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Abstract
Let (X ,�) be a projective klt pair of dimension 2 and let L be a nef Cartier divisor
on X such that KX + � + L is nef. As a complement to the Generalized Abundance
Conjecture by Lazić and Peternell, we prove that if KX +� and L are not proportional
modulo numerical equivalence, then KX + � + L is semiample. An example due to
Lazić shows that this is no longer true in any dimension n � 3.
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1 Introduction

The Generalized Abundance Conjecture by Lazić and Peternell (see [4, p. 354]) is
indeed a theorem in dimension 2 (see [4, Corollary C, p. 356]):

Theorem 1.1 Let (X ,�) be a projective klt pair of dimension 2 such that KX + � is
pseudoeffective and let L be a nef Cartier divisor on X. If KX + � + L is nef then
there exists a semiample Q-divisor M on X such that KX + � + L is numerically
equivalent to M.

The assumption that KX + � is pseudoeffective turns out to be necessary (see for
instance [4, Example 6.2]). On the other hand, at least in dimension 2, it is possible to
characterize the failure of numerical abundance when KX +� is not pseudoeffective.
The following statement is [3, Theorem 3.13]:
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Theorem 1.2 Let (X ,�) be a projective klt pair of dimension 2 and let L be a nef
Cartier divisor on X such that KX + � + L is nef. Then either KX + � + L is
numerically semiample or KX + � is numerically equivalent to −t L with 0 � t � 1.

We point out that if t = 0 then we fall in the first case. Indeed, the Semiample-
ness Conjecture holds on surfaces (see [4, Theorem 8.2]): if KX + � is numerically
equivalent to 0 then L is numerically semiample. It is therefore tempting to ask the
following question in higher dimension:

Question 1.3 Let (X ,�) be a projective klt pair of dimension n � 3 and let L be a nef
Cartier divisor on X such that KX + � + L is nef. Is it true that either KX + � + L is
numerically semiample or L is numerically equivalent to −m(KX + �) with m > 0?

Even though we are not aware of any counterexamples, there seems to be no reason
to expect an affirmative answer.

As shown already in dimension 1 by the example of a non-torsion numerically
trivial divisor on an elliptic curve (see [1, p. 212]), numerical semiampleness cannot
be replaced by semiampleness. We notice however that, at least in dimension 2, semi-
ampleness holds under an easily stated explicit assumption. We formulate this remark
as follows:

Theorem 1.4 Let (X ,�) be a projective klt pair of dimension 2 and let L be a nef
Cartier divisor on X such that KX +�+L is nef. If KX +� and L are not proportional
modulo numerical equivalence, then KX + � + L is semiample.

The above result complements but does not imply Generalized Abundance, in par-
ticular its statement is empty in the two crucial cases L = KX + � (Abundance
Conjecture) and KX + � numerically trivial (Semiampleness Conjecture on Calabi–
Yau pairs). Once again, it is legitimate to wonder about the higher dimensional case.
We are going to present our proof in a general setting, but in arbitrary dimension we
only obtain a pale shadow of the two-dimensional case (see Corollary 2.4). The fol-
lowing example, kindly provided to us by Vladimir Lazić, shows that the statement
of Theorem 1.4 does not extend to any dimension n � 3:

Example 1.5 (Lazić) Let X be a smooth variety with Pic0(X) = 0 and Picard number
at least 2. Take an ample divisor A on X not proportional to KX and such that KX + A
is ample. Let E be an elliptic curve and take a degree zero non-torsion divisor P on
E . Consider Y = X ×E , let AY be the pullback of A to Y via the first projection and
let PY be the pullback of P via the second projection. Then KY and AY + PY are not
proportional modulo numerical equivalence, but KY + AY + PY is not semiample.
Indeed, assume by contradiction that KY + AY + PY is semiample and consider the
induced Iitaka fibration f : Y → Z . Then f and the first projection Y → X contract
the same curves, hence X and Z are isomorphic by the rigidity lemma. From the
factorization f : Y → X → Z it follows that PY is the pullback (up to Q-linear
equivalence) of a divisor PX from X , since KY + AY is the pullback of a divisor from
X and KY + AY + PY is the pullback of a divisor from Z. Then PX is numerically
trivial on X , hence torsion by the assumption Pic0(X) = 0. But this would imply that
PY is torsion, hence P is torsion, a contradiction.

We work over the complex field C.
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2 The proof

Our first lemma generalizes [7, Lemma 1.3].

Lemma 2.1 Let (X ,�) be a projective klt pair of dimension n and let H be a nef and
big Cartier divisor on X. If L is a nef Cartier divisor on X such that KX + � + L is
nef and KX + � + 2 L has numerical dimension ν(KX + � + 2 L) < k � n, then we
have

Hn−k Lk = Hn−k Lk−1(KX + �) = · · · = Hn−k(KX + �)k = 0.

Proof Since both KX + � + L and L are nef we have

0 � Hn−k(KX + � + 2L)k =
k∑

m=0

(
k

m

)
Hn−k(KX + � + L)mLk−m

with Hn−k(KX + � + L)mLn−m � 0 for every m.
If Hn−k(KX + � + 2L)k = 0 then Hn−k(KX + � + L)mLk−m = 0 for

every m and by induction it follows that Hn−k Lk = Hn−k Lk−1(KX + �) = · · ·
= Hn−k(KX + �)k = 0. ��
Corollary 2.2 Let (X ,�) be a projective klt pair of dimension n and let L be a nef
Cartier divisor on X. If KX + � + L is nef but not semiample, then we have

Ln = Ln−1(KX + �) = · · · = (KX + �)n = 0.

Proof If (KX +�+2L)n > 0 then KX +�+2 L = 2(KX +�+L)−(KX +�) is nef
and big, hence KX + � + L would be semiample by the logarithmic base-point-free
theorem. Since KX + � + L is not semiample we deduce that (KX + � + 2 L)n = 0
and ν(KX + � + 2 L) < n. Now the claim follows from Lemma 2.1 with k = n. ��
Our next lemma generalizes to arbitrary dimension the Easy Fact stated for surfaces
in [2, pp. 576–577] (see also [3, Lemma 3.2], where the assumption A2 = B2 = 0 is
missing and the assumption A, B nef is added).

Lemma 2.3 Let X be a normal projective variety of dimension n and let H be a nef
and big Cartier divisor on X. If A and B are two Q-Cartier divisors on X such
that Hn−2A2 = Hn−2B2 = Hn−2AB = 0, then A and B are proportional modulo
numerical equivalence.

Proof By replacing X with a birational resolution of singularities and A and B by
their pullbacks we may assume that X is smooth. We may also assume that Hn−1A
and Hn−1B are proportional by a rational factor m, so that Hn−1(A − mB) = 0.
Now we apply the Hodge index theorem for divisors (see [8, Sect. 1] and [5, Theo-
rem 1]) to E = A − mB: if Hn−1E = 0 then Hn−2E2 � 0 and equality holds if
and only if Hn−2E is homologically equivalent to zero. By assumption we have
Hn−2E2 = Hn−2(A − mB)2 = Hn−2A2 + m2 Hn−2B2 − 2mHn−2AB = 0,
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hence Hn−2E = Hn−2(A − mB) is homologically equivalent to zero. By the
hard Lefschetz theorem (see for instance [6, Theorem 4.6]), the Lefschetz operator
Hn−2 : H2(X ,Q) → H2n−2(X ,Q) is injective, therefore A − mB is homologically
(in particular, numerically) equivalent to zero. ��
Corollary 2.4 Let (X ,�) be a projective klt pair of dimension n. If L is a nef divisor
on X such that KX + � + L is nef and KX + � + 2 L has numerical dimension
ν(KX + � + 2 L) < 2, then KX + � and L are proportional modulo numerical
equivalence.

Proof Let H be a nef and big Cartier divisor on X . By Lemma 2.1 with k = 2 we
have Hn−2L2 = Hn−2L(KX + �) = Hn−2(KX + �)2 = 0. Now the claim follows
from Lemma 2.3. ��
Proof of Theorem 1.4 We argue by contradiction. If KX + � + L is not semiample,
then by Corollary 2.2 we have L2 = L(KX + �) = (KX + �)2 = 0. Now Lemma
2.3 yields the sought-for contradiction. ��
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