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ABSTRACT
Leukemia is a blood cancer characterized by leukocyte overproduction. Clinically, the reference for acute lymph-

oblastic leukemia diagnosis is a blood biopsy that allows obtain microscopic images of leukocytes, whose early-stage 
classification into leukemic (LEU) and healthy (HEA) may be disease predictor. Thus, the aim of this study is to propose 
an interpretable artificial neural network (ANN) for leukocyte classification to timely diagnose acute lymphoblastic leu-
kemia. The “ALL_IDB2” dataset was used. It contains 260 microscopic images showing leukocytes acquired from 130 
LEU and 130 HEA subjects. Each microscopic image shows a single leukocyte that was characterized by 8 morpholog-
ical and 4 statistical features. An ANN was developed to distinguish microscopic images acquired from LEU and HEA 
subjects, considering 12 features as inputs and the local-interpretable model-agnostic explanatory (LIME) algorithm as 
an interpretable post-processing algorithm. The ANN was evaluated by the leave-one-out cross-validation procedure. 
The performance of our ANN is promising, presenting a testing area under the curve of the receiver operating charac-
teristic equal to 87%. Being implemented using standard features and having LIME as a post-processing algorithm, it is 
clinically interpretable. Therefore, our ANN seems to be a reliable instrument for leukocyte classification to timely diag-
nose acute lymphoblastic leukemia, guaranteeing a high clinical interpretability level.
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1. Introduction
Leukocytes, commonly known as white blood cells, are a 

prime component of the immune system[1]. Leukemia is a type of 
blood cancer characterized by an excessive overproduction of leu-
kocytes, which flood the bloodstream, crowd out healthy cells, and 
impede normal cell death[2]. Acute lymphoblastic leukemia is the 
most common blood neoplastic disease[3] (followed by acute my-
eloid leukemia, chronic lymphoblastic leukemia, and chronic my-
eloid leukemia), and its incidence ranges from 0.7 to 1.8/100,000 
per year in adults[3,4]. Among the risk factors for developing acute 
lymphoblastic leukemia, the main ones are older age, exposure to 
oncological treatment, and genetic disorders[5]. The gold standard 
examinations for acute lymphoblastic leukemia diagnosis are com-
plete blood count, peripheral blood smear, bone marrow analysis, 
and histochemical investigations. Thus, clinically, the reference 
for acute lymphoblastic leukemia diagnosis is blood biopsy, which 
allows to obtain microscopic images of leukocytes.

It is well known that the main evidence of acute lymphoblas-
tic leukemia is the increased number of leukocytes. Thus, biolo-
gists and oncologists are used to visually count and characterize 
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these cells. Unfortunately, this practice is subjec-
tive, expensive, and time-consuming. If cells in the 
sample are insufficient or unavailable, patients are 
subjected to undergo further examinations. More-
over, the number of leukocytes is a reliable feature 
only during advanced stages of acute lymphoblastic 
leukemia[4], and, thus, not sufficient for a timely, 
safe, and accurate early-stage diagnosis. On the 
other hand, the single leukocyte characterization 
and classification into leukemic (LEU, Figure 1(a)) 
and healthy (HEA, Figure 1(b)) may be a predictor 
of acute lymphoblastic leukemia and a valid tool 
to investigate its natural progression and related 
symptoms. So, algorithms for the automatic char-
acterization and classification of leukocytes from 
microscopic images are desirable.

In the literature, several automatic procedures 
have been proposed to detect and classify leuko-
cytes[4,6–20]. Most of them focused on leukocyte 
detection by counting the number of cells[4,6–13], 
whereas only a small fraction aimed to classify leu-
kocytes[14–20]. Focusing on leukocyte classification, 
the majority of automatic procedures are dealing 
with deep-learning methods[15,17,19,20] or advanced 
machine-learning classifiers[14,16,18] to improve clas-
sification accuracy. Despite the high performance, 
no method in the literature has specifically analyzed 
the clinically relevant features of single leukocytes 
that may lead to a preventive diagnosis of acute 
lymphoblastic leukemia. Thus, in this clinical sce-
nario, interpretability is of crucial importance, as it 
allows to identify which are the most informative 
leucocyte features for acute lymphoblastic leukemia 
diagnosis and pathophysiology evaluation.

Thereby, the aim of this study is to propose 
a feature-based tool for leukocyte classification in 
order to timely diagnose acute lymphoblastic leu-
kemia by an interpretable artificial neural network 
(ANN), guaranteeing a high level of clinical inter-
pretability, usefulness, and practicability.

2. Materials and methods

2.1 Dataset
The publicly available “ALL_IDB: Acute 

Lymphoblastic Leukemia Image Database for Im-
age Processing” database (https://scotti.di.unimi.it/
all/) of Università di Milano[21–24] was considered. It 
is made up of two datasets “ALL_IDB1” and “ALL_

IDB2”. In this study, the “ALL_IDB2” dataset was 
used, as it considers microscopic images with single 
leukocytes. Indeed, the “ALL_IDB2” dataset con-
sists of 260 microscopic images showing leukocytes 
acquired from 130 LEU and 130 HEA subjects. Mi-
croscopic images were captured by an optical labo-
ratory microscope coupled with a Canon PowerShot 
G5 camera. They were acquired with a resolution of 
257 pixels × 257 pixels and stored in “.jpg” format, 
according to 24-bit RGB color depth.

Figure 1. Microscopic images showing leukocytes of LEU (a) 
and HEA (b) subjects.

2.2 Artificial neural network construc-
tion

2.2.1 Preprocessing
Firstly, each microscopic image was prefil-

tered. Figure 2 depicts the preprocessing outcomes 
of one microscopic image acquired from a subject 
affected by leukemia (Figure 2(a)). Specifically, 
grayscale conversion (Figure 2(b)), contrast en-
hancement (Figure 2(c)), and image complement 
(Figure 2(d)) were applied to improve visibility and 
reduce noise. Then, a binary image was obtained by 
applying an automated threshold equal to 0.5. From 
each binary image, a single leukocyte was selected 
and, then, extracted as the white area larger than 
1,000 pixels (Figure 2(e)). According to the bina-
ry images, every single leukocyte was segmented 
(Figure 2(f)).

2.2.2 Feature extraction
Each segmented leukocyte was characterized 

by 8 morphological and 4 statistical features. Mor-
phological features, selected according to hematolo-
gists’ experience[10], are:

• minor axis length (mAL, pixels), computed 
as the length of the minor axis of the ellipse that has 
the same normalized second central moments as the 
segmented leukocyte;

• major axis length (MAL, pixels), computed 
as the length of the major axis of the ellipse that has 
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the same normalized second central moments as the 
segmented leukocyte;

• perimeter (PER, pixels), computed as the 
distance between each adjoining pair of pixels 
around the border of the segmented leukocyte;

• area (AR, pixels2), computed as the number 
of pixels that composed the segmented leukocyte;

• solidity (SOL, adi), computed as the ratio of 
actual area and the convex hull area that composed 
the segmented leukocyte;

• eccentricity (ECC, adi), computed as the 
ratio of the distance between the foci of the ellipse 
that has the same normalized second central mo-
ments as the segmented leukocyte and MAL;

• form factor (FF, adi), computed as:

(1)
• compactness (COM, adi), computed as:

(2)
Statistical features are:
• contrast (CON, adi), computed as the inten-

sity contrast between a pixel and its neighbor over 
the segmented leukocyte;

• correlation (COR, adi), computed as the 
correlation contrast between a pixel and its neigh-
bor over the segmented leukocyte;

• energy (EN, adi), computed as the sum of 
squared elements between a pixel and its neighbor 
over the segmented leukocyte;

• homogeneity (HOM, adi), computed as the 
closeness between a pixel and its neighbor over the 

segmented leukocyte.

2.2.3 Artificial neural network
The classification was performed to distin-

guish microscopic images acquired from LEU and 
HEA subjects. Our ANN was designed with 12 
inputs, corresponding to the number of features, 
and an output layer, corresponding to LEU/HEA 
classification. Thus, ANN presents twelve neurons 
in the inner layer, one neuron in the out layer, and 
one hidden layer. The number of neurons in the 
hidden layer was selected during the validation 
process (as described below). All neurons were 
initialized by random weights and biases (ranging 
between −1 and +1) and characterized by a sigmoid 
activation function. ANN was trained according to 
the Levenberg-Marquardt optimization backprop-
agation algorithm and the early-stop validation 
criterion was employed to prevent overfitting[25]. 
Local-interpretable model-agnostic explanatory 
(LIME) algorithm[26] was applied as an interpretable 
post-processing algorithm. LIME is an explainer 
algorithm able to interpret ANN predictions by 
combining features and coefficients of such trained 
ANN. It locally approximates the ANN with an in-
terpretable model, ranking ANN inputs according to 
their impact on classification performance.

ANN was evaluated by the leave-one-out cross-val-
idation procedure, a kind of k-fold cross-validation 
that considers k equal to the number of instances 
in the dataset. Specifically, for each fold, ANN was 
trained by using a training set, composed of k-1 in-
stances, and tested on the remaining instance. At the 
end of the leave-one-out cross-validation procedure, 
ANN was trained on k training sets and tested on 
a testing set composed of the k remaining instanc-
es of each k fold. Leave-one-out cross-validation 
procedure was repeated in order to select ANN ar-
chitecture by varying the number of neurons in the 
hidden layer from 100 to 500. The ANN providing 
the highest median value of the areas under the 
curve (AUC) of the receiver operating characteristic 
(ROC) curves of k training sets was selected.

2.3 Statistics
Feature distribution normality was evaluated 

by the Lilliefors test. Feature comparison between 
LEU and HEA subjects was performed by unpaired 
Wilcoxon rank-sum test.

Figure 2. Preprocessing outcomes of one microscopic image 
acquired from a subject affected by leukemia: (a) raw image; (b) 
grayscale image; (c) contrast enhanced image; (d) complement 
image; (e) binary image; and (f) segmented image.
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ANN performance was evaluated by ROC and 
confusion matrix analysis, considering both training 
sets and testing set obtained by the leave-one-out 
cross-validation procedure. ROC was characterized 
by computing the AUC. The confusion matrix was 
constructed by computing the number of true pos-
itives (TP, number of LEU leukocytes classified as 
LEU), true negatives (TN, number of HEA leuko-
cytes classified as HEA), false negatives (FN, num-
ber of LEU leukocytes classified as HEA) and false 
positives (FP, number of HEA leukocytes classified 
as LEU). Values of sensitivity (SE), specificity (SP), 
and accuracy (AC) were computed according to the 
following formulae:

(3)

(4)

(5)
Interpretation of each feature was assessed by 

univariate AUC and feature relevance (FR) criteria 
considering the entire dataset. FR of each feature 
was assessed by processing the feature ranking ob-
tained by LIME. Thus, for each subject, a feature 
ranking was constructed by analysis of the coef-
ficients of the selected ANN. FR is the weighted 
average (by ranking) of the percentage of patients 
presenting a specific feature in each of the ranking 
positions. The association between feature-interpre-
tation criteria was assessed by Spearman’s corre-
lation analysis (ρ). Non-normal distributions were 
reported as 50th (median) [25th; 75th] percentiles. 
The statistical significance level (P-value) was set 
at 0.05.

3. Results
Table 1 reports feature distributions of LEU 

and HEA and comparisons. According to the results, 
6 out of 8 distributions of morphological features 
(mAL, MAL, AR, SOL, FF and COM) and 2 out 
of 4 distributions of statistical features (CON and 
COR) of LEU leukocytes are statistically (P-value 
< 0.05) different from features of HEA leukocytes.

Figure 3 depicts the selected ANN and the fea-
ture importance quantified by both univariate AUC 
and FR criteria. The selected ANN has 135 neurons 
in the only hidden layer. Figure 4 depicts the ROC 
curve of ANN by considering all training sets (Fig-
ure 4(a)) and testing sets (Figure 4(b)) obtained 
from the leave-one-out cross-validation procedure. 
ANN performance provided by ROC and confusion 
matrix analysis for both training sets and testing set 
is very promising, as reported in Table 2.

Feature importance quantified by univariate 
AUC and FR criteria is reported in Table 3. Spe-
cifically, according to the univariate AUC criterion, 
the feature with the highest importance is AR (uni-
variate AUC = 69.29%), whereas the worst is HOM 
(univariate AUC = 50.94%). According to the FR 
criterion, the feature with the highest importance is 
AR (FR = 14.44%), whereas the worst is EN (FR 
= 2.15%). Despite the Spearman’s correlation be-
tween the two criteria is low and not statistically 
significant (ρ = 0.23, P-value = 0.47), morpholog-
ical features have high-ranking positions in both 
univariate AUC and FR criteria (e.g., AR is in the 
first position in both criteria) and statistical features 
have low ranking positions in both univariate AUC 
and FR criteria (e.g., HOM is in the last position ac-
cording to univariate AUC criterion, and EN is the 
last position according to FR criterion).

Table 1. Non-normal distributions of features extracted from images acquired from LEU and HEA subjects are reported as 50th (me-
dian) [25th; 75th] percentiles. Feature comparison was performed by unpaired Wilcoxon rank-sum test

LEU HEA P-value
Morphological features mAL (pixels) 106.33* [94.76; 118.30] 96.94 [80.67; 106.13] < 10–4

MAL (pixels) 125.86* [112.70; 144.09] 117.92 [98.03; 141.37] < 0.01
PER (pixels) 385.71 [349.42; 465.93] 374.78 [311.77; 472.01] 0.13
AR (pixels2) 9,910* [8,516; 13,005] 8,582 [5,926; 9,979] < 10–7

SOL (adi) 0.97* [0.94; 0.98] 0.94 [0.81; 0.97] < 10–6

ECC (adi) 0.53 [0.40; 0.67] 0.58 [0.44; 0.71] 0.12
FF (adi) 0.81* [0.52; 0.91] 0.72 [0.32; 0.87] < 0.01
COM (adi) 14.02* [12.82; 16.29] 15.46 [13.89; 20.42] < 10–4

Statistical features CON (adi) 0.30* [0.28; 0.33] 0.32 [0.30; 0.43] < 10–4

COR (adi) 0.98* [0.98; 0.98] 0.98 [0.98; 0.98] < 0.05
EN (adi) 0.24 [0.21; 0.29] 0.27 [0.22; 0.30] 0.13
HOM (adi) 0.92 [0.91; 0.93] 0.92 [0.91; 0.93] 0.79
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Figure 3. Selected ANN (135 neurons in the only hidden lay-
ers) and feature importance quantified by both univariate AUC 
and FR criteria.

Figure 4. ROC curve of ANN obtained from the leave-one-out 
cross-validation procedure: (a) depicts results of training sets 
(in gray) and their median value (in black), whereas (b) depicts 
results of testing set.

4. Discussion
The aim of this study was to develop a novel 

instrument for leukocyte classification by interpret-

able artificial neural network in order to timely di-
agnose acute lymphoblastic leukemia, guaranteeing 
high level of clinical interpretability. To this aim, 
microscopic images of leukemic and healthy leuko-
cytes were analyzed.

In clinics, it is well known that leukocyte 
number and their multiparameter characterization 
are indicators of acute lymphoblastic leukemia, but 
not specific for an early-stage diagnosis. To fulfill 
a timely intervention on disease progression, pre-
vention actions are essential. To do so, instruments 
able to capture even the slightest leukocyte altera-
tions, acting like precursors of acute lymphoblastic 
leukemia, are desirable. Hence, the here proposed 
study focused on processing only microscopic im-
ages containing single leukocytes.

To obtain more information regarding the nat-
ural progression of the disease and provide timely 
therapeutic intervention, clinical interpretability 
should be ensured. Thus, our automatic instrument 
works with both morphological and statistical fea-
tures of leukocytes, generally known and used by 
biologists and oncologists for the leukocyte charac-
terization of leukemic subjects.

Considering our results, the best features for 
discriminating leukemic from healthy leucocytes 
are morphological features (in particular, the mor-
phological area of leukocytes), as confirmed also by 
results provided by feature-importance comparison. 
This outcome is encouraging because morpholog-
ical features are clinically interpretable better than 
statistical ones and, consequently, more usable in 

Table 2. ANN performance provided by ROC and confusion matrix analysis for both training sets and testing set

AUC (%) TP TN FN FP SE (%) SP (%) AC (%)
Training sets 94

[93; 95]
117
[114; 120]

113
[104; 119]

17
[11; 25]

12
[9; 16]

87
[82; 91]

90
[88; 92]

88
[85; 90]

Testing set 87 110 101 29 20 79 83 81

Table 3. Feature importance (ranking-values) quantified by univariate AUC and FR criteria

Univariate AUC FR
Morphological features mAL (pixels) 4–65.21% 4–1.84%

MAL (pixels) 7–59.90% 3–12.74%
PER (pixels) 11–55.37% 2–13.89%
AR (pixels2) 1–69.29% 1–14.44%
SOL (adi) 2–68.53% 7–6.82%
ECC (adi) 9–55.64% 10–4.55%
FF (adi) 6–60.89% 9–5.44%
COM (adi) 5–64.98% 5–10.66%

Statistical features CON (adi) 3–65.79% 11–3.07%
COR (adi) 8–59.18% 6–7.90%
EN (adi) 10–55.47% 12–2.15%
HOM (adi) 12–50.94% 8–6.50%
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the real clinical scenario.
However, none of the considered features 

provided high performance in terms of leukocyte 
classification, as demonstrated by univariate area 
under the curve of the single features. Thus, ad-
vanced methods for feature combination are pivot-
al. To combine both morphological and statistical 
features of single leukocytes, an artificial neural 
network was implemented. The settings of our ar-
tificial neural network were selected on the basis 
of a robustness analysis (by varying the number of 
neurons), whereas its generalization property was 
evaluated by cross-validation. The results of our 
artificial neural network are very promising (test-
ing area under the curve of the receiver operating 
characteristic equal to 87%), also in terms of sensi-
tivity (79%) and specificity (83%). Moreover, our 
artificial neural network is robust in terms of perfor-
mance, as demonstrated by the narrow confidence 
intervals of the training area under the curve of the 
receiver operating characteristic (2%) provided by 
the cross-validation procedure. This result high-
lights the reliability of the entire algorithm and the 
robustness of the proposed method on training data, 
a property that makes our artificial neural network 
an effective tool to generalize clinical acute lymph-
oblastic leukemia diagnosis in the real clinical sce-
nario.

In the literature, several automatic procedures 
have been proposed to classify leukocytes (Table 
4). Among the studies leveraging on leukocyte 
classification, six of them considered the dataset 

“ALL_IDB2” of the publicly available “ALL_IDB: 
Acute lymphoblastic leukemia image database for 
image processing” database (https://scotti.di.unimi.
it/all/) of Università di Milano[21–24]. Two out of 
six[15,16] extracted features from microscopic images 
of leukocytes, but none of them considered either 
an artificial neural network (one applied a chrono-
logical sine cosine algorithm-based convolutional 
neural network, the other used extra trees as a clas-
sifier) or the leave-one-out cross-validation strat-
egy. Four out of six[17–20] classified the leukocytes 
by applying machine-learning and deep-learning 
methods, considering microscopic images as inputs 
(three used a convolutional neural network and 
one used a support vector machine as classifier). 
These studies validated the algorithms by using 
the k-fold cross-validation strategy or static data 
division in training and test sets. None of these six 
studies applied a correlation between the statistical 
relevance of features and the interpretability of the 
machine-learning tool. Only one out of the six[20] 
applied Grad-CAM as interpretable explainer, but 
not correlating its outputs with features usually 
evaluated by clinicians. Differently from the liter-
ature, our artificial neural network uses clinically 
interpretable features as inputs, the leave-one-out 
cross-validation strategy and LIME as interpretable 
post-processing algorithm.

Leave-one-out cross-validation is known to be 
a robust validation technique in case of small-sized 
datasets and independent from data splits, differ-
ently from the static data division. Considering the 

Table 4. State-of-the-art automatic procedures for leukocyte classification using the “ALL_IDB2” dataset

Ref. Input Preprocessing Classifier Validation Results Interpretability
[15] Features Resizing Chronological sine 

cosine algorithm-
based convolutional 
neural network

k-fold cross validation
(with k variable)

AC = 98.7% No

[16] Features Resampling + resizing + data 
augmentation

Extra trees k-fold cross validation
(with k = 5)

AC = 96.2% No

[17] Images Resizing + data 
augmentation

Convolutional neural 
network

k-fold cross validation
(with k = 10)

AC = 97.2% No

[18] Images Data augmentation Support vector 
machine

k-fold cross validation
(with k = 5)

AC = 94.2% No

[19] Images Resizing Convolutional neural 
network

Static data division
(70% training, 30% 
test)

AC = 99.1% No

[20] Images Color normalization + 
greyscale conversion 
+ binarization + data 
augmentation

Convolutional neural 
network

k-fold cross-validation
(with k = 2) repeated 
10 times

AC = 96.8% Yes
(Grad-CAM),
heatmap

Proposed 
study

Features Grayscale conversion + 
contrast enhancement + 
complement + binarization

Artificial neural 
network

Leave-one-out cross 
validation

AC = 81.0% Yes
(LIME), feature 
relevance
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importance of association between the well-known 
statistical relevance of features and the interpreta-
ble performance of machine-learning methods, our 
artificial neural network guarantees a transparent 
correspondence between input features and inter-
pretable outputs of LIME. Indeed, our artificial 
neural network confirmed the importance of mor-
phological features (in particular, the morphological 
area of leukocytes) in detecting acute lymphoblastic 
leukemia, as widely confirmed by the literature and 
the statistical approaches. This property makes our 
approach suitable to be used in the real clinical sce-
nario, despite it has not the highest performance in 
term of sensitivity, specificity, and accuracy.

Of course, our approach can be improved. 
Firstly, the computed features refer uniquely to 
grayscale converted microscopic images, instead of 
using raw RGB colormap. Moreover, advanced vis-
ualization modules for machine-learning tools were 
presented to highlight the pattern that influenced 
the automatic decision-making process the most. 
However, our approach considers only statistical 
analysis as feature clinical interpretation, without 
being assessed by biologists or oncologists. Expert 
revision of cases would be essential to define novel 
additional features that can be inserted as inputs of 
our artificial neural network and, consequently, to 
improve the performance of our tool, specifically 
in terms of clinical sensitivity. Finally, the used 
database includes uniquely leukocyte classification 
into leukemic and healthy, without considering mi-
croscopic images of leukemic leukocytes collected 
during different stages of acute lymphoblastic leu-
kemia or microscopic images of leukocytes collect-
ed in patients affected by white blood cell disorders. 
These additional data may reveal specific features 
of leukemic leukocytes and, thus, help to refine our 
tool and to improve the performance of our tool, 
specifically in terms of clinical specificity. There-
fore, future studies will investigate the possibility to 
improve our artificial neural network, both techni-
cally and clinically. Specifically, implementation of 
colormap-based features and advanced visualization 
techniques for machine-learning understanding will 
improve the performance of the algorithm, while 
clinical feedback from our biological/medical part-
ners and integration of additional databases will 
improve the interpretability and scalability of clin-
ical scenarios, considering the seriousness of the 

disease.

5. Conclusion
Our artificial neural network seems to be a reli-

able instrument for leukocyte classification in order 
to timely diagnose acute lymphoblastic leukemia, 
ensuring high level of clinical interpretability.
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