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Abstract

In this paper, we lay the foundations of the theory of slice regular functions in several
(non-commuting) variables ranging in any real alternative *-algebra, including quaternions,
octonions and Clifford algebras. This higher dimensional function theory is an extension of
the classical theory of holomorphic functions of several complex variables. It is based on
the construction of a family of commuting complex structures on R?". One of the relevant
aspects of the theory is the validity of a Cauchy-type integral formula and the existence of
ordered power series expansions. The theory includes all polynomials and power series with
ordered variables and right coefficients in the algebra. We study the real dimension of the zero
set of polynomials in the quaternionic and octonionic cases and give some results about the
zero set of polynomials with Clifford coefficients. In particular, we show that a nonconstant
polynomial always has a non empty zero set.
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1 Introduction

The theory of slice regular functions of one variable in a real alternative *-algebra is now
well developed. It was introduced firstly for functions of one quaternionic variable by Gentili
and Struppa in [5, 6] and then extended to octonions in [7] and to Clifford algebras in [2]. In
[8, 9], a new approach to slice regularity, based on the concept of stem function, allowed to
extend the theory to any real alternative *-algebra A of finite dimension.

The original definition [5, 6] of slice regularity for a quaternion-valued function f, defined
on an open domain €2 of the algebra H of quaternions, requires that, for every imaginary unit
J € H, the restriction of f to the complex line generated by J is holomorphic with respect
to the complex structure defined by left multiplication by J. The approach taken in [8, 9]
allows to embed the class of slice regular functions on an axially symmetric domain into a
larger class, that of slice functions, on which no holomorphicity condition is assumed. We
refer to the monograph [4] for a survey of slice analysis in one quaternionic variable and to
the papers [13—15] for a recent account of the theory on real alternative *-algebras.

In the present paper we propose a generalization of slice analysis to several variables
in a real alternative *-algebra A. Our function theory includes, in particular, the class of
polynomials in several (ordered) variables with right coefficients in A. Our approach is based
on the concept of stem functions of several variables and on the introduction of a family of
commuting complex structures on the real vector space R?". For A = H, several variables
have been investigated also by Colombo, Sabadini and Struppa [1]. Their approach via stem
functions is similar to ours, but the definition of regularity is different, as we will see in
Sect. 3. For A = O, the algebra of octonions, a slice functions theory of several variables has
been proposed by Ren and Yang [21]. The major difference with our theory is that the authors
define slice functions on a class of non-open subsets of the space ", where the octonionic
variables associate and commute. In [21] the authors state as challenging the possibility to
establish the theory on open subsets of @". For A = C, as one may expect, the slice function
theory in n variables reduces to the classic theory of several complex variables on domains D
of C", with the unique restriction that D must be assumed invariant with respect to complex
conjugation in every variable zy, ..., z,.

Some of the results proved here were presented in [10] for the case A = R,,, the real
Clifford algebra of signature (0, m), and in [11] for the general case of real alternative *-
algebras. See also [23] for a review of quaternionic and Clifford Analysis in several variables.

We describe the structure of the paper. In the Introduction we give some preliminaries and
recall the main definitions of the one variable slice function theory. Then we present without
proofs the principal results in two quaternionic variables, where the exposition is simpler
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but sufficiently representative of the theory, at least for the associative case. In Sect. 2, we
introduce the stem functions of several variables in A and define the induced slice functions.
We prove a representation formula and the identity principle. We generalize to n variables the
concepts of spherical value and spherical derivatives and give the relation between sliceness
in n variables and sliceness in one variable. We then prove the smoothness properties of
slice functions. We study also the multiplicative structures on slice functions induced by
pointwise products of stem functions, and we investigate some special real subalgebras of
slice functions. Section 3 is dedicated to slice regularity. After giving the definition of a
family of commuting complex structures on A ® R?", the concept of slice regular function
of several variables is introduced. All polynomials (with ordered monomials) turn out to be
slice regular functions. We study the real dimension of the zero set of polynomials in the
quaternionic and octonionic cases and give some results about the zero set of polynomials with
Clifford coefficients. In particular, we prove that these zero sets are nonempty for nonconstant
polynomials. We show that slice regularity in several variables has an interpretation, by means
of the spherical value and spherical derivatives, in terms of slice regularity in one variable.
We investigate Leibniz’s rule and we prove the stability of slice regularity under the so-called
slice tensor product of slice functions. We show the relation between slice regularity and
expansions in (ordered) power series on products of open balls in A centered in the origin.
Finally, we define a slice Cauchy kernel associated to any given slice regular function, and
obtain a Cauchy integral formula. In the associative case, we are able to define a universal
slice Cauchy kernel, and express it in terms of pointwise operations in A.

1.1 Preliminaries

Let A be a real algebra with unity 1 # 0. Assume that A is alternative, i.e. x*y = x(xy) and
(yx)x = yx? forall x, y € A. A theorem of E. Artin asserts that the subalgebra generated
by any two elements of A is associative. The real multiples of 1 in A are identified with the
field R of real numbers. Assume that A is a *-algebra, i.e., it is equipped with a real linear
anti-involution A — A, x + x¢, such that (xy)¢ = y“x¢ forall x, y € A and x° = x for x
real. Let #(x) := x + x¢ € A be the trace of x and n(x) := xx¢ € A the (squared) norm of
x. Let

Sa:={JeA:t(x)=0, n(x) =1}

be the ‘sphere’ of the imaginary units of A compatible with the *-algebra structure of A.
Assuming S4 # @, one can consider the quadratic cone of A, defined as the subset of A

Oa = U Cy,

JGSA

where C; = (1, J) is the complex ‘slice’ of A generated by 1, J as a vector subspace or,
equivalently, by J as a subalgebra. Itholds C; NCg = Rforeach J, K € S4 with J # £K.
The quadratic cone is a real cone invariant w.r.t. translations along the real axis. Observe that
t and n are real-valued on Q4 and that Q4 = A if and only if A is isomorphic as a real
*-algebra to one of the division algebras C, H, O with the standard conjugations (see [9,
Proposition 1]). Moreover, it holds

Oa=RU{xeA\R:t(x) e R,n(x) e R, 4n(x) > t(x)z}.
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Each element x of Q4 can be written as x = Re(x) + Im(x), with Re(x) = "JEXC,

Im(x) = % = BJ, where 8 = /n(Im(x)) > 0 and J € S4. The choice of 8 > 0 and
J € S4 is unique if x ¢ R.

We refer to [9, §2] and [13, §1] for more details and examples about real alternative
*-algebras and their quadratic cones.

1.2 The one variable slice function theory

The slice functions on A are the functions which are compatible with the slice character of
the quadratic cone. More precisely, let D be a subset of C that is invariant w.r.t. complex
conjugation. Let A ®p C be the complexified algebra, whose elements w are of the form
w=a+ibwitha,b € Aandi> = —1.In A ®g C we consider the complex conjugation
mappingw =a+ibtow =a—ibforalla, b € A.Ifafunction F : D — A ®p C satisfies
F() = F(z) for every z € D, then F is called a stem function on D. For every J € S4, we
define the real *-algebra isomorphism ¢; : C — C; by setting

¢j(@+iB) :=a+ Jp foralla, B € R. (1)

Let Qp be the circular subset of the quadratic cone defined by

Qp=|JosD)=le+JpeA:a,peR a+ifeD, JeS,).
JeSa

The stem function F = F| +iF, : D — A ®g C induces the (left) slice function f = I(F) :
Qp — Ain the following way: if x =« + J8 = ¢ (z) € Qp NCy, then

F&x) = Fi(2) +JF2(2),

where z = o +if.

Suppose that D is open. Left multiplication by i defines a complex structure on A ®p C.
The slice function f = Z(F) : Qp — A is called (left) slice regular if F is holomorphic.
For example, polynomial functions f(x) = Z?:Q xJa; with right coefficients belonging to
A are slice regular on the quadratic cone.

To any slice function f = Z(F) : Qp — A, one can associate the function f : Qp — A,
called spherical value of f, and the function f; : Qp \ R — A, called spherical derivative
of f, defined as

1 1
I @) = @+ fG&9) and fi(x) = Elm(X)_l(f(X) — f&x)).

Ifx=a+pJ €Qpandz=a+if € D, then f2(x) = Fi(z) and f](x) = B 1R (2).
Therefore f and f, are slice functions, constant on every set Sy := « + B S4. They are
slice regular only if f is locally constant. Moreover, the formula

FO) = 700 +Im(x) f{(x)

holds for all x € Qp \ R. As we will see later, the concepts of spherical value and spherical
derivative in one variable will have a central role to get a characterization of slice regularity
in several variables in terms of separate one variable regularity.

We refer the reader to [9, §§3,4] for more properties of slice functions and slice regularity
in one variable.
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1.3 Slice regular functions on H?

Before presenting the full theory in the general case of n variables in a real alternative *-
algebra A, in this subsection we summarize the main results in the simpler case of two
quaternionic variables. We refer to the following sections for full proofs.

Slice functions on H?

Let D be a non-empty subset of C?, invariant w.r.. complex conjugation in each variable
71, 22. Let Qp be the circular open subset of H? associated to D C C2, defined as

Qp = {(e1 + LB o2+ Japy) € H? : J1, ]y € S, (a1 + i1, oz +ipa) € D).

Let {ey, e1, €2, e12} denote a fixed (real vector) basis of R*. If P(2) denotes the set of all
subsets of {1, 2}, we can write any element x of the real vector space H ® R* as x =
ZKGP(z) exag, where each ag belongs to H, and e(} = ey, ezy = ez and eqy 2} = e12.

Definition 1.1 A function F : D — H ® R*, with F = egFy+ e1F1 4+ ex Fr + e1p F1p and
Fx : D — Hforeach K € P(2), is called a stem function if the components Fy, F1, F2, Fi2
are, respectively, even-even, odd-even, even-odd, odd-odd w.r.t. the pair (81, B2), where
z1 = o1 +iPy and 22 = ap + i By with o, a2, B1, B2 € R. The (left) slice function f =
I(F) : Qp — Hinduced by F is the function obtained by setting, for each x = (x1, x2) =
(a1 + 181, 2 + J2f2),

fx) = Fy(z1, z2) + J1 Fi(z1, 22) + 12 F2 (21, 22) + J1 2 F12(21, 22)

where (21, z2) = (a1 +iB1, a2 +iB2) € D. |

Representation formula on H?

The values of a slice function can be recovered by its values on a four-dimensional slice of
Qp. Let a© denote the conjugate of a quaternion a € H.

Proposition 1.2 Let f : Qp — Hbeaslice functionandlety = (y1, y2) = (a1 +11 81, aa+
1B>) € Qp. Then for every x = (x1, x2) = (a1 + J181, a2 + J2B2) € Qp it holds:

1 . . ..
fx) Zz(f(yl,yz)+f()’?,y2)+f(y1,YE)+f(Y?’YE)

+ Il (= f O y) + FO y2) — FO1.¥9) + FO5.¥9))
+ Db (= fO1,y2) = FOFy2) + F 1, ¥9) + FOT¥9))
+ N1 LI (1. y2) — FO5, y2) — fO1.¥85) + FO ¥9) ).

Corollary 1.3 (Identity principle) Let f, g : 2p — A be slice functions and let I, I, € Sg
such that f = g on Qp N (Cy, x Cp,). Then f = g on the whole Qp.

Smoothness

Suppose that D is open in C.
Proposition 1.4 For every slice function f = Z(F) : Qp — H, it holds:

(i) If F is continuous on D, then f is continuous on Qp.
(ii) Let k € N\ {0}. If F is of class €*13 on D, then f is of class €* on Qp.
(iii) Let k € {00, w}. If F is of class €* on D, then f is of class €* on Qp.
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Multiplicative structure on slice functions

Every product on H ® R* induces a product on stem functions, and hence a structure of
real algebra on the set of slice functions. We consider the product on H ® R* constructed
as follows. First, we equip R* with the unique (commutative and associative) multiplicative
structure which makes the real linear isomorphism R* — C ® C, sending ey to the unity
l1=1®1,e;t0i®1,e2to 1 ®i and e13 to i ® i, a real algebra isomorphism. In other
words, eg = 1 is the unity of R, e% = e% = —1 and ejep = epe; = ej2. Then, we extend
this product to H ® R* by setting (¢ @ v) - (b @ w) = (ab) ® (vw) for all a,b € H and
v, w € R* In this way, we can identify the real algebra H ® R* with H ® (C ® C).

Definition 1.5 Let f, g : Qp — H be slice functions with f = Z(F) and g = Z(G). We
define the (fensor) slice product f - g : Qp — Hof f and gby f - g := Z(FG), where FG
is the pointwise product defined by (FG)(z) = F(z)G(z) in HQ(CQ® C) forallze D. O

For example, the slice product of the coordinate functions x; : H? — Hand X - H? — H,
with x;, = oy + JnBn = Z(ap + e By) for h = 1, 2, is the slice function x; - x : H? > H
given by

x1-x2 =Z((a1 +e1B1) (o + e282)) = a1z + ejan B + e2a1 B2 + e128182)
=y + Jioa By + D1 B2 + J1 28182

In this case, the slice product x| - x5 coincides with the pointwise product x;x>. Moreover,
X1 - x2 = x2 - x1. In general, if a, b € H, the slice product of xja = Z(x1a + e;(B1a)) and
x2b = Z(aab + e2(B2b)) is the slice function (x1a) - (x2b) = x1x2ab, while (x20) - (x1a) =
x1x2ba. Note that the pointwise product xx] is not even a slice function, see Remark 2.14.

The isomorphism from the real algebra of stem functions F : D — H® (C ® C) with the
pointwise product to the real algebra of slice functions f : Qp — H with the slice product
can be expressed by the commutativity of the following diagrams for all Jy, J, € Sy:

25 p—7F LHeC®O
¢ X @y, O (ONANA
HZD Qp f H

Here ¢;, x ¢5, : D — Qp denotes the product map (¢ X ¢5)(z1,22) =
(¢7,(z1), $1,(z2)), where ¢ is the map defined in (1), and @, 5, : H® (C® C) — H s
the real linear map defined by @, 5, (@ ® (z1 ® 22)) = ¢y, (21)P,(z2)a for all a € H and
71,22 € C.

Slice regular functions

Let J1 and 7> be the commuting complex structures on R*~C®C induced, respectively,
by the standard structures of the two copies of C. Explicitly, J,(ep) = —1 forh = 1,2
and Jy(e2) = Jo(e1) = eja. We extend these structures to H ® R* by setting 7, (a ® v) =
a® Jy(v) foralla € Hand v € R,

Throughout the remaining part of this section, we assume that D is open in C2.
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Definition 1.6 LetF:D — H ® R* be a stem function of class €!. For each h = 1, 2, we
denote 9, and 9, the Cauchy-Riemann operators w.r.t. the complex structures i on D and Jj,
on H® R4, i.e.

BF—l E_jﬁ d gp_l E_‘_jﬁ
=2 Gar ~ M\ 88 )) ™ T T 2 e, T s ) )

where ay, +iB, : D — Cis the hth-coordinate function of D. Let f=1L(F):Qp - H
and let h = 1, 2. We define the slice partial derivatives of f as the following slice functions
on Qp:

a 9 _
—f :=7Z(0p F) and —f =Z(pF).
oxp, oxj,

O
We denote S'(€2p, H) the set of all slice functions induced by stem functions of class €.

Proposition 1.7 (Leibniz’s rule) For each slice functions f, g € S! (RQp,H)andh = 1,2, it
holds:

3 af dg
3xh(f'g)_3xh.g+f ax,’
0 af g
8x;,'(f'g)_ oxj, .g+f.8x;l"

Definition 1.8 Let F : D — H ® R* be a stem function of class ‘zfl and let f = I(F) :
Qp — H be the induced slice function. F is called holomorphic if 01 F = 0,F = 0 on D.
If F is holomorphic, then we say that f = Z(F) is a slice regular function. O

Thanks to Proposition 1.4, every slice regular function is real analytic on Qp.

Example 1.9 All polynomial functions f : H?> — H of the form f(x) = D 1.00)el xf'xg2
ag, .¢,, for some finite subset L of N? and ay, ¢, € H, are slice regular. More generally, the

sum of a convergent power series Z(zl y)eN? xf‘x?agl ., 1s slice regular on a product of
two open balls of H centered at the origin. O

For each J € Sg and for each slice function f : Qp — H, we define Qp(J) =
Qp N (Cy x Cy) and we denote f; : Qp(J) — H the restriction of f to Qp(J).

Proposition 1.10 Let f € S'(Qp, H). The following assertions are equivalent:
@) f is slice regular.
a
(i) 8fc =0o0onQpforh=1,2.
X
h
(iii) There exists J € Sy such that f; : Qp(J) — H is holomorphic w.r.t. the complex
structures on Qp(J) and on H defined by the left multiplication by J; that is,
d 0
9 0y 4 72990 20 forall z € Qp(J) and for all h = 1.2, @
day 9Bn
where z = (a1 + JB1, a0 + JB2) € Cy x Cy.
(iv) For each J € Sy, f; is holomorphic in the sense of (2).
(v) f is slice regular w.r.t. x1, and the spherical value and spherical derivative of f w.r.t.
x1 are slice regular w.r.t. x,.
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As a simple illustration of condition (v), consider the polynomial f(xg, x2) = x1x3.
For every fixed xo € H, g(x1) := f(x1,x2) = x1x2 is slice regular w.r.t. the variable x.
Moreover, the spherical value g2 (x;) = x2 Re(x;) and the spherical derivative g;(x1) = x
of g w.r.t. x1 are slice regular w.r.t. the variable x, for every fixed x; € H.

Proposition 1.11 The zero set of any nonconstant polynomial function f : H> - Hisa
nonempty real algebraic subset of R = H?, whose real dimension can assume precisely the
three values 4, 5 and 6.

Leibniz’s rule (Proposition 1.7) and Proposition 1.10 imply that the slice product preserves
slice regularity. In particular, every slice product f(x) = f1(x1) - f2(x2), with fp (xp) slice
regular w.r.t. the variable x;, for 7 = 1, 2, is slice regular.

Since the complex structures .71 and /> commute, every pair of Cauchy-Riemann opera-
tg);s commute. In particular, for every slice regular function f, also the slice partial derivatives

af .
T and 7 are slice regular.

Cauchy integral formula for slice regular functions

Let J € Sy be fixed. Recall that ¢; : C — C; denotes the real *-algebra isomorphism
¢yl +ip) :=a+ JB. Let E{ and E), be bounded non-empty open subsets of C invariant
under complex conjugation and with boundaries of class ¢!. Define E;, = by (E,’l) for
h=1,2,and E := E| x E; C C;xC; withdistinguished boundary 0*E := (0 E1) X (0 E3).
Let Q(E) = QEi xE} be the circular open subset of H2 such that Q(E) N (C; x C,) = E.

Definition 1.12 We define the slice Cauchy kernel for E as the function C : Q(E) x 3*E —
H given by

C(x,y) := Culxy, y1) *x Cu(x2, y2),
where each Cri(xn, ya) = (yn — X))~ = Ay, ()7 0 — xp) = (& — xptn) +
n(yh))_l (yZ — xp) is the usual slice Cauchy kernel in one quaternionic variable, and the

slice product -, is performed w.r.t. x = (x1, x2) € Q(E) foreachy = (y1, y2) € 0*E. O

It is worth noting that C (-, y) is slice regular on Q2 (F) for each fixed y € 9*E.
For h = 1,2, let &, : T, — 0E) be piecewise % parametrizations of dEj, and let
T := Ty x T,. Given two continuous functions p, ¢ : 9*E — H, we define

/a . P dyq(y) = /T pE(), £2()) E1(1) E2(12) (61 (11), &2(12)) dhdta,

where éh : T, — H denotes the a.e. defined derivatives of &.

Theorem 1.13 Let f : Qp — H be a slice regular function. Suppose that the closure of
Q(E) in H2 is contained in Qp. Then

f) =@n)™ / C(x,y)J2dy f(y) forallx € Q(E),
*E
and the slice Cauchy kernel C can be expressed in terms of pointwise operations as follows:

Cx,y) = Ay, ()1 Ay, (02) haa — Ay, () THA Y, (1) Ty 4
— Ay D) T Ay () TS+ Ay )T A, () TS
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Slice regular functions in several variables 303

= Ay, ()T (1 Ay, (02) Tl — Ay () Ty — X1 Ay, ()T yS
+ Ay, (02) 7 i y5)

forall (x,y) € Q(E) x *E.

2 Slice functions
2.1 Basic definitions

If S is a set, then we denote |S| the cardinality of S and P(S) the set of all subsets of S. Let

N be the set of all non-negative integers and let N* := N\ {0}. For simplicity, given any

n € N*, we use the symbol P(n) instead of P({1, ..., n}). Givenz = (z1, ..., z») € C" and

h e{l,...,n}, we define
= @ Tty The The s - Z0)s

where zj, denotes the usual conjugation of the complex number z;,. Given a subset D of C”,

we say that D is invariant under complex conjugations if Z" € D for all z € D and for all
hell,...,n}.

Assumption 2.1 Throughout the paper, A is a real alternative algebra of finite dimension
with unity 1 7 0, which we equip with its natural Euclidean topology and structure of real
analytic manifold, as a finite dimensional real vector space.

We denote n a positive integer and {ex } xep(n) a fixed basis of the real vector space R?".
We identify R with a real vector subspace of R?" via the real linear embedding sending 1 € R
into ey € Rzn, and we write ey = 1. For simplicity, we set e; := ey forall k € {1, ..., n}.

We assume that Sy # 0.

We also assume that D is a non-empty subset of C" invariant under complex conjugations.

Consider the (real) tensor product A ® R?". Each element x of A ® R*" can be uniquely
writtenasx = Y KeP(n) €K 9K withag € A. In particular, we can identify each element a of
A with the element ega = la of A ® ]RZ", and we write a = la. As a consequence, A turns
out to be a real vector subspace of A ® R?". Note that, given any function F : D - A® R,
there exist, and are unique, functions Fg : D — A suchthat F =), eP(n) €K Fx. We shall
say that F is the K-component of F.

Definition 2.2 We say that a function F : D — A ® R with F = > kepm ¢k Fx isa
stem function if Fg (Z") = (=DKW Fg (2) or, equivalently,

Fx(z) ifh¢Kk

—Fx() ifhe K 3)

Fx@" = {

forallz € D, K € P(n)and h € {1,...,n}. We denote Stem(D, A ® ]Rzn) the set of all
stem functions from D to A ® R?". O

Letz = (z1,...,2n) € C"andlet H = {hy, ..., hp} € Pn) \ {#} with hy < ... < hp.
Define ¥ € C" by setting
= @ Ty 1 Ty T - s Thyp—1s Thps Thyptds - -2 Zn)-
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If H = ¢, then we set ZH := 7. Note thatz"} = 7" forall h {1,...,n} and 77 € D forall
z € Dand H € P(n).Moreover,if F : D — A®R2” isafunction with F = Zkgp(n) ek Fk,
then F is a stem function if and only if

Fx @)y = (=D)/KHIFg(z) forallz € D and K, H € P(n). )

Definition 2.3 Let W be a subset of C". We call circularization of W (in A") the set Q of all

points (a1 + J1B1, .-, 0 + Jnfn) € (Q4)" withay, B1,...,a,, Bp € Rand Jy, ..., J, €

Sa such that (o) + iy, ...,a, +iB,) € W. A subset © of (Q4)" is said to be circular (in
A")if ® = Qy for some subset W of C".

Given any x € (Q4)", we denote Sy the smallest circular subset of (Q 4)" containing x.

O

Notethat,if x = (x1, ..., x,) € (Qa)",thenSy = Sy, x---xS,,, whereS,, = ay+Saph
if x5 = ap + Jp B for some ay, By € R and Jy, € S4. Given another point y = (yq, ..., Yu)
in (Q4)", we have that S; = S, if and only if 7(x;) = t(y,) and n(xp) = n(y,) for all
hefl,...,n}.

Let us introduce a notation, which is very useful especially in the non-associative case.

Definition 2.4 Given any m € N* and any sequence u = (uy, ..., u,) of elements of A, we
define the ordered product [u] = [uy, ..., un] of u by setting [u] = [uy, ..., up] := uy if
m =1 and

[ul =lur,...;u;m] = ui(uaus - (Um—1um) . ..))
if m > 2. Given any v € A, we write [u, v] to indicate [u1, ..., Uy, v].

Moreover, we set [(] := 1 and [@, v] := v.

Let H € P(m). If H = (, then we define uy := @; hence [ug] = 1 and [ugy, v] = v.
If H # ¢, then we write H = {hy,...,hp} with hy < ... < h), and we define up :=
(7T uhp); as a consequence, we have:

lug] = un, @ny@py -+ Un,_up,) . .)
and
(r, v] = wp, (Uny Wy - -~ Wp,_ (Up,V)) .. 0)).

We use also the symbols (uh)f:1 to denote u, and (up)pcy to denote ugy.

Suppose now that, for each & € {1, ..., m}, uj is invertible in A, and denote u;1 its
inverse (u;)~! in A. In this case, if H = ¢, then we define u; := J; hence [u;l] =1
and [uﬁl, vl]=v.If H #0and H = {hy,...,hy} with h; < ... < h), then we define

u; = (u;pl, ”;,,1,1’ R u;ll); as a consequence, we have:
1y _ =1, -1 -1 . —1 -1
[ug 1= up, (Mhp_l(uhp_z (uh2 Up, )...)
and
-1 R g | -1 —1,,.—1
[ug ,vl= p, (”hp,l(”h,,,z e (uh2 (uh1 v))...).

We use also the symbols ((uh);le)_l to denote (u;LI_h)le, and ((up)nen)~ ! to denote

-1
U . O
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Given any v, w € A, any H € P(m), and any u = (uy,...,u,) € A” withm > 1 and
ui, ..., Uy invertible in A, it is immediate to verify that
[upg, v] = w if and only if v = [u;, w]. 5)

The elements [uy] and [u;] are invertible in A, see for instance Lemma 1.5(2) of [13].
However, in general, if A is not associative, then [u;l] # [u u17!L. On the contrary, if A is
associative, then [u;Il] =[ugl ' and [ug] = Up Upy "+ U,

We are in position to introduce the notion of slice function in several variables.

Definition 2.5 Given a function f : Qp — A, we say that f is a (left) slice function if there
exists a stem function F : D — A ® R with F = ZKEP(n) ek Fx such that

@) =Y kepon Uk, Fx ()]

forall x = (a1 + J1B1, ..., a0 + JuPBn) € Qp, where a1, B1,...,%;, B € R, 72 = (a1 +
iBi,...,an +ipy) € Dand J = (Jy,...,Jn) € (Sa)"; hence Jg = (Ji, -, Ji,) if
K ={ky,....kp} € Pm) \ {¥} withky < --- < kp,and Jy = 0.

If this is the case, we say that f is induced by F, and we write f = Z(F). We denote
S(Q2p, A) the set of all slice functions from Qp to A,and Z : Stem(D, A®]R2”) — S(2p, A)
the map sending each stem function F into the corresponding slice function Z(F'). O

The preceding definition is well-posed. Let x = (x1, ..., x;;) be a point of Qp. For each
h e {l,...,n}, there exist oy, B € R with B, > 0 and J, € S4 such that x;, = ay, + J; B
If x;, € R, ie., B, = 0, then ¢y, is uniquely determined by x; on the contrary, J; can be
chosen arbitrarily in S4. If x;, ¢ R, i.e. B, > 0, then oy, B and Jj, are uniquely determined
by xj, and xj, has the following two representations:

ap + JpBr = xp = ap + (—=Jp)(—=Bn).

Setz := (w1 +if1,...,a, +iBy) € D.Let L be the setof all & € {1, ..., n} such that
x;, ¢ R. Thanks to (3), we know that Fg(z) = 0if K ¢ L. For each H € P(n) with
# # H C L, itis possible to write x as follows:

x = (o1 + 1B, ..., 00+ JuBn)
and x = x/;, where

Xy = (a1 + (erJD)(€1B1); - -, & + (€nn)(€nfn))
withey, = —1ifh € H,e, = 1if h € L\ H, and (¢, Jp) can be chosen arbitrarily in
{—1,1} x S4 if h ¢ L. By (4), we have
F&) =2 kepumlIks FK(@D] = Y kepmy.kcrlVk, Fk(2)]
=Y kepm. kLl Ik . (DKM Fe )
=Y kel (DN ek, Fk @] = f(x}).

It follows that Definition 2.5 is well-posed, as claimed. In Proposition 2.12 below, we will
show that a slice function is induced by a unique stem function.

The real algebra A we are working with is assumed to be alternative. In particular, it
is power-associative. Consequently, if a € A and m € N* then the power a™ is a well-
defined element of A, independently from the system of parentheses we use to compute it.
For convention, we set a® := 1 foralla € A.
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Remark 2.6 The usual pointwise defined operations of addition and multiplication by real
scalars define structures of real vector spaces on the sets Stem(D, A ® ]Rzn) and S(Qp, A),
which make the map Z : Stem(D, A ® ]Rzn) — S(2p, A) areal linear map. Given any F =
Y kepo €k Fk. G =Y kcpu ek Gk € Stem(D, A®R?), f, g € S(Qp, A) and r € R,
we set (F + G)(2) == Y kepp) ¢k (Fk(2) + Gk (2), (Fr)(2) == Y} kepw ek (Fk (@),
(f + @) = fx) + gx) and (fr)x) = f()r, where Fx(2) + Gx (), Fx(@r,
f(x)+g(x)and f(x)r are additions and scalar multiplications in A. Evidently, Z(F 4+ G) =
I(F) + I(G) and Z(Fr) = Z(F)r. Actually, the map Z is an isomorphism of real vector
spaces, see Corollary 2.15 below. O

Definition 2.7 Given x = (x1,...,x,) € A", £ = ({1,...,¢,) e N'and a € A, we denote
xta the element [(xﬁ”)zzl, a] of A. A function P : (Q4)" — A is monomial if there exist
¢ e N"and a € A such that P(x) = xta forall x € (Qa)". The function P : (Q4)" — A
is polynomial if it is a finite sum of monomial functions.

The restriction of a monomial (respectively polynomial) function to €2p is said to be
monomial (respectively polynomial) on Qp. O

We conclude the present section with an important result, which asserts that the class of
slice functions includes the one of polynomial functions. First, we need a definition.

Definition 2.8 For each k € N, we denote pj and gy the real polynomials in R[X, Y] such

that (o +iB)* = pr(a, B) +igi(a, B) forall o, B € R. ]

Proposition 2.9 Each polynomial function on Qp is a slice function. More precisely, given

any £ = (L1, ...,4,) € N* and a € A, the function F® : D — A QR%, defined by
FO@) =Y kepm ek (Theqr....apx 2o @ns BD) (Thek a0, @n, B))a), — (6)

forallz = (a1 +iB1, ..., 0, +iBn) € D, is a stem function inducing the monomial function

ta on Q

xta on Qp.

Proof Let £ = ({1, ...,£,) € N". It suffices to show that the function F¥ : D — A,

defined in (6), is a stem function and Z(F©)(x) = x%ap. Let z = (z1,...,2,) = (o1 +

iBi,....an+iBy) € D,leth € {l,...,n}and, given any K € P(n),let F\) : D — Abe
the function

Note that, for each z;, = o, + i B8y € C, it holds:
Do, (o, Br) — iqe, (an, Br) = Zih =2, = pe, (an, —Bn) + iqe, (@n, —Bn)

and hence pg, (an, —Br) = pe, (an, Br) and qq, (o, —Br) = —qe, (an, Pr). Consequently,
we have F'@") = —FP @) ifh € K and FP @) = FP(2) if h € {1,...,n} \ K.
This proves that F © = > KeP(n) €K F I(f ) is a stem function. Moreover, if x = (o] +
J1Bl, ... oy + JyBy) € Qp forsome Ji, ..., J, € Sy, then

TFO) @) = ¥ g epol idnexs FL @]
= [(p, (@, B) + Jnge, (@, Br)jp—y» al = [ )p_y, al = xa.

The proof is complete. o
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Definition 2.10 We say that a stem function F : C" — A® R2" is monomial, or polynomial,
if Z(F) : (Qa)" — A is. The restriction of a monomial (respectively polynomial) stem
function to D is said to be monomial (respectively polynomial) on D. O

Thanks to Proposition 2.12 below, a stem function F : D — A ® R%" is monomial on D if
and only if it has form (6).

2.2 Representation formulas

We need an elementary, but useful, combinatorial lemma.
Lemma 2.11 For each H, L € P(n), it holds:

Y kepy (= DIFKIHIKOL = 2765y 1

wheredy.p = 1if H =L and §y 1 = 0 otherwise.
Proof Since [ HNK|+|KNL| =|KNH\L)|+|KN(L\H)|+2|KNHNL]| forall
K € P(n), it suffices to prove that the sum s(H, L) := Z,(Ep(n)(—1)”m(H\L)|"'|Im(L\H)|

is equal to 2" if H = L and is null otherwise. This is evident in the case in which L = H.
Let L £ H.If H C L, then we have:

S(H, L) = X g epny (= DKL= 57 o), ssep@iryy (D
_ - IL\H| (|L\H
— on—I|L\H| ZS;EP(L\H)(_l)lsll —on |L\H|Zh=0 (I >l |)(_1)h
= 2n=INHI (] 4 (1)l =,

where C(L\ H) is the complementof L\ H in{1, ..., n}. Similarly, one proves thats(H, L) =
0if L C H. Finally, suppose H ¢ L and L ¢ H. We have:

s(H,L) = Zkep(n)(_1)|K0(L\H)\+\K0(H\L)I

_ N S
= ZS}GP(L\H),SZEP(H\L),SgeP(D(LAH))(_l)l H(—nl%|

= 2" A (Y cpnin (D) (s epn ) (D)
=2 IEAHI 4 (1)) + (1)) = 0,

where L A H is the usual symmetric difference between L and H. O
Letx = (x1,...,x,) € A" and let H € P(n). If H = , then we set x ;= x. Suppose

that H # (¢ and write H = {hy, ..., hp} withh) < ... < h,. We denote x ©H the element
of A" defined as follows:

c,H .__ c c
X0 = (00 s Xy =15 X Xy s Xy =15 Xy s XhpetLs <+ o5 Xn)-

We have the following representation formulas.

Proposition 2.12 (Representation formula) Let f : Qp — A be a slice function and let
y € Qp. Write y as follows:

y=(ar+ LB, 0n+ 1),
where ay, B, € Rand Iy, € Sy forall h € {1, ..., n}. Then it holds:
F) =27"k pepu (DKM I [T, f(yeM], @)
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where x = (a1 + J1B1, ...,y + JuBy) for some J = (J1,...,Jn) € Sa)", and I :=
Iy, ..., Ip).
Furthermore, if F =) ¢ P €K Fi is a stem function inducing f, then we have:
Fi(2) =27"Ug" . Y yepony (DK f(yeth)] =
=27 ey (= DIEHIY, F(y et ®)
forall K € P(n), wherez = (a1 +iB1, ...,y +iBy) € D. In particular, each slice function

f is induced by a unique stem function F.

Proof Let x = (a1 + J1B1, ..., 0y + JuBy). Define z := () +iBy, ...,y +iBy) € D.
Let K € P(n). Thanks to (4) and to Lemma 2.11, we obtain:

Yt DKM F (o)
= ZHEP(;:)(_I)‘KmHl(ZLEP(n)[]L’ FL(EH)])
= ZHeP(n)(_l)‘KnHl(ZLeP(n)(_l)‘Hm[IL’ FL(Z)])
— ZL€P(}‘I)[IL’ FL(Z)]( ZHEP(H)(_DIKOHHIHOL\)
=2"[Ik, Fk(2)].

Bearing in mind (5), we deduce (8). Consequently,
) =Y kepm Ik, 27" X pepen DKM, £y
= 27"k mepm (DKL T Fr e,
as desired. m}

As an immediate corollary, we obtain:

Corollary 2.13 (Identity principle) Let f, g : Qp — A be slice functionsandlet Iy, ..., I, €
Sa such that f = gon Qp N(Cp, x ... x Cy)). Then f = g on the whole Qp.

Remark 2.14 Letn > 2 and let f : H" — H be the function f(x1, ..., x,) := x2x1, i.e. the
pointwise product between the coordinate functions x; and x;. The function f is not slice.
Otherwise, being x2x; = x1x2 on (C;)”, Proposition 2.9 and Corollary 2.13 would imply
that xpx1 = x1x3 on the whole H”, i.e. the algebra of quaternions is commutative, which is
false. o

Bearing in mind Remark 2.6, we have:

Corollary 2.15 The map 7 : Stem(D, A® Rzn) — S(2p, A), sending stem functions F into
the corresponding slice functions L(F), is a bijection, and hence a real linear isomorphism.

Another consequence is the following intrinsic characterization of sliceness.

Corollary 2.16 (Sliceness criterion) Let f : Qp — A be a function. Then f is a slice

Sfunction if and only if there exist I = (11, ..., I,) € (Sa)" with the following property:
F@)=2""Y g pepen(—DEM Ik " Fem]] ©
forally = (a1 + 1181, ...,an+ 1,6,) € Lp and forall x = (a1 + 181, ..., 0, +JnBu) €

Qp, where oy, B1,...,0n, Bn € Rand J = (J1, ..., Jy) € (Sp)".
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Proof 1If f is slice, then (9) follows from (7).

Suppose that (9) holds for some I = (11, ..., I,) € (Sa)". We will show that f = Z(F)
for some stem function F : D — A ® R%". For each K € P(n), define the function
Fg : D — A by setting

Fg(z) :=27" ZHeP(n)(_l)leHl[IEla Fyety,

where y = (a1 + 1181, ..., an + i) if z = (@1 +iB1,...,an +iBn) € D.

Fix K € P(n), h € {1,...,n} and z = (a1 +iB1,...,0np +ify) € D. Sety :=
(a1 +1iB1, ..., a0+ 1,B,). Note that |[K N H| = |K N (H A {h})| — (—=DEMR K N {RY)
for all H € P(n). Moreover, the map V) : P(n) — P(n), sending H into H A {h}, is a
bijection. Bearing in mind the last two elementary facts and (5), we have that

2 Ik, FK(Eh)] — ZHEP(H)(_I)lKﬁH\f(yc,HA{h})
= _1)IKNHARDI+HIKN{AY| ¢, HA{h)
> Hepe (=D f&y )

= (=1)IKNtA} ZHEPM)(_l)lKﬂ‘I’h(H)\f(yc,\l’h(H))
— (_1)|Kﬁ{h}| ZHGP(n)(_l)leHlf(yC’H)
= 2"(=DIF W Tg, Fi (2)];

consequently, [Ix, Fg (Eh)] = (—1)|Im{h”[IK, Fg (z)]. Using (5) again, we deduce:
Fr@") =g g, Fe @)1 = (=DFWIE g, Fr @11 = (= D/FOW R o).

In other words, the function F : D - A ® Rzn, defined by F := ZKEp(n) ex Fg,is a stem
function. Formula (9) now ensures that f = Z(F). ]

A consequence of the last result is as follows.

Corollary 2.17 Let {f; : Qp — A}ien be a sequence of slice functions, which pointwise
converges to a function f : Qp — A. Then f is a slice function.

Proof Let x,y,I,J be as in the statement of Corollary 2.16. Since each f; is a slice
function, equation (9) holds for each f;. Note that {f;(x)};en converges to f(x) and
{lVk, [II;I, fi(y ™)1} en converges to [Jx, [11;1, Fy oM forall K, H € P(n). It fol-
lows that Eq. (9) holds also for f. Using Corollary 2.16 again, we deduce that f is a slice
function. s

2.3 Spherical value and spherical derivatives

Let F = Zkep(n) ek Fg be astem function and let f : Qp — A be the slice function Z(F').

Definition 2.18 We call spherical value of f the slice function f; : Qp — A induced by
the A-valued stem function Fy : D — A, thatis f := I(Fp). O

From (8) it follows that
o) =27 gepn f ) (10)
for all x € Qp. For each K € P(n) \ {#}, we define:

o Dg = ex{(z1,...,24) € D : zx ¢ R}, assumed to be non-empty.
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o F{ : Dg — Aby Fg(2) := ,BI;]FK(z), where z = (a1 +iB1,...,0n +iBy) € Dk
and Bk = erkﬂk~
o Ry := Upegx{x1,....,x,) € A" : x; € R}

Note that Rg is closed in A, Dk is invariant under all the complex conjugations of C”",
and the circularization of Dk in A" is equal to Qp \ Ry, i.e.

Qpy = 2 \ Rg.

Furthermore, it is immediate to verify that the function F' ,’g is a A-valued stem function on
Dg.

Definition 2.19 For each K € P(n) \ {#}, we call spherical K-derivative of f the slice
function f]  : Q@p \ Rk — A induced by Fg, thatis f ; := Z(Fg). O

x—x¢

Bearing in mind (8) and the equality Im(x) = *5—, given any K € P(n) \ {/}, we have
1 k@) = 27" Bredrex) ™" Epepn (D F )]
= 27" LM )kex) ™"y X prepey (—DIEHF )]

forall x = (xq,...,x,) € Qp \ Rg. As a consequence, if for each x = (xq,...,x,) € A"
and K € P(n) \ {0} we set

Img (x) := (Am(xe))kek an
then we have
F @) = 27"[Amg (0)) 7L 3 iy (= DIKOHL f (xe:H)) (12)
for all x € 2p \ Rg. Note that the latter equality can be rewritten as follows:
£l =217 = ) Wer) ™ Epgepin (DK pee)(13)
In order to simplify the notation, we set Dy := Dyy ... nj andR, := Ry ;. Consequently,
Dy = (ie1{(z1, ..., zn) € D 1z ¢ R} # 0, (14)
Re = Up 1 {Gx1s - oo xn) € A" @ xi € R}, (15)
Qp, =Qp\Re = i {(x1, ..., x3) € Qp : Im(xy) # 0} # 0. (16)
Moreover, we set
Ry := 0. 17)

Remark 2.20 According to Definitions 2.18 and 2.19, and (17), we can also say that the
spherical value of f is the spherical (J-derivative of f, thatis fs’ g =I5 O

Proposition 2.21 Let f : Qp — A be a slice function. The following assertions hold.

(i) For each x € Qp, the spherical value f is constant on Sy. For each K € P(n) \ {/}
and for each x € Qp \ Rk, the spherical K-derivative fs/!K is constant on Sy. More
precisely, if f{ = I(F), then

[ (x) = Fy(z) forallx € Qp (18)
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and
fs’yK(x) = ﬁ;lFK(z) forall x € Qp \ Rg, (19)
where z := (a1 +iB1,...,0n+iBn) € Difx = (a1 + J1B1, -, % + JnBn) € QLp.
) If x = (x1,...,x,) € Q2p \ Ry for some L € P(n) and xp, € R forall h €
{1,...,n}\ L, then
F@) = L)+ X kepmnmy.kcLImk ). [ ¢ (0] 20)
In particular, for all x € Qp \ R,, we have:
f@) = £0) + X kepu g Im (). f] x (0], b3

(i) If x = (x1,...,x5) € Qp \ Ry for some L € P(n) and xj, € R for all h €
{1,...,n}\ L, then f is constant on S if and only iffs’yK(x) =0forall K € P(n)\ {9}
with K C L. In this case, f takes the value f7(x) on Sy.

In particular, for each x € Qp \ R, f is constant on S, if and only if f] . (x) = 0 for
all K € P(n) \ {#}. ’

Proof Point (i) follows immediately from the fact that the stem functions inducing f;> and
the fS”K’s are A-valued.

Letx = (a1 + J1B1, - -, 0n + JuBn) € 2p \ Ry for some L € P(n) and B, = 0 for all
he{l,...,n}\L,andletz = (a1+iB1,...,,+iB,) € D.Denote F = ZKep(n) ek Fy the
stem function inducing f. By (3),if K € P(n) with K ¢ L, then Fg(z) = 0. Consequently,
fx) = ZKEP(n),KcL[JK’ Fk (2)], where J = (Ji, ..., J,). On the other hand, by the very
definitions of spherical value and derivatives, we deduce:

f@) =Y kepm.kcLlUk. Fk (2)]
=@+ > [mg@). g Fx(2)]

KeP(m)\{#},KCL
= fe(x) + ZKGP(n)\{V)},KCL[ImK(X)’ fs/.K(x)]'

This proves (20), which reduces to (21) when L = {1, ..., n}.

Let us prove (iii). If fs/’K(x) = 0 for each K € P(n) \ {#} with K C L, then (i) and (20)
imply at once that such fv/ ks vanish on the whole S, and f is constantly equal to f(x) on
Sy . Finally, suppose that f is constantly equal on S, to some a € A. Choose K € P(n) \ {#}
with K C L. Since x € Qp \ Rg and xH € S, for all H € P(n), (12) and Lemma 2.11
ensure that

Fl @) =27 Amg ), Y greppn (— DK Hla]
=2 ( ZHE’P(n) (= l)lKnHl)[(ImK (x))71 ,al
= Sk gl(mg (1)) ™' a] = 0.

The proof is complete. O

We now show that there exists a relation between the spherical value and derivatives of f
and their one-variable analogues introduced in [9, Definition 6]. Let z = (z1,...,2,) € D
andleth € {1, ..., n}. Denote Dy (z) the subset of C defined by

Dp(z) ={weC:(z1,...,2h-1, W, Zh+1, ---,2n) € D}. (22)
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Since D is invariant under all the complex conjugations of C", it follows immediately that
Dy (z) is invariant under the complex conjugation of C. Note that Dy (z) # @, because it
contains z;,. Moreover, Dy (z) is open in C if D is open in C".

Letx = (x1,...,x,) € Qp. Denote Qp ,(x) the subset of O 4 defined by

Qpnx):={ae€A:(x,...,Xp—1,a, Xp41, ..., Xp) € Lp}. (23)

Suppose that x € ;). Let us show that Qp, ;) = Qp »(x). First, note that, if we write
z= (a1 +iB1,...,0n +iBy) with oy, ...,a,, B1,..., Bn € R, then xy; = ay + Jy B¢ for
eachf € {1,...,n}andforsome J; € Sy.Leta € Qp, ;). Writea = o+ JB witha, B € R
and J € Sy4. By definition of Qp, ;) and Dy (z), we have that « + i € Dy (z) and

(1 +iBr1,...,op—1 +iPp—1,a+iB,apy1 +iPrt1, ..., 0n +ify) € D,

respectively. The definitions of Qp and Qp j (x) imply that (x1, ..., Xp—1, 4, Xp+1, ..., Xn)
€ Qp anda € Qp j(x), respectively. Vice versa, ifa € A with (x1, ..., Xp—1,a, Xp41, - - -,
xp) € Qp, then there exists z/ = (z},...,2,) € D with 2, = a;, +iff; and J; € Sy

for each ¢ € {1,...,n} such that ), + J; B, = a, and ag + JyBe = x¢ = o, + J)f3,
for each £ € {1,...,n}\ {h}. Let £ # h. Note that, if 8, = 0, then ,Bé = 0 as well, and
ap = x¢ = . If B # 0, then either (8, J)) = (Be, Je) or (B, J;) = (—Pe, —J¢). Define
H:={e{l,....,n}\{h}: B #0, (,Bé, Jé) = (—PBe, —J¢)}. Since D is invariant under all
complex conjugations of C", it follows that

. —H
(Z1seeesZhe1, Q) + By, Zhts v 2n) = 27 € D.
Hence a = aj, + J; B;, € Qp, (). We have just proven that
Qp,) = 2p.a(x) (24)

forallz =(z1,...,z0) € D, x = (X1,..., %) € Qy CRpandh € {1,...,n}.

Definition 2.22 Let g : Qp — A be a function and let & € {1,...,n}. We say that g
is a slice function w.r.t. x;, if, for each y = (y1,..., y,) € Qp, the restriction function
g;l"’) : Qpa(y) > A, defined by

8 (Xn) i= 8(V1s v oy Yhels Xhy Vhtds -« Y)s

is a slice function. O

Let g : 2p — A be aslice function w.r.t. X, let y € Qp, let (g;,y) S :Q2pn(y) = Aand
(g;l")); : Q2p.n(y) \ R — A be the usual spherical value and spherical derivative of the one

variable slice function g;ly), respectively. If z is a point of D such that y € Q;) and g;l” is

induced by the stem function G| + iG, : Dj,(z) — A ® R?, then (g;l"'))_:(xh) = G (w) for

all xp, = ap+ JpPn € QDh(Z)’ where w := ay, + i, € Dp(z2), and (g;ly));(xh) = ﬂh_le(w)

if By # 0. As a consequence, we have that (g”)° (xp) = 3 (g5 (xn) + g5 ((x4)°)) and

(g (en) = S (Amxn) =" (g (xn) — g ((x))).
Assume that g is a slice function w.r.t. x;,. Then, for each e € {0, 1}, we define the function
Dghg :Qp — Aand @,l(hg : 2p \ Rypy — A by setting

@fzhg(x) = (g;f));(xh) forallx = (x1,...,x,) € Qp (25)
and
Dy, 8() := (g5 (xp) forall x = (x1,....x,) € Qp \ Rypy. (26)
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Givenany K € P(n) and h € {1, ..., n}, define K, := K N{1,...,h}.

Proposition 2.23 Assume that n > 2. Let f : Qp — A be a slice function, let K € P(n)
and let € : {1,...,n} — {0,1} be the characteristic function of K. Then f is a
slice function w.rt. x| and, for each h € {2,...,n}, the function D;Y:l) . ..D;fl)f :

Qp \ Rk,_, — A, obtained iterating (25) and (26) as follows DL~V ... DD £ .=
peth— l)(p;ZFSZ) e (Di(z) E(l)f)) -), is a well-defined slice function w.r.t. xp. More-

Xh—1
over, it holds:

() () ¢ . pe@) (pe@n—1) m IS K =4,
DD = g = | TR

Proof Let F = Y ycpoyenfn : D — A® R*" be the stem function inducing f, let
y=01---sYn) = (1 + I1B1,...,0n + I,6n) € Qp, let ] := (I1,...,1I,) and let
w = (Wy,...,wp) = (1 +iB1,...,0n +iBy) € D. Let us prove by induction on
h € {1, ..., n} that the two following properties hold true:

(a) Df(l(lh D. Difl) [ isaslice function w.r.t. x;,, where for convention Df(}(fil_]) o DED =

fﬁh—L
() DM - DV () = Bri) ™" X nepon. ol i+ Fruk, ()1, where fp := 1.

First, we consider the case 2 = 1. It holds:
flr, y) = ZHGP(n)JgH[JH, Fy(zi, w)]+ Jl(ZHeP(n),1¢H[JH, Frupy(zi, w)1)27)

where x; = a1 + J1B1 € Qp1(¥), Y = (2,..., ), 21 == a1 +if1 € Di(w), w' =
(wa, ..., wy)and J = (Jq, D>, ..., I,). Define the functions Fy, F> : D1(w) — A by setting

Fi(z1) == Y yepoygnlJn, Fu(zi, w)l,
F2(z1) == Y pepmy1gu i, Frupy @, w)l.

It is immediate to verify that Fi +i F5 : Dj(w) — A ® R? is a stem function. Consequently,
f is slice w.r.t. x;. Moreover, we have:

DUFOD) =X pepuy.igulln, Fu ()]

and

D)l(lf(y) = ﬂfl > Hepmy 1¢nIH, Frup ()]

This proves that f satisfies (a) and (b) for 7 = 1.
Assume (a) and (b) are verified for some & € {1, ...,n — 1}. By (b), we deduce:
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Df(,(,h) ... D;gl).f(y”, Xnt1, D)
— B, Prk) ! ZHEP(”)sHh+1=@[LH’ Fruk, @ 2hs1, D]
+ i1 ((/3th1 ,Bh,K)_1 ZHEP(n),Hh+1=(/)[LH’ Fruk,uh1) (@5 2ht1s 2)])’ (28)

where x;, = ap + IPfp € QLpia(y), Pk = B ifh € K, Bpxg = 1ifh ¢ K,

Y=ty Y = Ot Yn)s 2 = o +ifn € Dp(2), 27 = (21, ..., 20),
Z=(zht2,---yzn)and L = (Iy, ..., Iy, Jpt1, Int2, ..., I). Here 9 and Z are omitted if

h+ 1 = n. Proceeding as above, it is immediate to verify that D5 . .. DED £ s slice wr.t.
Xh+1, 1.. () is satisfied for 4 + 1. Moreover, we have:

DY, DI DIV £ () = (Br,) ™' X trepiny. g ol > Fru, (2],
1 h 1 -1 -1
th+1D§/(, )---Df(f f) = Bir1(Bxs) 2 HePm), Hyor=pl 1H» FHUK, U +1) ()]

In both cases, the last two expressions are equal to

(ﬁKh+1)_1 ZHEP(n),Hh_H:@[IH’ Frug) (2]

and the induction step works. When & = n, the right-hand side of (b) becomes Fy(z) if
K =0, and B! Fx (2) if K # @. This completes the proof. O

Definition 2.24 Assume thatn > 2. Leth € {2,...,n}andlete : {1,...,h — 1} — {0, 1}
be any function. Given a slice function f : Qp — A, we define the truncated spherical
e-derivative De f : Qp \ Re-1(yy — A of f by setting D f := Dig}:l) . ..Difl)f, and
we say that such a derivative has order h — 1. For convention, we define also the truncated
spherical O-derivative Dy f : Qp — A of f by setting Dy f := f, and we say that such a
derivative has order 0. O

Proposition 2.23 asserts that each s-order truncated spherical derivative of a slice function
is a well-defined slice function w.r.t. x;,. Moreover, a by-product of the proof of the mentioned
proposition reads as follows. If F : D - A ® R?" is the stem function inducing f, then

De f(X) = Ber1) ™" X trepny, ty 1 =olHs Frue1(1)(@)] (29)
forallx = (a1 + J1B1, ..., a0+ JuPBn) € QLp \Re—](l) with z := (a1 +iB1, ..., 2, +iBn)
and J := (J1, ..., Jy), where By := 1. Formula (29) shows that every truncated spherical

derivative D f is aslice function of n variables on 2p \R.-1y, induced by the stem function

G = yepmy. =0 €H Be=11) ™ Frue-11y(2)-

2.4 Smoothness

By Assumption 2.1, the real alternative *-algebra A we are working with has finite dimension
and, as a finite dimensional real vector space, A is equipped with the natural ¥“ manifold
structure defined by the global coordinate systems associated with its real vector bases. Here
‘%“’ means ‘real analytic’. For each n > 1, we equip A" with the corresponding product
structure of ¥’ manifolds. We call the underlying topology on A" as Euclidean topology
of A”. Given any non-empty subset S of A”, we equip S with the relative topology induced
by the Euclidean one of A”. We call such a topology on S as Euclidean topology of S. If in
addition S is open in A", then we always assume that S is equipped with the ¥“ manifold
structure induced by the one of A”.
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Similarly, we equip D with the Euclidean topology induced by the one of C = R? and,
in the case D is open in C, we always assume that D is equipped with the ¥“ manifold
structure induced by the one of C = R2.

As usual, given two topological spaces X and Y, we denote ¥°(X, ¥) the set of all
continuous maps from X to Y. If r € (N\ {0}) U{oo, @} and X and Y are equipped with some
%" manifold structures (for instance, ¢ manifold structures), then the symbol " (X, Y)
indicates the set of all " maps from X to Y. In the latter case, given any non-empty subset
Sof Xandamap f : § — Y, wesay that f is a " map if there exist an open neighborhood
UofSin X andamap g : U — Y such that g(x) = f(x) for all x € § and, equipping U
with the natural 4" manifold structure induced by the one of X, g belongs to " (U, Y). We
denote € (S, Y) the set of all 4" maps from S to Y.

Definition 2.25 We define

o Stem®(D, A ® Rzn) as the set of all continuous stem functions from D to A ® R?", i.e.
the set of all stem functions F = ZKGP(ﬂ) exFg : D —> A® R?" such that each Fg

belongs to ‘KO(D, A),
« S (2p, A) as the set of slice functions from Qp to A induced by continuous stem
functions, i.e. S°(Q2p, A) := Z(Stem®(D, A @ R*")),
and, in the case D isopenin C and r € (N '\ {0}) U {o0, w},

e Stem" (D, A ® RZM) as the set of all ¥ stem functions from D to A ® RZ", i.e. the set
of all stem functions F = ) gcp, ek Fx : D - A® R?" such that each Fx belongs
to 6" (D, A),

e §'(Qp, A) as the set of slice functions from Qp to A induced by 4" stem functions, i.e.
S (2p, A) := Z(Stem’ (D, A ® R*")). O

Equip NU{oo, w} with the unique total ordering <, extending the one < of N, by requiring
that s < oo forall s € N, and co < w. Denote |s] the integer part of s € R.

Theorem 2.26 The following assertions hold.

(i) If S is compact, then S%(Qp, A) c €% (Qp, A).
(ii) Suppose that D is open in C". Let r € N U {00, w} such that r > 2" — 1, and let
Wy, (r) be the element of N U {oc0, w} defined by w, (r) :=r if r € {00, w} and

war) o= [ 5 | = [ -

ifr e Nandr > 2" — 1. Then it holds:

S (Qp, A) " (Qp, A).
In particular, we have S*°(Qp, A) C €*°(Qp, A) and S°(QLp, A) C €“(Qp, A).

Proof Chooseareal vectorbasis B = (uq, ..., ug)of Awithu; = 1,anddenoteng : A > R
the projection of A onto the first component of the coordinates induced by B, i.e. the real
linear function sending each a = ZZ:I apup, € A into a; € R. Define the functions
0,n,E: A— Randv,w: A — C by setting

0(a) :=nmr(Re(a)), n(a):=nr@r(Im(x))), &) :=In)l

and

v(a) :=6(a) +i&(a), w(a):=06(a)+ina).
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Note that 6, n € €°(A,R), & € €°(A,R), v € €°(A, C) and w € €°(A, C). Moreover, it
holds

vie+JB) =a+ilBl, (30)
we+Jp) =a+ip’ 3D
forall , 8 € Rand J € S4. Define also the maps v,, w, : A" — C" by setting
Un (X1, .oy Xp) i= (V(X1), ..., (X)) and wy(xq, ..., x,) = (W(x1), ..., w(xy)).

Let C be the closed subset of A defined by C := £=10) = n71(0). Since CN Q4 =R, we
have that (AN C)N Q4 = Qa4 \C = Q4 \ R, and hence (A\ C)" N Qp = Qp \ R,. Let
j: A\ C — A be the continuous map defined by

i@ = gz Im(@).

Define Jy := 1 and, for each K = {ky, ..., k,} € P(n) \ {#} withky < ... < k), define the
continuous map Jx : Qp \ Rx — (S)!XI by

Jr(xr, oo xn) = GOky)s - J(xk,))-

DenoteJ, : Q4\Rs — (S4)”" the continuousmap Jy1, .. ). Note thatJo (o1 +J11811, . . ., o+
JaolBnl) = (U1, .., Jp) if (g +iB1, ..., o + i) € Deand Jy, ..., J, € S4.

Choose F =} g cp) ek Fx € Stem(D, A ® R?") and define f := Z(F).

Let us prove (i).

Suppose that F is continuous and S4 is compact. For each H € P(n) and ¢ €
{0,1,...,n}, define Q(H) := ﬂhe{l _____ n}\H{(xl,...,x,,) € Qp :xp € R and Q(¥) :=
UHeP(n),\H|se Q(H). Note that the Q(H)’s and the Q({)’s are closed subsets of 2p; more-
over, 0(0) = Q@) = Qp NR" and Q(n) = Q{l1,...,n}) = Qp. We will prove by
induction on £ € {0, 1, ..., n} that the restriction f|g of f to Q(£) is continuous. Evi-
dently, if the latter assertion is true then f is continuous, because Q (n) = Qp.Thecase ¢ = 0
follows immediately from the equality f(x) = Fy(v,(x)) forall x € Q(0) = Qp NR".
Suppose the assertion is true for some £ € {0, 1, ..., n —1}. Note that, for each H, L € P(n)
with |H| = |L| =€+ 1 and H # L, we have that |H N L| < ¢ and hence

O(H) N QL) = Mheqr,..aptnpy {1, - xn) € Qp i xp € R} C O(0).

It follows that {Q(H)}Hep(n), H|=¢+1 is a finite closed cover of Q(£ + 1) and, for each
H,L € P(n) with |H| = |L| = £+ 1 and H # L, the restrictions f|gg) and f|p() are
continuous on Q(H) N Q(L) by induction. Consequently, it suffices to show that, for each
fixed H € P(n) with |H| = £+ 1, f|o(m) is continuous. By induction, f|g(e) is continuous
so the same is true for f|p, where P := Q(H) N Q(£). The set P is closed in Q(H) and

Q(H)\ P = Q(H)\ Q) C 2p \R,.

Since f(x) = ZKEp(n)[J.(x), Fg (vy(x))] for all x € Qp \ R,, it follows that f|pg)\ p is
continuous. Now, in order to complete the proof of (i), it suffices to show that, if {y;,}meN
is a sequence in Q(H) \ P converging to some point x = (xq,...,x,) € P, then the
sequence { f (ym)}men converges to f(x). Consider such a sequence {y;,}men in Q(H) \ P
and x = (x1,...,x,) € P.Define H* := {h € H : x; € R}. Note that, by definition of P,
H* # (). By the even-odd properties of the F’s, we deduce at once that

FOm) =2 kepmy.kculk m)s Fx (0a(ym))] (32)
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forall m € N, and

&) =X kepo, kcmu= Uk (), Fg (v (x)]. (33)

Let K € P(n) with K C H and K N H* # J. Choose v € K N H* and observe that x,, € R.
Since v, and Fg are continuous, the sequence {Fx (v, (ym))}meN converges to Fi (v, (x)).
If we write v,(x) = (z1,...,2,) € C", then z, = x, € R and Fg (v,(x)) = 0. On the
other hand, (S4)" is compact in A" and hence it is bounded. It follows that the sequence
{Uk Ym)s Fx (n(Ym))}men converges to zero. Consequently, by (32), {f (ym)}men con-
verges to ZKGP(n),KCH\H* [Jx (x), Fx (v, (x))], which is equal to f(x) by (33).

It remains to show point (ii).

Suppose that D is open in C". Assume that F is of class 4" for r € N with r > 2" — 1.
Let p : Z — 7 be the function p(s) := L%J and, for each k > 1, let p¥ : Z — Z be the
k"M-iterated composition of p with itself. Since p is non-decreasing and » > 2"w,, (r)+2" —1,
we have that p" is non-decreasing and

P (r) = Wu(r); (34)
indeed, it holds:

p"(r) = p" (2"Wa(r) +2" = 1)

=p" Q" W) +2" = D) == p QW + 1) = Wi ().
Consider the component Fg : D — A of F for some fixed K € P(n).If z = (z1,...,2,) =
(a1 +iB1, ..., 0, +1B,) are the coordinates of C", then Fi is even w.r.t. z;, if h ¢ K and it

is odd w.r.t. z; if h € K. By (34), p"(r) is non-negative, because p" (r) > w, (r) > 0. Since
Fk is of class " and p"(r) > 0, we can apply to Fx the representation results of Whitney
for even-odd function along each variables zy, ..., z,, see [24] especially Remark at page
160. In this way, if W, : C* — C" is the ¥“ map given by W, (a1 +iB1, ..., ay +iBy) :=
(a1 + iﬁlz, e, 0yt iﬁf), then we obtain an open neighborhood U of W, (D) in C" and
a g map Fy : U — A such that Fg(z) = Bk Fi (Wy(2)) for all z € D, where
By := 1. Using (34) again, we know that each function F; ,é is also of class %), Note that
w, (Rp) C W, (D) C U. Consequently, the set V := (w,)~!(U) is an open neighborhood
of Qp in A". Define the function f : V — A by setting

F) =Y g epIm (), Fy (w, (x))].

The function f is of class €"»(") and extends f to the whole V. As a consequence, f belongs
to %) as desired. The proof in the case r € {00, w} is similar, but easier because the F 1’< ’S
have the same ¥ regularity of Fg. O

Remark 2.27 (i) In the statement of point (i) of the preceding result, we cannot omit the
compactness condition on S4, also in the one variable case. In Proposition 7(1) of [9] the
compactness hypothesis is missing. Let A be the Clifford algebra C¢;; = SH of split-
quaternions, equipped with the Clifford conjugation (see Sects. 3.2.1 and 3.2.2 of [17]).
Given any element x = xg + x1e1 + x2e2 + x12e12 of SH with xg, x1, x2, x12 € R, we have
that £(x) = 2xg and n(x) = x§ — x7 + x5 — x7,. It follows that S4 is the 2-hyperboloid of

A~R* given by the equations xop = 0 = x% — x12 - x122 — 1 and Q4 is the union of R and

the open cone x22 — x% - x122 > 0. Note that S4 is not compact. Consider the continuous stem

function F : C > A®C defined by F(x+ipB) := ilﬂl%sgn(ﬂ), where sgn(f) is equal to 1 if
B>0,—1ifB <0and0if 8 =0.If f : Q4 — A is the one variable slice function induced
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by F,then f(x) =0forall x € R, and f(x) = (x% — xl2 — xlzz)_%(xlel + x2ep + x12€12)
forallx € Q4 \ R. Let @ € R and, for each ¢ > 0, let y, be the point of Q4 \ R defined by
Y= a+ter + (t + )ey. Since f(yi) = 1732 +13) i (er + (1 +13)ey) forall £ > 0, we
have that lim,_, o+ y; = o and lim,_, o+ t%f(y,) —21 (e1 + e2) # 0. This proves that f is
not continuous at «.

(ii) A by-product of the preceding proof is that, if D is open in C", then S"(Qp, A) C
&*""(Qp, A) for all r € N with p"(r) > 0.

(iii) Thanks to the preceding proof, it is also quite evident that, if Qp N R, = @, then
S (R2p, A) C€"(Qp, A) forall r € NU {o0, w}. O

2.5 Multiplicative structures on slice functions and polynomials
Let us introduce the concept of symmetric difference algebra, or A-algebra for short.

Definition 2.28 Given a bilinear map b : R x R* > R*, we say that b is a symmetric
difference product on R?", or a A-product on R*" for short, if there exists a function o :
P(n) x P(n) — R such that

o(K,?) =0, K)=1 forall K € P(n) (35)
and
blex,ey) = exapo (K, H) forall K, H € P(n). (36)

If this is the case, we say that the A-product b is induced by o, and we write b = B(o). For
simplicity, we use also the symbol v -, w in place of b(v, w) and, if there is no possibility of
confusion, we omit ‘-, writing simply vw.

Let P be a real vector space, equipped with a product p : P x P — P making P a real
algebra. We say that the real algebra (P p) is a symmetric difference algebra, or a A-algebra
for short, if it is isomorphic to some R? equipped with a A-product. O

Evidently, each A-product is induced by a unique function o, and each function o :
Pn) x P(n) — R satisfying (35) defines a A-product on RZ". By Assumption 2.1, (35) and
(36), we have that ey = 1 is the unity of Rzn, and e%( =0(K,K) e Rforall K € P(n);
consequently, a necessary condition for a 2"-dimensional real algebra to be a A-algebra is
that it has a unity e and a vector basis {vk } k ep(n) such that, for each K € P(n), v%( belongs
to the vector subspace of A generated by e.

As we will see in the next remark, the notion of A-product includes several important
classical products on R?". Moreover, all the real algebras with unity of dimension 1 and 2 are
A-algebras. On the contrary, for each n > 2, there exist 2"-dimensional real algebras with
unity which are not A-algebras.

Examples 2.29 (1) Each real Clifford algebra C£(p, q) is a A-algebra, including quaternions
H = C¥(0, 2). When n = 3, another example of associative A-algebra is the one of dual
quaternions, see [13] for the definition. The algebra O of octonions and the algebra SO of
split-octonions are examples of non-associative A-algebras, see [13].

(2) Up to isomorphism, the unique real algebra with unity of dimension 1 is R, which is a
A-algebra. All the real algebras with unity of dimension 2 are A-algebras as well. Suppose
that R? is equipped with a product such that 1 is its neutral element and e% = a+fe; for some
a, B € R. Define v :=  — 2ey. Since v> = 4o + B2 belongs to R and {1, v} is a vector basis
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of R?, it follows that R? equipped with such a product is isomorphic to R? equipped with the
A-product induced by the function o : P(1) x P(1) — R such that o ({1}, {1}) = 4o + B2.

Letn > 2. Consider the product on R?" such that eg = 1isits neutral element, ex ey = 0
if K, H € P(n)\ {9} with K # H,and ek = — 527 Y yycpiuy\ o ¢ forall K € P(n)\ {#}.
Ifv= ZKEP(,,) exag is a generic element of R%" then

2 2 2 2
V2 = ag+ Yk epow) €k (2a0aK — 37 X pepmng Gn)-

By simple computations, we see that v> € R if and only if either v € Rorv = A 3 KePn) €K

for some 1 € R. It follows that there exist at most two linearly independent vectors of R?"
n . . . .

whose squares are real. Consequently, R?" equipped with the mentioned product is not a

A-algebra. O

Other very interesting examples of A-algebras can be constructed via tensor products.

Examples 2.30 Let n,m € N*. Denote {e} }xep(n) the fixed real vector basis of R?", and
{€}} Hepm) the fixed real vector basis of R2" . Recall that eg=1c¢€ R?" and eg=1¢€ R2".
Givenany L € P(n+m),define L, € P(m)and L}, € P(n)bysetting L,, := LN{L, ..., m}
and L% = {l € N* : [ +m € L)}. Write the elements x of R”" ® R?" as follows:

— 1 / — /)
X = ZHEP(m) eH(ZKeP(n) exTH k) = ZHEP(m),KeP(n) €k, K

for rp.x € R, where e} el = e} ® ef;. Identify R2™ with R?" @ R%" and define
the real vector basis {er}rep@tm) Of R2 by e = e’im e’L;F”. In this way, we can write
X = ZLeP(n+m) errr, where rp = er»L*m'

Choose a A-product b = B(o) on R?" and a A-product ¢ = B(t) on R?". Define the
function o ® T : P(n +m) x P(n +m) — R and the A-product b ® c on R2"™ as follows:

(0 ®T)(L, M) := o (Ly, My)T(Lin, My,), (37
b®c:=B(o ® 7). (38)
We call (RZ"M ,b ® c) tensor product of the A-algebras (]Rz’1 ,b) and (]Rzm , ¢). Note that,
given L, M € P(n + m), it holds:
(e/Lj;, ® ezm) ‘o®T (651/1;; ® e;(4m)
=er ogr em = eLamo (L), My)T(Ly, M)
= (ezLAM)fn ® eé/LAM)m)O'(L:17 M:l)t(Lﬂh M)
= (€px anrx @ €7, am, )0 (Liyys Mp)T(Lin, M)
= (e/L:;lAM;;U(L;kn» M;)) &® (e/IimAMmT(LMv My))
= (€l o €pr) ® (€], 1 €y )-
[m}

Note that the real algebra C of complex numbers coincides with R? equipped with the
A-product 1 : P(1) x P(1) — R such that n({1}, {1}) := —1.

Definition 2.31 Given any n € N*, we denote 6§ : P(n) x P(n) — R the n-times iterated
tensor product of  : P(1) x P(1) — R with itself, i.e. aé, :=nand og := aé_l ® nif

n > 2. We say that by := B(of) is the tensor product on C®" = R?", and C®" equipped
with bfg, is the n-tensor power of C. O
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Lemma 2.32 For all n € N* and for all K, H € P(n), it holds og(K,H) = (=DIENHI I
particular, the n™-tensor power C®" of C is commutative and associative.

Proof Let us prove this assertion by induction on n € N*, The case n = 1 is evident,
because aé, = n and 7 has the required property. Let n > 2. By induction, there exists

a real vector basis {ey'}yepm—1) of R2"™" such that o (K',H') = (—=D)IK'NH'| for
all K', H' € P(n — 1). By (37), we have that 6% (K, H) = aé’fl(K*, Hn(Ky(, Ly) =
(—DIKINHTHIKIOLI Since K N H = (K N H)¥ and K N Hy = (K N H)j, we easily
deduce that |K N H| + |K1 N L1| = |K N H|, as desired. o

Assumption 2.33 Throughout the remaining part of this section, we equip R?" with a A-
product b = B(o), and the tensor product A ® R?" with the following product extending
b:

(ZHGP(n) eHaH) ‘o (ZLEP(n) eLbL) = ZH,LG’P(n)(eH ‘o eL)(anbr), (39)

where ay by is the product of ay and by, in A. For simplicity, foreach&,n € A ® Rzn, we
also write £ in place of & -5 1.

Note that if, for each K € P(n), 2(K) denotes the set
2(K) := {(K1, K2, K3) e P(n)* : K1NK, =0, K1 UK> = K, K NK3 =0},
then (ZHGP(n) eH“H)( 2 LePn) eLbL) = Y KkeP(n) €K CK > Where
CK = D_(Ky Ka.K3)e% (K) AK1UK3 DUk 0 (K1 U K3, Ko U K3). (40)
Indeed, we have:
2 on.Lepmlener)@aubr) =3y | cpy) eHaranbro(H, L)
=D KePin) €K 2o(Ky. Ky K3)eo (K) “K1UK; DRyUK; 0 (K1 U K3, Ky U K3).

In general the pointwise product of two slice functions is not a slice function. For instance,
ifn =1and f, g : H — H are the slice functions defined by f = i and g(x) = x, then
(fg)(x) = ix is not slice. Otherwise, by Proposition 2.9 and Corollary 2.13, it would follow
that (fg)(x) = xi for all x € H, which is impossible being (fg)(j) = ji # ij. On the
contrary, the pointwise product of two stem functions is still a stem function.

Lemma234 Let F,.G: D — AQ® R?" be stem functions and let F - G : D — A ® R?
be the pointwise product of F and G w.r.t. b = B(0), that is (F - G)(2) := F(2) -« G(2)
forallz € D. Then F -, G is still a stem function.

Proof Write FG in place of F -, G, for short. By (40), if F = ZHep(n) egFyg, G =
ZLE'P(") erGpand FG = ZKEP(VL) ex (FG)g, then

(FG)k = Z(Kl,Kz,IQ)E_@(K) FK]UK3GK2UK30(K] U K3, K2 U K3).

Choose K € P(n),h € {1,...,n}and z € D. Note that, for each (K1, K7, K3) € 2(K),
the integers |(K1 U K3) N {h}| + [(K2 U K3) N {k}| and |K N {h}| have the same parity.
Consequently, we have
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(FG)[((Zh) = Z(K],Kz,K})E@(K) FK]UK3 (Zh) GKzUK3(Zh)O—(K1 ) K3a K2 U K3)
= (_1)|Kﬂ{h}\ Z(Kl,Kz,[Q)E@(K) FKIUK3 (2) GKzUK3 (2)x
x o (K1 UK3, K2 UK3) = (=D WI(FG)k (2),

so F'G is a stem function, as desired. O
Thanks to the latter lemma, we can define a product on the class of slice functions.

Definition 2.35 Let f, g : Qp — A be slice functions with f = Z(F) and g = Z(G). We
define the slice product f -w g : Qp — Aof fand g by f -» g := Z(F -+ G). Moreover,
we say that the slice product f - g = f - g is induced by b, or by o . If there is no possibility
of confusion, we simply write FG and f - g in place of F -, G and f -, g, respectively. O

We specialize the preceding definition as follows.

Definition 2.36 We call slice tensor product on S(2p, A) the product on S(2p, A) induced
by the tensor product by = B(og). Given f, g € S(Qp, A), we say that f ‘ot & 1s the slice
tensor product of f and g. O

s

Assumption 2.37 In what follows, we use the symbol * ©” to denote ;1 "
Corollary 2.15 imply at once the following fact.

Corollary 2.38 The pairs (Stem(D, A ®R2”), o) and (S(Qp, A), -») are real algebras, and
ZLis a real algebra isomorphism between them.

Let us introduce the concepts of slice polynomial functions associated with b = B(o),
and of hypercomplex A-product.

Definition 2.39 Letb = B(o) be a A-product on R%". Given anyk € {l,...,n}andm € N,
we define the slice function x,;m : (Qa)" — A as the function constantly equal to 1 if m = 0,
as the k™-coordinate function x; : (Q4)" — A if m = 1 and as the m-times iterated slice

product of x : (Q4)" — A withitself wrt.bifm > 2,i.e. x,;o =landx" := x]:mfl o Xk
if m > 1. We say that a function P : (Q4)" — A is slice monomial w.r.t. b, or w.r.t. o, if

there exist £ = (¢, ..., ¢,) € Nand a € A such that

ol ol olym—1 14
P :.Xl ! ‘o (x22-~-(xmfl ‘o (x;nm ‘o a)))v

where a € A is identified with the slice function from (Q4)" to A constantly equal to a. If
P has this form and there is no possibility of confusion, then we denote P as x*¢ - a. We call
P : (Qa)" — A aslice polynomial function w.rt. b, or w.r.t. o if it is a finite sum of slice
monomial functions w.r.t. b, or w.r.t. o.

The restriction of a slice monomial (respectively polynomial) function w.r.t. b, or w.r.t. o,
to Qp is said to be a slice monomial (respectively polynomial) on Qp w.rt. b, or w.r.t. o. O

Definition 2.40 We say that the A-product b = B(o) on R2" is hypercomplex if it satisfies
the following two conditions:

el =—1 (41)
forall k € {1,...,n}, and

ex = eg (e, -+ - (ek,_,ex,) -..) (42)
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for all K € P(n) \ {#} with K = {ky,...,ks} and k1 < --- < kg, which are equivalent
to o ({k}, {k}) = —1 and o ({k1}, {ka, ... kg}) - - - o ({ks—2}, {ks—1, ks Do ({ks—1}, {ks}) = 1,
respectively. We say that a real algebra is a hypercomplex A-algebra if it is isomorphic to
some R?" equipped with a hypercomplex A-product. O

Examples 2.41 The real algebras C®”", R, = C¥(0, g) and all their finite tensor products
are hypercomplex A-algebras. The real algebra C = C®! = R, of complex numbers is the
unique hypercomplex A-algebra of dimension 2. The Clifford algebra C¢(1, 0) is an example
of A-algebra, which is not hypercomplex; indeed it has no imaginary units. A natural question
is to understand whether the A-algebra C¢(p, q) is hypercomplex when p > 1. This problem
seems to be not so easy to settle. We recall several relations existing among Clifford algebras;
for instance, C£(4, g — 4) and R, are isomorphic if g > 4, see [19, §16.4]. O

Lemma 2.42 The unique hypercomplex, commutative and associative A-product on R?" is
the tensor product bg.

Proof By Lemma 2.32, we know that by, is hypercomplex, commutative and associative.

Suppose b = B(o) is a A-product on R*" which is hypercomplex, commutative and
associative. By (42), the commutativity and the associativity, we have that ex - ey =
CKAH ‘o e%l ot e%q, where £1, ..., £, are the elements of K N H if K N H # §, and

‘egl o e%q > is omitted if K N H = (. Using (41) and Lemma 2.32 again, we deduce
that ex -5 ey :eKAH(—l)‘KmHl andb:b%. O

The next result describes the ‘algebraic relevance’ of hypercomplex A-algebras in the
context of slice functions. It asserts that, if the A-product b = B(o) is hypercomplex,
then the notions of polynomial function, pointwise defined in Definition 2.7, and of slice
polynomial function defined in Definition 2.39 coincide.

Lemma 2.43 [f the A-product b on R?" is hypercomplex (for instance, b = bly), then a
function f : Qp — Aispolynomial ifand only ifitis slice polynomial w.r.t. b. More precisely,
if f(x) =Y yc; x‘ac for some finite subset L of N" and ay € A, then f =Y ,.; x** - a; on
Qp.

Proof Let £ = (¢1,...,4,) € N"andlet F® : D »> AQ® R?" be the stem function
inducing x*t. ag. Given h € {1, ..., n}, denote GM . D > A® R?" the stem function
inducing x : Qp — A.Letz = (@1 4B, ..., + i) € D, and let py, and g, be
the real polynomials defined in Definition 2.8. Since b satisfies (41) and (42), we have that
G™(z) = py, (. Br) + enqe, (an, Br) and

FO@) = [(GM @), acl = [(pe, (n, Br) + enqey (e, Bu))i_;, acl

.....

By Proposition 2.9, it follows that x*¢ - a; = Z(F®) = x‘a,. Consequently, f = Y el xet.
ayg. [m}

2.6 Cj-slice preserving, slice preserving and circular functions

Definition 2.44 Given any function f : Qp — A and J € S4, we denote Qp(J) the
intersection 2p N (C,)", and f; : Qp(J) — A the restriction of f to Qp(J). ]
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Definition 2.45 Let f : Qp — A be a function. Given J € Sy, we say that f is a C;-slice
preserving function if f is a slice function and f(Q2p(J)) C C;. We denote Sc,(2p, A)
the subset of S(Q2p, A) of all C;-slice preserving functions from Qp to A.

We say that f is slice preserving if it is a slice function and the stem function F =
>k ep() €k Fx inducing f has the following property: each component Fx of F is real-
valued, that is Fx (D) C R for all K € P(n). We denote Sr(2p, A) the subset of S(Q2p, A)
of all slice preserving functions from Qp to A. O

Lemma246 LetF :Q2p > AQ® R% be a stem function with F = ZKGP(n) ex Fx and let

f =1Z(F) : Qp — A be the corresponding slice function. The following assertions hold.
(i) Given J € Sy, f belongsto Sc,(Qp, A) ifand only if Fg (D) C Cj forall K € P(n).
(1) Suppose that there exist I, J € Sp such that I # £J. Then f is slice preserving
if and only if it is Ck-slice preserving for K € {I, J}, or equivalently Sr(2p, A) =
ﬂKeSA Sci (Qp, A).

Proof Since C is a real subalgebra of A, if Fx (D) C Cj for all K € P(n), then Defini-
tion 2.5 implies at once that f(2p(J)) C C,. Suppose now f(2p(J)) C C, and apply
formula (8) to f with I} = ... = I, = J. We obtain immediately that Fx (D) C C;
for all K € P(n). This proves (i). Let us show (ii). Recall that R C Cj for all J € Sgy4.
As a consequence, the preceding point (i) implies that Sr(2p, A) C ﬂKegA Scy (Rp, A).
Finally, if f € Sc,(p, A) N Sc,(Rp, A), then using again above point (i) we deduce
that Fx (D) C C; N Cy. Thanks to the Independence Lemma [3, p. 224], we know that
C;NCy =R, and we are done. O

Since each plane C; is a real subalgebra of A, it follows at once:

Lemma 2.47 Letb = B(o) be any A-product on R?" and let J € Sy. The sets Sr(22p, A)
and Sc,(Qp, A) are real subalgebras of (S(Qp, A), -5).

The next result concerns the relation between slice tensor and pointwise products. Given
two functions f, g : Qp — A, weindicate fg : Qp — A the pointwise product of f and g,
ie. (fg)(x) := f(x)g(x) for all x € Qp, where f(x)g(x) is the product of f(x) and g(x)
in A.

Proposition 2.48 Let f, g € Sc,(Qp, A) for some J € Sy, and let a € A. Identify a with
the function from Qp (or from Qp(J)) to A constantly equal to a. The following holds:

@) (f O Oa)x) = f(x)gx)aforall x € QLp(J). Equivalently, (f © (g ©a))y =

figsa.

(i) fFO(g©a) = (f © g) ©a onthe whole Qp.
Proof First note that (i) implies (ii). Indeed, applying (i) twice (witha = 1 and g = 1),
Lemma 2.47 and Artin’s theorem, one obtains (f © g); = frgyand ((f © g) ©®a); =
(fOgja= frgja=(f © (g ®a))y.Corollary 2.13 implies (ii). Let us prove (i). Let
F =3 kepm ek Fx and G =} p,) enGp be the stem functions inducing f and g,
respectively. Let C = ) Lepm erCr D — A ®R?" be the stem function constantly equal
toa,ie. Cy =aon Dand C;p = 0on D for all L € P(n) \ {#}. Evidently, Z(C) = a.
Consider z = (a1 +if1,...,an +iBy) € Dandx = (¢1 +JB1, ..., 00+ JBn) € Lp(J).
Let]:=(J,...,J) € (Sy)". By Lemma 2.32, we have that

FO(GOC) =Y yepm exan(=DE I Fg(Gya).
Lemma 2.46(i) implies that Fg (z), Gy (z) € Cy, so the elements Fg (z), Gy (z) and J of A

commute and associate. By Artin’s theorem, it follows that
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(fOE€OaX) =Xk yepmkan. (DI Fg ()G (2)al
=Y k. wepm I KA DKM Fr ()G (2)a
= D K. HePm) JIKAH] J2AKOHI Py ()G (2)a
=Y k.uepm I KPR E ()G (2)a
=Y k. mepm I KT Fr ()G (2)a
= Crerm I Fk @)X pepe I G (@)a = f(0)g)a.

The proof is complete. o

Lemma 2.49 Letb = B(o) be a commutative and associative \-product on R* (for instance
b = bl ). Then the set SR(Q2p, A) is contained in the center of (S(Qp, A), -o).

Proof Let F = Zkep(n) exFg, G = ZLep(n) e;Gp and H = ZMep(n) ey Hyy be stem
functions on D such that each Fk is real-valued. Bearing in mind the latter condition and
the fact that ‘-, ’ is commutative and associative, we obtain:

FG =) g 1cpm €k o eLFkGL =) | gepm €L o ekGLFk = GF,
(FGYH =3 k.1 Mepm) €K "o €L o em(FkGL)Hy
=D k.L.MePm) €K o €L ‘o em Fk (GLHy) = F(GH).
Similar considerations prove also that (GF)H = G(FH) and (GH)F = G(HF). O

In [9, Remark 7] we proved that, if n = 1, f € Sr(22p, A) and g € S(2p, A), then
f © g = fg onthe whole Qp. Remark 2.14 shows that in general the latter equality is false
for n > 2; indeed, the coordinate functions x; and x; belong to Sr (H", H), but x5x; is not
slice on H".

Our next results give some generalizations to several variables of the mentioned result
contained in [9, Remark 7]. First, we need a definition.

Definition 2.50 Let F = ZKep(”) exFxk : D —- AQ® R%" be a stem function, let f =
I(F) : Qp — A be the slice function induced by F and let H € P(n). We say that F is
H-reduced it Fx = 0 on D for all K € P(n) with K ¢ H.If F is H-reduced then we
say also that f is H-reduced. It H = {h} for some h € {1, ..., n}, then we use the term
h-reduced meaning {h}-reduced. We say that f is circular if it is J-reduced, namely if F is
A-valued. Denote S;(2p, A) the subset of S(2p, A) formed by all circular functions. O

Lemma 2.51 Letb = B(o) be any A-product on R?". Then, it holds:

(i) The set Sc(Qp, A) is a real subalgebra of (S(Qp, A), -»). Furthermore, if f,g €
Sc(Q2p, A), then f - g = fg on Qp.

) If f € SrR(2p, A) NS(Qp, A) and g € S(QLp, A), then [ - g = fg on Qp.

(iii) If A is associative, f € S(Qp, A) and g € S.(Qp, A), then f - g = fg on Qp.

Proof Let F and G be the stem functions inducing f and g, respectively. Point (i) follows
immediately from the fact that, for all z € D, (F -, G)(z) is equal to the product of Fy(z)
and Gy (z) in A. Let us prove (ii). In this case F' = Fj is real-valued, G = ZKGP(n) exGg
is generic and

(f 0 ) =X gepm Ik, Fn(2)Gk (2] = Fy(2) Yok epy[ Ik Gk (D] = f(x)g(x),
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as desired. If A is associative and G = Gy, we can write

(f = @) = Yk epmlx: Fk@Ga@] = g epm ks Fx@1Ga() = fx)g),
and (iii) is proved. ]

Proposition 2.52 Let b = B(o) be an associative and hypercomplex /\-product on R (for
instance b = by), let f € Sr(Qp, A) and let g € S(Qp, A). Suppose that there exist
L e{l,...,n}and H € P(n) such that f is L-reduced, g is H-reduced and £ < h for all
he H.Then f - g = fg on Qp.

Proof Denote F, G € Stem(D, A® Rzn) the stem functions inducing f and g, respectively.
Write FF = Fy+ e Fp and G = ZKGP(ﬂ),KcH ex Gk. Here F; denotes Fy. Let z =
(ay +if1,...,0, +iBy) € D and let x = (o) + J1B1, ..., %, + J,B,) for some J =
(J1, ..., Jn) € (Sa)". By hypothesis, we know that Fy(z), F¢(z) € R. Since £ < h for all
h € H, given any K € P(n) with K C H, we have that:

o ¢ -5 ex =egupy and [Jxupey, Gk ()] = JelJk, G (2)]if £ ¢ K,
® ¢/ -5 ex = —ek\ (¢} and, thanks to Artin’s theorem, [Jg\ (¢}, Gk (2)] = —J¢e[Jk, Gk (2)]
if £ € K.

In particular, it holds:
(f o ©X) = X kepm). kculJk: Fs(2)Gk (2)]

+ X kepm). ke gk kUi, Fr(2)Gk (2)]
+ 2 kepm). ki ek (LIK\(e), Fr(2) Gk (2)])

=Fp(2) Xk epmy. kcnllk, Gk (2)]
+ JeFe(2) Yk epmy, kcmegr [ Ik Gk (D]
+ JeFe(2) Yok epmy, ke eex Ik Gk (2]

= (Fyp(@) + Je Fe(@) Xk epmy. k culIk s Gk (D)) = f(x)g(x),

as desired. O

3 Slice regular functions

Assumption 3.1 Throughout this section, we assume that D is open in C".

3.1 Complex structureson A ® R?"

Let F = ZKep(n) exFg :D— A QR bea?! function, i.e., suppose each Fg : D — A
is of class ¢! in the usual real sense. Given a family J = {Jn}},_, consisting of n complex

structures on A ® Rzn, we say that a function F is holomorphic w.rt. Jif, for all z € D, it
holds:

oF oF
— @+ Ih| =@ )=0forallh e{1,...,n}, 43)
day B

where z = (@1 +ipi, ..., @, +iBy) are the coordinates of C”", % = ZKGP(n) eK%% and

% = ZKep(n) eKaa%. For short, in what follows, we will often denote dy, and dg, the

partial derivatives B and B respectively.
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We are interested in finding all the families J = {J,}}_, having the following two
universal/algebraic properties:

Property 3.2 Each complex structure Jy of A ® R?" is the extension of a complex structure
of]R2n, which we call again Jy, via tensor product in the sense that Jp(a ® x) = a @ Jp(x)
foralla € A and x € R Equivalently, given any K € P(n) and a € A, if Jy(eg) =
Y HePm) eng;‘K) € R*, then Jy(ega) = > HePm) eH(jg'K)a) e AQR?.

Property 3.3 All polynomial stem functions F : C" - A ® R?" are holomorphic w.rt. J.

Note that, if we apply the latter property to the polynomial stem functions { (1 +i 81, . .., on+
iBn) — ap+epPnr}y,_;» which induce the coordinate monomials x1, . . ., x,, then we deduce
that 1 + Jy(ep) = O forall h € {1, ..., n}, which is equivalent to say that J,(1) = ej or
TIn(en) = —1.

Our next result shows that there exists a unique family 7 with the mentioned two properties.

Proposition 3.4 There exists a unique family {J, : A @ R* — A @ R* Yae1 of complex
structures satisfying Properties 3.2 and 3.3. Each endomorphism J), is characterized by
Property 3.2 and the following condition: for each K € P(n), it holds

Tilex) = (=DEMleg 5 (44)

or, equivalently,
_ | —ex\in ifhe K 45
Jn(ek) :eku{h} ifhé K 45)

Proof Let us prove (45) by induction on the cardinality |K| of K € P(n). If |K| = 0, then
K = ) and we just know that Jj, (eg) = Ju(1) = ep forallh € {1, ..., n}, so (45)is verified.
Suppose |[K| > 1. Let K = {ky, ..., k¢} withk; < ... < ksandlet F : C" - A ®@ R*
be the monomial stem function inducing the monomial function xg := [(xx)rek ]. We have
F(2) = Y epk) eL(@x\LBL),
forallz = (a1 +ipB1,...,an+iB,) € C*, where P(K) denotes the set {L € P(n) : L C K},
aK\L = I—[heK\L oy, and By =[], Bn, where ay = By := 1. Choose h € K. It holds
o F'= X Lepiiy.ngL €L (@K \Luth) BL);
moreover, thanks to Property 3.2 and the induction hypothesis, we have
TIn @8, F) = X 1epiy.ner TnleL) @r\rBriny)

= Tn(ex)Br\iny + 2 Lepaonik)her (—er\m) (@x\LBL\ (1))

= Tn(ek)Br\in) = 2oLep).hgL. LK \h) €L @K\ LU BL)

= Tn(eg)Br\iny + ex\(nyBr\(h) — Oy, F -
By Property 3.3, F is holomorphic w.r.t. 7, so

0 =0y, F' + Tn(3p, F) = Tn(ex)Br\in) + ex\in)Br\(h}-

Consequently, Jy(ex) = —ek\n) as desired. If 4 ¢ K, then the preceding equality implies
that 7y, (exuin)) = —ek, 30 Tn(ex) = Tn(—=Tn(ekuiny)) = exuiny- Equality (45) is proven.

It remains to show that the complex structures J = {71, ..., Ju} on A ® R?" defined by
Property 3.2 and equality (45) satisfies also Property 3.3. Equivalently, we have to prove that,
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givenany £ = ({1, ..., ¢,;) € N*, the monomial stem function F inducing xtis holomorphic
w.rt. J. Given k € N, let py, gx € R[X, Y] be such that (@ + i B)* = pr(e, B) + iqi(a, B)
for all @, B € R, as in Definition 2.8. By the Cauchy-Riemann equations, we have that
Oy pr = 0gqx and dgpr = —0uqk. For each K = {ki, ..., ks} € P(n) \ {¥} with k; <

. < kg, define the functions pg,gg : C* — R by pg(2) = [lrex P (2, Br) and
gk (@) = [rek 9 (@, Br), where z = (a1 +ipi, ..., on +iB,) € C". Define also py =
gy : C" — Ras the function constantly equal to 1. Note that F' = ZKep(n) ek P{l,..n\K4K -
Consequently, if 2 € {1, ..., n}, it holds:

0o F =Yk cpm).nek €K P(1,...n\K (0o, 40, )G K\ {1}
+ 2 kePon) hgk €K Oay, Pe,) P1,...n\(KUIDIK
== X KkePm).hek €K P(1....n\K (9, Puy)GK\(h)
+ 2 kepmyhgk €K (08,96,) PU1, .. .n)\(KUIRD YK
= — D_KePn).hgK KUY P, ...n\(KUlh) (9, Pe ) K
+ 2 kepmyhek €K\R (08,90, P(1,...n\KGK\ ()

and
T 88, F) = X kepony.nex Tn€)Pi,...nnk (98,9, K\ (h)
+ X kepmy.ngk Tn(ex)@p, Pe,) PQ1,...n\(KUH K
= = 2 KeP(n).hek CK\RPIL...n\K (96,90, 9K\(h)
+ 2 kP ngk €KUY (OB, Pey) PUI,...n)\(KURD K -
Consequently, 8y, F + J; (3, F) = 0, as desired. m]

The above complex structures 71, ..., J, commute.

Lemma 3.5 The complex structures Jy, ..., J, on R defined in Proposition 3.4 commute,
that is JnJx = T Jn forall h, k € {1, ..., n}.

Proof Let K € P(n) andleth, k € {1, ..., n} with h # k. We have

_ | =Tlexnpy)  ifke K
(Jh T (ex) = { Tilexow) itk ¢ K.
Therefore
eR\(h k) ifh,ke K
_ ) —ewumniwy  ifh ¢ K keK
(InTi)(ek) —ekupp\ny  ifhe K k¢ K
KU ifh¢ K. k¢ K

is symmetric in 4 and k.

Remark 3.6 The mentioned complex structures 71, .

[m}

n .
.., Jpon R?" can also be characterized

as the unique complex structures on R?" satisfying the following two conditions:

Q) InJk = TxJIp forallh, k € {1, ..., n}.

(i) Jn(ex) = exupny forallh € {1, ..., n}and K € P(n) suchthath < kforallk € K.
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We have only to verify the uniqueness of 71, ..., J,. Let «71’ o, L7;1 be complex structures
on R?" satisfying conditions (i) and (ii). Applying (ii) with K = ¥, we have that 7, (1) = ¢,
and hence Jj(ep) = —1forall h € {1,...,n}. Let K = {ky,...,ks} € P(n) \ {@} with

ki < ... <kg,andleth € {1,...,n}. We have to prove that .,Th(eK) =—ex\(pyifh € K
and j;,(eK) = egu(ny if h ¢ K. First, suppose i ¢ K.If h < k for all k € K, then we are
done by (ii). If # > k for some k € K, then there exists a unique ¢ € {1, ..., s} such that
ki < h < kiy1, where kg :=n+ 1. Define K := {k;41, ..., kg}ifr+1 <s,and K' := 0
otherwise. By (i) and (ii), we have:
Thlex) = (Tp T, - Ti)ex) = Ty, - T )Ty (ex))
= (Ji, - T ekrom) = exuin).-
Finally, if h € K, then J,(eg\(n)) = ek, s0 Tn(ex) = Tn(Tnlex\in)) = —ex\{n}- o

Notation 3.7 In what follows, we denote J = {J1, . .., Ju} the family of complex structures
on A QR” defined in Proposition 3.4.

Definition 3.8 LetF:D— AQ® R?" be a ¢! stem function. For each h € {1,...,n}, we
denote 9 and 9, the Cauchy-Riemann operators w.r.t. the complex structures i on D and Jj,
on A ®R21, that is

op L(DF _ o (0F o Gpo L(PF o (0F
= - —_— —_— an = - —_— .
A PR TR "2 e "\ gy

where (@1 + iy, ..., o, +iB,) are the coordinates of D. ]

As a consequence of Lemma 3.5, each operator of the type 9, or 3, commutes with each
other:

ok = ko, Ondx = 0x0, and 9,0r = 940 (46)
forall b,k € {1,...,n}.

Lemma39 Let F: D — AQ® Rin be a €' stem function and let h € {1,7. .., n}. For each
K € P(n), denote (0, F)x and (0, F)k the K-components of o F and 0, F, respectively.
Then, for all K € P(n), it holds:

1 (0Fk = OFkam |KN{h}|
WF) =5 +——(-1 47
@ F)x 2 (aah * 9Bn b “
and
_ 1 (0Fk  OFkam |KN{h}|
WFg=5(-——-———(-1 : “*
@nF)x 2 ( dap 9Bh b “

In particular, 04 F : D - A ® R? and 9, F : D — A ® R are stem functions.
Proof Let K € P(n). Equation (47) follows immediately from the following computation:
200 F =Y kep) (€ 0o, Fx — Tin(ex)dp, Fx)
=Y kepm ek ek, Fx + ex\(nydp, Fr)
+ X kepmy.ngk (€K o, Fx — exuindp, Fx)
= ZKEP(n),heK €K (aah Fg — 9, FK\{h})
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+ 2 kepwmynek €K (B, Fx + 9p, Fxuiny)-
Similarly, we have that
ZghF = Z eK(aahFK +8/3;,FK\{11})
KeP(n),heK
+ X kermy.ngk ek (8, Fx — 3p, Frupn)-

Consequently, (48) holds.

It remains to show that 3, F and 3, F are stem functions. Let j € {1,...,n}. Since F
is a stem function, we know that Fg (z/) = (—D)EKMFg(z) forall z € D. Fix z € D.
Differentiating both members of the latter equality w.r.t. o5 and B, we obtain:

ey Fx @) = (=DKW, Fr(2) (49)
and
3, Fx () = (= 1) KNUIHIINGRIT . Fe (2).

Since the integers [(K A {h}) N {j}| + [{j} N {k}| and |K N {j}| have the same parity, the
latter equality implies the next one:

3, Frapm @) = (=DKW ge Fran (2). (50)

By combining (47), (49) and (50), we obtain that (39, F) g (z/) = (=1)!X"/l(3, F)k (z) and
hence 9, F is a stem function. Similarly, by using (48) instead of (47), we infer that d;, F is
a stem function as well. ]

The last part of Lemma 3.9 allows to give the following definition.

Definition3.10 Let F : D — A ® R? be a € stem function, let f = Z(F) : Qp — A be
the corresapondlng slice functionandleth € {1, ..., n}. We define the slice partial derivatives

Bx; and f of f as the following slice functlon in&° (2p, A):
0] B _
—f :=7Z(dy F) and —f =T, F). (618
0xp, oxj,

m}

3.2 Holomorphic stem functions, slice regular functions and polynomials

Let us introduce the concepts of holomorphic stem and slice regular functions. The reader
will recall Assumptions 3.1 and 3.7, and Definition 3.8.

Definition3.11 Let F : D — A ®R?" be a ¢! stem function. Given i € {1,...,n}, we say
that F is h-holomorphic if 3, F = 0 on D. We call F holomorphic if it is h-holomorphic for
all h € {1, ..., n}. If F is holomorphic, then we say that Z(F) : Qp — A is a slice regular
Sfunction. We denote SR(2p, A) the real vector subspace of S(2p, A) of all slice regular

functions. o
Note that F is h-holomorphic if and only if, foreach z = (zy, ..., z,) € D, the restriction
function F© : (Dy(z), i) — (A QR , Jy), sending w into F(Z1, ..., Zh—1, W, Zhils -« s

Zn), 1s holomorphic in the usual sense. Here Dy, (z) is the non-empty open subset of C defined
in (22).
A useful characterization of the z-holomorphicity of a stem function is as follows.
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Lemma3.12 Let F: D — A ®@R? bea %! stem function with F = ZKGP(n) ex Fx and
let h € {1, ..., n}. The following assertions are equivalent:

(i) F is h-holomorphic.
(ii) For each K € P(n) with h ¢ K, the functions Fx and Fxuny satisfy the following
Cauchy-Riemann equations

0Fx  0Fkun J dFg _ 9Fgum

b 0pn T OB o 62
Proof By (48), we know that
20, F = D KePn) h¢K (exuin) (B, Frumny + 9g, Fx) + ex (0w, Fx — 3, Fxugny))-
As a consequence, 9, F = 0 if and only if (52) is satisfied. O

By Definition 2.44, given any J € Sy, we have that Qp(J) = Qp N (C;)" and f; :
Qp(J) — A is the restriction of f to Q2p(J). By Assumptions 2.1 and 3.1, it follows that
Qp(J) is a non-empty open subset of (C;)".

The next result contains some characterizations of slice regularity.

Proposition 3.13 Let f € S'(Qp, A) and let F = Y g p(,y ex Fx : D — A®R? be the
€' stem function inducing f. The following assertions are equivalent:

(1) f is slice regular.

d
i) Py =00nQp forallh € {1,...,n}.
X
(ii) For each K € P(n) and for each h € {1, ...,n} with h ¢ K, it holds:
0Fk _ 0Fgun) an 0Fk _ _ 9Fkun)
dap 0B 9Bn dap,

(iii) There exists J € Sy such that fj : Qp(J) — A is holomorphic w.r.t. the complex
structures on Qp(J) and on A defined by the left multiplication by J; that is,

afr afs
)+ J—(2)=0 forallz € Qp(J) and forallh € {1, ..., n}, (53)
day, B
where 7 = (a1 + JB1, ..., an + J By) are the coordinates of points z € (Cy)".

(iii") For each J € Sy, f is holomorphic in the sense of (53).

Proof Equivalence (i) < (i) is an immediate consequence of the fact that, by Proposi-
tion 2.12, a slice function is null if and only if its stem function is. Equivalence (i) < (ii)
follows immediately from Lemma 3.12. The implication (iii") = (iii) is evident. We will
show that (ii) = (iii") and (iii) = (ii) completing the proof.

LetJ € Sp,letx = (o +JB1,...,an+JIBn) € Lp(J),letz = (@1 +iB1,...,0n +
iBy) € Dandleth € {1, ..., n}. By Artin’s theorem, we have that

f10) =X pepmy I Fr ). (54)
Consequently, f7(X) = 3. yepm) ngn JH(Fy(z) + J Frumy (2)) and hence

(aah fr+Jog, fl) (x) = ZHGP(n),thH JlHl(aah Fy — 9, FHU{h})(Z)
+ X nepmyngn I (0w, Fromy + 8p, Fu ) (2) = 0.
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This proves implication (ii) = (iii’). Finally, suppose that (iii) holds. Let us prove (ii). Let
z € Dandx € Qp be as above and let L € P(n). Recall that z* € D and x L € Qp. For
each H € P(n), define the function Fy ; : D — A by setting Fy 1(2) :== Fu (ZL). Thanks
to (4) and (54), we obtain that

F1G) = nepm JUHI(—DIHOL FY (7).

On the other hand, it is immediate to verify that 8y, Fy 1 (z) = 0y, FH (zH) and 08, Fg,L(2) =
(=1)ILNiRY g, Fu @hH. Using again Artin’s theorem, it follows that

0 = (3 £ + J3p, £1) (x 1)
=Y nepm I DO (3, Fy 1 + T9p, Frr L) G5)
=Y pepm I HNDHEL0,, Fr(2)
+ Y hep I TN (= DIIOLHILOWI g, Fr (7).

We have just proven that

0= pepu I (=D, Fr(z)

+ Z J|H|+l(—l)leL|+|Lm{hHaﬂhF[-[(Z). (55)
HeP(n)

Fix K € P(n)and h € {1, ..., n} with i ¢ K. Multiply both members of (55) by (—1)!L0K]
and sum over all L € P(n). Bearing in mind Lemma 2.11, we obtain

0= pepu J10u, Fr (2) (ZLEP(n)(_l)IHnLHleK‘)
n ZHEP(n) J\H\Haﬂh Fu(2) (ZLep(n)(_])\HﬂL|+|Lm{h}|+|LﬂK\)
=2"JIKIg,, Fk (2)
+ 2 HePm) T g, Fry(2) (ZL&P(VL)(_l)‘HmLHle(KU{h})‘)
=2"JIK13,, Fg (2)
+ 217K 285 Frupy (2) = 2" J1KV (8, Fx (2) — 8, Frugny (2)) »

and hence 0y, Fx(z) = g, Fxun)(z). Similarly, multiplying both members of (55) by
(= 1)IENEKUEDI and summing over all L € P(n), we obtain

0 = 2" J1KIH (3, Frupm (2) + 9p, Fx (2))
and hence dg, Fg (z) = —0q, Fxun)(z). This proves (ii). ]
Slice regular functions include polynomial functions.
Proposition 3.14 All polynomial functions from Qp to A are slice regular.

Proof Foreachk € {1, ..., n},itis immediate to see that the coordinate function x; : Qp —
A is slice regular; indeed gjﬁ. =0onQpforallh € {1, ..., n}. Combining Lemma 2.43, Eq.

h
(73) and equivalence (i) < (i') of Proposition 3.13, we deduce at once that all polynomials
functions from Qp to A are slice regular. O
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3.3 On the zeros of polynomials

This section deals with the zero set of polynomials over A in the case A is the division algebra
H of quaternions, the one O of octonions or the Clifford algebra R,, = C£(0, m) form > 3.
We apply a Fundamental Theorem of Algebra which is available on these alternative algebras
(see [20], [18, 22] and [9, Examples 9(1)]) to the polynomial in the first variable x; which is
obtained fixing the other variables and then we use arguments from real algebraic geometry
to deduce the possible real dimensions of the zero set.

Given any function f : (Q4)" — A, we denote V (f) its zero set, i.e.

V(f)={x € (Qa)": f(x)=0}

If A =H and f is a polynomial in the sense of Definition 2.7, then the next result gives
some properties of V (). Identify H" with R*" by choosing one of its real vector basis.

Proposition 3.15 Let f : H" — H be a nonconstant polynomial. Then V (f) is a nonempty
real algebraic subset of R* and its dimension dimg (V ( f)), as a real algebraic set, satisfies
the following estimates:

4n — 4 < dimp(V(f)) < 4n — 2. (56)

Proof The equation f = 0 in n quaternionic variables is equivalent to a system of four real
polynomial equations in 4n real variables, so V (f) is a real algebraic subset of R,

Let us prove (56) by induction on n > 1. If n = 1, this is an immediate consequence
of the Fundamental Theorem of Algebra for quaternions [20], FTA for short. Let n > 2
and let f : H" — H be a nonconstant polynomial function. We can assume that f has
the following form: f(x) = ZZ:O x{‘ph (x), where d > 0, each p, : H"' — Hisa
polynomial function in the variables x" := (x2, ..., x,) and pg does not vanish identically
on H"~!. Note that the zero set W of py in H"~! is either empty if py is constant or, by
induction, dimg (W) < 4(n—1) —2 = 4n —6if p4 is not constant; in particular, W # H T

Assume thatd > 1 and let y’ ¢ W. Then the FTA implies that V (f) N (H x {y’}) is either
a nonempty finite set F or a nonempty finite union S of 2-spheres of H = R* or a nonempty
set of the form F U S. In particular, V(f) # @. Let = : V(f) — H"~! be the projection
7(x1, x’) := x’. We have just proven that 77 ~!(y’) is nonempty and dimg (7 =1 (")) < 2 for
all y' ¢ W. Evidently, if y/ € W, then 7' (y")  H x {y’} and hence dimg (7! (y")) < 4.
By the version of Sard’s theorem in real algebraic geometry, we deduce at once that

4n — 4 = dimp(H"™") < dimp(r " 'H'\ W) < dimp(H* ) +2 =4n —2
and
dimg (7~ 1(W)) < dimp(W) +4 < (4n — 6) +4 = 4n — 2.

Since dimpr(V (f)) = max{dimR(ﬂ_1 (]HI”*1 \ W), diln]R(yr_l (W))}, we are done.

Assume now that d = 0. In this case it must be n > 1, since f is nonconstant, and f
coincides with the polynomial po(x’) in the variables x, . . ., x,,. From the previous argument
applied to po, we obtain that V (f) is nonempty and 4(n — 1) —4 < dimgr(V (po) N H' ) <
4(n — 1) — 2, from which it follows again that

4(n —1) =dimr(V(f)) <4(n -1 +2.
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Example 3.16 Estimates (56) are sharp. Suppose that n > 2. Consider the polynomial func-
tions f1, f2, f3 : H" — H defined by setting

f@)=x1,  pE=xi+6G+1 300 =x+1,

for all x = (x1, x2, ..., x,) € H". Evidently, dimr(V (f1)) = 4n — 4 and dimr(V (f3)) =
4n —2. Letus study V (f2). Note that x% + 1is a positive real number if and only if x; belongs
to the 3-dimensional semi-algebraic subset S of H defined by

S:=RU{xp € H:Re(xz) =0,n(x) <1}

Let 7 : V(f2) — H"! be the projection 7 (x, x’) := x’, where x’ := (x2, ..., x,). Note
that 7 =1 (y) consists of a single point if y' € Sq x H" 2, a 2-sphere if y' € § x H"~2 and
two distinct points if y’ € H" ! \ (SaUS) x ]HI”_Z). As a consequence, we have:

o dimp(m 1S4 x H* 2)) = dimp(Sg x H* ) +0=2+4(n —2) =4n — 6,
o dimp(r (S x H"2)) = dimp(S x H* 2) +2=3+4(n —2) +2 = 4n — 3,
o dimp(w '(H"'\ ((Sa US) x H"?))) = dimp(H" 1) + 0 =4(n — 1) = 4n — 4.

It follows that dimg (V (f2)) = max{4n — 6,4n — 3,4n — 4} = 4n — 3. ]

Proposition 3.15 remains valid over the octonion algebra ©. The proof is identical, thanks
to the fact that the Fundamental Theorem of Algebra still holds in this case (see [18, 22]).

Proposition 3.17 Let f : Q" — O be a nonconstant polynomial. Then V (f) is a nonempty
real algebraic subset of R®" and it holds

8n — 8 < dimgr(V(f)) <8n —2. (57)

Remark 3.18 Suppose thatn > 2. Let f1, f2, f3 : ©" — O be polynomial functions defined
as in Example 3.16. Repeating the same considerations we made in the mentioned example,
we obtain that dimg (V (f1)) = 8n — 8, dimr(V (f2)) = 8n — 3 and dimgr(V (f3)) = 8n — 2.

O

A weaker version of Proposition 3.15 is valid also over all Clifford algebra R,,, withm > 3.

Choose m > 3 and equip R,, with the Clifford conjugation. Given any a € R,,, we
write a = ZKep(m) ageg for ax € R. Recall that t(a) = 2 % akex and n(a) =
Yk la, aex)ex, where Y = D"k cpim).|K1=0.3 (mod 4) ad (-, -) is the standard Euclidean
scalar product on R,,, = ]R2m, see Sect. 3.2 of [17]. As a consequence, a = ZKeP(m) ageg
belongs to Qr,, if and only if ax = 0 and (a, aex) = 0 for all K € P(m) \ {#} such that
|[K| = 0,3 (mod4). Moreover, a = ZKGP(M) agek belongs to Sg,, if and only ifa € Qg,,,
ag = 0and (a, a) = 1. Itturns out that Qg and Sg,, are real algebraic subsets of R,, = R>".
Since Qr,, \ R is semi-algebraically homeomorphic to Sg,, x {(«a, B) € R? : B > 0}, we
have that

dimg(Sg,,) = dimg(Qg,,) — 2. (58)
Note that Qr, C Qr,; moreover, dimr(QRr,) = 6, see Examples 1(3) of [8] and [13,

Example 1.15]. It follows that dimr(Qg, ) > 6. Denote R™ ! the real vector subspace of
R,, of paravectors a = ag + Zzlzl apey, where ap := ag and ay, := aypy (and e, = eypy). It
is easy to see that R”*! is contained in Qp,, .

The Fundamental Theorem of Algebra still holds for one variable polynomials with par-
avector Clifford coefficients (see [9, Examples 9(1)]). This fact allows to generalize the first

statement of Proposition 3.15 to this setting.
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Proposition 3.19 Let f : (Qr,)" — R, be a nonconstant polynomial with paravector
coefficients. Then V (f) is a nonempty real algebraic subset of (Qr,, )" C R"".

Proof We proceed by induction on n. If n = 1, the FTA [9, Examples 9(1)] implies the thesis.
Assume n > 2 and write f(x) = ZZ:O x{’ph (x"), whered > 0, each py, : (Q]Rm)"*1 — Ry
is a polynomial function in the variables x” := (x2, ..., x,;) and p; does not vanish identically
on (O, )"_l. If d = 0, then f(x) = po(x’) is nonconstant and therefore V () # @ by the
induction assumption. If d > 1, then for every fixed point y’ = (3, ...,1;,) € Rx--- xR C
(Or,)"" !, the function f(x1,y") = ZZ:O x{l pr(y’) is a nonconstant polynomial in the
variable x| with paravector coefficients. Therefore V ( f) is nonempty. O

Whenn > 1,thezeroset V ( f) isinfinite for every nonconstant polynomial with paravector
coefficients. It is difficult to obtain general estimates for the real dimension of V(f). The
next proposition suggests the types of results one can expect.

Proposition 3.20 Let f : Ogr,, % Rl 5 R, be a function of the form

fonx) =x + g xlpa(x) (59)
forall (x1,x") € Og,, % R =1 yohere d > 1 and each Ph - (Q]Rm)"*1 — Ry isa
polynomial function in the variables x' = (x3, ..., x,,) such that

pr(R™Y=1y c R"™ forallh €40, ..., d — 1}; (60)

inthe case n = 1, (60) means that the py,’s are elements of]Rm“. Then f~1(0) is a nonempty
real algebraic subset ofRzm“mH)("*l) contained in QR,, X (RN =1 and it holds

(m+D(n—1) <dimg(f~'(0) < (m+ D(n — 1) + dimg(Qr,,) — 2. (61)

Proof If n = 1, the statement follows immediately from (58), (60) and Examples 9(1) of
[9]. Suppose that n > 2. Let y’ € (RMF1yn=1, Using (58), (60) and Examples 9(1) of [9]
again, we have that f “1o)n (OR,, x {y'}) is either a nonempty finite set F or a nonempty
finite union S of ‘spheres’ semi-algebraically homeomorphic to Sg,, or a nonempty set of the
form F U S. In particular, f~'(0) # ¢ and, if 7 : f~1(0) — (R"™*!)"~! is the projection
7 (x1,x’) := x/, then the fibers of 7 are nonempty real algebraic sets of dimension ranging
from O to dimg (Sg,, ). This fact and (58) completes the proof. ]

Example 3.21 Suppose that n > 2. Choose m > 3. Set N := (m 4+ 1)(n — 1) and M :=
dimg (Qr,,). Define the functions fi, f>, f3 : Or,, X (RMHyn=1 5 R, asin Example 3.16.
Note that each of these functions satisfies (59) and (60). Evidently, dimp ( fl_1 (0)) = N and
dimp ( f;l (0)) = N+M—2.Letus study f{l (0) following the strategy used in Example 3.16
to investigate V (f2). Note that, if x, € Rm+1, then x% + 1 is a positive real number if and
only if x € S, where S is the m-dimensional semi-algebraic set defined by

S:=RU{XM qapen e R" ' :ag =0, Y a2 < 1}.

Let S be the (m — 1)-sphere {> ) _janen € R™! 1 ay = 0, ) a7 = 1} and let
T f2_1(0) — (R™*1y"=1 be the projection 7 (x, x') := x’, where x' := (x2, ..., x,).
Note that 77! (y’) consists of a single point if y € 35 x (R™HY=2 ‘sphere’ semi-
algebraically homeomorphic to Sg,, if y' € § x (R™+1)"=2 and two distinct points if y’ €
Ry =1\ ((SUS) x (R™F1)"=2). As a consequence, we have:

o dimp(m~1OS x R™ YY" 2)=m—-1)+@m+ Dn—2) <N,
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o dimp (1 (S x R™ 1Y 2)) = m+(m+1)(n—2) +dimg(Sg,,) = N —1+dimg(Sg,, ),
o dimp(r ! (R™TH1\ (SUIS) x R™T)"=2))) = N.

Thanks to (58) and the fact that M = dimg(Qg,,) > 6, it follows that
N —1+dimr(Sg,,)=N—-1+M-2=N+M-3>N+3>N.

As a consequence, we have that dimg(f, ' (0)) = dimg(z~'(S x (R"1)"=2)) =
N+ M —-3. m]

3.4 One variable interpretation of slice regularity

We now show that the condition of slice regularity in several variables has an interpretation
in terms of slice regularity in one variable. More precisely, we show that the slice regularity
of a slice function f : Qp — A is equivalent to the slice regularity of all its 2" — 1 truncated
spherical derivatives D f w.r.t. the single variable x;, where & — 1 is the order of D.. The
notion of truncated spherical e-derivatives was introduced in above Definition 2.24.

Let g : Qp — A be a function and let & € {1, ..., n}. Recall that, by Definition 2.22,
g is a slice function w.r.t. x;, if, for each y = (y1,..., y») € Qp, the restriction function
g+ Qpa(y) — A, sending xj into g (xp) 1= V1, -\ Ya—1s Xhs Vit ls - -, Yn), is @
slice function. Let us specialize this definition to the slice regular case.

Definition 3.22 Let g : Qp — A be a function and let & € {1, ..., n}. We say that g is a
slice regular function w.r.t. xy if, for each y € Qp, the function gl(ly) :Qpp(y) > Aisa
slice regular function. O

Theorem 3.23 Assume that n > 2. Let f : Qp — A be a slice function. Then f is slice
regular if and only if f is a slice regular function w.r.t. X1 and, for each h € {2, ..., n} and
each function € : {1,..., h — 1} — {0, 1}, the truncated spherical e-derivative D¢ f of f is
a slice regular function w.r.t. Xp.

Proof We use the notation introduced in (22) and (23). If x = (x1,...,x,) € Qp, then
Qp.p(x)isthe subsetof Q4 definedby Qp p(x) ={ae A: (x1,...,Xp—1,a, Xp41s .-, Xn)
€ Qp}.Itholds Qp p(x) = Q2p, (), where Dy (z) = {w € C: (z1,..., Zh—1, W, Zhtl, - - »
Zn) € D}.

Assume that f is slice regular. Let FF = ZHEp(n) enFy © D —> A ®R* be the
stem function inducing f,lety = (y1,..., ) = (o1 + 181, ...,y + I,6,) € 2p, let
I:=(,...,Iy)andletw = (wy, ..., wy) = (@1 +iPi1,...,a,+1B,) € D.Letus prove

that f is slice regular w.r.t. x;. As seen in formula (27), itholds f (x1, y') = Fi(z1)+J1 F2(z1),
where x; = a1 + J1B1 € Qp1(¥), Y = (2,..., yu), 21 = a1 +ip1 € Di(w), and

Fi(z1)) = X gepmy1¢nl s Fr(zi, w)]

and

F(z1) = Zﬂep(n),1¢H[JH, Frupy(zi, wh],
with w’ = (wy, ..., wy) and J = (Jy, I, ..., I,;). From implication (i) = (ii) of Proposi-
tion 3.13, it follows that 9y, F'1(z1) = 9, F2(z1) and dg, F1(21) = —0y, F2(z1), thatis f is
slice regular w.r.t. x; on 2p 1(y).
Nowleth € {2,...,n}andlete : {1,...,h — 1} — {0, 1} be any function. Set Kj_; :=
€~1(1). Let us prove that D, f is slice regular w.r.t. x;,. From formula (28), it follows that
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De £, xp, $) = Fp,1(zn) + JnFr,2(zn), where

F1(n) = Bro) ™" Y mepm. gy—olLa Fruk,_ @5 20, 2],

Fra@n) = Bry) ™ X wepon. gy—plL s Frok, oy @ 2ns D)1,

xn € Qpr(3, Y = Ot Y1) Y = OhttseesYn)s 2 = ap +ifp € Dy(z),
=@, 2he1)s 2 = @hats sz and L = (Iy, ..., Iy, Jp, D1, ..., Iy). Again
from implication (i) = (ii) of Proposition 3.13, it follows that 9y, Fj,,1(zn) = 98, Fn,2(zn)
and g, F,,1(zp) = — 04y, F,2(21), i.e. D f is slice regular w.r.t. X, on Qp (y).

Conversely, assume that f is slice regular w.r.t. x| and that the functions Di,(fi]_l) ‘e Difl)f
are slice regular w.r.t. x; for all K € P(n) and all h € {2,...,n}, wheree : {1,...,n} —
{0, 1} is the characteristic function of K.

Let K € P(n) and let h € {1,...,n} with h ¢ K. Consider any z € Dg, ,, where

Dk, , = ﬂkeK,H{(zl, ..., Zn) € D : zx ¢ R}. From formulas (27) and (28), we obtain
that it holds:
" ety gL L da FHUK,, (2) — 8, FrUK,_uny ()] = 0 (62)
> tepmy. Hy=plLH: 9, FHUK,_, (2) + 00, FrHUK),_,uth) (2)] = 0, (63)

where L = (11, ..., In—1, Jn, Int1, ..., Iy) and Hy = Ko = 0.
Let M € P(n). Thanks to (4), for each H € P(n) such that H, = ¢, it holds

Oy, Frug,, @) = (=D HR-0WMIg Fy ok, (2); (64)
moreover, being |(H U K,_1 U{hh) N M| = |(HU Kp_1) N M| + |M N {h}], it holds
O, Fruk, o @1 = (=DIVE-0WMlag ok, | ). (65)
Thanks to (64), (65) and the validity of (62) at the point M we get that
ZHep(n)’Hh:@(_1)‘(HUK)171)OM‘[LHa 0oy, FrUK,_, (2) — 9, Fruk,_ Uy (@)1 = 0 (66)

forall M e P(n). Multiply both members of (66) by (—1)/X"M| and sum over all M € P(n).
Using the combinatorial Lemma 2.11, we get

0= ZMEP(n) (—DIENMI ZHep(n)’Hh:@(_ I HUK—DNM|

X Ly, 0, FrUK,\_, — 98, FHUK,_ U]
= D HePm), Hy=p ZMeP(n)(_DlliH(HUK"’li
X [LHv ao(h FHUKh_l - aﬂh FHUKh_IU{h}]

= ZHEP(H),Hh:V) 2n8KsHUKh71 [LH, 0, FHUK),- — 8,311 FHUthlU[h}]
= 2"[Lg\k,,> 0ay, Fx — 0, Fruin)]

on the whole Dk, ,. Therefore dy, Fx (z) = 9g, Fxuin)(z) on Dk, _,. By Assumption 3.1,
we know that D is open in C". As a consequence, D, , is dense in D. Since F is of class
%! on D, the partial derivatives dy, Fx and g, Fxur)(z) are continuous on D. It follows
that 9y, Fx (z) = 9, Fxuny(z) on the whole D. In a similar way, we deduce from (63) that
0g, Fx = —04, Fxuin) on D. From implication (ii) = (i) of Proposition 3.13, it follows that
f is slice regular on Qp. O
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3.5 Leibniz's rule

The next lemma gives sufficient conditions for Leibniz’s rule to be valid for each 9;, and .

Lemma 3.24 Letb = B(o) be a A-product of]Rzn, lethe{l,...,n}andlet F,G : D —
A @ R be €' stem functions. Write F = ZKGP(H) exFx and G = ZHEP(H) enGp.
Define

Pl = {(K, H) € P(n) x P(n) : 55& -x Gy =0 on D},
Py = (P(n) x P(m) \ P{ .
P, :={(K, H) € P(n) x P(n) : Fx -5 %3t = 0 on D},
Py i= (P(n) x P(n)) \ Py .
Suppose that the following two conditions hold:
(=KD G (g HY = (—1) KWl (K A (R}, H) forall (K, H) € Py, (67)
and
(=KD 6 (K HY = (—D)H Mo (K, H A (k) forall (K, H) € Pyj,. (68)
Then it holds:
n(F ¢ G) = (F) ¢« G+ F -5 (0hG), (69)
0 (F o G) = (34 F) ¢ G+ F -5 (0,G). (70)

Proof We prove only (69), the proof of (70) being similar. For simplicity, we omit ‘-5’ in
each product w.r.t b. We have:

204 (FG) =00, (FG) — Ti (3, (FG)) = (3, F)G + F (35, G)+
— Tn((3p, F)G) — Tn(F (8p,G)). (71)
Bearing in mind (44), we have also:
TIn (B, F)G) = Tn( Xk rrepwm) ek ano (K, H) (g, FK)Gr)
=2 _(k.mep,, Jnlexkan)o (K, H)(0p, Fx)Gn
= D_(K.H)ePy, ek ar (= DIKSIDNMI G (K H) (3, FK)GH.
Similarly, we deduce:
(7038, F))G = Xk gepm Jnlex)en (3p, FK)G
= Y (K.H)ePi ) exapmyen (—DENMN Qg Fr)Gy
= Y (k. mep, eksuam (=D Wlo (K A (R}, H)(9p, FK)Gh.

Consequently, (67) implies that J;((9p, F)G) = (J(9p, F))G. Similar computations and
(68) ensure also that jh(F(a,gh G)) = F(jh (9g,, G)). Combining the latter two equalities
with (71), we obtain:

0 (FG) = 1 (9 F)G + F (00, G) — (T (3, F))G — F(Ti(2,G)))
=0, F)G + F(0,G),

as desired. O
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The above lemma suffices to prove that Leibniz’s rule works for the slice tensor product.

Proposition 3.25 Foreach f, g € S! (2p, A) and for each h € {1, ..., n}, it holds:

3 9 9
D fon=Y ogrrolt, (72)
axp 0xp xp
3 3f dg

_ 9 , 73
ax;(ng) 8x;;®g+f®ax;;‘ (73)

Proof Given any pair (K, H) € P(n) x P(n) and any h € {1, ..., n}, it is immediate to
check that (K A HYN{h}|+ |K NH| = |K N{h}|+ |(K A {h}) N H|; indeed, the preceding
equality becomes |[K N H| = |KNH|ifth¢ KA H,and | KNH|+1=|KNH|+1if
h € K A H. The mentioned equality is equivalent to (67) and (68) if b = B(og), because
og(K, H) = (=1)|KNH| by Lemma 2.32. Lemma 3.24 concludes the proof. m]

3.6 Multiplication of slice regular functions

Proposition 3.26 The set SR(Q2p, A) is a real subalgebra of (S(p, A), ®). Moreover, the
set SRr(R2p, A) := Sr(Qp, A)NSR(Lp, A) of all slice preserving slice regular functions
Jfrom Qp to A is contained in the center of (S(R2p, A), ©).

Proof The first part is a direct consequence of Eq. (73) and equivalence (i) < (i') of Propo-
sition 3.13; the second follows immediately from Lemma 2.49. O

In the next result we see that the slice tensor product is the unique associative and hyper-
complex A-product on R?", which preserves slice regularity.

Proposition 3.27 The tensor product by, is the unique associative and hypercomplex -
productb = B(o) ofRzn such that SR(Q2p, A) is a real subalgebra of (S(22p, A), 5).

Proof Letb = B(o) be a A-product of R?" let f = Z(F) and g = Z(G) be functions in
SR(2p, A), and let (FG)g be the K-component of FG = F -, G for all K € P(n).
Choose K € P(n) and h € {1,...,n} with h ¢ K. For short, during the remaining part
of this proof, we will use the symbol }_* in place of D (K|.K».K3)ez (K)- Bearing in mind
equality (40) and implication (i) = (ii) in Proposition 3.13, we have:
0o, (FG)k
= Y"" (O, Fx,UK3) G krUks + Fk UKs (9, G kyUk3)) 0 (K1 U K3, K2 U K3)
= ks (=08, Fixukan\ () Gkouk; 0 (K1 U K3, K2 U K3)
+ D heks Friuks (=98, G (kuks )\ (n))o (K1 U K3, K2 U K3)
+ 2 he ks 3, Fr Uksuin)) G k,Uks0 (K1 U K3, Ko U K3)
+ 2 heks Friuks (3, G k,uksuimy)o (K1 U K3, Ko U K3)
= heks (—9p, Fx1UKks) G koUksunyo (K1 U K3 U (), K2 U K3 U {h})
+ 2 heks Friuksuny (=8, Gk,uk;)0 (K1 U K3 U (), K2 U K3 U {h)
+ 2 he ks 3, Fr Uksuin)) G k,Uks0 (K1 U K3, Ko U K3)
+ 2 heks Friuks (3, G kyuksuiny)o (K1 U K3, Ko U K3) (74)
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and

g, (F G)kuiny

= Y heks @y Fx Ui uks) G kuks0 (K1 U (7)) U K3, Ko U K3)
+ 2 heks Fikiuimnuks (3, Gr,uk;)o (K1 U {h) U K3, K2 U K3)
+ 2 he ks g, FriUks) G (k0 uk; 0 (K1 U K3, (K2 U (7)) U K3)
+ 2 heks Friuks (9, G (k,uthpuks)o (K1 U K3, (K2 U {h}) U K3)

= > heks Oy Fr k0t G KoUK 0 (K1 U K3 U {R), K2 U K3)+
+ 2 heks Friuksuin (3g, Gk,uks)o (K1 U K3 U {h), K2 U K3)
+ ZZ¢K3(3/Sh Fr,uk3)Gk,uksuino (K1 U K3, Ko U K3 U {h})
+ 2 heks Friuks (98, G kyuksuny)o (K1 U K3, Ko U K3 U {R). (75)

It follows that, if the following chain of equalities

o(K1UK3U{h}, K UK3U{h}) = —0 (K1 U K3, Ky U K3 U {h})
= —0(K1UK3U{h}, Ko UK3)
= —0(K1UKj3, Ky UK3) (76)

holds for all (K1, K>, K3) € 2(K) with h ¢ K; U Kr U K3, then 9y, (FG)x =
9, (F G) gun)- Similar computations ensures that, if equalities (76) hold, then dg, (FG) g =
— 0y, (FG) kuiny as well; consequently, by implication (ii) = (i) in Proposition 3.13, f -5 g
is slice regular. Note that if 0 = ag, then equalities (76) are trivially verified; indeed,

og(K1UK3U({h}, Ko UK3U{h}) = (— 1)KV = _(_p)lKsl,
0 (K1 U K3, K2 U K3 U {h}) = 0g (K1 UK3 U {h}, K2 UK3)
= ol (K1 UK3, Ky UK3) = (=KL,

This gives another proof of the fact that f © g is slice regular.

Suppose b = B(o) is a hypercomplex A-product of R?" such that f -4 g € SR(Qp, A)
forall f,g € SR(Qp, A).Let K, H € P(n). We have to prove that o (K, H) = (—1)/K"HI,

First, we show that 0 (K, H) = o(K N H, K N H). Suppose that K \ H # ¢, and
choose h € K \ H. Denote xx and xy the monomial functions from Qp to A defined
as xg = [(xi)kek] and xg = [(xp)nenm]. Note that, if = ZLEP(H) er Ky and H =
> MePn) emHy denote the stem functions such that xxg = Z(K) and xy = Z(H), then
ICL(Z) = aK\LﬁL if L C K, ICL(Z) =0if L ¢ K, HM(Z) = aH\MﬂM if M C H and
Hpy(iz) =0if M ¢ H, where z = (a1 +iB1,...,a, +ify) € D, ap = ]_[pepcxp and
Bp = ]_[pep Bp forall P € P(n) \ {#}, and oy = By := 1. Moreover, by (74) and (75), if
we set

Z. = Z(Kl,Kz,Kg)e_@((K\{h})AH),h¢K3’

Z/ = ZKgEP(n),[QCKﬂH’
o W(K3) :== o ((K \ H) \ {h}) U K3, (H \ K) UK3),
o @ (K3) :== o ((K\ H)UK3, (H\ K)UK3),

then it holds
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O, (KH) (\(hy) 2l (2)
=23, Kx,uksuin) Hiyuk;0 (K1 U K3, K2 U K3)
= Y@k )\ K3 BAK\FO\ (i) UK XK NEO\ K3 B k) Uk, 0 P (K3)
= Bikamnin X (@knmnks)? (Bry) 2o D (K3)

and, similarly,

38, KH)kan(z) =Y (38, Kk uk;uny) Hi,uk;0 (K1 U K3 U {h}, K2 U K3)
=Bk amnin X @knmnk:)>(Bry)?o @ (K3).

By hypothesis, the polynomial functions 9y, (KKH) (x\(r}) 2z and dg, (KCH) g o g in the variable
z=(a1+ipi1, ..., on+iBy) are equal on the non-empty open subset D of C". Consequently,
the coefficients o () (K3) and o @ (K3) are equal for all K3 € P(n) with K3 C K N H.In
particular, the case K3 = K N H implies that o(K \ {h}, H) = o(K, H) for all h €
K \ H. Since by hypothesis dg, (ICH) (k\{n))an is equal to —dy, (KH) g ax as well, similar
computations show that o (K, H \ {h}) = o (K, H) forall h € H \ K. This proves that

o(K,Hy=0(KNH,KNH) forall K, H € P(n), 77)

as desired. In particular, b turns out to be commutative. Since it is also associative and
hypercomplex by hypothesis, Lemma 2.42 implies that b = bfg,. O

We conclude this section with a result regarding slice regularity of pointwise products. For
each ¢ € {1, ..., n}, we denote 7y : A" — A the natural projection 7o (xy, ..., X,) := Xg.

Lemma3.28 Let ¢ € {1, ..., n}, let E¢ be an open subset of C invariant under the complex
conjugation of C and such that w¢(Q2p) C Ey, and let f : Qg, — A be a slice preserving
slice regular function (in one variable), that is f € SRr(QEg,, A). Let H € P(n) be such
that ¢ < h forallh € H, and let g : Qp — A be a H-reduced slice regular function (in n
variables). Define the function p : Qp — A by

p(x) = fxe)g(x)

forall x = (x1,...,x,) € Qp, where f(x¢)g(x) is the product of f(x¢) and g(x) in A.
Then p belongs to SR(Q2p, A).

Proof Let f, : Qp — A be the function fi(xy,...,x,) := f(xp). Note that f, is a £-
reduced slice regular function. By Proposition 2.52, we have that p = f, © g. By (73), p is
slice regular. O

3.7 Splitting decomposition of slice regular functions

By Assumption 2.1, the set S 4 is non-empty. Thanks to Artin’s theorem, the left multiplication
by an element of S4 induces a complex structure on A, so the real dimension of A is even
and positive, say dimr(A) = 2u + 2 for some u € N. More precisely, if J € Sy, then the
algebraic sum of A together with the complex scalar multiplication C; x A — A, sending
(c, a) into the product ca in A, defines a structure of C;-vector space. If {J, ..., J,}is a
C j-vector basis of A, then {1, J, J1, JJ1, ..., Jy, JJ,} is a real vector basis of A, see [12,
Lemma 2.3]. A real vector basis of A of this form is called splitting basis of A associated
with J.
In the next result we use Definition 2.44.
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Proposition 3.29 Let f € S'(Qp, A), let J € Sp and let {1, 7, J1, JJ1, ..., Ju, JJ,} be a
splitting basis of A associatedwith J. Denote { fi ¢ : Qp(J) = Rlre(1,2),¢e1,...,u) the unique
real-valued functions on Qp(J) such that f; = Zlé:o(fll Je + f2.0dJe), where Jy = 1.
Define the Cj-valued functions {f¢ : Qp(J) — Cy}j_, by setting f¢ := fi.e + foeJ, in
such a way that fj =Y "(_o feJe. The following assertions are equivalent:

(i) f is slice regular.
(i) For each € € {0, 1, ..., u}, we have

3 3 9 J
Sie  0fae and Jie S fae on Qp(J),

day dBe 0P darg
where (a1 + JB1, ..., o + J By) are the coordinates of (Cj)".
(iii) For each £ € {0, 1, ..., u}, the function f; : Qp(J) — Cj is holomorphic, where
Qp(J) and Cj are equipped with the natural complex structures associated with (left)
multiplication by J.

Proof Equivalence (ii) < (iii) is evident. Let 4 € {l,...,n}. Bearing in mind Artin’s
theorem, we have

aothfl + Jaﬂ/,f-] = Zzzo(aothff + Jaﬁhf@)JZ

Thanks to equivalence (i) < (iii) in Proposition 3.13, we deduce that f is slice regular if and
only if 9y, f¢ + J0g, fo =0o0n Qp forall £ € {0, 1,...,u}and h € {1, ..., n}. The latter
assertion is in turn equivalent to say that each f; is holomorphic. This proves equivalence
(i) < (iii) and completes the proof. ]

As a consequence, we deduce:
Corollary 3.30 Every slice regular function is real analytic, i.e. SR(Qp, A) C €“(Qp, A).

Proof By Proposition 3.29, if f = Z(F) € SR(Qp,A) and J € Sy, then f; €
¢°(Q2p(J), A). By formula (8), it follows that F € Stem®(D, A ® Rzn) or, equivalently,
f € 8”(Qp, A). Now Theorem 2.26(ii) ensures that f € €“(Q2p, A). O

3.8 Convergent power series, slice tensor and star products

In the theory of slice functions in one variable, the slice product f - g between slice functions
f = Z(F) and g = Z(G) is induced by the usual product between complex numbers on
R? = C. Indeed, the latter product determines a real algebra structure on A ® ]R2, which
coincides with the tensor product A ® C. Then such a tensor product is used to compute the
pointwise product F'G and, finally, one defines f - g := Z(F G). One of the main features of
the slice product f - g is revealed by its algebraic nature: if f and g are polynomials or, more
generally, convergent power series in one variable, then f - g coincides with the standard
abstract product f * g, sometimes called star product of f and g in the noncommutative
setting, see [9, §5].

The real algebra A ® C®" defines the slice tensor product *®’ on slice functions in n
variables, see Definition 2.36. In this way, it is natural to ask whether such a product coincides
with the star product on polynomials and on convergent power series in n-variables as well.

The aim of this section is to answer affirmatively to this question.

Let us review the concept of convergent power series with coefficients in A. A formal
power series s in n indeterminates X = (X1, ..., X;) with coefficients in A is a sequence
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{ag}eery of elements of A. We formally write: s(X) = Y cp Xag and X = Xfl X if
L= (y,...,¢0,). If theset {¢£ € N" : ay # 0} is finite, then s is called a (formal) polynomial.
Denote A[[X]] = A[[X1, ..., X,]] the set of all such formal power series. We can add and
multiply formal power series in a standard way: if 1 (X) = ZeeNn Xty € A[[X]], then s +¢
and s * ¢ are the elements of A[[X]] defined by

(s + (X)) := Y pepr X (ae + be),
(s % 1)(X) 1= D pep XZ(Zp,qEN”, prq=t “pbq)-

Given r € R, we can also define the real scalar multiplication sr by (sr)(X) :=
ZzeNn X%(agr). These operations make A[[X]] a real algebra.

Assumption 3.31 In what follows, we assume that || - || : A — R is a norm of A such that
x| =+/n(x) forallx € Qga, (78)

equivalently, ||« + JB|| = /a2 + B2 foralla, B € Rand J € Sy.

Examples of real alternative *-algebra A with a norm having property (78) are as follows:
H and O with the usual conjugation x¢ := X and the usual Euclidean norm; the real Clifford
algebra R, with signature (0, n), with the Clifford conjugation [17, Definition 3.7], and the
usual Euclidean norm of R?" or the Clifford operator norm, as defined in [16, (7.20)].
Assumption 3.31 implies that

S4 is compact in A. (79)

Indeed, Sqp = {I € A :t({) =0,n(I) = 1}isclosed in A and it is contained in the compact
subset S :={a € A : |la|| = 1} of A.

We say that s(X) = ZZEN" Xtap € A[[X]]is a convergent power series if there exists a
real number M > 0 such that

laell < MY forall € = (¢4, ..., €,) € N" with |¢] = Y 7_, €. (80)

Note that such a concept does not depend on the chosen norm of A. Indeed, A has finite real
dimension so all the norms of A are equivalent. Define the real number B := maxy yes [ xy|l.
Note that B > 0; indeed, B > [|(1|[1]~)) - (1[1]~H ) = |[1]~! > 0. By the very definition
of B, it follows at once that

llxyll < Bllx|llly]l forallx,y e A. 1)

Thanks to the latter inequality, it follows immediately that the set of all convergent power
series is a real subalgebra of A[[X]].

Suppose now thats(X) = ), X'ay satisfies (80). Let p € Rwith0 < BpM =:y < 1
and let B, := (;_1{(x1,...,xn) € A" : ||xu|l < p}. Note that, if x € B, and xtag € A
is defined as in Definition 2.7, then ||x¢ag|| < B p!tl||ay| < y'“; consequently, the series
Yven Ixacll = X en(pen jo=n I¥°acl) is dominated by the positive real term series
ZheN(h + 1)"yh, which converges in R. This proves that, for each x € B, the series
> sene Xtag converges in A to a point s(x). We abuse notation denoting s : B, — A the
function from B, to A, sending x into s(x). We say that such a function s is a sum of the
convergent power series s(X). Note that the series ), xn xta, convergestos : B, — A
uniformly on B,.
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Proposition3.32 Let s : B, — A be a sum of a convergent power series s(X). Then
s is a slice regular function and there exists a unique sequence {ag}eent in A such that
S(xX) = pepe xtay. In particular, this is true if s is a polynomial function.

Proof Corollary 2.17 ensures that s is a slice function. By Proposition 3.14, the monomial
function My : B, — A, sending x into xtay, isslice regular for each ¢ € N". Choose J € Sy4.
By Proposition 3.13, we know that 9y, M¢ ; + Jdg,M¢ ;y = 0on B := B, N (C,)", where
My, ; is the restriction of M, to B. Since the series ) _,.nn Me, s converges to s; uniformly
on B and both the series Dy 9oy, Me, s and D,y 9, My, converge uniformly on B as
well, for all & € {1, ..., n}, we can differentiate s; term by term obtaining:

Oy, 57 + JOg, 57 = ZEENn(aahMLJ + Jog,Me y) =0

on B. Using Proposition 3.13 again, we deduce that s is slice regular. Finally, note that
ap = (N~} Dys(0), where D, denotes the partial derivative 8'“/80{%' <o 0o, ]

Remark 3.33 In the polynomial case, the uniqueness assertion in the statement of the preced-
ing result can be improved. Let s : Qp — A be a polynomial function. If D is open in C",
then there exists a unique sequence {ag}yene in A such that the set L := {€ € N" : a; # 0}
is finite and s(x) = Y ,c; x‘as on Qp. As s is a polynomial, s(x) = 3_,.; x‘a, for some
finite non-empty subset L of N and for some a, in A. Assume s = 0 on Q2p. We have
to show that each a; is equal to zero. By Assumption 2.1, we know that D and S, are
non-empty. Let J € Sy. Let z = (z1,...,24) € Qp(J), let £ = (£y,...,¢,) € N" and
m = (mi,...,m,) € N*. Bearing in mind Artin’s theorem and the fact that the components
zj, of z commute each other, we have that z¢a, = [(zfl" Vi1 ael = (ze)ag and the complex
derivative Dy,s7 : Qp(J) — Aofsyis well-definedanditisequalto ), pp ﬁ(z“’")a@,
where Dy,s; 1= 3"ls;/9z]" - 9z, Since s; = 0 on Qp(J), the same is true for each
complex derivative Dy, sy, i.e. D557 = 0 on Qp(J). We prove by induction on the cardinal-
ity of L that ay = O for all £ € L. If L is the singleton {£}, then ag = Dys; = 0. Suppose
L contains at least two elements. Choose m € L such that [m| > |£| for all £ € L. Since
Dusy _ a,, we have that a,, = 0 and s;(z2) = ZeeL\{m}(Zz)aﬁ' The cardinality of L \ {m}

m!
is I — 1 so by induction all a; = 0. O

Definition3.34 Lets : B,, — A andt : B,, — A be sums of convergent power series
s(X) and t(X), respectively. Let {ap} ,ene and {bg},ene be the unique sequences in A such
that s(X) = ZpeNn XPa, and 1(X) = quNn X4bg, see Proposition 3.32. Given a sum
st :B, — A of the convergent power series (s * ) (X), we say that s * ¢ is a star product
of s and t.

Suppose that D is openin C", and s, t : Qp — A are polynomial functions. Let {a,} ,enn
and {b;},en be the unique sequences in A such that s(X) = ZPENn XPap, and t(X) =
quNn X9b,, see Remark 3.33. The star product s xt : Qp — A of s and 7 is defined as

for s(X) and 7(X), that is (s % 1)(x) 1= Y ,cpp XK(Zp’qENn’ pq=t apbq)- m}
Proposition 3.35 The following hold.

(i) Let s, t : B, — A be sums of convergent power series and let s x t : B, — A be a
star product of s and t withQ < p’ < p. Thens Ot =s %t onB,.

(ii) Let s,t : Qp — A be polynomial functions. Suppose D is open in C". Then
s Ot =s*tonQp. Inparticular, given any £,m € N" and a, b € A, we have:

(x‘a) © (X"b) = (xta) * (x"b) = x* " (ab) on Qp. (82)
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Proof Let us start proving (ii). Equip S(2p, A) with the slice tensor product * © °. Write * -’
in place ‘ ©®’ for short. Let £ = (¢4, ...,¥¢,) and m = (m, ..., my). Since the slice tensor
product is hypercomplex, we can apply Lemma 2.43. As a consequence, in order to complete
the proof, it suffices to show that (x*¢ - @) - (x*" - b) = x**™ . (ab). Let h € {1,...,n}.
Note that the stem function F' = Fy + ep, Fj, inducing xZZ" has real-valued components Fy

h omy

and Fj,. The same is true for x;"". By Lemma 2.49, it follows at once that x;K and x,

belong to the center of S(2p, A). Consequently, it holds x*¢ - x*" = x*‘*" and

(x.e -a)- (xom . b) — (x.e .x-m) . (ab) — xol+m . (ab)

This proves (82) and hence point (ii). Passing (ii) to the limit, we obtain (i). O

3.9 Slice regular functions and ordered analyticity

Let| - || : A — R be anorm of A satisfying Assumption 3.31, let p € R with p > 0 and let
B, := (o1 {(x1, ..., %) € A" ¢ ||xn ]l < p}, as in Sect. 3.8.

Theorem 3.36 A function f : B, — Alisslice regular ifand only if f is a sum of a convergent
power series Y, cnn Xtay with coefficients in A. Moreover, if f is slice regular, then

ag = ()19, £(0)

forall ¢ = (€1,...,4,) € N", where 0; is the derivative 8'“/8xf1 -+ 0x," obtained by
composing in any order £1-times 9/0x1, £y-times 0/90x2, .. ., £y-times 0/0x,,.

Proof By Proposition 3.32, if f(x) = > ,cpn xtag on B,, then f is slice regular. Suppose
that f is slice regular. Let J € Sy, let {1,J,Jy,JJ1, ..., Ju, JJ,} be a splitting basis
of A associated with J and let {f, : B,(J) — C,};_, be the family of C,;-complex
functions such that f; = ZZ:O fnJn, where Jo := 1. By Proposition 3.29, we know
that each fj, is holomorphic. As a consequence, each fj, is the sum of a (unique) series
D rent xeag,h with coefficients in C;, converging totally on compact subsets of B, (/) in the
sense that ), n» MaXyeC ||xzag,h | < +oo for all compact subsets C of B,(J). Set a, :=
ZZ:O ag.pJ. Bearing in mind Artin’s theorem, we deduce that f; is the sum of the series
Z[ENn xtag, converging totally on compact subsets of B, (J). In particular, if My : B, — A
denotes the monomial function x‘a, for each £ € N", then QOc = ZleN" maxyec ||[Me(x)]|
is finite for all compact subsets C of B, (/). Choose arbitrarily a non-empty circular compact
subset C* of B, andlet C := C*N(C,)" C B,(J).Letx = (@1 +JB1,...,an+JBy) € C
andlety = (a1 + 181, ..., 00+ I,8,) € C*forsome I = (I, ..., I,) € (Sa)". By (79),
we know that S4 is compactin A so L := max{||1]|, maxses, |la||} is a positive real number.
Let B be a positive real number with property (81). Let £ € N". By representation formula (7),
we have that Me(y) = 27" 3 g yepn (=D g, [J7KT My (x )], Consequently,

IMeIl = 27" Xk mepiny BLKH M M)
= 27n(BL)n+l ZKEP(n) (ZHE'P(n) | M (x LH)”)
= (BL"™ Xyepir IMex ]

and hence
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maxyecs [Me) < (BL)"™* 3y ep(y maxeec [Me(x ™))
= (BLY"*' ¥ jyepny maxrec [ Me()]|
= 2"(BL)"* maxycc [|Me(x)]l.

As a consequence, we deduce:
> ren maxyecs [Me(y)|| < 2" (BL)"' Q¢ < +o0.

This proves that the series Y, x‘a, converges to a function s : B, — A, totally on
compact subsets of B,. Since f and s are slice functions which coincide on B,(J), f and
s coincide on the whole B, by Corollary 2.13. Finally, differentiating s term by term, we
obtain that 9y f(0) = 9¢5(0) = £!a;. We are done. O

3.10 Cauchy integral formula for slice regular functions

Throughout this section, we suppose Assumption 3.1 is true, i.e. D is open in C". Moreover,
we fix J € S4.

3.10.1 Some preparations

Recall that ¢p; : C — Cj is the real algebra isomorphism ¢, (¢ + i) := o + JB. Choose
bounded open subsets Ej, ..., E/ of C invariant under complex conjugation and with ¢
boundaries dE{, ..., dE,.Leth € {1, ..., n}. Define Ej, := ¢y (E}) and dEj, := ¢ (dE}).
Note that 3 Ej, is the boundary of Ej, in C;. Moreover, d E}, is the disjoint union of a certain
finite number, say c;,, of connected components, each homeomorphic to the circumference S'.
Choose a %! parametrization &, : T, — 0Ej of dEy. Here Tj, is the disjoint union of
¢y, intervals of the form {[ay g, bh,l]}lcil, {&n(lan,, bh,l])}lcil is the family of all connected
components of dEy, &, (an,;) = &r(by,) foralll € {1, ..., ¢}, and each restriction of &, to
[an.1, bn,) is injective.
Consider the open subset E of (C;)" and its distinguished boundary 9* E given by

E:=E x---x E, and 9*E := (0E1) x --- x (0E,).
Define
Q(E) = QEQXXEQ

Note that E = Q(E) N (Cy)", i.e. Q(E) is the smallest circular set containing E. Denote
cl(2(E)) the closure of Q(E) in (Q4)".

Givenv = (v1,...,v,) € (Cy)"and K € P(n), we define the element v, of A by setting
- 1 if K =0,
K7 Thex (on)© if K # 6.

LetT :=Ty x --- x T,. We define the maps & : T — 3*Eandé:T—>(Cbe

E(t) == (E1(t1), ..., Ex(ty)) and E(t) :=E1(t1) - Eu(ty)

fpr all ¢t =@t,....t)) €T, Where_éh (tn) € Cy denotes the derivative of &, at #;, in Cj, and
&1(ty) - - - &, (1) the product of the &, (7;,)’s in C or, equivalently, in A. Given any K € P(n),
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we define also the function £ : T — C; by £ (1) 1= (£(1))%. i.e.,

Sc(t)::[ if K =0,
K [Thex En(tn))° if K # 0,
forallt = (t,...,t,) €T.
We need also two variants of Definition 2.4. Let C : {1, ..., n} — A be any function and

leta € A. We define the elements [C, a] and [C] of A by setting
[C.a]l:=C()(C)(CAB)---(C(n—1(Cma))...))
and
[C]:=[C,1]=C)(CR)(CAB) - (C(n—DCm))...)).

In addition, given any map € : {1,...,n} — S(Q(E), A), we define the slice functions
[€, a] and € in S(Q2(E), A) by setting

[C.alo:=CHO (RO (CA): 0 (CHh-1)0(En ©a))...))
and
[Clo:=[C 1lo =€) O (CQR) O (CB)---O (Er — 1) @ EM))...));

here a (in particular 1) is identified with the function Q2(E) — A constantly equal to a.

Recall that, givenany g € Q 4,the function A, : Q4 — Ais the characteristic polynomial
ofg,ie. Ay(p) == p2 —2Re(q) p+n(q). Denote I';, the non-empty open subset of (Q 4)" x
(Q )" defined by

Cpoi= Mo {1 X)), (10 v0) € (Qa)" X (Qa)" 1 Ay, (xp) # 0}, (83)
and I';,(J) the non-empty open subset of (Q 4)" x (Cy)" given by
() :==Ta N Q)" x (C)"). (34)

3.10.2 The general case

Lety = (y1,...,yn) € 0*E.Foreach h € {I, ,n}, let Cy ;1 Q(E) — A be the Cauchy
kernel in the variable x;, w.r.t. y;, i.e. the slice functlon defined as follows:

Cyn(x) := Ay, (xp)~ ( —xp) forallx = (x1,...,x,) € Q(E), (85)

where y; 1= (y;)¢ and Ay, (xp)~ L is the inverse of Ay, (xp) in C; or, equivalently, in A. We
define C, : {1,...,n} — S(Q(E), A) by

Cy(h) :=C,y ), foreachh e ({1,...,n}. (86)

Definition 3.37 Let S be any subset of A” containing 0* E andletg : S — A be any function.
We define the function Cy : Q(E) x T — A by setting

Co(x, 1) = [Ce(r), (1) " g(EM) o (). 87

[}
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Remark 3.38 For each t € T, the function Q(E) — A, x > Cg(x, t) is slice regular. This
follows immediately from Proposition 3.26 and the fact that each function Cg¢ (1), : Q(E) —
A and the constant function Q(E) — A, x — &(t)J " g(&(¢)) are slice regular. O

Our general Cauchy integral formula reads as follows.

Theorem 3.39 Let f : Qp — A be a slice regular function. Suppose that c1(Q2(E)) C Qp.
Then

fx) = (271)_"/ Cr(x,t)dt forallx € Q(E), (88)
T
where dt = dty - - - dty,.

Proof Let {1, J, J1,JJi,..., Jy, JJ,} be a splitting basis of A, see above Sect. 3.7. Write
fr + E = Aasfollows: f; = Y ;_, feJe for some (unique) functions f; : E — Cj.
By Proposition 3.29, we know that each f; is holomorphic. In this way, given any x =

(x1,...,x,) € E, we can apply the classical Cauchy formula to f; obtaining
_ Je(y)
fe(x) = 2rJ) ”/ dyi---dyy
o V1t —x1) -+ (Vn — Xp)

=Q2m)™" -/;*E Cy1(x) - ey,n(x)f_"f@(y) dyi - - dy,
= @0 fr Ce1(X) +++ Cecryn () " fe(E()E (@) dt

= (275)7”/Teé(z),l(x)"'eé(t),n(x)é(t)Jian(é(t))dt~

Thanks to Artin’s theorem, we deduce

u

frix) = Z ((271)7" /T Cen), 1 (x) -+ ei,-‘(t),n(x)é(t)Jian(S(t))dt) Je

£=0
— @n) /T Cer 1 () -+~ Coym(DEWD T F (D) di.

Choose t € T and define ¥; € S(QU(E), A) by ¥;(x) := Cyr(x,t). Bearing in mind
Lemma 2.47, Proposition 2.48 and Definition 3.37, we have:
Wn)s = ([Cery, EO " fFED)]o),
= ((Ce.1 @+ O Cey.n) © EMI " FEWD)))),
= Cen.1)s - Csyn) €T " f(E(1)).
This proves that Cr(x, 1) = ¥ (x) = Cg(r),1(x) - - Ce(ry E@T " f(E()) forall (x, 1) €

E x T. As a consequence, we have:

frx) = (Zﬂ)_”/ Cy(x,0)dt forallx € E.
T

Thanks to Corollary 2.13, in order to complete the proof, it suffices to show that the function
Qp = A, x — fT Y (x)dt = fT Cyr(x,t)dt is a slice function. Define J := (J, ..., J) €
(Sa)".Choose w = (a1 +JB1,...,an+JBy) € Eandx = (a1 +L1B1,...,0n+LyBn) €
Qp forsome L = (Ly, ..., L,) € (Sp)". By representation formula (7), we know that

Vi (0 =27" X grepon (DM L gD
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for all t € T. Hence, it holds:

/wa)d; = fT 7" Xk epun DEM Tk L, v (w 1)) di
= 27" Yk mepe (DM L [ e weHy di),

Corollary 2.16 implies that the function Qp — A, x — [ ¥:(x)dt = [, Cp(x,1)dt is
slice, as desired. O

Remark 3.40 As a byproduct of the preceding proof, we have that

Crx,1) = Cery1(x) - - Ceryn(EM) I " f(E(1))
forall (x,t) e E xT. O

Our next aim is to write C s in term of pointwise products of A-valued functions.
For each (x,y) = ((x1,..., %), V1,---, ) € [h(J) and for each K € P(n), we
denote C(x, y, K) : {1, ...,n} — A the function given by

(Ay,Gn)™" ifh ek,

(Ay, )"y ifh ¢ K. (89)

Cx,y, K)(h) := {

Theorem 3.41 Let f : Qp — A be a slice regular function. Suppose that c1(Q2(E)) C Qp.
Then

Cr(x,0) =Y gepu (D" KI[Cx, £(), K), &5 (DE@) T f(E@))] (90)
foreach (x,t) € Q(E) x T.

Proof Lett = (t1,...,t;,) € T,let y; : Q(E) — A be the function v (x) := Cy(x, 1), let

Y=t yn) = E @), ... E(ty) € 0°E and let a := &(1)J " f(£(1)). Thanks to
Remark 3.40 and Artin’s theorem, given any x € E, we have that

Of —xD) - Oy — Xn)
Ayl (x1) - Ay,, (xn)

Y1 (¥) = Ce).1(x) -+ Cery n (E@)T " f(E()) =

""" a 1
A)‘] (xp)--- Ayn (xn)

=Y kepony D" K (TThex Ay )™

= ZKep(”)(_l)n_lKl[e(xvE(t)s K)v)’?(a]- (92)

Since v, is a slice function, in order to complete the proof, it is sufficient to show that the func-
tionpg : Q(E) — A, sending x into [C(x, £(¢), K), y§al, is slice for all K € P(n). Indeed,
if this is true, then the function ) KePm) (=K ‘q& k is slice as well, and by Corollary 2.13
we are done. Let K € P(n). Note that, for each & € {1, ..., n}, the functions Q(E) — A,
X =(x1,..., %) = Ay, (xj) and Q(E) — A, x = (x1,...,X;) = Ay, (x;)x, are slice
preserving and h-reduced. Consequently, an iterated application of Proposition 2.52 implies
that ¢ is the iterated slice tensor product of n + 1 slice functions, which is a slice function
as well.

The proof is complete. o
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Remark 3.42 Repeating the chain of equalities (91) with a = 1, we deduce that

Cy1(x) -+ Cyn(X) = X gep (D" K[, y, K), ¥ ]
forall (x,y) € E x 3*E. O

3.10.3 The associative case

Recall the definition of C,, for each y € 9*E, given in (86).

Definition 3.43 We define the slice Cauchy kernel for E as the function C : Q(E) x 3*E —
A given by

Cx,y) = [CyloX). 93)
o

Remark 3.44 For each y € 0*E, the function Q(E) — A, x — C(x, y) is slice regular, see
Remark 3.38. O

Given two continuous functions p, g : 9*E — A, if A is associative, then we define

f pOdyq(y) = / PEDEDED) dr.
o*E T

In the associative setting our Cauchy integral formula assumes a quite familiar form.

Theorem 3.45 Let f : Qp — A be a slice regular function. Suppose that c1(Q2(E)) C Qp.
If A is associative then

fx) = (271)_"/ C(x,y)J"dyf(y) forallx € Q(E), (94)
I*E
and the slice Cauchy kernel C can be expressed in terms of pointwise products as follows:

C(x7 )’) = ZKe'P(n)(_l)ni‘Kl[e(xv va)5 y;(] (95)
forall (x,y) € Q(E) x *E.
Proof Thanks to Remark 3.42, for all y € 9*E, the slice functions Q(E) — A, x +—
C(x,y) and Q(E) —> A, x ZKGP(M(—I)"*W[(:’()C, y, K), y%] are equal on E. By
Corollary 2.13, they coincide on the whole €2(E). This proves (95). Since A is associative,

(90) and (95) imply that Cf(x, 1) = C(x, £(1)E ()" f(£(1)) for all (x,1) € Q(E) x T.
Consequently, the right hand sides of formulas (88) and (94) coincide. ]
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