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Abstract: We compare three machine learning models—artificial neural network (ANN), random
forest (RF), and convolutional neural network (CNN)—for spatial downscaling of temperature at
2 m above ground (T2M) from a 9 km ERA5-Land reanalysis to 1 km in a complex terrain area,
including the Non Valley and the Adige Valley in the Italian Alps. The results suggest that CNN
performs better than the other methods across all seasons. RF performs similar to CNN, particularly
in spring and summer, but its performance is reduced in winter and autumn. The best performance
was observed in summer for CNN (R2 = 0.94, RMSE = 1 ◦C, MAE = 0.78 ◦C) and the lowest in winter
for ANN (R2 = 0.79, RMSE = 1.6 ◦C, MAE = 1.3 ◦C). Elevation is an important predictor for ANN
and RF, whereas it does not play a significant role for CNN. Additionally, CNN outperforms others
even without elevation as an additional feature. Furthermore, MAE increases with higher elevation
for ANN across all seasons. Conversely, MAE decreases with increased elevation for RF and CNN,
particularly for summer, and remains mostly stable for other seasons.

Keywords: machine learning; convolutional neural network; random forest; T2M; downscaling

1. Introduction

Global climate models (GCMs) play a crucial role in predicting the state of the atmo-
sphere [1]. However, these models’ spatial resolution is low, typically between 25 and
100 km, because of computational limitations. Such a spatial resolution is suitable for
analyzing large-scale features, e.g., synoptic or mesoscale processes, but too coarse for
capturing the spatial variability of meteorological parameters in complex terrain [2,3]. This
limits the straightforward use of GCM output for decision-making processes.

The near-surface air temperature of Earth is an essential parameter for a series of
processes, especially for terrestrial life, including that of humans and the ecosystem. In
particular, the air temperature measured 2 m above the ground (T2M) is a standard reference
variable adopted to represent processes relevant to various sectors like agriculture and
transportation. The high-resolution daily mean temperature data can also have applications
in various studies, such as those dealing with urban heat islands and thermal comfort. The
interaction between surface temperature and urban morphology can be explored in greater
detail by utilizing high-resolution temperature data [4]. Similarly, daily mean temperature
can help study landscape interventions, such as the effect of increased vegetation on
thermal conditions [5]. For these applications and to better predict these processes, there
is an increasing need for high-resolution T2M datasets. Two main types of downscaling
techniques are used to evaluate data from coarse resolution to local scale, i.e., dynamic and
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statistical downscaling. Dynamic downscaling techniques use regional climate models to
simulate physical processes by assuming initial and boundary conditions from GCM output.
Fine-scale processes are represented with more accuracy, thus improving the provision
of local-scale data [6,7]. However, dynamic downscaling usually requires considerable
expertise and computational resources. Instead, statistical downscaling stems from a
statistical relationship between large-scale climate variables (predictors) and local-scale
variables (predictands) [8]. These relationships are exploited to predict values of the local-
scale variables at different times and locations. Statistical downscaling techniques have an
advantage in reduced computation and more straightforward implementation and thus are
widely used in applications related to climate change [9–11].

Machine learning (ML) techniques have been increasingly used in recent years for
statistical downscaling of daily mean temperature because of their ability to capture pat-
terns within complex data. Various studies have employed different ML models, such as
linear regression [12], support vector regression (SVR) [13,14], artificial neural network
(ANN) [9,15,16], random forest (RF) [9], and k-nearest neighbor (KNN) [10] for downscal-
ing temperature.

The ANN model is inspired by the human brain and consists of neurons with different
layers. The input layer is the first layer, and, as the name suggests, it provides input data to
the model; then comes the hidden layer, with one or more layers responsible for the model
performance. The last is the output layer, where we obtain a prediction of the model. ANN
can capture nonlinear relationships between parameters, making it useful for complex
tasks such as downscaling temperature.

RF constructs multiple decision trees and takes the ensemble mean of outputs of all
trees for final prediction. Gradient boosting (GB) is also an ensemble method that builds
models sequentially. Each new model in GB corrects the errors of the earlier one. Both
RF and GB leverage the strengths of multiple individual models to improve prediction
accuracy, albeit through different mechanisms.

The MLR model uses a linear equation to capture the relationship between the predic-
tor and predictand parameters. SVR aims to find a hyperplane that fits the data, making it
suitable for capturing nonlinear temperature patterns. The KNN model predicts the value
of a location depending on the values of its nearest neighbors in the dataset.

In the past, several studies have compared ML techniques for downscaling purposes.
Pang et al. [9] conducted a study in the Pearl River Basin (Southern China) using three
methods, namely multiple linear regression (MLR), RF, and ANN, to downscale mean
temperature data from coarse resolution. Their study revealed that RF exhibited superior
performance compared to both ANN and MLR. Azari et al. [10] used six different models—
MLR, KNN, ANN, RF, SVR, and adaptive boost—in daily mean temperature downscaling
at Memphis International Airport (USA). The results showed that ANN outperformed other
models. Hanoon et al. [17] demonstrated that neural networks outperformed GB, RF, and
linear regression in predicting daily temperature in Terengganu state (Malaysia). Hence, the
literature suggests that no model can be considered invariably superior when comparisons
are made across diverse regions. This emphasizes the need for conducting intercomparison
studies specifically suited to where downscaling applications are required. However, it
should be noted that most of these studies have employed ML techniques to downscale the
daily mean temperature on a point scale. This approach involves taking low-resolution
data from the closest grid point of the weather station for downscaling. Hutengs and
Vohland [18] used RF for downscaling of LST spatially from 1 km to a resolution of 250 m in
Jordan River Valley. However, the application of these techniques for spatial downscaling
of the daily mean temperature is limited.

Recent studies on the downscaling of atmospheric variables have explored the appli-
cation of a convolutional neural network (CNN). CNN models are similar to ANN models;
however, in addition to fully connected dense layers, CNN consists of a few more layers,
such as convolution and pooling layers. CNNs are especially effective for handling gridded
data, such as spatial data or images. CNN models have gained increasing popularity
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for downscaling spatial gridded data, considering their ability to capture spatial features
effectively. Bano Medina et al. [19] conducted a study in Europe with the objective of
intercomparing CNNs of different complexity with linear models, bringing the horizontal
resolution from 2° to 0.5° both for latitude and longitude. Their findings suggest that CNNs
perform better compared to linear models, particularly as downscaling was performed
on a continental scale, considering a large area, and with a relatively low scaling ratio.
(The scaling ratio is calculated as the predictor resolution divided by the target or pre-
dictand resolution.) Therefore, the transferability of these results to a higher resolution
remains unanswered.

Mountainous terrains are known to exhibit a variety of climatic situations [20] with
very different features compared to surrounding plain areas nearby [21]. Accordingly,
peculiar boundary layer processes occur therein, deeply affecting surface–atmosphere
exchanges and, hence, surface temperatures, resulting from a variety of combinations of
different land forms, ambient conditions, and surface properties [22]. In particular, under
weather characterized by wide and persistent anticyclonic situations typically associated
with clear skies and calm wind at the synoptic scale, daily-periodic, thermally-driven wind
systems are generated by the regular cycle of surface heating and cooling [23]. Enhanced
heating and cooling are both favored by clear skies, allowing for both strong incoming solar
radiation during daytime and strong radiative loss during nighttime, respectively [24,25].
Under the different phases characterizing these winds, air typically flows up the slopes
during daytime and downslope during nighttime, with transitional reversals at sunset
and sunrise, respectively [26]. These factors affect surface temperature, particularly at
the floor of valleys and basins, where long-lasting, ground-based temperature inversions
and persistent cold pools often occur [27] fed by katabatic winds flowing down from the
surrounding sidewall slopes [28].

Given such variability arising from a nontrivial combination of factors, downscaling is
a particularly challenging task over mountainous terrain. On the other hand, the availability
of high-resolution T2M is critical for a series of applications [29], ranging from air pollutant
transport [30,31] to water resource management to agriculture. Hence, high-resolution
data from NWP models were obtained with smoothing topography for computational
stability [32]. Smoothing the topography can lead to a less accurate representation of
the terrain affecting local atmospheric processes. However, ML models can leverage
high-resolution data, overcoming these limitations to provide more accurate forecasts.
Mutiibwa et al. [33] investigated the relationship between air temperature near surface and
land surface temperature (LST) in mountainous terrain. Their study found that the LST
serves as a reliable proxy for air temperature near the surface, with higher accuracy in
the daytime compared to the nighttime. Li et al. [34] evaluated machine learning model
performance for downscaling the LST, highlighting the better performance of machine
learning algorithms compared to traditional regression approaches. Wang et al. [35] used
CNN to downscale the daily temperature from their different coarser resolutions (100, 50,
and 25 km) to a fine resolution (4 km), with better results obtained for downscaling from
25 km. Their study achieves good results with a scaling ratio of 6. However, 4 km is still very
coarse for areas of complex terrain. Sha et al. [3] conducted a study over complex terrains in
the western United States to lower the temperature from 0.25° (approximately 27 km) to a
resolution of 4 km using CNN and found a higher MAE in mountainous areas and a lower
MAE in the plains. Furthermore, when developing a model for downscaling temperature
in complex terrains, the selection of predictors is crucial. For example, Karaman and
Akyurek [36] conducted a study in Turkey, aiming to downscale the daily mean temperature
on station data using an RF model, and found that incorporating static features such
as elevation as additional predictors significantly improved the model’s performance.
Some studies have included dynamic parameters such as dew point, pressure, and wind
speed as additional predictors to improve the performance of the model [10,17]. Sebbar
et al. [37] downscaled hourly temperature using SVR, XGBoost, and MLR by incorporating
environmental lapse rate for temperature corrections. However, this study has limitations
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in regions where there is an unavailability of temperature data at various vertical levels.
Therefore, our study employs ANN, RF, and CNN advanced neural networks to capture
spatial and temporal variability directly from surface data.

This study presents various novel contributions to atmospheric research, especially
in the field of spatial downscaling. The objective of the study presents a comprehensive
intercomparison of the machine learning algorithms’ performances, namely ANN, RF,
and CNN, in downscaling spatial daily mean temperature. While proposed models have
been individually employed in downscaling studies, our work is novel in rigorously
comparing their performance at high resolution and in complex terrain settings. Our
study achieves a higher downscaling ratio (9), which is a significant leap compared to
earlier studies [19]. This study places a strong emphasis on assessing the importance of
elevation using a sensitivity experiment by providing elevation as an additional input.
Here, we understand how different models respond to elevation as an additional input and
improve the performance of models. We conduct a feature importance analysis showing key
predictors that primarily contribute to enhancing model performance in different seasons.
Furthermore, this is one of the first attempts at daily mean temperature downscaling in
the Non and Adige Valleys, a region with very complex terrain in northern Italy, using
machine learning.

Spatial downscaling often encounters constraints due to the unavailability of high-
resolution predictand or target datasets, which can limit the scope of such studies. Instead,
our research benefits from a gridded 1 km dataset for daily mean temperature created
using ground-based measurements [38], providing a unique opportunity to explore spatial
downscaling at high resolutions in this area.

The paper is organized as follows. Section 2 describes the materials and methods,
including the study region, the datasets used, and the methods adopted. Section 3 describes
the ML models employed in the study. Section 4 presents the results, which include the
spatial consistency of models, average metrics of model performance, spatial and seasonal
variation in model performance, sensitivity of models to elevation, and feature importance.
Section 5 provides a discussion of the results, and Section 6 draws some conclusions and
presents an outlook on possible future developments.

2. Materials and Methods
2.1. Study Region

Trentino-Alto Adige/South Tyrol is a mountainous region in the southern part of
the European Alps in northeastern Italy. The region covers an area of around 13,000 km2.
Our study focuses on an area including part of the Non and Adige Valleys, marked in a
rectangular box in Figure 1. The region is complex enough to challenge the models. The
topography of the area exhibits elevation ranges from 166 m to 2628 m ASL, with rather
narrow valleys and steep slopes. The elevation distribution histogram for both the Non
Valley and the Adige Valley shows a strongly varied terrain with a significant concentration
of elevations in the range 500–1400 m, but fewer points exhibit higher elevations, especially
above 1700 m (Figure 2).

The climate of the region is typical of a transition area between central Europe, with
continental weather dominated by Atlantic influences, and a temperate Mediterranean area
influenced by the sea; however, the area is also undergoing increasingly frequent outbreaks
of the African anticyclone during summertime [38–40]. The region is renowned for agricul-
ture, particularly for apples, grapes, and berries [41]. These agricultural activities play an
important role in the economic prosperity of the region. Additionally, Trentino-South Tyrol
is famous in terms of tourism and various sports activities, such as ski-mountaineering and
hiking [42]. Therefore, understanding temperature dynamics in this distinctive landscape
is important for increasing agricultural productivity and having sustainable tourism to
strengthen economic development.
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Figure 1. (a) Position of Trentino and South Tyrol in Italy. (b) Orography of Trentino and South Tyrol.
(c) Non Valley and Adige Valley.

Figure 2. Elevation distribution of the grid points in the study area, including the Non Valley and the
Adige Valley.

The climatology of the target area exhibits variations in temperature patterns across
the seasons. The main climatological statistics of the area were calculated over the Non
and Adige Valleys, spreading from 45.85° to 46.49° latitude and from 10.95° to 11.19° longi-
tude using a comprehensive dataset of daily mean temperature available from 1980–2018
(Crespi et al. 2021) [38]. The region experiences a maximum daily mean temperature that
reaches 22 ◦C and a minimum daily mean temperature of up to 8 ◦C in summer. On the
other hand, during winter, there was a maximum daily mean temperature of 3.4 ◦C and a
minimum daily mean temperature that plunged to −5.9 ◦C.

As outlined above for all mountainous areas, in this region too, surface temperatures
are affected by a variety of factors associated with terrain complexity. In particular, the
target area is known to develop regular valley wind systems [43–45] associated with



Atmosphere 2024, 15, 1085 6 of 24

peculiar boundary-layer turbulent exchanges. Also, the frequent occurrence of snowfalls
and the persistence of snow cover during winter and spring in many parts of the domain
also affect the surface temperatures.

2.2. Datasets

In this section, datasets used in the study are discussed. An overview of the different
datasets used in the study can be found in Table 1.

ERA5-Land

ERA5-Land is the reanalysis provided by the European Centre for Medium-range
Weather Forecasts and consists of hourly data with a spatial resolution of 9 km (0.1° × 0.1°).
The dataset is available from January 1950 to the present. For this study, hourly data from
1980 to 2018 over the Non and Adige Valleys were used. The primary predictor adopted for
this study is the ERA5-Land T2M daily mean temperature (ERA5L-T2M). In addition, other
auxiliary predictors used are dew point temperature at 2 m AGL (D2M), surface pressure
(SP), zonal (U10) and meridional (V10) components of wind at 10 m AGL, surface net solar
radiation (SNR), surface latent heat flux (SLHF), sensible heat fluxes (SSHF), snow cover
(SC) area fraction, and wind speed (WS) at 10 m AGL.

Reference Target Gridded Daily Mean Temperature Data

The target or predictand dataset for this study is the gridded fine resolution dataset
of daily mean T2M. The daily dataset is available from the period of 1980–2018 over the
Trentino and South Tyrol region. The dataset is created using more than 200 meteorological
stations with a gridded resolution of 250 m × 250 m using interpolation techniques [38].
We aggregated 250 m resolution data to 1 km, which serves as a target for the study.

Digital Elevation Model Data

The digital elevation model (DEM) used in the study was obtained from the Shuttle
Radar Topography Mission (SRTM) of the National Aeronautics and Space Administration
(NASA). The DEM covers the entire Earth’s surface, providing elevation information with
a 30 m spatial resolution. For the purpose of the present study, the elevation data were
spatially aggregated by averaging 33 × 33 pixel blocks, resulting in a 1 km resolution to
match the pixel or grid size of the target data.

Table 1. Datasets used in the study.

Name Parameters Grid Spacing Temporal
Resolution Purpose

ERA5-Land

T2M, U10, V10,
SP, SNR, SSHF,

SLHF, SC, D2M,
WS

9 km Daily Dynamic
predictors

Reference Target
Data T2M 1 km Daily Predictand

SRTM
Elevation, Slope,
Aspect, C-curv,

L-curv
1 km - Static Predictors

2.3. Methods

In this study, we adopted three ML algorithms: ANN, RF, and CNN. The choice
of these models for this study is supported by earlier research that showed the strong
performance of these machine learning models for downscaling temperature. Various
intercomparison studies showed the effectiveness of ANN and RF models in capturing
complex nonlinear relationships between different input features and target temperatures.
For example, as explained above, Azari et al. [10] compared six different ML models,
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including MLR, KNN, ANN, RF, SVR, and adaptive boost, and found that ANN showed
superior performance over other models. Similarly, Pang et al. [9] found that the RF
model performed better than ANN and MLR in downscaling mean temperature over the
Pearl River basin. In another study, Hanoon et al. [17] found that ANN outperformed
other models, such as gradient boosting, RF, and linear regressions, for predicting daily
temperature in Malaysia. These findings from several intercomparison studies helped us
select the models ANN and RF for spatial downscaling tasks. In addition to this, CNN was
selected as another model for our study, as it has been used in various spatial downscaling
tasks due to its ability to understand spatial features from datasets [3,19,35].

We re-projected the target data to normal lat-lon projections from the Universal Trans-
verse Mercator projection using the Pyproj library in Python to align with the ERA5-Land
data. Also, we aggregated hourly data from ERA5-Land to a daily time scale using the re-
sample function of the xarray library in Python. Our goal is to identify the best-performing
model along with a downscaling ratio that is sufficiently moderate but possibly higher
than in earlier studies [19]. Thus, the high-resolution datasets’ temperature and elevation
are upscaled to 1 km using interpolation techniques. In principle, different interpolation
techniques may lead to differences in results. In this study, we tested two interpolation
techniques, namely, the nearest neighbor and averaging methods. In fact, we observed that
differences in interpolated or upscaled datasets may occur, but they are mostly negligible.
In particular, the nearest neighbor method preserves original values by allocating the
nearest grid point value, and it may result in abrupt changes in temperature or elevation
in complex terrain. This method preserves original values without smoothing, so it is
particularly suited for categorical values. On the other hand, in the averaging method, grid
values are calculated by averaging neighboring grid points and provide a smoother and
more consistent transition between grids; this method is therefore suitable for continuous
variables such as elevation and temperature. Therefore, we opted for the averaging method
to interpolate our datasets. The high-resolution dataset of 250 m was spatially aggregated
by averaging 4 × 4 pixels, resulting in a 1 km resolution, which serves as the target data.
The DEM data at 30 m spatial resolution was also upscaled to 1 km by averaging over
33 × 33 pixels using spatial aggregation blocks to match the target grid resolution. The
predictors from ERA5-Land were re-gridded to match the shape of the target data by
keeping the resolution of 9 km the same as in earlier studies [8,46].

In addition, we derived a few more static features from the DEM, such as slope, aspect,
cross-sectional curvature (C-curv), and longitudinal curvature (L-curv), in order to obtain
more auxiliary predictors [47,48]. The schematic of these features is shown in Figure 3.
The slope was evaluated as the first-order derivative of elevation and represents the local
steepness of the surface. The aspect represents the direction that the slope faces. The
curvature measures the rate of change of the slope and shows the concavity or convexity of
the terrain; it is evaluated from the second-order derivative of elevation. The curvature
of the surface, which is perpendicular to the direction of the slope, is called the C-curv,
whereas the curvature along the direction of the slope is called the L-curve. All these
features are derived using QGIS.

ML models have been created separately for each month to obtain better performance
considering the seasonal temperature variation. For ANN and CNN, standardization of
input features was carried out by subtracting the mean and dividing by standard deviation
to have zero mean and unit standard deviation [49]. This process of rescaling the features to
a comparable scale helps in achieving faster convergence during training [16,50]. Without
standardization, features or predictors with higher values can dominate the training process,
potentially leading to longer convergence times. On the other hand, RF does not require
standardization, as decision trees used in algorithms are not affected by the scale of input
features. In this study, we aim to downscale ERA5-Land T2M from a spatial resolution of
9 km to 1 km, thus having a downscaling ratio of 9.
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Figure 3. Schematic for static features derived from elevation, including: (a) slope, (b) aspect, and
(c) longitudinal and cross-sectional curvatures (L-curv, C-curv).

The ERA5-Land input features that have a good correlation with target temperature
are selected in this study based on previous downscaling studies [9,16]. These studies
have shown that the features that have a high correlation coefficient with the predictand
are effective predictors in downscaling. Also, the addition of each feature to the model
training process for the ANN and RF models was conducted in a step-wise manner. In
the beginning, T2M is used as a single predictor in order to have a baseline performance.
Then, additional predictors are included one at a time to evaluate their contribution to
the model’s performance. This iterative method enables a careful, incremental evaluation
of each predictor’s impact, retaining only those contributing to improving the model
performance. For ANN and RF models, we observed a gradual improvement after the
systematic addition of 15 predictors. This includes dynamic features such as ERA5L-T2M,
U10, V10, WS, SP, SC, SSHF, SLHF, and SNR, along with static features such as elevation,
slope, aspect, C-curv, and L-curv. A similar approach was adopted for CNN, starting with
ERA5L-T2M as the only predictor for baseline performance. However, incrementally testing
additional predictors such as slope, aspect, C-curv, and L-curv, along with the dynamic
feature SC, was observed to adversely affect the model, thereby degrading its performance.
We performed a sensitivity study for January with a combination of static and dynamic
features to evaluate their impact on the performance of the model using the RMSE, MSE,
and R2 metrics. A detailed performance analysis of different feature combinations using
these metrics can be found in Supplementary Materials. Based on this analysis, we found
that dynamic features such as U10, V10, and wind speed contributed positively to model
performance, whereas static features such as slope, aspect, and curvature degraded the
performance of the model. We diagnosed that the inclusion of these static features might
have acted as noise, leading to the lowered performance of the model. Therefore, these
features were systematically excluded, leading to a formulation set of 10 predictors for the
CNN model.

We used a temporal split of the dataset for evaluating models instead of traditional
k-fold cross-validation. For time series data, the temporal split is useful in assessing the
model’s ability to generalize with future unseen data. In particular, the daily datasets
spanning from 1980–2018 are split into two parts: the training period from 1980–2009 and
the testing period from 2010–2018. The proposed models in the study are compiled using
mean squared error (MSE) as a loss function. MSE is selected for its ability to penalize large
errors more severely, making it a good fit for temperature downscaling, as temperature
data can exhibit sharp variation over short distances, especially in complex terrains. In
the MSE loss function, errors are squared, thereby punishing larger deviations between
predictions and observed temperatures. Other loss functions such as MAE measure average
magnitude errors. Also, MAE treats all errors equally, meaning it is less sensitive to large
errors and therefore less effective in addressing sharp temperature gradients in complex
regions. Therefore, we chose MSE as our loss function for models, as it is widely used in
different regression tasks [51,52]. As customary in forecast verification procedures, the
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performance of the models is analyzed from the metrics: correlation coefficient (r), root
mean square error (RMSE), mean absolute error (MAE), coefficient of determination (R2),
and mean bias error (MBE) [51]. The correlation coefficient (r) is used to measure the
linear relationship between the model’s predicted and observed values. RMSE gives more
weight to large errors, since it squares errors before averaging. This makes it sensitive to
outliers. MAE allows for quantifying average error in predictions across the study area.
It is calculated as the average of the absolute difference between the model’s predicted
and observed values. R2, also called the coefficient of determination, is used to quantify
the proportion of the variance in the dependent or target variable that is predictable from
the independent variables. R2 can have values that range from 0 to 1. The MBE is used
to capture average bias in model prediction by calculating the mean difference between
the model’s predicted and observed values. MBE considers the direction of errors, and it
ranges from −∞ to +∞, with values close to 0 considered best. The evaluation metrics and
their formulas are summarized in Table 2 below.

Table 2. Evaluation metrics with their formulas.

Index Formula

Correlation r = ∑n
i=1(yi−ȳ)(ŷi− ¯̂y)√

∑n
i=1(yi−ȳ)2

√
∑n

i=1(ŷi− ¯̂y)2

Root Mean Square Error RMSE =
√

1
n ∑n

i=1(yi − ŷi)2

Mean Absolute Error MAE = 1
n ∑n

i=1 |yi − ŷi|

Coefficient of Determination R2 = 1 − ∑n
i=1(yi−ŷi)

2

∑n
i=1(yi−ȳ)2

Mean Bias Error MBE = 1
n ∑n

i=1(ŷi − yi)

Mean of Observed or Target Values ȳ = 1
n ∑n

i=1 yi

Mean of Model Predicted Values ¯̂y = 1
n ∑n

i=1 ŷi

Here, n represents the number of observations, ŷi represents model predicted values,
yi represents observed values, ¯̂y represents mean model predicted values, ȳ represents the
mean of the observed values, and y is any variable (e.g., temperature).

To understand the significance of elevation in model performance, we performed a
sensitivity study. First, we trained the models using ERA5L-T2M as the only predictor, and
secondly, we trained models by giving ERA5L-T2M and elevation (EL) data as predictors.
We then evaluated the performance of models with and without elevation using correlation
(r) and R2, values along with a scatter density plot. The feature importance for the ANN
model was calculated using Shapley Additive Explanations (SHAP) to understand the
role of each feature in model prediction [53]. SHAP gives importance to each feature for a
given prediction, which provides a way to explain the output of ML models. We calculated
SHAP values for each feature of the ANN model using the SHAP library in Python. For
the CNN models, permutation importance was computed by perturbing each feature in
validation data and measuring the change in model performance [54]. The permutation
importance assesses the impact of the feature by measuring changes in the performance of
the model when feature values are randomly shuffled. Lastly, for RF, the intrinsic feature
of RF algorithms directly gives the feature importance without the need of additional
methods such as permutation or SHAP required for ANN and CNN.Feature importance
for all models was calculated for months and then aggregated over seasons for analysis.
The values of feature importance were normalized to between 0 and 0.5 for a consistent
and meaningful comparison between models.

3. Models Used in the Study

In this section, we briefly describe the three ML models, namely ANN, RF, CNN, along
with their architecture.



Atmosphere 2024, 15, 1085 10 of 24

3.1. Artificial Neural Network (ANN)

In this study, a feed-forward neural network with three layers is employed for the
downscaling task. To identify the architecture for the ANN model with optimal perfor-
mance, we conducted sensitivity experiments. We trained and tested different configura-
tions with different numbers of neurons in the input and hidden layers, changing network
depth to identify the best balance between model accuracy and complexity. After this
sensitivity study, we found that the configuration (15-48-1) with 15 neurons in the input
layer, 48 neurons in the hidden layer, and 1 neuron in the final output layer, performed
best while avoiding unnecessary complexity. The rectified linear unit (ReLU) is used as an
activation function in the hidden layer, and the Adam optimizer is used to optimize the
neural network. The final layer is a single neuron output with a linear activation function
aptly chosen for the regression task. The model is trained for 300 epochs using early
stopping, which is used to monitor the loss and stops the training when no improvement is
observed after the patience parameter of 10 epochs. The batch size for model training was
set to 512 after a series of experiments with batch sizes to enhance training accuracy. The
ANN model is provided with 10 dynamic features and 5 static features. The ANN model
performed best with this set of predictors.

3.2. Random Forest (RF)

RF is an ensemble of decision trees used for both regression and classification tasks.
The RF technique was first developed by [55] in 2001. RF constructs multiple decision
trees during training, and every tree is trained on a different dataset subset. Each tree
produces its output, and the final output of the RF model for the regression problem is the
average of the prediction of all trees [9]. The averaging method increases the accuracy by
reducing variance in error and by reducing overfitting. The robustness of the RF model
in handling complex datasets and capturing nonlinear relationships makes it effective for
identifying patterns in datasets and making accurate predictions in regression problems.
RF is provided with 10 dynamic features and 5 static features. We tested the RF model
with estimators or trees ranging from 50 to 100 to obtain the optimal performance. We
observed that the time required by the model for training and prediction increases as
the number of estimators increases. The RF model performed best with 100 estimators,
ensuring optimal performance for our downscaling task. The random state parameter is
set to 42 to ensure reproducibility of the results across different runs. The default values for
the other parameters performed adequately for our task.

3.3. Convolutional Neural Network (CNN)

A CNN is a type of ANN built for processing grid-like data, such as images [56,57].
In addition to the layers present in ANN, CNN models have a couple more layers known
as the convolution layer and pooling layer. The convolution layer consists of filters, also
known as kernels, that slide over input data, calculating element-wise multiplication and
summations. This process extracts features such as edges or textures from input data. After
the convolution layer, we have the pooling layer in CNN. The role of the pooling layer is
to decrease the spatial dimension of the feature maps produced by the convolution layers.
In this study, we have used the max-pooling technique [58]. After two convolution and
pooling layers, two fully connected dense layers are used for final predictions. We used
the ReLU activation function to bring nonlinearity into the network [52]. In this study,
we designed a CNN model with 2 convolution layers with 16 filters in the first layer and
32 filters in the second layer. Each convolution layer uses a kernel size of 3 × 3. This
configuration was selected after a series of experiments with filter size and number of
filters. The max pooling layer with a 2 × 2 size was applied after the convolution layer. We
tested different neuron configurations after the flattening operation in the dense layer and
found the best performance with 256 and 128 neurons in this setup. The CNN model was
trained for 300 epochs, with early stopping applied and with patience parameters of 10.
The architecture for the CNN model used in this study is shown in Figure 4.
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Figure 4. Architecture for the CNN model with different layers. From the left at the first level, there
is the input layer where input predictors are provided. Then, there comes a pair of convolution layers
and a max pooling layer. The first convolution layer has 32 filters and the second 16 filters, both
having a kernel size of 3 × 3. The max pooling layer with kernel size is 2 × 2. The last layers are fully
connected dense layers with 256 and 128 neurons, respectively.

4. Results

In this section, we show the results of downscaling in terms of the consistency of
models in predicting T2M, comparison of models using aggregated metrics, spatial and
seasonal variation in the performance of models, and the importance of elevation for the
models using sensitivity and feature importance.

4.1. Spatial Consistency of Models

We selected representative days for each season to evaluate the spatial consistency
of machine learning models in predicting T2M: for winter (15 January 2015), spring (15
April 2015), summer (15 July 2015), and autumn (15 October 2015) (Figure 5). In the figure,
Input-T2M is the input ERA5L-T2M with a coarser resolution of 9 km. ANN, RF, and
CNN represent the downscaled T2M output of respective models at a spatial resolution
of 1 km, whereas Crespi represents target reference T2M with a spatial resolution of 1 km.
The selection of days was based on the typical seasonal characteristics. The primary
goal here was to visually assess whether the proposed models can reproduce patterns
in target data across different seasons. Hence, spatial consistency refers to the ability
of models to accurately capture spatial pattern variations in temperature. Overall, all
models effectively improve the spatial resolution of input ERA5L-T2M, generating more
detailed high-resolution outputs. However, the CNN model consistently matches spatial
variability and fine-scale features closely to that of the target across all seasons, suggesting
better performance than other models. Especially in winter (15 January 2015) and autumn
(15 October 2015), CNN excels at capturing spatial consistency, whereas ANN and RF
struggle to reproduce the target data. The RF model had better performance than ANN in
terms of spatial details; however, it did not fully capture finer details as effectively as CNN.
The ANN model can reproduce broader spatial patterns but tends to produce less detailed
predictions. However, in spring and summer, all models—ANN, RF, and CNN—show
comparable performance, effectively capturing spatial patterns and variability in the target
data. To assess in more detail the accuracy and performance of models in producing target
data for the entire test period (2010–2018) across different seasons, a comparison of models
using evaluation metrics such as RMSE, MAE, R2, and MBE is shown in Section 4.2. These
metrics assist in the assessment of model performance comparison, complementing the
visual overview from the spatial plots.
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Figure 5. Spatial plot of representative days for each season for input (ER5L-T2M), models (ANN, RF,
and CNN), and target (Crespi T2M).

4.2. Average Metrics of Model Performance

Figure 6 shows the values of spatial-temporal aggregated metrics of the three models
adopted (ANN, RF, and CNN) for downscaling across different seasons. The metrics are
calculated for all 12 months; for example, for January, the metrics are computed for data
across latitude (74), longitude (19), and 279 prediction days from 2010 to 2018. Then,
the metrics are averaged for every season to compare and evaluate the performance of
the models. CNN shows better values for metrics than others across all seasons, closely
followed by RF. Particularly for summer and spring, both CNN and RF show values of
metrics RMSE (1 ◦C, 1.2 ◦C), and R2 (0.94, 0.92) quite similar to each other, signifying close
performance. However, particularly for winter, CNN performs better than RF, with the
lowest RMSE (1.29 ◦C, 1.62 ◦C), MAE (1 ◦C, 1.26 ◦C), and the highest R2 (0.87, 0.79). This
similar pattern of CNN performing better than RF is observed for autumn as well. On the
other hand, the ANN model lags behind the RF and CNN models in terms of performance
across all seasons, indicating its poor performance.

Figure 6. Metrics heatmaps comparing the performance of the ANN, RF, and CNN models for winter,
spring, summer, and autumn using RMSE, MAE, R2, and MBE over the test period from 2010–2018.
The models with the best performance are shown with a darker blue color, whereas models with poor
performance are shown in a lighter blue color.

All models exhibit seasonal variation in performance for downscaling spatial T2M.
The best performance for all the models is obtained in summer, whereas the worst model
performance is obtained in winter. The CNN model exhibits the best performance in
summer (achieving RMSE = 1.01 ◦C, MAE = 0.78 ◦C, and R2 = 0.94), whereas the ANN
model shows the lowest performance in winter (RMSE = 1.63 ◦C, MAE = 1.28 ◦C, and
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R2 = 0.79). The performances of the models for spring and autumn are very close to each
other, which is better than winter and poorer than summer.

The aggregated MBE metric for all models shows lower biases, and its maximum
value reaches only up to +0.21 ◦C and −0.16 ◦C (Figure 6). However, from the average
metrics for MBE, it appears that the ANN model outperforms others, with the lowest MBE
values across all seasons. To confirm this, we looked at the spatial distribution of MBE and
its variation along the elevation for all models and seasons.

4.3. Spatial and Seasonal Variation in Model Performance

Figure 7 shows an elevation map of a study region (a), season-wise spatial distribution
of MBE (b), and variation of MBE elevation bin-wise (c) for the ANN, RF, and CNN models.
To show the spatial distribution, MBE is computed at each spatial location over the study
region for the prediction time range of 2010 to 2018. The spatial distribution shows that the
values of positive and negative MBE are much higher for ANN compared to its counterparts
RF and CNN. The RF model shows comparable performance with CNN, although with
higher values, both positive and negative, in particular in the winter. The analysis of MBE
using spatial distributions reveals that the ANN model exhibits higher positive MBE at
higher elevations and negative MBE at lower elevations, which results in compensating for
MBE when aggregated over space and time, resulting in overall lower MBE metrics.

Figure 7. Representation of MBE for the three proposed models. (a) Map of elevation for the study
region. (b) Spatial distribution of MBE season-wise for ANN, RF, and CNN for testing period
2010–2018. (c) MBE elevation bin-wise for ANN, RF, and CNN for all seasons for testing period
2010–2018.

MBE varies with different elevations but also with seasons, showing clear patterns,
particularly for summer and winter (Figure 7b,c). In summer, there is a decrease in posi-
tive MBE with an increase in elevation for all models, shown as a green line (Figure 7c).
Conversely, for winter, there is an increase in positive MBE with an increase in elevation
for models, except CNN, where MBE decreases with an increase in elevation, shown as a
blue line (Figure 7c). In general, we observed that the ANN and RF models exhibit positive
biases at higher elevations and negative biases at lower elevations. In addition, the seasonal
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pattern of MBE for elevation can be observed specifically for ANN and RF, whereas CNN
shows a decrease in MBE for both summer and winter with an increase in elevation.

Figure 8c shows the variation of MAE with different elevations for each model for
all seasons. MAE is also computed at each spatial location over a study region for the
prediction time from 2010 to 2018. The ANN model shows an increase in MAE with
increasing elevation across all seasons, with a slight decrease in MAE for elevation bins
from 1700 m to 2300 m. However, the RF model shows different patterns, with relatively
invariant MAE across elevations for almost all seasons except summer, where it decreases
slightly with elevation.

Figure 8. Representation of MAE for the three proposed models. (a) Map of elevation for the study
region. (b) Spatial distribution of MAE season-wise for ANN, RF, and CNN for testing period
2010–2018. (c) MAE elevation bin-wise for ANN, RF, and CNN for all seasons for testing period
2010–2018.

Conversely, for the CNN model, MAE decreases during summer with an increase in
elevation, whereas in autumn, MAE remains consistent for all elevation bins. However,
during winter, we observe mixed responses, with higher MAE values for both lower
and higher elevation bins and lower MAE values for medium elevation bins for winter
and autumn.

4.4. Sensitivity to Elevation

When we used ERA5L-T2M as the only predictor, both the ANN and RF models
resulted in a scatter density plot exhibiting clearly visible horizontal lines (Figure 9). These
patterns suggest that the relationship between predictor ERA5L-T2M and predictand is not
well-captured, as also suggested by the lower correlation and R2 values. Conversely, when
EL is provided as additional input along with ERA5L-T2M to the ANN and RF models,
there is a significant improvement in model performance. The scatter plot no longer shows
visible horizontal lines, suggesting a more consistent relationship between predictors and
predictand. This improvement is marked by a notable increase in correlation coefficient
and R2 values, as shown in Figure 9.
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Figure 9. Scatter plot between target T2M and model downscaled T2M for winter, considering
predictor ERA5L-T2M alone (first row) and ERA5L-T2M with EL (second row).

When the CNN model is tested for only ERA5L-T2M as a predictor and with both
ERA5L-T2M and EL as predictors, no noticeable difference in its performance is observed.
Both cases resulted in identical correlation coefficients and R2 values. Furthermore, for
CNN, data points on the scatter plot between observation and target lie more closely along
the 1-to-1 line than for ANN and RF, indicating consistent model performance. The CNN
showed a similar pattern of results across other seasons too, suggesting that the inclusion of
elevation as an additional feature does not enhance model performance. This underscores
the inherent capability of the CNN model in terms of extracting spatial information from
the input datasets, making elevation an unnecessary additional input for the particular
model even over complex terrain. However, for ANN and RF, the inclusion of elevation
as an additional predictor plays a crucial role in enhancing the model’s performance in
complex terrain.

4.5. Feature Importance of Models

Feature importance is a method used in ML to quantify the contribution of each
input predictor or feature on model performance. Figure 10 shows the feature importance
for the ANN, RF, and CNN models. In the study of downscaling spatial temperature,
the identification of influential predictors is important for enhancing model accuracy
and interpretability.

During winter, for the ANN and RF models, a dominant feature is ERA5L-T2M,
followed by EL, suggesting an emphasis on broader atmospheric conditions, followed by
elevation. However, for the CNN model, for all the seasons, the dominant feature is T2M,
followed by D2M, except in the winter, where D2M is the primary predictor, followed by
ERA5L-T2M, indicating a different importance in the winter season. In spring, for the ANN
and RF models, T2M still appears as a dominant feature, with EL as a secondary dominant
feature. However, the importance given to ERA5L-T2M has been reduced, whereas there is
an increase in importance given to EL. This adjustment suggests that there is a change in
the relationship between temperature and elevation as the season transitions. In summer,
ANN and RF see a consensus, with EL emerging as a dominant feature, followed by ERA5L-
T2M, for both ANN and RF. This pattern underlines the key role of altitude on summer
temperature, as expected. This might improve the relationship between temperature and
altitude, potentially leading to the enhanced or better performance of the models in summer.
In autumn, for ANN, EL is the dominant feature, followed by T2M, D2M, and SC. For RF,
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ERA5L-T2M emerges as a dominant feature once again, suggesting broader atmospheric
conditions influencing daily mean temperature in autumn.

Figure 10. Feature importance for ANN (first and second row), RF (third and fourth row), and CNN
(fifth and sixth row) for all seasons.

5. Discussion

Results suggest the superior performance of the CNN model in downscaling gridded
daily mean T2M in complex terrain across all seasons, even with the aid of fewer features.
This fact may be due to its ability to capture spatial features in datasets compared to
other models. Additionally, CNN is inherently designed to handle image-like data and
capture spatial dependencies in it, a feature that may be key to making it ideal for handling
gridded datasets and well-suited for tasks such as spatial downscaling. In this study, the
CNN model applies convolution filters to predictors (e.g., elevation, temperature) to detect
gradients and spatial patterns. CNN captures temperature variations associated with
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elevation changes or other features by detecting edges and gradients in input data. During
training time, these filters learn to represent these spatial relationships, allowing the model
to identify how temperature is affected due to factors such as elevation or other features.
The hierarchical architecture of CNN helps it capture low-level and high-level spatial
features. For example, the first convolutional layer helps in capturing low-level spatial
features like small changes in temperature, whereas deeper convolutional layers extract
more complex relationships, e.g., the combined effect of wind and elevation on temperature.
Thus, CNN builds a hierarchical presentation of data by stacking multiple layers, which
allows it to recognize both broader and local spatial patterns in the dataset. Pooling layers
reduces the dimension of feature maps by retaining most significant features. The final fully
connected dense layers combine the captured spatial features and produce temperature
predictions for each grid. This architecture of CNN enables it to effectively extract and
learn complex spatial patterns, giving more accurate predictions for complex terrains.

Considering a downscaling ratio of 9, our study showed a good performance for CNN
followed by RF for spatial downscaling of daily mean T2M. The metrics for CNN and RF
show R2 > 0.90, RMSE < 1.25 ◦C, and MAE < 0.97 ◦C in all seasons except winter, where R2

ranges from 0.79 to 0.87, RMSE ranges from 1.29 ◦C to 1.63 ◦C, and MAE ranges from 1 ◦C
to 1.28 ◦C. Moreover, ANN also shows comparable performance but lags behind CNN and
RF in each season.

ANN and RF are predominantly employed for point scale downscaling [9,14,16].
Our study successfully tested these models for spatial downscaling of daily T2M. When
compared to the Karaman and Akyurek [36] study that focused on downscaling monthly
ERA5-Land T2M using RF for point scale downscaling, our study shows significant advan-
tages in terms of temporal resolution with the RF model, with MAE values ranging from
0.80 ◦C to 1.26 ◦C and RMSE values from 1.04 ◦C to 1.62 ◦C across different seasons. Also,
our results for daily downscaling of T2M using RF are comparable, with MAE (1.22 ◦C) and
RMSE (1.65 ◦C) achieved on the monthly scale by Karaman and Akyurek [36]. Moreover,
in our study, CNN attains the lowest MAE and RMSE among all models, with MAE from
0.78 ◦C to 1.00 ◦C and RMSE values ranging from 1.01 to 1.29, showing superior perfor-
mance. Both studies show the robustness of ML models in downscaling T2M over complex
topography. However, our focus on daily T2M provides finer temporal resolution with
better performance for CNN.

Results indicate that ANN and RF also exhibit performances comparable to that of
CNN, especially during spring and summer. Our study underlines and recommends the
importance of considering elevation as an auxiliary predictor in enhancing the performance
of ANN and RF in spatial downscaling of temperature in complex terrains. However, it
also reveals no significant improvement for CNN, implying CNN’s ability to extract spatial
features from input data without relying on elevation as an extra input feature. Notably, our
study achieves a greater downscaling ratio (9) over complex terrains, advancing beyond
the downscaling ratio in the earlier studies of 4 and 7, respectively [3,19].

We observed a pattern in seasonal variation in the models with better performance
in summer and lower performance in winter, in line with earlier studies [36,59]. This
strengthens the notion that seasonal variation significantly influences model performance.
To analyze plausible reasons behind seasonal variation in the performance of the model,
we conducted a seasonal comparison between input ERA5L-T2M and reference target T2M
for errors. We calculated different metrics such as RMSE, MAE, and MBE between input
ERA5L-T2M and target T2M data for different seasons (Figure 11).

ERA5L-T2M exhibits the highest errors during winter, implying that ERA5L-T2M
is less accurate in winter than in other seasons (Figure 11). Vanella et al. [60] observed
similar results showing less accuracy of ERA5L-T2M data in winter and higher accuracy
in autumn and summer when ERA5L-T2M is compared with ground-based observations
over the regions of Lombardy, Apulia, Sicily, and Campania in Italy. This implies that large
errors in input data during winter months may lead to poorer model performance. The
errors reduced through spring and summer, reaching the lowest in autumn. However, it is
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also worth noting that, although the input seems most accurate in autumn, the best model
performance was observed in summer and not in autumn. This suggests that errors in
input data may be a contributing factor but not the sole reason for the lower performance
of models in winter.

Figure 11. Error metrics RMSE, MAE, and MBE between ERA5L-T2M and reference target T2M (blue
color bars) and of models with the reference target T2M (orange, green, and red color bars for ANN,
RF, and CNN, respectively) for all seasons.

Some atmospheric processes are more frequent and exclusive to colder seasons, es-
pecially in winter, and are rarely present in other seasons. Examples include thermal
inversions and katabatic winds, which occur at a very local scale. These types of phenom-
ena are more common in winter because longer nights lead to a stronger radiation loss
from the earth and, as a consequence, surface cooling. For instance, thermal inversions
occur when the air near the surface is cooler than the air above [61]. Similarly, katabatic
winds typically flow during the night, when air layers on mountain slopes cool faster than
the valley atmosphere and make colder air drain toward valley floors, thus affecting the
surface temperature there. The occurrence of such phenomena at the local scale recalls
the complex interaction between topography and atmospheric conditions. While these
processes are crucial in understanding temperature patterns, capturing them is still a signif-
icant challenge for numerical weather prediction models. These limitations may contribute
to discrepancies in the performance of models during winter or colder seasons.

The MBE and MAE show distinct patterns across the models for their performance,
particularly across elevation bins. For ANN and RF models, MBE increases with elevation
in winter and decreases in summer. In winter, models seem to struggle more with elevation-
related variations when ERA5L-T2M is the dominant feature. Additionally, complexities of
winter conditions, such as snow cover and temperature inversions, introduce additional
interactions that these models may not be able to take into full consideration. Conversely,
during summer, MBE decreases along with the elevation when the dominant feature
is the EL. This shift may result in a better understanding of the influence of elevation
on temperature. The CNN models show a consistent decrease in MBE for both winter
and summer across all elevations. The robustness of the CNN model and its superior
performance can be attributed to the ability of the convolution layers to capture spatial
patterns more effectively than ANN and RF.

The models also show variations of MAE along the elevation. The ANN model
consistently shows the trend of increasing MAE towards higher elevations across all
seasons, similar to findings [3] obtained for a study over the western United States on
the downscaling temperature in complex terrains. It seems that ANN might struggle at
higher elevations, with increasing complexity leading to higher MAE values irrespective of
the seasons. The elevation distribution data have fewer data points at higher elevations
(Figure 2), which could also play an important role in model training and performance.
ANN with less exposure to high-elevation data points may not adequately learn specific
patterns and conditions in these regions, which might have contributed to increased errors
in those elevation ranges. However, the RF model shows comparatively stable MAE across
elevation, with a slight decrease in summer. This stability implies that RF may manage
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to reduce errors more effectively as a result of the ensemble learning approach. On the
other hand, the CNN model structure and its ability to extract spatial features from the
data might mitigate the negative impacts of this data imbalance, giving lower and stable
MBE and MAE across elevations. The observed errors in the MBE and MAE suggest that
it would be important to consider shifts in feature importance, model structure, seasonal
complexity, and data distribution in assessing model performance.

We observed variations in the performance of the ANN, RF, and CNN models de-
pending on the inclusion of elevation as a predictor, as shown in Figure 9. The CNN
model exhibited different behavior compared to the ANN and RF models, showing lower
sensitivity to elevation as an explicit predictor. The possible reason behind these results can
be attributed to differences in the architectures of CNN and other models. The CNN models
are designed to handle images or grid data, making them effective at capturing spatial
features and relationships between neighboring grid points. In the CNN model, convolu-
tional layers apply filters to input data, which helps in detecting spatial features such as
temperature gradients and features related to topography. Due to this, CNN can implicitly
account for the effects of elevation through spatial data itself. For example, even when
ERA5L-T2M was the only predictor, CNN can still understand the impact of elevation by
learning from the spatial context, which includes temperature variations related to changes
in elevations. The CNN model, indirectly through its convolution and pooling operations,
has already learned elevation information. This ability of the CNN model to capture spatial
dependencies explains why the explicit inclusion of elevation as an additional feature does
not change its performance. On the other hand, the ANN and RF models do not have
an inherent ability to capture spatial patterns and dependencies like CNN. For ANN and
RF, the inclusion of elevation as an explicit predictor is crucial for improvement in their
performance, especially in complex terrain. When ANN and RF provided ERA5L-T2M as
the only predictor, excluding elevation, scatter density plots resulted in visible horizontal
lines. The inclusion of elevation as an explicit predictor allows the ANN and RF models
to capture the relationship between temperature and topography better, as shown by the
disappearance of horizontal lines and improved R2 and correlation values.

Our results from the detailed feature importance analysis highlight distinct patterns
in feature importance for the proposed models, showing their strengths and limitations
under different seasons (Figure 10). The ANN model assigns significant importance to
T2M and elevation, with moderate importance to all dynamic features across all seasons,
except for static features (slope, aspect, and curvatures), which are consistently deemed
less important. On the other hand, RF shows a very selective approach by selecting mostly
ERA5L-T2M and EL as the primary predictors, with the others having less importance
across all seasons. When we look at feature importance for CNN, it consistently has
ERA5L-T2M as the dominant feature, followed by D2M across all seasons except winter,
where D2M is the most dominant one. In addition to this, elevation has not been given
importance at all, which suggests that the CNN model can extract spatial features on its
own without a reliance on explicit input of elevation as additional features. This aspect of
CNN underscores its characteristic strength in spatial feature extraction in the context of
spatial temperature downscaling.

Based on our analysis, we found that the performance of models varied depending
on the region and seasons, underscoring the importance of choosing the appropriate
model for specific applications. The ANN model showed good performance for summer
across the study region with moderate elevations. However, it struggled in regions with
higher elevations, as shown by higher biases. Thus, the ANN model’s ability to capture
nonlinear relationships between temperature and other predictors can be a good fit for
regions with less complex terrains. The RF model showed better performance in handling
both lower and higher elevations relatively well. The RF model exhibited consistent
performance in summer, spring, and autumn, but its accuracy declined in winter, indicating
its limited ability to capture extreme cold temperatures. On the other hand, the CNN model
outperformed all others in the complex region across all seasons. Although its performance
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slightly declined in winter, with some further tuning, CNN could potentially also be used
for predicting temperature for important practical applications such as frost forecasting.

6. Conclusions

ANN, RF, and CNN models were used for spatial downscaling daily mean temperature
in the Non and Adige Valleys, a complex terrain in the Italian Alps. Results highlight that
the CNN model exhibits superior performance across all seasons. RF performs closely with
CNN, particularly in spring and summer, whereas ANN shows the lowest performance
across all seasons. Our study achieved a greater downscaling ratio (9) over complex terrains
compared to previous studies. Using elevation as an auxiliary predictor enhanced the
performance of the ANN and RF models. Therefore, this study recommends using elevation
as an auxiliary predictor in further studies for ANN and RF in complex terrains. However,
we also observed no significant improvement when we added elevation as an auxiliary
predictor for CNN, implying that it is not necessary for CNN. We observed that all ML
models showed seasonal variation, with the best performance obtained in summer and
the lowest in winter. Models show different patterns in variation of errors along elevation
in other seasons. These findings are crucial, as they highlight how each model responds
to differences in elevation and across seasons, providing insights into their strengths and
limitations. This suggests that ANN and RF require additional adjustment for winters,
whereas CNN stays constant without elevation data. This understanding of the variation
of errors along elevation across different seasons is essential in future studies to enhance
the performance of models in downscaling temperature in complex terrains.

While the proposed models exhibited strong performance in temperature variations,
we acknowledge that one of the critical challenges in utilizing ML models in atmospheric
research is their interpretability, as ML models are often considered black boxes. In this
study, we addressed this challenge partially by doing a feature importance analysis to
understand the contribution of different predictors to the performance of models. Although
this analysis provides some insight into the various factors for model sensitivity, more is
needed to ultimately bridge the gap between the predictive performance of the models and
physical interpretation. Therefore, we recognize the need for future work to go deeper to
understand the link between ML models and physical processes such as temperature and
terrain features. In addition, efforts can be made to improve the performance of models
in colder seasons, especially in winter, by including more features, such as vegetation
indices and soil moisture. This is being addressed by ongoing research efforts under the
international cooperative initiative TEAMx—Multi-scale transport and exchange processes in
the atmosphere over mountains–programme and experiment. In line with that, we plan to work
on the downscaling of seasonal temperature forecasts with a lead time of a few days over
complex terrains, which may be helpful for applications such as frost forecasting.

Supplementary Materials: The following supporting information can be downloaded at: https://
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with different predictor combinations with the metric table.
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