend: blue = building, light blue = low vegetation, and green = tree. (a) Original
(RGB). (b) Ground truth. (c) FaLK-SVMl (CS). (d) FaLK-SVMl (QM). (e) CS SVM. (f) QMSVM.

TABLE 10. Accuracy Achieved by Multiclass Classification Methods (columns) on a Large-Scale Dataset Based on Potsdam, Characterized by 11 016
Training Samples and 300 000 Test Samples

TABLE 11. Accuracy, Balanced Accuracy, and Average F1 Score (Over Classes) Achieved by Multiclass Classification Methods (columns) on a Second
Large-Scale Test Set Based on Potsdam and Consisting of 871 188 Samples (389 900, 343 438, 137 850)

The results achieved on the first test set are presented
in Table 10. Specifically, the local methods have outper-
formed the global ones, and the entirely classical methods
have demonstrated superior performance compared to their
quantum-trained counterparts. This last point seems to con-
tradict the observations made in Section IV-D2 about the
local methods, with FaLK-SVMl (QM) performing better
than FaLK-SVMl (CS) on larger datasets. Nevertheless, the
performance differences are relatively small. Furthermore, in
this case, no κ-fold cross-validation has been utilized. In fact,

the training set has been constructed by randomly sampling
data points from various tiles, and the test data points have
been randomly chosen from a different tile. Therefore, the
task is somehow different. Despite this aspect, these first re-
sults align well with the expectations based on the outcomes
of the previous experiments. Actually, a larger k value (100,
with k′ = 75) has also been evaluated for FaLK-SVM (CS)
in this same setup. The performance obtained was slightly
worse (accuracy = 73.6%), but CS SVM has already shown
that it does not really take advantage of larger training sets,
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particularly in the case of Potsdam (see Section IV-D3).
Regarding the second test set, the results are presented in
Table 11. Unexpectedly, CS SVM has obtained the highest
accuracy on this second test set, performing better than both
local methods. However, given the unbalanced nature of this
test set, different performance metrics should be taken into
account. Here, the balanced accuracy and the average F1
score (over classes) have been considered (their values are
reported in the same table). In detail, according to these
metrics, both FaLK-SVMl (CS) and FaLK-SVMl (QM) have
outperformed CS SVM, aligning with the trend observed for
the first test set and in the previous experiments. This phe-
nomenon is caused by CS SVM’s tendency to predict more
frequently the two most represented classes (building and
low vegetation) in the test set, misclassifying the less com-
mon one (tree). This behavior can be easily noticed in Fig.
1, where the predictions of the different methods are shown.
In conclusion, this final experiment has proven the practical
applicability of local quantum-trained SVMs (in particular,
the multiclass one) in a large-scale scenario. In fact, the
results obtained by FaLK-SVMl (QM) are quite good and
comparable to those achieved by its classical counterpart.

V. CONCLUSION
In this article, the local application of quantum-trained SVM
models, with the aim of enabling their usage on large datasets
and enhancing their performance, has been introduced and
empirically assessed in the remote sensing domain. Specifi-
cally, here, a method for efficient local SVMs (FaLK-SVM)
has been interfaced with two quantum-trained SVMmodels:
an SVM model for binary classification (QBSVM) and an
SVMmodel for multiclass classification (QMSVM). In addi-
tion, for comparison, FaLK-SVMhas been paired for the first
time with a CS SVM model. Details about the implementa-
tion, such as the postselection procedure for QBSVM’s bias,
and the experimental setup have been provided. The results
have demonstrated the effectiveness of the approach, with the
local applications of QBSVMandQMSVMobtaining results
not too far from and, in some cases, better than their classi-
cal counterpart. The local application of CS SVM has also
yielded good results, consistently outperforming its global
counterpart. Furthermore, the performance scaling analysis
carried out on the classical local methods, serving as perfor-
mance indicators for the quantum-trained ones, has revealed
their ability to take advantage of larger datasets. Ultimately,
the last experiment has proven the practical applicability of
the local quantum-trained SVMs (specifically, the multiclass
one) in a real-world large-scale scenario.
Future work includes the assessment of these local

quantum-trained methods on datasets taken from a differ-
ent domain, using different parameter configurations and a
higher number of reads. Other interesting possibilities con-
sist in trying to solve the classification problem by leverag-
ing quantum phases and to develop a local version of the
quantum-trained support vector regression model [8] (not
considered here).
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