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Automated Machine Learning Driven Stacked
Ensemble Modeling for Forest Aboveground Biomass

Prediction Using Multitemporal Sentinel-2 Data
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Abstract—Modeling and large-scale mapping of forest above-
ground biomass (AGB) is a complicated, challenging, and expensive
task. There are considerable variations in forest characteristics
that create functional disparity for different models and needs
comprehensive evaluation. Moreover, the human-bias involved in
the process of modeling and evaluation affects the generalization of
models at larger scales. In this article, we present an automated ma-
chine learning framework for modeling, evaluation, and stacking of
multiple base models for AGB prediction. We incorporate a hyper-
parameter optimization procedure for automatic extraction of tar-
geted features from multitemporal Sentinel-2 data that minimizes
human-bias in the proposed modeling pipeline. We integrate the
two independent frameworks for automatic feature extraction and
automatic model ensembling and evaluation. The results suggest
that the extracted target-oriented features have an excessive contri-
bution of red-edge and short-wave infrared spectrum. The feature
importance scale indicates a dominant role of summer-based fea-
tures as compared to other seasons. The automated ensembling and
evaluation framework produced a stacked ensemble of base models
that outperformed individual base models in accurately predicting
forest AGB. The stacked ensemble model delivered the best scores
of R2

cv = 0.71 and RMSE = 74.44 Mgha−1. The other base
models delivered R2

cv and RMSE ranging between 0.38–0.66 and
81.27–109.44 Mg ha−1, respectively. The model evaluation metrics
indicated that the stacked ensemble model was more resistant to
outliers and achieved a better generalization. Thus, the proposed
study demonstrated an effective automated modeling pipeline for
predicting AGB by minimizing human-bias and deployable over
large and diverse forest areas.

Index Terms—Aboveground biomass (AGB), automated
features, automated machine learning (AutoML), ensemble
modeling, hyperparameter optimization.

I. INTRODUCTION

THE selection of suitable machine learning (ML) algorithms
to solve the forest aboveground biomass (AGB) problem
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requires domain expertise for improving and regulating model
performances [1], [2], [3], [4], [5]. There are different ML-based
models developed in the literature for the prediction of forest
AGB. The most fundamental modeling approach to AGB predic-
tion is generalized linear regression that allows to relate model
parameters to the response variable via a link function [73], [77],
[78]. Furthermore, kernel-based learners that include methods
such as support vector machine [79], [80], [81] and Gaussian
process regression [82], [83] have proven to be effective for
the development of AGB estimation models. Additionally, the
tree-based models such as Random forest (bagging), XGBoost,
and CatBoost (boosting) were also found to be very efficient
for the prediction of forest AGB [58], [84]. The latest devel-
opments in AGB estimation include artificial neural network
based learners that use backpropagation algorithm for training
the network to reliably predict AGB. These approaches include
the use of some basic multilayer perceptron models [85], sparse
autoencoders [86], and deep neural networks with generative
learning strategy [87], [88]. However, these various ML models
are trained and optimized with different strategies that make it
difficult to determine whether a given technique is genuinely
better or simply better tuned. Automated machine learning
(AutoML) approaches can support a wide range of ML algo-
rithms and automate algorithm selection, feature generation, hy-
perparameter tuning, iterative modeling, and model assessment
to develop an optimized ML pipeline.

The task of creating an optimized ML pipeline for AGB
prediction is complex and time-consuming due to the diversity in
forest type and species. The traditional approaches proposed for
the development of ML pipelines use a trial and error mechanism
for stacking and selection of models for AGB prediction [6],
[7], [8]. In practice, the human element cannot be completely
eliminated from the process due to the need of performing model
checks and model explanation w.r.t target parameter, i.e., AGB.
However, the human intervention can be reduced and replaced
with efficient search and hyperparameter importance learning
algorithms that minimize the number of user-regulated param-
eters and achieve faster and efficient modeling with reduced
human-bias [9], [10], [11], [12]. In this regard, the concept of
AutoML can be very instrumental in gaining better machine
learning (ML) performance with the available computational
budget and reduced human assistance to model forest AGB. Au-
toML automates knowledge intensive tasks such as configuring

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-9399-1103
https://orcid.org/0000-0001-9850-8985
https://orcid.org/0000-0002-6036-459X
mailto:parth.naik@unitn.it
mailto:michele.dalponte@fmach.it
mailto:lorenzo.bruzzone@unitn.it


NAIK et al.: AUTOML DRIVEN STACKED ENSEMBLE MODELING FOR AGB PREDICTION USING MULTITEMPORAL 3443

learning tools for feature engineering, neural architecture search
(NAS) and algorithm selection using an optimization-evaluation
mechanism [13]. In a general architecture, the AutoML con-
troller consists of an evaluator and an optimizer. The evalua-
tor measures the performance of learning tools and provides
feedback to the optimizer in order to update configurations
for better performance. The optimizer generates configurations
based on a search space that is determined by a process of
targeted learning [14]. For example, if the learning process is
“feature engineering,” the learning tools to be configured are
the “classifiers” and the search space would consist of “feature
sets, feature enhancing methods (dimension reduction, feature
generation, feature encoding) and related hyperparameters.”

There are a wide-ranging applications of AutoML such as
medical image recognition [15], [16], object detection [17],
[18], [19], super resolution [20], [21], [22], language model-
ing [23], text classification [24], semantic segmentation [25],
etc. AutoML has delivered a quality performance for vari-
ous tasks but scarcely experimented with developing an ML
pipeline for AGB prediction. An ML pipeline is a directed
graph of learning elements that can be automated by using a
search of estimators/predictors, search of learning algorithms,
and search of ensemble models [26], [27], [28]. In literature,
there are various algorithms developed for automation of these
learning elements of an ML pipeline [29]. The evolutionary
algorithms such as particle swarm model selection (PSMS)
use particle swarm optimization to automate the full model
selection problem [30]. Such evolutionary algorithms inspired
ensemble PSMS [31] which is a precursor to the development
of the latest AutoML systems [28]. Recent AutoML systems
are capable of building regression/classification pipelines, full
model selection, multiobjective optimization and best archi-
tecture/hyperparameter search for deep learning models [32].
Auto-WEKA [33] system uses the sequential model-based al-
gorithm configuration method [34] which is a robust stochastic
optimization framework under noisy function evaluations for
the lowest cross-validation misclassification. AutoSklearn [35],
which is a system similar to sequential model-based optimiza-
tion (SMBO), has a distinctive search process initialization that
exploits a meta-learner delivered the best performance in many
AutoML challenges. The tree-based pipeline optimization tool
[37] is an open-source genetic AutoML system that optimizes a
series of ML models for high-accuracy and compact pipelines
for supervised classification. The recent surge in the application
of deep neural networks led to the development of AutoML
systems like Auto-Net [38] and NAS [39], [40] which are
built on combination of Bayesian optimization and Hyperband
to automatically tune deep neural networks without human
intervention.

The concept of meta-learning is integral to AutoML sys-
tems and enables them to learn from the meta-data of the
learning elements [41]. AutoML systems perform faster and
more efficiently on a new task with meta-learning techniques
that replace human-engineered ML pipelines with data-driven
pipelines [42]. Meta-learning techniques have been successfully
implemented in literature to automate various learning elements

(feature engineering, architecture search, hyperparameter opti-
mization) of the AutoML systems [26], [43], [44], [45], [46],
[47]. In this context, there are many studies conducted using
meta-learning techniques to execute various ML tasks in remote
sensing applications. A trivial problem in deploying advanced
ML algorithms in the RS domain is few-shot (low training sam-
ples) learning for which meta-learning techniques have provided
some significant solutions [48], [49], [50], [51]. Meta-learning
techniques can efficiently handle multiscale RS data and pro-
vide efficient solutions to inversion modeling problems [52],
[53]. These techniques have been used to solve more specific
RS problems such as the study in [54] specifically focused
on deep neural network model for semantic segmentation of
circular objects in satellite images. Apart from such specific
problems, meta-learning techniques are capable of dealing with
combination of such problems to solve larger problems in RS.
For example, a recent study [55] aimed at generating captions
for RS images using meta-learning—a task that requires dealing
with a combination of problems based on visual and textual
features to generate RS image captions. Thus, meta-learning
approaches have a significant contribution in solving complex
RS problems and hold a great potential for improving AGB
modeling in diverse scenarios such as mixed tree species, forest
types, and varying density of forests.

The possibility is unlikely for a single modeling algorithm to
perform effectively on most types of AGB modeling scenarios.
Ensemble models are a combination of base models built on the
hypothesis that the combination of multiple (weak) models can
produce a more reliable and accurate model as compared to the
individual base models [56]. Ensemble models are developed
based on techniques such as bagging, boosting, and stacking.
The bagging and boosting models both involve homogeneous
weak learners that are combined by a deterministic strategy.
The difference is bagging algorithms follow a parallel learning
strategy (e.g., Random Forest) and boosting algorithms follow
a sequential learning strategy (e.g., AdaBoost, XGBoost). Dif-
ferently, stacking involves heterogeneous weak learners that are
combined using a meta-model with a parallel learning strategy.
Ensemble models have been used for AGB modeling and predic-
tion by various studies in literature [8], [57], and [58]. However,
developing a stacked ensemble with manual trial and error
approaches to model AGB is an inefficient and time-consuming
task. Meta-learning-driven AutoML systems can be adequately
used for developing optimal stacked ensemble models (SEM) for
AGB prediction [59]. AutoML systems use a collection of base
models with hyperparameter tuning algorithms for producing
SEMs [60]. The AutoGluon system [61] uses a multilayer stack
ensembling with K-fold bagging that stacks models in multiple
layers and trains in a layer-wise manner. The AutoSklearn
system [28] employs a Bayesian optimization algorithm for
searching through the hyperparameter space and meta-learning
for warm-starting of the search procedure. The AutoSklearn 2.0
[35], which is an improvement upon Autosklearn, uses port-
folio learning after performing Bayesian optimization. Among
the most recent AutoML systems, “H2O” AutoML [62] per-
forms stacked ensembling with random forest, gradient boosting
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machines, linear models, and deep learning models using a super
learning algorithm.

The primary objective of this article is the prediction of AGB
using multitemporal multispectral (MT-MS) satellite remote
sensing data. Prediction of AGB using satellite remote sensing
requires a robust ML pipeline to deal with outliers in the training
data and increase the generalization ability of the model. More-
over, satellite remote sensing is generally used for large-scale
AGB mapping and may require testing multiple models due
to the spatially varying characteristics of the forest. Thus, it is
required to have a comprehensive evaluation framework for the
multiple models that are considered. Therefore, we propose an
AutoML system for the prediction of forest AGB that enables
training and evaluation of models within a single framework. In
particular, we use a meta-learning-driven AutoML system that
automates the selection and stacking of candidate base learners
for modeling AGB. Additionally, we propose to incorporate
a SMBO procedure to automatically extract features from the
MT-MS satellite data to minimize human-bias in the proposed
ML pipeline.

II. STUDY AREA AND DATASETS

A. Study Area Description and Field Data

The study area is the province of Trento (6216 km2) situated
in north-eastern Italy in the southern part of the Alps. The area
is mountainous and has a 60% of forest cover mostly owned
by public institutions that are subject to broad goals of forest
management (i.e., forest protection, species biodiversity, carbon
storage etc.). The area has mountains with high elevations and
landlocked valleys suitable for species such as Norway spruce
(Picea abies (L.) Karst.) and Swiss pine (Pinus cembra L.). The
area has mountains with lower elevations of an average 1000
m above sea level that are suitable for species such as Silver
fir (Abies alba Mill.) and European beech (Fagus sylvatica L.).
The areas that are below 1000 m are mainly characterized by
broadleaves species such as Ostrya carpinifolia, Carpinus be-
tulus, Fraxinus ornus, Quercus pubescens, Quercus petrae, etc.
The geographical location of the study area and the distribution
of the field plots in the study area are shown in Fig. 1.

The field data consists of 315 circular plots with a fixed radius
of 15 m (see Fig. 1). These data include 98 broadleaf plots,
152 coniferous plots, and 65 mixed plots. The total 315 plots
were divided into three categories (broadleaf, coniferous, and
mixed plot) such that more than 80% of the plot AGB should be
derived from one particular tree type (broadleaf or coniferous),
otherwise the plot was considered as a mixed plot. All trees
having a diameter at breast height (DBH) above 7 cm inside
a plot were geolocated and their species, DBH and heights
were measured. The AGB of each tree was computed using the
allometric equations stated in [63], and the plot level AGB was
computed as the sum of the AGB of all measured trees inside
the plot. The field-estimated plot level AGB values ranged from
1.07 to 711.41 Mg ha−1. The plot coordinates were recorded
using a survey-grade GPS unit.

Fig. 1. Study area with reference AGB plot locations (red dots).

TABLE I
ACQUISITION DATES (YYYY-MM-DD) OF SENTINEL-2 IMAGES

B. Remote Sensing Data

The study was performed using MT-MS images acquired by
ESA’s Sentinel-2A, 2B satellites. The acquisition dates of the
Sentinel-2 images are stated in Table I. Sentinel-2 images are
characterized by 13 spectral bands at 60, 20, and 10 m spatial
resolution. We used ten spectral bands for our experiments, i.e.,
four spectral bands (B, G, R, and NIR) at 10 m spatial resolution
and six spectral bands (3-Red Edge, Narrow NIR, and 2-SWIR)
at 20 m spatial resolution. The central wavelengths of these ten
considered spectral bands ranged from 490 to 2190 nm.

III. DESCRIPTION OF ALGORITHMS

The developed mechanism for achieving the proposed objec-
tives was based on coupling two algorithms: 1) Tree-structured
Parzen Estimator (TPE) [64] which is a hyperparameter opti-
mization algorithm based on an iterative search process on a
dynamic search space and 2) the Super Learner (SL) [65] which
is a V-fold cross-validation based meta-learning algorithm that
selects weights for combining candidate models. The following
subsections provide a description of the two algorithms.
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A. TPE for Automatic Feature Extraction

The TPE algorithm is based on a SMBO approach that
overcomes the limitations of computationally expensive and
inefficient random search and grid search algorithms. The inputs
required by the TPE algorithm are parameters (x) and loss (y)
based on the prior search history to deduce hyperparameters for
the next trial. The input pair (parameters and loss) is split into
two densities (�(x) and g(x)) based on the loss of the historical
data by a γ quantile (2) of the search result. The TPE defines this
split p(x|y) using the two densities according to the following
equations:

p (x|y) =
{
� (x) if y < y∗

g (x) if y ≥ y∗ (1)

and

γ = p(y > y∗) =
∫ y∗

−∞
p(y)dy (2)

where �(x) should be maximized as it represents the density
formed from the observations x(i) that correspond to the loss
(y) smaller than the target performance (y∗), whereas g(x)
should be minimized as it represents the density formed by using
the remaining observations. Therefore, the output of the TPE
algorithm can be simply characterized as the ratio between g(x)
and �(x).

The idea of the TPE algorithm is based on maximizing the
expected improvement (EIy∗(x)) computed by (3) based on con-
vergence of loss (y) and target performance (y∗) in subsequent
trials

EIy∗ (x) =

∫ y∗

−∞
max (y∗ − y, 0) p (y|x) dy

=

∫ y∗

−∞
(y∗ − y)

p (x|y) p (y)
p (x)

dy (3)

where p(x) can be written as

p (x) =

∫
R
p (x|y) p (y) dy = γ� (x) + (1− γ) g (x) . (4)

Therefore, we can deduce

EIy∗(x) =

∫ y∗

−∞
(y∗ − y)p(x|y)p(y)dy

= �(x)

∫ y∗

−∞
(y∗ − y)p(y)dy

= γy∗�(x)− �(x)

∫ y∗

−∞
p(y)dy. (5)

Finally combining (4) and (5), we obtain

EIy∗(x) =

(
γ +

g(x)

�(x)
(1− γ)

)−1

·
⎛
⎝γy∗ −

y∗∫
−∞

p(y)ydy

⎞
⎠

∝
(
γ
g(x)

�(x)
(1− γ)

)−1

. (6)

The expression in (6) is a product of two terms of which the
second term is independent of “x” and hence the expression
is directly proportional to the first term and implies that to
maximize improvement points “x” with high probability under
�(x) and low probability under g(x) are desirable. Also, this
expression shows that the ratio g(x)

�(x) should be minimized in
order to increase the expected improvement.

B. SL Algorithm for Automated Stacked Ensemble Modeling

The SL algorithm can be used for ensemble modeling by con-
sidering a set of diverse modeling algorithms as base learners and
selecting an optimal ensemble through V-fold cross-validation.
We first define a library “L” of “K” modeling algorithms trained
to solve a regression problem of estimating the expectation of
target ′A′ given the observed variable ′A′. The optimal value of
the parameter of interest ′ψ0(A)

′ that is required to be estimated
and the related loss function ′L(O,ψ)′ that indicates the dif-
ference between the observed and the predicted value (squared
error loss) can be written as

ψ0 (A) = E (B|A) (7)

L (O,ψ) = (B − ψ (A))2. (8)

Thus, the optimal values of the parameter of interest for the
“K” individual algorithms included in the library “L” can be
written as ′ψ̂k(A)

′ where k = 1, 2, ….., K. The number of
algorithms “K” to be considered in the library is dependent on the
sample size of the data. Note that all the considered algorithms
estimate the same parameter ′ψ̂k(A)

′ but may use different
subsets of ′A′, different basis function, estimation procedures,
and range of tuning parameters. The identification of the best
predicting algorithm from the library over the data distribution
(Po) is determined by minimizing the expected risk difference
′dn(ψ̂k, ψ0)

′, i.e.,

dn

(
ψ̂k, ψ0

)
=

∫ {
L
(
B, ψ̂k

)
− L (B,ψ0)

}
dPo (9)

k̃n = argmin
k

{dn(ψ̂k, ψ0)}. (10)

The use of the same data to estimate ψ̂k(A) and dn(ψ̂k, ψ0)
generates bias in the estimation of the true risk to determine
the best algorithm. Thus a V-fold cross-validation selector is
used for unbiased estimation of the risk. Given the empirical
distributions for the training and validation sets for each V-fold,
the cross-validation selector can be defined as

k̂ = argmin
k

{
ECn

∑
i:Cn(i)=1

L(Biψ̂k(Ai|P 0
n,Cn

))
}

(11)

where P 0
n,Cn

and P 1
n,Cn

are the distributions of training set
(Cn(i) = 0) and validation set (Cn(i) = 1), respectively.

IV. PROPOSED APPROACH

The flowchart of the proposed approach given in Fig. 2
shows the process of integrated implementation of TPE and
SL algorithms to create an ML pipeline for AGB prediction.
In the following subsections, the pre-processing of Sentinel-2
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Fig. 2. Proposed approach for AGB prediction.

data, implementation of TPE and SL algorithms, and model
explanation parameters are described in detail.

The extraction of targeted spectral features from Sentinel-2
data for forest AGB prediction requires a comprehensive un-
derstanding of the dynamic changes of optical properties with
respect to AGB. Vegetation indices are standardized yet retain
bias attributed to their pre-defined equations. The TPE algorithm
provides flexibility to the spectral features and fits spectral
bands to empirical equations based on dynamics with AGB.
The TPE algorithm supports spectral bands in parameter search
space and composes the spectral features in computationally
efficient manner. This makes TPE algorithm an optimal choice
for producing target-oriented spectral features from empirical
equations. This process was followed by the deployment of the
SL algorithm that uses K-fold crossvalidation to estimate the
performance of multiple ML models (base learners) and the
same model with different hyperparameter settings. This creates
an optimal weighted average of base learners (i.e., an ensemble
model) that improves prediction accuracy, avoids overfitting,
and minimizes parametric assumptions. Thus, the SL algorithm
becomes a suitable choice to achieve the objective of stacked
ensemble modeling for prediction of forest AGB.

A. Data Preprocessing

The Sentinel-2 images were acquired in Level-1C (top of the
atmosphere reflectance) format and converted to Level-2A (bot-
tom of the atmosphere reflectance) format including atmospheric
and terrain correction using the Sen2cor processor [66]. The

spectral bands at 20 m spatial resolution were resampled at 10
m using the nearest neighbor sampling method for spatial consis-
tency and performing computations. The preprocessed data were
used for extracting plot reflectance and preparing season-wise
analysis-ready data frames using “rgeos” and “rgdal” packages
of R software. The analysis-ready data frames of each season
consisted of plot reflectance values for each spectral band for all
sample plots.

B. Implementation of Algorithms

The two core frameworks of the proposed approach are based
on TPE and SL algorithms implemented sequentially to pro-
duce a robust ML pipeline for AGB prediction. First, the TPE
algorithm generates automatically optimized features from the
preprocessed analysis-ready data frames. Later, these optimized
features and the response variable are used for training the SL
algorithm that automates the process of training a large number
of base models and performs stacked ensembling to produce a
leaderboard of models. The TPE algorithm was implemented
using “Optuna” framework that was developed in [67] and
the SL algorithm was implemented using “H2O-3” framework
that was developed in [62]. The sequential implementation of
the two frameworks is explained in detail in the following
paragraphs.

The implementation of the TPE algorithm to extract features
from the input spectral bands requires a model, i.e., an empirical
equation for which it can generate a set of parameters and select a
combination of optimal spectral bands to accurately predict the
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TABLE II
EMPIRICAL EQUATIONS OF SPECTRAL INDICES FOR THE TPE ALGORITHM

target variable. The considered empirical equations are given
in Table II. The library of 33 empirical equations (indexed
as In) framed from an exhaustive database of 500+ spectral
indices [68] was available from [69]. The TPE randomly selects
an empirical equation and generates parameters depending on
the number of spectral bands (NSB) and the coefficients (CF
= α, β, γ, ρ, and σ) in the equation. A generalized linear
regression model is fitted to select the optimal spectral bands
and coefficient values to maximize the coefficient of determi-
nation (objective function). The coefficient of determination
enables quantifying the proportion of the variance in extracted
optimized feature w.r.t the target AGB values. The coefficient
of determination should be maximized to determine the best
fit in terms of spectral bands and coefficient values for the
empirical equations. The TPE initialization provides a pair of

parameters and loss as stated in Section III-A that are split into
two densities (�(x) and g(x)) as per (1) and (2). The ratio of
the two densities should be minimized (thus maximizing the
objective function (R2) in our case) through an iterative process
and the best empirical equation is determined with the related
optimum set of parameters (spectral bands, coefficient value).
However, the random initialization creates a selection bias in
the TPE algorithm that favors the empirical equations with less
number of parameters, i.e., empirical equations involving less
spectral bands. This selection bias problem was resolved using
a meta-learning strategy by performing optimization process in
groups. In total, the empirical equations were divided into five
groups based on the number of spectral bands (NSB = 2, 3,
4, 5, 6) and 1000 iterations were performed for each group.
The best empirical equation in each group was identified and
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TABLE III
LIST OF BASE MODELS FOR SL ALGORITHM

after performing three repetitions of this process, the overall
best empirical equation was identified. The selected empirical
equation, optimal spectral bands, and coefficient values were
used to compute the features and directed to the subsequent
framework.

The SL framework receives the computed TPE-optimized
automatic features and the target response variable as the input
training frame. As previously mentioned, we used the H2O-3
platform to deploy the SL algorithm which consists of a library
of base models stated in Table III. Additional details regarding
the specifications of the base models and model parameters can
be accessed from H2O.ai documentation (https://docs.h2o.ai/).
The SL algorithm exploits the base models and derives an
optimal SEM that minimizes the expected risk difference as per
(10) and (11). In order to achieve the defined objective of this
study, we used all the available base models in the library (see
Table III). All base models were trained until their convergence
with five-fold cross-validation on a 128 GB NVIDIA GeForce
GTX 3090 GPU and Linux-based operating system. However,
the maximum number of models and maximum runtime for
models can be specified before the training process depending
on the available computational budget and time restrictions.

C. Model Explanations

The process of sequential deployment of TPE and SL frame-
works followed in the proposed approach results in TPE-
optimized features, model rankings, model predictions, and pre-
diction assessment metrics. Model explanations such as model
rankings, evaluation statistics, regression scatterplots, and fea-
ture importance chart are provided as results. The performance
of the base models and the SEM were evaluated on the basis of
different evaluation metrics and ranked according to the model
agreement score (coefficient of determination). All models were
cross-validated using five-fold cross-validation method. The
metrics used to evaluate these models are coefficient of deter-
mination (R2

cv), root mean squared error (RMSE), root mean
squared log error (RMSLE), mean absolute error (MAE), mean
absolute percentage error (MAPE), and relative absolute error
(RAE). The R2

cv shows the goodness-of-fit of the regression

model, the RMSE shows the standard deviation of the residu-
als, RMSLE shows the log-transformed standard deviation of
residuals, MAE shows the mean of absolute values of residuals,
MAPE shows the accuracy of prediction as a percentage, and
RAE shows accuracy of measurements relative to the range of
the observed variable.

V. EXPERIMENTAL RESULTS

A. TPE Optimized Features and Feature Importance

The features for the SL framework were extracted based on
the hyperparameter optimization results of the TPE algorithm.
The empirical equations with respective spectral bands and
coefficient values for each season selected post-TPE optimiza-
tion procedure are given in Table IV. The selected empirical
equations have been referenced using index numbers (In) men-
tioned in Table II. The spectral bands selected for the respective
equations have been referenced w.r.t their central wavelengths
(in nm). The corresponding Sentinel-2 spectral band for each
central wavelength can be identified from Copernicus website
(https://sentinels.copernicus.eu/). The empirical equations that
had multiple selected combinations of spectral bands were ref-
erenced as “a,” “b,” and “c.”

In total, 24 extracted features were selected for training the
base models for AGB prediction following the TPE-based op-
timization procedure. Particularly, there were six features from
autumn, seven from spring, six from summer, and five from
winter seasons. Interestingly, all extracted features consisted of
spectral bands from the vegetation red-edge spectrum (VRE)
and short-wave infrared (SWIR) spectrum of the Sentinel-2 data.
The TPE algorithm that was conditional on the target variable for
the optimization process suggested an important role of the VRE
and SWIR spectral bands for modeling forest AGB. Precisely,
the SWIR band at λc = 1610 were selected for 21 out of the 24
extracted features and the contribution of VRE was distributed
at λc = 705, 740, and 865. The season-wise analysis indicated
that VRE at λc = 740 and SWIR at λc = 1610 was selected for
all autumn features. Also, SWIR at λc = 1610 was selected for
five features and λc = 2190 for the remaining two features. For
the summer season, VRE at λc = 705 and 865 were selected
for five out of the total six features and SWIR at λc = 1610
for all features. Thus, the clear observable pattern in the specific
spectral contributions of the extracted features accounts for their
target-oriented properties.

The stacked bar chart in Fig. 3 shows the computed feature
importance for all the considered base models. The features
have been referenced as “index_season” and the scaled feature
importance values of the base models have been color coded
for analyzing the percentage contributions. The highest average
feature importance was observed for “12a_sum” (79%) that was
extracted with λc = 705, 490, and 665. The feature achieved
specific feature importance of 74% for DNN, 24% for DRF, and
100% for GBM, XGBoost, and GLM. This indicated that feature
“12_sum” contributed significantly for most of the base models
and has a dominant role in modeling AGB. A total of five features
for DNN (26_spr, 12a_sum, 8b_sum, 8a_sum, 12b_sum), two
features for DRF (28c_aut, 33_sum), five features for GBM

https://docs.h2o.ai/
https://sentinels.copernicus.eu/
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TABLE IV
TPE OPTIMIZED FEATURES FOR ALL SEASONS

(12a_sum, 32_aut, 23_aut, 28b_aut, 7_sum), three features for
XGBoost (12a_sum, 7_sum, 12b_sum), and five features for
GLM (12a_sum, 7_sum, 33_sum, 23_aut, 17_aut) were char-
acterized by feature importance score greater than 50%. The
feature “12a_sum” achieved the highest feature importance for
three (GBM, XGBoost, and GLM) out of the five base models
and the features ‘26_spr’ and ‘28b_aut’ achieved highest feature
importance for DNN, and DRF, respectively. All these features
were associated with either summer, autumn, or spring season
indicating comparatively low importance of winter features in
predicting AGB. Overall, the summer features were the most
dominant with a total of 12 out of 20 features with a feature
importance greater than 50%.

B. Model Leaderboard and Predictive Analysis

The H2O-3-based AutoML framework used to implement
the SL algorithm trains all the base models (see Table III) and
also produces an optimal SEM for predicting AGB. The total
computational time for executing the SL algorithm to produce
the modeling results was 1215 s.

The model ranking results and computed assessment metrics
shown in Table V indicated that SEM achieved the best over-
all performance for predicting forest AGB. The SEM model

achieved the highest agreement of R2
cv = 0.71 and the best

prediction precision RMSE = 74.44 Mg ha−1. The RMSLE
= 0.56 was equal for the top three ranked models despite a
significant difference in the RMSE indicating the existence of
outliers in the data. This explained the slightly higher MAE of the
SEM despite achieving better model agreement as compared to
DNN and DRF. The same explanation is applicable to the DNN
and DRF which have a significant difference in the MAE and
MAPE despite an identical RMSLE score. This suggests that
SEM is more robust to outliers and the meta-learning process
enabled the model to achieve better model fitting. The DNN
model achieved the second-best performance on the leaderboard
and the overall results suggested DNN to be more prone to
outliers as compared to SEM.

The bagging-based DRF model achieved third position on
the leaderboard with R2

cv = 0.65 and RMSE = 82.01 Mg
ha−1. The next two positions were achieved by boosting-based
GBM and XGBoost models. Both GBM and XGBoost had an
identical performance and GBM outperformed XGBoost by a
small margin. The GBM and XGBoost models achieved R2

cv

= 0.5, 0.48 and RMSE = 98.49, 99.95 Mg ha−1, respectively.
The GLM model achieved the last position on leaderboard with
R2

cv = 0.38 and RMSE = 109.44 Mg ha−1.
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Fig. 3. Feature importance stacked bar chart.

TABLE V
MODEL LEADERBOARD AND ASSESSMENT METRICS

The RAE score for the SEM model was 0.43 and succes-
sively increased to 0.75 for other models on the leaderboard.
This indicated the lowest saturation from SEM and successive
increment in saturation for other models to predict AGB. The
low RAE score for SEM and DNN models shows that these
models can predict greater AGB values with better accuracy
as compared to the other models. This is also evident from
the scatterplots of the regression models shown in Fig. 4. The
scatterplots clearly indicate that SEM, DNN, and DRF models
efficiently predicted large values of AGB as compared to GBM,
XGBoost, and GLM models. Thus, the proposed automated ML
pipeline yielded SEM that outperformed single base models
and efficiently modeled AGB. The results also pointed out the

crucial role of the meta-learning process in modeling AGB for
eliminating uncertainties associated with the data and producing
robust models.

The forest plot-type-based analysis of model performance was
carried out by independently computing RMSE for broadleaves,
coniferous, and mixed plots. The results (shown in Table VI)
indicate that the SEM model (which showed the best overall
performance) was sensitive to the type of forest plot. Overall, the
least RMSE errors were observed for the mixed-type plots and
the highest RMSE errors were recorded for broadleaf plots. This
type of behavior was consistent with the results from previous
studies that obtained more accurate AGB estimations results
for conifers as compared to the broadleaves using spectral data
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Fig. 4. Regression scatter plots of the considered models.

TABLE VI
FOREST PLOT-TYPE (BROADLEAVES, CONIFEROUS, AND MIXED) BASED

PREDICTION RMSE FOR DEVELOPED MODELS

[89], [90]. Broadleaves have multiple canopy layers and a more
complex structure that possess a challenge at a fundamental
level with passive spectral data. Therefore, the SEM model
showed the least RMSE error for coniferous type plots. It also
delivered a comparable performance for the mixed-type plots
(RMSE = 48.38 Mg ha−1), where the DRF model achieved
an RMSE score of 47.75 Mg ha−1. Although all base models
secured better RMSE scores as compared to SEM for broadleaf
type. But, it is important to note that all the models were not
trained independently on each distinct type of plot separately.
This showed that the SEM model is capable of learning critical
features and generalizing them for training data with multiple
types of plots. This enabled SEM to achieve the best overall

performance in spite of underperforming for a particular type of
plot (i.e., broadleaf).

VI. DISCUSSION

In this article, we have proposed an automated ML pipeline
for developing an SEM for the prediction of forest AGB using
multitemporal Sentinel-2 data. The key elements of the ML
pipeline were the TPE and SL algorithms that automated the
process of feature extraction from the data and training a library
of base models leading to the development of a stacked ensemble
for modeling AGB. The automated ML pipeline was proposed
for dealing with various issues identified in the literature related
to the human-bias in AGB modeling and systematic evaluation of
models. In this section, we extensively analyze our results with
respect to the contemporary literature and precisely identify the
advancements delivered by the study for AGB modeling using
satellite remote sensing data.

The choice of features is very crucial in any modeling process
and the performance of the models is highly dependent on their
quality. The use of MS data for AGB modeling has led to the
development and testing of various features. Practically, there
are numerous combinations of spectral bands that could be used
for extracting a feature from MS data for modeling AGB. Studies
in literature use a few standard vegetation indices as features
for modeling and mapping forest AGB [70], [71], [72], [73].
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A comparative analysis of these studies indicates an unstable
response of vegetation indices depending upon the spatial reso-
lution, sensor specifications, and available spectral bands of the
data. To state simply, a vegetation index identified as effective
for a particular study area or data with a certain radiometric
specification may not be as effective for other study areas or
radiometric specifications. Thus, the human-intelligence-based
selection of these vegetation indices can be highly inefficient and
ambiguous for AGB modeling. In order to overcome this issue,
our study proposed an automated mechanism for extracting
such features. The TPE algorithm-based optimization procedure
extracts features that are highly target-oriented and involves less
human intervention. It is capable of overcoming the shortcom-
ings identified in the literature with regard to extraction and
selection of effective features from satellite MS data for AGB
modeling. The reduction of human-bias from the process enables
the development of more robust and reliable features. Moreover,
it performs necessary changes in composing the features based
on the specifications of the data such as spatial, spectral, and
radiometric resolution. Thus, our study demonstrated the success
of the proposed automated approach that led to consistent and
accurate modeling results.

The second component of the modeling process after devel-
oping robust features is the choice of a modeling algorithm. The
type of modeling algorithm substantially affects the precision
and accuracy of the predictions. As per literature, there are
several studies that use different ML models for predicting forest
AGB [7], [57], [58] and provide a comparative assessment of
the models in order to identify the best modeling algorithm for
AGB prediction. Apart from the range of ML models that can be
used, each model has associated hyperparameters that require
tuning. A faulty hyperparameter tuning can adversely affect
the performance of an ML model and restrict its generalization
capability. Moreover, studies that use the same ML models but
with a different combination of hyperparameters or architec-
ture sometimes lead to contrasting performance on an identical
task. For example, the study in [58] identified XGBoost to
deliver the best performance as compared to the other competing
models. However, the XGBoost model has multiple associated
hyperparameters that were defined manually for finding the
best combination of hyperparameters using a grid search. This
introduces a human-bias in the process and reduces the chances
of reproducing the results for other data or scenarios. To deal
with this problem, our study proposed the use of an AutoML
approach that effectively automates the iterative tasks associated
with the development of a model. Precisely, it automates the
process of hyperparameter selection and a range of ML models
are trained in the same pipeline for effective comparison and
reproducible results.

Studies have identified that a combination of models (stacked
ensemble) can produce more efficient results as compared to
a single model [74], [75]. There are only a few studies that
focused on using SEMs for remote-sensing-based forest appli-
cations [6], [76]. These studies used a manual or semi-automatic
approach for identifying an optimal combination of models for
AGB prediction. An optimal SEM requires a library of diverse

models and a systematic algorithm to evaluate the combina-
tion of models with optimized hyperparameters and generate a
meaningful explanation of models. The solution for this complex
problem was provided by the proposed use of SL algorithm
implemented using H2O-3 framework that produced a stacked
ensemble of base models. The developed SEM model in this
study delivered the best performance as compared to the indi-
vidual base models. Moreover, it limited the required number of
user-defined parameters reducing human-bias in the ensemble
selection. Thus, a reliable and automated pipeline for robust
stacked ensembling and model training was established in this
study.

VII. CONCLUSION AND FUTURE WORK

This article proposed an end-to-end ML pipeline for modeling
forest AGB using MT-MS satellite remote sensing data. The
results demonstrated that reducing human-bias from the model-
ing process and deploying a comprehensive model evaluation
strategy under a single framework can provide better model
explanations. The derived model explanations can be instru-
mental to frame effective schemes for accurately mapping AGB
on large areas with diverse forest characteristics. Moreover,
instead of using predefined features for modeling, an automated
optimization procedure can produce more effective features by
weighing more on the spectrum of the data that holds greater
importance in explaining the target AGB. The future develop-
ments of this work can possibly aim at improving the robustness
of the proposed pipeline by the addition of optimization ele-
ments and by replacing or improving the deployed meta-learning
strategies. The advances in the latest AutoML systems can
be possibly incorporated to derive additional model explana-
tions for framing better modeling schemes for large-scale AGB
mapping. These advanced AutoML systems could be possibly
deployed at a global scale to develop models that can handle
a greater diversity of forest types, species, and geographical
conditions.
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