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1. Introduction

The aim of this work is to study the prescribed mean curvature equation for t-graphs 
in the Heisenberg group Hn with a sub-Finsler structure. In the Heisenberg group, which 
can be identified with R2n+1 endowed with a suitable non-Euclidean group law, a sub-
Finsler structure is defined by means of an asymmetric left-invariant norm ‖ · ‖K0 on 
the horizontal distribution of Hn associated to a convex body K0 ⊆ R2n containing the 
origin in its interior. Let Ω ⊆ R2n be a bounded open set, H ∈ L∞(Ω), F ∈ L1(Ω, R2n)
and u ∈ W 1,1(Ω). We consider the functional

I(u) =
∫
Ω

‖∇u + F‖K0,∗ dxdy +
∫
Ω

Hudxdy, (1.1)

where ‖ · ‖K0,∗ denotes the dual norm of ‖ · ‖K0 . In particular, when F (x, y) = (−y, x)
the first term in (1.1) coincides with the sub-Finsler area of the t-graph of u, see [50,22]. 
Moreover, if K0 is the Euclidean unit ball centered at the origin and H = 0 then (1.1)
boils down to the classical area functional for t-graphs in Heisenberg group, see [11,35]
and references therein. We say that the graph of u has prescribed K0-mean curvature H
in Ω if u is a minimizer of I. Indeed, the Euler-Lagrange equation associated to I out 
of the singular set Ω0, i.e. the set of points where ∇u + F vanishes, is given by

div(πK0(∇u + F )) = H, (1.2)

where πK0 is a suitable 0-homogeneous function defined in (2.5). When we fix a boundary 
datum ϕ ∈ W 1,1(Ω), a solution to the Dirichlet problem for the prescribed K0-mean 
curvature equation is a minimizer u of I such that u − ϕ belongs to the Sobolev space 
W 1,1

0 (Ω). Our main result is Theorem 5.1, where we prove, under suitable regularity 
assumptions on the data, that there exists a Lipschitz solution to the Dirichlet problem 
for the prescribed K0-mean curvature equation when H is constant, it satisfies

|H| < HK0,∂Ω(z0) (1.3)

for each z0 = (x0, y0) ∈ ∂Ω and

http://creativecommons.org/licenses/by-nc-nd/4.0/


G. Giovannardi et al. / Advances in Mathematics 451 (2024) 109788 3
∣∣∣∣∣∣
∫
Ω

Hv dxdy

∣∣∣∣∣∣ � (1 − δ)
∫
Ω

‖∇v‖K0,∗ dxdy (1.4)

for each non-negative function v ∈ C∞
c (Ω) and a suitable δ = δ(K0, Ω, H) ∈ (0, 1]. Here 

HK0,∂Ω denotes the Finsler mean curvature of the boundary ∂Ω ⊆ R2n. Notice that the 
mean curvature of the graph of u is computed with respect to the downward pointing 
unit normal and the Finsler mean curvature of ∂Ω is computed with respect to the inner 
unit normal. The upper bound (1.3) of H in terms of the Finsler mean curvature of 
the boundary is the Finsler analog of the standard assumption for the solution to the 
Dirichlet problem for the classical mean curvature equation in the Euclidean setting as 
stated in [56], [26] or [25] (see also [27, Theorem 16.11]). On the other hand, (1.4) is a 
standard sufficient condition for the estimates of the supremum of |u| (see [25] or [27]). 
It is worth noting that, in the Euclidean setting (cf. e.g. [31]), the weaker condition

∣∣∣∣∣∣
∫
Ω

Hv dxdy

∣∣∣∣∣∣ �
∫
Ω

‖∇v‖K0,∗ dxdy (1.5)

for each v ∈ C∞
c (Ω) is actually a necessary condition for the existence of a solution to the 

Euclidean prescribed mean curvature equation. Moreover, the Euclidean version of (1.5)
suffices to guarantee existence of solutions to the Euclidean prescribed mean curvature 
equation as long as no boundary conditions are imposed (cf. [31,38]). Remarkably, as we 
will show in Section 4 and 6, there are particular settings in which Theorem 5.1 continues 
to hold even without imposing (1.4), such as the first sub-Finsler Heisenberg group H1

(cf. Theorem 5.2) and any sub-Riemannian Heisenberg group Hn (cf. Theorem 6.2). The 
Dirichlet problem for constant mean curvature in the first Riemannian Heisenberg group 
has been studied in [1] under the same condition on the mean curvature. It is worth 
mentioning that this is the first time that the existence of Lipschitz solutions to the sub-
Finsler Dirichlet problem has been studied when H �= 0, even in the particular case in 
which K0 is the unit disk centered at 0, where the sub-Finsler and the sub-Riemannian 
frameworks coincide. Indeed, as far as we know, the sub-Riemannian Dirichlet problem 
has been studied in [47,12,11,10,19,49] only in the case of minimal surfaces under the 
bounded slope condition or the p-convexity assumption on Ω, and in [44] when H �= 0
is small enough and in a weaker functional framework. In particular, we point out that 
when n = 1 our assumption (1.3) implies that Ω ⊆ R2 is strictly convex, see Remark 4.9. 
It is easy to check that our sub-Finsler functional I for H = 0 satisfies the hypothesis of 
the area functional considered in [19]. Thus, assuming the bounded slope condition we 
directly obtain the existence of Euclidean Lipschitz minimizers for Plateau’s problem. 
The approach of the present paper, based on the Schauder fixed-point theory, follows the 
scheme developed in [12] and extends its results both to the case of prescribed constant 
mean curvature H �= 0 and to the sub-Finsler setting. In Theorem 5.1 we cannot expect 
better regularity than Lipschitz. Indeed, even in the sub-Riemannian Heisenberg group 
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H1 there are several examples of non-smooth area minimizers. For instance, S.D. Pauls 
[48] exhibited a solution of low regularity for Plateau’s problem with smooth boundary 
datum, while in [12,51,32] the authors provided solutions to the Bernstein problem in 
H1 that are only Euclidean Lipschitz. These examples have been recently generalized to 
the sub-Finsler setting in [28]. We refer the interested reader to [30] for a positive result 
to the sub-Finsler Bernstein problem for (X, Y )-Lipschitz surfaces, which can be seen as 
a regularity result for global perimeter minimizers.

Since equation (1.2) is sub-elliptic degenerate and it is singular next to the singular set, 
inspired by [12,47], we first introduce a family of desingularized approximating equations 
given by

div
(
πK0(∇u + F ) ‖∇u + F‖2

∗

(ε3 + ‖∇u + F‖3
∗)

2
3

)
= H (1.6)

for each 0 < ε < 1. A similar approximation scheme was considered in the sub-
Riemannian setting in [6,5] to study the Lipschitz regularity for non-characteristic 
minimal surfaces. For a detailed analysis of this approach, we refer to [4]. This fam-
ily of equations can be obtained by considering a (2n + 1)-dimensional convex body 
Kε containing the origin in its interior, that converges in the Hausdorff sense to the 
2n-dimensional convex body K0 as ε → 0. The choice of the convex body Kε is not 
arbitrary. Indeed, we need a specific shape in order to obtain an approximating equation 
well-defined in the classical sense in the singular set. It is interesting to point out that 
the Riemannian approximation of [12,47,6,5] produces an approximation of the unit disk 
D ⊆ R2n by ellipsoids in the sub-Riemannian setting, and this approximation does not 
work in the greater sub-Finsler generality. Indeed, if instead of (1.6) we were to consider 
the more natural equation

div
(
πK0(∇u + F ) ‖∇u + F‖∗√

ε2 + ‖∇u + F‖2
∗

)
= H, (1.7)

reminiscent of the Riemannian approximation scheme of [12] (cf. Remark 2.9), we would 
have to require certain assumptions on K0 for (1.7) to be well-defined in the classical 
sense. We refer to Section 6 for a more careful analysis in this regard. On the other hand, 
while (1.6) is always well-defined, it still tends to degenerate close to the singular set, so 
that it could fail to be elliptic. Therefore, we need to regularize (1.6) by perturbing it 
with an Euclidean curvature term. More precisely, we consider the family of equations 
given by

div
(
π(∇u + F ) ‖∇u + F‖2

∗

(ε3 + ‖∇u + F‖3
∗)

2
3

)
+ η div

(
∇u + F√

1 + |∇u + F |2

)
= H, (1.8)

for any ε ∈ (0, 1) and any η > 0 sufficiently small, whose associated Finsler variational 
functional is given by
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Iε,η(u) =
∫
Ω

(
ε3 + ‖∇u + F‖3

K0,∗
) 1

3 dxdy + η

∫
Ω

√
1 + |∇u + F |2 dxdy +

∫
Ω

Hudxdy.

A direct computation (cf. Section 4) will show that (1.8) is in fact a classical, quasi-linear 
second-order elliptic equation. Therefore, given a boundary datum ϕ ∈ C2,α(Ω̄), the solv-
ability of the Dirichlet problem associated to (1.6) is reduced by [27, Theorem 13.8] to a 
priori estimates in C1(Ω) of a related family of problems. As usual the a priori estimates 
in C1(Ω) consist of three parts: estimates of the supremum of |u|, boundary estimates 
of the gradient of u and interior estimates of the gradient of u. While the estimates 
of the supremum rely on assumption (1.4), the boundary estimates of the gradient are 
obtained by a barrier argument that depends on the Finsler distance from the boundary 
∂Ω. Due to technical reasons in the construction of the barriers we need to assume the 
strict inequality in (1.3), avoiding the optimal case when H coincides with HK0,∂Ω(z0)
at a given point z0 ∈ ∂Ω. We emphasize that these results hold even if the prescribed 
curvature H is non-constant and Lipschitz. The only crucial step where we need H to 
be constant is the maximum principle for the gradient of the solution that allows us 
to reduce the interior estimates of the gradient to its boundary estimates. Finally, once 
we realize that C1 estimates are independent of the approximation parameters ε and η, 
passing to the limit as ε, η → 0 and using Arzelà-Ascoli Theorem we get the existence 
of a Lispchitz minimizer for the sub-Finsler Dirichlet problem.

In the last decades, variational problems related to the sub-Riemannian area intro-
duced by Capogna, Danielli and Garofalo [7], Garofalo and Nhieu [24] and Franchi, 
Serapioni and Serra Cassano [23] have received great interest, see also [24,15,12,11,8,16,
3,2,33–35,53,36,21,5,14,37,13,9]. The monograph [8] provides a quite complete survey of 
progresses on the subject.

In particular, the analysis of the Dirichlet problem with H �= 0 constant for t-graphs is 
essential since it is strictly related to the isoperimetric problem in Hn. In [46], P. Pansu 
conjectured that the boundaries of isoperimetric sets in H1 are given by the surfaces 
now called Pansu’s spheres, obtained as the union of all sub-Riemannian geodesics of 
a fixed curvature joining two points in the same vertical line. This conjecture has been 
solved only assuming a priori some regularity of the minimizers of the area with constant 
prescribed mean curvature, such as the C2 regularity of the minimizers [53], the axial 
symmetry of the minimizers [41], the Euclidean convexity of minimizers [42] and when 
the isoperimetric set both contains a horizontal disk Dr and is contained in a vertical 
cylinder Cr for some r > 0 (cf. [52] for a more accurate statement). Recently, in [50,22], 
the notion of Pansu’s spheres has been generalized to the Pansu-Wulff spheres in the 
sub-Finsler setting. We refer to [54] for earlier research in this direction. Consequently, 
the results presented in [53] and [52] have been generalized in [22] and [50] respectively. 
Finally, in [29] the C2 regularity of the characteristics curves for the prescribed K0-mean 
curvature equation with continuous datum H is established when the boundary of the set 
is Euclidean Lispchitz and H-regular. Hence our existence result in the class of Lispchitz 
t-graphs provides an important contribution to the understanding of the sub-Finsler 



6 G. Giovannardi et al. / Advances in Mathematics 451 (2024) 109788
isoperimetric problem. Recently, similar results concerning CMC graphs and surfaces in 
the Euclidean setting with an anisotropic norm have been obtained by [18,17].

The manuscript is organized as follows. In Section 2 we introduce some preliminary 
definitions and results, such as the Minkowski norm, the Finsler geometry of a hyper-
surface in R2n, the Heisenberg group, the sub-Finsler perimeter and the sub-Finsler 
functional I. Section 3 is dedicated to the Finsler approximation by the Kε convex body 
of the sub-Finsler convex body K0. Section 4 deals with the a priori estimates for the 
C1 norm of the solution to the approximating elliptic equations (1.8). In particular, 
Proposition 4.6 deals with the a priori estimates of |u| when H is Lispchitz and verifies 
the integral condition (1.4), in Proposition 4.8 we deduce the boundary estimates of the 
gradient when H is Lispchitz, in Proposition 4.7 we establish the maximum principle for 
the gradient for H constant, and finally, in Proposition 4.10 we achieve a priori estimates 
of |u| when H is constant and n = 1. Section 5 contains the main Theorems 5.1 and 5.2. 
Finally, in Section 6 we prove Theorem 6.2 in the sub-Riemannian setting by means of 
the approximation scheme associated to (1.7).

Acknowledgment The authors warmly thank Manuel Ritoré for his advice and for stim-
ulating discussions and YanYan Li for fruitful conversations about the content of the 
present paper. The authors would also like to thank the anonymous referees for giving 
such constructive comments which substantially helped to improve the quality of the 
paper.

2. Preliminaries

2.1. Notation

Unless otherwise specified, we let n, d ∈ N, n, d � 1. Given two open sets A, B ⊆ Rd, 
we write A � B whenever A ⊆ B. We say that a set K is a convex body if it is convex, 
compact and has non-empty interior. We say that a convex body K is (in) Ck,α

+ , for 
k ∈ N and α ∈ [0, 1], if ∂K is of class Ck,α with strictly positive principal curvatures.

2.2. Minkowski norms

We follow the approach developed in [50,55]. We say that ‖ · ‖ : Rd → [0, +∞) is a 
norm if it verifies:

1. ‖v‖ = 0 ⇔ v = 0,
2. ‖sv‖ = s‖v‖ for any s > 0,
3. ‖v + u‖ � ‖v‖ + ‖u‖
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for any u, v ∈ Rd. We stress the fact that we are not assuming the symmetry property 
‖ − v‖ = ‖v‖. It is well known that any norm is equivalent to the Euclidean norm | · |, 
that is, given a norm ‖ · ‖ in Rd there exist constants 0 < c < C such that

c| · | � ‖ · ‖ � C| · |. (2.1)

Associated to a given a norm ‖ · ‖ we have the set F = {u ∈ Rd : ||u|| � 1}, which, 
thanks to (2.1) and the properties of ‖ ·‖, is compact, convex and includes 0 in its interior. 
Reciprocally, given a convex body K with 0 ∈ int(K), the function

||u||K = inf{λ � 0 : u ∈ λK}

defines a norm so that K = {u ∈ Rd : ||u||K � 1}. In the following we let

BK(v, r) := {w ∈ Rd : ‖w − v‖K � r}

for any v ∈ Rd and r > 0. It is easy to check that ‖v‖K = ‖ − v‖−K for any v ∈ Rd, so 
that

B−K(v, r) := {w ∈ Rd : ‖v − w‖K � r} (2.2)

for any v ∈ Rd and r > 0. Given a norm ‖ ·‖ and a scalar product 〈·, ·〉 in Rd, we consider 
the dual norm ‖ · ‖∗ of ‖ · ‖ with respect to 〈·, ·〉, defined by

‖u‖∗ = sup
‖v‖�1

〈u, v〉. (2.3)

The dual norm is the support function of the unit ball F with respect to the scalar 
product 〈·, ·〉. Moreover, thanks to the above definitions the following Cauchy-Schwarz 
formula holds:

〈u, v〉 � ‖u‖∗‖v‖ (2.4)

for any u, v ∈ Rd. If in addition we assume K to be strictly convex and u �= 0, then the 
compactness and strict convexity of K guarantee the existence of a unique vector πK(u)
in ∂K where the supremum in (2.3) is attained, i.e.

‖u‖K,∗ = 〈u, πK(u)〉. (2.5)

It is easy to see that πK is a positively 0-homogeneous map, i.e. πK(λu) = πK(u) for 
any λ > 0 and u ∈ Rd \ {0}, and that ‖πK(u)‖K = 1 for any u ∈ Rd \ {0}. Moreover, 
if we assume that K is C2

+, then πK |Sd−1 : Sd−1 −→ ∂K is a C1 diffeomorphism whose 
inverse is the Gauss map NK of ∂K with respect to the outer unit normal. In particular,
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DπK(u) is positive definite (2.6)

for any u ∈ Rd \ {0}. Furthermore, we have that the norms ‖ · ‖K and ‖ · ‖K,∗ belong to 
Ck,α(Rd \ {0}) if and only if ∂K is Ck,α for k ∈ N and 0 � α � 1. For further details 
see [55, Section 2.5]. The relation between the dual norm and the map πK is given by

∇‖u‖K,∗ = πK(u). (2.7)

Indeed, for any u ∈ Rd \ {0}

∇‖u‖K,∗ = ∇〈u, πK(u)〉 = πK(u) + u ·DπK(u) = πK(u),

where the last equality follows from the fact that 0-homogeneous functions are radial.

2.3. Finsler geometry of hypersurfaces in the Euclidean space

Let K ⊆ Rd be a convex body in C2
+, 0 ∈ intK and Ω ⊆ Rd be a bounded domain with 

boundary ∂Ω = Σ of class C2. Let N be the inner unit normal to Σ. Then the derivative 
map (WK,Σ)p = −dp(πK ◦N) : TpΣ → TπK(N(p))∂K, being πK as in (2.5), is called the 
K-Weingarten map. Let γ ⊆ ∂K be a differentiable curve with γ(0) = πK(N(p)) and 
γ′(0) ∈ TπK(N(p))∂K. By definition of πK , the function

f(t) = 〈γ(t), N(p)〉

has a maximum at 0 and therefore 〈γ′(0), N(p)〉 = f ′(0) = 0, which gives TπK(N(p))∂K =
TN(p)S

d−1. Moreover it is well known that (dN)q is an endomorphism of TqΣ and there-
fore (WK,Σ)p is an endomorphism of TpΣ. We define the K-mean curvature of Σ as

HK,Σ = Trace(WK,Σ) = − divΣ(πK ◦N),

where divΣ is the divergence in the tangent directions to Σ. We remark that WK,Σ

is neither necessarily self-adjoint nor symmetric. Let us check that WK,Σ is anyway 
diagonalizable. Indeed, given a parametrization X of Σ, dN has a symmetric matrix 
representation S in the basis B = {∂x1X, . . . , ∂xd−1X}. On the other hand, πK = N−1

K

and, since K is in C2
+, the matrix A which represents d(N−1

K ) with respect to B is positive 
definite. Therefore, there exists an invertible matrix P such that A = P tP . Notice that 
the matrices P tPS and PSP t have the same spectrum, and equal to the spectrum of 
WK,Σ. Since S is symmetric we can apply Sylvester’s criterion to obtain that all the 
eigenvalues of PSP t are real. The eigenvalues of WK,Σ are called K-principal curvatures
and the eigenvectors of WK,Σ are called K-principal directions.
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2.3.1. Finsler distance from the boundary and the Eikonal equation
In this and the following section we want to rely on some results by [40,39], and so we 

assume that K is in C∞
+ , i.e. ∂K is of class C∞ with strictly positive principal curvatures. 

Let Ω ⊆ Rd be a bounded domain with boundary ∂Ω = Σ of class C2,α, for 0 < α � 1, 
and inner unit normal N . We shall adapt Theorem 4.26 in [43] and the remarks at the 
end of Section 4.5 in [43] to prove existence of a tubular neighborhood of Σ and compute 
the K-mean curvature of parallel hypersurfaces. The interior signed K-distance to Σ is 
the function dK,Σ : Rd → R given by

dK,Σ(p) =
{

min{‖p− q‖K : q ∈ Σ} if p ∈ Ω
−min{‖p− q‖K : q ∈ Σ} if p /∈ Ω.

Consider the map F : Σ ×R → Rd given by

F (q, t) = q + t(πK ◦N)(q).

For any v ∈ TqΣ, we have (dF )(q,t)(v, 0) = v + td(πK ◦ N)(v) and (dF )(q,t)(0, 1) =
(πK ◦N)(q). Since K contains the origin,

〈πK(N), N〉 > 0

and dF is invertible at t = 0. Thus F is locally a diffeomorphism and, being Σ a compact 
hypersurface, F is a diffeomorphism in a domain Σ × (−δ, δ). The set F (Σ × (−δ, δ)) is 
called a tubular neighborhood of Σ. Notice that if p = F (q, t), then

p− q = t(πK ◦N)(q) (2.8)

and, taking the K-norm, we obtain that dK,Σ(p) = t. We know (cf. [40]) that, under our 
assumptions, there exists δ̄ > 0 such that

dK,Σ ∈ C2,α(F (Σ × (−δ, δ))),

for any δ < δ̄. Given |t| < δ, we let

Σt = {p ∈ Rd : p = F (q, t) for some q ∈ ∂Σ}. (2.9)

Proposition 2.1. Let Ω ⊆ Rd be a bounded domain with boundary ∂Ω = Σ of class C2

and let F (Σ × (−δ, δ)) be a tubular neighborhood of Σ. The K-mean curvature of Σt at 
p ∈ Σt is given by

HK,Σt
(p) =

d−1∑ κi(q)
1 − tκi(q)

, (2.10)

i=1
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where q ∈ Σ satisfies p = F (q, t) and κ1(q), . . . , κd−1(q) are the K-principal curvatures 
of Σ at q.

Proof. Let {e1, . . . , ed−1} be a basis of K-principal directions of Σ. Then (dF )(q,t)(ei, 0) =
(1 − tκi)ei. Therefore a basis of principal directions in Σt is { e1

1−tκ1
, . . . , ed−1

1−tκd−1
}. Since 

we have

−d(πK ◦N)q
(

ei
1 − tκi

)
= κi

1 − tκi
ei

for each i = 1, . . . , d − 1 we get the conclusion. �
Remark 2.2. From (2.10), we obtain that the K-mean curvature is increasing in t. In 
particular, given q ∈ Σ and p = F (q, t) for t > 0, it holds that

HK,Σt
(p) � HK,Σ(q). (2.11)

The following Eikonal equation can be deduced using classical arguments. We include 
the proof for the sake of completeness.

Proposition 2.3. It holds that

‖∇dK,Σ(p)‖K,∗ = 1 (2.12)

for any p where dK,∂Ω is differentiable.

Proof. It is clear that, for any p, p′ in Rd, we have

dK,Σ(p′) � ‖p′ − p‖K + dK,Σ(p).

Taking p′ = p + tv where t > 0, we get

dK,Σ(p + tv) − dK,Σ(p) � ‖tv‖K .

Therefore,

〈v,∇dK,Σ(p)〉 � ‖v‖K . (2.13)

Taking v = πK(∇dK,Σ(p)) in (2.13), we obtain

‖∇dK,Σ(p)‖K,∗ � 1.

On the other hand, let γ(t) = F (q0, t). By (2.8) we have that

dK,Σ(γ(t)) = t.
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Taking derivatives in the previous equation, we obtain

〈γ′(t),∇dK,Σ(γ(t))〉 = 1.

Since γ′(t) = (πK ◦N)(q0), we get that ‖γ′(t)‖K = 1. Using (2.4), we get

‖∇dK,Σ(γ(t))‖K,∗ � 1. �
Given a tubular neighborhood O of ∂Ω and p = F (q, t) ∈ Ω, we denote by Nt(p) the 

inner unit normal to Σt at p. Let us explicitly compute div(πK ◦ Nt)(p). Let us recall 
that, to the 0-homogeneity of πK , we get that

q ·DπK(q) = 0

for any q ∈ Rd. In particular, taking q = Nt, we obtain

Nt ·D(πK ◦Nt) = Nt ·DπK(Nt) ·DNt = 0,

which implies that

− div(πK ◦Nt)(p) = − divΣ(πK ◦Nt)(p) = HK,Σt
(p) � HK,∂Ω(q). (2.14)

With the next result, we better understand the relationship between the Finsler mean 
curvature of Σ, the Euclidean curvature of Σ and the Euclidean principal curvatures of 
K.

Proposition 2.4. Let K be a convex body in C2
+, 0 ∈ intK. Let Ω ⊆ Rd be a bounded 

domain with ∂Ω = Σ of class C2 and let Nq be the inner unit normal to Σ at q. Then 
we have

HK,Σ(q) = −
d−1∑
i=1

〈DeiNq, ei〉
kKi (πK(Nq))

(2.15)

where kKi are the Euclidean principal curvatures of ∂K and e1, . . . , ed−1 is an orthonor-
mal basis of Euclidean principal directions of ∂K.

Proof. We shall drop the subscript for πK . Let q in Σ and e1, . . . , ed−1 be an orthonormal 
basis of Rd−1 = Tπ(Nq)∂K such that

(dNK)π(Nq)ei = kKi (π(Nq))ei.

By hypothesis, kKi > 0 for i = 1, . . . , d − 1. Here NK denotes the Gauss map of ∂K. 
Then we have
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HK,Σ(q) = − divΣ(π(Nq)) = −
d−1∑
i=1

〈Deiπ(Nq), ei〉,

where D is the Levi-Civita connection in Rd. We claim that Deiπ(Nq) = dπ(DeiNq). 
Indeed, let γ : (ε, ε) → Σ such that γ(0) = q and γ̇(0) = ei for i = 1, . . . , d − 1. Then we 
have

Deiπ(Nq) = D

ds

∣∣∣
s=0

π(Nγ(s)) =
d∑

j=1

d

ds

∣∣∣
s=0

πj(Nγ(s))
∂

∂xj

=
d∑

j=1
∇πj(Nq)

D

ds

∣∣∣
s=0

Nγ(s)
∂

∂xj
= (dπ)Nq

DeiNq.

Moreover, since dπ is a symmetric matrix we gain

HK,Σ(q) = −
d−1∑
i=1

〈(dπ)Nq
DeiNq, ei〉 = −

d−1∑
i=1

〈DeiNq, (dπ)Nq
ei〉. (2.16)

Since π = N−1
K we obtain dπ = (dNK)−1 and

ei = dN−1
K dNK(ei) = dN−1

K (kKi (π(Nq))ei) = kKi (π(Nq))dπ(ei),

by linearity. Therefore, we have dπ(ei) = (kKi (π(Nq)))−1ei. Hence, plugging this last 
equality in (2.16) we gain (2.15). �
2.3.2. The ridge of the Finsler distance

In the previous section we obtained some regularity and geometric properties of dK,∂Ω
in a tubular neighborhood of ∂Ω. We shall see that some of these properties persist 
outside a tubular neighborhood. We fix a convex body K ∈ C∞

+ and a bounded domain 
Ω ⊆ Rd with C2,1 boundary. For any p ∈ Ω, we let D(p) := {q ∈ ∂Ω : dK,∂Ω(p) =
‖p − q‖K}. Since dK,∂Ω is continuous, then clearly D(p) �= ∅ for any p ∈ Ω. Accordingly, 
we define the set

Ω1 := {p ∈ Ω : D(p) is a singleton}, (2.17)

and we define the Ridge of Ω by

R := Ω \ intΩ1.

We know, again thanks to [40], that, under our assumptions on K and Ω,

dK,∂Ω ∈ C2,1(intΩ1 ∪ ∂Ω). (2.18)
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Moreover, in [39, Corollary 1.6] it is proven that the Hausdorff dimension of R is at most 
d − 1. This fact implies that R has empty interior, so that

∂(intΩ1) = ∂Ω ∪R. (2.19)

The following result is inspired partially by [20, Lemma 3.4].

Proposition 2.5. Let p ∈ Ω, let q ∈ D(p) and let

(p, q) := {tp + (1 − t)q : t ∈ (0, 1)}.

Then (p, q) ⊆ int Ω1 and

D(γ) = {q} (2.20)

for any γ ∈ (p, q).

Proof. Let p, q be as in the statement, and fix γ ∈ (p, q). We already know that D(γ) �= ∅. 
On the other hand, assume that there exists q′ �= q such that q′ ∈ D(γ). Let us notice 
that p, q, q′ cannot lie on the same line. Indeed, if by contradiction this was the case, 
then the only possibility is that p is a convex combination of γ and q′. But then the 
strict convexity of K would imply that

‖γ − q′‖K � ‖γ − q‖K < ‖p− q‖K � ‖p− q′‖K < ‖γ − q′‖K ,

which is absurd. This in particular implies that p, γ, q′ do not lie on the same line. 
Therefore, thanks again to the strict convexity of K, we get that

‖p− q′‖K < ‖p− γ‖K + ‖γ − q′‖K � ‖p− γ‖K + ‖γ − q‖K = ‖p− q‖K ,

a contradiction to q ∈ D(p). Hence (2.20) is proved. Assume by contradiction that γ ∈ R. 
By Corollary 4.11 in [39], any point of the form q + λ(γ − q) with λ > 1 has a point in 
∂Ω closer than q. On the other hand, taking w the midpoint of p and γ, then by (2.20)
it holds that D(w) = {q}, which is impossible. �

Let us take a point p ∈ intΩ1, and let q ∈ D(p). Thanks to Proposition 2.5, we know 
that

dK,∂Ω(z) = ‖z − q‖K

for any z in (p, q). Recalling that (p, q) ⊆ int Ω1, together with (2.18), and Proposition 2.3
it is easy to see that ∇dK,∂Ω(z) �= 0. Thus, at least locally, the level set ΣdK ,∂Ω(p) is a 
well-defined C2 hypersurface. Reasoning as in Section 2.3.1 we conclude that



14 G. Giovannardi et al. / Advances in Mathematics 451 (2024) 109788
− div(πK ◦NdK ,∂Ω)(p) � HK0,∂Ω(q) (2.21)

for any p ∈ intΩ1, where q ∈ D(p).

2.4. The Heisenberg group

Let n � 1. We denote by Hn the Heisenberg group, defined as the (2n +1)-dimensional 
Euclidean space R2n+1 endowed with the non-abelian group law ∗ given by

(x, y, t) ∗ (x̄, ȳ, t̄) =
(
x + x̄, y + ȳ, t + t̄ +

n∑
i=1

(x̄iyi − xiȳi)
)
, (2.22)

where x = (x1, . . . , xn), x̄ = (x̄1, . . . , ̄xn), y = (y1, . . . , yn) and ȳ = (ȳ1, . . . , ȳn). A basis 
of left-invariant vector fields is given by

Xi = ∂

∂xi
+ yi

∂

∂t
, Yi = ∂

∂yi
− xi

∂

∂t
, T = ∂

∂t
,

for i = 1, . . . , n. For p = (x, y, t) ∈ Hn, the left translation by p is the diffeomorphism 
Lp(q) = p ∗ q. We denote by H the horizontal distribution whose fiber at p ∈ Hn is the 
2n-dimensional space

Hp = span{Xi(p), Yi(p) | i = 1, . . . , n}.

From now on we will always identify H0 with R2n. We shall consider on Hn the left-
invariant Riemannian metric g = 〈·, ·〉, so that the vector fields {X1, . . . , Xn, Y1, . . . ,
Yn, T} form an orthonormal basis at every point, and we let D be the Levi-Civita con-
nection associated to the Riemannian metric g. The Riemannian volume of a set E is, up 
to a constant, the Haar measure of the group and can be identified with the (2n +1)−di-
mensional Lebesgue measure. We denote it by |E|. The integral of a function f with 
respect to the Riemannian measure is denoted by 

∫
f dHn.

2.5. Sub-Finsler norms and perimeter

Let K0 ⊆ H0 ≡ R2n be a convex body in C2
+ (cf. Subsection 2.1), 0 ∈ intK0 and let 

‖ · ‖K0 be the associated norm in R2n. In the following we shall write ‖ · ‖, ‖ · ‖∗ and π
instead of ‖ ·‖K0 , ‖ ·‖K0,∗ and πK0 respectively. For any p ∈ Hn, we define a left-invariant 
norm ‖ · ‖p on Hp by means of the equality

‖v‖p = ‖dL−1
p (v)‖ v ∈ Hp

where dLp denotes the differential of Lp. In particular, for a horizontal vector field ∑n
i=1 fiXi + giYi its norm at a point p ∈ Hn is given by
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∥∥∥ n∑
i=1

fi(p)Xi(0) + gi(p)Yi(0)
∥∥∥ = ‖(f(p), g(p))‖,

where f = (f1, . . . , fn) and g = (g1, . . . , gn). Similarly, we extend the dual norm ‖ · ‖∗
and the projection π to each fiber of the horizontal bundle. When ‖ · ‖ is Cl with l � 2, 
all norms ‖ · ‖p are Cl. Given a horizontal vector field U of class C1, we define π(U) as 
the C1 horizontal vector field satisfying

‖U‖∗ = 〈U, π(U)〉.

Proceeding as in § 2.3 of [50], it is easy to see that the projection satisfies

π

(
n∑
i

fiXi + giYi

)
= N−1

K0

(
(f, g)√

|f |2 + |g|2

)
,

where |f |2 = 〈f, f〉.

Definition 2.6. Given a measurable set E ⊆ Hn we say that E has finite horizontal 
K0-perimeter if

PK0,H(E) = sup

⎧⎨
⎩
∫
E

div(U) dHn, U ∈ H1
0(Hn), ‖U‖K0,∞ � 1

⎫⎬
⎭ < +∞,

where H1
0(Hn) is the space of C1 horizontal compactly supported vector fields in Hn

and ‖U‖K0,∞ = supp∈Hn ‖Up‖p.

Remark 2.7. The perimeter associated to the Euclidean norm | · | is the sub-Riemannian 
perimeter as it is defined in [23,24]. A set has finite perimeter for a given norm if and only 
if it has finite perimeter for the standard sub-Riemannian perimeter. Hence all known 
results in the standard case apply to the sub-Finsler perimeter. Moreover, if E has C1

boundary ∂E, then

PK0,H(E) =
∫
∂E

‖Nh‖∗dσ =: AK0,H(∂E),

where Nh is the projection on the horizontal distribution H of the Riemannian normal N
with respect to the metric g and dσ is the Riemannian measure of ∂E. For more details 
see § 2.4 in [50] when n = 1.

As a significant example, we consider a bounded open set Ω ⊆ R2n and a C1 function 
u : Ω → R. Let Gr(u) = {(x, y, t) ∈ Hn : u(x, y) − t = 0} be the graph of u. Then we 
have
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Nh =
∑n

i=1(uxi
− y)Xi + (uyi

+ x)Yi√
1 + |∇u + F |2

and dσ =
√

1 + |∇u + F |2 dxdy,

where ∇u(x, y) is the Euclidean gradient of u(x, y) and F (x, y) = (−y, x). Therefore we 
get

AK0,H(Gr(u)) =
∫
Ω

‖∇u + F‖∗ dxdy.

2.6. The sub-Finsler prescribed mean curvature equation

Inspired by the previous computation and the sub-Riemannian problem studied by 
[12] we consider the following problem. Let Ω ⊆ R2n be a bounded open set and let 
F ∈ L1(Ω, R2n), ϕ ∈ W 1,1(Ω) and H ∈ L∞(Ω). Then we set

I(u) =
∫
Ω

‖∇u + F‖∗ dxdy +
∫
Ω

Hudxdy (2.23)

for each u ∈ W 1,1(Ω) such that u −ϕ ∈ W 1,1
0 (Ω). We say that u ∈ W 1,1(Ω) is a minimizer

for I if

I(u) � I(v)

for all v ∈ W 1,1(Ω) such that v−ϕ ∈ W 1,1
0 (Ω). In [12, Section 3] the authors investigate 

the first variation of the functional I when ‖ · ‖K0,∗ is the Euclidean norm | · |, taking 
into account the bad behaviour of the singular set

Ω0 = {(x, y) ∈ Ω : (∇u + F )(x, y) = 0}. (2.24)

In the next result we derive the Euler-Lagrange equation associated to I for C2 mini-
mizers.

Proposition 2.8. Let K0 be a C2
+ convex body such that 0 ∈ int(K0). Let u ∈ C2(Ω) be a 

minimizer for I defined in (2.23). Assume that F ∈ C1(Ω, R2n). Let Ω0 be the singular 
set defined in (2.24). Then u satisfies

div(π(∇u + F )) = H in Ω \ Ω0. (2.25)

Proof. Given v ∈ C∞
c (Ω \ Ω0), by [50, Lemma 3.2] the first variation is given by

d

ds

∣∣∣
s=0

I(u + sv) =
∫

d

ds

∣∣∣
s=0

‖∇(u + sv) + F‖∗ dxdy +
∫

Hv dxdy
Ω\Ω0 Ω\Ω0
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=
∫

Ω\Ω0

d

ds

∣∣∣
s=0

‖∇u + F + s∇v‖∗ dxdy +
∫

Ω\Ω0

Hv dxdy

=
∫

Ω\Ω0

〈∇v, π(∇u + F ))〉 dxdy +
∫

Ω\Ω0

Hv dxdy

=
∫

Ω\Ω0

v (H − div(π(∇u + F ))) dxdy. �

Remark 2.9. When K0 is the unit disk D0 ⊆ R2n centered at 0 of radius 1 we have

πD0(∇u + F ) = ∇u + F

|∇u + F |

and (2.25) is equivalent to

div
(

∇u + F

|∇u + F |

)
= H.

3. The Finsler approximation problem

In this section we develop the Finsler approximation scheme in order to get rid of the 
singular nature of equation (2.25). To this aim, given K0 a convex body in C2

+ such that 
0 ∈ intK0 and ε ∈ (0, 1), we denote by Kε the set

Kε :=
{

(x, y, t) ∈ R2n+1 :
(
|t|
ε

) 3
2

+ ‖(x, y)‖ 3
2 � 1

}
. (3.1)

Notice that Kε ⊆ R2n+1 ≡ T0Hn (here T0Hn denotes the tangent space of Hn at 
p = 0) is a strictly convex body with 0 ∈ int(Kε). Moreover ∂Kε is of class C1. Indeed 

it is a level set of the C1 function gε(x, y, t) :=
(

|t|
ε

) 3
2 + ‖(x, y)‖ 3

2 , whose gradient never 
vanishes on ∂Kε. Hence, the projection πKε

is well-defined and continuous. We shall write 
‖ ·‖ε, ‖ ·‖ε,∗ and πε instead of ‖ ·‖Kε

, ‖ ·‖Kε,∗ and πKε
respectively. The map πh

ε is defined 
as the first 2n components of πε. By abuse of notation, we write πh

ε (x, y) = πh
ε (x, y, −1)

when there is no confusion.

Proposition 3.1. Let K0 be a convex body in C2
+ such that 0 ∈ intK0, and let Kε ⊆ R2n+1

be the set defined in (3.1). Then the following assertions hold:

(i) The map πh
ε : R2n

� {0} → R2n satisfies

πh
ε (x, y) = π(x, y) ‖(x, y)‖2

∗
3 3

2
3
.

(ε + ‖(x, y)‖∗)
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(ii) The map πh
ε can be extended to a C1 map in R2n by setting πh

ε (0, 0) = (0, 0).
(iii) ‖(x, y, −1)‖Kε,∗ =

(
ε3 + ‖(x, y)‖3

∗
) 1

3 .

Proof. Let us prove that

πε(x, y,−1) = (απ(x, y),−ε(1 − α3/2))2/3 (3.2)

for some 0 < α(x, y) < 1. Given (x, y) in R2n \ {0}, we denote by t0 the (2n + 1)-th 
coordinate of πε(x, y, −1) and we let Kt0 ⊆ R2n be the convex set defined by

Kt0 := {(x′, y′) : (x′, y′, t0) ∈ Kε}.

Then we have

Kt0 × {t0} =
{( |t0|

ε

) 3
2 + ‖(x′, y′)‖ 3

2 � 1
}

=

⎧⎨
⎩‖(x′, y′)‖ �

(
1 −

(
|t0|
ε

) 3
2
) 2

3
⎫⎬
⎭ .

Hence it follows that πt0 = (1 − ( |t0|ε ) 3
2 ) 2

3π. On the other hand, since πε is the inverse of 
the Gauss map, we can see that (x, y, −1) is normal to ∂Kε at πε(x, y, −1) and so (x, y) is 
normal to ∂Kt0 at πh

ε (x, y), where 0 < t0 < 1 satisfies ‖πh
ε (x, y)‖ 3

2 +( |t0|ε ) 3
2 = 1. Since Kt0

is strictly convex, the projection is unique and πh
ε (x, y) = πt0(x, y). Hence (3.2) follows. 

Taking the scalar product of (x, y, −1) with the curve β(s) = (sπ(x, y), −ε(1 − s3/2)2/3), 
we get

〈(x, y,−1), β(s)〉 = s‖(x, y)‖∗ + ε(1 − s3/2)2/3.

Notice that β is in ∂Kε and β(α) is πε. Hence in s = α the maximum of the scalar 
products of (x, y, −1) with an element of Kε is attained. Thus we can take derivatives 
in s = α, set them equal to 0 and get

0 = ‖(x, y)‖∗ − ε
α

1
2

(1 − α3/2) 1
3
.

Then we obtain

α = ‖(x, y)‖2
∗

(ε3 + ‖(x, y)‖3
∗)2/3

and we get (i). Since ‖(x, y, −1)‖Kε,∗ = 〈(x, y, −1), πε(x, y, −1)〉, a straightforward com-
putation shows (iii). Finally, (ii) follows from (i) and the 2-homogeneity of the map 
π(·)‖ · ‖2

∗. �
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Lemma 3.2. Let u, v ∈ T0Hn and s ∈ R. Then we have

d

ds

∣∣∣
s=0

‖u + sv‖ε,∗ = 〈v, πε(u)〉. (3.3)

Proof. Let f(s) = ‖u +sv‖ε,∗ and g(s) = 〈u +sv, πε(u)〉. Notice that f(s) � g(s) for each 
s ∈ R, since by definition ‖u + sv‖ε,∗ � 〈u + sv, πε(u)〉 and f(0) = ‖u‖ε,∗ = 〈u, πε(u)〉 =
g(0). Therefore, by a standard argument f ′(0) = g′(0), and the thesis follows. �

Given a convex body K0 ⊆ R2n in C2
+ with 0 ∈ int(K0), and Kε defined as in (3.1), 

we extend the reasoning of the previous section to define a left-invariant norm ‖ · ‖ε on 
TH by means of the equality

∥∥∥ n∑
i=1

fiXi + giYi + hT
∥∥∥
ε,p

= ‖(f(p), g(p), h(p))‖ε,

for any p ∈ Hn with f = (f1, . . . , fn) and g = (g1, . . . , gn). Again, ‖ · ‖ε,∗ and πε can be 
extended to the tangent bundle in the usual way.

Definition 3.3. Given a measurable set E ⊆ Hn we say that E has finite Kε-perimeter if

PKε
(E) = sup

⎧⎨
⎩
∫
E

div(U) dHn, U ∈ X0(Hn), ‖U‖Kε,∞ � 1

⎫⎬
⎭ < +∞,

where ‖U‖Kε,∞ = supp∈Hn ‖Up‖ε and X0(Hn) is the space of C1 compactly supported 
vector fields in Hn.

Remark 3.4. If E has C1 boundary ∂E, then

PKε
(E) =

∫
∂E

‖N‖ε,∗dσ = Aε(∂E),

where N is the Riemannian normal with respect to the metric g and dσ is the Riemannian 
measure of ∂E. Indeed by the divergence theorem we have

PKε
(E) = sup

⎧⎨
⎩
∫
E

div(U) dHn, U ∈ X0(Hn), ‖U‖Kε,∞ � 1

⎫⎬
⎭

= sup

⎧⎨
⎩

∫
∂E

〈U,N〉 dHn, U ∈ X0(Hn), ‖U‖Kε,∞ � 1

⎫⎬
⎭

=
∫
∂E

‖N‖ε,∗dσ,
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where the last equality can be proved proceeding exactly as in [23,24].

3.1. The Finsler prescribed mean curvature equation

We are ready to derive the Finsler prescribed mean curvature equation, essentially in 
the same way as in the previous section. To this aim, let Ω ⊆ {t = 0} be a bounded open 
set and u : Ω → R be a C2 function. Then we have

N =
∑n

i=1(uxi
− y)Xi + (uyi

+ x)Yi − T√
1 + |∇u + F |2

and dσ =
√

1 + |∇u + F |2 dxdy,

where F (x, y) = (−y, x). Therefore we get

AKε
(Gr(u)) =

∫
Ω

‖(∇u + F,−1)‖ε,∗ dxdy.

Hence, inspired by this computation and thanks to Proposition 3.1, given F ∈
L1(Ω, R2n), ϕ ∈ W 1,1(Ω) and H ∈ L∞(Ω), we define the approximating Finsler func-
tional Iε by

Iε(u) =
∫
Ω

(
ε3 + ‖(∇u + F )‖3

∗
) 1

3 dxdy +
∫
Ω

Hudxdy, (3.4)

for any u ∈ W 1,1(Ω) such that u −ϕ ∈ W 1,1
0 (Ω). Arguing as in the previous section, and 

thanks to Lemma 3.2, we are able to deduce the Euler-Lagrange equation associated to 
(3.4). Indeed, given v ∈ C∞

c (Ω), by Lemma 3.2, the first variation is given by:

d

ds

∣∣∣
s=0

Iε(u + sv) =
∫
Ω

d

ds

∣∣∣
s=0

‖(∇(u + sv) + F,−1)‖ε,∗ dxdy +
∫
Ω

Hv dxdy

=
∫
Ω

d

ds

∣∣∣
s=0

‖(∇u + F,−1) + s(∇v, 0)‖ε,∗ dxdy +
∫
Ω

Hv dxdy

=
∫
Ω

〈(∇v, 0), πε((∇u + F,−1))〉 dxdy +
∫
Ω

Hv dxdy

=
∫
Ω

〈∇v, πh
ε (∇u + F )〉 dxdy +

∫
Ω

Hv dxdy

=
∫
Ω

v(H − div(πh
ε (∇u + F ))) dxdy.

Then the Finsler prescribed mean curvature equation for the graph of u is given by
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div(πh
ε (∇u + F )) = H in Ω. (3.5)

As already pointed out in the introduction, (3.5) is only degenerate elliptic in the singular 
set (cf. the computations of Section 4). Therefore, in the next section, we will perturb 
(3.5) as in (1.8) in order to apply the aforementioned classical Schauder fixed-point 
theory for elliptic equations.

4. A priori estimates for the Finsler prescribed mean curvature equation

In this section we want to find classical solutions to the regularized Finsler approxi-
mating Dirichlet problem associated to (1.8), that is⎧⎨

⎩div
(
πh
ε (∇u + F )

)
+ η div

(
∇u+F√

1+|∇u+F |2

)
= H in Ω

u = ϕ in ∂Ω,
(4.1)

where ε, η ∈ (0, 1), Ω ⊆ R2n is a bounded domain with C2,α boundary for 0 < α < 1, K0
is a convex body in C2,α

+ with 0 ∈ intK0, H ∈ Lip(Ω), F = (F1, . . . , F2n) ∈ C1,α(Ω, R2n)
and ϕ ∈ C2,α(Ω). To this aim, let us fix some notation. It is easy to see that the map 
G : R2n \ {0} → R2n defined by G(p) = π(p)‖p‖2

∗ can be extended to a 2-homogeneous 
and C1 map setting G(0) = 0. Moreover, for any i = 1, . . . , 2n

Di(‖ · ‖3
∗) = 3Gi(·),

where G = (G1, . . . , G2n). Thanks to Proposition 3.1, we can write the first equation of 
(4.1) in the form

div
(
π(∇u + F ) ‖∇u + F‖2

∗

(ε3 + ‖∇u + F‖3
∗)

2
3

)
+ η div

(
∇u + F√

1 + |∇u + F |2

)
= H. (4.2)

An easy computation yields

1
(ε3 + ‖∇u + F‖3

∗)
5
3

(
(ε3 + ‖∇u + F‖3

∗) div(G(∇u + F ))

− 2G(∇u + F )(D2u + DF )G(∇u + F )T
)

+ η

(1 + |∇u + F |2) 3
2

(
(1 + |∇u + F |2) div

(
∇u + F

)
− (∇u + F )(D2u + DF )(∇u + F )T

)
= H.

Therefore, we can write (4.2) in the familiar form

2n∑
Aε,η

i,j (z,∇u;F )Di,ju + Bε,η(z,∇u;F ) = H,

i,j=1
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where the coefficients Aε,η
i,j and Bε,η are defined by

Aε,η
i,j (z, p;F ) := 1

(ε3 + ‖p + F‖3
∗)

2
3
DjGi(p + F ) − 2

(ε3 + ‖p + F‖3
∗)

5
3
Gi(p + F )Gj(p + F )

+ η√
1 + |p + F |2

δij −
η

(1 + |p + F |2) 3
2
(pi + Fi)(pj + Fj)

(4.3)

and

Bε,η(z, p;F ) := 1
(ε3 + ‖p + F‖3

∗)
2
3

2n∑
i,j=1

DjGi(p + F )DiFj

− 2
(ε3 + ‖p + F‖3

∗)
5
3
G(p + F )DF G(p + F )T

+ η√
1 + |p + F |2

divF − η

(1 + |p + F |2) 3
2
(p + F )DF (p + F )T

for any z ∈ Ω and p = (p1, . . . , p2n) ∈ R2n. Therefore (4.2) is a second-order quasi-
linear equation. Moreover, thanks to the computations of the previous section and (iii)
in Proposition 3.1, we know that (4.2) is the Euler-Lagrange equation associated to the 
functional

u �→
∫
Ω

(
ε3 + ‖∇u + F‖3

∗
) 1

3 + η
√

1 + |∇u + F |2 + uH dz.

Notice that the matrix Aε,η is symmetric. Moreover, observing that

Dj(Gi(p)) =
{

2‖p‖∗πj(p)πi(p) + ‖p‖2
∗Diπj(p) if p �= 0

0 if p = 0,
(4.4)

we infer that (4.2) is an elliptic equation. Indeed, assume first that p + F = 0. Then, by 
(4.3) and (4.4)

2n∑
i,j=1

Aε,η
i,j (z, p;F )ξiξj = η|ξ|2

for any ξ ∈ R2n. From the other hand, when p + F �= 0, (2.6), (4.4) and the Cauchy-
Schwarz inequality imply that
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2n∑
i,j=1

Aε,η
i,j (z, p;F )ξiξj

=
2n∑

i,j=1

2‖p + F‖∗πi(p + F )πj(p + F )ξiξj + ‖p + F‖2
∗Diπj(p + F )ξiξj

(ε3 + ‖p + F‖3
∗)

2
3

−
2n∑

i,j=1

2‖p + F‖4
∗πi(p + F )πj(p + F )ξiξj

(ε3 + ‖p + F‖3
∗)

5
3

+ η
(1 + |p + F |2)|ξ|2 − 〈p + F, ξ〉2

(1 + |p + F |2) 3
2

� ‖p + F‖2
∗

(ε3 + ‖p + F‖3
∗)

2
3

(
ξ Dπ(p + F ) ξT

)
+ η

|ξ|2

(1 + |p + F |2) 3
2

>η
|ξ|2

(1 + |p + F |2) 3
2

(4.5)

for any ξ ∈ R2n, so that we conclude that

2n∑
i,j=1

Aε,η
i,j (z, p;F )ξiξj �

η

(1 + |p + F |2) 3
2
|ξ|2 (4.6)

for any z ∈ Ω and any p, ξ ∈ R2n. We remark that, by (4.5), equation (3.5) is elliptic 
outside the singular set. In view of (4.6), we are in position to apply the classical theory 
for quasi-linear elliptic equations of [27]. In particular, we wish to rely on the following 
fundamental result, which is a direct consequence of [27, Theorem 13.8] and subsequent 
remarks.

Proposition 4.1. Let Ω ⊆ R2n be a bounded domain with C2,α boundary, for some 
0 < α < 1, and let ϕ ∈ C2,α(Ω). Let us assume that Aε,η

i,j (·, ·; σF ), Bε,η(·, ·; σF ) ∈
Cα(Ω ×R2n) for any σ ∈ [0, 1], and that the maps

σ �→ Aε,η
i,j (·, ·;σF ), σ �→ Bε,η(·, ·;σF )

are continuous as maps from [0, 1] to Cα(Ω × R2n). If there exists a constant M > 0
such that, for any σ ∈ [0, 1], any solution u ∈ C2,α(Ω) to the problem

⎧⎨
⎩div(πh

ε (∇u + σF )) + η div
(

∇u+σF√
1+|∇u+σF |2

)
= σH in Ω

u = σϕ in ∂Ω
(4.7)

satisfies

‖u‖C1(Ω) � M,

then
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⎧⎨
⎩div(πh

ε (∇u + F )) + η div
(

∇u+F√
1+|∇u+F |2

)
= H in Ω

u = ϕ in ∂Ω
(4.8)

admits a solution in C2,α(Ω).

Remark 4.2. Notice that the constant M > 0 in Proposition 4.1 depends a priori on 
ε, η ∈ (0, 1) and may blow up as ε, η → 0. However, in the sequel (cf. Propositions 4.6, 
4.7 and 4.8) we will show that the estimates for the C1 norm of solutions to (4.7) can 
be made uniform in ε ∈ (0, 1) and η ∈ (0, η0) for a sufficiently small constant η0 ∈ (0, 1). 
That would provide a constant M > 0 a posteriori independent of ε and η, thus allowing 
to pass to the limit as ε, η → 0 (see Theorem 5.1).

We shall need also the following weak maximum principle stated in [27, Theorem 8.1].

Theorem 4.3. Let Ω ⊆ Rd be a bounded domain. Let L be the uniformly elliptic linear 
operator

Lw = div(ai,jDjw) + ciDiw

where the coefficients ai,j and ci are bounded measurable functions on Ω. Let w ∈
W 1,2(Ω) satisfy Lw � 0 in Ω in distributional sense. Then

sup
Ω

w � sup
∂Ω

w+,

where the value of w+ = max{0, w} in ∂Ω is understood in the sense of traces.

First of all we need to guarantee the requested regularity for the coefficients of the 
equation.

Lemma 4.4. Let K0 be a convex body in C2,α
+ with 0 ∈ intK0. Let F ∈ C1,α(Ω, R2n). 

Then there exists 0 < β < 1 such that Aε,η
i,j (·, ·; σF ), Bε,η(·, ·; σF ) ∈ Cβ(Ω×R2n) for any 

σ ∈ [0, 1]. Moreover, the maps

σ �→ Aε,η
i,j (·, ·;σF ), σ �→ Bε,η(·, ·;σF )

are continuous as maps from [0, 1] to Cβ(Ω ×R2n).

Proof. The second statement easily follows from the definition of the coefficients. Let 
us prove the first statement. It is clear, thanks to our assumptions on K0 and F , that 
Aε,η

i,j (·, ·, σF ) and Bε,η(·, ·, σF ) belong to C0(Ω × R2n) for any σ ∈ [0, 1]. Moreover, in 
view of (4.4), DjGi is Cα(R2n \ 0) for any i, j = 1, . . . , 2n, since ∂K0 is C2,α. Finally, 
we get
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lim
p→0

|DjGi|(p)
|p|α = 0.

Indeed, we have

|DjGi|(p)
|p|α = 2‖p‖∗|p|α |πj(p)πi(p) + ‖p‖2

∗Diπj(p)|

� 2‖p‖
α
∗

|p|α ‖p‖1−α
∗ (|πj(p)πi(p)| + ‖p‖∗|Diπj(p)|)

� C‖p‖1−α
∗ → 0

as p → 0, since ‖p‖α
∗

|p|α is bounded and the last factor in the previous inequality is 0-
homogeneous, thus in particular bounded. Then DjGi belongs to Cα(R2n). Since Aε,η

i,j

and Bε,η are obtained as composition, sum and product of Hölder functions, the conclu-
sion follows. �

Therefore we are in position to apply Proposition 4.1. First of all we want to obtain 
estimates for the C0 norm of solutions to (4.7). In order to do this, inspired by [26], we 
assume that there exists δ = δ(K0, Ω, H) ∈ (0, 1] such that

∣∣∣∣∣∣
∫
Ω

Hvdz

∣∣∣∣∣∣ � (1 − δ)
∫
Ω

‖∇v‖∗dz (4.9)

for any non-negative function v ∈ C∞
c (Ω). To justify this assumption, assume that we 

have a function u ∈ C2(Ω) which solves (4.1). Then, multiplying (4.1) by a test function 
v ∈ C∞

c (Ω), integrating over Ω and letting η → 0, by Proposition 3.1 we get that

∣∣∣∣∣∣
∫
Ω

Hv dz

∣∣∣∣∣∣ �
∣∣∣∣∣∣
∫
Ω

v div(πh
ε (∇u + F )) dz

∣∣∣∣∣∣ + η

∣∣∣∣∣∣
∫
Ω

v div
( ∇u + σF√

1 + |∇u + σF |2
)
dz

∣∣∣∣∣∣
�

∫
Ω

|〈πh
ε (∇u + F ),∇v〉| dz + η

∫
Ω

∣∣∣∣∣
〈
∇v,

∇u + σF√
1 + |∇u + σF |2

〉∣∣∣∣∣ dz
�

∫
Ω

‖∇v‖∗dz + η

∫
Ω

|∇v| dz

→
∫
Ω

‖∇v‖∗dz.

(4.10)

Notice that, as already pointed out in the introduction, (4.9) is slightly stronger than 
(4.10). We begin by proving a technical lemma.
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Lemma 4.5. Let σ ∈ [0, 1] and ε ∈ (0, 1). Then

〈p, πh
ε (p + σF )〉 � ‖p‖∗ − 1 − ‖F‖∗ − ‖ − F‖∗ (4.11)

for any p ∈ R2n and z ∈ Ω.

Proof. Let us fix z ∈ Ω and p ∈ R2n. If p = 0 or p + σF = 0, then the assertion is 
trivial. Therefore, assume p, p + σF �= 0. It is clear, recalling Proposition 3.1 and using 
the Cauchy-Schwarz formula (2.4), that

〈p, πh
ε (p + σF )〉 = 〈p + σF, πh

ε (p + σF )〉 − 〈σF, πh
ε (p + σF )〉

� ‖p + σF‖3
∗

(ε3 + ‖p + σF‖3
∗)

2
3
−

(
‖p + σF‖3

∗
ε3 + ‖p + σF‖3

∗

) 2
3

‖σF‖∗

� ‖p + σF‖3
∗

(ε3 + ‖p + σF‖3
∗)

2
3
− ‖F‖∗.

Hence, noticing that

‖p + σF‖∗ � ‖p‖∗ − ‖ − σF‖∗ � ‖p‖∗ − ‖ − F‖∗

by the triangle inequality, it suffices to prove that

‖p + σF‖3
∗

(ε3 + ‖p + σF‖3
∗)

2
3
� ‖p + σF‖∗ − 1. (4.12)

When ‖p + σF‖∗ � 1 (4.12) is trivial. Therefore let us assume ‖p + σF‖∗ > 1. Notice 
that (4.12) is equivalent to

‖p + σF‖
9
2∗ � (‖p + σF‖∗ − 1) 3

2 (ε3 + ‖p + σF‖3
∗).

Since ap − bp � (a − b)p when 0 < b < a and p > 1, it is enough to check that

‖p + σF‖9/2
∗ � (‖p + σF‖3/2

∗ − 1)(ε3 + ‖p + σF‖3
∗)

= ε3‖p + σF‖3/2
∗ + ‖p + σF‖9/2

∗ − ε3 − ‖p + σF‖3
∗,

which is clearly true since ‖p + σF‖∗ > 1 and ε < 1. �
Proposition 4.6. Let α ∈ (0, 1) and K0 be a convex body in C2,α

+ with 0 ∈ intK0. Let 
Ω ⊆ R2n be a bounded open set, ϕ ∈ C2(Ω), H ∈ L∞(Ω) and F ∈ C0(Ω, R2n). If 
condition (4.9) is satisfied then there exist a constant η0 = η0(K0, δ) ∈ (0, 1) and a 
constant C1 = C1(n, K0, Ω, ϕ, F, δ) > 0, independent of σ ∈ [0, 1], ε ∈ (0, 1) and η ∈
(0, η0), such that, for any solution u ∈ C2(Ω) to (4.7) with η ∈ (0, η0) it holds that
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‖u‖L∞(Ω) � C1.

Proof. Let us notice that (4.11), the equivalence between ‖ · ‖∗ and the Euclidean norm 
and the boundedness of F allow to find constants a0, a2 > 0, independent of σ ∈ [0, 1]
and ε ∈ (0, 1), such that

〈p, πh
ε (p + σF )〉 � a0|p| − a2

for any z ∈ Ω and p ∈ R2n. This fact, together with the boundedness of H, suggests 
to rely on [27, Lemma 10.8] to limit ourselves to estimate ‖u‖L1(Ω). Indeed, it is not 
difficult to show that [27, Lemma 10.8] remains true when condition (10.23) of [27]
allows a positive coefficient multiplying |p|. Moreover, its proof can be easily adapted 
to achieve estimates from above of supΩ −u in terms of ‖u−‖L1(Ω) for any solution of 
Qu = 0 where Q is defined in (10.5) of [27]. In the end it suffices to estimate ‖u+‖L1(Ω)
and ‖u−‖L1(Ω). We only estimate ‖u+‖L1(Ω), being analogous to the other case. Moreover, 
up to replacing u by u − ‖ϕ‖∞,∂Ω, we can assume that u � 0 in ∂Ω. Let us set v = u+. 
Then it is clear that v ∈ W 1,∞(Ω) ∩ W 1,1

0 (Ω), and moreover ∇v exists in the classical 
sense for almost every z ∈ Ω. Therefore, since u is in particular a weak solution to

div(πh
ε (∇u + σF )) + η div

(
∇u + σF√

1 + |∇u + σF |2

)
= σH,

it follows that
∫
Ω

〈∇v, πh
ε (∇u + σF )〉 + η

〈
∇v,

∇u + σF√
1 + |∇u + σF |2

〉
dz = −

∫
Ω

vσHdz. (4.13)

We claim that

〈∇v, πh
ε (∇u + σF )〉 � ‖∇v‖∗ − 1 − ‖F‖∗ − ‖ − F‖∗ (4.14)

holds in any point where ∇v exists in the classical sense. Indeed, in such points ∇v is 
either 0 or ∇u. In the first case (4.14) is trivial, while in the second case it follows from 
Lemma 4.5. It is well known that, since v � 0 and v ∈ W 1,1

0 (Ω), there exists a sequence of 
non-negative functions (vk)k ⊆ C∞

c (Ω) converging to v strongly in W 1,1
0 (Ω). Moreover, 

thanks to (4.9) it holds that∣∣∣∣∣∣
∫
Ω

Hvkdz

∣∣∣∣∣∣ � (1 − δ)
∫
Ω

‖∇vk‖∗ dz.

Hence, passing to the limit in the previous equation, and recalling that ‖ ·‖∗ is equivalent 
to the Euclidean norm, we conclude that (4.9) holds for v. Combining this information 
with (4.13) and (4.14) we get that
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0 =
∫
Ω

−〈∇v, πh
ε (∇u + σF )〉 − η

〈
∇v,

∇u + σF√
1 + |∇u + σF |2

〉
dz −

∫
Ω

vσH dz

�
∫
Ω

−‖∇v‖∗ + 1 + ‖F‖∗ + ‖ − F‖∗ + η|∇v| dz +

∣∣∣∣∣∣
∫
Ω

vH dz

∣∣∣∣∣∣
�

∫
Ω

−‖∇v‖∗ + 1 + ‖F‖∗ + ‖ − F‖∗ + Cη‖∇v‖∗ + (1 − δ)‖∇v‖∗ dz

=
∫
Ω

1 + ‖F‖∗ + ‖ − F‖∗ + (Cη − δ)‖∇v‖∗ dz,

where C = C(K0) is a positive constant as in (2.1). Hence, choosing η0 ∈ (0, 1) such 
that δ − Cη0 > 0, we conclude that

(δ − Cη0)
∫
Ω

‖∇v‖∗ dz � (δ − Cη)
∫
Ω

‖∇v‖∗ dz �
∫
Ω

1 + ‖F‖∗ + ‖ − F‖∗ dz

for any η ∈ (0, η0). Thanks to the Poincaré inequality and the equivalence between ‖ · ‖∗
and the Euclidean norm, we conclude that there exists a constant c1, independent of 
σ ∈ [0, 1], ε ∈ (0, 1) and η ∈ (0, η0), such that∫

Ω

u+ dz � c1.

Since in the same way we can achieve an estimate for u−, the thesis follows. �
The next step is to achieve gradient estimates, again in the C0 norm, for solutions to 

(4.7). As customary in this framework, we want to reduce ourselves to boundary gradient 
estimates via a suitable maximum principle. To this aim, arguing as in [12], we need to 
assume the existence of scalar functions f1, . . . , f2n ∈ C1(Ω) such that

DkFi = Difk for any i, k = 1, . . . , 2n. (4.15)

We stress that interior gradient estimates usually depend on the bounds of the coefficients 
and the ellipticity nature of the equation (cf. e.g. [27, Chapter 15]). Consequently, since 
by (4.6) the ellipticity constant tends to vanish as η → 0, the right way to achieve 
estimates which are uniform in ε, η ∈ (0, 1) is to rely on a suitable maximum principle 
argument. Indeed, thanks to (4.15), the following maximum principle, which is the Finsler 
counterpart of [12, Proposition 4.3], holds.

Proposition 4.7. Let K0 be a convex body in C2,α
+ for 0 < α < 1 with 0 ∈ intK0. Let 

Ω ⊆ R2n be a bounded domain. Let F ∈ C1(Ω, R2n) be such that (4.15) holds. Let H be 
a constant. Let u ∈ C2(Ω) be a solution to (4.7). Then
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‖∇u‖∞,Ω � ‖∇u‖∞,∂Ω + 2‖f‖∞,Ω, (4.16)

where f = (f1, . . . , f2n) is as in (4.15).

Proof. Fix σ ∈ [0, 1], ε ∈ (0, 1) and η ∈ (0, 1). Let v ∈ C2
c (Ω) and fix k ∈ {1, . . . , 2n}. 

Then, multiplying (4.7) by Dkv, using Proposition 3.1, integrating over Ω, integrating 
by parts and exploiting the properties of F , it holds that

0 =
∫
Ω

(
div

(
π(∇u + σF ) ‖∇u + σF‖2

∗

(ε3 + ‖∇u + σF‖3
∗)

2
3

+ η
∇u + σF√

1 + |∇u + σF |2

)
− σH

)
Dkv dz

=
∫
Ω

div
(
π(∇u + σF ) ‖∇u + σF‖2

∗

(ε3 + ‖∇u + σF‖3
∗)

2
3

+ η
∇u + σF√

1 + |∇u + σF |2

)
Dkv dz

= −
2n∑
i=1

∫
Ω

(
πi(∇u + σF ) ‖∇u + σF‖2

∗

(ε3 + ‖∇u + σF‖3
∗)

2
3

+ η
Diu + σFi√

1 + |∇u + σF |2

)
DiDkv dz

= −
2n∑
i=1

∫
Ω

(
πi(∇u + σF ) ‖∇u + σF‖2

∗

(ε3 + ‖∇u + σF‖3
∗)

2
3

+ η
Diu + σFi√

1 + |∇u + σF |2

)
DkDiv dz

=
2n∑
i=1

∫
Ω

Dk

(
πi(∇u + σF ) ‖∇u + σF‖2

∗

(ε3 + ‖∇u + σF‖3
∗)

2
3

+ η
Diu + σFi√

1 + |∇u + σF |2

)
Div dz

=
2n∑

i,j=1

∫
Ω

Aε,η
i,j (z,∇u;σF )Dk(Dju + σFj)Div dz

=
2n∑

i,j=1

∫
Ω

Aε,η
i,j (z,∇u;σF )Dj(Dku + σfk)Divdz,

being Aε,η
i,j as in (4.3). Therefore we proved that

2n∑
i,j=1

∫
Ω

Aε,η
i,j (z,∇u;σF )Dj(Dku + σfk)Div dz = 0 (4.17)

for any v ∈ C2
c (Ω). Arguing as in [12, Proposition 4.3] it is easy to show that (4.17)

actually holds for any v ∈ C1
c (Ω). Therefore, recalling (4.6), we proved that Dku + σfk

is a weak solution to the linear uniformly elliptic equation

div(aε,ηi,j Djw) = 0,

where
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aε,ηi,j (z) := Aε,η
i,j (z,∇u;σF (z)).

Hence, being aε,ηi,j (z) bounded in Ω, thanks to Theorem 4.3 with bi, ci, d = 0 we conclude 
that

‖∇u + σf‖∞,Ω � ‖∇u + σf‖∞,∂Ω,

which in particular implies that

‖∇u‖∞,Ω � ‖∇u‖∞,∂Ω + 2‖f‖∞,Ω. � (4.18)

Finally we are left to provide boundary gradient estimates for solutions to (4.7). 
Therefore, inspired by [26], we have to impose some constraints on the values of H
depending on the Finsler mean curvature of ∂Ω. More precisely, we require that

|H|(z0) < HK0,∂Ω(z0) (4.19)

for any z0 ∈ ∂Ω, where HK0,∂Ω is the K0-mean curvature as defined in Subsection 2.3. 
Here and in the rest of this section we assume that K0 is a convex body in C∞

+ such 
that 0 ∈ intK0, since we need to apply the results of Section 2.3.1 and Section 2.3.2.

Proposition 4.8. Let K0 be a convex body in C∞
+ with 0 ∈ intK0. Let Ω ⊆ R2n be 

an open and bounded set with C2,α boundary, for some 0 < α < 1. Let ϕ ∈ C2(Ω), 
F ∈ C0(Ω, R2n) and H ∈ Lip(Ω) satisfying (4.19). Finally, assume that there exist a 
constant η0 = η0(n, K0, Ω, ϕ, F, H) ∈ (0, 1) and a constant C̃1 = C̃1(n, K0, Ω, ϕ, F, H) >
0, independent of σ ∈ [0, 1], ε ∈ (0, 1) and η ∈ (0, η0), such that, for any solution 
u ∈ C2(Ω) to (4.7) it holds that

‖u‖∞,Ω � C̃1. (4.20)

Then, up to choosing a smaller η0 = η0(n, K0, Ω, ϕ, F, H) ∈ (0, 1), there exist a constant 
C2 = C2(n, K0, Ω, ϕ, F, C̃1, H) > 0, independent of σ ∈ [0, 1], ε ∈ (0, 1) and η ∈ (0, η0), 
such that any solution u ∈ C2(Ω) to (4.7) with η ∈ (0, η0) satisfies

‖∇u‖∞,∂Ω � C2. (4.21)

Proof. First of all we notice that, being ∂Ω compact and HK0,∂Ω continuous, (4.19)
implies the existence of a positive constant C3 = C3(K0, Ω, H) such that

|H(z0)| � HK0,∂Ω(z0) − 3C3 (4.22)

for any z0 ∈ ∂Ω. In order to prove this result we use a barrier argument as in [27, 
Chapter 14]. Therefore, for any z0 ∈ ∂Ω, we have to find a neighborhood N of z0 in Ω
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and two functions w+, w− ∈ C2(N ), called upper barrier and lower barrier respectively, 
such that

w+(z0) = w−(z0) = σϕ(z0),

w−(z) � u(z) � w+(z)

for any z ∈ ∂N ,

div(πh
ε (∇w+ + σF )) + η div

(
∇w+ + σF√

1 + |∇w+ + σF |2

)
< σH

for any z ∈ N and

div(πh
ε (∇w− + σF )) + η div

(
∇w− + σF√

1 + |∇w− + σF |2

)
> σH

for any z ∈ N . In this proof we deal only with the upper barrier, being analogous to the 
other case. In order to find an upper barrier, we consider a tubular neighborhood O of 
∂Ω and we let Γμ := {x ∈ Ω : dK0,∂Ω(x) < μ}, where dK0,∂Ω is the Finsler distance from 
the boundary, μ ∈ (0, μ0) and μ0 > 0 is small enough to ensure that Γμ ⊆ Γμ0 � O for 
any μ ∈ (0, μ0). Let us denote by HΣd(z)(z) the Euclidean mean curvature of Σd(z) at any 
z ∈ Γμ0 . Being HΣd(z) continuous on Γμ0 , there exists a constant C4 = C4(Ω, K0) > 0
such that

|HΣd(z)(z)| � C4 (4.23)

for any z ∈ Γμ0 . We fix μ ∈ (0, μ0) and we define w+ : Γμ −→ R by w+(z) :=
kdK0,∂Ω(z) +σϕ(z), where k > 0 has to be chosen. First, thanks to (2.18), w+ ∈ C2(Γμ), 
and for any z ∈ Γμ there exists a unique z0 ∈ ∂Ω such that dK0,∂Ω(z) = ‖z − z0‖. 
Moreover, it is clear that w+(z0) = σϕ(z0) for any z0 ∈ ∂Ω. Thanks to (4.20), if we 
choose

k � C̃1 + ‖ϕ‖∞,Ω

μ
,

it follows that w+(z) � u(z) for any z ∈ Ω with dK0,∂Ω(z) = μ, and so we conclude that 
u(z) � w+(z) for any z ∈ ∂Γμ. We are left to show that w+ is a subsolution to (4.7). 
Therefore it suffices to show that

(ε3 +‖∇w+ +σF‖3
∗)

5
3

(
div(πh

ε (∇w+ + σF )) + η div
( ∇w+ + σF√

1 + |∇w+ + σF |2
)
− σH

)
< 0
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on Γμ. Taking k > supΩ ‖ − F‖∗, (2.12) ensures that k∇dK0,∂Ω(z) + σF (z) �= 0 for any 
z ∈ Γμ and σ ∈ [0, 1]. Let us notice that Proposition 3.1 and a simple computation imply 
that

(ε3 + ‖∇w+ + σF‖3
∗)

5
3 div(πh

ε (∇w+ + σF ))

= (ε3 + ‖∇w+ + σF‖3
∗)

5
3 div

(
π(∇w+ + σF )‖∇w+ + σF‖2

∗
(ε3 + ‖∇w+ + σF‖3

∗)
2
3

)
= (ε3 + ‖∇w+ + σF‖3

∗) div(π(∇w+ + σF )‖∇w+ + σF‖2
∗)︸ ︷︷ ︸

A

+ (ε3 + ‖∇w++ σF‖3
∗)

5
3 ‖∇w++ σF‖2

∗〈π(∇w+ + σF ),∇
(
(ε3 + ‖∇w+ + σF‖3

∗)−
2
3

)
〉︸ ︷︷ ︸

B

.

We estimate separately A and B. In the following computations we let d := dK0,∂Ω and 
Rσ := σ∇ϕ + σF . We are going to exploit the fact that, thanks to the homogeneity 
properties of the equation, the contribution of Rσ as k → ∞ is negligible. Let us notice 
that by (2.12) and (2.7) we get

π(∇dK0,∂Ω) ·D2dK0,∂Ω = 0. (4.24)

Hence, thanks to (2.12), (4.24), the 1-homogeneity of ‖ · ‖∗, the 0-homogeneity of π, the 
−1-homogeneity of Dπ and the properties of ‖ · ‖∗, it holds that

A =‖k∇d + Rσ‖2
∗

2n∑
i=1

Di (πi(k∇d + Rσ)) +
2n∑
i=1

πi(k∇d + Rσ)Di

(
‖k∇d + Rσ‖2

∗
)

=‖k∇d + Rσ‖2
∗

2n∑
i,j=1

Diπj(k∇d + Rσ)(kDijd + DiRσ,j)

+ 2‖k∇d + Rσ‖∗π(k∇d + Rσ) · (kD2d + DRσ) · π(k∇d + Rσ)T

=k2
∥∥∥∥∇d + Rσ

k

∥∥∥∥2

∗

2n∑
i,j=1

Diπj

(
∇d + Rσ

k

)(
Dijd + DiRσ,j

k

)

+ 2k2
∥∥∥∥∇d + Rσ

k

∥∥∥∥
∗
π

(
∇d + Rσ

k

)
·
(
D2d + DRσ

k

)
· π

(
∇d + Rσ

k

)T

=k2(1 + o(1))(div(π(∇d)) + o(1)) + 2k2(1 + o(1))(π(∇d) ·D2d · π(∇d)T + o(1))

=k2 div(π(∇d)) + o(k2),

which allows to infer that

(ε3 + ‖∇w+ + σF‖3
∗)A = k5 div(π(∇d)) + o(k5)
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as k → ∞, where o(k2) is uniform with respect to z ∈ Γμ, ε ∈ (0, 1) and σ ∈ [0, 1]. Now, 
exploiting the same properties as above, we estimate B:

(ε3 + ‖k∇d + Rσ‖3
∗)

5
3B

= − 2‖k∇d + Rσ‖4
∗〈π(k∇d + Rσ),∇(‖k∇d + Rσ‖∗)〉

= − 2‖k∇d + Rσ‖4
∗π(k∇d + Rσ) · (kD2d + DRσ) · π(k∇d + Rσ)T

= − 2k5
∥∥∥∥∇d + Rσ

k

∥∥∥∥4

∗
π

(
∇d + Rσ

k

)
·
(
D2d + DRσ

k

)
· π

(
∇d + Rσ

k

)T

= − 2k5(1 + o(1))(π(∇d) ·D2d · π(∇d)T + o(1))

= − 2k5(1 + o(1))o(1)

=o(k5),

as k → ∞ and uniformly with respect to ε ∈ (0, 1), σ ∈ [0, 1] and z ∈ Γμ. From a similar 
computation, it follows that

div
(

∇w+ + σF√
1 + |∇w+ + σF |2

)
=

div(∇d) + divRσ

k√
1
k2 +

∣∣∇d + Rσ

k

∣∣2
−

(
∇d + Rσ

k

)
·
(
D2d + DRσ

k

)
·
(
∇d + Rσ

k

)T(
1
k2 +

∣∣∇d + Rσ

k

∣∣2)3/2

= div(∇d)
|∇d| − ∇d ·D2d · ∇dT

|∇d|3 + o(1)

= div
(

∇d

|∇d|

)
+ o(1)

as k → ∞ and uniformly with respect to σ ∈ [0, 1] and z ∈ Γμ. Finally, it is easy to see 
that

−(ε3 + ‖∇w+ + σF‖3
∗)

5
3σH � (ε3 + ‖∇w+ + σF‖3

∗)
5
3 |H| = k5|H| + o(k5)

as k → ∞ and uniformly with respect to ε ∈ (0, 1), σ ∈ [0, 1] and z ∈ Γμ. In the end we 
get that

(ε3 + ‖∇w+ + σF‖3
∗)

5
3

(
div(πh

ε (∇w+ + σF )) + η div
(

∇w+ + σF√
1 + |∇w+ + σF |2

)
− σH

)

� k5
(

div(π(∇d)) + η div
(

∇d

|∇d|

)
+ |H|

)
+ o(k5)

as k → ∞ and uniformly with respect to ε ∈ (0, 1), σ ∈ [0, 1] and z ∈ Γμ.
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Now, let z ∈ Γμ and let z0 ∈ ∂Ω be such that d(z) = ‖z−z0‖. Thanks to the Lipschitz 
continuity of H and the equivalence between ‖ · ‖ and the Euclidean norm, there exists 
a constant C5 = C5(K0) such that

|H|(z) = |H|(z0) + |H|(z) − |H|(z0) � |H|(z0) + C5d(z) � |H|(z0) + C5μ. (4.25)

Hence, thanks to (2.10), (2.14), (4.22) and (4.23), we conclude that

div(π(∇d))(z) + η div
(

∇d

|∇d|

)
+ |H|(z0) + C5μ

= −HK0,Σd(z)(z) − ηHΣd(z)(z) + |H|(z0) + C5μ

�−HK0,∂Ω(z0) + ηC4 + |H|(z0) + C5μ

�− C3 < 0,

(4.26)

provided that μ � C3
C5

and η � C3
C4

. Hence we found an upper barrier, from which the 
thesis follows. �
Remark 4.9. Assume that n = 1, let Ω ⊆ R2 and K0 ∈ C2

+ be a convex body of R2. If 
(4.19) holds then Ω is strictly convex. Indeed, by Proposition 2.4 we have

0 � |H| < −〈De1Nz0 , e1〉
kK0(π(Nz0))

= k∂Ω(z0)
kK0(π(Nz0))

,

where kK0 and k∂Ω are the Euclidean geodesic curvatures of ∂K and ∂Ω. Since kK0 is 
strictly positive we obtain k∂Ω(z0) > 0, hence Ω is strictly convex.

To conclude this section, inspired by [56] we want to show that, in the particular case 
in which H is constant and n = 1, then we can exploit (4.19) in order to obtain uniform 
estimates of the function, without requiring the validity of (4.9). Again, in order to apply 
the results of Section 2.3.1 and Section 2.3.2, we assume that K0 is a convex body in 
C∞

+ such that 0 ∈ intK0 and ∂Ω belongs to C2,1.

Proposition 4.10. Assume that n = 1. Let K0 be a convex body in C∞
+ with 0 ∈ intK0. 

Let Ω ⊆ R2 be a bounded domain with C2,1 boundary, let ϕ ∈ C2(Ω) and let H be a 
constant which satisfies (4.19). There exists a constant C1 = C1(K0, Ω, ϕ, H, F ) > 0, 
independent of σ ∈ [0, 1], ε ∈ (0, 1) and η ∈ (0, 1), such that, for any solution u ∈ C2(Ω)
to (4.7), it holds that

‖u‖∞,Ω � C1.

Proof. Let kK0 be the geodesic curvature of K0. Since K0 ∈ C∞
+ , then in particular 

kK0(p) > 0 for any p ∈ ∂K0. Let C3 = C3(K0, Ω, H) be as in (4.22). Let us define the 
function v : int Ω1 −→ R by
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v(z) := sup
∂Ω

|ϕ| + kdK0,∂Ω(z) (4.27)

for any z ∈ Ω1, where k > 0 has to be chosen and Ω1 is the set defined in (2.17). We 
already know (cf. (2.18)) that v ∈ C2(intΩ1). We repeat verbatim the computations of 
the proof of Proposition 4.8 up to (4.26), with the difference that, being H constant, we 
can choose C5 = 0 in (4.25). Since n = 1, we exploit Proposition 2.4 to infer that

div(π(∇d))(z) + η div
(

∇d

|∇d|

)
+ |H|

= −HK0,Σd(z)(z) − ηHΣd(z)(z) + |H|
= −HK0,Σd(z)(z) − ηkK0 (πK(Nz))HK0,Σd(z)(z) + |H|
�−HK0,∂Ω(z0) + |H|
�− 3C3 < 0.

(4.28)

Hence there exists k > 0, independent of ε ∈ (0, 1), η ∈ (0, 1), σ ∈ [0, 1] and z ∈ Ω1, 
such that v is a subsolution to (4.7) on intΩ1. Therefore, arguing as in the proof of [27, 
Theorem 10.7], it follows that w := u − v is a weak supersolution on intΩ1 to a linear 
elliptic equation of the form

2n∑
i,j=1

Di(ai,j(z)Djw(z)) +
2n∑
i=1

ci(z)Diw(z) = 0.

Hence, thanks to Theorem 4.3 and recalling (2.19), it follows that

sup
Ω1

(u− v) � sup
∂Ω∪R

((u− v)+).

Noticing that u − v � 0 on ∂Ω and that intΩ1 = Ω, we obtain that

u(z) − v(z) � sup
Ω

(u− v) = sup
Ω1

(u− v) � sup
∂Ω1

((u− v)+) = sup
R

((u− v)+)

for any z ∈ Ω. We are left to show that supR((u − v)+) � 0. Indeed, assume by contra-
diction that supR((u − v)+) > 0. Since R is compact, there exists z0 ∈ R such that

u(z0) − v(z0) = sup
R

((u− v)+) = sup
R

(u− v).

Moreover, z0 is a maximum point for u −v on Ω. Let us fix y0 ∈ ∂Ω such that dK0,∂Ω(z0) =
‖z0 − y0‖. Then, thanks to Proposition 2.5, it is easy to see that

dK0,∂Ω(z) = ‖z − y0‖ (4.29)
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for any z belonging to (y0, z0), the segment connecting y0 and z0. Let now ν := y0−z0
|y0−z0| . 

By (4.29) it holds that v(z) < v(z0) for any z ∈ (y0, z0), and moreover

D+
ν v(z0) := lim

h→0+

v(z0 + hν) − v(z0)
h

< 0. (4.30)

Since z0 is a maximum point of u − v, it holds in particular that D+
ν u(z0) � D+

ν v(z0), 
which implies, together with (4.30), that D+

ν u(z0) = Dνu(z0) < 0. This proves that 
Du(z0) �= 0. Since then z0 is a regular point for u, the level set {z ∈ Ω : u(z) = u(z0)}
is locally a C2 hypersurface. Therefore there exists a small Euclidean ball B such that 
B is tangent to the level set at z0 and moreover B ⊆ {z ∈ Ω : u(z) � u(z0)}. Now, since 
by our assumptions the Finsler balls relative to −K0 are uniformly convex and C2, there 
exists � > 0 and x0 ∈ Ω such that

B−K0(x0, �) ⊆ {z ∈ Ω : u(z) � u(z0)} (4.31)

and B−K0(x0, �) is tangent to B at z0. Indeed, fix a Finsler ball tangent to B at z0
relative to −K0, say BF . On one hand, the principal curvatures of ∂B at z0 are fixed. 
On the other hand, noticing that the principal curvatures of a C2

+ convex set admit a 
positive lower bound, we can dilate and translate BF to make the curvature of BF as 
big as we want to ensure that (4.31) holds. Notice that

dK0,∂Ω(z) � dK0,∂Ω(z0) (4.32)

for any z ∈ B−K0(x0, �). Indeed, if by contradiction there exists z ∈ B−K0(x0, �) such 
that dK0,∂Ω(z) < dK0,∂Ω(z0), then (4.31) would imply

u(z) − kdK0,∂Ω(z) � u(z0) − kdK0,∂Ω(z) > u(z0) − kdK0,∂Ω(z0),

a contradiction to the maximality of z0. Let now w0 ∈ ∂Ω be such that dK,∂Ω(x0) =
‖x0 −w0‖, and let b0 be the unique point of intersection between ∂B−K0(x0, �) and the 
segment joining w0 and x0. Then by (2.2), (4.29), (4.32), the choice of b0 and the strict 
convexity of K0, it holds that

dK0,∂Ω(x0) = ‖x0 − w0‖ = ‖x0 − b0‖ + ‖b0 − w0‖ = � + dK0,∂Ω(b0) � � + dK0,∂Ω(z0).

On the other hand, (2.2) and the triangle inequality imply

dK0,∂Ω(x0) � ‖x0 − y0‖ � ‖x0 − z0‖ + ‖z0 − y0‖ = � + dK0,∂Ω(z0).

Putting together the previous inequalities we get that

dK0,∂Ω(x0) = ‖x0 − y0‖ = ‖x0 − z0‖ + ‖z0 − y0‖, (4.33)
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from which in particular we conclude, exploiting again the strict convexity of K0, that 
x0 lies on (y0, x0). Therefore, thanks to this fact, the first equality in (4.33) and Propo-
sition 2.5, we conclude that z0 ∈ intΩ1, which is a contradiction. In the end we proved 
that

sup
Ω

u � sup
∂Ω

|ϕ| + kmax
Ω

dK0,∂Ω.

Since the converse estimate can be obtained in a similar way, the thesis is proved. �
Remark 4.11. We point out that the proof of Proposition 4.10 does not hold for n � 2. 
Indeed, when n � 2, the Euclidean mean curvature HΣd

in equation (4.28) may blow 
down to −∞ close to the ridge R even though the Finsler mean curvature HK0,Σd

is 
strictly positive on Ω1.

5. Existence of Lipschitz minimizers for the sub-Finsler functional I

Thanks to the a priori estimates of the previous section, together with Proposition 4.1
and the uniformity of the estimates with respect to ε ∈ (0, 1) and η ∈ (0, η0), we are 
in position to pass to the limit and find a solution to the sub-Finsler Prescribed Mean 
Curvature equation.

Theorem 5.1. Let K0 ∈ C∞
+ be a convex body such that 0 ∈ intK0. Let Ω ⊆ R2n be 

a bounded domain with C2,1 boundary. Let ϕ ∈ C2,α(Ω), for 0 < α < 1, and let F ∈
C1,α(Ω, R2n) be such that (4.15) is satisfied. Assume that H is a constant such that 
(4.9) and (4.19) hold. Then, there exists η0 ∈ (0, 1) such that for any ε ∈ (0, 1) and any 
η ∈ (0, η0), there exists a function uε,η ∈ C2,α(Ω) which solves (4.1). Moreover, there 
exists a constant M > 0, independent of ε ∈ (0, 1) and η ∈ (0, η0), such that any solution 
uε,η to (4.1) satisfies

sup
Ω

|uε,η| + sup
Ω

|∇uε,η| � M. (5.1)

Finally, there exists a Lipschitz continuous minimizer u0 ∈ Lip(Ω) for the functional I
defined in (2.23) with u0 = ϕ on ∂Ω.

Proof. By Proposition 4.6, Proposition 4.7 and Proposition 4.8, there exists a constant 
M > 0 such that, for any σ ∈ [0, 1], any 0 < ε < 1 and any η ∈ (0, η0) with η0 > 0 small 
enough, then any solution u ∈ C2,α(Ω) to the problem (4.7) satisfies

sup
Ω

|u| + sup
Ω

|∇u| � M.

Then by Proposition 4.1 there exists a solution uε,η ∈ C2,α(Ω̄) to
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⎧⎨
⎩div(πh

ε (∇u + F )) + η div
(

∇u+σF√
1+|∇u+σF |2

)
= H in Ω

u = ϕ in ∂Ω.

Again by Proposition 4.6, Proposition 4.7 and Proposition 4.8, we have that

sup
Ω

|uε,η| + sup
Ω

|∇uε,η| � M, (5.2)

where the constant M > 0 is uniform in 0 < ε < 1 and η ∈ (0, η0). Let {εj}j∈N ⊆ (0, 1)
and {ηj}j∈N ⊆ (0, η0) be sequences such that εj → 0 and ηj → 0 as j → ∞. Since M is 
uniform in ε and η by (5.2) we gain that supΩ |uεj ,ηj

| � M and that for any z1, z2 ∈ Ω

|uεj ,ηj
(z1) − uεj ,ηj

(z2)| � M |z1 − z2|. (5.3)

Then, by Ascoli-Arzelà theorem there exists u0 ∈ C(Ω) such that uεj ,ηj
→ u0 uniformly 

in Ω. It is clear that u = ϕ on ∂Ω. Moreover, taking the limit as j → 0 in (5.3), we gain 
that

sup
z1 
=z2

|u0(z1) − u0(z2)|
|z1 − z2|

� M,

thus u0 is Lipschitz. We claim that u0 is a minimizer for I defined in (2.23). Indeed, 
we have that ‖uεj ,ηj

‖W 1,1(Ω) � M |Ω|, ‖u0‖W 1,1(Ω) � M |Ω| and uεj ,ηj
converge to u0 in 

L1(Ω). Moreover, the function (p, (x, y)) → ‖p + F (x, y)‖∗ is positive, continuous and 
convex in p. Therefore, by [45, Theorem 4.1.2], I is lower semicontinuous with respect 
to the strong L1-topology, from which we have that

I(u0) � lim inf
j→∞

I(uεj ,ηj
). (5.4)

For each v ∈ W 1,1(Ω) such that v − ϕ ∈ W 1,1
0 (Ω), it follows that

I(uεj ,ηj
) =

∫
Ω

‖∇uεj ,ηj
+ F‖∗ dz +

∫
Ω

Huεj ,ηj
dz

�
∫
Ω

(ε3
j + ‖∇uεj ,ηj

+ F‖3
∗)

1
3 dz +

∫
Ω

Huεj ,ηj
dz + ηj

∫
Ω

√
1 + |∇uεj ,ηj

+ F |2 dz

�
∫
Ω

(ε3
j + ‖∇v + F‖3

∗)
1
3 dz +

∫
Ω

Hv dz + ηj

∫
Ω

√
1 + |∇v + F |2 dz

� εj |Ω| +
∫
Ω

‖∇v + F‖∗ dz +
∫
Ω

Hv dz + ηj

∫
Ω

√
1 + |∇v + F |2 dz,

(5.5)
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where we have used the fact that the Dirichlet solution uεj ,ηj
∈ C2α(Ω̄) is a minimizer 

for the functional v →
∫
Ω(ε3

j +‖∇v+F‖3
∗)

1
3 +

∫
Ω Hv+ηj

∫
Ω

√
1 + |∇v + F |2 dz for each 

v ∈ W 1,1(Ω) s.t. v−ϕ ∈ W 1,1
0 (Ω). Passing to the liminf in (5.5) and taking into account 

(5.4), we obtain I(u0) � I(v) for each v ∈ W 1,1(Ω) s.t. v − ϕ ∈ W 1,1
0 (Ω). �

We now apply the same argument of the previous proof in H1, using the height 
estimate provided by Proposition 4.10 instead of the one given in Proposition 4.6 to 
avoid condition (4.9), to obtain the following sharp result in the first Heisenberg group.

Theorem 5.2. Let n = 1 and K0 ∈ C∞
+ be a convex body such that 0 ∈ intK0. Let 

Ω ⊆ R2 be a bounded domain with C2,1 boundary. Let ϕ ∈ C2,α(Ω), for 0 < α < 1, 
and let F ∈ C1,α(Ω, R2) be such that (4.15) is satisfied. Assume that H is a constant 
such that (4.19) holds. Then, there exists η0 ∈ (0, 1) such that for any ε ∈ (0, 1) and any 
η ∈ (0, η0), there exists a function uε,η ∈ C2,α(Ω) which solves (4.1). Moreover, there 
exists a constant M > 0, independent of ε ∈ (0, 1) and η ∈ (0, η0), such that any solution 
uε,η to (4.1) satisfies

sup
Ω

|uε,η| + sup
Ω

|∇uε,η| � M. (5.6)

Finally, there exists a Lipschitz continuous minimizer u0 ∈ Lip(Ω) for the functional I
defined in (2.23) with u0 = ϕ on ∂Ω.

To conclude this section, according to [12] we point out that the Dirichlet problem 
for the prescribed K0-mean curvature equation can be equivalently stated by means of 
a weak formulation which takes into account the presence of the singular set. Indeed, 
given a bounded domain Ω ⊆ R2n, ϕ ∈ W 1,1(Ω), H ∈ L∞(Ω) and F ∈ L1(Ω), we say 
that u ∈ W 1,1(Ω) is a weak solution to the Dirichlet problem for the prescribed K0-mean 
curvature equation if u − ϕ ∈ W 1,1

0 (Ω) and

∫
Ω0

‖∇φ‖∗ dz +
∫

Ω\Ω0

〈π(∇u + F ),∇φ〉 dz +
∫
Ω

Hφdz � 0 (5.7)

for any φ ∈ W 1,1
0 (Ω), where we recall that Ω0 = {∇u +F = 0}. The equivalence between 

the two formulations is proved in [12] for the sub-Riemannian setting and can be carried 
out for the sub-Finsler setting with slight modifications.

Remark 5.3. A deeper look to [40,39] suggests that it should be possible to prove that 
the aforementioned results still hold only assuming that K0 is a convex body in C2,α

+
with 0 ∈ intK0, for some 0 < α < 1. Accordingly, it is reasonable that in Theorem 5.1
the regularity of ∂K0 can be weakened to C2,α, for some 0 < α < 1.
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6. A sharp existence result of Lipschitz minimizers in the sub-Riemannian setting

As pointed out in the introduction, a Finsler approximation scheme for (1.2) cannot 
be arbitrarily chosen, since one needs to guarantee classical regularity of the resulting 
equations. Nevertheless, for a particular class of Finsler metrics, it is possible to choose 
a more natural approximation scheme. More precisely, let us consider the one-parameter 
family of differential equations defined formally by

div
(
πK0(∇u + F ) ‖∇u + F‖∗√

ε2 + ‖∇u + F‖2
∗

)
= H. (6.1)

We point out that, when K0 is the Euclidean unit ball centered at the origin, (6.1)
reduces to the well-known elliptic approximating equation considered for instance in 
[12] (cf. Remark 2.9). In order to give to equation (6.1) a pointwise meaning, we must 
impose a priori that the function G̃(p) := ‖p‖∗πK0(p), which is C1 outside the origin, 
admits a C1 extension to the whole R2n. This regularity hypothesis turns out to be 
equivalent to the fact that the left-invariant sub-Finsler structure induced by K0 comes 
from an underlying left-invariant sub-Riemannian metric on the distribution H (cf. [57]), 
or equivalently that K0 is an ellipsoid centered at 0. More precisely, it is easy to check 
that, if G̃ ∈ C1(R2n, R2n), then DG̃ is necessarily a constant, symmetric and positive 
definite matrix, and moreover

‖p‖∗ =
√

p ·DG̃ · pT and πK(p) = DG̃ · pT
‖p‖∗

(6.2)

for any p ∈ R2n. When (6.2) holds, a direct computation shows that (6.1) is a well-
defined, quasi-linear elliptic equation, so that in this setting a Euclidean regularization 
term as in (4.2) is no longer needed. In order to solve the Dirichlet problem associated to 
(6.1) it is then possible to replicate almost word-by-word the computations of Section 4, 
with the advantage that the absence of the Euclidean curvature term makes the process 
easier. The main benefit of this new approximation is that, due to the absence of the 
Euclidean curvature term, a result analogous to Proposition 4.10 actually holds for any 
n � 1. We include the proof for the sake of completeness.

Proposition 6.1. Assume that K0 ∈ C∞
+ induces a left-invariant sub-Riemannian metric 

on Hn. Let Ω ⊆ R2n be a bounded domain with C2,1 boundary, let ϕ ∈ C2(Ω) and let H
be a constant which satisfies (4.19). There exists a constant C1 = C1(K0, Ω, ϕ, H, F ) > 0, 
independent of σ ∈ [0, 1] and ε ∈ (0, 1), such that, for any solution u ∈ C2(Ω) to⎧⎨

⎩div
(
πK0(∇u + σF ) ‖∇u+σF‖∗√

ε2+‖∇u+σF‖2
∗

)
= σH in Ω

u = σϕ in ∂Ω
(6.3)

it holds that
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‖u‖∞,Ω � C1.

Proof. Let C3 = C3(K0, Ω, H) be as in (4.22). Let us define the function v : intΩ1 −→ R

as in (4.27), that is

v(z) := sup
∂Ω

|ϕ| + kdK0,∂Ω(z)

for any z ∈ Ω1, where k > 0 has to be chosen and Ω1 is the set defined in (2.17). Again 
we know (cf. (2.18)) that v ∈ C2(intΩ1). We repeat again, with minor modifications, 
the computations of the proof of Proposition 4.8 up to (4.26). As in the proof of Propo-
sition 4.10, being H constant, we can choose C5 = 0 in (4.25). Moreover, since η = 0, 
the analog of (4.26) becomes

div(π(∇d))(z) + |H|(z0) = −HK0,Σd(z)(z) + |H|(z0)

� −HK0,∂Ω(z0) + |H|(z0)

� −3C3 < 0.

Hence there exists k > 0, independent of ε ∈ (0, 1), σ ∈ [0, 1] and z ∈ Ω1, such that v
is a subsolution to (6.3) on intΩ1. The thesis then follows verbatim as in the proof of 
Proposition 4.10. �

Therefore, in the sub-Riemannian setting, we can exploit Proposition 6.1 to avoid 
condition (4.9), so that the following sharper analog to Theorem 5.1 holds.

Theorem 6.2. Assume that K0 ∈ C∞
+ induces a left-invariant sub-Riemannian metric 

on Hn. Let Ω ⊆ R2n be a bounded domain with C2,1 boundary. Let ϕ ∈ C2,α(Ω), for 
0 < α < 1, and let F ∈ C1,α(Ω, R2n) be such that (4.15) is satisfied. Assume that H
is a constant such that (4.19) holds. Then, for any ε ∈ (0, 1), there exists a function 
uε ∈ C2,α(Ω) which solves the Dirichlet problem associated to (6.1) with boundary datum 
ϕ. Moreover, there exists a constant M > 0, independent of ε ∈ (0, 1), such that any 
solution uε to (6.1) satisfies

sup
Ω

|uε| + sup
Ω

|∇uε| � M.

Finally, there exists a Lipschitz continuous minimizer u0 ∈ Lip(Ω) for the functional I
defined in (2.23) with u0 = ϕ on ∂Ω.
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