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Abstract
Prominent research in strategic imitation, exploration, exploitation, and organiza-
tional learning identifies imitation as a less costly alternative to experimentation. 
Yet, its role in the exploration–exploitation dilemma remains underexplored in the 
literature. This study employs an agent-based model to examine how two distinct 
agent types—those who imitate and those who experiment—interact and influence 
each other. The model incorporates the concept of “satisficing” derived from the 
behavioral theory of the firm, along with insights from research on imitative heu-
ristics. The findings reveal that overcrowding affects both agent types negatively. 
Imitators suffer from diminished performance due to intensified competition, which 
increases as more imitators join the system. Meanwhile, explorers are hindered in 
their attempts at radical innovation due to the presence of other explorers and clus-
ters of imitators. This paper contributes to the field as the first to model individual 
agents as ‘satisficers’ within a competitive exploration–exploitation framework. By 
incorporating imitation, it provides novel insights into the dynamics of organiza-
tional learning and strategic decision-making.
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1  Introduction

In the exploration–exploitation trade-off, decision-makers face the challenge of bal-
ancing the pursuit of stable returns from existing knowledge (exploitation) against 
the need to explore new alternatives in response to environmental shocks that render 
prior knowledge less valuable (exploration). While the role of imitation in this trade-
off is a significant aspect that warrants investigation, existing research on imitation 
and its relationship with exploration and exploitation, especially within organiza-
tional learning and imitation studies, remains underexplored.

This article seeks to address this research gap by proposing an agent-based sim-
ulation that explicitly models agents as ’satisficers,’ in line with Simon’s (1955) 
framework. This approach sets our study apart from previous modeling efforts, such 
as those by Fagiolo and Dosi (2003), Boari et al. (2017), and Fagiolo et al. (2020). 
By incorporating aspiration levels and comparing them with realized performance 
(Cyert and March 1963), we introduce problemistic search attempts when an agent’s 
aspirations exceed their performance. This explicit incorporation of problemistic 
search into our agent modeling sheds light on decision-making processes where 
aspirations surpass performance. Problemistic search, as conceptualized by Cyert 
and March (1963), involves actively searching for new options or alternatives to 
bridge the gap between aspirations and actual performance. This aspect enriches our 
simulation, capturing the adaptive behavior of decision-makers who seek solutions 
when faced with unsatisfactory outcomes. Thus, our model provides a more nuanced 
understanding of how agents navigate the exploration–exploitation trade-off.

Modeling agents as “satisficers” reflects a realistic decision-making approach 
that aligns with how individuals and organizations set goals or aspirations for their 
performance. By incorporating this aspect into the simulation, we acknowledge that 
decision-makers have limited cognitive resources and are not able to always pursue 
optimal outcomes. Furthermore, this modeling approach enables us to effectively 
capture the essence of satisficing behavior. Satisficing is a valuable strategy that 
enhances efficiency, reduces decision-making time, and alleviates cognitive over-
load. Incorporating this behavior into our simulation acknowledges its importance 
in achieving satisfactory outcomes, while also mitigating the drawbacks associated 
with exhaustive exploration or the pursuit of perfection.

Moreover, subsequent research following March’s seminal work in 1991 has 
recognized the importance of individual-level inquiry (e.g., Gupta et  al. 2006). 
This has led to several significant contributions that examine the relationships 
between the exploration–exploitation trade-off and other key variables, organi-
zational outcomes, and psychological factors. These include knowledge inflows 
within organizations (Mom et al. 2007), the length of decision-making time hori-
zons (Wilson et al. 2014), and working memory—which pertains to the amount 
of information individuals can process during decision-making (Laureiro-Mar-
tinez et al. 2019). Additionally, recent research explores the influence of perfor-
mance feedback on decision-making, contingent upon the initial task complexity 
(Mittone et  al. 2023). This body of work enriches the frameworks of organiza-
tional learning research (Levitt and March 1988; March 1991) and the Behavioral 
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Theory of the Firm (Cyert and March 1963). A key focus here is on how deci-
sion-makers adaptively learn and strive to ’satisfice’ their aspirations, a concept 
initially proposed by Simon in 1955. However, a notable gap emerges in this area 
of study: while the organizational learning literature acknowledges the role of 
imitation in knowledge acquisition (Levitt and March 1988), research on explora-
tion and exploitation at an individual level appears to overlook the dynamic inter-
play between imitation and exploration. This oversight is evident in the implicit 
assumption that decision-makers do not consider social comparisons in their pro-
cesses (Lant 1992).

On the other hand, while studies investigating imitation in managerial deci-
sions have considered the interaction between decision-makers, they have not fully 
integrated the concept of ’satisficing’ into their modeling framework. For exam-
ple, Boari et  al. (2017) modeled explorers and imitators interacting in a competi-
tive environment, but they did not include aspirations in their model. Instead, they 
employed decisional heuristics (Gigerenzer 1997) to represent bounded rationality.

Building on Lieberman and Asaba’s (2006) emphasis on studying the interactions 
between experiential learning and imitation, this paper proposes an examination of 
the aggregate behavior of virtual agents using an Agent-Based Model (ABM). The 
choice of an ABM is driven by its proven ability to critically assess prior theories 
(Miller 2015) and to offer deep insights through the modeling exercise itself (Fioretti 
2013). The general structure of the model adheres to guidelines derived from apply-
ing ABMs in organization studies (Chang and Harrington 2006; Wall 2016) and 
adaptive bounded rationality models (Puranam et  al. 2015). The environment is 
modeled as a multi-armed bandit task, where the initial mean values associated with 
each discrete alternative remain fixed throughout the simulations, ensuring stability 
except for the interactions between stereotyped agents, namely explorers and imita-
tors, who pursue innovation in different ways.

The agents in our model are defined by their search behavior, which is aligned 
with the behavioral theory of the firm (Cyert and March 1963). Agents engage in 
search when the current option fails to satisfy their aspirations (Bromiley 1991). 
Explorers and imitators exhibit distinct search patterns: explorers experiment with 
alternatives not currently adopted by other agents, aiming to innovate by "doing 
something new," while imitators adopt heuristics ("imitate-the-majority" and "imi-
tate-the-best") to select alternatives chosen by other agents. Exploration is mod-
eled as a random draw from the alternatives not currently deployed by any other 
agent. Our modeling of imitation is informed by insights from Nikolaeva (2014), 
particularly regarding imitative heuristics that stem from cognitive frames on strate-
gic issues. This modeling choice is driven by the challenge of locating a behavioral 
model exclusively focused on individuals within the considered literature streams.

Our simulation results show that imitators benefit from options discovered by 
explorers. Compared to explorers, they are more affected by competition but exhibit 
a lower exit rate. Conversely, explorers face challenges in crowded environments, 
particularly when there are more explorers. This leads to fewer options and lower 
performance overall, resulting in a higher exit rate and reduced average performance 
for explorers. These ’overcrowding effects’ are a consistent feature in our simulation 
results.
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This article contributes to the literature by providing an initial exploration of imi-
tation’s role within the exploration–exploitation trade-off. By modeling agents as 
“satisficers” (Simon 1955; Cyert and March 1963), we aim to enhance this research 
stream. Modeling agents as “satisficers” brings significant advantages and value to 
understanding the exploration–exploitation trade-off and the study of imitation. This 
modeling choice reflects realistic decision-making approaches, balances aspirations 
and performance, emphasizes problemistic search, and captures the essence of sat-
isficing behavior. By incorporating these elements into our agent-based simulation, 
we gain valuable insights into the dynamics of decision-making processes and their 
implications for exploration and exploitation.

This paper is structured as follows. The following section covers the theoretical 
background where exploration, exploitation, and imitation are defined, and the most 
relevant theoretical insights in the respective streams of literature are reported. The 
third section introduces our ABM in more detail. The fourth section presents simula-
tion strategies and the results of an exploratory analysis conducted on the simulation 
data. Finally, in the last section, the results are critically discussed, and new direc-
tions for future research based on the limitations of the present study are proposed.

2 � Theoretical background

This article draws from three key areas of previous research to develop an ABM 
focused on exploration and imitation. Firstly, it utilizes the conceptualizations from 
the BToF by Cyert and March (1963), which emphasize adaptive learning and “sat-
isficing” (2.1). Secondly, it examines the existing literature on imitation, including 
its conceptualization and modeling (2.2). Lastly, the article considers examples of 
ABMs in management, highlighting the advantages of adopting such methodology 
(2.3).

2.1 � Search and satisficing

Drawing from the Behavioral Theory of the Firm (BToF) by Cyert and March 
(1963), scholars studying individual exploration and exploitation have concentrated 
on fundamental aspects of search behavior. These include the concepts of satisficing 
and bounded rationality (Simon 1955, 2013), performance feedback (Greve 1998, 
2003b; Greve and Gaba 2017), and aspirations (for instance, Bromiley and Har-
ris 2014). Together, these elements converge to address a central issue: the nature 
of search. In BToF terms, search is triggered by the need to solve a problem. This 
"problemistic search" aims to restore performance levels that have declined recently. 
The outcome of such a search can lead to either local refinement, which is exploita-
tion, or to change and experimentation, known as exploration.

Evaluating performance and aspirations is relevant in experiential learning as 
it can lead to knowledge creation (Levitt and March 1988; March 1991; Argote 
et  al. 2020). Aspirations in organizations originate from two focal points or refer-
ence sources: historical (self) performance and social performance, as outlined by 
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Bromiley and Harris (2014). The formation of these aspirations is closely linked to 
their measurement methods. These methods can include weighted-average models 
(e.g., Cyert and March 1963; Greve 2003a), separate measures (Greve 2003b; Baum 
et  al. 2005; Harris and Bromiley 2007), or two hierarchically ordered reference 
points1 (Bromiley 1991). Satisficing occurs when performance meets or exceeds 
aspirations. However, in scenarios like those depicted in Bromiley’s (1991) model, 
an agent may raise her aspirations once the satisficing condition is met. It is impor-
tant to remark that the assumption of individual agents who engage in problemistic 
search is grounded in recent experimental research (e.g., Billinger et al. 2014, 2021)

2.2 � Exploration, exploitation, and imitation

Research on organizational learning and imitation has evolved along parallel paths 
(Lieberman and Asaba 2006). Imitation is recognized as a key driver of knowledge 
acquisition (Levitt and March 1988) and as a less costly alternative to experimenta-
tion (Lieberman and Asaba 2006).

Consistently with these prior definitions, we define imitation as an alternative 
search strategy to exploration.

Much of the work on imitative behavior in strategy and business research is con-
nected to institutionalism and social ecology (DiMaggio and Powell 1983) and 
social learning theory (Bandura and Walters 1977). Recent contributions have incor-
porated essential elements of institutional theory (e.g., mimetic isomorphism) to 
define and model imitation. For example, Duysters et al. (2020) identify imitation 
and legitimacy as drivers of vicarious learning, particularly for firms that adapt their 
learning strategies to align with those of partners and competitors.

Imitation plays a pivotal role in fields like evolutionary economics (Nelson and 
Winter 1982) and industrial economics (Rivkin 2000), where it is often assumed 
to be perfect in both target identification (deciding whom to imitate) and execu-
tion (e.g., firms as “copycats”). However, exponents of “neo-evolutionary econom-
ics” (such as Posen et  al. 2013) contend that both search and imitation processes 
are influenced by the cognitive limitations inherent in boundedly rational agents. As 
a result, imperfect imitation emerges, characterized by firms’ challenges in quickly 
identifying the right “whom” to imitate in their industry and in flawlessly replicating 
their strategies (“what” to imitate).

Research in this field exploits NK models (e.g., Levinthal 1997) to investigate 
these dynamics. The “NK” in NK models stands for the two central parameters 
that govern their functioning: “N” represents the number of options available for 
combining into a policy or strategy, and “K” denotes the number of interdependen-
cies among these N attributes. This “K” factor essentially reflects the complexity or 
“ruggedness” of the system. Typically, each of the N attributes can adopt one of two 

1  In the theoretical model of Bromiley (1991), the reference points are determined sequentially and hier-
archically: the first is the average performance of others (i.e., average ’social’ performance); the second is 
the ’historical’ performance, consisting of the performance of the firm itself increased by 5%. Firms aim 
at historical performance only if they are doing better than social performance.
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values, leading to 2N possible combinations. Each attribute value is linked to a spe-
cific payoff, resulting in an overall payoff for each combination. As the value of K 
increases, indicating more interdependencies among the N attributes, even a single 
alteration in the combination can lead to more variable overall outcomes.

Importantly, NK models have been adopted to study exploration–exploitation 
decisions, both in the context of individual decision-making (e.g., Billinger et  al. 
2014, 2021) and within team settings (Giannoccaro et al. 2020).

Lieberman and Asaba (2006) categorized mimetic behavior into two types: infor-
mation-based and rivalry-based imitation, offering a framework to reconcile the 
extensive literature on the subject. Building on their work, Nikolaeva (2014) devel-
oped a theoretical model of imitation heuristics grounded in managerial cognitive 
framing. In this model, a strategic issue faced by an agent can be perceived either 
as an opportunity or a threat. For instance, a situation demanding change might be 
viewed as potentially advantageous (like entering a new market) or as a risk to the 
organization (such as investing in an unknown innovation).

Nikolaeva (2014) argues that firms and managers may frame the decision to imi-
tate as either a potential opportunity or a threat. In this model, managers may select 
an imitation heuristic, either ’imitate-the-successful’ or ’imitate-the-majority’ (Gig-
erenzer and Selten 2002), based on their cognitive framing of the issue and the deci-
sion to imitate.

In this article, to model imitation parsimoniously, we focus on situations where 
both the problem and the decision to imitate are cognitively framed in a consistent 
manner, either as opportunities or as threats. Consequently, a manager may choose 
to imitate the majority when facing a strategic threat that could worsen by not imi-
tating. Conversely, a manager might imitate the best performers when pursuing new 
opportunities and when imitation itself presents an opportunity.

These are direct applications of Lieberman and Asaba’s (2006) categorization of 
imitation, which Nikolaeva (2014) summarizes as follows: “Under the information-
based category, organizations copy from their peers because of the accumulated 
information from predecessors. On the other hand, rivalry-based imitation is com-
petition driven, and organizations copy their rivals so they are not left behind.” (p. 
1761).

2.3 � Modeling and ABMs in organization studies

Modeling, as a traditional research method in organization studies, has been 
widely recognized (Lave and March 1975). However, Miller (2015) argues that 
despite its seminal contributions, the exploration–exploitation field needs to 
devote more attention to modeling than verbal theorizing and hypothesis testing. 
In contrast, over the past two decades, agent-based models (ABMs) have prolifer-
ated in the organization and management literature (Chang and Harrington 2006; 
Wall 2016), leading to significant advancements in understanding critical issues 
and theories (Gomez-Cruz et al. 2017). Drawing upon the acknowledgment of the 
considerable learning opportunities inherent in the construction of ABM mod-
els (Fioretti 2013; Epstein 1999; Gross and Strand 2000), the primary objective 
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of this article is to adopt the ABM approach and critically analyze prior stud-
ies, shedding light on imitation, exploration, and exploitation in organizational 
learning.

Turning to previous studies focusing on imitation, Posen and colleagues (Posen 
et  al. 2013, 2020) have made significant contributions by modeling imitation as a 
bounded rational process at both the individual and aggregated levels of interaction. 
A parallel line of research has emerged, utilizing ABMs to replicate or expand upon 
March’s exploration and exploitation model (March 1991). Noteworthy studies in 
this area include those conducted by Bray and Prietula (2007), Fang et al. (2010), 
Kim and Rhee (2009), Miller et  al. (2006), Ponsiglione et  al. (2021), and Rodan 
(2005).

Specifically, Bray and Prietula (2007) extended March’s exploration and exploita-
tion model to investigate the impact of environmental turbulence on organizational 
knowledge in hierarchies. Their empirical analyses and weighted least-squares 
regressions revealed that a "top-down" strategy characterized by high exploitation 
and low exploration reduced individual knowledge accuracy, particularly in multi-
tier hierarchical organizations. In contrast, flat organizations experienced a smaller 
decline, highlighting the resilience of a "bottom-up" approach in dynamic environ-
ments and offering insights for optimizing knowledge management.

Fang et al. (2010) conducted a comprehensive study using simulations to exam-
ine the influence of interpersonal network structure on organizational learning. Their 
findings emphasized the relationship between network structure and performance 
levels in organizations. Moderate cross-group linking led to higher equilibrium per-
formance, indicating the positive impact of interconnectedness between subgroups 
on organizational performance. The study also highlighted the importance of pre-
serving subgroup heterogeneity for facilitating broader exploration of ideas and 
beliefs, underscoring the role of network structure in optimizing learning processes.

Kim and Rhee (2009) focused on the choice between exploration and exploita-
tion and its implications for organizational performance, considering environmental 
dynamism and internal variety. Their simulation models demonstrated the relation-
ship between organizational practices, internal variety, and knowledge adaptation. 
The findings underscored the importance of managing internal variety through 
strong complementary practices to achieve a balanced approach between explora-
tion and exploitation, providing valuable insights for organizational adaptation to 
dynamic environments.

Miller et al. (2006) expanded March’s (1991) agent-based model by incorporating 
direct interpersonal learning, spatial context, tacit knowledge, and personnel turno-
ver. Their study provided a comprehensive understanding of organizational learn-
ing dynamics, highlighting the significance of informal knowledge exchange and the 
impact of geographical factors. The insights gained from their research offer valu-
able guidance for optimizing learning processes in organizations.

Ponsiglione et  al. (2021) utilized an agent-based computational laboratory, the 
Computational Laboratory of Organizational Design (CLOD), to conduct simula-
tive experiments. Their study investigated the advantages of employing natural lan-
guage as an informal coordination mechanism for enhancing organizational perfor-
mance, particularly in turbulent environments. The findings emphasized the benefits 
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of natural language-based coordination, providing practical insights for practitioners 
and researchers.

Rodan (2005) extended March’s  (1991) model by examining individual- and 
organizational-level processes influencing belief variation, selection/retention, and 
experimentation. The author’s analysis sheds light on factors impacting organiza-
tional learning, such as experimentation propensities, restraints, and turnover in 
membership. The research enriched the understanding of organizational learning 
processes and offered practical implications for organizations.

Nevertheless, it is worth noting that the studies above predominantly concentrate 
on the isolated aspects of imitation or exploration–exploitation individually. In con-
trast, our particular interest lies in exploring the intricate interplay between these 
factors (Lieberman and Asaba 2006). In this regard, Fagiolo and Dosi (2003) pro-
posed an agent-based model where firms explore a lattice representing a Schum-
peterian technological space. This model incorporated exploitation, exploration, 
and imitation elements, offering valuable insights into economic growth. Similarly, 
Fagiolo et  al. (2020) expanded upon this model by introducing a financial system 
investigating economic growth with and without financial institutions and resources.

While these models are well-described and finely implemented, their treatment 
of bounded rationality relies primarily on the stochasticity of the models, needing 
a solid theoretical basis in the literature, such as satisficing. In contrast, Boari et al. 
(2017) approached bounded rationality from a more theoretical perspective in their 
model, providing an interesting definition of exploration and exploitation based on 
vicarious and experiential learning. Their model did not directly implement or pro-
gram the proposed framework, suggesting that interesting findings could arise from 
the modeling exercise itself. This theoretical depth, however, was grounded in a 
"downstream" approach to modeling bounded rationality, drawing on Gigerenzer’s 
(1997) work and avoiding the modeling of aspirations and satisfaction.

From the literature above, two interconnected lessons can be drawn. Firstly, while 
starting from different assumptions, research questions, and theoretical approaches, 
previous studies have consistently excluded "satisficing" from their models. Sec-
ondly, modeling inherently requires simplification of reality (Lave and March 1975), 
and the studies discussed above exemplify balanced and well-designed models.

Building upon these observations, we acknowledge a gap in the literature result-
ing from legitimate modeling choices, specifically excluding agents as "satisficers." 
Consequently, our modeling choices are based on an opposing logic to previous 
studies, explicitly modeling agents as “satisficers” while maintaining simplicity in 
other model aspects.

3 � The model

Wall (2016) provides an extensive literature review on the adoption of ABMs in 
the management field. It shows that these models consist of three building blocks: 
the environment, the agents, and the possible interactions between the agents them-
selves or the agents and the environment. We will introduce the model by referring 
to each of these building blocks.
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3.1 � Environment

The environment is designed as a multi-armed bandit task with one hundred options 
o ∈ O = (1, 2,… , 100) . Each option o is one of the discrete arms of the machine, 
and its performance distribution is only known if the agent has already experi-
mented with it. Conceptually, the environment can be considered the space of viable 
solutions to a generic management problem. According to this definition, the agents 
must explore this random space without prior knowledge.

The performance of each option is drawn from a normal distribution with mean μ 
and variance υ.

where the mean μ is drawn from a discrete uniform distribution within the interval 
[55, 95]; the variance υ is set to 1 for each alternative to avoid generating excessive 
“noise” in the data.

The means of the distributions associated with each option are either kept stable 
or re-drawn at each period, depending on the parameter modeling the presence of 
turbulence. As a result, our setting comprises two types of systems: one with per-
fectly stable alternatives for agents to discover and adopt, and the other marked by 
constantly changing alternatives—an extremely turbulent one.

Three parameters define the initial conditions of the model, namely, density (d), 
the initial proportion of explorers (e), and the percentage loss due to competition 
with another agent (c).

Density (0 ≤ d ≤ 1) indicates the number of agents in the environment propor-
tional to the number of options (i.e., 100). For example, if d = 0.2, there will be 20 
agents in the system. The density is kept constant during each simulation: an agent 
is replaced after it exits the simulation.

The proportion of explorers (0 ≤ e ≤ 1) represents the initial fraction of explorers 
in the simulation. For example, if d = 0.2 and e = 0.5, half of the twenty agents in the 
system (i.e., 10) will be explorers at the simulation’s outset.

The parameter e represents the probability of a new agent being an explorer, 
which helps maintain the initial proportions in the system. However, it does not 
guarantee that the proportion of explorers will remain unchanged from the start of 
the simulation.

Losses due to competition (c) occur when agents select the same alternative. 
The parameter c represents the percentage loss an agent incurs for each other agent 
choosing the same alternative. More details about competition and losses are pro-
vided in Sect. 3.3 below, which introduces interactions between agents.

Finally, agents with an average performance of 60 or lower exit the model. This 
exit threshold is a parameter that can be adjusted in future simulations. While the 
exit threshold is not the primary focus of this study, setting it too high could intro-
duce a confounding factor in assessing the role of competition in the simulations. 
Consequently, we have set it to a value approximating the 10th percentile of the pos-
sible mean values of the options, which, as previously explained, are uniformly dis-
tributed between 55 and 95.

Po ∼ N(μ, υ)
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3.2 � Agents

There are a finite number of agents I = {1, 2,… ,N} in the model, where 
N ≅ d ∙ 100 . Each agent i ∈ I is defined by their search type si , qualitative aspiration 
ai,t , and quantitative aspiration Ai,t on performance.

Agents search when they experience a performance that is not “satisficing” 
(Simon 1955; Cyert and March 1963); otherwise, they stop searching and exploit the 
current option (Cyert and March 1963; Posen et al. 2018).

Fagiolo and Dosi (2003) modeled exploration using a probability parameter rep-
resenting the propensity to explore, while imitation was represented as an event that 
occurs according to a conditional probability of receiving a signal from other min-
ers (who, in their model, are engaged in exploitation. This model leverages the sto-
chastic properties of the probability distributions involved and serves as an excellent 
example of defining and using theoretical parameters.

In our model, an agent i can be generated as either an explorer (si = “explorer”) 
or an imitator (si = “imitator”), where e is the probability of being an explorer and 
(1 − e) is the probability of being an imitator. This defines the only type of search 
agent i will use if it is not “satisficed” with the performance generated by the option 
at hand.2

Before delving into the mechanisms of imitation and exploration employed by 
our agents, it’s essential to establish clear definitions of aspirations and perfor-
mance. In our model, all agents participate in a "learning cycle" Lc , where they sam-
ple the current option over ten periods. At each period t within the learning cycle 
l ∈ Lc = {1, 2,… , L,… , 10} , an agent i samples the current option and computes an 
average performance Pi,t,l.

Conceptually, in our model, "performance" encompasses any metric that reflects 
the financial returns associated with an organization’s chosen strategy. While there is 
a rich history of using various performance measures in the study of organizational 
aspirations, as extensively discussed in the literature (Bromiley and Harris 2014), 
this paper primarily focuses on theoretical aspects. Therefore, we define "perfor-
mance" in more abstract terms as a metric that captures the environmental response 
to the chosen option, aligning with the requirements of our theoretical framework.

In line with BToF (Cyert and March 1963), at the beginning of each Lc (i.e., l = 1, 
agent i compares Pi,t,l with its aspirations. Aspirations are modeled according to Bromi-
ley’s (1991) switching model. Let PS,t−1 be the average social performance of all agents 
in the system at time t-1, which is the information available to each agent at time t.

Pi,t,l =
1

L
⋅

L
∑

l=1

Pi,t,l

2  An exciting development would be to calibrate a set of “propensity” parameters with experimental data 
to study how and when agents search and in what manner (e.g., propensity to imitate or propensity to 
explore). As we discuss in the concluding remarks of this paper, this may be a promising direction for 
future research.
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If Pi,t,l < PS,t−1 , the agent’s target will be PS,t−1 , hence, a
i,t = social , 

and Ai,t = PS,t−1 . If, on the contrary, Pi,t,l ≥ PS,t−1 , a
i,t = historical , and 

Ai,t = 1.05 ⋅ Pi,t,l,with a 0.5 probabilty;Pi,t,l, otherwise.
According to Bromiley’s (1991) model, the new aspiration level will be equal to 

the historical performance increased of its 5% (i.e., 1.05 ⋅ Pi,t,l ). However, as we do 
not model risk attitudes in this study, we randomize the possibility of having such an 
increase in aspirations by making the increased historical performance and the histori-
cal performance equiprobable.

Satisficing (Simon 1955) occurs when the average performance of the current option 
is at least equal to the aspirations.

In such a case, agents will continue to exploit the current option; otherwise, they will 
search by exploring or imitating.

Exploration is assumed to be innovative for the system. Thus, it is modeled as ran-
domly choosing a “free” alternative. In contrast, imitation involves copying alternatives 
currently adopted by others. The choice of imitation heuristic depends on the agents’ 
aspirations. Imitators  will adopt an “imitate-the-majority” heuristic if they they aim 
forthe average social performance or an “imitate-the-best” heuristic if they seek oppor-
tunities to improve their historical performance (Nikolaeva 2014). In the model, the 
majority corresponds to the "mode" option, which is chosen by most agents. If there are 
multiple majorities, the imitator randomly selects one of them.

In the simulations performed in this paper, the top performers correspond to the top 
5% of agents ranked by their descending performance. This top 5% includes agents 
whose performance ranks above the 95th percentile of the performance distribution. 
This parameter is adjustable within the model’s program and can be readily modified 
for future testing. The imitator randomly selects one of these top-performing agents to 
imitate in the next learning cycle.

3.3 � Interactions

As mentioned above, agents may interact with others in such an environment due to 
competition. Specifically, a loss is introduced when multiple agents adopt the same 
strategy/behavior. Losses due to competition are defined as follows.

where c is a parameter of the proportional loss from competition, and “others” is 
the number of other agents adopting the option o at time t. The parameter l is set for 
each simulation to 1%. Therefore, the performance of the i-th agent at time t is

PS,t−1 =
1

100
⋅

100
∑

i=1

Pi,t,l

Pi,t,l ≥ Ai,t

lossesi,o,t =
(

c x otherso,t
)

,
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By selecting an option, agent i receives a final performance value determined by 
a random draw from the relative distribution, adjusted for a proportional decrease 
due to competition.

These competitive interactions can affect the agent’s perception of the option 
(Puranam et al. 2015). The greater the competition for an alternative, the lower the 
agent’s performance, and the less likely it is that satisficing will occur. In essence, 
competition reduces the reward the agent associates with a strategy, making it more 
likely to be abandoned.

4 � Simulations, data, and results

4.1 � Simulation strategy

The data for this study were generated by simulating the ABM with varying initial 
conditions through adjustments to four parameters. A summary of both fixed and 
variable parameters, along with their respective values, is provided in Table 1. The 
choice of fixed parameters was guided by logical reasoning, emphasizing their role 
as background variables in this study. Detailed explanations of these choices can be 
found in “Appendix 1”.

All the simulated parameters and their possible levels are included in this table. 
By combining the fixed and the variable parameters, 60 model specifications 
emerge.

The combinations of the parameters listed in Table 1 result in 60 different model 
specifications. However, since the focus of this study is on the aggregate interaction 
between explorers and imitators, we restrict the data analysis to the nine configura-
tions in which this interaction is at play (see Table 2 below). In these configurations, 
competition is always present, and the proportion of explorers varies. In addition, we 
exclude the extreme initial conditions where either explorers or imitators are absent.

P
i,o,t = P

i,o,t ⋅

(

1 − losses
o,t

)

.

Table 1   Fixed and Variable 
Parameters in the simulated 
models

Parameters Value(s)

Fixed
Number of Alternatives 100
Top Performance Quantile 0.95
Exit Average Performance 60
New Agents Yes
Variable
Density (d) {0.2, 0.5, 0.8}
Explorers Proportion (e) {0, 0.2, 0.5, 0.8, 1}
Losses to Competition (c) {0, 0.01}
Turbulent Environment (t) {0, 1}
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We ran one thousand simulations for each configuration, with each simulation 
running for five hundred periods. This led to a final dataset comprising thirty mil-
lion rows, resulting from five hundred observations per simulation, conducted one 
thousand times for each model configuration. Consistently with our focus on the 
models listed in Table 2, the analysis was also restricted to a subset of the origi-
nal dataset, which counted nine million rows.

During each of the five hundred periods in a single simulation, we collected 
aggregated measures, including mean values of agents’ performance, aspirations, 
losses, the the performance-aspiration gap the exits from the simulations by agent 
type, and agent counts by type.

In line with the logic of conducting an exploratory analysis of the simulation 
data, the results are reported in the following sequence.

First, this section presents an overview of the model’s key outcomes, focus-
ing on three variables: agents’ choices of exploitation and search, the number of 
agents that exit or remain in the simulations, and agents’ concentration among 
alternatives. Additionally, we calculate the Herfindahl–Hirschman Index (HHI) 
concentration index and the average sum of the most numerous five clusters 
formed during the simulations to provide a further understanding of imitative 
dynamics.

Second, we analyze the distinctions between imitators and explorers. These 
results are presented as general descriptions, accompanied by the corresponding 
graphical representations of the identified differences included in “Appendix 1”. 
Differences were tested on a value-by-value basis between the two groups of agents 
in each simulated model, ensuring precise data analysis. Analyzing differences 

Table 2   Parameter 
configurations of the models

Model d e c Turbulence

4 0.2 0.2 0.01 No
6 0.2 0.5 0.01 No
8 0.2 0.8 0.01 No
14 0.5 0.2 0.01 No
16 0.5 0.5 0.01 No
18 0.5 0.8 0.01 No
24 0.8 0.2 0.01 No
26 0.8 0.5 0.01 No
28 0.8 0.8 0.01 No
34 0.2 0.2 0.01 Yes
36 0.2 0.5 0.01 Yes
38 0.2 0.8 0.01 Yes
44 0.5 0.2 0.01 Yes
46 0.5 0.5 0.01 Yes
48 0.5 0.8 0.01 Yes
54 0.8 0.2 0.01 Yes
56 0.8 0.5 0.01 Yes
58 0.8 0.8 0.01 Yes
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between explorers and imitators is critical to interpreting aggregate variables at the 
aggregate level.

Third, we evaluate the aggregate variables that characterize agents as “satisfic-
ers” in a competitive environment. This assessment includes performance, losses, 
aspirations, and the gap between performance and aspirations. The various models 
underwent sensitivity testing regarding changes in their structural parameters, d and 
e. The outcomes of these tests are detailed in “Appendix 2”.

Finally, we compare the outcomes outlined so far with those obtained from addi-
tional simulations that introduced turbulence to the environment.

The simulation procedure is illustrated in Fig. 1, depicting the role of each param-
eter at each step of the simulation. Additionally, the agent behavior/algorithm is dis-
played in Fig. 14 in “Appendix 1”.

4.2 � Overview of the model’s outcomes: number of agents and their decisions

Figure  2 shows the mean number of agents per type of decision, specifically the 
mean counts of decisions to exploit, explore, or imitate. Interestingly, the number of 
agents who chose exploitation stabilizes early in each simulation. Imitation tends to 
increase throughout the simulations and even surpasses exploration in models where 
imitators were initially set to be a minority.

This occurs because, as shown in Fig.  3, imitators tend to replace explorers. 
Although the total number of agents in the simulations is kept constant due to 
the substituting mechanism, explorers and imitators exit the simulations at rates 
that may be higher or lower than their generation probabilities. Regrettably, these 

Fig. 1   Simulation behavior. The simulation process is represented starting with the setup phase of the 
environment. Options and all the other initial conditions are generated only once when there is no tur-
bulence in the simulations. In contrast, if turbulence is included, the mean values of the options will be 
re-drawn at each period. Steps from 2 to 5 are repeated at each period
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dynamics may not yield interesting levels of exploration and imitation for com-
parative analysis.

In contrast, exploitation concerns those agents who reach satisficing options 
and choose to cease searching, irrespective of their type. The stable pattern of 
exploitation confirms that agents are modeled in a manner consistent with our 
slightly modified version of Bromiley’s (1991) model: exploitation occurs when 
agents aiming to improve their historical performance do not automatically raise 
their aspirations. On the other hand, agents systematically search for alternatives 
when they are either below the social average performance or have triggered an 
increase in their own historical performance.

Figure  4 shows that the cumulative sum of exits in the simulated models 
increases as the two parameters increase. A joint reading of Figs. 3 and 4 indi-
cates that explorers tend to “survive” less in the simulations as their number 
increases both in relative (e) and absolute terms (d).

In summary, these data show that in the simulated models, imitation prevails 
over exploration due to the replacement of imitators with explorers, favoring the 
former category. On the other hand, we observe that the number of exploiting 
agents remains stable, with one exception. In models where the initial number of 
explorers is the majority (models 8, 18, and 28), exploitation seems to increase 
when there is a sufficiently high number of explorers in the system. However, 
when the number of imitators consistently exceeds the number of explorers, 
exploitation stabilizes again.

Fig. 2   Mean counts of search decisions. Mean values computed for each search behavior at each period 
(i.e., exploitation, exploration, or imitation) across one thousand simulations of each model specification
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An additional piece of information that helps readers to understand better what 
happened in the simulated models is the concentration of agents around the options.

Figure 5 illustrates the mean HHI computed across all model simulations. The 
agents exhibit a lower concentration on the same options as the parameters d and e 
increase. Although the concentration across models decreases with these inacreas-
ing parameters, the mean HHI increases as the simulations progress. This trend may 
result from a shift in the composition of agents from the initial conditions to a set-
ting mostly populated by imitators, who search by aggregating around an option.

Similarly, Fig. 6 shows the cumulative relative number of agents in the most sig-
nificant clusters of agents adopting the same alternative. This measure was obtained 
by sorting the counts of agents associated with each alternative in descending order. 
The dynamics mirror those observed for the HHI. The cumulative sum across clus-
ters allows us to observe the numerosity of individual groups through their vertical 
differences and assess the overall numerosity of agents in the top five chosen options 
relative to the entire population. In addition, Fig. 6 shows that the higher the values 
of d and e, the less numerous the most populated clusters become.

We observed that imitators proliferate and replace explorers. This explains the 
increase in the cumulative sums of the agents in the clusters over time, especially in 
the last stages of the simulations.

It is interesting to note, however, that the agents in the early stages of the simu-
lations achieve a remarkably high level of concentration on the first five options. 

Fig. 3   Mean counts of agents per type. Mean counts of explorers and imitators at each step across the 
one thousand simulations run for each model specification (i.e., at varying density levels and share of 
explorers)
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This reflects the speed of convergence between the two imitation heuristics. Indeed, 
an "imitate the majority" heuristic might lead agents targeting average social per-
formance to imitate the larger clusters created by imitators targeting top perform-
ers. Thus, the initial concentration of agents in a few clusters at the beginning of 
the simulations is unsurprising.. Interestingly, as d increases, imitators engage with 
a broader range of options provided by explorers over time, resulting in slower 
clustering.

4.3 � Explorers and imitators

The differences between explorers and imitators are graphically shown in the figures 
in “Appendix 1” of this paper, from Fig. 15 to 26. For the sake of brevity, we offer 
a series of comments on these figures as follows. Compared to imitators, explorers 
exhibit lower and less variable performance. Nevertheless, the mean performance of 
imitators tends to decline over time.

Losses are experienced almost exclusively by imitators, and their magnitude 
increases with higher values of d and e. Explorers experience losses when they 
are in the minority (i.e., at low levels of e), and these losses tend to be higher as 
d increases. These losses experienced by explorers illustrate the scenario where an 
explorer becomes the target of imitation.

Fig. 4   Mean cumulative exits. Agents’ exits from the model due to them reaching the performance 
threshold of 60 have been cumulated over each of the one thousand simulations per model, and the mean 
value has been computed at each step
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Mean aspirations reflect mean performance. However, the differences between 
explorers and imitators are less pronounced in this regard than they are for per-
formance. Moreover, the differences in mean aspirations between explorers and 
imitators are more significant as e increases, with imitators having, on average, 
higher aspirations than explorers.

Regarding the gap between performance and aspirations (i.e., satisficing), we 
find that imitators are, on average, less satisfied than explorers. However, imita-
tors benefit from the presence of more explorers, i.e., their gap between perfor-
mance and aspirations is, on average, less negative as e increases. Conversely, 
explorers suffer from very crowded environments (when d is high), especially 
when they are in the majority (when e is high), leading to increasing levels of the 
explorers’ mean performance-aspirations gap.

This sensitivity of agents to crowded environments is a crucial feature of the 
whole model. Both explorers and imitators perform worse when d is high, regard-
less of the e level. In other words, both categories are negatively affected by being 
in large populations, and this effect is exacerbated when they are in the majority.

Finally, it can be noticed that imitators very rarely leave the simulations, while 
explorers do so more frequently as both parameters increase, as we understood 
from Figs. 3 and 4.

Fig. 5   Mean Herfindahl–Hirschman Index. The index has been computed at each step for each of the 
one-thousand simulations by summing the square of the number of agents per option over the total num-
ber of agents. It has been then divided by 10,000 (theoretical maximum value) to make the value relative 
to 1
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4.4 � Satisficing: performance, losses, and aspirations.

This part of the analysis focuses on the pooled aggregated performance measures, 
losses, aspirations, and the performance-aspirations gap.

The mean performance (as shown in Fig. 7) decreases as the parameter d increases 
and is higher as e increases. This aligns with our earlier observations:: more agents 
in the system lead to increased competition for imitators and fewer alternatives for 
explorers to experiment with. Furthermore, a higher value of e implies a greater 
number of explorers in the initial conditions of the simulation, indicating the pres-
ence of a more extensive set of discoveries made by them, which then become avail-
able to imitators.

The exit of explorers and the resulting increase in imitators explains the the 
observed decreasing pattern at higher levels of d and e.

Figure 8 confirms these results in terms of mean losses due to competition. The 
increase in losses over time, even in models with a high parameter e, reflects the 
shift in the majority towards imitators, thereby increasing the concentration on 
selected alternatives.

As with the mean performance, and in line with what was described in the "The 
Model" section, the mean aspirations (as shown in Fig. 9) decrease and increase as d 
and e increase, respectively. However, on average, the aspirations are always higher 
than performance at all time steps, which is by design.

Fig. 6   The mean number of agents in the five largest clusters combined. It is calculated by summing 
cluster sizes in descending order. Each number in the graph represents the cumulative sum of the clus-
ters, where 1 is the largest cluster, 2 is the sum of the largest and second-largest clusters, and so on. The 
vertical gaps between the lines indicate the respective sizes of the clusters
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Fig. 7   Mean Performance. Mean values computed for each period across one thousand simulations per 
model specification (i.e., at varying density levels and share of explorers)

Fig. 8   Mean losses experienced due to competition. Mean values computed for each period across one 
thousand simulations per model specification (i.e., at varying density levels and share of explorers)
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Notably, mean aspirations decrease over time in all models, reflecting the lower 
experienced performance of imitators due to increased competition.

Finally, Fig.  10 shows the mean gap between agents’ performance and aspira-
tions. Different from the aggregate variables examined so far, the performance-
aspiration gap is less intuitive to interpret for at least two reasons. First, and most 
obviously, the fact that the gap is always negative on average forces us to interpret 
its values in the opposite direction. A less negative gap indicates a higher average 
level of satisfaction. Second, and more importantly, this aggregate variable brings 
together many of the dynamics previously mentioned, such as the different ways 
crowding affects explorers and imitators.

For simplicity and brevity, we will assess this variable in qualitative terms, 
describing the agents’ experience in the simulated models. Furthermore, a more 
insightful approach to analyzing this variable involves contrasting its interpretation 
between the initial and final stages of the simulations.

In the early stages, the gap between performance and aspirations is influ-
enced by the level of the competition experienced by imitators. For example, 
Model 4 shows the initial level of the gap closest to zero among the models. This 
model features few agents (d = 20%) with a higher proportion (80%) of imita-
tors (e = 20%). Nevertheless, the limited alternatives discovered by the explorers, 
combined with those randomly assigned to the agents at the model’s initiation, 

Fig. 9   Mean aspirations. Mean values computed for each period across one thousand simulations per 
model specification (i.e., at varying density levels and share of explorers). Since each agent can compute 
aspirations only after sampling an option for ten rounds, the first ten rounds of the simulations have been 
excluded from the figure
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are sufficient to compensate for the losses due to competition. This is evidenced 
by the model showingthe highest HHI (as depicted in Fig. 5) and the highest con-
centration of agents in the first five clusters (as seen in Fig. 6). As explorers find 
new alternatives, imitators subsequently follow.

The same logic can be applied to other models in which the initial steps show 
a less negative gap between performance and aspirations, followed by increasing 
or stable trends (e.g., models 6, 8, 16, 18, and 28). In these models, the search 
process proves beneficia lfor agents in the early periods.

In the later stages of the simulations, the replacement of explorers with new 
imitators, a common occurrence across all models, determines the trend of the 
performance-aspiration gap. This trend depends on the "legacy" left by explorers 
in terms of discovering more rewarding options.

The gap decreases (becomes less negative) when there are enough good 
options to compensate for concentration and losses; otherwise, it increases 
(becomes more negative). For example, Model 28, which contrasts with Model 
4 in terms of parameters d and e, exhibits a complete reversal in the satisficing 
trend. In this model, competition is so intense that losses reduce performance, 
even when agents are less concentrated on the options compared to other models.

Fig. 10   Mean Performance-Aspiration Gap. Mean values computed for each period across one thousand 
simulations per model specification (i.e., at varying density levels and share of explorers). Since each 
agent can compute aspirations only after sampling an option for ten rounds, the first ten rounds of the 
simulations have been excluded from the figure
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In summary, the performance-aspiration gap highlights the significance of the 
early knowledge provided by explorers for imitators throughout the simulations. 
This significance is contingent on the intensity of competition, primarily driven by 
the total number of agents in the simulated models.

Table 3 summarizes all the results reported so far.

4.5 � Introduction of environmental turbulence

Additional simulations were conducted employing the previously detailed models 
with a notable modification: the environment was rendered more turbulent, signify-
ing continuous change in all aspects. Specifically, the mean performance of each 
option was regenerated at every simulation period. In this dynamic setting, the sto-
chastic nature of the initial model setup was evident in the variability of all variables.

To streamline our presentation, we concentrate on two primary metrics: the num-
ber of agents per type and the mean performance levels observed within these turbu-
lent simulations.

Table 3   Summary of the main results of the simulations with stable environment

Aspect Main results

Decision Dynamics Exploitation becomes stable early in simulations, with a consistent num-
ber of agents choosing this strategy

Imitation tends to increase and surpass exploration, even when imitators 
are initially a minority (high e)

Agent Dynamics Imitators proliferate and replace explorers over time
Concentration on the first five options is fast in the early stages
 Reflecting the speed of convergence between imitation heuristics

With higher d and e, imitators deal with a wider range of options from 
explorers, slowing down clustering

Explorers vs. Imitators Explorers show lower performance and higher variability than imitators
Losses are primarily experienced by imitators, increasing as parameters 

d and e increase
Imitators have higher aspirations on average than explorers, with differ-

ences more pronounced at higher values of e
Both explorers and imitators perform worse in crowded environments, 

especially when they are the majority
Satisficing (various measures) Mean performance decreases with higher d and increases with higher e, 

reflecting increased competition for imitators and more initial discover-
ies by explorers

Mean aspirations decrease over time due to increased competition and 
lower experienced performance of imitators

The performance-aspiration gap is imitators-driven, yet imitators depend 
on explorers

 Early stages, less negative the more favourable conditions are for imita-
tors

 Later stages, less negative the bigger the “legacy” left by explorers to 
imitators (more good alternatives discovered)
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A more comprehensive analysis and discussion of these findings will be elabo-
rated upon in the subsequent section of this manuscript.

Our agent modeling approach places “satisficers” in a challenging scenario char-
acterized by a dynamically fluctuating environment. Figure 11 compares the counts 
of the two agent types computed in the simulations with a turbulent environment 
juxtaposed with the previously reported counts in a stable one (Fig. 2).

The number of explorers and imitators differs slightly from that dictated by the 
initial conditions set by parameter e. In particular, the number of explorers tends 
to increase, while the number of imitators decreases. This discrepancy can be eas-
ily explained by the tendency of imitators to aggregate around random options, 
thus promoting competition. Similarly, the mean aggregated performance (Fig. 12) 
shows initial variability attributed to this initial competition before aligning with the 
expected value of the uniform distribution of means inherent in the data-generating 
process of alternative options.

Consequently, imitators exit the model faster than explorers until the cumulative 
losses due to competition, combined with the average performance level, fall below 
the exit threshold. Changing this threshold would induce a corresponding shift in 
the curve and a reciprocal change in the number of agents per type concerning the 
parameter change. In other words, a higher exit threshold would result in more imi-
tators leaving the system and vice versa, thus influencing the initial variation in per-
formance. The same logic applies to the losses due to the competition parameter (c).

To conclude our exploration of turbulence dynamics, it is intriguing to observe 
that explorers outperform imitators. Specifically, the results reveal a fascinating 

Fig. 11   Mean counts of agents per type: stable vs turbulent environments
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nuance: while explorers outperform imitators, they do not reach the performance 
levels observed in a perfectly stable environment. In such an environment, explorers 
gradually disappear from the system. This intriguing result can be summarized by 
the phrase "poor but happy": despite their relatively lower performance in the tur-
bulent environment, explorers persist in the simulations. Figure 13 provides a visual 
representation of this comparative analysis of results.

A methodological note is warranted. Given that we have modeled the maximum 
turbulence allowable in our environment, competition becomes the sole variable 
contributing to the observed differences. It is essential to recognize that alternative 
methods of modulating turbulence in the environment might lead to different results. 
A more detailed discussion of these methodological nuances is provided in the fol-
lowing section.

5 � Discussion and conclusions

This study delves into the dynamics between explorers and imitators in a compet-
itive environment, drawing upon frameworks from organizational learning (Lev-
itt and March 1988) and strategic imitation (Lieberman and Asaba 2006). These 
frameworks typically view imitation as a less resource-intensive alternative to 
experimentation for knowledge acquisition. Only a few studies focus on the inter-
action between agents engaging in innovation and those adapting through imita-
tion (Fagiolo and Dosi 2003; Boari et  al. 2017; Fagiolo et  al. 2020). Although 

Fig. 12   Mean performance in simulations with a turbulent environment
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these notable works have addressed the interaction between explorers and imita-
tors, they have overlooked a crucial theoretical building block: "satisficing."

Our study utilizes agent-based modeling (ABM), an approach widely adopted 
in organizational studies to investigate the exploration–exploitation trade-off 
and imitation. Pioneering applications can be seen in the research of Posen et al. 
(2013, 2020), Bray and Pietrula (2007), Fang et al. (2010), Kim and Rhee (2009), 
Miller et al. (2006), Ponsiglione et al. (2021), and Rodan (2005). However, these 
studies typically examine exploration and imitation separately.

Our model synthesizes these elements and incorporates the concept of agents 
as "satisficers," aligning with Simon’s (1955) theory. This novel approach seeks 
to address a gap in existing literature where the concept of "satisficing" has been 
largely neglected. In doing so, we reflect the realistic way individuals and organi-
zations establish performance goals. Our approach recognizes the limitations of 
decision-makers’ cognitive resources. The inclusion of satisficing behavior, an 
efficient strategy that reduces decision-making time and cognitive load, high-
lights its role in reaching acceptable results without the exhaustive search for 
perfection.

Our model delineates two distinct agent types: explorers, who undertake a random 
search for new alternatives, and imitators, who adopt a strategy of either majority imita-
tion or best imitation, contingent on their comparative performance within the system. 
This dichotomy is rooted in the problemistic search theory of Cyert and March (1963) 
and influenced by the aspiration adjustment framework developed by Bromiley (1991). 

Fig. 13   Mean performance of explorers and imitators in stable and turbulent environments
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This structure allows for a nuanced exploration of strategic behaviors in innovation and 
imitation, providing a fresh perspective on the exploration–exploitation trade-off.

The results of our simulations reveal two primary dynamics. First, the random search 
approach of explorers often leads to their exit from the model due to performance fall-
ing below a critical threshold. Over time, this shifts from the environment from one rich 
in innovation to one dominated by imitators, echoing the high failure rates observed 
in innovative markets, as Redmond (1995) noted. Second, the model shows that both 
explorers and imitators are adversely impacted by overcrowding effects, albeit in dif-
ferent ways. Explorers struggle due to the limited availability of rewarding alternatives, 
while imitators face intensified competition as the model evolves.

These findings highlight the nuanced and complex nature of agent interactions in 
competitive settings and demonstrate the value of incorporating the concept of sat-
isficing into agent-based models. By doing so, our study offers a deeper understand-
ing of the strategies and behaviors that drive innovation and imitation in competitive 
environments.

Moreover, we investigated agent behavior in simulations of highly turbulent environ-
ments, focusing on the adaptability and success of two types of agents: explorers and 
imitators. We modeled the turbulent environment to undergo continuous change, chal-
lenging the agents’ ability to adapt.

Our findings revealed that due to competition, explorers and imitators deviated 
slightly from their initial numbers. Earlier competition led to significant performance 
fluctuations, eventually aligning with the expected values of the uniform distribution 
governing the environment’s dynamism. A notable aspect of the results was the con-
sistent superiority of explorers over imitators in performance, particularly in turbulent 
environments. Despite this, explorers did not achieve the performance levels observed 
in stable environments. This observation led to an intriguing finding: although explor-
ers showed relatively lower success in terms of performance in the turbulent setting, 
they exhibited greater persistence compared to those in a stable environment. This phe-
nomenon, termed "poor but happy," highlights the resilience of explorers (as a cate-
gory) in the face of environmental uncertainty.

Our methodological approach strongly emphasized the role of competition and the 
search styles of agents in determining the outcomes observed in the simulations. This 
approach suggests that different methods of introducing turbulence could lead to var-
ied outcomes, indicating that the findings are specific to the simulated conditions of 
maximum turbulence. Such insights are essential for understanding how different agent 
types adapt and succeed under various environmental conditions. In conclusion, this 
study opens to future investigations of different types of environmental turbulence and 
their impact on the adaptability of agents who search by either exploring or imitating.

5.1 � Limitations and directions for future studies

While contributing to understanding competitive dynamics between explorers 
and imitators, this study presents several limitations and opens avenues for future 
research.
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A primary limitation is the modeling of bounded rationality for imitators and 
explorers. They choose options randomly or heuristically, with a comprehensive 
knowledge of the search landscape. For instance, explorers focus solely on free 
options, and imitators perfectly replicate others’ choices, assuming an unrealistic 
awareness of the overall social performance. This simplified representation contrasts 
with the concept of boundedly rational agents having an imperfect perception of 
their environment, as Puranam et  al. (2015) noted. Moreover, adopting heuristics 
only partially fits Simon’s original formulations (e.g., Simon 1955). Future research 
could enrich this model by introducing a more realistic, "blurred vision" for agents, 
limiting their awareness of others’ actions. Specifically, the literature on imperfect 
imitation suggests incorporating sampling errors to enhance the bounded rationality 
of agents, offering a more authentic competitive environment. Innovations such as 
"first-mover advantages," in terms of intellectual property rights or knowledge ben-
efits, could also be explored to introduce delays in the accessibility of new knowl-
edge, echoing the work of Posen et al. (2013).

Another aspect that warrants attention is the execution of known strategies- 
exploitation. The current model assumes immediate maximization of returns upon 
choosing an option, a simplistic approach that overlooks the nuances of behavio-
ral theory. Modeling exploitation as a refinement process could yield significant 
insights, aligning more closely with the principles outlined by Cyert and March 
(1963).

The study also reveals a limitation in the learning capabilities of agents attributed 
to the design of the agent-based model. Agents adapt to immediate options and gen-
eral performance levels rather than engaging in comprehensive learning. Address-
ing this could involve implementing a more intricate individual learning model, as 
suggested by Lieberman and Asaba (2006) and Posen et  al. (2013, 2020), where 
imitators sample reference groups from society, mirroring the concept of adaptive 
bounded rationality.

Moreover, this study’s distinction between exploration and imitation differs from 
previous research. For instance, Fagiolo and Dosi (2003) and Fagiolo et al. (2020) 
treat exploration as a probability parameter, with imitation being a secondary out-
come. Our model, by contrast, assigns fixed behavioral types to agents, limiting their 
ability to choose between exploration and imitation. This presents a theoretical gap 
in understanding what motivates agents to select one strategy over the other, an area 
ripe for exploration in future studies.

Additionally, ABMs often lack individual-level parameters for agents, such as 
risk attitudes, which are crucial determinants in exploration–exploitation decisions 
(March 1991). Incorporating such idiosyncrasies could facilitate a more nuanced 
understanding of exploratory and imitative behaviors at an individual level.

This study represents an initial foray into modeling imitation within a competitive 
exploration–exploitation environment using "satisficers." Despite its shortcomings, 
it merges various theoretical frameworks, providing a foundation for more compre-
hensive models. Future research could significantly benefit from calibrating ABMs 
with experimental data, fostering a collaborative approach between experimental-
ists and modelers to illuminate the complex interplay of exploration, imitation, and 
exploitation.
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Appendix 1: Additional information and simulations

Fixed Parameters and their values

We decided to keep some parameters fixed for two general reasons.
First, these parameters are not the central focus of the paper, so we decided to 

be parsimonious in the number of varying model characteristics we included in 
the model.

Second, given the lower relevance of these parameters with respect to the 
research question of the present paper, we chose values that were appropriate in 
this sense. In other words, we chose values that would have kept the effects of 
these parameters reasonably mild with respect to those of the variable parameters.

We justify these choices below.
The “number of alternatives” was arbitrarily chosen to be 100. However, we 

believe that choosing different values for this parameter would produce results 
quite similar to those obtained by using the value 100, but on a different scale. 
This is because most of the parameters in this agent-based model are relative to 
the number of options.

Both the “Top Performance Quantile” and “Exit Average Performance” param-
eters were briefly introduced and motivated in the “The Model” section of the 
paper. Both parameters are related to competition.

On the one hand, the number of best competitors is higher when the percentile 
is lower (e.g., 0.90) and decreases when the selected percentile is higher (e.g., 
0.99). Choosing the 95th percentile ensures that imitation does not dilute or exac-
erbate competition due to the number of best competitors.

On the other hand, the performance threshold that determines an agent’s exit 
from the simulation models the severity of the competition itself. We chose a rea-
sonably low percentile of the possible means generated for the options. The value 
of 60 approximates the 10th percentile (the actual value is 59) of the theoretical 
distribution of means of the discrete uniform distribution, which ranges from 55 
to 95.

To evaluate how initial conditions affect the number of imitators and explorers 
in the system, we chose to replace agents that exited the models by introducing 
a conservative tendency of the model to reproduce the initial conditions them-
selves. In other words, we chose to replace agents to observe dynamics that we 
could not otherwise: see, for example, the tendency of explorers to exit the model 
despite high values of the e parameter.

The algorithm of the single agent

Agents in our simulations executed the algorithm shown in Fig.  12. At each 
period, agents were activated in a random order and started by drawing a perfor-
mance level from the distribution of the option at hand. In the very first period of 
the simulation, a random option was assigned to each agent (Fig. 14).
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Comparisons between explorers and imitators

The following are the graphical representations of the variables of interest in the 
model discussed in the paper computed for explorers and imitators.

For each variable, two graphical outcomes were produced: the first illustrates the 
mean values of that variable at each step across simulations as well as the standard 

Fig. 14   Agent algorithm. Each agent in the simulation executed the algorithm illustrated in the flowchart.
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deviations; the second depicts those very same mean values that are shown condi-
tional to being significantly different. Statistical significance has been assessed by 
computing paired Wilcoxon tests between the series.

Exploitation decisions

See Figs. 15 and 16.

Fig. 15   Mean Exploitation of Explorers and Imitators
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Performance

See Figs. 17 and 18.

Fig. 16   Results of Paired Wilcoxon Test on mean exploitation. Non-significant differences are omitted
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Fig. 17   Mean performance of explorers and imitators. Mean values computed for each period across one 
thousand simulations per model specification (i.e., at varying levels of density and share of explorers)

Fig. 18   Results of Paired Wilcoxon Test on mean performance. Non-significant differences are omitted
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Aspirations

See Figs. 19 and 20.

Fig. 19   Mean Aspirations of Explorers and Imitators
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Performance‑Aspirations gap

See Figs. 21 and 22.

Fig. 20   Results of Paired Wilcoxon Test on mean aspirations. Non-significant differences are omitted
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Fig. 21   Mean Performance-Aspirations Gap of Explorers and Imitators

Fig. 22   Results of Paired Wilcoxon Test on mean performance-aspirations gap. Non-significant differ-
ences are omitted
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Losses

See Figs. 23 and 24.

Fig. 23   Mean Losses of Explorers and Imitators
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Cumulative exits

See Figs. 25 and 26.

Fig. 24   Results of Paired Wilcoxon Test on mean losses. Non-significant differences are omitted
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Fig. 25   Mean Cumulative Exits of Explorers and Imitators

Fig. 26   Results of Paired Wilcoxon Test on mean cumulative exits. Non-significant differences are omitted
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Appendix 2: Sensitivity checks

The following is a set of statistical comparisons between those simulated models 
that have been reported in the present paper. Specifically, these sensitivity checks 
have been conducted for the nine models with static environments described in the 
Results section. We have analyzed the statistical differences between each simu-
lated model as the parameters d and e varied across the different specifications.

For each of the analyzed variables, we ran two types of statistical tests and pro-
vided a graphical representation of their results. We performed a Kruskal–Wal-
lis Test and a Paired Wilcoxon Test between “triplets” of model specifications. 
These triplets consist of sets of three models differing for one parameter while the 
other is kept constant.

For example, triplet A consists of models with a constant value of d = 2 and, 
hence, all the considered values of e, namely, 0.2, 0.5, and 0.8.

In contrast, triplet D includes three models with a constant parameter e = 0.2, 
while d varies across the three models by taking the values of 0.2, 0.5, and 0.8, 
respectively.

Finally, a figure representing the compared models in terms of the considered 
variable is provided. In such a figure, solid line points indicate that the three models 
have emerged as statistically different in terms of that variable at that step. On the 
contrary, discontinuities in the lines indicate that at least two out of the three models 
are not statistically different when that variable is considered at that time step.

Performance

See Figs. 27, 28 and 29.
P-values are plotted.
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Fig. 27   Results of Kruskal–Wallis’s test on the performance levels across triplets. P-values are plotted

Fig. 28   Results of paired Wilcoxon test on the performance levels across triplets of models
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Aspirations

See Figs. 30, 31 and 32.

Fig. 29   Comparisons between models in terms of mean performance. Transparent dots indicate absence 
of statistical significance in the comparison between at least two of the three models

Fig. 30   Results of Kruskal–Wallis’s test on the aspirations levels across triplets of models. P-values are plotted
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Fig. 31   Results of paired Wilcoxon test on the aspirations levels across triplets of models where param-
eters d and e are constant as indicated in each plot. P-values are plotted

Fig. 32   Comparisons between models in terms of mean aspirations. Transparent dots indicate absence of 
statistical significance in the comparison between two of the three models
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Performance‑Aspirations gap

See Figs. 33, 34 and 35.

Fig. 33   Results of Kruskal–Wallis’s test on the performance-aspirations gap across triplets of models 
where parameters d and e are constant as indicated in each plot. P-values are plotted
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Fig. 34   Results of paired Wilcoxon test on the performance-aspirations gap across triplets of models 
where parameters d and e are constant as indicated in each plot. P-values are plotted

Fig. 35   Comparisons between models in terms of mean performance-aspirations gap. Transparent dots 
indicate absence of statistical significance in the comparison between two of the three models
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Losses

See Figs. 36, 37 and 38.

Fig. 36   Results of Kruskal–Wallis’s test on the mean losses across triplets of models where parameters d 
and e are constant as indicated in each plot. P-values are plotted
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Fig. 37   Results of paired Wilcoxon test on the mean losses across triplets of models where parameters d 
and e are constant as indicated in each plot. P-values are plotted

Fig. 38   Comparisons between models in terms of mean losses. Transparent dots indicate absence of sta-
tistical significance in the comparison between two of the three models
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Exits

See Figs. 39, 40 and 41.

Fig. 39   Results of Kruskal–Wallis’s test on the mean exits across triplets of models where parameters d 
and e are constant as indicated in each plot. P-values are plotted
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Fig. 40   Results of paired Wilcoxon test on the mean exits across triplets of models where parameters d 
and e are constant as indicated in each plot. P-values are plotted

Fig. 41   Comparisons between models in terms of mean exits. Transparent dots indicate absence of statis-
tical significance in the comparison between two of the three models
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