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Abstract - In order to synthesize planar, sparse, and aperiodic arrays, a 

numerical procedure based on an enhanced genetic algorithm is 

proposed. The method maximizes a suitably defined single-objective 

fitness function iteratively acting on the states and the weights of the 

elements of the array. Such a cost function is related to the shape of 

the desired beam pattern, to the number of active elements and to 

others user-defined array-pattern constraints. To preliminarily assess 

the effectiveness of the approach, selected numerical experiments are 

performed. The obtained results seem to confirm its feasibility. 

Moreover, given the heterogeneity of the test benchmarks, the 

versatility is pointed out as a key-feature of the implemented 

methodology. 
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I. INTRODUCTION 

 The synthesis of the beam pattern of two-dimensional arrays is aimed at defining the 

optimal configuration of positions and weights of the array elements to fulfill several user-

defined constraints (e.g., the reduction of the side-lobes peak (SLP) under a fixed threshold, a 

narrow main lobe, a reduced number of array elements, a small dimension of the array, etc…). 

An analytical solution to such a problem is not available and numerical techniques are 

generally used. In [1] a method based on the linear-programming theory has been applied to 

reduce the level of the side-lobes of a thinned array when the number of elements and the 

main-lobe width are fixed. Such an approach turned out to be computationally expensive in 

dealing with large arrays because of an excessive increase in the memory requirement and 

computational load. To overcome this drawback, a simulated annealing (SA) procedure has 

been proposed in [2] and applied to synthesize a 1020 ×  weighted array.  

 However, since single-agent global optimization procedures are characterized by a 

reduced convergence rate, improved and more effective (in terms of convergence rate of the 

iterative process) methodologies are required.  

 In such a framework, this paper presents a multiple-agent optimization technique aimed 

at fully exploiting the key-features of genetic-based methodologies (GA) [3] in dealing with 

two-dimensional arrays [4]. The computational efficiency of the presented method has been 

improved with a suitably defined hybridization and through the definition of a gradient-based 

optimizer. It should be pointed out that it is out of the main scope of such a research work to 

focus on the algorithmic issues (hybrid codings and gradient-based optimizers are 

commonplace in GA usage). Nevertheless, these aspects are deeply investigated in order to 

define a versatile approach, being able to successfully deal with a large class of planar 

structures and synthesis problems with various constraints (avoiding the customization of the 

method to a single kind of two-dimensional arrays). 

 The manuscript is organized as follows. In Section II, the mathematical formulation of 

the approach is presented. To assess the feasibility and the versatility of the approach, Section 

III shows the results of selected/representative numerical experiments. Finally, some 

conclusions and guidelines for future developments are drawn (Sect. IV). 

 

II. SYNTHESIS PROCEDURE – MATHEMATICAL FORMULATION 

 Generally speaking, the problem of the synthesis of a two-dimensional array is 

characterized by different and conflicting requirements to be satisfied. It is an example of a 
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multi-objective problem. Unlike the strategy described in [5], the proposed approach does not 

consider a multi-objective optimization but it aims at reducing the multi-objective problem 

into a classical single-objective one through an ad-hoc combination of several terms related to 

the physical parameters of the array. 

 Let us consider a typical set of requirements to be satisfied: 

• Minimum discrepancy between the synthesized and a reference beam pattern, ( )vupd , ; 

• Narrow main lobe; 

• Low level of the side-lobes; 

• Uniform level of the side-lobes; 

• Reduced number of active array elements, aN . 

The single-objective function is defined as a linear combination of these constraints 
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where the unknown parameters to be optimized are the states ],...,[ 1 Nxx=X  and the weights 

],...,[ 1 Nww=W  of the array elements, which are assumed to be located in N  positions of an 

2λ  equally spaced two-dimensional grid (λ  being the free-space wavelength). The terms of 

the cost function are defined as follows 
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where u = sinα - sinα0 and v = sinβ - sinβ0 take into account the direction of arrival of the 

impinging signal (defined by the angular coordinates (α,β)), and the steering direction ∆0 = 

(α0,β0) (Fig. 1). R is a real value allowing the main lobe to be excluded from the calculation 

of the side-lobes level and S defines the range for which ( ) ( )vupvup d ,, > , p(u,v) being the 

normalized beam pattern; k1, k2, k3 and k4 are normalizing coefficients, chosen empirically. 
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 The solution of the arising problem is obtained through the maximization of (1). 

Towards this end, an enhanced GA (EGA) has been used. GAs are optimization algorithms 

based on the Darwinian theory of evolution [6]. Standard GAs [7], [8] consider a population 

of P trial solutions coded in binary strings called chromosomes and ranked according to the 

value of a suitable objective function (called fitness function). The best solutions are selected 

and undergo crossover and mutation operators to generate a new population. The iterative 

procedure is stopped when a fixed threshold for the fitness function ( EGAf η≤ ) or a 

maximum number of generations has been reached ( EGAIi = , i  being the iteration number). 

 In the following, the most relevant features (compared to standard implementations) of 

the enhanced GA-based procedure will be detailed. 

 

A. CHROMOSOME REPRESENTATION 

 To accurately represent the unknown parameters, a hybrid coding has been used. The 

states and the weights of the array elements have been represented with boolean and real 

parameters, respectively. The chromosome Φ  is a hybrid-coded string 

 

{ } { }
{ } { }maxmin ,1,0

2,...,1;,...,1,;,...,1,
WWwx

NmNnwNnx

nn

mnn

∈=
=Φ====Φ

                      (2) 

 

where minW  and maxW  define the range of variation of the weight coefficients. 

 

B. GENETIC OPERATORS 

 Concerning the genetic operators, because of the chromosome representation, a suitable 

mixed real-boolean crossover [9] has been defined. Two selected (according to a roulette 

wheel schema [10]) chromosomes, )1(Φ  and )2(Φ , are superimposed and different crossover 

rules are used according to the gene under test. If nm w=Φ , then  
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r being a random value between 0 and 1. If nm x=Φ , the state of the n-th sensor is 

maintained. Otherwise, the state of the sensor is chosen randomly. 
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 The mutation operates with different elements’ death and birth probabilities ( dp  and 

bp , respectively) and performs a random perturbation of the weight coefficients in the range 

{ }maxmin ,WW . The mutation and the crossover operators are applied with a probability mp  

and cp , respectively. 

 In order to increase the convergence rate of the iterative process, a gradient-search 

operator is defined. It is applied when a fixed threshold for the cost function has been 

achieved ( ( ) OCGif η≤Φ , ( )( )
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ Φ=Φ

==

)(

,...,1,..,1
minminarg p

Ppiji f ). The sensor states are frozen and 

the weight coefficients are modified to optimize the beam pattern shape. More in detail, 

starting from the optimal trial solution reached until now, 0,, =Φ=Φ kiki , the following 

steps are iteratively performed: 

(a). ( )kiSLPf ,Φ  and ( )kiSLLf ,Φ  are evaluated; 

(b). If ( ) SLPkiSLPf η>Φ ,  then kkkiki dα+Φ=Φ + ,1,  where kα  is chosen according to the 

standard Polak-Ribière conjugate-gradient method [11] being 

[ ] ( )[ ] [ ]
⎩
⎨
⎧ ∈Φ∇−

=
otherwise0

,1 if, Nmf
d mkiSLP

mk .                                      (4) 

Otherwise, the trial solution is updated by considering a new search direction given by 

[ ] ( )[ ] [ ]
⎩
⎨
⎧ ∈Φ∇−

=
otherwise0

,1 if, Nmf
d mkiSLL

mk .                                      (5) 

(c). If maxKk =  or a fixed threshold for the SLP has been attained ( ( ) convkiSLPf η≤Φ , ), then 

the iterative procedure stops and the best achieved trial solution is assumed as the final 

parametric description of the synthesized array. 

A flowchart of the EGA-based procedure is shown in Figure 2. 

 

III. NUMERICAL RESULTS 

 To assess the effectiveness and the versatility of the proposed array synthesis method, a 

large number of numerical tests, related to different array geometries and various constraints, 

has been performed. Moreover, some reference test cases have been considered and the 

obtained results are compared with those reported in the related literature.  

 In order to give some quantitative information on the method performance, let us define a 

set of representative quantities. Concerning the geometric dimension of the array, let us 
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indicate as occupation domain D, the minimum square area where the array elements lie. 

Moreover, let us define the array sparseness coefficient (hereinafter indicated with Sρ ) equal 

to the ratio between the occupation domain and the normalized number of active array 

elements to quantify the allocation density of the array elements 
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aN  being the number of active array elements. 

 The first numerical experiment deals with the test case considered in [1], [2] and it is 

related to a 1212×  planar array. The values of the EGA parameters, chosen according to the 

guidelines in [8], are: P = 160, 400=EGAI , 75.0=cp  (crossover probability), and Mξ = 0.01 

(mutation probability). Moreover, after an exhaustive calibration process, the values of the 

thresholds turned out to be: 1.0=OCGη , 0001.0=convη , and 01.0=EGAη . As far as the fitness 

coefficients are concerned, the following values (heuristically-defined) have been considered: 

12.01 =k , 12.02 =k , 1.03 =k , and 44 =k .  

Figure 3 shows the beam pattern of the synthesized array (owing to the symmetry properties 

of p(u,v), only the values in the range u ∈ [-1,1] and v ∈ [0,1] are shown). The array is made 

up of 64=aN  active elements. The peak of the side-lobes level turns out to be equal to – 

24.56 dB and the main lobe width (ML) is u-6dB = v-6dB = 0.327. These values indicate that 

such a solution is closer to the optimal one [1] than that shown in [2]. In [2] the same main 

lobe width has been achieved but with a larger number of array elements ( 67=aN ) and a 

higher side-lobes level ( dBSLP 3.24−= ). Moreover, the EGA-based procedure allows a 

reduction in the value of the sparseness coefficient as a consequence of the accumulation of 

the array elements shown in Fig. 4. Sρ  is equal to 40 while the arrays synthesized in [1] and 

[2] are characterized by 62=ρS  and 4.61=ρS , respectively. In particular, the relevance of 

such a result is further confirmed by the random arrays theory, which estimates an average 

side-lobe level equal to – 18 dB for a 64 random-placed element array [12].  

Because of the statistical nature of the optimization approach, each test case has been solved 

by running several times the EGA-based procedure to assess its reliability. As confirmed from 

the statistics reported in Tab. I, the approach shows a good stability. The average values of the 
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characteristic parameters are very close to those of the optimal array with small standard 

deviations.  

Finally, Fig. 5 shows the behavior of the peak of the side-lobes level versus the number of 

active elements. For completeness, the difference between the beam pattern of a 62=aN  

active elements ( 34.0=ML  and dBSLP 40.24−= ) and the optimal array is given in Fig. 6, 

thus evidencing an increase in the main lobe width ( 34.0=ML  versus 327.0=ML ). 

 Concerning the second test case, it deals with the optimization of a 1020×=N  array 

[13]. The synthesis process is aimed at achieving a fixed level of the side-lobes ( dB20− ) 

along the axes u = 0 ( vSLP ) and v = 0 ( uSLP ), by minimizing the number of active array 

elements. The EGA method is able to synthesize a thinned array of 79=aN  active elements 

with the following beam-pattern characteristics: dBSLPu 9.22−= , dBSLPv 1.20−= , 

123.06 =− dBu , 276.06 =− dBv . The array sparseness coefficient is equal to 79, which 

positively compares with that obtained in [13] ( 108=ρS ). 

To confirm the versatility of the approach, let us consider the reduction of the side-lobes level 

by preserving the main-lobe width as well. The EGA succeeds in synthesizing a 90=aN  -

element array with a reduction of the SLP of about dB50.3  ( 90=ρS ). Such a result clearly 

points out the flexibility of the proposed method in successfully handling the trade-off 

between the side-lobe peak and the number of active elements. Tab. II summarizes the beam 

pattern characteristics of the synthesized arrays and Figs. 7-8 show the beam pattern behavior 

on the reference axes and the array layouts, respectively. For completeness, to give an idea of 

the reproducibility of the synthesis results, a statistical evaluation of the configurations 

obtained after many EGA executions is provided in Tab. I. 

 

IV. CONCLUSIONS 

 A versatile method for the synthesis of sparse planar arrays has been proposed. The 

method allows the specification of multiple constraints related to the main beam width, the 

side-lobes level, the location and the number of active array elements. Towards this purpose, 

the original multiple-objective problem has been recast in the optimization of a single-

objective cost function. Such a maximization has been carried out by iteratively thinning and 

weighting the array elements with a synthesis strategy defined by an enhanced hybrid-coded 

genetic algorithm. The effectiveness, reliability and flexibility of the approach have been 
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assessed through selected test cases. The obtained results are favorably compared with those 

reported in the related literature and achieved employing deterministic and/or stochastic 

methodologies. Moreover, thanks to the introduction of the hybridization and of the gradient-

based optimizer, the EGA-based procedure allows a reduction of about %15  in terms of 

required execution time. 

 Future developments will be aimed at dealing with other geometries and constraints as 

well as at considering a time-varying environment where various interferences occur. Such a 

situation generally appears in real communications and requires a feasible and versatile 

procedure, being able to perform a real-time array synthesis by adaptively tuning antenna 

characteristics and parameters. Because of the versatility of the EGA, it seems a good 

candidate to face this problem. 

 



10

 

REFERENCES 

 

[1]  S. Holm, B. Elgetun, G. Dahl, “Properties of the beampattern of weight- and layout-

optimized sparse arrays,” IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency 

Control, vol. 44, pp 983-991, 1997. 

[2]  A. Trucco, “Thinning and weighting of large planar arrays by simulated annealing,” 

IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control, vol. 46, pp. 347-355, 

1999.  

[3]  D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning. 

Addison-Wesley, Reading, MA, 1989. 

[4]  F. Ares-Pena, “Application of genetic algorithms and simulated annealing to some 

antenna problems,” in Electromagnetic Optimization by Genetic Algorithms, eds. Y. 

Rahmat-Samii and E. Michielssen, Wiley & Sons, pp. 119-154, 1999. 

[5]  D. S. Weile and E. Michielssen, “Integer-coded pareto genetic algorithm design of 

constrained antenna arrays,” Electronic Lett., vol. 32, pp. 1744-1745, 1996. 

[6]  J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan 

Press, Ann Arbor, 1975. 

[7]  D. S. Weile and E. Michielssen, “Genetic algorithm optimization applied to 

electromagnetics: A review,” IEEE Trans. Antennas Propagat., vol. 45, pp. 343-353, 

1997. 

[8]  Y. Rahmat-Samii and E. Michielssen, Electromagnetic Optimization by Genetic 

Algorithms. Wiley & Sons, New York, 1999. 

[9]  S. Caorsi, A. Massa, and M. Pastorino, “A computational technique based on a real-

coded genetic algorithm for microwave imaging purposes,” IEEE Trans. Geoscience 

and Remote Sensing, vol. 38, pp. 1697-1708, 2000. 

[10]  L. Davis, Handbook of Genetic Algorithms. Van Nostrand Reinhold, 1991. 

[11]  E. Polak, Computational Methods. Academic Press, New York, 1971. 

[12]  Steinberg, Principles of Aperture and Array System Design. New York: Wiley, 

1976. 

[13]  R. L. Haupt, “Thinned arrays using genetic algorithms,” IEEE Trans. Geoscience 

Antennas Propagat., vol. 42, pp. 993-999, 1994. 

 

 



11

 

FIGURE CAPTIONS 

 

• Figure 1. Planar array geometry and notations. 

• Figure 2. Flowchart of the Enhanced Genetic Algorithm procedure (EGA) 

• Figure 3. 1212×=N -element planar array. Beam pattern of the 64=aN -element 

synthesized array ( dBSLP 56.24−= , 327.066 == −− dBdB vu ). 

• Figure 4. 1212×=N -element planar array. Array layouts defined with (a) linear 

programming method [1] ( 62=ρS ), (b) simulated annealing approach [2] ( 4.61=ρS ), 

and (c) EGA-based method ( 40=ρS ). 

• Figure 5. 1212×=N -element planar array. EGA-based method. Side-lobe peak ( SLP ) 

as a function of the number of active array elements ( aN ) for several optimized arrays. 

• Figure 6. 1212×=N -element planar array. EGA-based method. Difference between 

the beam pattern of the 62=aN -element array (u-6dB = 0.340) and of the 64=aN -

element array (u-6dB = 0.327). 

• Figure 7. 1020×=N -element planar array. Beam power patterns along the u and v 

axes. 

• Figure 8. 1020×=N -element planar array. Array layouts defined with (a) GA-based 

method [13] ( 108=aN  , 108=ρS ), (b) EGA-based method ( 79=aN  , 79=ρS ), and 

(c) EGA-based method ( 90=aN , 90=ρS ). 
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TABLE CAPTIONS 

 

• Table I. 

Statistics of the array parameters after many runs of the EGA-based procedure (the 

superscript * indicates the average value between u-6dB and v-6dB) 

• Table II. 

1020×=N -element planar array. Comparison between the array parameters of the 

solution obtained with the GA-based approach [13] and with the EGA-based method. 
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Fig. 1 – M. Donelli et al., “A Versatile Enhanced Genetic Algorithm for …”. 
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Fig. 2 – M. Donelli et al., “A Versatile Enhanced Genetic Algorithm for …”. 
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Fig. 3 – M. Donelli et al., “A Versatile Enhanced Genetic Algorithm for …”. 
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Fig. 4 – M. Donelli et al., “A Versatile Enhanced Genetic Algorithm for …”. 
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Fig. 5 – M. Donelli et al., “A Versatile Enhanced Genetic Algorithm for …”. 
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Fig. 6 – M. Donelli et al., “A Versatile Enhanced Genetic Algorithm for …”. 
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Fig. 7 – M. Donelli et al., “A Versatile Enhanced Genetic Algorithm for …”. 
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Fig. 8 – M. Donelli et al., “A Versatile Enhanced Genetic Algorithm for …”. 
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Array Geometry Navg σN SLPavg σSLP MLW-6dB ρD,avg 

12 ×  12 weighted 65 1.71 - 24.32 2.19 0.334 (*) 42.50 

20 ×  10 83 4.21 - 20.01 (*) 0.65 (*) 0.202 (*) 84.20 

20 ×  10 weighted 101 2.48 - 19.82 0.37 0.214 (*) 93.60 

 

 

 

 

 

 

 

 

 

 

 

 

Tab. I – M. Donelli et al., “A Versatile Enhanced Genetic Algorithm for …”. 
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Tab. II – M. Donelli et al., “A Versatile Enhanced Genetic Algorithm for …”. 

 

 

 

Synthesis Method Na SLPu SLPv u-6dB v-6dB SLPu,v 

Best in [13] 108 - 20.07 dB - 19.76 dB 0.123 0.281 - 14.31 dB

Proposed Approach (a) 79 - 22.90 dB - 20.10 dB 0.123 0.276 - 11.00 dB

Proposed Approach (b) 90 - 22.80 dB - 21.10 dB 0.123 0.276 - 14.50 dB


