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ABSTRACT:
Recent studies have demonstrated that acoustic waves can be used to reconstruct the roughness profile of a rigid

scattering surface. In particular, the use of multiple microphones placed above a rough surface as well as an

analytical model based on the linearised Kirchhoff integral equations provides a sufficient base for the inversion

algorithm to estimate surface geometrical properties. Prone to fail in the presence of high noise and measurement

uncertainties, the analytical approach may not always be suitable in analysing measured scattered acoustic pressure.

With the aim to improve the robustness of the surface reconstruction algorithms, here it is proposed to use a data-

driven approach through the application of a random forest regression algorithm to reconstruct specific parameters

of one-dimensional sinusoidal surfaces from airborne acoustic phase-removed pressure data. The data for the training

set are synthetically generated through the application of the Kirchhoff integral in predicting scattered sound, and

they are further verified with data produced from laboratory measurements. The surface parameters from the mea-

surement sample were found to be recovered accurately for various receiver combinations and with a wide range of

noise levels ranging from 0.1% to 30% of the average scattered acoustical pressure amplitude.
VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons
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I. INTRODUCTION

Inverse acoustic scattering is concerned with the recov-

ery of information about an object or a surface based on

scattered acoustic data collected using sound sources and

receivers. It has applications in fields such as non-intrusive

damage testing as well as surface recovery.

A numerical method based on the boundary integral equa-

tions and Kirchhoff approximation to reconstruct the shape of a

scattering surface was recently outlined.1,2 This approach was

found to be highly sensitive to uncertainties, partly because of

the strong dependence on the phase of the scattered signal.3 The

errors in the inversion results were associated with the underde-

termined and ill-posed nature of the problem.3 The range of

applicability in reconstructing a surface is also limited by the

validity of a partial linearisation of the scattering problem,

which is required to make the numerical inversion feasible.

Another recent approach includes recovering a rough

surface at grazing angles using single-frequency, phaseless

acoustic pressure through the use of an iterative marching

method approach derived from the parabolic wave approxi-

mation (forward-scattered wave propagation assumption).4

Although the inversion results are found to be relatively

accurate, it is assumed that the forward-scattered approach

is not applicable in the context of this paper research due to

significant differences in the assumptions and experimental

setup and, in particular, acoustic remote sensing applications

where the sound field is best described by a solution of the

full Helmholtz equation [Eq. (3)].

Recent work3 solved the reconstruction problem using

matrix inversion, where the forward model of scattered

acoustic pressure was linearised, resulting in the linear sys-

tem of equations resolving the unknown profile of a rough

surface. The use of an iterative approach such as machine

learning is an appealing alternative to linearisation and as

such is one of the central motivations of the present work.

As opposed to deterministic model-based inversion

approaches, machine learning methods in wave scattering

problems allow more flexibility. Machine learning and its

applications in various fields of acoustics were discussed in

detail by Bianco et al.5 It has been shown that a combination

of random forest and neural networks results in a robust

method enabling reconstruction of geometrical features

against noise.6 This was achieved by first classifying train-

ing shapes with a random forest and then inverting the far-

field scattered signal using neural networks to obtain geo-

metrical features of different scattering objects.

Fan et al.7 successfully applied deep learning methodol-

ogies utilising the Helmholtz equation in the recovery of the
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shape and placement of multiple scatterers in two different

settings, including a seismic imaging setting where the

source and receivers were above the scatterers and receivers

were in a linear array. The scatterers were placed randomly

and formed from a number of shapes such as triangles,

squares, or ellipses. It was shown that for a large number of

receivers and sources, the locations and orientations of the

scatterers were successfully recovered with various amounts

of noise in the dataset, while the recovered boundaries of

the scatterers became blurred as the noise level increased.

Successful use of machine learning methodologies in

acoustics was also demonstrated when identifying parame-

ters such as the porosity and tortuosity of a porous material

with an acoustic signal perturbed by noise.8 It was shown

that “acceptable accuracy with wide variety of noise levels”8

can be achieved in recovering material properties.

Other works that recovered the parameters of surfaces

instead of the full surface include recovering parameters of

a sum of sine waves forming a rough surface,9 recovering

coefficients of a parametric curve of an obstacle,10 and using

a convolutional neural network to recover the root-mean-

squared height and correlation length from a Gaussian rough

surface through synthetic aperture radar.11 The flexibility of

data-driven approaches as compared to classical model

inversion, in the presence of noise, stands as a central moti-

vation of the present work.

The Kirchhoff approximation is still an active part of

reconstruction efforts as in Ref. 12, and other methods have

risen in inverse scattering especially in the near-field, such

as recovering the far-field pattern given the near-field mea-

surements13 and obtaining the scattering coefficient from

near-field measurements.14

The choice to use phaseless data as input was driven

mainly by the characteristics of the random forest approach,

which cannot handle coupled complex data. In Dolcetti

et al.,3 phase uncertainty was found to have a stronger

impact than amplitude uncertainty on the accuracy of the

surface reconstruction, and imperfect wrapping of the phase

was found to cause a multi-modal distribution of the recon-

struction error, especially at large roughness amplitudes (rel-

ative to the acoustic wavelength).

This work studies the feasibility of a machine learning

approach to characterise a parametric rough rigid surface.

Phaseless acoustical data were chosen due to the relatively

simple amplitude only calibration technique compared to

phase calibration, as well as to avoid the easily corruptible

nature of phase measurements that are sensitive to uncer-

tainties, such as uncertainties in position. Scattered phase-

less acoustical pressure defined by a single-frequency source

excitation will be synthetically generated through an appli-

cation of the Kirchhoff approximation. Specifically, the esti-

mation of the wavelength, amplitude, and offset of a

sinusoidal acoustically rigid scattering surface is considered

by means of a random forest algorithm trained on synthetic

noisy data and tested on synthetic and experimental data.

The paper is organised in the following way: Sec. II

presents the random forest model used for the estimation of

the surface parameters. Section III contains relevant infor-

mation regarding the methodology, including the selection

of the forward model as the Kirchhoff approximation, the

incorporation of noise, the way in which data were split into

training and testing sets, the experimental setup, and the

convergence of random forest as the number of trees

increase. Section IV contains the relevant results and evalu-

ation of the performance of the testing set and experimental

data set, including a comparison between the method pro-

posed in this paper and the short array method1 and model

performance in recovering unseen parameters. Section V

contains the conclusions of the paper.

II. RANDOM FOREST ALGORITHM

The purpose of machine learning algorithms in this

work is to allow the estimation of a parameter set that

uniquely defines the shape of a sinusoidal surface using the

modulus of the scattered acoustic pressure measured at a

finite number of locations, defining wsðRÞ as the acoustic

pressure field at a point R produced by a source with coordi-

nates (x1, y1), scattered by a sinusoidal rigid surface with

profile

fðxÞ ¼ f1 cos
2p
f2

ðxþ f3Þ
� �

; (1)

where the parameters fi; i ¼ 1; 2; 3 indicate the amplitude,

wavelength, and offset of the sinusoidal surface, respec-

tively. The signal was recorded at a set of M microphones

with coordinates of the jth microphone given by RðjÞ

¼ ðxðjÞ2 ; y
ðjÞ
2 Þ; j ¼ 1;…;M; the aim is to estimate at least one

of the parameters fi, given jwsðRÞj. The general setup of

sound scattering by a rough surface in Oxy plane is pre-

sented in Fig. 1, where the source and receivers are located

in the acoustic far-field above the surface.

The choice to reconstruct the parameter set instead of

the surface shape at each location (as was done in, e.g., Ref.

1) was made to limit the complexity of the problem and to

develop a method applicable for surfaces of higher complex-

ity, while still allowing a relatively compact parametric rep-

resentation based on Fourier series, as are typical for

examples of water waves in some applications.15,16

FIG. 1. The geometry of the problem where the rough surface is defined by

a function fðxÞ from Eq. (1). Surface is not to scale.
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Among the large number of existing machine learning

approaches, here it was decided to employ a random forest

approach for the recovery of the parameters of the surface.

This is due to the simplicity of the model; the structure of a

random forest is very strictly defined, giving fewer options

to the user in its creation. This is different from a neural net-

work approach, where the architecture needs to be carefully

considered. It was also decided that not being able to extrap-

olate to parameters outside the range given by the training

data would be a benefit for the problem investigated in this

paper, to ensure the Kirchhoff condition is maintained.

Random forests also benefit from not needing any input fea-

tures to be scaled or standardised while also being able to

measure feature importance through the use of Gini impor-

tance, although this can be biased when “input variables

vary in their scale of measurement of their number of cate-

gories,”17 although this is not investigated in this paper.

Random forests are a classification and regression

model where the model predictions are formed from an

average of multiple decision trees. A decision tree is a

supervised machine learning model in which the resulting

model is a tree-like structure, where queries on the data

define the branches and predictions define the leaves. As the

values of parameters in this study are real numbers, regres-

sion random forests are used. The composition of decision

trees is discussed significantly by Breiman et al.18 However,

a brief derivation based on Hastie et al.19 is included in this

paper.

A. Decision tree

Due to random forests being formed from many deci-

sion trees, it is important to have an understanding of how

decision trees partition data to make predictions. Suppose a

dataset D ¼ ðX;ZÞ, where X ¼ ðxljÞ 2 RND�M and Z

¼ ðfljÞ 2 RND�N are the matrices of input and output values,

respectively, with M the number of receivers and N the num-

ber of outputs to recover, and ND denotes the number of

samples in a dataset, with l ¼ 1;…;ND. Next, it is necessary

to define a splitting criterion (j, S), where j is a column in X
and S is some value defined on an interval

½minðXÞ;maxðXÞ�. It is noted that throughout the paper,

indices j, i, and l are reserved for the columns in the input

dataset (referred to as features and associated with the

receiver location in the receiver array), for the columns in

the output dataset (referred to as surface parameters), and

for the rows in input/output datasets (referred to as samples),

respectively.

Then a binary partition of D forms two datasets,

D1ðj; SÞ and D2ðj; SÞ, via the following form:

D1ðj; SÞ ¼ ðX;ZÞjxlj � S; l ¼ 1;…;ND; j ¼ 1;…;M
� �

;

(2)

D2ðj; SÞ ¼ DnD1ðj; SÞ: (3)

where n is the set minus operator. To find the best splitting

criteria in the case of Z having one output (i.e., i¼ 1),

one must minimise the following equation,19 modified with

weights:

min
ðj;SÞ

ND1

ND

X
D1

ðfl � �fD1
Þ2 þ ND2

ND

X
D2

ðfl � �fD2
Þ2

" #
; (4)

where �fD is an average of all outputs for a dataset. This pro-

cess is then repeated recursively on D1 and D2 until the

nodes are “pure,” i.e.,
P

xlj2Dleaf
ðfl � �fDleaf

Þ2 ¼ 0 for some

partition Dleaf , or another stopping criterion is reached. The

final partitions are called leaves and are where the predic-

tions are measured from. The decision tree’s prediction at a

leaf node will be the mean of all the outputs in that leaf

node. In reality, for regression implementations, a value of

zero will never be obtained, so other stopping criteria to

make a leaf must be considered, such as the sum of squared

errors becoming lower than a threshold or defining a mini-

mal number of elements (no fewer than 2) required to be in

a sub-dataset.

Essentially, decision trees recursively split a dataset

into grouped subsets via Eqs. (2) and (3) until the tree is

fully formed. Common algorithms to generate the decision

trees include the iterative dichotomiser (ID) algorithm20 and

the classification and regression trees algorithm (CART).18

This paper uses a modified version of the CART algorithm

contained in the PYTHON package scikit-learn.21

Due to the nature of the decision tree algorithm, deci-

sion trees tend to overfit the given training data. This can be

improved with methods such as cost complexity pruning.19

Another method to improve performance is through the

application of random forests,22,23 where the overfitting

issue is tackled through incorporating randomness. In this

approach, a “forest” is made from many decision trees,

where each decision tree is individually trained on a random

subset of the dataset, and the overall random forest predic-

tion is an average of all the decision trees in the forest.

Comparisons of the performance over decision trees have

been studied previously, i.e., in Ref. 23, where in classifica-

tion, random forests yielded an improved performance in 17

of 20 datasets tested for the same number of attributes over

decision trees. Random forests have also been used in

regression problems, such as in Ref. 24, where random for-

ests were compared against support vector machines and a

partial least squares (PLS) method to identify heavy metal

content in soil from hyperspectral modelling. Zhou et al.
found that both support vector machines and random forests

were “significantly better than that of PLS,”24 and random

forests had an improved performance over support vector

machines.

Classification often performs well in recovering from a

discrete set of labels. For example, the amplitudes could be

binned to [0.0–0.0005, 0.0005–0.001, 0.001–0.0015,…],

and the same can be adopted for the wavelength and offset.

However, to increase the resolution of the predictions, the

number of bins has to increase. Therefore, by tending the

number of labels to infinity, regression appears to be the rea-

sonable approach for the present work.
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The random forests in this work were created using the

PYTHON library scikit-learn.21

III. ESTIMATION OF THE SURFACE PARAMETERS

As is very common with machine learning, large data-

sets must be produced to be applied in the training of the

models to obtain useful results. For this paper, a dataset of

the scattered wavefield is generated for the rigid surface

given by Eq. (1) using the Kirchhoff approximation follow-

ing Ref. 25. These data were then used for the training of

the random forest by using the scattered phase-removed

acoustic pressure jwsðRÞj as inputs to the random forest (X)

and surface parameters as the output (Z), effectively simu-

lating an inverse problem. Finally, the trained learner was

applied to two sets of test data (one synthetic and one exper-

imental) to evaluate its performance.

A. Generation of synthetic data

The Kirchhoff approximation was chosen due to its

explicit form, obtained through the approximation of a scat-

tered signal via an assumption based on reflections from a

tangent plane. This makes it suitable for the calculation of

large amounts of data, which is required for training and

testing the random forests, while being fast to compute

[approximately 0.01 s for 34 receiver Kirchhoff simulations

on an AMD Ryzen 93 900X central processing unit (CPU)

with 32 GB RAM]. The suitability of this approximation for

the conditions analysed in this paper was presented in

Krynkin et al.1,2

Let the rough surface be defined by a function fðxÞ as

shown in Eq. (1), which satisfies the following condition:26

sin ð/Þ > 1

ðkhÞ1=3
; (5)

where h is the radius of curvature of the surface, k is the

acoustic wavenumber, and / is the incident angle of the

acoustic wave. With the condition of Eq. (5) satisfied, it is

possible to use the Kirchhoff approximation to model reflec-

tions of an acoustic wave from a rough surface using a tan-

gent plane approach. In two dimensions, for a source with a

given directivity pattern, the scattered acoustic pressure ws

can be expressed in the following equation:2

wsðRÞ ¼
1

2kpi

ð1
�1

Aðx; 0Þffiffiffiffiffiffiffiffiffiffi
R1R2

p eikðR1þR2Þðqy � qxcÞdx; (6)

where, as shown in Fig. 1, the values R1 and R2 are the

Euclidean distance from the source at (x1, y1) and receiver at

(x2, y2) to a given point ½x; fðxÞ� on the surface, respectively,

R1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � xÞ2 þ ðy1 � fðxÞÞ2

q
; (7)

R2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � xÞ2 þ ðy2 � fðxÞÞ2

q
: (8)

In Eq. (6), R ¼ ðx2; y2Þ; c ¼ dfðxÞ=dx; qx and qy are the x
and y components of q ¼ �krSðR1 þ R2Þ with the gradient

rS ¼ ð@=@x; @=@yÞ. The directivity term AðrÞ is defined in

this work as the far-field radiation from a baffled piston,

which is given by27

AðrÞ ¼ 2J1ðka sin ð/ðrÞ � ð�/0 þ p=2ÞÞÞ
ka sin ð/ðrÞ � ð�/0 þ p=2ÞÞ ; (9)

where a is the aperture, J1 is the Bessel function of the first

kind with n¼ 1, /0 is the angle of inclination of the source

main axis to the Ox axis, and /ðrÞ is the angle between the

vector produced from the location of the source and the

point r with the Oy axis.

Following the application of the Kirchhoff approxima-

tion to simulate the scattered field, the phase is removed

from Eq. (6) through the application of modulus,

pðRÞ ¼ jwsðRÞj: (10)

Taking into account the receiver locations in an array of

M receivers, phase-removed acoustic pressure used in the

random forest algorithm is given by the following matrix:

p ¼ fpl RðjÞð Þj j ¼ 1;…;M; l ¼ 1;…;Ng; (11)

where the rows of the matrix are formed from pl (an ensemble

containing the absolute array pressure for a given fl), and RðjÞ

form the columns (receiver locations defined with respect to the

origin of the Oxy plane). For brevity, the dependence on RðjÞ

will be omitted, resulting in plj ¼ plðRðjÞÞ, and if operations are

row-wise, only the j superscript will be omitted, resulting in pl.

B. Noise

The Kirchhoff approximation model is deterministic;

therefore, one set of model parameters maps to a given sound

pressure field. However, in practical applications, noise is pre-

sent in measured data. It is proposed to modify the solution of

the Kirchhoff approximation via additive noise, calculated as

~pl ¼ pl þ �l; (12)

where �lj 2 �l; �lj � Nð0; rÞ is drawn from a normal distri-

bution independently for each receiver. For additive noise,

the standard deviation, r, was selected to be percentages

chosen for investigation (0.1%, 1%, 5%, 7%, 8%, 9%, 10%,

12%, 15%, 17%, 20%, 25%, 30%; this relates to an approxi-

mate signal-to-noise ratio of 29.7, 19.7, 12.7, 11.2, 10.6,

10.1, 9.7, 8.9, 7.9, 7.3, 6.7, 5.7, and 4.9 dB, respectively)

multiplied by �pl—the average of the receiver’s pressure

magnitude taken across all receivers for the given surface in

the absence of the noise. The acoustic pressure for each

receiver is then normalised by the maximum value for the

Kirchhoff approximation scattered from the flat surface so

that it can be used in the random forest algorithm.

C. Synthetic training and testing datasets

A large number of datasets that correspond to different

realisations of the parameters fi; i ¼ 1;…; 3 were prepared

1048 J. Acoust. Soc. Am. 152 (2), August 2022 Johnson et al.

https://doi.org/10.1121/10.0013506

https://doi.org/10.1121/10.0013506


using Eqs. (6) and (12). For these calculations, the source

and receiver locations were chosen in accordance with the

existing experimental data3 that were later used for valida-

tion in this paper. The source location was at ðx1; y1Þ
¼ ð�0:20; 0:22Þ m. The angle /0 of the source main axis to

the Ox axis was 60�. The receivers were located at a height

of approximately y2 ¼ 0:28 m in the y axis, and 34 receivers

were distributed evenly with x2 taking values from –0.13 to

0.53 m in the x axis, leading to an average distance between

the receivers of 0.02 m. The data were generated numeri-

cally through the use of the Kirchhoff approximation,

and the integration was done numerically through the

application of Simpson’s rule28 over the integration range of

x 2 ½�3; 3� m, which was vectorised to improve the speed of

data generation.

Multiple datasets were formed for one-parameter, two-

parameter, and three-parameter surfaces defined in Eq. (1)

to investigate the performance of the algorithms as the num-

ber of unknowns increased. The values for each parameter

were generated with uniform spacing from a lower bound to

an upper bound; the choices for parameter values and reso-

lution are shown in Table I.

As well as the surface generation, multiple datasets

were generated with different proportions of noise to the

absolute acoustic pressure, with r varied between 0:001�pl

and 0:3�pl as described above. Noise was added by cloning a

pair of pressures and surface parameters 20 times and inde-

pendently adding noise to every receiver, yielding datasets

with the following sizes for one-, two-, and three-parameter

datasets: 630, 18 900, 567 000.

The models were trained using the training set and then

evaluated on the testing set to provide an indication of the

model’s performance on unseen data. The same approach

described above was applied to generate both the training

set and the synthetic testing set. The two subsets were split

randomly, with a proportion of 70% training set and 30%

testing set, such that the intersection of the training and test-

ing set would yield the empty set.

D. Experimental testing dataset

Experimental data used in this paper for validation pur-

poses were collected with 34 1/4 in. microphones [G.R.A.S.

(Holte, Denmark) 40PH] and with a loudspeaker [Visaton

(Haan, Germany) G 25 FFL], arranged with the same geom-

etry described in Sec. III C. A sinusoidal surface (with

amplitude f1 ¼ 0:0015 m and wavelength f2 ¼ 0:05 m)

illustrated in Fig. 2 was machined from an aluminium block

with a length of 0.55 m in the x direction and a width of

0.35 m.

A signal was produced at 14 kHz and recorded simulta-

neously at all microphones, with a sampling rate of

102.4 kHz. The amplitude at each microphone was calculated

by a Fourier transform applied to 0.02 s long segments of the

signal and then averaged over 2000 segments using a Hann

window. The data were calibrated in situ by comparing mea-

surements of the sound field reflected by a flat surface with

the corresponding prediction calculated numerically, follow-

ing the procedure outlined in Dolcetti et al.3

Even after calibration, the pressure field scattered by

the sinusoidal surface differed from the one predicted with

the Kirchhoff approximation model, due to the uncertainties

in the measurements, especially at the microphones further

away from the source. This difference could be seen as an

equivalent random noise with r given by

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM

j¼1

wref ðRðjÞÞ � pðRðjÞÞ
h i2

=M

vuut
�pðRÞ ; (13)

where p is the Kirchhoff approximation given in Eq. (6),

with fðxÞ ¼ 0:0015 sin ð2px=0:05Þ, and jwref j is the experi-

mental data. r was found to be 0.195, which quantifies the

deviations observed in Fig. 3.

E. Performance evaluation

In this section, the choices of metrics used to estimate

the accuracy of the inversion algorithm are briefly defined.

For evaluation against the synthetic testing set, the coeffi-

cient of determination (R2) is used in the following form:29

R2ðiÞ ¼ 1�
XN

l¼1

fli � f ðplÞi
� �2
ðfli � �fiÞ2

; (14)

where pl ¼ jwsðRðjÞÞj; j ¼ 1::M are the inputs for a given sur-

face with Zl parameters, N is the number of samples, �fi is the

mean of the ith output, fli are outputs at the lth row for the ith

TABLE I. Bounds for each parameter in the data generation stage as well

as the number of samples generated within those bounds.

Number of

recovered

parameters

Amplitude

bounds

Wavelength

bounds

Offset

bounds

Number of

samples

1 parameter �0.01 m, 0.01 m N/Aa N/A 30

2 parameters �0.01 m, 0.01 m 0.035 m, 0.15 m N/A 30

3 parameters �0.01 m,

0.01 m

0.035 m,

0.15 m

�0.02 m,

0.02 m

30

aNot available (N/A).

FIG. 2. (Color online) Three-dimensional (3D) rendering of the surface

used in the acquisition of the experimental sample.
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value from Zl set of parameters, and f is the estimator, which

is the random forest explained in Sec. II. Therefore, f ðplÞi is

the prediction of the ith value from the random forest given pl.

For the two- and three-parameter estimation, the R2 score is

calculated for each parameter and then averaged.

To evaluate the accuracy of the model predictions when

predicting the surface given exclusively from the experi-

mental data, the absolute error (AE) was also used, given by

Ei ¼ j f ðpÞi � fij; i ¼ 1;…; 3: (15)

As there is only a single surface measurement available

from the experimental data, N¼ 1, and there is no averaging

in Eq. (15) compared to that in Eq. (14).

When plotting the results, the value of Ei is also normal-

ised by the corresponding surface parameter, except for the

offset, which is normalised by the wavelength.

It is noted that in the two- and three-parameter recov-

ery, the AE of each output parameter was considered. This

allows for an investigation into the change in parameter pre-

diction as the number of parameters increases, while not

allowing the overall AE to be dominated by the highest

scale—the wavelength.

F. Convergence

A key hyperparameter of consideration is the number of

decision trees used in the construction of the random forest.

There are instances where an increase in the number of trees

in a random forest only increases computational cost with-

out much improvement in performance.30 It was shown that

both the errors in classification and regression forests are

monotonically decreasing functions with respect to the num-

ber of trees.31 These results also highlight that the most per-

formance improvement was seen from random forests built

from 10 trees to 250 trees.

Convergence testing has been performed for random

forests generated with 1% and 15% added noise for three-

parameter recovery. Three-parameter recovery was chosen

due to the size of the dataset as well as the complexity of

recovering three parameters. The change of the coefficient

of determination as the number of trees increases is pre-

sented in Fig. 4. In the case of 1% noise shown in Fig. 4, the

increase in the coefficient of determination slows signifi-

cantly after five trees in the random forest algorithm. For the

case of 15% added noise, the coefficient of determination

increases rapidly for random forests created from 1 tree to

50 trees as shown in Fig. 4, which signifies a better perfor-

mance of the algorithm in predicting the testing set. The

coefficient of determination demonstrated in Fig. 4

decreases in gradient rather significantly for the random for-

ests as the number of trees passes 200, with a relative per-

centage increase in coefficient of determination of 0.18%.

When the number of trees reaches 750, the increase in the

number of trees has a smaller effect on the coefficient of

determination while also significantly affecting computa-

tional time. In this study, with the hardware described in

Sec. III A, the computational time for the random forests

with 750 trees increased to 53.67 times that of the random

forest with 1 tree. Increasing the number of trees to 1200

results in a further increase in computational time to 81.7

times. Therefore, the approach used in this paper was to gen-

erate random forests consisting of 700 trees, which is sub-

stantially inside the convergence factor to ensure

convergence for all datasets while not having a significantly

negative effect in terms of computation time.

IV. RESULTS

This section is formed from four subsections. First, the

coefficient of determination is considered when evaluating

model performance using the testing subset of the synthetic

data. Following this, a comparison between the random for-

est approach against the short array method1 is showcased.

Then a study on the performance of random forests when

evaluating parameters unseen by the model in training is

showcased. Finally, the AE between model predictions and

the surface used in the experimental sample is considered.

For the AE when considering the two- and three-parameter

surfaces, the AE is presented such that the AE per parameter

is separated.

FIG. 3. Overlay of the Kirchhoff approximation solution in comparison to

the experimental example, which is calibrated for 14 kHz.

FIG. 4. Convergence of R2 when number of trees increase for 1% and 15%

added noise.
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A. Testing on synthetic data

Testing was done initially based on synthetic data, for a

large number of surface realisations, and for various amounts

of noise and numbers of receivers, where the first N receivers

were considered. For one-parameter estimations, the surface

wavelength and offset are assumed to be known, while the

amplitude parameter f1 is estimated. In this case, the coeffi-

cient of determination was found to be close to 1 for noise lev-

els below 17%, except for 9% noise for random forests

generated with ten receivers where R2 � 0:888, and then

dropping to slightly below 0.9 at 30% noise, as shown in Fig.

5. It is noted that for ten receivers at 17% noise, R2 � 0:861.

The decrease in coefficient of determination for the data gener-

ated by ten receivers at 9% and 17% noise is interesting due to

the drop in value of R2. This behavior was deemed to be an

outlier from the specific shuffle of training and testing sets.

Randomly reshuffling the training and testing sets 1000 times

for the 9% and 17% noise cases gave average coefficients of

determination of 0.986 and 0.959, with standard deviations of

0.014 and 0.026, respectively.

When the surface amplitude f1 and surface wavelength

f2 are estimated, the coefficient of determination lowers

throughout all the noise percentages, as well as showing a

smoother decay of R2 value with the noise level. For ran-

dom forests generated with 15, 20, and 34 receivers, the

minimal value of the coefficient of determination is above

0.7 at the dataset with 30% noise as shown in Fig. 6. For the

random forest based on 10 receivers, the R2 is much worse

than with a higher numbers of receivers, dropping to approx-

imately 0.5 at 30% noise.

When all three surface parameters (amplitude f1, wave-

length f2, and offset f3) are estimated, the coefficient of

determination decreases faster compared to the one- and

two-parameter problems. This is highlighted at random for-

ests generated with 10 receivers, where the lowest value R2

is approximately 0.3 at 30% noise compared to approxi-

mately 0.5 and 0.9 in one and two parameters, respectively.

A key feature to note is that the coefficient of determina-

tion changes only slightly for random forests generated with

different receiver combinations when the number of receivers

is greater than ten as shown in Figs. 5–7. This highlights that

favourable model performance using machine learning to aid

the inversion process can be obtained with fewer receivers.

Having favourable performance with fewer receivers makes

it possible to set up cost-efficient and practical applications.

B. Investigation of change of angle and frequency

To judge performance in different setup conditions and

to verify the choice of angle and frequency used in the

experiment, varying source angles /0 and source excitation

frequencies were tested. The source angles were varied from

20� to 90�, with 70 equally spaced samples. The source

excitation frequencies varied from 1000 to 45 000 Hz with

45 equally spaced samples. To reduce computation time,

two-parameter datasets were created. The offset of the sinu-

soidal surface was fixed to 0. Datasets were created in the

same way as described in Sec. III C, where noise was not

added to the datasets. Figure 8 showcases the results of the

coefficient of determination for the resulting testing sets. In

the results, the method does not perform well below

5000 Hz for all angles tested. This is concluded to be due to

FIG. 5. Coefficient of determination for the estimation of the surface ampli-

tude, f1, at varying noise levels and considering different numbers of

receivers.

FIG. 6. Coefficient of determination for the estimation of the surface ampli-

tude, f1, and the surface wavelength, f2, at varying noise levels and consid-

ering different numbers of receivers.

FIG. 7. Coefficient of determination for the estimation of the surface ampli-

tude, f1, the surface wavelength, f2, and the offset, f3, at varying noise lev-

els and considering different numbers of receivers.
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the scale of the acoustic wavelength being much larger than

the amplitude and wavelength of the surface, causing the

scattered absolute acoustic pressure to have no substantially

different features. Between 5000 and 15 000 Hz, the coeffi-

cient of determination is at near maximum for all angles

tested. As the frequency increases past 15 000 Hz, an ideal

angle region is found between 30� and 60�.

C. Comparison with short array method

A comparison between the method proposed in this paper

and the so-called short array method1 in the unbiased version

proposed by Dolcetti et al.,3 hereafter called the SA0 method,

is discussed in this section. The comparison was made between

the three-parameter random forest generated with 5% noise

and the SA0 model. Both models had the same initial condi-

tions on setup and were evaluated with 141 750 samples taken

from the testing set. To match the parameter-based recovery

from the random forest to the surface-based recovery from the

SA0 model, a set of surfaces was reconstructed from the

parameters provided by the random forest by populating the

values into Eq. (1) in the range x 2 ½�0:11; 0:17�, which is the

specular range of the source and the receiver array. The two

methods were applied to the same set of synthetic pressure

data and compared in terms of the spatial root mean square dif-

ference between the target and reconstructed surfaces averaged

over all surfaces with the same amplitude and normalised by

the surface true amplitude parameter. The results can be seen

in Fig. 9. The deviation in methods appears to increase rapidly

when f1=k > 0:1, where the SA0 method begins to increase in

error significantly. This is mainly because of the loss of valid-

ity for the linearisation of the Kirchhoff integral, which is the

basis of the SA0 method, whereas the random forest approach

uses the Kirchhoff approximation directly without linearisa-

tion. A direct comparison to the previous methods can be

made by analysing Fig. 13(c) in Dolcetti et al.3 Calculating the

root-mean-square error (RMSE) factored by the acoustic wave-

length for the surface recovered from Table II within the spec-

ular points of the receivers and the microphones (following

Dolcetti et al.3) yields a value of 0.0165, 0.027, and 0.169 for

one, two, and three parameters, respectively. This outperforms

the SA0 method in recovering the experimental sample and is

comparable to reconstruction using multiple frequencies,

while also being close to the reconstruction based on syn-

thetic data without noise. The exception is the two-parameter

recovery, which performs approximately the same as the SA0

method. Although this is one sample, the results, highlighted

from both synthetic recovery as shown in Fig. 9 and experi-

mental recovery earlier in this paragraph, showcase improved

performance with the method proposed in this paper, espe-

cially as the amplitude increases.

D. Evaluating surfaces not seen by the model in
training

To highlight the generality of using a random forest-

based approach, predictions on surfaces that would have

never been seen in the training and testing sets in Sec. III

were evaluated. Two-parameter recovery was chosen to

highlight the generalisation. Surface parameters were cho-

sen by doubling the number of samples shown in Table I

and removing samples that correspond to the training and

testing set used to train the random forest. This leads to 841

surfaces to be predicted. To investigate generalisation fur-

ther, noise was added to modify the receiver pressure at the

FIG. 8. Contour plot of the coefficient of determination of a testing set for

the two-parameter recovery for varying angle of incidence /0 [see Eq. (9)]

and frequency.

FIG. 9. Comparison between the approach offered in the paper against the

SA0 approach: averaged root-mean-square difference between target and

reconstructed surfaces normalised by the surface amplitude f1, plotted

against the surface amplitude normalised by the acoustic wavelength, f1=k.

TABLE II. Results from parameter recovery for surface prediction using

15% noise random forest.

Number of recovered

parameters Amplitude Wavelength Offset R2

Actual parameter 0.0015 m 0.05 m 0 m N/A

1 parameter 0.002 07 m N/A N/A 0.986

2 parameters 0.001 58 m 0.0531 m N/A 0.912

3 parameters 0.001 42 m 0.0516 m �0.001 94 m 0.724
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unseen model parameters, where the percentage chosen to

modify the pressure was different compared to that seen by

the random forest during training. The random forest was

trained on acoustic pressure linked to the two-parameter

dataset with 5% added noise and evaluated on a dataset gen-

erated with 7% noise. In these data, the coefficient of deter-

mination given by Eq. (14) when training on the surface

amplitude and surface wavelength is 0.6 and 0.84, respec-

tively. Figures 10(a), 10(b), and 11 highlight the results of

the recovered two-surface parameters.

There is a clear trend in Figs. 10(a) and 10(b) along the

identity line, where true and predicted values are equal for

both the amplitude and the wavelength. This can be seen

from the density shown in the figures. The amplitude compo-

nent has a spread of predictions that widen in proportion to

the surface elevation height. The reconstruction of the wave-

length begins to deteriorate for values starting below f2 ¼
0:08 m. It appears that the performance decreases when

recovering surfaces with high amplitude and low wavelength,

which corresponds to a higher Kirchhoff parameter.

Figure 11, representing the distribution of RMSE

(described in Sec. IV C) defined along the specular region by

the difference between the true surfaces and the surfaces recon-

structed with the random forest predictions, demonstrates that

the majority (approximately 74%) of the reconstructed surfaces

predicted with the random forest algorithm fall within 60:41f1,

which is the standard deviation of the RMSE deviation.

E. Testing on experimental data

The coefficient of determination was used as a metric to

measure model performance with a synthetic testing subset

of the synthetic data when discussing the results in Sec.

IV A. In this section, predictions were obtained and com-

pared against the experimental sample given in Sec. III C.

Using the experimental phase-removed acoustic pressure as

an input to the random forests, the prediction was then

compared with the true surface parameters from the experi-

ment using AE given in Eq. (15). The value of AE was then

normalised by the actual surface parameters and expressed

as a percentage point, converting it to a relative error.

Figure 12 highlights the relative error from one parame-

ter’s prediction of the surface amplitude f1 based on experi-

mental data. For the random forest generated with the full

set of 34 receivers, the maximal AE divided by the actual

surface amplitude rises from below 26% to 50% as the noise

increases from 0.1% to 9%. As the noise level increases

above 9%, the relative error decreases under 50% reaching

its minimum 5% at 12% noise. This behavior is closely

matched to the random forest generated by 20 receivers. For

the random forest generated with 15 receivers, there is a

large spike of relative error for noise values under 7% noise,

and then the error for these random forests matches the error

curve of the random forests generated with 20 and 34

receivers. For random forests generated with 10 receivers,

FIG. 10. The predicted values versus true unseen parameters: (a) surface amplitude f1 and (b) surface wavelength f2.

FIG. 11. Histogram of the RMSE, measuring the difference between the

true surfaces produced with the unseen parameters and the reconstructed

surfaces produced using the random forest predictions of the unseen param-

eters, normalised by the true parameter’s amplitude.
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the relative error tends to stay with the other error curves

except for noise levels of 10%, where there is a spike in rel-

ative error of approximately 300%.

Figures 13(a) and 13(b) contain the relative errors of

the amplitudes and wavelengths, respectively, for the two-

parameter recovery. The random forests generated with 10

and 15 receivers have relatively high errors in comparison

to 20 and 34 receivers. The wavelength and amplitude rela-

tive error for random forests generated with 20 and 34

receivers are close to the actual wavelength and amplitude

values of the surface, staying mostly under 20% of the AE

factored by the actual amplitude and under 25% of the AE

factored by the actual wavelength. There are exceptions at

9% and 10% noise for random forest generated with 34

receivers and 12% for random forests generated with 20

receivers. For over 20% noise, the random forests generated

with 34 receivers also exceed 25% relative error. There is a

clear separation for the random forests generated with 10

and 15 receivers in comparison to 20 and 34 receivers in

amplitude and wavelength, with the smaller number of

receivers producing errors that are a factor of 10 larger for

the wavelength component.

Figure 14 contains the relative error of all three parame-

ters. For the full set of receivers, the relative error of the

recovered surface amplitude decreases from 200% to settle

at approximately 50% for random forests generated with 7%

or more noise—except for 15% and 17% noise, where the rel-

ative error is found within the 3%–5% range. Interestingly,

the random forest generated with 20 receivers has a lower

error curve than the random forest generated with the full set

of receivers. This could be due to an increased fit to the

Kirchhoff approximation solution with the experimental

results, as shown in Fig. 3. For the wavelength parameter,

every choice of the number of receivers except for 34

receivers yielded a relative error greater than 10%. The offset

AE, divided by the actual wavelength, stayed below 10% for

every receiver combination and noise level. The random for-

est generated with 34 receivers kept the lowest AE value

compared to the random forests generated with fewer

receivers throughout.

The major problem with the three-parameter model is

the prediction of the amplitude, where the relative error is

high even for the full set of receivers. For the random forest

generated with 34 receivers, the relative error was less than

10% at only 15% and 17% noise levels and then over 50%

at all other noise levels. Although this error is in the sub-

millimeter scale, the consistent underestimation can make

the prediction invalid. It is noted that this underestimation

could be due to the difference in scale between the parame-

ters, with the wavelength of the surface being significantly

larger than the amplitude. It is important to note that 15%

and 17% noise is close to the estimated deviation between

the measurements and the predictions by the Kirchhoff

approximation model calculated in Sec. III D estimated with

Eq. (13), which could explain the improved performance of

the inversion at these noise levels.

Figure 15 and Table II highlight the model’s prediction

of the surface given the experimental acoustical pressure in

comparison to the actual surface shape at datasets with 15%

noise and with 34 receivers. 15% noise was selected due to

the improved performance in the two- and three-parameter

FIG. 12. The change of relative error values for the random forests gener-

ated with different numbers of receivers and noise for one parameter surface

recovery of the experimental sample.

FIG. 13. The change of relative error values for the random forests generated with different numbers of receivers and noise for two-parameter surface recov-

ery of the experimental sample, separated by parameter: (a) amplitude, (b) wavelength.
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models and similarity to the expected error from the

Kirchhoff approximation model to the experimental data

sample. The x-limits of the plots ranging from –0.15 to

0.15 m are defined by the width of the mainlobe in the

source directivity pattern given by Eq. (9). The dominating

component of difference to the experimental sample is the

wavelength due to the scale differences in amplitude and

wavelength as shown in Table II.

V. CONCLUSION

While training and testing the random forest regression

algorithm, it was observed that for one-parameter datasets,

the coefficient of determination is highly favourable, staying

significantly above 0.8 over the range of added noise. For

the random forests generated with the two-parameter data-

sets, all receiver subsets except for ten receivers slowly

decay from 1 to just under 0.8. When random forests are

trained with the three-parameter datasets, the coefficient of

determination is observed to be above 0.7 for added noise

levels between 0.1% and 15%, except for the random forest

generated with ten receivers. With ten receivers, the coeffi-

cient of determination decreases significantly for noise lev-

els above 10%.

The relative error has been used as a metric to evaluate

model performance when predicting the surface parameters

from experimental data. It has been noted that the relative

error varies significantly between 0% and 100% depending

on the added noise and number of receivers used in the

recovery of parameters. In the three-parameter recovery, the

lowest relative error values for 34 receivers have been con-

sistently observed when noise levels are at 15% and 17%. It

has been noted that these noise levels are comparable with

the estimated discrepancy between the analytical solution

used to generate synthetic data and the experimental results.

The approach of using random forests to predict the sur-

face parameters of a rough surface provides favourable

results even with high proportions of noise present, indicat-

ing that the proposed methodology performs considerably

better than the SA0 method for single-frequency excitation

analysed in Dolcetti et al.3 for surfaces with amplitude/

wavelength 	 0:1. The reasons are the loss of validity of the

linearisation of the Kirchhoff integral, which is the basis of

the method introduced in Krynkin et al.,1 and the strong

impact of phase uncertainties. It should be noted that once

training of random forests has been completed, surface

parameter recovery is predicted nearly instantly, allowing

for recovery of measured surface in real-time. This paper

FIG. 14. The change of relative error values for the random forests generated with different numbers of receivers and noise for three-parameter surface

recovery of the experimental sample, separated by parameter: (a) amplitude, (b) wavelength, and (c) offset.
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has shown that this method works well for a simple sinusoi-

dal surface.

The results in this paper have shown that the method

works well for a simple sinusoidal surface and as such

stands as an initial proof of concept that can be generalised

to complex surfaces, for example, through Fourier series

decomposition. Another extension to the results of this paper

would be to incorporate a measure of confidence in the mod-

el’s predictions, such as Bayesian inference, which could

also benefit from flexibility and could provide complemen-

tary insights.
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