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A STOCHASTIC DIFFERENTIAL EQUATION SIS MODEL ON NETWORK UNDER

MARKOVIAN SWITCHING

STEFANO BONACCORSI, STEFANIA OTTAVIANO

Abstract. We study a stochastic SIS (susceptible-infected-susceptible) epidemic dynamics on network, un-
der the effect of a Markovian regime-switching. We first prove the existence of a unique global positive
solution, and find a positive invariant set for the system. Then, we find sufficient conditions for a.s. ex-
tinction and stochastic permanence, showing also their relation with the stationary probability distribution
of the Markov chain that governs the switching and with the network topology. We provide an asymptotic
lower bound for the time average of the sample-path solution under the conditions ensuring stochastic per-

manence. From this bound, we are able to prove the existence of an invariant probability measure if the
condition of stochastic permanence holds. Under a different condition, we prove the positive recurrence and
the ergodicity of the regime-switching diffusion.

1. Introduction

Epidemic processes are often subject to environmental noise. It is therefore useful to understand how the
noise influences the epidemic systems. To this aim, it is interesting to consider randomly switching dynamical
systems, since in the real biological systems some parameters of the model are usually influenced by random
variation, thus they are not constant in time. For example, the disease transmission rate in some epidemic
models is influenced by external meteorological factors linked to the survival of many bacteria and viruses
[3, 43].

Moreover, also the possible routes of disease transmission among the population may evolve in time. In
large populations each individual only interacts with a few others, and these connections determine the
possible dynamics of the epidemics. Although one common assumption in other population models is the
homogeneity of interactions between individuals, we may object that homogeneous mixing ignores impor-
tant social structures, such as presence of communities, or the specific role of the individuals, often leading
to inaccurate reconstructions and predictions of the route of epidemics. Therefore, the use of networks to
describe the contact pattern represents a major advance in our ability to model realistic social behaviours.
Network-based models have succeeded in explaining characteristic patterns observed in recent real epidemics
(e.g., in the 2009 H1N1 influenza, the 2014-2016 Ebola epidemic in West Africa and the COVID-2019 pan-
demic) that classical homogeneous epidemic models are not able to catch, such as an early sub-exponential
growth of new cases, cluster transmission and superspreading events [4, 1, 12, 47, 41, 14].
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In network-based models, individuals are represented by nodes, with edges (or links) depicting the interac-
tions between them. However, complex and heterogeneous connectivity patterns emerge also in a wide range
of biological and other socio-technical systems: biological system are the result of biochemical reactions; net-
work structure can be recognizable even in the Internet, or in an electric power grid, in the physical layer of
the telecommunication systems, in highways and subways systems or neural networks [5, 34]. We can also see
the nodes as municipalities/metropolitan areas, country regions, airports, or anyway like any homogeneous
population that shares some common property (as, e.g., age), and consider, possibly, edges equipped with a
weight as indicators of the transmission chance between nodes. However, in many realistic scenarios, links
and, if considered, weights should be treated as dynamical variables possibly affected by random disturbance.
Thus, the network structure, described for instance by the connectivity matrix, varies in time, and its varia-
tion shall be modelled by a stochastic process; switching on and off some edges can be made according to a
suitable random law that leads to a change of the epidemic dynamics as time goes on.

In epidemiology, many authors have considered random switching systems, whose distinctive feature is
the coexistence of a continuous dynamics and discrete events (random jumps at points in time). In [17], the
authors discuss the effect of a random switching environment on the SIS epidemic model using a finite state
Markov chain. Other kinds of epidemic models under Markovian regime switching are studied in [18, 27].
Nevertheless, aforementioned epidemic models are based on the traditional homogeneous compartment mod-
els which do not take into account the topology of social contact networks. With regard to the spread of
the epidemic in networks under regime switching in [36] and [38], the authors study the switching between
networks in discrete-time and continuous-time respectively, getting an epidemic threshold. The networks
switching they used is deterministic and periodic. A random switching mechanism is considered, e.g., in
[33, 9], where the authors investigate the so-called switched N -intertwined mean-field model. Basically, they
consider a piece-wise deterministic Markov process, where the deterministic continuous part is governed by
the N -intertwined mean-field equation [44].
In recent years, there has been also a growing interest in hybrid diffusion systems (often called regime-
switching diffusions) [52], where the continuous component between jumps follows a stochastic differential
equation. Thus, we have a diffusion process living in a random environment (depicted by the finite-state
jumping process). Regime-switching diffusions provide a more realistic description for many fields of appli-
cation, including epidemiology and population dynamics [19, 51, 21, 29, 45, 26, 28, 10, 11, 46]. Recently, the
long-term behavior of a regime-switching diffusion SIS epidemic model, obtained by combining the model in
[7] with that in [17], has been investigated in [8]. A class of SIS hybrid diffusion models is studied also in
[42], where the authors focus on an optimal control problem.

However, to the best of our knowledge, hybrid diffusion epidemic models that consider a network structured
population are still missing. Thus, our work is the first attempt to fill this gap. Precisely, we will consider
an SIS epidemic model on networks, where the continuous part, accounting for the evolution of the infection
probability of each node, evolves according to a stochastic differential equations, while the regime-switching
is governed by a finite-state Markov chain.

In the SIS model a node can be repeatedly infected, recover, and yet be infected again. Thus, it can be
used to describe diseases that do not confer permanent immunity, such as some sexually transmitted and
bacterial diseases as gonhorrea, tubercolosis, and Streptococcus pneumoniae [25, 16, 17]. We underline that
the SIS model can be used also for describing diffusion of some computer viruses [22, 44].
Moreover, the regime-switching approach is well suited to represent meteorological factors that influence the
survival of certain bacteria and viruses, but also to represent the switching between different serotypes (or
strains) leading to different infectivities and infectious periods (see, e.g., [17, Example 8.1]). The regime-
switching in our model is suited also for the change in the route of transmission, encoded by randomly
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switching on and off some edges of the social contact network. In the next subsection, we will precisely define
our model and the results obtained.

1.1. The model. Let us consider the NIMFA (N-intertwined mean-field approximation) model proposed in
[44] for an agent-based SIS epidemic. The model was subsequently extended to other classes of epidemic
models such as SIR and SIRS in [50] and [35], respectively.
In the case of the NIMFA-SIS model, the dynamics of the infection probability of each node, in a static
undirected connected graph, is governed by the following system of nonlinear ODEs:

dx(t)

dt
= (βA− δI)x(t) − β diag (xi(t))Ax(t), (1)

where x(t) = (x1(t), x2(t), ..., xN (t))T is the vector whose component xi(t) represents the probability that
the i-th node is infected at time t. The parameters β and δ represent the infection and recovery rates,
respectively, A is the adjacency matrix of the network, and I the N ×N identity matrix.

First, we consider the random switching of the environment between two or more states. In each different
state the parameters takes different values and the network changes its link set. We assume that the switching
is memoryless, i.e., the waiting time for the next switch has an exponential distribution.

In this paper, unless otherwise specified, let (Ω,F , {Ft}t≥0,P) be a complete probability space with a
filtration {Ft}t≥0 satisfying the usual conditions (i.e. it is right continuous and F0 contains all P-null sets).
The infection probabilities dynamics in (1) under regime switching can be described by the following stochastic
system

dx(t)

dt
= (β(s(t))A(s(t)) − δ(s(t))I)x(t) − β(s(t)) diag (xi(t))A(s(t))x(t), (2)

where the values of β, δ and A change according to a homogeneous continuous-time Markov chain {s(t), t ≥ 0}
defined on the probability space, taking values in a finite state space S = {1, 2, . . .m}, representing different
regimes. The Markov chain s(t) is generated by the transition rate matrix Q = (qwz)m×m, i.e.,

P{s(t+∆t) = z|s(t) = w} =

{

qwz∆t+ o(∆t), if w 6= z,

1 + qwz∆t+ o(∆t), if w = z,

where ∆t > 0, qwz is the transition rates from state w to state z, and qwz ≥ 0 if w 6= z, while qww =
−∑w 6=z qw,z. We assume that the Markov chain s(t) is irreducible. Under this condition, the Markov chain

has a unique stationary positive probability distribution π = (π1, . . . , πm)T which can be determined by
solving the following linear equation πTQ = 0, subject to

∑m
s=1 πz = 1, and πs > 0, ∀s ∈ S.

We also consider random fluctuations, that continuously affect the evolution of the process between con-
secutive jumps. Indeed, model parameters may have great variability, depending on observed and measured
data, that are fraught with errors and uncertainty, or that simply derive from random fluctuations of the
environment. To model this scenario, we consider white noise (see e.g., [6, 32, 48, 28]). White noise is a useful
mathematical idealization for representing stochastic disturbances fluctuating rapidly, which are assumed to
be uncorrelated for different instant of time [2].

We assume that the rate of exposure to the infection, for each individual, varies around a common average
value under the action of a family of independent, identically distributed Brownian motions. In this way,
we incorporate also a more realistic heterogeneity in the transmission of the infection, that may depends on
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many different aspects, such as genetics, immune system, or social behaviors.
Precisely, let us consider a standard N -dimensional Brownian motion W (t) = (w1(t), . . . , wN (t)) defined on
its stochastic basis (Ω,F , {Ft}t≥0,P). Then, we assume that each node i can be infected from its neighbors
by a rate described by a stochastic process of the form

β(s(t)) + σi(xi(t), s(t)) ẇi(t),

where ẇi(t) is the white-noise mapping (see e.g., [2, Chapter 3]). The functions σi : R× S → [0,+∞), that
provide the intensity of the noise for each node, are locally Lipschitz continuous and bounded, and satisfy

sup
x∈(0,1)

σi(x, s)

x
≤ M(s), for every i = 1, . . . , N, s ∈ S. (3)

where M(s) is a positive constant depending on the state of the Markov chain. This choice implies that the
intensity of the infection rate varies around a mean value β(s), and the disturbance is small if the value of the
probability of infection is small. Let us note that the choice of a noise whose intensity is independent of the
epidemic level would have implied a random variability of the solution also near the zero-infection probability
state, thus allowing the solution to have some negative components. In this case, the solution would enter
in a region that has neither physical nor mathematical meaning. Moreover, we require that σi(xi, s) 6= 0, if
xi ∈ (0, 1).
Thus, by perturbing system (2), we obtain the Itô stochastic differential equation

dxi(t) = [β(s(t))bi(x(t), s(t))(1 − xi(t))− δ(s(t))xi(t)] dt+ σi(xi(t), s(t))bi(x(t), s(t))(1 − xi(t)) dwi(t),

bi(x(t), s(t)) =
N
∑

j=1

aij(s(t))xj(t), i ∈ {1, . . . , N} (4)

with a given vector of initial conditions x0 = (x1(0), . . . , xN (0)) and a given initial state s0 = s(0). We
assume that the Markov chain s(·) is independent of the N -dimensional Brownian motion W (·).
Thus, system (4) is composed of m subsystems, and it continues to switch between them according to the
law of the Markov Chain. In the vector-valued form the above stochastic differential equation becomes

dx(t) = f(x(t), s(t)) dt + g(x(t), s(t)) dW (t),

(x1(0), . . . , xN (0), s0),

where f(x(t), s(t)) and g(x(t), s(t)) are functions taking values in R
N and L(RN ,RN ), respectively. The i-th

component of f is

fi(x(t), s(t)) = β(s(t))bi(x(t), s(t))(1 − xi(t)) − δ(s(t))xi(t), (5)

whereas g is a diagonal matrix with entries

gii(x(t), s(t)) = σi(xi(t), s(t))bi(x(t), s(t))(1 − xi(t)). (6)

Moreover, let us denote R+ := [0,∞), and let C2,1(RN × R+ × S;R+) be the family of all non-negative
real-value functions V (x, t, s) on R

N × R+ × S, which are continuously twice differentiable in x and once
differentiable in t. We define the differential operator L on functions V ∈ C2,1(RN ×R+ × S;R+) by setting

LV (x, t, s) =
∂V (x, t, s)

∂t
+

N
∑

i=1

∂V (x, t, s)

∂xi

fi(x, s) +
1

2

N
∑

i=1

∂2V (x, t, s)

∂xi∂xi

gii(x, s)
2 +

m
∑

r=1

qsrV (x, t, r). (7)
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In the following sections, we study the dynamic properties of the model described above. Precisely, in
Section 2, we show that there exists a positive global solution for the system (4): the result is achieved by
proving a somehow stronger property, namely that the solution never leaves the domain (0, 1)N , provided it
starts inside it. Afterwards, we give a sufficient condition for the almost sure extinction, and in Section 3
sufficient conditions for the stochastic permanence, meaning that the epidemics will survive indefinitely in
the population with positive probability. We show that the mentioned conditions have closed relations with
the stationary probability distribution of the Markov chain and with the topology of the network. In Section
4, we estimate the limit of time average of the sample path of the solution, providing the persistence in time
mean of the system. Then, based on this estimate, we prove the existence of an invariant probability measure
of the Markov process (x(t), s(t)) on (0, 1)N . Under different condition, we prove the positive recurrence
of (x(t), s(t)) and its ergodic properties in (0, 1)N . Most of the results in this paper are obtained through
Lyapunov functions techniques, that were developed for stochastic differential equations by Khasminskii [23],
and later employed by many other authors (see, e.g., [2, 13, 31]). This kind of investigation has applications,
e.g., in optimization and optimal control problems [52, 49, 15].

2. Global solution and extinction

For a stochastic differential equation with Markovian switching, conditions assuring a unique global (i.e.,
no explosion in a finite time) solution, for any given initial data, involve linear growth and local Lipschitz
continuity of the coefficients of the equation [31]. In our case, the coefficients of system (4) are locally
Lipschitz continuous, but they do not satisfy the linear growth condition, thus the solution may explode in
a finite time. Thus, in the following theorem we ensure the no explosion in any finite time, by proving a
somehow stronger property, that is (0, 1)N is a positive invariant domain for (4).

Theorem 1. For any initial condition x0 ∈ (0, 1)N and s0 ∈ S, and for any choice of system parameters
β(·), δ(·), any A(·) and M(·) in condition (3), there exists a unique global solution to system (4) on t ≥ 0
and the solution remains in (0, 1)N almost surely for all t ≥ 0.

Proof. Let 0 = τ0 < τ1 < τ2 < . . . , < τn < . . . be the jump times of the Markov chain s(t), and let s0 ∈ S be
the starting state. Thus s(t) = s0 on [τ0, τ1), and the subsystem for t ∈ [τ0, τ1) has the following form:

dxi(t) = [β(s0)bi(x(t), s0)(1− xi(t))− δ(s0)xi(t)] dt+ σi(xi(t), s0)bi(x(t), s0)(1 − xi(t)) dwi(t), i ∈ {1, . . . , N}
By [6, Theorem 1], the above subsystem has the solution x(t) ∈ (0, 1)N , on t ∈ [τ0, τ1) and, by continuity for
t = τ1, as well. Thus, x(τ1) ∈ (0, 1)N and by considering s(τ1) = s1, the subsystem for t ∈ [τ1, τ2) becomes

dxi(t) = [β(s1)bi(x(t), s1)(1− xi(t))− δ(s1)xi(t)] dt+ σi(xi(t), s1)bi(x(t), s1)(1 − xi(t)) dwi(t), i ∈ {1, . . . , N}
Again, by [6, Theorem 1], the above subsystem has the solution x(t) ∈ (0, 1)N , for t ∈ [τ1, τ2) and, by
continuity for t = τ2, as well. Repeating this process continuously, we obtain that the solution x(t) of system
(4) remains in (0, 1)N with probability one, for all t ≥ 0.

Remark 1. Let ∆ = [0, 1]N . From (4), we can easily see that if x0 ∈ ∂∆ \ {0}, then x(0+) ∈ (0, 1)N .
Consequently, from Theorem 1, for all t > 0 we have that x(t) ∈ (0, 1)N a.s.

In the sequel, we will need a few more notations. For any x ∈ R
N , we denote by |x| its Euclidean norm.

The symbols 1 and 0, denote the N -dimensional column vector with all entries equal to 1 and 0, respectively.
Moreover, let G = (V,E) be an undirected graph and A = (aij)i,j=1,...N its adjacency matrix, then the
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degree of the i-th node, di =
∑N

j=1aij , is the number of its neighbors, and we denote by dmin = min
0≤i≤N

{di}
the minimum degree. In the following, we shall indicate the spectral radius of A(s), the adjacency matrix
corresponding to the state s, with λ1(s). Moreover, we shall denote with dmin(s) the minimum degree of the
graph in state s.

Let us note that if xi > 0, i = 1, . . . , N , it holds
(

N
∑

i=1

x2
i

)

1

2

≤
N
∑

i=1

xi ≤
√
N

(

N
∑

i=1

x2
i

)

1

2

.

We will use such inequality several times through the paper.

Remark 2. For any s ∈ S, the adjacency matrix A(s) is symmetric and satisfies, for every x ∈ R
N ,

〈A(s)x, x〉 ≤ λ1(s)|x|2, (8)

〈A(s)x,A(s)x〉 ≤ λ1(s)
2|x|2. (9)

where 〈·, ·〉 denotes the scalar product.

In the following theorem we find a sufficient condition, involving the model parameters and the network
topology, together with the stationary distribution of the Markov chain, that ensures that the epidemic will
become extinct exponentially almost surely.

Theorem 2. For any initial condition x0 ∈ (0, 1)N and s0 ∈ S, the solution x(t) of system (4) has the
property

lim sup
t→∞

log |x(t)|
t

≤
m
∑

s=1

πsα(s) a.s.,

where
α(s) = −δ(s) + β(s)λ1(s) +K(s),

with K(s) = M(s)2λ1(s)
2

32 , s ∈ S.

In particular, if
m
∑

s=1

πsα(s) < 0,

then
lim
t→∞

|x(t)| = 0 a.s. (10)

Proof. Let us define V : (0, 1)N → R+,

V (x(t)) = log |x(t)|.
By the generalized Itô formula (see, [39, Sec.2.1])), and recalling (5), and (6) we have:

dV (x(t)) =
N
∑

i=1

xi(t)

|x(t)|2 (fi(x(t), s(t))dt + gii(x(t), s(t))dwi(t))

+
1

2

N
∑

i=1

(

1

|x(t)|2 − 2xi(t)
2

|x(t)|4
)

gii(x(t), s(t))
2dt



A STOCHASTIC DIFFERENTIAL EQUATION SIS MODEL ON NETWORK UNDER MARKOVIAN SWITCHING 7

from where we obtain

dV (x(t)) ≤
N
∑

i=1

xi(t)

|x(t)|2 (fi(x(t), s(t))dt + gii(x(t), s(t))dwi(t)) +
1

2

N
∑

i=1

1

|x(t)|2 gii(x(t), s(t))
2dt. (11)

Now (here we omit for a while the explicit dependence on time of xi(t), bi(x(t), s(t)) and s(t) for readability)
we have that

N
∑

i=1

xi

|x|2 fi(x, s) =
N
∑

i=1

xi

|x|2 [(β(s)bi(x, s)(1 − xi)− δ(s)xi)] (12)

=
xT

|x|2 [(β(s)A(s) − δ(s)I)x− β(s) diag (x)A(s)x]

≤ xT

|x|2 (β(s)A(s) − δ(s)I)x ≤ β(s)λ1(s)− δ(s),

where we have used condition (8). Moreover, by Theorem 1 we know that xi ∈ (0, 1) for all times, then it
holds that xi(1− xi) ≤ 1

4 , hence, by this and from (3) and (9), we have

1

2

N
∑

i=1

1

|x|2 σ
2
i (xi, s)b

2
i (x, s)(1 − xi)

2 ≤ 1

32
M(s)2λ1(s)

2 (13)

Thus, substituting inequalities (12) and (13) in (11), we have

dV (x(t)) ≤
(

β(s(t))λ1(s(t)) − δ(s(t)) +
1

32
M(s(t))2λ1(s(t))

2

)

dt+

N
∑

i=1

xi(τ)

|x(τ)|2 gii(s(τ), xi(τ)) dwi(τ),

Thus, it holds

V (x(t)) ≤ V (x(0)) +

∫ t

0

α(s(u))du + M̃(t), (14)

where α(s) = β(s)λ1(s)− δ(s) + 1
32M(s)2λ2

1(A(s)), and

M̃(t) =

N
∑

i=1

∫ t

0

xi(u)

|x(u)|2 gii(xi(u), s(u)) dwi(u).

Let us note that M̃(t) is a martingale. The adaptedness of the integrand function follows from the same
property of {xi} and {s}. It remains to prove that

E

∫ T

0

N
∑

i=1

∣

∣

∣

∣

xi(u)

|x(u)|2 gii(xi(u), s(u))

∣

∣

∣

∣

2

du < +∞.

From condition (3) and since bi(s) ≤ N − 1, we obtain

N
∑

i=1

∣

∣

∣

∣

xi(u)

|x(u)|2 gii(xi(u), s(u))

∣

∣

∣

∣

2

≤ |M(s(u))(N − 1)|2

which proves that M̃(t) is a well defined stochastic integral on [0, T ] for arbitrary T > 0. Thus, by the strong
law of large numbers for martingales (see [30])
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lim
t→∞

M̃(t)

t
= 0 a.s.

Finally, from (14), by dividing t on the both sides and then letting t → ∞, we obtain, by the ergodic theorem
of Markov chain (see e.g., [37, Sec. 5.5])

lim sup
t→∞

V (x(t))

t
≤ lim sup

t→∞

1

t

∫ t

0

α(s(u))du =

m
∑

s=1

πsα(s) a.s.

and, if
∑m

s=1 πsα(s) < 0, the assertion (10) holds.

3. Stochastic permanence

In this section, we discuss another relevant asymptotic behaviour of the solution of (4), the stochastic
permanence, showing under which conditions it holds.

Definition 3. The system (4) is said to be stochastically permanent if for any ε ∈ (0, 1), there exists a
positive constant χ = χ(ε) such that, for any initial condition x0 ∈ (0, 1)N and s0 ∈ S, the solution satisfies

lim inf
t→∞

P(|x(t)| ≥ χ) ≥ 1− ε.

Assumption 1. For some s ∈ S, qrs > 0, for any r 6= s.

Lemma 4. Let Assumption 1 holds. Let

ᾱ(s) = −δ(s) + β(s)dmin(s)−K(s),

where K(s) = M(s)2λ1(s)
2

32 , s ∈ S. Then, if
∑m

s=1 πsᾱ(s) > 0, there exists a sufficiently small positive constant
θ such that the matrix

T (θ) = diag(ξ1(θ), . . . , ξm(θ)) −Q (15)

is a non singular M -matrix, where

ξs(θ) = θᾱ(s)− θ2K(s), s ∈ S.

The proof follows from the same arguments in [28, Lemma 3.4] and we omit it.

Lemma 5. If there exists a constant 0 < θ < 1 such that T (θ) is a non singular M -matrix, then for any
initial condition x0 ∈ (0, 1)N , s0 ∈ S, the solution x(t) of system (4) has the property that

lim sup
t→∞

E

[

1

|x(t)|θ
]

≤ H,

where H is a positive constant.

Proof. Let us define the functions V, U : (0, 1)N → R+,

V (x(t)) =

N
∑

i=1

xi(t), U(x(t)) =
1

V (x(t))
(16)

Then, by the generalized Itô formula, we have

dV (x(t)) =

N
∑

i=1

[fi(x(t), s(t))dt + gii(x(t), s(t))dwi(t)] , (17)
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and

dU(x(t)) = −U(x(t))2dV + U(x(t))3(dV (x(t)))2 (18)

= −U(x(t))2
N
∑

i=1

[fi(x(t), s(t))dt + gii(x(t), s(t))dwi(t)] + U(x(t))3
N
∑

i=1

gii(x(t), s(t))
2dt

=

[

−U(x(t))2
N
∑

i=1

fi(x(t), s(t)) + U(x(t))3
N
∑

i=1

gii(x(t), s(t))
2

]

dt−
N
∑

i=1

U(x(t))2gii(x(t), s(t))dwi(t)

Now, by [31, Theorem 2.10], since T (θ) is a non singularM -matrix, there is a vector z = (z1, z2, . . . , zm)T ≫ 0
(meaning that all elements are positive) such that T (θ)z ≫ 0, that is

zsθ (−δ(s) + β(s)dmin(s)−K(s)(1 + θ))−
m
∑

r=1

qsrzr > 0, for all 1 ≤ s ≤ m.

with K(s) = M(s)2λ1(s)
2

32 . Hereafter, we drop the dependence on time of the processes xi(t), bi(x(t), s(t)) and

s(t), for convenience. Define the function V̄ : (0, 1)N × S → R+

V̄ (x, s) = zsU(x)θ.

Applying (7), we have

LV̄ (x, s) =zsθU(x)θ−1

[

−U(x)2
N
∑

i=1

fi(x, s) + U(x)3
N
∑

i=1

gii(x, s)
2

]

(19)

+
1

2
zsθ(θ − 1)U(x)θ+2

N
∑

i=1

gii(x, s)
2 +

m
∑

r=1

qsrzrU(x)θ

=U(x)θ−1

[

zsθ

(

−U(x)2
N
∑

i=1

fi(x, s) + U(x)3
N
∑

i=1

gii(x, s)
2

)

+

m
∑

r=1

qsrzrU(x)

]

+
1

2
zsθ(θ − 1)U(x)θ+2

N
∑

i=1

gii(x, s)
2

Now, let us consider

−U(x)2
N
∑

i=1

fi(x, s) = U(x)2

(

−
N
∑

i=1

β(s)bi(x, s) +

N
∑

i=1

β(s)bi(x, s)xi +

N
∑

i=1

δ(s)xi

)

. (20)

Then, from (8)

β(s)

N
∑

i=1

bi(x, s)xi = β(s)

N
∑

i,j=1

aij(s)xjxi (21)

= β(s)〈A(s)x, x〉 ≤ β(s)λ1(s) |x|2 ≤ β(s)λ1(s)U
−2,

Moreover,

−
N
∑

i=1

β(s)bi(x, s) +

N
∑

i=1

δ(s)xi = −β(s)〈1, A(s)x〉 + δ(s)〈1, x〉 = −β(s)〈AT (s)1, x〉+ δ(s)〈1,x〉 (22)

≤ −β(s)dmin(s)〈1, x〉+ δ(s)〈1, x〉 = (−β(s) dmin(s) + δ(s))U(x)−1.
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Using these estimates in (20), we get

−U(x)2
N
∑

i=1

fi(x, s) ≤ β(s)λ1(s) + (−β(s) dmin(s) + δ(s))U(x). (23)

Next, we consider

N
∑

i=1

gii(x, s)
2 =

N
∑

i=1

[σi(x, s)bi(x, s)(1 − xi)]
2
;

By the same arguments for (13), we obtain that the previous sum is upper bounded by

M2

16

N
∑

i=1





N
∑

j=1

aij(s)xj





2

=
M2

16
〈A(s)x,A(s)x〉 ≤ M2

16
λ1(s)

2U(x)−2, (24)

Thus, from (19), by the bounds in (23) and (24), we obtain

LV̄ (x, s) ≤U(x)θ−1

{

−
[

zsθ

(

β(s)dmin(s)− δ(s)− M2

16
λ1(s)

2

)

−
m
∑

r=1

qsrzr

]

U(x) (25)

+ zsθβ(s)λ1(s)

}

+
M2

32
λ1(s)

2zsθ(θ − 1)U(x)θ

=U(x)θ−1

{

−
[

zsθ

(

β(s)dmin(s)− δ(s)− M2

32
λ1(s)

2(1 + θ)

)

−
m
∑

r=1

qsrzr

]

U(x)

+ zsθβ(s)λ1(s)

}

= U(x)θ−1 (−c1(s)U(x) + c0(s))

At this point, let us choose a constant κ > 0 sufficiently small such that T (θ)z − κz ≫ 0, that is,

zsθ (−δ(s) + β(s)dmin(s)−K(s)(1 + θ)) −
m
∑

r=1

qsrzr − κzs = c1(s)− κzs > 0, (26)

for all 1 ≤ s ≤ m.

and consider the process

Z(x, t, s) = eκtV̄ (x, s).

Then, again by the generalized Itô formula, from (25), we have

LZ(x, t, s) = κeκtzsU(x)θ + eκtLV̄ (x, s) ≤ eκtU(x)θ−1 [−(c1(s)− κzs)U(x) + c0(s)] (27)

Noting that U(x) ≥ 1/N , we can assert that for some positive and finite constant H(s), 1 ≤ s ≤ m, it holds

U(x)θ−1 [−(c1(s)− κzs)U(x) + c0(s)] ≤ H(s) < +∞,

since from (26) c1(s)− κzs > 0. Now, denoting by ẑ = min
s∈S

zs, and H̄ =
max
s∈S

H(s)

κẑ
, from (27)

LZ(x, t, s) ≤ eκtκẑH̄.

Then, from the generalized Itô formula, we have that (see, e.g., [39, Sec.2.1])
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E[Z(x(t), t, s(t))] ≤ E[Z(x(0), 0, s(0))] + E

∫ t

0

eκτκẑH̄dτ

whence

E[V̄ (x(t), s(t))] ≤ E[Z(x(0), 0, s(0))]

eκt
+ H̄ẑ,

and since

E[U(x)θ ] ≤ 1

ẑ
E[zsU(x)θ ] ≤ E[Z(x(0), 0, s(0))]

ẑ eκt
+ H̄,

we have

lim sup
t→∞

E[U(x(t))θ ] ≤ H̄.

Next, since U(x)−1 = 〈1, x〉 ≤
√
N |x|, we have

lim sup
t→∞

E

[

1

|x|θ
]

≤ (
√
N)θH̄ = H.

Theorem 6. Under Assumption 1, if
∑m

s=1 πsᾱ(s) > 0 holds, then system (4) is stochastically permanent.

Proof. From Lemma 4 there exists a constant 0 < θ < 1 such that T (θ), defined as in (15), is a non singular
M -matrix. Then, from Lemma 5 and by means of a simple application of Markov’s inequality (see, e.g., [6,
Theorem 5]), we have the claim.

Remark 3. Let us suppose that only the values of β and δ switch depending of the Markov chain, while the
network topology, of which A is the adjacency matrix, remains fixed over time. Then, the sufficient conditions
for the stochastic permanence of (4) become Assumption 1 and

m
∑

s=1

πs(−δ(s) + β(s)λ1(A)−K(s)) > 0.

Indeed, let u be the Perron eigenvector of A, i.e., it is the eigenvector corresponding to the spectral radius
λ1(A), and the unique one such that u > 0, we require |u|1 = 1. In the proof of Lemma 5, let us choose

V (x) =
∑N

i=1 uixi. Then, instead of inequalities (21),(22) and (24), we have that

β(s)
N
∑

i=1

uibi(x, s)xi = β(s)
N
∑

i,j=1

aijxjuixi ≤ β(s)
N
∑

i,j=1

aijxjxi

= β(s)〈Ax, x〉 ≤ β(s)λ1(s) |x|2 ≤ ūβ(s)λ1(A)U
−2,

since ui > 0 and |u|1 = 1, where ū =
1

min
i

u2
i

,

−
N
∑

i=1

β(s)bi(x, s) +

N
∑

i=1

δ(s)uixi = −β〈u,Ax〉+ δ(s)〈u, x〉 = −β〈ATu, x〉+ δ(s)〈u, x〉

= (−β(s)λ1(a) + δ(s))U−1,
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and

M2

16

N
∑

i=1

u2
i





N
∑

j=1

aij(s)xj





2

≤ M2

16





N
∑

i=1



ui

N
∑

j=1

aij(s)xj









2

=
M2

16
〈u,Ax〉2 =

M2

16
λ1(s)

2U−2.

Finally, with the same arguments in Lemmas 4, 5, and Theorem 6, we arrive to our assertion. The same
considerations would apply if the network switches, but in such a way that λ1(s) remains the same in each
state s ∈ S (however quite unrealistic).

4. Asymptotic bound of integral average and invariant probability measure

In this section, we estimate the time-average limit at infinity of the sample path of the solution. The
lower bound found for this quantity is related to the stationary distribution of the Markov chain, the model
parameters and the topology of the network. Basically, this result shows that system (4), pathwise, is
persistent in the time average.

Lemma 7. If there exists a constant 0 < θ < 1 such that A(θ) is a non singular M -matrix, then the solution
x(t) of (4) with any initial values x0 ∈ (0, 1)N and s0 ∈ S has the following properties

lim sup
t→∞

log(|x(t)|)
log t

≤ 0, a.s., (28)

lim inf
t→∞

log(|x(t)|)
log t

≥ −1

θ
, a.s. (29)

Proof. Since x(t) remains in (0, 1)N for all positive times, it is straightforward to see that (28) holds.
Let us prove (29). Let U : (0, 1)N → R+ be defined as in (16), for simplicity we write U(x(t)) = U(t). By

the generalized Itô formula and (18), we have that

d[(1 + U(t))θ] = θ(1 + U(t))θ−1dU(t) (30)

+
1

2
θ(θ − 1)(1 + U(t))θ−2U(t)4

N
∑

i=1

gii(x(t), s(t))
2dt

= θ(1 + U(t))θ−1

{(

−U(x(t))2
N
∑

i=1

fi(x(t), s(t)) + U(x(t))3
N
∑

i=1

gii(x(t), s(t))
2

)

dt

−
N
∑

i=1

U(x(t))2gii(x(t), s(t))dwi(t)

}

+
1

2
θ(θ − 1)(1 + U(t))θ−2U(t)4

N
∑

i=1

gii(x(t), s(t))
2dt

= L(1 + U(t))θdt− θ(1 + U(t))θ−1
N
∑

i=1

gii(x(t), s(t))dwi(t).
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Now, by inequalities (23) and (24)

L(1 + U(t))θ ≤θ(1 + U)θ−2

{

− (1 + U)

(

β(s(t))dmin(s(t)) − δ(s(t))− β(s(t))λ1(s)−
M(s(t))2

16
λ1(s(t))

2

)

U

+
M(s(t))2

32
(θ − 1)λ1(s(t))

2U2

}

(31)

=θ(1 + U(t))θ−2

{

−
(

β(s(t))dmin(s(t))− δ(s(t)) − M(s(t))2

32
λ1(s(t))

2(1 + θ)

)

U(t)2

−
(

β(s(t))dmin(s(t))− β(s(t))λ1(s(t)) − δ(s(t))− M(s(t))2

16
λ1(s(t))

2

)

U(t)

}

.

Thus, by (31), from (30)

d[(1 + U(t))θ] ≤θ(1 + U(t))θ−2

{

−
(

β(s(t))dmin(s(t))− δ(s(t)) − M(s(t))2

32
λ1(s(t))

2(1 + θ)

)

U(t)2 (32)

+K1(1 + U(t))

}

− θ(1 + U(t))θ−1U(t)2
N
∑

i=1

gii(x(t), s(t))dwi(t)

where K1 = maxs∈S{c1(s), c0(s)}, where we define

c1(s(t)) = −
(

β(s(t))dmin(s(t)) − β(s(t))λ1(s(t))− δ(s(t)) − M(s(t))2

16
λ1(s(t))

2

)

,

and

c0(s(t)) = β(s(t))λ1(s(t)),

With similar arguments as in Lemma 5, one can prove that there exists H > 0, such that

E[(1 + U(t))θ] ≤ H, on t ≥ 0, (33)

Now, let η > 0 and k = 1, 2, . . ., from (32), we obtain that

E

[

sup
(k−1)η≤t≤kη

(1 + U(t))θ

]

≤ E
[

(1 + U((k − 1)η))θ
]

(34)

+ E

(

sup
(k−1)η≤t≤kη

∣

∣

∣

∣

∣

∫ t

(k−1)η

θ(1 + U(τ))θ−2

{

−
(

β(s(τ))dmin(s(τ)) − δ(s(τ)) − M(s(τ))2

32
λ1(s(τ))

2(1 + θ)

)

U(τ)2

+K1(1 + U(τ))

}

dτ

∣

∣

∣

∣

∣

)

+ E

(

sup
(k−1)η≤t≤kη

∣

∣

∣

∣

∣

∫ t

(k−1)η

θ(1 + U(τ))θ−1U(τ)2
N
∑

i=1

gii(x(τ), s(τ))dwi(τ)

∣

∣

∣

∣

∣

)

.
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Next we can compute

E

(

sup
(k−1)η≤t≤kη

∣

∣

∣

∣

∣

∫ t

(k−1)η

θ(1 + U(τ))θ−2

{

−
(

β(s(τ))dmin(s(τ)) − δ(s(τ)) − M(s(τ))2

32
λ1(s(τ))

2(1 + θ)

)

U(τ)2

(35)

+K1(1 + U(τ))

}

dτ

∣

∣

∣

∣

∣

)

≤ E

(

∫ kη

(k−1)η

∣

∣

∣

∣

∣

θ(1 + U(τ))θ−2

{

−
(

β(s(τ))dmin(s(τ)) − δ(s(τ)) − M(s(τ))2

32
λ1(s(τ))

2(1 + θ)

)

U(τ)2

+K1(1 + U(τ))

}∣

∣

∣

∣

∣

dτ

)

≤ E

(

∫ kη

(k−1)η

θ(1 + U(τ))θ−2

{(

β(s(τ))dmin(s(τ)) + δ(s(τ)) +
M(s(τ))2

32
λ1(s(τ))

2(1 + θ) +K1

)

(1 + U(τ))2

}

dτ

)

≤ θηK2E

(

sup
(k−1)η≤t≤kη

(1 + U(t))θ

)

,

where

K2 = max
s∈S

{

β(s)dmin(s) + δ(s) +
M(s)2

32
λ1(s)

2(1 + θ) +K1

}

.

By the Burkholder-Davis-Gundy inequality [49, Lemma A.32], there exists a positive constant K3, such
that

E

(

sup
(k−1)η≤t≤kη

∣

∣

∣

∣

∣

∫ t

(k−1)η

θ(1 + U(τ))θ−1U(τ)2
N
∑

i=1

gii(x(τ), s(τ))dwi(τ)

∣

∣

∣

∣

∣

)

(36)

≤ K3E

(

∫ kη

(k−1)η

(θ(1 + U(τ))θ−1U(τ)2)2
N
∑

i=1

gii(x(τ), s(τ))
2dτ

)

1

2

≤ K3θE

(

∫ kη

(k−1)η

(1 + U(τ))2θ
M2(s(τ))λ1(s(τ))

2

16
dτ

)
1

2

≤ K3θmax
s∈S

{

M(s)

4
λ1(s)

}

E

(

∫ kη

(k−1)η

(1 + U(τ))2θdτ

)
1

2

≤ K3θmax
s∈S

{

M(s)

4
λ1(s)

}

η
1

2E

(

sup
(k−1)η≤t≤kη

(1 + U(t))θ

)

,



A STOCHASTIC DIFFERENTIAL EQUATION SIS MODEL ON NETWORK UNDER MARKOVIAN SWITCHING 15

where we have used the inequality (24). After substituting (35) and (36) into (34), we obtain

E

[

sup
(k−1)η≤t≤kη

(1 + U(t))θ

]

≤ E
[

(1 + U((k − 1)η))θ
]

+ θ

(

K2η +K3 max
s∈S

{

M(s)

4
λ1(s)

}

η
1

2

)

E

(

sup
(k−1)η≤t≤kη

(1 + U(t))θ

)

.

Now, letting η > 0 sufficiently small to have

θ

(

K2η +K3 max
s∈S

{

M(s)

4
λ1(s)

}

η
1

2

)

<
1

2
,

and by considering (33), it holds that

E

(

sup
(k−1)η≤t≤kη

(1 + U(t))θ

)

≤ 2H.

Let ε > 0, by applying the Markov’s inequality, we have

P

{

ω : sup
(k−1)η≤t≤kη

(1 + U(t))θ > (kη)1+ε

}

≤ 2H

(kη)1+ε
k = 1, 2 . . .

Applying the Borel-Cantelli lemma (see e.g. [30]), for almost all ω ∈ Ω

sup
(k−1)η≤t≤kη

(1 + U(t))θ ≤ (kη)1+ε (37)

holds for all but finitely many k. Thus, there exists an integer k0(ω) > 1/η + 2 for almost all ω ∈ Ω, for
which (37) holds for every k ≥ k0. Then, for almost all ω ∈ Ω, if k ≥ k0 and (k − 1)η ≤ t ≤ kη,

log(1 + U(t))θ

log t
≤ (1 + ε) log(kη)

log((k − 1)η)
→ 1 + ε as k increases.

Letting ε → 0 and taking the upper limit, we have

lim sup
t→∞

log(1 + U(t))θ

log t
≤ 1 a.s.

Thus, remembering the definition of U(t), we have

lim inf
t→∞

log(
∑N

i=1 xi(t))

log t
≥ −1

θ
a.s.

From which, since
√
N |x| ≥∑N

i=1 xi we finally arrive to

lim inf
t→∞

log |x(t)|
log t

≥ −1

θ
a.s.

Theorem 8. Under Assumption 1, and condition
∑m

s=1 πsᾱ(s) > 0, for any initial values x0 ∈ (0, 1)N and
s0 ∈ S, the solution x(t) of (4) obeys

lim inf
t→∞

1

t

∫ t

0

|x(u)|du ≥ 1

K̂

m
∑

s=1

πsᾱ(s) a.s.

where K̂ = max
s∈S

β(s)λ1(s).
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Proof. Let us consider V : (0, 1)N → R+ as in (16) and its stochastic differential (17). From the assertions
in Lemma 7 it is immediate to observe that

lim
t→∞

log(V (x(t)))

t
= 0, a.s. (38)

By using (17) we compute

d logV (x(t)) =
1

V (x(t))

N
∑

i=1

[

fi(x(t), s(t))dt + gii(x(t), s(t))dwi(t)
]

− 1

2V (x(t))2

N
∑

i=1

gii(x(t), s(t))
2dt (39)

Now, let us drop for a while x(t) from V (x(t)) and omit the explicit dependence on time of xi(t), bi(t) and
s(t) for readability. Then, by using inequalities (21) and (22), we have

1

V

N
∑

i=1

fi(x, s) =
1

V

[

N
∑

i=1

β(s)

N
∑

j=1

aij(s)xj −
N
∑

i=1

β(s)xi

N
∑

j=1

aij(s)xj −
N
∑

i=1

δ(s)xi

]

≥ 1

V

(

β(s)dmin(s)

N
∑

i=1

xi − β(s)λ1(s)|x|
N
∑

i=1

xi − δ(s)

N
∑

i=1

xi

)

≥ β(s)dmin(s)− K̂|x| − δ(s),

where K̂ = max
s∈S

β(s)λ1(s). Moreover, by inequality (24), we have

− 1

2V 2

N
∑

i=1

gii(x, s)
2 ≥ −M(s)2

32
λ2
1(A(s))

Substituting the above estimates in (39) gives

d logV (x(t)) ≥
(

β(s(t))dmin(s(t))− δ(s(t)) − M2(s(t))

32
λ2
1(A(s(t)))

)

dt− K̂|x(t)|dt

+
1

V (x(t))

N
∑

i=1

gii(x(t), s(t))dwi(t)

Whence,

logV (x(t)) + K̂

∫ t

0

|x(u)|du ≥ logV (x(0)) +

∫ t

0

ᾱ(s(u))du +

∫ t

0

N
∑

i=1

gii(x(u), s(u))

V (x(u))
dwi(u) (40)

By the strong law of large numbers for martingales (see [30]), we have

lim
t→∞

1

t

∫ t

0

N
∑

i=1

gii(x(u), s(u))

V (x(u))
dwi(u) = 0 a.s.

Therefore, dividing both sides of (40) by t and then letting t → ∞, by (38) and the Ergodic theorem for
Markov chain [37, Sec. 5.5], we have

lim inf
t→∞

1

t

∫ t

0

|x(u)|du ≥ 1

K̂

m
∑

s=1

πsᾱ(s) a.s.
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4.1. Existence of an invariant probability measure. The presence of a stochastic perturbation destroys
the existence positive deterministic equilibria. However, in the analysis of a stochastic dynamical system, one
can try to prove the existence (and possibly the uniqueness) of an invariant probability measure (stationary
distribution) on a positive invariant domain to better understand the long-term behavior of the system.

In this section and in the following one, we investigate the existence of a stationary distribution and its
ergodic property for the two-component process {(x(t), s(t)), t ≥ 0}.
Consider the positive invariant set

H = (0, 1)N × S

for the system (4) (see Theorem 1). Let us note that (x(t), s(t)) is a time-homogeneous Markov process, and
since the hypothesis of [49, Lemma 2.14] are satisfied in [0, 1]N , then it follows that our process has the Feller
property (see [49, Remark 2.15]).

We use the following theorem to ensure the existence of an invariant probability measure on H.

Theorem 9 (see [40]). Let Φ = {Φt, t ≥ 0} be a Feller process with state space (X,B(X)). Then either

a) there exists an invariant probability measure on X, or
b) for any compact set C ⊂ X,

lim
t→∞

sup
µ

1

t

∫ t

0

(∫

X

P(u, x, C)µ(dx)

)

du = 0,

where the supremum is taken over all initial distributions µ on the state space X, and P(t, x, C) =
Px(Φt ∈ C) is the transition probability function.

Theorem 10. Under Assumption 1, and condition
∑m

s=1 πsᾱ(s) > 0, the Markov process z(t) = (x(t), s(t))
has an invariant probability measure µ∗ on the state space H.

Proof. Let us consider the process (x(t), s(t)) on a larger state space

H̃ = ∆ \ {0} × S,

where, we recall, ∆ = [0, 1]N and 0 is the zero-vector in R
N . By means of Theorem 9, one can prove

the existence of an invariant probability measure µ∗ for the process z(t) = (x(t), s(t)) on H̃, providing the

existence of a compact set C ⊂ H̃ that verifies

lim inf
t→∞

1

t

∫ t

0

(
∫

H̃

P(u, z, C)µ(dz)

)

du = lim inf
t→∞

1

t

∫ t

0

P(u, z0, C)du > 0, (41)

for some initial distribution µ = δz0 , with z0 ∈ H̃, where δ is the Dirac function and P(u, ·, ·) is the transition
probability function. Once the existence of µ∗ is proved, we can easily see that µ∗ is also the invariant
probability measure of (x(t), s(t)) on H. Indeed, from Theorem 1 and Remark 1) there exists a time t̄ > 0,
such that for all t ≥ t̄, (x(t), s(t)) ∈ H, therefore µ∗ (∂∆× S) = 0.

Thus, it is sufficient to find a compact set C ⊂ H̃ that satisfies (41) to prove the existence of an invariant
probability measure for the process (x(t), s(t)) on H.
By Theorem 8, we have

lim inf
t→∞

1

t

∫ t

0

|x(τ)|dτ ≥ 1

K̂

m
∑

s=1

πsᾱ(s) := ζ > 0 a.s.
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where K̂ = max
s∈S

β(s)λ1(s). Since

1

t

∫ t

0

|x(u)|du =
1

t

∫ t

0

|x(u)|1{|x(u)|< ζ
2}du+

1

t

∫ t

0

|x(u)|1{|x(u)|≥ ζ
2}du ≤ ζ

2
+
√
N

1

t

∫ t

0

1{|x(u)|≥ ζ
2}du,

we get

lim inf
t→∞

1

t

∫ t

0

1{|x(u)|≥ ζ
2}du ≥ ζ

2
√
N

a.s. (42)

By Fatou’s lemma, and from (42), it follows that

lim inf
t→∞

1

t

∫ t

0

P

(

|x(u)| ≥ ζ

2

)

du = lim inf
t→∞

1

t

∫ t

0

E

[

1{|x(u)|≥ ζ
2}
]

du

≥ E

[

lim inf
t→∞

1

t

∫ t

0

1{|x(u)|≥ ζ
2}du

]

≥ ζ

2
√
N

.

Now, let us consider the compact set C = D × S ⊂ H̃, where D =
{

x ∈ R
N : 0 ≤ xi ≤ 1, |x| ≥ ζ

2

}

. Then,

lim inf
t→∞

1

t

∫ t

0

P(u, z0, C)du = lim inf
t→∞

1

t

∫ t

0

P

(

|x(u)| ≥ ζ

2

)

du ≥ ζ

2
√
N

which implies that (41) holds.

4.2. Positive recurrence and ergodicity. In the previous section, we proved the existence of an invariant
probability measure under conditions ensuring the stochastic permanence. In this section, under a different
condition, we are able to prove the ergodicity of z(t) = (x(t), s(t)) in (0, 1)N . According to [52], it suffices to
prove that z(t) is positive recurrent (see [52, Definition 2.3]). From [52], we can deduce the following lemma
that gives a condition for the positive recurrence of z(t) = (x(t), s(t)) with respect to some domain D× {s},
with D̄ ⊂ (0, 1)N , and s ∈ S (and consequently, with respect to any nonempty open subset of (0, 1)N × S).
From this the ergodicity of the process in (0, 1)N follows.

Lemma 11. The Markov process z(t) = (x(t), s(t)) is positive recurrent if the following conditions are
satisfied:

i) for each s ∈ S, and for each open set D such that D̄ ⊂ (0, 1)N , there exists kD > 0 s.t.

kD|ξ|2 ≤ ξT g(x, s)ξ ≤ k−1
D |ξ|2 for all ξ ∈ R

N ,

with some constant kD ∈ (0, 1] for all x ∈ D,
ii) there exists an open subset D with a sufficiently smooth boundary and D̄ ⊂ (0, 1)N , such that for each

s ∈ S, there exists a twice continuously differentiable nonnegative function V (·, s) : Dc ∩ (0, 1)N → R

such that for some α > 0,

LV (x, s) ≤ −α, (x, s) ∈ Dc ∩ (0, 1)N × S.

Moreover, the positive recurrent Markov process z(t) = (x(t), s(t)) has a unique stationary distribution
ν(·, ·) on H, and it holds that

Px,i

(

lim
T→∞

1

T

∫ T

0

f(x(t), γ(t))dt =
m
∑

i=1

∫

(0,1)N
f(x, i)ν(dx, i)

)

= 1, (43)

where f : (0, 1)N × S → R is any integrable function with respect to the measure ν(·, ·).
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Remark 4. Let us note that in [52] the authors assume that the differential operator L is uniformly elliptic
(assumption (A), condition (i) in [52]). In our case, the uniform ellipticity is not satisfied in (0, 1)N , however
we can replace it by the weaker condition (i) in Lemma 11. It is straightforward to see that their results still
hold. Let us also note that it is sufficient to replace the condition ii) of the assumption (A) in [52], with our
request of irreducibility of the matrix Q.

Theorem 12. Let α̃(s) = β(s)dmin(s) − Nδ − N M(s)2λ1(A)2

2 . If
∑m

s=1 πsα̃(s) > 0, the process (x(t), s(t))
has a unique stationary distribution ν on H, with the ergodic property (43).

Proof. Let us choose 0 < ε < 1, and consider the following bounded open subset:

Dε = (ε, 1− ε)
N ⊂ (0, 1)N .

Then D̄ε ⊂ (0, 1)N . Since the diffusion matrix g(x, s) is a diagonal matrix with entries σ2
i (xi(s))(1 −

xi(s))
2bi(x, s)

2, the condition i) in Lemma 11 is easily verified.
We need to verify condition ii). Since the matrix Q is irreducible, there exists a solution ω = (ω1, . . . , ωm)T

of the Poisson system

α̃−Qω = (πT α̃, . . . , πT α̃)T , (44)

where α̃ = (α̃(1), . . . , α̃(m))T [24, Lemma 2.3]. Then, let ω̄ be a constant such that ωs + ω̄ > 0 for all s ∈ S,
and consider the function V (·, s) : Dc ∩ (0, 1)N → R,

V (x, s) = −k1

N
∑

i=1

log(xi)−
N
∑

i=1

log(1− xi) + k1(ωs + ω̄), s = 1, . . . ,m.

where k1 > 0. Denote V1 = −k1
∑N

i=1 log(xi), and V2 = −∑N
i=1 log(1− xi). By the generalized Itô formula

LV1 = −k1

N
∑

i=1

β(s)(1 − xi)bi(x, s)− δxi

xi

+
k1
2

N
∑

i=1

σi(x, s)
2bi(x, s)

2(1 − xi)
2

x2
i

≤ −k1

[

∑N
i=1 β(s)(1 − xi)bi(x, s)

xi

− δN +
1

2
M(s)2λ1(s)

2N

]

LV2 =

N
∑

i=1

β(s)(1 − xi)bi(x, s)− δxi

1− xi

+
1

2

N
∑

i=1

σi(x, s)
2bi(x, s)

2(1 − xi)
2

(1− xi)2

≤ β(s)λ1(s)N −
N
∑

i=1

δxi

1− xi

+
1

2
M(s)2λ1(A)

2N

From which

LV (x, s) ≤ −k1

[

∑N
i=1 β(s)(1 − xi)bi(x, s)

xi

− δN +
1

2
M(s)2λ1(s)

2N

]

(45)

+ β(s)λ1(s)N −
N
∑

i=1

δxi

1− xi

+
1

2
M(s)2λ1(A)

2N + k1

m
∑

r=1

qsrωr

At this point, we can have two cases:
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Case 1 : there exists j such that xj > 1− ε. Since

−δxj

(1− xj)
→ −∞, as xj → 1,

we have from (45) that, for a sufficient small ε, LV (x, s) ≤ −α, for some α > 0.
Case 2 : Suppose that for all i, xi < 1− ε, then there exist j such that xj < ε. Without loss of generality

we assume that xj = min
i

xi. Then

LV (x, s) ≤ −k1

[

β(s)(1 − xj)

∑m
j=1 ajlxl

xj

− δN − 1

2
M(s)2λ1(A)

2N −
m
∑

r=1

qsrωr

]

(46)

+ β(s)λ1(s)N +
1

2
M(s)2λ1(A)

2N

≤ −k1

[

(1− ε)β(s)dmin(s)− δN − M(s)2λ1(A)
2N

2
−

m
∑

r=1

qsrωr

]

+ β(s)λ1(s)N +
1

2
M(s)2λ1(A)

2N.

Since
∑m

s=1 πsα̃(s) > 0, from (44), we have

β(s)dmin(s)− δN − M(s)2λ1(A)
2N

2
−

m
∑

r=1

qsrωr > 0.

Now, we can choose a constant ε > 0 sufficiently small such that

(1− ε)β(s)dmin(s)− δN − M(s)2λ1(A)
2N

2
−

m
∑

r=1

qsrωr > 0,

and k1 > 0 big enough to have, from (46), LV (x, s) ≤ −α, for some α > 0. Thus, also condition ii) in Lemma
11 is verified for Dε, and we can conclude that (x(t), s(t)) is positive recurrent, has a unique stationary
distribution ν on H, and (43) holds.

5. Numerical experiments

In this section, we provide some numerical investigations of the obtained results, based on our theoretical
assumptions. In all numerical experiments in the following, we consider a right-continuous Markov chain with
state space S = {1, 2}, thus we study the random switching of (4) between two subsystems. In particular,
we analyze the case where in the subsystem corresponding to s = 1 the epidemic goes extinct a.s., while the
subsystem in s = 2 is stochastically permanent. Let us note that, from [6, Theorem 5], a sufficient condition
ensuring stochastic permanence of the subsystem in state s is

−δ(s) + β(s)λ1(s)−
M(s)2λ1(s)

2

32
> 0.

Clearly, if ᾱ(s) > 0, the above condition holds.
In Fig. 1 a) and b), we depict the behaviour of the sample path solution norm of (4) (simulated by the
Euler–Maruyama method [20]). We consider the random switching of the system between two different sets
of parameters, and two regular networks with N = 100 nodes, one with degree d = 10, when the system lies
in the state s = 1, and the other with d = 25, in s = 2. In the same plot, we also report the sample path of
the Markov chain s(t).
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Specifically, in Fig. 1 a), we consider q12 = 0.2, and q21 = 0.7, consequently π = (π1, π2) =
(

7
9 ,

2
9

)

. The
parameter values of system (4), in s = 1, are

β(1) = 0.01, δ(1) = 1, M(1) = 0.1,

while in s = 2
β(2) = 0.07, δ(2) = 1, M(2) = 0.05,

Thus,
N
∑

s=1

πsα(s) = −0.4982 < 0,

and by Theorem 2, as the result of Markovian switching, the epidemics will go extinct almost surely, in the
long run.
In Fig. 1 b), instead, we consider q12 = 1, and q21 = 0.3, consequently π = (π1, π2) =

(

3
13 ,

10
13

)

. The parameter
values of system (4), in s = 1, are

β(1) = 0.09, δ(1) = 1, M(1) = 0.15,

while in s = 2
β(2) = 0.1, δ(2) = 1, M(2) = 0.08.

Thus,
N
∑

s=1

πsᾱ(s) = 1.0184 > 0,

and by Theorem 6, as the result of Markovian switching, the overall behavior of system (4) is stochastically
permanent.
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Figure 1. Dynamics of the sample path solution norm of (4) and the Markov chain s(t),
with x(0) = 0.4 · 1. Regular network with N = 100 and degree d = 10 in s = 1, and with
degree d = 25, in s = 2. a) s(0) = 1, q12 = 0.2, q21 = 0.7 b) s(0) = 1, q12 = 1, q21 = 0.3.

As a second scenario, we consider the random switching of (4) between two Erdős-Rényi sample graphs
with N = 100 and p = 0.7, 0.2, respectively.
In Fig. 2 a) we consider q12 = 0.4, q21 = 0.8, consequently π = (π1, π2) =

(

2
3 ,

1
3

)

. The parameter values of
system (4), in s = 1, are :

β(1) = 0.01, δ(1) = 1, M(1) = 0.02,
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while in s = 2

β(2) = 0.065, δ(1) = 1, M(2) = 0.1,

Thus,
N
∑

s=1

πsα(s) = −0.0042 < 0,

and by Theorem 2, as the result of Markovian switching, the epidemics will go extinct almost surely, in the
long run.

In Fig. 3, we consider the switching between two Erdős-Rényi sample graphs with N = 100 and p = 0.7, 0.4,
respectively. In a), we have q12 = 0.1, and q21 = 0.15, consequently π = (π1, π2) =

(

3
5 ,

2
5

)

. The parameter
values of system (4) in s = 1 are

β(1) = 0.01, δ(1) = 0.85, M(1) = 0.03,

while in s = 2

β(2) = 0.06, δ(2) = 0.85, M(2) = 0.04.

Thus,
N
∑

s=1

πsᾱ(s) = 0.08 > 0,

and by Theorem 6, as the result of Markovian switching, the overall behavior of system is stochastically
permanent. In Fig. 3 b), instead, we consider q12 = 1, and q21 = 1.5, which are proportional to those in
Fig. 3 a), and the same parameter values of a). Let us note that this leads to have the same values of π,

and
∑N

s=1 πsᾱ(s), as in Fig. 3 a), thus the overall behavior of the system is stochastically permanent. From
the comparison between Fig. 3 a) and b), we can see how the mean sojourn times in each state s, given by
1/qss, influences the overall behaviour of the system. Indeed, in Fig. 3 a) it is evident that the system can
stay longer in state s = 1, and the infection has the time to slow down and to reach a low epidemic level,
before the switching to state s = 2 triggers another aggressive epidemic wave.
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Figure 2. Dynamics of the sample path solution norm of (4), and the Markov chain s(t),
with x(0) = 0.4 · 1, and s(0) = 1, q12 = 0.4, q21 = 0.8. Erdős-Rényi sample graphs with
N = 100 and p = 0.7 in s = 1, and p = 0.2 in s = 2.
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Figure 3. Dynamics of the sample path solution norm of (4) and the Markov chain s(t),
with x(0) = 0.4 · 1. Erdős-Rényi sample graphs with N = 100 and p = 0.7 in s = 1, and
p = 0.4 in s = 2. a) s(0) = 1, q12 = 0.1, q21 = 0.15 b) s(0) = 1, q12 = 1, q21 = 1.5.
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Figure 4. Dynamics of the sample path solution norm of (4), and the Markov chain s(t),
with x(0) = 0.4 · 1, and s(0) = 1, q12 = 1, q21 = 1.5. Erdős-Rényi sample graphs with
N = 100 and p = 0.2 in s = 1 and s = 2.

In Fig. 4, we consider the same parameters and same transition rates as in Fig. 3 b), but we have for both
states an Erdős-Rényi sample graph with N = 100 and p = 0.2. In this case, in each state the condition for
extinction is satisfied and, consequently, the epidemic will go extinct almost surely, indeed

N
∑

s=1

πsα(s) = −0.2135 < 0.

Thus, we see that by keeping the model parameters fixed and changing only the network topology (with
respect to Fig. 3 b)), the overall system long-term behavior changes, passing from a situation of stochastic
permanence to the a.s. extinction. This clearly supports the actual fact that deleting some links between
individuals (e.g, through lockdown or self-quarantines) can help to stop an epidemic.
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6. Conclusion

In this paper, we have investigated a random-switching diffusion SIS model on networks, incorporating
also heterogeneity in the transmission of the infection. Specifically, we have studied the dynamic behaviour
of the hybrid system (4), that is composed of m subsystems, and switches between them according to the
law of the Markov chain. In this way, we have extended our study in [6].

In Theorem 1, we have proved that the system (4) possesses a unique global solution that remains within
(0, 1)N a.s., whenever it starts from this region. Theorems 2 and 6 provide sufficient conditions for the
almost sure extinction and the stochastic permanence of (4), respectively. Moreover, we can see that if

α(s) = −δ(s) + β(s)λ1(s) +
M(s)2λ1(s)

2

32 < 0, for all s ∈ S, in each subsystem the epidemic goes extinct, and
from Theorem 2, as we can expect, in the overall system (4) the epidemic goes extinct. On the other hand, if

ᾱ(s) = −δ(s) + β(s)dmin(s)− M(s)2λ1(s)
2

32 > 0 for all s ∈ S, each subsystem is stochastically permanent, and
from Theorem 6, the overall system remains stochastically permanent. We remember that, from [6, Theorem

5], a sufficient condition for stochastic permanence of each subsystem is −δ(s) + β(s)λ1(s) − M(s)2λ1(s)
2

32 >
0. However, Theorems 2 and 6 show us a more interesting behaviour, that is when some subsystems are
stochastically permanent, while in others a stochastic extinction is predict, as the results of Markovian
switching, the overall epidemic can persist or go extinct a.s., which depends on the sign of

∑m
s=1 πsᾱ(s) and

∑m
s=1 πsα(s), respectively. We can see that the stationary distribution of the Markov chain plays a crucial

role in the stochastic epidemic process. Thus, reasonably, the overall system will tend to the extinction a.s.
if the process has higher probability to stay in regimes that predict the extinction. Moreover, in each state,
one can control the epidemic by lowering the infection rate (e.g., by wearing face-masks) and/or reducing
the spectral radius of the adjacency matrix (by deleting some links in the network, through e.g., lockdown
or self-quarantines). Thus, it is evident also the relevant role of the network topology, the change of which
can possibly help to reduce the epidemic, even if the other parameters remain fixed.

In Theorem 8, an asymptotic bound for the time average of the solution sample path norm has been
provided, under the conditions ensuring stochastic permanence. Moreover, the obtained bound allowed
us to prove the existence of an invariant probability measure for the process (x(t), s(t)) on (0, 1)N , if the
condition of stochastic permanence holds. Under different condition, we have proved the positive recurrence
of (x(t), s(t)) and its ergodic properties in (0, 1)N . Finally, we have corroborated the obtained results by
numerical examples.
As future research, it would be interesting to consider switching processes that depend on the continuous
dynamics. Although more difficult to analytically handle, this approach allows to represent, for example, the
interplay between node state and network dynamics. Indeed, in human disease epidemics, the structure of
contacts often changes in response to the contagion, which in turn influences the spreading process itself in
a nontrivial feedback loop.
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