
DEPARTMENT OF INFORMATION ENGINEERING AND COMPUTER SCIENCE

ICT International Doctoral School

Formal Failure Analyses for

Effective Fault Management
An Aerospace Perspective

Benjamin Bittner

Advisor

Dr. Alessandro Cimatti

Fondazione Bruno Kessler

Co-Advisor

Dr. Marco Bozzano

Fondazione Bruno Kessler

December 2016

Abstract

The possibility of failures is a reality that all modern complex engineering

systems need to deal with. In this dissertation we consider two techniques

to analyze the nature and impact of faults on system dynamics, which is

fundamental to reliably manage them.

Timed failure propagation analysis studies how and how fast faults prop-

agate through physical and logical parts of a system. We develop formal

techniques to validate and automatically generate representations of such

behavior from a more detailed model of the system under analysis.

Diagnosability analysis studies the impact of faults on observable param-

eters and tries to understand whether the presence of faults can be inferred

from the observations within a useful time frame. We extend a recently de-

veloped framework for specifying diagnosis requirements, develop efficient

algorithms to assess diagnosability under a fixed set of observables, and

propose an automated technique to select optimal subsets of observables.

The techniques have been implemented and evaluated on realistic models

and case studies developed in collaboration with engineers from the Euro-

pean Space Agency, demonstrating the practicality of the contributions.

Keywords

[Failure Analysis, Timed Failure Propagation, Diagnosability, Symbolic

Model-Checking, Model Based Engineering]

Acknowledgements

I would like to thank my supervisors Alessandro Cimatti and Marco Boz-

zano for guiding and supporting me in these four years of research and

in writing this dissertation. I gratefully acknowledge the support received

from the European Space Agency through the NPI program, which gave

me the opportunity to apply my research to interesting industrial prob-

lems. Many thanks to Marcel, Andrei, and Yuri at ESA, who were always

available for answering my many questions. Many thanks go to all my

colleagues at Fondazione Bruno Kessler. Thanks to Marco and Andrea

for reviewing parts of the dissertation. Finally I would like to express my

gratitude to my wife that supported me with her love and understanding

throughout this journey.

5

Contents

1 Introduction 1

2 Technical Background 9

2.1 Preliminaries . 9

2.2 Symbolic Transition Systems 10

2.3 Temporal Logic . 11

2.3.1 Linear Temporal Logic 12

2.3.2 Metric Temporal Logic 14

2.4 Symbolic Model-Checking 15

3 Timed Failure Propagation Graphs 17

3.1 Background . 21

3.2 Trace-Based Semantics . 24

3.3 System Abstraction . 28

3.4 Behavioral Validation . 33

3.4.1 Completeness . 33

3.4.2 Edge Tightness . 37

3.5 Synthesis . 37

3.5.1 Graph Synthesis . 42

3.5.2 Graph Simplification 45

3.5.3 Edge Tightening 49

3.6 Implementation . 49

i

3.7 Experimental Evaluation 58

3.7.1 Use Cases and Set-Up 58

3.7.2 Behavioral Validation and Automated Tightening . 60

3.7.3 Graph Synthesis . 63

3.8 Related Work . 66

3.9 Summary . 69

4 Diagnosability Analysis 73

4.1 Verification: Problem Definition 77

4.1.1 Specifying a Diagnoser 78

4.1.2 From Diagnosability to Critical Pairs 83

4.2 Verification: Algorithms 94

4.2.1 Twin Plant . 95

4.2.2 Verification via Model-Checking 97

4.3 Synthesis: Problem Definition 101

4.4 Synthesis: Algorithms . 105

4.4.1 Synthesis by Enumeration 106

4.4.2 Synthesis via Parameter Synthesis 109

4.4.3 Cost-Driven Parameter Synthesis 113

4.4.4 Schematic Overview 116

4.5 Experimental Evaluation 116

4.5.1 Implementation . 116

4.5.2 Benchmark Set . 119

4.5.3 Experimental Set-Up 120

4.5.4 Results: Verification 121

4.5.5 Results: Synthesis 122

4.6 Related Work . 129

4.6.1 Frameworks for Diagnosability 129

4.6.2 Verification of Diagnosability 134

ii

4.6.3 Synthesis for Diagnosability 137

4.7 Summary . 139

5 Industrial Application 143

5.1 Enabling Diagnoser Synthesis via TFPGs 149

5.1.1 TFPG-to-SMV Translation 150

5.2 Focused Propagation Modeling 160

5.2.1 Case Study: Gyroscope Processing 161

5.2.2 Case Study: Thruster-Valve Stuck 166

5.3 Architectural Propagation Modeling 170

5.3.1 Case Study: IMU to AOCS 171

5.3.2 Assessment and tuning of FDIR design coverage . . 182

5.3.3 Diagnostic support for testing and operations . . . 187

5.4 Summary . 189

6 Conclusion 193

Bibliography 197

A TFPG-to-SMV 213

iii

List of Tables

3.1 Use-case statistics with maximum number of Boolean and

real variables of respective system models, maximum num-

bers of user-defined failure modes, discrepancies, and edges. 59

3.2 Completeness and tightening runtimes in seconds per system

model (mean and standard deviation for all instances). . . 61

3.3 Effect on completeness/tightening runtimes (in seconds) of

increasing TFPG complexity. 62

4.1 Critical Pair: LTL formulae 97

4.2 Model Properties . 121

5.1 Simplified example of Failure Effect Summary List (FESL)

table layout. Multiple monitors can be associated to a fail-

ure mode row. Recoveries are included for convenience, their

precise association with monitors is specified elsewhere. . . 183

v

List of Figures

1.1 Common FDIR flow. 3

3.1 TFPG for the ForgeRobot example. Dotted boxes are failure

mode nodes, solid boxes AND nodes, and circles OR nodes. . 23

3.2 Example of trace abstraction for ForgeRobot. Square signals

are used to model Boolean values over time. 30

3.3 Minimal cut-sets of all discrepancies in the running example. 39

3.4 Intermediate result after iteration of Algorithm 1 for dnoncrit. 43

3.5 TFPG as produced by Algorithm 1 for running example,

including user-defined and virtual nodes. 44

3.6 Effect of simplification procedure on Cassini2 model (ren-

dered with xSAP). 46

3.7 Result of removing redundant edges from synthesis result

shown in Figure 3.5. 48

3.8 Result of removing unnecessary AND nodes from the TFPG

in Figure 3.7. 49

3.9 SMV code for the timer of edge (fcool, dnoncrit) in ForgeRobot. 51

3.10 Tightening difficulty (time in seconds) for each class of re-

laxed TFPGs. 63

3.11 Number of nodes vs. synthesis time (in seconds). 64

4.1 A plant and its diagnoser. 78

4.2 Examples of Diagnosis Conditions 80

vii

4.3 Examples of alarm responses to the diagnosis condition β. 82

4.4 ASL Alarm conditions as LTL formulae 82

4.5 BoundDel(◦, F, 1) is not system diagnosable in this sys-

tem, but no critical pair exists for that delay. 88

4.6 Twin Plant . 95

4.7 Example lattice of sensor configurations. 101

4.8 Algorithm to compute one element of DiagOptSC. 107

4.9 Basic algorithm for symbolic computation of DiagSC via

parameter synthesis. S is the parametric system (parame-

terized twin plant), a is the set of parameters (activation

variables), φ is the proof obligation any valid solution needs

to satisfy (¬CP (Ξ,Ψ)). 112

4.10 Synthesis of all configurations: Schematic view 116

4.11 Verification run-times with different patterns and delay bounds.123

4.12 Comparison of run-times (seconds) for symbolic vs. enumer-

ative synthesis (TO: out of time, MO: out of memory; blue:

diagnosable instances; red: non-diagnosable instances). To-

tal number of instances: 1504; Symbolic solved: 1224;

Enumerative-Optimal solved: 1421; Enumerative-Optimal

(flat costs) solved: 1181; Enumerative-Minimal solved:

764. 125

4.13 Effect of number of observables on synthesis runtime (wbs

model, enumerative algorithm with costs). 127

5.1 FAME Process Overview 144

5.2 Sample TFPG with state-space of corresponding SMV trans-

lation. e1 is the upper edge with the guard [1, 2]{M1}, e1
the lower edge with the guard [0, 1]{M2}. Possible initial

states are marked with a circled i. 151

viii

5.3 TFPG for the primary IMU in TGO. Bold circled nodes are

monitored discrepancies used by the diagnoser. 159

5.4 Extract of TFPG for the gyroscope processing function.

Single-fault assumption is used in the system model, hence

only one failure mode can be active at any time. Mode

constraints are not shown, as only one mode exists. 163

5.5 Thruster-Valve stuck case study. 167

5.6 TFPG of the IMU-to-AOCS case study. FM: failure mode;

FE: (unobservable) failure effect; SMON: standard monitor;

FMON: functional monitor. 179

5.7 Example for filter tuning. The filter values for the IMU and

STR monitors need to be chosen such that for each failure

mode the corresponding monitor will trigger first. 185

5.8 Example use case for monitor threshold and detection filter

tuning. Values need to be found that optimize the monitor’s

reactivity without introducing false alarms. 186

ix

Chapter 1

Introduction

Modern complex engineering systems, such as satellites, airplanes and traf-

fic control systems need to be able to handle faults. In general, faults can

be seen as states in which particular components or larger parts of a system

are no longer able to perform their required function. Faults can compro-

mise system safety, creating a risk of damage to the system itself, damage

to surrounding property or infrastructure, both virtual or physical, or even

a risk of harm to humans. Beyond creating some sort of damage, faults

can also affect the availability of a system, for instance by causing service

outages. In some applications such as telecom satellites or intelligence in-

frastructure, such outages might be unacceptable. As a consequence, when

faults are present, the system needs to either tolerate them passively, for

instance through robust control laws, or manage them actively in order to

guarantee system operations according to the requirements.

A widely used approach to implement fault management is FDIR, short

for Fault Detection, Isolation, and Recovery. The European Cooperation

for Space Standardization describes FDIR as follows:

The overall on-board fault management concept is based on the

failure detection, isolation and recovery (FDIR) paradigm. This

means that functions are implemented:

1

• to detect on-board failures and to report them to the relevant

on-board units or subsystems and to the ground segment;

• to isolate the failure, i.e. to avoid the propagation of the fail-

ure and the deterioration of the equipment;

• [...] to recover the on-board functions affected by the failure

such that mission operations can continue.

(ECSS-E-ST-70-11C, Section 5.7.5, On-board fault management)

The data and control flow in FDIR is typically structured as shown in

Figure 1.1. The FDIR observes the system using hardware sensor readings

or values computed by the software. When a fault appears, the detection

component (ideally) recognizes this by reasoning on the observations and

raises an alarm. The reasoning can be done by a simple monitor that trig-

gers when a Boolean condition over the observations becomes true, or by a

more complex diagnoser that reasons on the evolution of the observations

over time. Once an alarm is being raised, the FDIR will issue commands

to the system to stop the fault from propagating to other components or

logical system partitions (isolation) such that safety is reestablished, and

possibly to take the system back to a normal operating state (recovery).

In this context the present dissertation explores formal techniques to

analyze the impact of faults on a system. A precise understanding of how

faults affect a system is fundamental for developing effective and efficient

fault management solutions. We generally adopt an aerospace perspective

when describing architectural assumptions and possible applications of the

contributions, as much of the work included here was motivated by in-

dustrial projects funded by the European Space Agency (ESA). This does

not mean that the core results of the dissertation are only applicable to

aerospace engineering problems: in the related literature many other appli-

cation examples are mentioned, from complex computer systems to power

2

CHAPTER 1. INTRODUCTION

Figure 1.1: Common FDIR flow.

distribution plants and heating, ventilation, and air conditioning systems.

Before an FDIR design is developed, three questions need to be answered

to understand the feasibility of this task:

Propagation How do faults propagate through various physical and logi-

cal parts of the system in terms of deviations from nominal state, and

how fast can these propagations be?

Diagnosability Will these propagations affect the observations available

to FDIR in a way that allows detection and identification of the faults

in time to trigger a recovery?

Recoverability Are the control means sufficient to stop the propagation,

once detected, and return the system to a normal operating state?

First, it is important to describe the propagation effects that the FDIR

has to deal with, and how much time it has to react before effects of a

higher severity level occur. This type of analysis aims at supporting the

identification of a complete set of requirements on FDIR. For propagation

3

analysis we work with timed failure propagation graphs (TFPG). These

models allow a more comprehensive and integrated description of failure

propagation compared to classical techniques, and include also informa-

tion on propagation speed. We develop a framework and corresponding

algorithms to validate TFPGs against a more detailed representation of

the system’s behavior, as well as a method to automatically compute them

from such system models. The developed techniques have been evaluated

on industrial case studies from the aerospace domain. These have in part

been developed at the European Space Agency technology centre ESTEC,

based on a space mission currently under development. The evaluation

shows the feasibility and practicality of the developed analysis techniques.

The results of propagation analysis are then used to identify the condi-

tions that need to be diagnosed, and the time bounds within which diagno-

sis has to occur. Diagnosability analysis checks whether these conditions

can be inferred within the given time bound, based on the information

provided by observations. Our contributions in this area are based on a

recently developed framework for specification of expressive diagnosis re-

quirements. We develop efficient algorithms to test if diagnosis can actually

be performed under a given set of observables, as well as algorithms for

identifying subsets of the observables that still guarantee diagnosability and

possibly optimize a cost function. Also for these contributions benchmarks

on industrial models were performed, demonstrating the scalability of the

techniques. The models were derived from collaborations with NASA and

Boeing.

At this point we assume to have a set of alarms that detect faulty

conditions of interest. The next step is to check whether, as soon as these

alarms trigger, the available control means can be used to put the system

into a safe state and possibly also resume operations. TFPGs can support

recoverability analysis by deriving requirements on how fast the recovery

4

CHAPTER 1. INTRODUCTION

needs to be executed to prevent further damage, and what the propagation

behaviors are that need to be stopped. A more thorough assessment of

recoverability would require considering also discrete control theory, but

this is out of scope for the present dissertation.

Thus, we want to support derivation of requirements on what the FDIR

has to achieve, and to check whether it is feasible to implement an FDIR

that can satisfy those requirements. The task of actually building the

FDIR is a distinct problem which is out of scope for the present work.

The dissertation focuses on systems that can be described mostly in

terms of discrete states and events, as opposed to physical modeling that

focuses on the continuous evolution of physical quantities over time. This

discrete view is commonly adopted when dealing with system-level control,

where, conceptually, most properties and dynamics can be described in

discrete terms [Cassandras and Lafortune, 2008], and has been adopted

also for FDIR analysis in industrial case studies – see e.g. [Pintard et al.,

2012, Rugina et al., 2012].

Thesis Structure and Contributions

We now describe the structure of the dissertation and summarize the con-

tributions.

In Chapter 2 we introduce the relevant background on which the fol-

lowing chapters build. It describes a framework to model dynamic sys-

tems, two temporal logics to express properties on the behaviors of such

systems, and a formal verification technique (model-checking) to check

whether these properties hold for all possible system behaviors.

In Chapter 3 we describe the following contributions for timed failure

propagation analysis:

1. Trace-based semantics for TFPGs are developed to formally treat

5

them as an abstraction of dynamic system models.

2. Formal properties are defined describing how well TFPGs abstract a

system model of reference.

3. The problem of checking those properties is mapped to a model-

checking problem.

4. An algorithm is developed to automatically generate TFPGs with

well-defined characteristics from a given system model.

The developed algorithms were implemented and tested on representa-

tive models, including some derived from industrial projects. The results

on TFPGs were published in [Bittner et al., 2016c] and [Bittner et al.,

2016b]. The integration of the developed software in a toolkit for safety

analysis is described in [Bittner et al., 2016a].

In Chapter 4, building on a recently developed framework for the spec-

ification and generation of on-line model-based diagnosers, the following

contributions to diagnosability analysis are described:

1. The framework is extended to include specification of an operational

context within which diagnosability must be guaranteed.

2. The classical way to falsify diagnosability is shown to represent a

necessary and sufficient condition in many important cases, but due

to the increased framework expressiveness only a necessary condition

in corner cases.

3. The problem of verifying diagnosability is reduced to a model-checking

problem.

4. The problem of identifying subsets of observables that optimize a cost

function is reduced to a parametric version of model-checking.

6

CHAPTER 1. INTRODUCTION

The algorithms are implemented and evaluated in an extensive experi-

mental evaluation. Partial results were published in [Bittner et al., 2012]

and [Bittner et al., 2014a], and a journal article summarizing the chapter

is being prepared for submission.

In Chapter 5 the industrial application of the developed techniques is

studied, resulting in the following contributions:

• A method to translate TFPGs into state machines is described to

support diagnoser synthesis.

• Two case studies on TFPG modeling for an aerospace project demon-

strate the adequacy of the framework and implementation.

• A third case study on the same project evaluates the application of

TFPGs to FDIR review, FDIR tuning, and diagnostic support.

The integration of TFPGs in a novel FDIR development process is de-

scribed in [Bittner et al., 2014b].

Finally, Chapter 6 concludes the thesis by summarizing the results and

providing an outlook on future work.

7

8

Chapter 2

Technical Background

We now describe the formal framework used in this dissertation. First a set

of basic logical notions are introduced in Section 2.1. Then, in Section 2.2,

we define symbolic transition systems as the formalism of choice for encod-

ing the behavior of dynamic systems. To characterize temporal behavior

of such systems we will use temporal logic, defined in Section 2.3. Finally

we introduce the problem of model-checking of such properties on a tran-

sition system in Section 2.4. This formal background will be used in the

subsequent chapters to study timed failure propagation and diagnosability

in dynamic systems.

2.1 Preliminaries

We work in the setting of predicate logic [van Dalen, 1994]. Terms are

either constants, individual variables, or the application of an n-ary func-

tion symbol to n terms. Atomic propositions are either Boolean variables,

equality between two terms, or the application of an n-ary predicate sym-

bol to n terms. A formula is either an atomic proposition or the application

of a Boolean connective (negation ¬, conjunction ∧, disjunction ∨) to for-

mulae. We use the following abbreviations: φ ∧ ψ for ¬(¬φ ∨ ¬ψ), φ→ ψ

for ¬φ ∨ ψ, and φ ↔ ψ for (φ → ψ) ∧ (ψ → φ). With a slight abuse of

9

2.2. SYMBOLIC TRANSITION SYSTEMS

notation we may sometimes write P = Q instead of P ↔ Q when P and

Q are propositional variables.

We use the standard notions of assignment, model, and logical conse-

quence. The domain of a variable x is represented as ∆(x). Given an

assignment µ to a set of variables X, and X1 ⊆ X, we denote the projec-

tion of µ over X1 with Proj(µ,X1). If X is a set of variables and � is a

symbol, then X� stands for the set of variables {x� | x ∈ X}. We write

φ(X) to stress that φ is a formula over the variables in X. φ(X�) is the

formula obtained from φ by the parallel substitution of every occurrence

of x with x�, for all x ∈ X. A formula φ can be simplified with respect

to a (partial) assignment µ, by carrying out a parallel substitution of each

of the variables x with the constant µ(x). Such a simplified formula is

referred to as the restriction of φ with respect to µ, and is denoted as φ↓µ.

We write µ |= φ to indicate that the variable assignment µ satisfies

or models φ, i.e. φ↓µ ≡ >; we write ψ |= φ to indicate that all models

satisfying ψ also satisfy φ; finally, we write |= φ to indicate that any model

satisfies φ, i.e. that φ is a validity.

2.2 Symbolic Transition Systems

A system S is represented as a symbolic transition system (STS). An STS is

a tuple 〈X,Xo, I, T 〉, where X is a finite non-empty set of state variables,

Xo ⊆ X is the set of observable state variables, I is a formula over X

defining the initial states, T is a formula over X,X ′ – with X ′ representing

the state variables after one transition – defining the transition relation.

In the following we assume that an STS S =̇ 〈X,Xo, I, T 〉 is given. We

simply write S =̇ 〈X, I, T 〉 whenever Xo = ∅.
A state s is an assignment to the state variables X. We denote with s′

the corresponding assignment to X ′. The set of all possible states (state

10

CHAPTER 2. TECHNICAL BACKGROUND

space) of S may be either finite or infinite (if any x ∈ X has an infinite

domain). The observable part obs(s) of a state s is the projection of s on

the subset Xo of observable state variables. Thus, obs(s) = Proj(s,Xo).

A trace of S is an infinite sequence π = s0, s1, s2, . . . of states such that

s0 satisfies I and, for each k ∈ N, 〈sk, sk+1〉 satisfies T . We write Π(S)

to represent the set of traces of S. The observable part of π is obs(π) =

obs(s0), obs(s1), obs(s2), Given a trace π = s0, s1, s2, . . . and an integer

k ∈ N, we denote with πk the finite prefix s0, . . . , sk of π containing the

first k + 1 state pairs. We denote with π[k] the k + 1-th state sk. We

say that s is reachable (in k steps) in S iff there exists a trace π ∈ Π(S)

such that s = π[k] for some k ≥ 0. We say that the transition relation is

total iff for each state s there exists a successor state, that is, ∀s∃t such

that T (s, t) is valid. Without loss of generality, in the following we assume

that the plant is total, and consider infinite traces only. Finally, in this

dissertation we assume, without loss of generality, that transition systems

are synchronous, that is all variables are updated simultaneously.

A parameterized STS is an STS where some of the state variables retain

their initial value throughout each transition. A variable x is a parame-

ter in S iff T |= (x = x′). Intuitively, parameters are used to represent

a specific configuration of a system, e.g. whether an option is active or

not, or a possible threshold to be set at installation. Let A ⊆ X be the

set of parameters of S. An assignment µ to the parameters A induces a

corresponding transition system S↓µ defined as 〈X \ A,Xo \ A, I↓µ, T↓µ〉.

2.3 Temporal Logic

We now introduce two types of temporal logics, Linear Temporal Logic

(LTL) and Metric Temporal Logic (MTL). These logics will be used to

describe properties of the temporal behavior of systems. In our case they

11

2.3. TEMPORAL LOGIC

will be used to express desired properties w.r.t. timed failure propagation

and diagnosability, and furthermore to check whether the system behavior

actually exhibits those properties. The main difference between LTL and

MTL is in the model of time. LTL has the implicit notion of one time

unit passing during every transition; every variable thus is modified syn-

chronously according to an implicit global clock. MTL on the other hand

allows a more fine-grained description of just how much time passes during

one transition, from 0 for instantaneous transition to any value δ ∈ R≥0.

We will use MTL to study timed failure propagation, and LTL to

study diagnosability. The reason is mainly that for diagnosability we build

upon existing work that uses the LTL view of time, while for TFPGs we

developed a new framework and were able to choose the more expressive

MTL. More detailed motivations will be given in the respective chapters.

2.3.1 Linear Temporal Logic

First the syntax and semantics of Linear Temporal Logic with Past opera-

tors [Laroussinie et al., 2002] will be described. Atomic propositions may

be built over X ∪X ′, and represent sets of system states, next states, and

their combinations. For example, the atom x′ − x ≤ δ models that the

increase in the value of x after a transition is bounded by δ.

Given a set of atomic propositions AP , including the symbols > (true)

and ⊥ (false), LTL formulae are defined as follows, with p ∈ AP :

φ ::= p | ¬φ | φ1 ∨ φ2 | φ1Uφ2 | φ1Sφ2 | Xφ | Yφ | Zφ

We use the following common abbreviations as syntactic sugar, with n

being a fixed integer:

• Fφ =̇ >Uφ

• Gφ =̇ ¬F¬φ

12

CHAPTER 2. TECHNICAL BACKGROUND

• Oφ =̇ >Sφ

• Hφ =̇ ¬O¬φ

• Xnφ =̇ XXn−1φ with X0φ =̇ φ

• Ynφ =̇ YYn−1φ with Y0φ =̇ φ

• F≤nφ =̇ φ ∨ Xφ ∨ · · · ∨ Xnφ

• G≤nφ =̇ φ ∧ Xφ ∧ · · · ∧ Xnφ

• O≤nφ =̇ φ ∨ Yφ ∨ · · · ∨ Ynφ

• H≤nφ =̇ φ ∧ Zφ ∧ · · · ∧ Znφ

We interpret LTL formulae over infinite traces π = s0, s1, s2, We

write π[i,i+1] for the interpretation si(X) ∪ si+1(X
′), so that the current

state variables X are interpreted in si and the next state variables X ′ in

si+1. The semantics of LTL is as follows:

• ∀i · π[i] |= >

• ∀i · π[i] 6|= ⊥

• π, i |= p, where p is an atomic proposition, iff π[i,i+1] |= p.

• π, i |= φ ∨ ψ iff π, i |= φ and π, i |= ψ, and similarly for conjunction

and negation.

• π, i |= ψUφ iff there exists j ≥ i such that π, j |= φ and, for all

i ≤ h < j, π, h |= ψ.

• π, i |= ψSφ iff there exists 0 ≤ j ≤ i such that π, j |= φ and, for all

j < h ≤ i, π, h |= ψ.

• π, i |= Xφ iff π, i+ 1 |= φ.

13

2.3. TEMPORAL LOGIC

• π, i |= Yφ iff i > 0 and π, i− 1 |= φ.

• π, i |= Zφ iff i = 0 or π, i− 1 |= φ.

An LTL formula φ holds on a trace π (written π |= φ) iff φ is true in π

at step 0 (written π, 0 |= φ).

2.3.2 Metric Temporal Logic

Metric Temporal Logic (MTL) [Koymans, 1990, Alur and Henzinger, 1993,

Ouaknine and Worrell, 2008] is an extension of classical LTL, where the

temporal operators are augmented with timing constraints. Given a set

of atomic propositions AP , including the symbols > (true) and ⊥ (false),

MTL formulae are defined as follows, with p ∈ AP :

φ ::= p | ¬φ | φ1 ∨ φ2 | φ1U
Iφ2 | φ1S

Iφ2 | Xφ | Yφ | Zφ

The intervals I can be (partially) open or closed, [a, b], (a, b), (a, b], [a, b),

with a, b ∈ {R≥0 ∪ +∞} and a ≤ b. I is omitted if I = [0,+∞), and the

resulting simplified operators are called unconstrained. We use the same

syntactic sugar as for LTL.

In the present dissertation we work with transition systems, thus we

adopt the interpretation of MTL over timed state sequences and not the

alternative dense-time interpretation (see e.g. [Ouaknine and Worrell, 2008]

for a comparison of the two semantics). When using MTL we thus assume

the presence of a variable τ ∈ X with ∆(τ) = R≥0, associating each state

with a time stamp. We assume that time advances monotonically, i.e. given

a trace π, τ(si) ≤ τ(si+1) for any state si.

The semantics of MTL is defined as follows:

• ∀i · π[i] |= >

• ∀i · π[i] 6|= ⊥

14

CHAPTER 2. TECHNICAL BACKGROUND

• π, i |= p, where p is an atomic proposition, iff π[i,i+1] |= p.

• π, i |= φ ∨ ψ iff π, i |= φ and π, i |= ψ, and similarly for conjunction

and negation.

• π, i |= ψUIφ iff there exists j ≥ i such that τj − τi ∈ I, π, j |= φ and,

for all i ≤ h < j, π, h |= ψ.

• π, i |= ψSIφ iff there exists j ≤ i such that τi − τj ∈ I, π, j |= φ and,

for all j < h ≤ i, π, h |= ψ.

• π, i |= Xφ iff π, i+ 1 |= φ.

• π, i |= Yφ iff i > 0 and π, i− 1 |= φ.

• π, i |= Zφ iff i = 0 or π, i− 1 |= φ.

As with LTL, an MTL formula φ holds on a trace π (written π |= φ)

iff φ is true in π at step 0.

An MTL (and LTL) formula of the form Gφ where φ does not contain

any temporal operators is called an invariant property. φ is interpreted on

every single state of a trace, and the property is falsified if any such state

does not satisfy φ.

2.4 Symbolic Model-Checking

For both LTL and MTL, the problem of deciding whether a formula φ

holds on all traces of a given system S, written S |= φ (φ holds in S), is

called model-checking [Clarke et al., 1999]. Specifically, we use symbolic

model-checking, which uses a logical formalism to represent the charac-

teristic functions of sets of states and transitions [McMillan, 1993]. Many

efficient algorithms and implementations of symbolic model-checkers exist,

e.g. [Biere et al., 1999, 2002, Eén and Sorensson, 2003, McMillan, 2003,

15

2.4. SYMBOLIC MODEL-CHECKING

Bradley, 2011, Claessen and Sörensson, 2012, Cimatti and Griggio, 2012,

Cimatti et al., 2014].

The implementations of the algorithms presented in this dissertations

rely on the model-checker nuXmv [Cavada et al., 2014], which in turn

uses Satisfiability Modulo Theories (smt) [Barrett et al., 2009] to reason

over (infinite-state) transition systems. smt is an extension of standard

Boolean satisfiability, where formulae are expressed in a combination of

first-order theories. For instance, linear arithmetic over the rationals allows

expressions such as (b ∧ 3.4 ∗ t > r), where b is a Boolean variable and t

and r are rationals. The smt satisfiability checking problem then consists

in finding an assignment to the variables that make the formula true. As

opposed to the sat problem, in smt the set of models satisfying a formula

may be infinite.

Finally we note the recent development of specialized algorithms for

parametric model-checking, which can be used to compute all parameter

configurations that satisfy a certain property [Cimatti et al., 2008, André

et al., 2009, Cimatti et al., 2013a, Bittner et al., 2014a, Bozzano et al.,

2015d]. Formally, the parameter synthesis problem takes as input a transi-

tion system S := 〈X,Xo, I, T 〉, a set of parameters A ⊆ X, and a formula

φ in temporal logic, and returns the set {µ ∈ 2A | S↓µ |= φ}. We will use

standard model-checking for verification problems and parametric model-

checking for synthesis problems.

16

Chapter 3

Timed Failure Propagation Graphs

The first step in developing an FDIR architecture is to identify the faults

and their effects on the system, i.e. to identify what exactly the system has

to be protected against. Only then one has a basis for deciding what kind

of monitors and recovery procedures are necessary. To this aim, the stan-

dard failure analyses are Fault Tree Analysis (FTA) [Vesely et al., 1981]

and Failure Modes and Effects Analysis (FMEA) [McDermott et al., 1996].

These techniques however don’t have a comprehensive support for timing

of failure propagations and are specialized to specific discrete analyses that

make it difficult to obtain a global integrated picture of the overall failure

behavior of a system. This in turn makes it difficult to develop a coherent

set of detailed FDIR requirements and to check whether a given FDIR ar-

chitecture is able to handle all possible faults and their propagation effects.

To address these issues in current practice, Timed Failure Propaga-

tion Graphs (TFPGs) were recently investigated as an alternative fail-

ure analysis framework in the FAME R&D project of the European Space

Agency [European Space Agency, 2011, FAME, 2016, Bittner et al., 2014b]1.

TFPGs are labeled directed graphs that represent the propagation of fail-

ures in a system, including information on timing delays and mode con-

1The initial work on the contributions presented in this chapter was performed within the FAME

project.

17

straints of individual propagation links. They have been studied and used

in practice since the early 1990s [Misra et al., 1992, Abdelwahed et al.,

2009], primarily as a way to deploy diagnosis systems. They can be seen as

an abstract representation of a corresponding dynamic system of greater

complexity, describing the occurrence of failures, their direct effects at a

local level, and the corresponding consequences over time on other parts

of the system. TFPGs are a very rich formalism: they allow to model

Boolean combinations of basic faults, intermediate events, and transitions

across them, possibly dependent on the operational modes of the system,

and to express constraints over the delays between individual events. They

convey thus qualitative and quantitative information on the temporal or-

dering of failures and their propagation effects, integrating in a single arte-

fact several features that are specific to either FMEA or FTA, enhanced

with timing information.

TFPG validation with respect to system models TFPGs are a promising

technology that can improve the way FDIR is designed. Still, several key

issues need to be dealt with to allow a broader adoption. First we consider

the situation where a TFPG is built manually by an engineer, similar to

the manual process of performing FMEA or FTA. Just as it is difficult

to get fault trees and failure mode and effect tables right, it is difficult

to build TFPGs, possibly even more so as we combine several of their

features and furthermore add timing information. There is therefore a clear

need for a comprehensive framework that validates TFPGs w.r.t. a more

detailed model representing the system’s dynamic behavior. Specifically,

we need techniques to make sure that no important failure behavior that

is possible in the system is overlooked (i.e. not modeled) in the TFPG.

Likewise, we want to make sure that the TFPG contains as few spurious

behaviors as possible, even though it might be impossible to exclude all

18

CHAPTER 3. TIMED FAILURE PROPAGATION GRAPHS

such behaviors, due to the approximative nature of the TFPGs. Note that

we are interested in dynamic system models as opposed to only structural

ones, in order to capture emergent faulty behavior caused by the dynamic

interaction between different parts of the system and their evolution over

time.

To this aim we first define desirable formal characteristics of TFPGs

as abstractions of a given transition system: completeness guarantees that

all failure propagations possible in the system are captured by the TFPG;

edge tightness guarantees that the time and mode constraints of propaga-

tions are as accurate as possible. We furthermore develop corresponding

verification problems and map them to the framework of temporal logic

model-checking. If the properties are violated, diagnostic information for

debugging is provided.

TFPG synthesis from system models Second, we need an efficient way to di-

rectly and automatically derive TFPGs from corresponding system models.

Developing TFPGs by hand is laborious and error-prone. In some cases it

might still be the preferred way to create them, for instance when it is pos-

sible to leverage the results of already performed safety analyses. However,

when such previous results are not available and the engineer that needs to

perform the analysis does not have a sufficiently deep understanding of the

system’s behavior under faults or possibly not enough time to execute the

analysis by hand, then a better way to obtain them could be to generate

them automatically from a corresponding system model. Obviously the

main burden then lies on the system modeler, but it is arguably easier to

create a model that specifies the behavior of individual parts of the system,

how they interact, and how they can fail locally, than it is to directly model

the failure behavior at subsystem and system level that emerges from these

local behaviors and interactions. Such emergent behavior is not always ob-

19

vious when looking at individual parts of the system under analysis, and

this problem increases with increased system complexity.

Based on the formal framework developed for validating given TFPGs

against system models, we therefore propose a set of algorithms to auto-

matically derive TFPGs from the corresponding system models in a way

that guarantees by construction a number of formal properties. What an

engineer needs to provide as an input are the system model, the set of

failure modes, and the set of discrepancies or feared events and monitors

that should be included in the end result.

Contributions and chapter structure The chapter is structured as follows.

After providing some further background on TFPGs and a running example

in Section 3.1, three main sets of contributions are presented.

1. First, we provide a formal framework for treating TFPGs as abstrac-

tions of a corresponding transition system. For this a trace-based

semantics for TFPGs is introduced in Section 3.2, allowing us to com-

pare behaviors compatible with the TFPG constraints to behaviors

possible in the system. Based on this semantics, in Section 3.3 a way

to map system traces to TFPG traces is introduced and two important

properties of TFPGs as abstractions of system behavior are defined.

This abstraction framework is the basis for the next two contributions.

2. Second, we show in Section 3.4 how verification of these TFPG con-

straints on system traces can be reduced to a model-checking problem,

thus making it possible to use off-the-shelf (and hence state-of-the-art)

verification technology. With this we address the validation problem

mentioned above.

3. Third, we describe in Section 3.5 a way to automatically derive a

TFPG from a transition system. The algorithm is structured in

20

CHAPTER 3. TIMED FAILURE PROPAGATION GRAPHS

three parts: generation of an initial verbose graph topology (Sec-

tion 3.5.1), simplification of graph structure for improved readability

(Section 3.5.2), and tightening of edge parameters for obtaining ac-

curate propagation constraints (Section 3.5.3). With this we address

the synthesis problem mentioned above.

The chapter also describes our implementation of the developed algo-

rithms in Section 3.6 and provides a comprehensive experimental evalua-

tion in Section 3.7. Related work is discussed in Section 3.8, and Section 3.9

summarizes the chapter and gives an outlook on future work on the topic

of TPFGs.

The core results of the chapter were published in [Bittner et al., 2016c]

(trace-based semantics, behavioral validation, and edge tightening) and in

[Bittner et al., 2016b] (graph synthesis and simplification). The integra-

tion of the implementation inside the xSAP toolkit has been described

in [Bittner et al., 2016a], and the integration in the FAME development

process in [Bittner et al., 2014b].

3.1 Background

In this section we introduce the classical definition of TFPGs as well as

a running example that will be used for the rest of the chapter. TFPGs

– first described in [Misra et al., 1992, Misra, 1994] – are directed graph

models where nodes represent failure modes (root events of failure prop-

agations) and discrepancies (deviations from nominal behavior caused by

failure modes). Edges model the temporal dependency between the nodes.

They are labeled with propagation delay bounds, and system modes in-

dicating the system configurations in which the propagation is possible.

TFPGs are formally defined as follows.

21

3.1. BACKGROUND

Definition 1 (TFPG). A TFPG is a structure G = 〈F,D,E,M,ET,EM,DC〉,
where:

• F is a non-empty set of failure modes;

• D is a non-empty set of discrepancies;

• E ⊂ V × V is a non-empty set of edges connecting the set of nodes

V = F ∪D;

• M is a non-empty set of system modes (we assume that at each time

instant the system is in precisely one mode);

• ET : E → I is a map that associates every edge in E with a time inter-

val [tmin, tmax] ∈ I indicating the minimum and maximum propagation

time on the edge, with I ∈ R≥0 × (R≥0 ∪ {+∞}) and tmin ≤ tmax;

• EM : E → 2M is a map that associates to every edge in E a set of

modes in M (we assume that EM(e) 6= ∅ for every edge e ∈ E);

• DC : D → {AND, OR} is a map defining the discrepancy type;

Failure modes never have incoming edges. All discrepancies must have at

least one incoming edge and be reachable from a failure mode node. Circular

paths are possible – except self-loops or zero-delay loops that would allow

discrepancies to activate independently from failure mode nodes. We use

OR(G) and AND(G) to indicate the set of OR nodes and AND nodes of a

TFPG G, respectively, D(G) to indicate all discrepancies, and F (G) to

indicate all failure modes.

The running example ForgeRobot describes a robot working in a hypo-

thetical industrial forge. The robot is either in standby in a safe area, or

performs work in a critical area that has high heat levels. It moves around

using its locomotion facilities. To prevent overheating in the critical area,

22

CHAPTER 3. TIMED FAILURE PROPAGATION GRAPHS

fcool

floc

dnoncrit

dstuck

dcrit[1, 10]{C}

[4, 10]{C}

[0, 0]{S,C}

[2, 2]{C}

[2, 15]{C}

Figure 3.1: TFPG for the ForgeRobot example. Dotted boxes are failure mode nodes,

solid boxes AND nodes, and circles OR nodes.

a cooling system is used. The TFPG in Figure 3.1 shows possible failures

of the robot and their effects over time. Two modes are used to differenti-

ate the operational context: S for safe area, and C for critical area. The

locomotion drive of the robot can fail (floc), causing the robot to be stuck

(dstuck). The cooling system can fail (fcool), decreasing the performance

of heat protection. fcool and dstuck can both independently cause a non-

critical overheating of the robot (dnoncrit) in mode C. In case both happen,

they cause a critical overheating (dcrit). The fact that failure mode labels

start with f and discrepancy labels with d is just a convention used for this

particular example. The time ranges on the propagation edges represent

the different propagation speeds influenced by variable amount of workload

and of heat in the critical area.

According to the semantics of TFPGs [Abdelwahed et al., 2009], a

TFPG node is activated when a failure propagation has reached it. An edge

e = (v, d) is active iff the source node v is active and m ∈ EM(e), where m

is the current system mode. A failure propagates through e = (v, d) only if

e is active throughout the propagation, that is, up to the time d activates.

For an OR node d and an edge e = (v, d), once e becomes active at time t,

the propagation will activate d at time t′, where tmin(e) ≤ t′−t ≤ tmax(e).

Activation of an AND node d will occur at time t′ if every edge e = (v, d)

has been activated at some time t, with tmin(e) ≤ t′ − t; for at least one

23

3.2. TRACE-BASED SEMANTICS

such edge e we must also have t′ − t ≤ tmax(e), i.e. the upper bound can

be exceeded for all but one edge. If an edge is deactivated any time during

the propagation, due to mode switching, the propagation stops. Links are

assumed memory-less, thus failure propagations are independent of any

(incomplete) previous propagation.

A maximum propagation time of tmax = +∞ indicates that the propa-

gation across the respective edge can be delayed indefinitely, i.e. it might

never occur at all. This is a useful over-approximation when the real tmax

value is not available; it is also necessary when the propagation depends on

some unconstrained input or other dynamics not captured by the TFPG.

An alternative interpretation is described in [Bozzano et al., 2015b], pre-

scribing that the propagation will eventually occur, but without guaran-

tees on when exactly. It could be an interesting aspect for future work to

support also this semantics, possibly as an alternative as the two interpre-

tations are conflicting.

3.2 Trace-Based Semantics

To enable the mapping of system traces to TFPG traces, we define TFPGs

as transition systems, whose paths describe failure propagations as timed

sequences of failure mode and discrepancy occurrences and mode switches.

We first define a TFPG transition system over TFPG nodes, modes, and

time delays. Then, given a TFPG G defined over the same nodes and

modes, we enforce the propagation constraints represented by the edges

and the discrepancy classes. The idea is not to model the propagations per

se, but rather to observe the occurrence of discrepancy events and mode

switches and to check whether these activations (or absence thereof) are

in violation of the TFPG constraints.

With this modeling approach it is not always possible to determine along

24

CHAPTER 3. TIMED FAILURE PROPAGATION GRAPHS

which exact path a propagation occurred, e.g. in the running example it

might not be clear along which path dnoncrit was activated, if the precon-

ditions of all incoming edges are satisfied. However, it is always possible

to check whether a trace satisfies the propagation constraints. This frame-

work enables the comparison of system behaviors and TFPG behaviors and

the abstraction of system behaviors in terms of TFPG behaviors.

Definition 2 (TFPG Transition System). Given are a set of failure mode

variables F , a set of discrepancy variables D, and a set of system modes

M . A TFPG Transition System is a tuple Stfpg = 〈X, I, T 〉 such that:

• X = F ∪ D ∪M ∪ τ , with ∆(x) = {>,⊥} for x ∈ F ∪ D ∪M and

∆(τ) = R≥0;

• I(X) = φmodes(M) ∧ τ = 0;

• T (X,X ′) = φmodes(M
′)∧

∧
x∈{F∪D}(x→ x′)∧(τ ≤ τ ′)∧((

∨
x∈{F∪D∪M}(x 6=

x′))→ (τ = τ ′))

where φmodes(M) ≡
∧
m∈M(m ↔

∧
n∈{M\m} ¬n). A trace π of a TFPG

transition system is called a TFPG trace. We write TS(G) to indicate the

TFPG transition system derived from the nodes F ∪ D and modes M of

the TFPG G.

For x ∈ {F ∪ D}, x = > indicates that the node x is active in the

current state, whereas for x ∈ M it means that the system is currently

in mode x. Formula φmodes(M) states that the system is in precisely one

mode at any time. The transition relation enforces that TFPG nodes stay

active once activated, and that time advances monotonically. Note that it

also enforces that time does not pass during discrete switches. We use this

modeling assumption to pin-point the moment in time when any discrete

change in TFPG state occurred, in order to unambiguously establish the

delay between such events.

25

3.2. TRACE-BASED SEMANTICS

With respect to time we regard TFPG traces as timed state sequences

and thus use the MTL model of time. As opposed to the LTL view which

uses an atomic unit of time that elapses during each transition, this ap-

proach will allow not only a much more fine-grained modeling of time, but

(and perhaps more importantly in practice) it will allow to compactly rep-

resent dynamics with few discrete changes over time but large amounts of

time elapsing. This is crucial for performance reasons in industrial appli-

cations, and will be discussed on an example in Chapter 5.

We define now under which conditions a trace of a TFPG transition

system Stfpg satisfies the constraints of a given TFPG. We use the notation

µ(e) =
∨
m∈EM(e)m to indicate the system modes that are supported by

an edge e ∈ E.

Definition 3 (OR-node satisfaction). Given a TFPG G, we say that a

trace π of TS(G) satisfies the constraints of an OR node d ∈ D of G iff for

any state π[k]:

A. (π[k] |= d)→ ∃j ≤ k · ((π[j] |= d) ∧ ∃e = (v, d) ∈ E ∃i ≤ j · ((τj − τi ≥
tmin(e)) ∧ ∀i ≤ l ≤ j · (π[l] |= (v ∧ µ(e))))).

B. ∀e = (v, d) ∈ E · (¬∃i ≤ k · ((τk − τi > tmax(e)) ∧ ∀i ≤ j ≤ k · π[j] |=
(v ∧ µ(e) ∧ ¬d))).

Condition A of Definition 3 states that if d is active in π[k] then it must

have been activated at some previous point π[j] after some edge leading

to d was active for at least the respective tmin, starting from π[i], up to

π[j] where d became active. Condition B instead states that for no edge e

the propagation can be delayed for more than the respective tmax. When

tmax(e) = +∞ for some edge e = (v, d), then the existentially quantified

part of Condition B is always false and thus cannot falsify the condition as

a whole, whose satisfaction thus effectively depends on edges whose upper

bound is not +∞.

26

CHAPTER 3. TIMED FAILURE PROPAGATION GRAPHS

Definition 4 (AND-node satisfaction). Given a TFPG G, we say that a

trace π of TS(G) satisfies the constraints of an AND node d ∈ D of G iff

for any state π[k]:

A. (π[k] |= d)→ ∃j ≤ k · ((π[j] |= d) ∧ ∀e = (v, d) ∈ E ∃i ≤ j · ((τj − τi ≥
tmin(e)) ∧ ∀i ≤ l ≤ j · (π[l] |= (v ∧ µ(e))))).

B. ∃e = (v, d) ∈ E · (¬∃i ≤ k · ((τk − τi > tmax(e)) ∧ ∀i ≤ j ≤ k · π[j] |=
(v ∧ µ(e) ∧ ¬d))).

Condition A of Definition 4 states that if d is active in π[k] then it has

been activated at some previous point π[j] after all edges leading to d were

active for at least the respective tmin, each starting from some individual

π[i], up to π[j] where d became active. Condition B instead states that

at least for one edge e the propagation must respect the respective tmax

bound. The difference in Definitions 3 and 4 is in the quantifiers over the

edges, corresponding to the semantics of the OR and AND nodes. When

tmax(e) = +∞ for some edge e, then the existentially quantified part of

Condition B is always false too; however here it has the effect, due to

the first existential quantifier, that the whole condition is always satisfied

whenever any e = (v, d) has tmax(e) = +∞.

Definition 5 (TFPG satisfaction). Given a TFPG G, we say that a trace

π of TS(G) satisfies G iff π satisfies, for all d ∈ D, the conditions of

Definition 3 or Definition 4, depending on whether d is an OR node or AND

node, respectively.

In the following sections we use Π∗(G) to indicate all possible traces of

TS(G), and we use Π(G) ⊆ Π∗(G) to indicate all traces of TS(G) that

satisfy G as per Definition 5.

From the definitions above we can also abstract the timing part and

derive purely Boolean constraints over the node activations: a trace π ∈

27

3.3. SYSTEM ABSTRACTION

TS(G) satisfies the Boolean constraints as encoded by G iff ∀k ∈ N ·
π[k] |= φbool(G), where φbool(G) :=

∧
d∈OR(G)(d→

∨
(v,d)∈E v)∧

∧
d∈AND(G)(d→∧

(v,d)∈E v).

TFPG satisfaction is based on local node activation constraints. Ac-

cording to Definition 5, a TFPG trace satisfies the TFPG constraints if

all individual nodes are activated according to the respective local con-

straints, and if no node activation is delayed beyond the respective local

upper bounds on propagation delay. Note that failure mode nodes fm ∈ F
need not be considered, since their activation is completely unconstrained

w.r.t. the other TFPG elements. As a consequence of using local con-

straints, pin-pointing violations to TFPG satisfaction becomes straight-

forward and makes it easier to fix the graph, the edge constraints, or the

system model.

This trace-based semantics for TFPGs closely follows the original se-

mantics of TFPGs as described earlier. Its adequacy has been validated in

an industrial case study in the FAME project [Bittner et al., 2014b], and

in the case studies described in Chapter 5.

3.3 System Abstraction

The core idea of this chapter is to abstract systems using TFPGs, by

associating system traces with TFPG traces. To this aim, we first define

TFPG elements of interest (failure modes, discrepancies and modes) in

terms of system properties, as follows.

Definition 6 (TFPG Association Map). Given a set of failure mode vari-

ables F , a set of discrepancy variables D, a set of system modes M ,

a time-stamp variable τ , and a system model Ssys, a TFPG Associa-

tion Map is w.l.o.g. an injective function Γ that associates every variable

x ∈ {F ∪D ∪M} with a Boolean predicate γ over the state variables X of

28

CHAPTER 3. TIMED FAILURE PROPAGATION GRAPHS

Ssys, written γx(X), or simply γx when the reference to X is clear from the

context, and τ with a variable x ∈ X, representing the state time-stamps in

the system, with ∆(x) = R≥0. Given an edge e ∈ E, we use the short form

γµ(e) for
∨
m∈EM(e) γm. Following the assumption of modes partitioning the

state space, we assume γm1 ∧ γm2 ≡ ⊥ for any m1,m2 ∈ M · m1 6= m2,

and that for any state s of Ssys there exists m ∈M such that s |= γm.

These maps are specified by the user. They only associate TFPG vari-

ables with system properties and do not refer to the propagation con-

straints encoded by edges and discrepancy classes. For instance, in the

running example the discrepancy dnoncrit may be defined by the expression

robot.temperature ≥ 10.

We also allow the specification of virtual discrepancies, which are aux-

iliary TFPG nodes used to express the temporal relationships among the

other user-defined nodes, but which don’t have a directly corresponding

property in the system. For instance, when the goal of TFPG modeling

is to relate input faults of a component directly to output faults, but the

Boolean relationship cannot be encoded by the discrepancy class of output

discrepancies, then a virtual discrepancy might be used without the need to

bind it to an internal state property of the component. These discrepancies

will also be essential for the synthesis algorithm described in Section 3.5.

Definition 7 (Virtual Discrepancy). Given a TFPG G, a system model

S, and an association map Γ that is total w.r.t. F (G) but partial w.r.t.

D(G), a virtual discrepancy is a node d ∈ D(G) that is not in the domain

of Γ. Instead of being associated, w.r.t. S, to a Boolean expression γd,

such discrepancies are associated to temporal expressions over the traces of

S, following the structure of G. For OR nodes the associated expression is

γd :=
∨

(v,d)∈E Oγv, and for AND nodes it is γd :=
∧

(v,d)∈E Oγv. It is assumed

that no v ∈ D(G), where (v, d) ∈ E, is itself a virtual discrepancy.

29

3.3. SYSTEM ABSTRACTION

Intuitively, w.r.t. system traces, a virtual discrepancy activates at the

same instant as one or all of its predecessors in the graph activate, depend-

ing on its node type.

When interpreting a system trace in terms of TFPG primitives we are

interested in the points in the trace where failure modes occur, discrepan-

cies become true or the system mode changes, and in the order and time

delay between these events. Definition 8 defines a mapping from system

traces to TFPG traces that guarantees that the order and timing of TFPG

events is the same as in the system trace.

Figure 3.2: Example of trace abstraction for ForgeRobot. Square signals are used to

model Boolean values over time.

Definition 8 (Trace Abstraction). Given a system model Ssys = 〈X, I, T 〉,
a TFPG transition system Stfpg = 〈XG, IG, TG〉 with XG = {F ∪D ∪M ∪
{τ}}, and a TFPG association map Γ defining the symbols in XG based

on predicates interpreted over X, we define the trace abstraction ζΓ of

a system trace π producing an abstract TFPG trace π′ of Stfpg, written

π′ = ζΓ(π), as follows:

30

CHAPTER 3. TIMED FAILURE PROPAGATION GRAPHS

• ∀x ∈ {F ∪D}∀k ∈ N · ((π′[k] |= x)↔ ∃i ≤ k · (π[i] |= γx))

• ∀x ∈ {M ∪ τ}∀k ∈ N · (x(π′[k]) = γx(π[k]))

The variables x ∈ {F ∪ D} effectively behave as history monitors for

their associated expression, whereas the variables x ∈ {M ∪ {τ}} are eval-

uated for every individual state.

Given a system trace π, we assume that for every x ∈ {F∪ D∪M} and

every point k it holds that γx(π[k]) 6= γx(π[k+1])→ γτ(π[k]) = γτ(π[k+1]),

i.e. time does not pass when the truth value of the predicate defining x

changes. This allows to unambiguously measure the delay between discrete

TFPG-related events in the system trace, and is similar in spirit to discrete

switches in timed or hybrid automata, during which time doesn’t pass.

We also assume that the system is at each time instant in precisely one

mode. These assumptions guarantee that the abstract traces of Definition 8

satisfy the constraints of Definition 2. An example trace abstraction for

the ForgeRobot model is shown in Figure 3.2.

Completeness and Tightness

The notion of completeness of a TFPG G reflects the fact that all possible

failure propagations in S are also modeled by G, in other words, that the

abstraction of every system trace satisfies the constraints of G. In a certain

sense completeness asks whether the behaviors allowed by the TFPG are an

over-approximation of the failure propagation behaviors that are possible

in the system model. Conversely, a TFPG is not complete if some failure

propagation pattern exists on some system trace that is not captured by

it. In the running example such a trace would be, e.g., one where first

floc happens and then dnoncrit, without any other node activating, which

violates the TFPG constraints.

31

3.3. SYSTEM ABSTRACTION

Definition 9 (Completeness). Given a system model S, a TFPG G, and

a TFPG association map Γ connecting the two, we say that G is complete

w.r.t. S iff for every trace π of S, its abstraction ζΓ(π) satisfies G, i.e.

ζΓ(π) ∈ Π(G).

Conversely to the notion of completeness, it is legitimate to ask whether

each failure propagation modeled by a TFPG can actually take place in

the corresponding system. This question is misleading, since a TFPG is

naturally an over-approximation of an underlying system. System modes

for instance are completely unconstrained in a TFPG, but in realistic cases

this is not true in the system. Instead we propose to study the property

of tightness, i.e. whether certain parameters of the TFPG can be reduced

without breaking its completeness. Specifically, we are interested in tight-

ening the propagation intervals and the modes.

Definition 10 (Edge Tightness). Given are a system model S, a TFPG

G, an association map Γ, and an edge e ∈ E of G. We say that tmin(e)

is tight iff there is no r > tmin(e) such that G is complete w.r.t. S with

tmin(e) := r and all other parameters of G remaining the same. We say

that tmax(e) is tight iff there is no r < tmax(e) such that G is complete

w.r.t. S with tmax(e) := r and all other parameters of G remaining the

same. We say that EM(e) is tight iff there exists no m ∈ EM(e) such

that G is complete w.r.t. S with EM(e) := EM(e) \ m and all other

parameters of G remaining the same. Finally, we say that the edge e is

tight iff tmin(e), tmax(e), and EM(e) are tight.

We remark that this definition checks for the effect of single parameter

changes. In the running example we might for instance check whether the

propagation from floc to dstuck really can occur in mode C, or whether some

system behavior exists where the delay between fcool and dnoncrit is indeed

10 time units.

32

CHAPTER 3. TIMED FAILURE PROPAGATION GRAPHS

Completeness might be preserved when changing multiple parameters

simultaneously. For instance, if a mode m on an edge e is dropped in

which the propagation cannot occur at all and tmax(e) is set to a finite

value instead of +∞ that is a correct bound for the propagation in the

remaining modes, completeness is preserved, while just reducing tmax(e)

would break it.

3.4 Behavioral Validation

In this section we describe a method to check whether a TFPG is a com-

plete and tight abstraction of a corresponding system. First we show how

completeness can be checked by reduction to an MTL model-checking

problem; then we show how tightness can be checked using a number of

completeness checks.

3.4.1 Completeness

We show now how TFPG completeness can be reduced to a model-checking

problem of an MTL formula over the original system. A composition of

the system model and the TFPG transition system will not be necessary,

and we only need to work with the system traces.

Theorem 1 and Theorem 2 provide partial proof obligations (for OR and

AND nodes, respectively) to check whether the constraints of individual

nodes are satisfied on a system trace. Theorem 3 then combines them

into a check for overall completeness. The intuition behind the theorems

is that the proof obligations can be derived from the definitions of OR-

node satisfaction and AND-node satisfaction via the semantics of temporal

operators and the mappings of Definition 8.

Theorem 1. Given a system model S, an association map Γ relating S to

33

3.4. BEHAVIORAL VALIDATION

a given TFPG G, and an OR node d of G, we define the following proof

obligations:

1. ψOR·A(d,Γ) := G((Oγd)→ O((Oγd)∧
∨
e=(v,d)∈E((Oγv)∧γµ(e)S

≥tmin(e)(Oγv)∧
γµ(e))))

2. ψOR·B(d,Γ) := G¬(
∨
e=(v,d)∈E((Oγv) ∧ γµ(e) ∧ ¬(Oγd)S

>tmax(e)((Oγv) ∧
γµ(e) ∧ ¬(Oγd)))

For a trace π of S, ζΓ(π) satisfies the constraints of d, as per Definition 3,

iff π |= ψOR·A(d,Γ) and π |= ψOR·B(d,Γ).

Proof. From Definition 8 we know that: for any node v ∈ {F ∪D} we have

∀k ∈ N· ζΓ(π)[k] |= v iff ∃i ≤ k · π[i] |= γv; for all edges e ∈ E we have

∀k ∈ N· ζΓ(π)[k] |= µ(e) iff π[k] |= γµ(e). Based on this, the FOL semantics

of TFPG trace validity w.r.t. an OR node d ∈ D of G can be derived

from the MTL formulae as follows, showing that π satisfies ψOR·A(d,Γ) and

ψOR·B(d,Γ) iff ζΓ(π) satisfies the constraints of d. For ψOR·A(d,Γ) this is

shown as follows:

• π |= G((Oγd) → O((Oγd) ∧
∨
e=(v,d)∈E((Oγv) ∧ γµ(e)S

≥tmin(e)(Oγv) ∧
γµ(e))))

iff, by semantics of temporal operators,

• ∀k ∈ N · ((∃i ≤ k · π[i] |= γd) → ∃i ≤ k · ((∃j ≤ i · π[j] |= γd) ∧ ∃e =

(v, d) ∈ E∃j ≤ i · (τi − τj ≥ tmin(e) ∧ ∀j ≤ l ≤ i · ((∃n ≤ l · π[n] |=
γv) ∧ (π[l] |= γµ(e))))))

iff, by the above-mentioned notions following Definition 8,

• ∀k ∈ N · ((ζΓ(π)[k] |= d) → ∃i ≤ k · ((ζΓ(π)[i] |= d) ∧ ∃e = (v, d) ∈
E∃j ≤ i · (τi− τj ≥ tmin(e)∧∀j ≤ l ≤ i · ((ζΓ(π)[l] |= v)∧ (ζΓ(π)[l] |=
µ(e))))))

34

CHAPTER 3. TIMED FAILURE PROPAGATION GRAPHS

which is equivalent to formula A of Definition 3. For ψOR·B(d,Γ) the

derivation is done similarly as follows:

• π |= G¬(
∨
e=(v,d)∈E((Oγv) ∧ γµ(e) ∧ ¬(Oγd)S

>tmax(e)((Oγv) ∧ γµ(e) ∧
¬(Oγd)))

iff, by semantics of temporal operators,

• ∀k ∈ N · ¬(∃e = (v, d) ∈ E∃i ≤ k · (τk − τi > tmax(e) ∧ ∀i ≤ j ≤
k · ((∃l ≤ j · π[l] |= γv) ∧ (π[j] |= γµ(e)) ∧ ¬(∃l ≤ j · π[l] |= γd))))

iff, by the above-mentioned notions following Definition 8,

• ∀k ∈ N · ¬(∃e = (v, d) ∈ E∃i ≤ k · (τk − τi > tmax(e) ∧ ∀i ≤ j ≤
k · ((ζΓ(π)[j] |= v) ∧ (ζΓ(π)[j] |= µ(e)) ∧ ¬(ζΓ(π)[j] |= d))))

which is equivalent to formula B of Definition 3.

We now define the corresponding proof obligations for AND nodes.

Theorem 2. Given a system model S, an association map Γ relating S to

a given TFPG G, and an AND node d of G, we define the following proof

obligations:

1. ψAND·A(d,Γ) := G((Oγd)→ O((Oγd)∧
∧
e=(v,d)∈E((Oγv)∧γµ(e)S

≥tmin(e)(Oγv)∧
γµ(e))))

2. ψAND·B(d,Γ) := G¬(
∧
e=(v,d)∈E((Oγv) ∧ γµ(e) ∧ ¬(Oγd)S

>tmax(e)((Oγv) ∧
γµ(e) ∧ ¬(Oγd)))

For a trace π of S, ζΓ(π) satisfies the constraints of d, as per Definition 4,

iff π |= ψAND·A(d,Γ) and π |= ψAND·B(d,Γ).

Proof. The proof is symmetrical to the proof of Theorem 1, except that we

use universal quantification to represent the semantics of
∧
e=(v,d)∈E.

35

3.4. BEHAVIORAL VALIDATION

Intuitively, ψOR·A(d,Γ) requires at least one edge e = (v, d) to be ac-

tive for at least tmin(e) time units at the point where d activates, and

ψOR·B(d,Γ) requires that a propagation along some edge e = (v, d) cannot

be delayed for more than tmax(e) time units.

Based on Theorems 1 and 2, Theorem 3 formulates the proof obligation

that a system trace must satisfy in order for the corresponding TFPG trace

to satisfy a given TFPG.

Theorem 3. Given a system model S, a TFPG G, and an association

map Γ relating S to G, let Ψ(G,Γ) :=
∧
d∈OR(G)(ψOR·A(d,Γ) ∧ ψOR·B(d,Γ)) ∧∧

d∈AND(G)(ψAND·A(d,Γ)∧ ψAND·B(d,Γ)). Then, G is complete w.r.t. S iff S |=
Ψ(G,Γ).

Proof. Definition 9 states that G is complete w.r.t. S iff for every trace

π of S it holds that its abstraction ζΓ(π) satisfies G, i.e. ζΓ(π) ∈ Π(G).

This on the other hand is true iff, following Definition 5, for every trace

π of S it holds that ζΓ(π) satisfies, for every d ∈ D, the conditions of

Definition 3 or Definition 4, depending on whether d is an OR node or AND

node. From Theorem 1 (resp. Theorem 2) we know that, for a system trace

π and an OR node (resp. AND node) d ∈ D, ζΓ(π) satisfies the conditions

of Definition 3 (resp. Definition 4) iff π |= ψOR·A(d,Γ) ∧ ψOR·B(d,Γ) (resp.

π |= ψAND·A(d,Γ) ∧ ψAND·B(d,Γ)).

Note that for a virtual discrepancy d, the corresponding γd is a temporal

expression and not a purely Boolean one (see Definition 7), but this has

no effect on the theorems and their proofs. Furhtermore, given an edge

e = (v, d), the subclauses relative to e in ψOR·B(d,Γ) and ψAND·B(d,Γ) are

trivially false when tmax(e) = +∞ and can be simplified accordingly.

36

CHAPTER 3. TIMED FAILURE PROPAGATION GRAPHS

3.4.2 Edge Tightness

Edge tightness can be reduced to a number of completeness checks. As

per Definition 10, checking the tightness of an edge e ∈ E amounts to

verifying, individually for each parameter tmin(e), tmax(e), and EM(e),

if there exists a tighter assignment such that the accordingly modified

TFPG G′ is still complete w.r.t. S: S |= Ψ(G′,Γ). This can be done by

searching over the range of possible tighter parameter assignments.

Note that tightness checks for some edge e = (v, d) only require to evalu-

ate the proof obligations affected by the parameter change. For instance, if

d is an OR node and we check the tightness of tmin(e), then only ψOR·A(d,Γ)

needs to be evaluated. This is possible as by assumption of completeness

of the original TFPG, all proof obligations related to individual discrepan-

cies hold for the original TFPG, and as they do not refer to the constant

tmin(e) they will still hold.

3.5 Synthesis

In this section we describe a method to synthesize a TFPG in a fully

automated way, starting from the following inputs:

• a system model;

• a set of failure mode and discrepancy nodes;

• an association map defining them.

Whereas before we assumed the TFPG to be given, possibly modeled by

hand by an engineer, we would like to have now a procedure that takes these

inputs, first computes the underlying graph of the TFPG, by analyzing the

system traces, and subsequently tightens its edges, resulting in a complete

and tight TFPG. For the running example this means that from just the

37

3.5. SYNTHESIS

nodes fcool, floc, dstuck, dnoncrit, and dcrit we want to automatically compute

the TFPG shown in Figure 3.1.

Before defining more formally the goal of the synthesis procedure, note

that what the edges of a TFPG represent, from a qualitative point of view,

is the temporal ordering of the events they connect. The edge (fcool, dnoncrit)

means that first fcool will happen, and then dnoncrit. In the system model

we will thus have traces where first the event associated to fcool happens,

and after that the one associated to dnoncrit. Furthermore, according to

the TFPG (and the system model) dnoncrit might also follow after dstuck,

which itself must be preceeded by floc. Time bounds and mode labels then

provide additional information about the basic qualitative relationships

encoded by the plain graph.

The qualitative topology of a TFPG thus encodes a number of prece-

dence constraints among its nodes, prescribing what other nodes a failure

has to propagate through before reaching any particular discrepancy. In

other words, they prescribe the sets of nodes that have to be activated

before the given target discrepancy can be activated.

The goal of the synthesis procedure then should be to identify all prece-

dence constraints from the system traces and encode them in the graph of

the TFPG. A complete and tight TFPG could be trivially obtained also by

instantiating every discrepancy as an OR node and connecting every failure

mode node to every discrepancy, with tightened edges. This way however

the information on the temporal ordering among events is lost, and the

resulting TFPG would provide very limited insight (if any at all) into the

system dynamics following a failure.

The core insight on which the proposed synthesis algorithm is based on

is that this notion of precedence constraints matches another well-known

notion in the field of failure analyses, that is the one of minimal cut-sets

from fault tree analysis. In FTA the goal is to identify the sets of basic

38

CHAPTER 3. TIMED FAILURE PROPAGATION GRAPHS

events (cut-sets) which can lead to a specific effect called top-level event

(TLE). Of particular interest are minimal cut-sets, i.e. cut-sets whose basic

events must all occur before the top-level event will occur; conversely, the

TLE will not occur before all elements of a minimal cut-set have occurred.

We report here the definition from [Bozzano et al., 2015d], adapted to our

setting.

Definition 11 (Cut-Set). Given are a transition system S and a set of

events EV = 〈e1 . . . en〉, where each event ei ∈ EV is defined by a Boolean

formula interpreted over the state vector of S. Given an event e ∈ EV , a

set cs ⊆ EV \ e is a cut-set of e iff there exists a trace π of S for which

∃k ∈ N such that π[k] |= e and ∀e′ ∈ EV \ e · e′ ∈ cs⇔ ∃i ≤ k · π[i] |= e′.

A cut-set cs of e is minimal iff no proper subset of cs is a cut-set of e.

We use MCS(e, EV, S) as a short form to indicate the set of all minimal

cut-sets of event e in S w.r.t. EV .

In a TFPG transition system the events are the nodes being activated.

In a system model they are the Boolean properties associated to the nodes

by the association map becoming true. In the TFPG G of the running

example, {floc, dstuck} is a minimal cut-set of dnoncrit, considering the traces

in Π(G). This means that, after the activations of floc and dstuck, the node

dnoncrit can become active before any other node does, e.g. fcool doesn’t

have to occur before dnoncrit. Figure 3.3 shows all minimal cut-sets of each

discrepancy in the running example.

dstuck (floc)

dnoncrit (fcool), (floc, dstuck)

dcrit (floc, dstuck, dnoncrit)

Figure 3.3: Minimal cut-sets of all discrepancies in the running example.

Based on the notion of minimal cut-sets, we then define precedence

constraints as follows.

39

3.5. SYNTHESIS

Definition 12 (Precedence Constraints). Given are a transition system S,

a set of events EV , and some e ∈ EV . The precedence constraints of e

are the set of all of its minimal cut-sets w.r.t. EV and S. The precedence

constraints of e are satisfied on some trace and state π[k] iff all events of

one of e’s minimal cut-sets have occurred at some state j, with 0 ≤ j ≤ k.

The precedence constraints of e prescribe which events of EV must

happen on the traces of S before e itself will occur. Note that satisfaction

of these conditions does not imply that the effect inexorably follows. On the

level of the TFPG this means that a propagation might not be completed

due to dynamics within the system model that are invisible from the point

of view of the TFPG. Such cases are modeled in the TFPG by reducing the

mode labels of edges, if the propagation never occurs in one of the possible

modes, or setting specific tmax parameters to +∞ (see Section 3.1).

Based on the notion of precedence constraints, we now define the prop-

erty of graph correctness which we want the synthesized TFPG to have.

We rely on Γ to map sets of elements to the respective domain, i.e. to map

sets of nodes cs ⊆ F ∪D to the equivalent set {γx|x ∈ cs}, and vice-versa.

Definition 13 (Graph Correctness). Given are a system model S, a TFPG

G, and an association map Γ. Also, let EV ⊆ D(G)∪F (G) and let Σ(G) be

the set of traces of TS(G) that satisfy the Boolean constraints of the graph.

We say that the graph of G is correct w.r.t. S, Γ and EV iff, for every

discrepancy d ∈ D(G)∩EV , the precedence constraints of d w.r.t. EV and

Σ(G) are equivalent, based on the mapping defined by Γ, to the precedence

constraints of the corresponding expression γd w.r.t. {γv|v ∈ EV } and S.

This property guarantees an accurate graphical representation of the

event orders of failure propagations possible in the system. In the running

example, ignoring dcrit, we could obtain a complete TFPG by simply con-

necting floc to dstuck and dnoncrit, and fcool to dnoncrit. The graph however

40

CHAPTER 3. TIMED FAILURE PROPAGATION GRAPHS

would not be correct, since in S, assuming the absence of fcool, dnoncrit

is always preceded by both floc and dstuck, which is not required by that

graph.

This information on the ordering of events can be important in various

situations related to fault protection design. For instance, for diagnosis,

assume both fcool and dnoncrit are observable via some monitor, that fcool is

not activated and that dnoncrit is activated. From this, based on the correct

graph, we can deduce the occurrence of dstuck, which is not possible in the

other TFPG. The same information can also be important for choosing

appropriate recovery strategies. Imagine that we have an efficient recovery

procedure for when the robot is stuck but still in a nominal temperature

range, and that recovery of a stuck robot with non-critical overheating

is more complex and/or costly. The above information on precedence of

events could then be used to justify a simpler recovery architecture.

Note that graph correctness is a property of just the graph of the TFPG

and doesn’t refer in any way to the edge labels. This means that we re-

quire the precedence constraints to be fully encoded by just the graph

itself. Sometimes (but not always) these qualitative constraints could al-

ternatively be encoded in the time bounds of edges. For instance, if two

edges leave some common node, where the tmin value of the first one is

higher than the tmax value of the second one, then we know that the ac-

tivation of the target node of the second edge will always preceed the one

of the target node of the first edge. It is however not clear what the ad-

vantage of such an encoding would be; a more selective representation of

precedence constraints could be an interesting direction for future work.

We now formally define the TFPG synthesis problem.

Problem 1 (Graph Synthesis). Given are a system model S, a set of failure

mode nodes F , a set of discrepancy nodes D, a set of modes M , and an

association map Γ defining the nodes x ∈ F ∪D w.r.t. S. Graph Synthesis

41

3.5. SYNTHESIS

consists in finding a TFPG G that satisfies the following properties: 1.

F = F (G) 2. D ⊆ D(G) 3. G is complete w.r.t. S and Γ 4. the graph

of G is correct w.r.t. S, Γ, and EV = F ∪D.

Property 2 does not require D to be identical to D(G), as it might

be necessary to introduce additional nodes to model the precedence con-

straints, as described in the next sections.

3.5.1 Graph Synthesis

An algorithm to automatically synthesize TFPGs according to Problem 1

is now introduced. Algorithm 1 first instantiates all failure modes as FM

nodes (Line 1). Next, all discrepancies given in input are defined as OR

nodes (Line 2). At this point we still don’t know whether some discrepancy

effectively has AND node semantics, which will be inferred at a later point.

Algorithm 1 TfpgSynth

Inputs: system model S; set of failure modes F ; set of discrepancies D; set of modes M ;

association map Γ.

Steps

1: instantiate each failure mode f ∈ F as an FM node;

2: instantiate each discrepancy d ∈ D as an OR node;

3: for all d ∈ D do

4: for all mcs ∈MCS(γd, {γd′ |d′ ∈ F ∪D}, S) do

5: instantiate a fresh virtual AND node v

6: create unconstrained edge (v, d)

7: for all γv′ ∈ mcs do

8: create unconstrained edge (v′, v)

9: end for

10: end for

11: end for

Next we iterate over the user-defined discrepancies (Line 3). For each

such d we first compute all minimal cut-sets of the corresponding γd in the

42

CHAPTER 3. TIMED FAILURE PROPAGATION GRAPHS

fcool v1 dnoncrit

v2floc dstuck dcrit

Figure 3.4: Intermediate result after iteration of Algorithm 1 for dnoncrit.

system (Line 4), which correspond to its precedence constraints. Since we

don’t have any a-priori knowledge about the possible sequences of events,

we consider all other user-defined nodes in minimal cut-set computation.

It is assumed that no discrepancy can have a minimal cut-set that doesn’t

contain a failure mode event, i.e. that discrepancies can occur indepen-

dently of failure mode events. For each minimal cut-set mcs of γd a fresh

virtual AND node is introduced (Line 5), and all nodes v ∈ mcs are con-

nected to it (Line 6-8). The activation of the virtual node represents the

activation of all nodes in mcs, which itself enables the activation of the

target node d. Every edge e at this point has maximally permissive con-

straints, i.e. with tmin(e) set to 0, tmax(e) set to +∞, and EM(e) set

to M . This labeling ensures TFPG completeness by overapproximation.

Figure 3.4 shows the intermediate result after the iteration for dnoncrit.

For the running example, at the end of the procedure we obtain the

graph shown in Figure 3.5. The synthesized TFPG is complete w.r.t. S

and Γ, as shown in Theorem 4.

Theorem 4. A TFPG G built using Algorithm 1, based on a system model

S and an association map Γ, is complete w.r.t. S and Γ.

Proof. In a TFPG where ∀e ∈ E we have tmin(e) = 0, tmax(e) = +∞,

and EM(e) = M , the proof obligations can be simplified. ψOR·B and ψAND·B

trivially hold for all discrepancies since no delay value can be greater than

43

3.5. SYNTHESIS

fcool v1 dnoncrit

v2floc dstuck

v3

v4 dcrit

Figure 3.5: TFPG as produced by Algorithm 1 for running example, including

user-defined and virtual nodes.

+∞. ψOR·A can be simplified to G(Oγd → O(Oγd ∧
∨

(v,d)∈E(Oγv))), and

further to G(Oγd → (Oγd ∧
∨

(v,d)∈E(Oγv))). The Oγd in the consequence

can be dropped: G(Oγd →
∨

(v,d)∈E(Oγv)). Finally, since every AND node v

is a virtual discrepancy, we obtain G(Oγd →
∨

(v,d)∈E
∧

(v′,v)∈E(Oγv′)), which

is ensured by construction of the graph from the minimal cut-sets of γd.

ψAND·A(d,Γ) can symmetrically be reduced to G(Oγd →
∧

(v,d)∈E(Oγv)) and

rewritten as G(
∧

(v,d)∈E(Oγv)→
∧

(v,d)∈E(Oγv)), which trivially holds.

In addition to completeness, the graph of the synthesized TFPG also

satisfies the correctness property. Note that we are only interested in graph

correctness w.r.t. the user-defined nodes.

Theorem 5. Given are a system model S, an association map Γ, and a

TFPG G as produced by Algorithm 1 for failure mode nodes F and dis-

crepancies D. As per Definition 13, the graph of G is correct w.r.t. S, Γ,

and EV = F ∪D.

Proof. For every discrepancy d ∈ D the following holds. The set of all

sets of nodes cs ⊂ EV connected to d via some respective virtual AND

node v (i.e., where (v, d) ∈ E, and v′ ∈ cs iff (v′, v) ∈ E) represents by

44

CHAPTER 3. TIMED FAILURE PROPAGATION GRAPHS

construction, when mapped to S, the set of all minimal cut-sets of γd. It

also represents all minimal cut-sets of d w.r.t. Σ(G). Otherwise, one such

set of nodes cs would exist that is not a minimal cut-set for d in Σ(G). If cs

is a cut-set, it is automatically minimal by the semantics of the nodes. If it

is not a cut-set, then for at least one d′ ∈ D∩(cs∪d) there are not sufficient

nodes in (cs ∪ d) such that one virtual AND node v, with (v, d′) ∈ E, can

be activated. This however is not possible, since from the FTA step we

know that {γv|v ∈ cs ∪ d} contains a minimal cut-set for every γd′, with

d′ ∈ D ∩ (cs ∪ d).

3.5.2 Graph Simplification

Even though a TFPG synthesized by the procedure above satisfies cer-

tain relevant properties, its graph structure might be too verbose for some

applications. For instance, manual inspection by a safety engineer is of-

ten impractical with the full graph and requires a simpler version that

still maintains completeness and correctness. Figure 3.6 compares the full

graph for the model Cassini2 described in Section 3.7, and the one simpli-

fied with the procedure described in this section. For an engineer it will be

very difficult to understand the propagation behavior from the fully ver-

bose graph in Figure 3.6a, but relatively easy with the one in Figure 3.6b.

Even in the running example it is not straight-forward to manually recon-

struct the propagation patterns from the synthesis result in Figure 3.5,

as compared to the TFPG in Figure 3.1. Some simplification however is

possible: the edge (floc, v2) is redundant, and all virtual AND nodes except

v4 are also not essential to encode the precedence constraints among the

user-defined nodes.

For the purpose of TFPG simplification we introduce the following the-

orem, based on which a procedure to remove edges while preserving com-

pleteness and correctness can be derived. It uses the formula φprec(G) :=

45

3.5. SYNTHESIS

(a) without simplification (56 nodes, 141 edges)

(b) with simplification (24 nodes, 30 edges)

Figure 3.6: Effect of simplification procedure on Cassini2 model (rendered with xSAP).

46

CHAPTER 3. TIMED FAILURE PROPAGATION GRAPHS∧
d∈D(d→

∨
(v,d)∈E(G)

∧
(v′,v)∈E(G) v′), which encodes the Boolean constraints

of G, similarly to φbool(G), but factors out the virtual AND nodes, as the

correctness property only regards the user-defined nodes. We write cs for

the valuations of φprec(G) and φbool(G) that assign > to any v ∈ cs, and ⊥
to all other variables.

Theorem 6. Given is a TFPG G as produced by Algorithm 1 for failure

mode nodes F and discrepancies D, map Γ and system model S. Also,

given is a second TFPG G′ that has the same nodes as G, the same edges

towards OR nodes, but a subset of the edges towards the AND nodes. Then,

G′ is complete w.r.t. Γ and S; also, if φprec(G) ≡ φprec(G
′), the graph of

G′ is correct w.r.t. Γ, S, and EV = F ∪D.

Proof. Due to maximally permissive edge constraints and the expressions

associated to virtual discrepancies, we can ignore the proof obligations

ψOR·B, ψAND·A, and ψAND·B, as shown in the proof of Theorem 4. Removing

edges towards virtual AND nodes effectively weakens the proof obligations

ψOR·A, thus completeness is preserved.

Then, for both G and G′ we have that cs ⊂ F ∪D is a cut-set of d ∈ D
in Σ(G) iff cs ∪ d |= φprec(G). (⇒) Assume cs is a cut-set of d in Σ(G);

then there exists V ⊆ AND(G) such that V ∪ cs ∪ d is reachable on some

π ∈ Σ(G), and hence cs ∪ d |= φprec(G), since φbool(G) → φprec(G). (⇐)

Assume cs ∪ d |= φprec(G), then V ∪ cs ∪ d |= φbool(G), with V ⊆ AND(G)

and v ∈ V iff cs ∪ d |=
∧

(v′,v)∈E(G) v
′, of which there is at least one for

every d′ ∈ D ∩ (cs ∪ d) as guaranteed by φprec(G), from which it follows

that V ∪ cs ∪ d is reachable on some π ∈ Σ(G) at π[0], as it is a state of

TS(G) that satisfies φbool(G), thus qualifying as an initial state of a trace

π ∈ Σ(G), and hence cs is a cut-set of d in Σ(G).

Finally, from φprec(G) ≡ φprec(G
′) it follows that every d ∈ D has the

same cut-sets in Σ(G) and Σ(G′) w.r.t. EV , and thus also the same mini-

47

3.5. SYNTHESIS

fcool v1 dnoncrit

v2floc dstuck

v3

v4 dcrit

Figure 3.7: Result of removing redundant edges from synthesis result shown in

Figure 3.5.

mal cut-sets.

Note that Theorem 6 does not allow to remove all edges towards any

AND node, as this would result in an illegal TFPG. The only nodes that

can (must) have no incoming edge are failure mode nodes.

Given a TFPG G that was computed by Algorithm 1, we start to drop

edges towards the virtual AND nodes, resulting in new TFPGs G′. The

theorem then tells us that completeness and graph correctness are not

affected as long as φprec(G) and φprec(G
′) are equivalent, which can be

checked for instance with a sat solver. We thus remove as many edges

as possible until the removal of any further edge would either result in an

illegal TFPG or break graph correctness. For the running example, the

result of removing these edges is shown in Figure 3.7.

After removing redundant edges of G, guided by φprec(G), it might also

be possible to eliminate some virtual AND nodes without affecting the com-

pleteness of G and the correctness of its graph. A virtual AND node v with

a single incoming edge (v′, v) and a single outgoing edge (v, d), e.g. v1 in

Figure 3.7, can be removed by replacing the two edges involving v with a

new edge (v′, d). The result of this step is shown in Figure 3.8.

Furthermore, if two AND nodes exist that have identical incoming and

48

CHAPTER 3. TIMED FAILURE PROPAGATION GRAPHS

fcool dnoncrit

floc dstuck v4 dcrit

Figure 3.8: Result of removing unnecessary AND nodes from the TFPG in Figure 3.7.

outgoing edges, one of them can be simply dropped. An OR node d with

a single incoming edge from a virtual AND node v can be redeclared as an

AND node; then for every edge (v′, v) a new edge (v′, d) is introduced and

v is dropped from G; in Figure 3.8 this applies to dcrit. By applying all

simplification strategies to the TFPG in Figure 3.5 we finally obtain the

one in Figure 3.1.

3.5.3 Edge Tightening

At this point, the completeness checks presented in Section 3.4 can be

used to tighten the edges of the TFPG according to Definition 10, in order

to identify more precise constraints on propagation delays and contexts.

Note that edge tightening can be performed only after simplification, as the

latter ignores propagation delays and assumes maximally permissive edges.

In future work we will investigate the need and corresponding methods for a

closer integration between graph simplification and tightening, for instance

to enable a more fine-grained modeling of propagation delays.

3.6 Implementation

The prototype created for the present work is implemented on top of the

safety analysis platform xSAP [Bittner et al., 2016a], which in turn is

based on nuXmv [Cavada et al., 2014], a symbolic model checker for in-

49

3.6. IMPLEMENTATION

finite state transition systems modeled in the SMV language. The im-

plementation, containing all algorithms described in this chapter, can be

downloaded at http://xsap.fbk.eu. In the following we describe the im-

plementation of the techniques for behavioral validation (Section 3.4) and

synthesis (Section 3.5) of TFPGs.

Completeness Check

At the core of the implementation we use a reduction of the completeness

check via MTL proof obligations to a reachability problem. This allows

us to directly reuse the reachability algorithms of nuXmv off-the-shelf

for behavioral validation – as well as the parameter synthesis techniques

described in Section 4.4 for automated tightening of the edges.

Intuitively, the reduction works as follows. For expressions of the type

Oγd we extend the system model with corresponding history monitors.

Furthermore we introduce one timer per edge e that measures the duration

for which the corresponding expression (Oγv) ∧ γµ(e) has been true on the

current path; the timer is disabled when the edge is not active and frozen

when the target discrepancy is activated. An example of the corresponding

SMV code for the running example is shown in Figure 3.9. Note that we

assume the presence of an input variable that is equal to the difference in

timestamps between adjacent states – variable t #delta in Figure 3.9. For

the purpose of our analysis this makes it also unnecessary to keep track of

the absolute time stamps.

Based on this, the MTL proof obligations are expressed as invariance

proof obligations, which can be solved with standard reachability algo-

rithms. For instance, to verify the proof obligation ψOR·A(d,Γ), we check

whether the timer value of at least one edge reaching the respective OR

discrepancy is greater or equal to the corresponding tmin value when the

discrepancy is activated.

50

http://xsap.fbk.eu

CHAPTER 3. TIMED FAILURE PROPAGATION GRAPHS

DEFINE EState_EDGE2 := failuremode_FailCooling & Mode_CriticalZone;

VAR ETime_EDGE2 : real;

ASSIGN init(ETime_EDGE2) := case

EState_EDGE2 : 0;

TRUE : -1;

esac;

ASSIGN next(ETime_EDGE2) := case

or_node_NonCriticalOverheating : ETime_EDGE2;

!next(EState_EDGE2) : -1;

!EState_EDGE2 & next(EState_EDGE2) : 0;

TRUE : ETime_EDGE2 + t_#delta_0;

esac;

Figure 3.9: SMV code for the timer of edge (fcool, dnoncrit) in ForgeRobot.

The proof of the following theorem shows in detail how this reduction

works.

Theorem 7. Given are a system model S, a trace π of S, an association

map Γ relating S to a given TFPG G, and an OR discrepancy d of G. The

proof obligations ψOR·A(d,Γ) and ψOR·B(d,Γ) of Theorem 1 can be equiva-

lently expressed as invariant properties ψOR·A·invar(d,Γ) and ψOR·B·invar(d,Γ),

such that:

• π |= ψOR·A(d,Γ) iff ∀k ∈ N · π[k] |= ψOR·A·invar(d,Γ);

• π |= ψOR·B(d,Γ) iff ∀k ∈ N · π[k] |= ψOR·B·invar(d,Γ).

Likewise, for AND nodes properties the proof obligations ψAND·A(d,Γ) and

ψAND·B(d,Γ) of Theorem 2 can be equivalently expressed as invariant prop-

erties ψAND·A·invar(d,Γ) and ψAND·B·invar(d,Γ), such that:

• π |= ψAND·A(d,Γ) iff ∀k ∈ N · π[k] |= ψAND·A·invar(d,Γ);

51

3.6. IMPLEMENTATION

• π |= ψAND·B(d,Γ) iff ∀k ∈ N · π[k] |= ψAND·B·invar(d,Γ).

Proof. For every node v ∈ {F∪D} we introduce a fresh Boolean variable hv

with π[k] |= hv ↔ Oγv for every state k of π. For every edge e = (v, d) ∈
E we introduce a fresh Boolean variable estatee with π[k] |= estatee ↔
((Oγv) ∧ γµ(e)) for every state k of π. ψOR·A(d,Γ) can then be rewritten as

follows:

• G(hd → O(hd ∧
∨
e=(v,d)∈E(estateeS

≥tmin(e)estatee)))

• iff, using timers etimee that are reset to 0 when the respective estatee

changes truth value:

G(hd → O(hd ∧
∨
e=(v,d)∈E(estatee ∧ etimee ≥ tmin(e))))

• iff, by disabling the timers etimee (setting them to −1) when the

respective estatee evaluates to false and given that tmin(e) ≥ 0:

G(hd → O(hd ∧
∨
e=(v,d)∈E(etimee ≥ tmin(e))))

• iff, by freezing etimee as soon as hd becomes true:

G(hd → (hd ∧
∨
e=(v,d)∈E(etimee ≥ tmin(e))))

• iff, by simplification of tautology:

G(hd →
∨
e=(v,d)∈E(etimee ≥ tmin(e)))

The first step substituting the S-expression can be done since, for all

k and any edge e we have π[k] |= (estateeS
≥tmin(e)estatee) iff π[k] |=

(estatee ∧ etimee ≥ tmin(e)), assuming a timer etimee that is reset to

0 when the corresponding estatee changes truth value, and else increments

by the difference in timestamps. This can be shown considering the fol-

lowing four cases:

• for k = 0, consider two subcases: for tmin(e) = 0, the truth value

of both expressions depends on the truth value of estatee, and for

tmin(e) > 0, both expressions always evaluate to false;

52

CHAPTER 3. TIMED FAILURE PROPAGATION GRAPHS

• if π[k] |= ¬estatee, both expressions evaluate to false;

• if ∀i ≤ k ·π[i] |= estatee, it also holds since τk = etimee(π[k]), and the

truth value of both expressions depends on whether τk >= tmin(e);

• the case remains where k > 0, π[k] |= estatee, and ∃i < k · π[i] |=
¬estatee, from which it follows that ∃i < i′ ≤ k s.t. π[i′ − 1] |=
¬estatee, π[i′] |= estatee, and ∀i′ ≤ j ≤ k · π[j] |= estatee, and

therefore τk − τi′ = etimee(π[k]); both expressions thus depend on

whether τk − τi′ ≥ tmin(e)

The second step that drops the estatee variable is possible, since in

states where estatee is false, the expressions specific to e evaluate both to

false, and in the other cases the timers have the same value.

The once operator can be dropped during the third step, assuming that

etimee freezes when hd becomes true, since:

• G((hd ∧
∨
e=(v,d)∈E etimee ≥ tmin(e))↔

G(hd ∧
∨
e=(v,d)∈E etimee ≥ tmin(e)))

• and hence

G(O(hd ∧
∨
e=(v,d)∈E etimee ≥ tmin(e))↔

(hd ∧
∨
e=(v,d)∈E etimee ≥ tmin(e)))

Then, let ψOR·A·invar(d,Γ) := hd →
∨
e=(v,d)∈E(etimee ≥ tmin(e)).

Similarly, for ψOR·B(d,Γ) we have the following reduction.

• G¬(
∨
e=(v,d)∈E(estatee ∧ ¬hd)S>tmax(e)(estatee ∧ ¬hd))

• iff, since we have π |= G(¬hd → H(¬hd)) and by Boolean equivalence,

G¬(¬hd ∧
∨
e=(v,d)∈E(estateeS

>tmax(e)estatee))

• iff, using timers etimee that are reset to 0 when the respective estatee

changes truth value:

G¬(¬hd ∧
∨
e=(v,d)∈E(estatee ∧ etimee > tmax(e)))

53

3.6. IMPLEMENTATION

• iff, by disabling the timers etimee (setting them to −1) when the

respective estatee evaluates to false and given that tmax(e) ≥ 0:

G¬(¬hd ∧
∨
e=(v,d)∈E etimee > tmax(e))

• iff, by freezing etimee as soon as hd becomes true:

G¬(¬hd ∧
∨
e=(v,d)∈E etimee > tmax(e))

The last two derivations are performed such that we can reuse in the im-

plementation the same timers etimee as for the proof obligations ψOR·A. The

last equivalence holds, because for all k ∈ N the invariants in both prop-

erties hold when π[k] |= hd, and otherwise each pair of associated timers

has the same value and thus both invariants hold for any given k, or they

both don’t hold. Then, let ψOR·B·invar(d,Γ) := ¬(¬hd ∧
∨
e=(v,d)∈E etimee >

tmax(e)).

The derivation of ψAND·A·invar(d,Γ) and ψAND·B·invar(d,Γ) is analogous, ex-

cept that “
∧
e=(v,d)∈E” is used instead of “

∨
e=(v,d)∈E”. Then, let

ψAND·A·invar(d,Γ) := hd →
∧
e=(v,d)∈E(etimee ≥ tmin(e)), and

ψAND·B·invar(d,Γ) := ¬(¬hd ∧
∧
e=(v,d)∈E etimee > tmax(e)).

We remark that the reachability problem for infinite-state transition

systems is in general undecidable, and plan to adress the computational

complexity of decidable subclasses in future work. The fact that the proof

obligations require only a very restricted subset of MTL might be an

advantage in this regard.

Tightness Check and Automated Tightening

For checking tightness and for automated tightening, we assume that we

are working with a TFPG that is complete and that every discrepancy is

reachable on some system trace; else, checking and improving tightness (on

certain edges) doesn’t make sense to begin with.

54

CHAPTER 3. TIMED FAILURE PROPAGATION GRAPHS

For mode labels, we try do drop individual modes and check whether the

resulting TFPG is still complete; for tightening we simply drop as many

modes as possible. For tmin bounds and for tmax bounds set to a value in N,

we perform a search in discrete steps, according to the highest precision of

any time constant in the original TFPG. Indeed, in practice the precision

of interest is always finite. Tightness is thus guaranteed w.r.t. the chosen

precision and the resulting discretized search domain. The idea is then to

explore the resulting lattice of solutions top-down; for the simple tightness

check we just perform one step, for full tightening we proceed until the

parameter under consideration cannot be tightened anymore. With respect

to tightening, the advantage of this top-down approach is that we obtain

an anytime-algorithm for refinement; it can be interrupted any time, and

the result will still be a complete TFPG.

Note that for finite tmax values, the search domain for tightening is finite,

whereas for tmin it is finite only if the corresponding tmax is an element of N,

and is infinite if tmax =∞. Nevertheless, the amount of values that need to

be considered for such tmin parameters is finite, because all discrepancies

are assumed to be reachable in the system model – hence a lower bound

for the propagation delay exists.

For an edge e = (v, d) with tmax(e) = +∞ the tightness and tightening

problems effectively ask whether the TFPG would still be complete by

setting tmax(e) to some finite value, and possibly to identify this value.

This is a difficult problem, because the search domain is indeed infinite.

Proving techniques going beyond the ones we use here would be necessary

for completeness in showing that no value in N is a good assignment for

the tmax under consideration.

For tightness, an easier but incomplete check consists in finding a trace

where the edge e is always active, time diverges, but d never activates –

assuming d is an OR node; this proves that no finite value for tmax exists,

55

3.6. IMPLEMENTATION

because even though time advances, the propagation never occurs. The

implementation uses this approach. For automated tightening instead we

limit the search for the tmax value by an upper bound; if no valid choice

for tmax is found within this range, we set it to ∞.

Depending on the application at hand, this might also be sufficient

for practical purposes. This applies for instance to the use of TFPGs

as a basis to design an FDIR architecture, the central objective of the

applications discussed in Chapter 5. In such a context, accurate upper

propagation bounds are mostly relevant for propagation towards monitors,

and a monitor that is not triggered within a certain amount of time is not

a useful one – indeed the motivation is similar to the one for BoundDel

specifications in diagnosability analysis. Furthermore, for propagations

towards discrepancies representing failures or feared events, the tmin value

is the one that actually drives the design of recovery strategies, representing

the worst case requirement on response time.

Graph Synthesis

For graph synthesis we use on the procedures of [Bozzano et al., 2015d] for

minimal cut-set computation off-the-shelf, as implemented in xSAP. The

algorithm presented in Section 3.5.1 is then used to instantiate the TFPG

with maximally permissive edges.

Graph Simplification

The graph simplification step was implemented based on the SMT solver

MathSAT [Cimatti et al., 2013b]. It uses two copies of φprec(G), one of

which is parameterized on all edges towards AND nodes. More precisely,

we introduce one Boolean variable p(v′,v) for each edge (v′, v) that could

potentially be removed, and modify φprec(G) as follows:

56

CHAPTER 3. TIMED FAILURE PROPAGATION GRAPHS

φprec−param(G) :=
∧
d∈D

(d→
∨

(v,d)∈E(G)

∧
(v′,v)∈E(G)

(p(v′,v) → v′)

Setting such a parameter to true forces the respective node v′ to be

active as in the original formula. Setting it to false makes the implica-

tion automatically true, and whether v′ is active or not doesn’t influence

the satisfaction of the disjunction. The overall formula is thus logically

equivalent to φprec(G
′), where G′ is the result of dropping the edges from

G according to parameters p(v′,v) set to false.

We then iteratively check the satisfiability of the formula:

φsimplify(G) := ¬φprec(G) ∧ φprec−param(G)

A model satisfying this formula represents an activation pattern possible

in the simplified TFPG, but not in the original one; the other way around

is not possible as by removing edges we monotonically increase the legal

activation patterns. With all parameters set to true, i.e. with all edges

enabled, the formula φsimplify(G) will be unsatisfiable, which means that

both graphs accept exactly the same patterns. We then iteratively remove

edges until the parameters set to true represent a minimal unsatisfiable

core, i.e. removing any of the edges still enabled would introduce new

activation patterns over the user-defined nodes.

Checking Graph Correctness

Checking graph correctness for a given TFPG means to compare the prece-

dence constraints of every discrepancy d in G and the associated precedence

constraints of γd in the system model S. Thus we need to compute all min-

imal cut-sets of γd, as done in the synthesis algorithm, and compare them

with the minimal > assignments to d ∧ φbool. For our simple implementa-

tion we rely on a sat solver and a modified all-sat procedure which prunes

57

3.7. EXPERIMENTAL EVALUATION

models from the search space that have been proven not to be minimal.

3.7 Experimental Evaluation

In this section we provide an experimental evaluation of the developed

algorithms for completeness checking, automated tightening of the edges,

and graph synthesis and simplification. In the benchmarks we are primarily

interested of all in the feasibility of the proposed algorithms, considering a

variety of use cases. The results show that the algorithms do indeed scale

up to interesting problem sizes. Also the effect of certain TFPG properties

on runtime is studied. Comparative benchmarks cannot be performed, as

the specific problems are introduced in the present work for the first time.

We first present the use cases for which we perform various benchmarks

and the testing infrastructure. Then a first set of experiments is described

for the analyses that work with a given TFPG, i.e. behavioral validation

and edge tightening. Finally we describe the experiments done for TFPG

synthesis.

3.7.1 Use Cases and Set-Up

We use the following use cases. acex and autogen are hand-crafted mod-

els based on a state space derived from partially random graphs, contain-

ing discrete clocks. battery sensor describes a timed generator-battery

system that powers a hypothetical device. It is also mainly discrete with

real-valued clocks. cassini are variants of the spacecraft propulsion system

described in [Williams and Nayak, 1996], enriched with timed aspects. It

is composed of two engines fed by redundant propellant/gas circuit lines,

which contain several valves and pyro-valves. guidance is a discrete model

of the Space Shuttle engines contingency guidance requirements. forg-

erobot are variations of the running example. powerdist describes the

58

CHAPTER 3. TIMED FAILURE PROPAGATION GRAPHS

fault protection logic of a power distribution system consisting of circuit

breakers, switches, and power lines. Additionally we ran our implementa-

tion on two discrete untimed industrial models, wbs [Bozzano et al., 2015a]

describing an aircraft wheel-braking system, and x34 [Bajwa and Sweet,

2003] describing the propulsion system of an experimental spacecraft.

model max. bool max. real max. FM max. D max. E

acex 35 0 2 25 26

autogen 99 0 8 20 29

battery 43 5 4 9 14

cassini 301 10 16 16 38

forge 25 7 6 13 23

guidance 98 0 6 9 19

pdist 84 0 7 7 21

wbs 1179 0 12 11 19

x34 553 0 9 18 32

Table 3.1: Use-case statistics with maximum number of Boolean and real variables of

respective system models, maximum numbers of user-defined failure modes,

discrepancies, and edges.

For each of the 9 use cases we have one system model encoded in SMV.

For acex, cassini, and forgerobot we also created parametric vari-

ations of the models, resulting in a total of 14 different system models

used in the benchmarks. Figure 3.1 gives, for each use case, the number of

variables in the model, the maximum number of user-defined failure modes

and discrepancies, as well as the maximum number of edges for the TFPGs

used in behavioral validation and edge tightening.

All tests described in the following were run on a dedicated 64bit Linux

computer with a 12 core CPU at 2.67 GHz and 100GB of RAM. 4 cores

were reserved for each test run to limit time skew due to parallel executions

of the tests. Each test was executed on a single core with a time limit of

3600 seconds and a memory limit of 4GB.

59

3.7. EXPERIMENTAL EVALUATION

All benchmarks used in this chapter are available at http://es.fbk.

eu/people/bittner/phd_tfpg_expeval.tar.bz2.

3.7.2 Behavioral Validation and Automated Tightening

In the first set of benchmarks we want to study the performance of tech-

niques working with a given TFPG, that is, one where nodes, edges, and

edge labels are given. In total we created 72 tight TFPGs by taking a

default TFPG for each system model and creating new instances by incre-

mentally removing discrepancies from it. For all of these instances except

for the untimed wbs and x34, we created two “relaxed” versions of the

TFPGs by decreasing or increasing individual edge parameters, resulting

in a overall number of 212 use cases. The instances thus reflect various

degrees in graph complexity and various “degrees” of edge tightness.

For each instance we ran the completeness check and the tightening

procedure. We didn’t run the tightness checks, as their runtime strongly

depends on the ordering in which parameters are checked, and how many

iterations over tight assignments have to be performed before finding the

first non-tight assignment. However, bounds for the runtime can be derived

from the completeness check on the lower end, and the tightening procedure

on the upper end. Tightness checking is similar to tightening: it also starts

with a completeness check, but then stops at the first non-tight assignment.

Note that for the 72 instances that are already tight, the tightness check

has the same runtime behavior as the automated tightening procedure.

All completeness checks terminated within the timeout (all except four

within 800s) and IC3 was able to prove completeness in all cases. Further-

more, the check for wbs terminated after 67s, and the one for x34 after

21s. Also most tightening runs terminated within the timeout bound, ex-

cept 10 that went out-of-time and 5 that went out-of-memory. Table 3.2

summarizes the results, which show the feasibility of the approach, also

60

http://es.fbk.eu/people/bittner/phd_tfpg_expeval.tar.bz2
http://es.fbk.eu/people/bittner/phd_tfpg_expeval.tar.bz2

CHAPTER 3. TIMED FAILURE PROPAGATION GRAPHS

model instances
completeness tightening

µ σ µ σ o.o.t. o.o.m.

acex-10 15 171 71 731 512 0 0

acex-12 33 334 106 838 321 1 3

autogen 66 156 147 925 761 0 0

battery 12 23 29 71 25 0 0

cassini-2 15 28 19 75 69 0 0

cassini-4 39 322 248 1179 973 3 0

forgerobot1 3 103 56 160 30 0 0

forgerobot2 3 2 0 10 2 0 0

forgerobot3 3 24 3 224 66 0 0

forgerobot4 3 145 16 n.a. n.a. 1 2

guidance 12 14 8 94 72 0 0

pdist 6 622 197 2776 0 5 0

wbs 1 67 0 n.a. n.a. 0 0

x34 1 21 0 n.a. n.a. 0 0

Table 3.2: Completeness and tightening runtimes in seconds per system model (mean

and standard deviation for all instances).

for automated tightening, even though as expected it is more difficult than

completeness checking.

These results are encouraging, because the use cases are representative

for unit to subsystem-level complexity of safety analyses, in terms of the

system model and in terms of the amount of basic failure modes and effects.

This clearly shows the feasibility in a real project setting, a finding which

is also confirmed by the case studies described in Chapter 5.

When comparing the runtimes at different levels of relaxation (tight

vs. relaxed tmin bounds vs. relaxed tmin and relaxed tmax bounds), there

are no significant differences for the completeness check. However, for

the tightening procedure the “tightness degree” of the input TFPG does

matter, as can be seen in Figure 3.10. This shows by giving providing

a first reasonably accurate approximation of the parameters, an engineer

61

3.7. EXPERIMENTAL EVALUATION

num. edges completeness tightening

3 2 4

8 14 96

18 134 681

23 246 1030

27 265 1473

31 172 1822

35 279 2355

38 261 3086

(a) incremental topology

num. edges completeness tightening

30 621 2836

31 914 n.a.

32 401 n.a.

34 322 3513

36 457 2777

38 261 3086

(b) refined topology

Table 3.3: Effect on completeness/tightening runtimes (in seconds) of increasing TFPG

complexity.

could speed up the fine-tuning by the automated tightening procedure.

Finally, in instances that were generated by merely adding new nodes

and edges to the existing graph (e.g. given some edge A → B, adding

a new node C and an edge B → C), we can notice for completeness

checking and for tightening a corresponding increase in runtime. However,

when we increase the TFPGs complexity by refining existing edges (e.g.

replacing an edge A→ C with a new node and corresponding pairs of edges

A→ B → C) instead of simply extending the graph, a reliable prediction

of the corresponding effect on runtime is not possible. Table 3.3 shows

these findings for the cassini-4 model and the corresponding TFPGs with

relaxed edge parameters. In a project it can be useful to have an estimate

on the runtime for a run of completeness verification and/or automated

tightening, and these results show in what cases this could be done and in

what cases most likely not.

62

CHAPTER 3. TIMED FAILURE PROPAGATION GRAPHS

0 10 20 30 40 50 60 70

Number of solved instances

T
im

e
(s

ec
)

1

20

80

200

500

1000

2000

3600

Relaxed tmin & tmax
Relaxed tmin
Tight

Figure 3.10: Tightening difficulty (time in seconds) for each class of relaxed TFPGs.

3.7.3 Graph Synthesis

In the second set of benchmarks we study the performance of the synthesis

and simplification algorithms. As the input for this problem is only a

system model, a set of nodes, and an association map, we created another

set of test instances. Specifically, we took as inputs the nodes of all tight

TFPGs used in Section 3.7.2 and created further instances for the use cases

wbs and x34, resulting in a total of 82 instances.

For each instance we ran the synthesis and simplification procedures. All

benchmarks terminated well within the timeout. Also on the two industrial

models we obtained good results: x34 turned out to have a maximum

run-time of 9s, and wbs of 355s. These results show the feasibility of

the approach, since, on models with a complexity comparable to unit-to-

63

3.7. EXPERIMENTAL EVALUATION

(a) all instances

(b) Cassini4 instances

Figure 3.11: Number of nodes vs. synthesis time (in seconds).

64

CHAPTER 3. TIMED FAILURE PROPAGATION GRAPHS

subsystem-level problems, it terminates in reasonable time.

The time needed for the simplification step is almost instantaneous in all

cases, always below 0.3 seconds. The dominant component of the overall

runtime is thus the computation of minimal cut-sets. However, the effect of

simplification is considerable: it removed on average 88% of the generated

AND nodes and 67% of the edges.

In most cases we obtained exactly the TFPG we expected. This shows

the adequacy the synthesis approach, in that TFPGs produced according to

Problem 1 indeed correspond to what, intuitively, we would like to obtain.

In some cases the synthesis procedure was able to derive further temporal

constraints among the nodes given in input. In the Cassini use case, for

instance, we discovered a strict precedence between two events that we

didn’t expect, but which we could confirm by inspection of the model.

From Figure 3.11a it can be seen that the number of given nodes (failure

mode nodes plus discrepancies) clearly affects synthesis runtime, for some

cases more, and for some less. However, the absolute number of input nodes

is not the only factor for runtime. Figure 3.11b is a filter over Figure 3.11a,

showing all synthesis result for a single system model (Cassini4). It can

be seen that in several cases for the same number of input nodes very

different runtimes are encountered, as for some sets of nodes the minimal

cut-set computation is more difficult than for others.

Finally, we ran the graph correctness check on the synthesized and sim-

plified TFPGs. The additional step of computing the precedence con-

straints of nodes in a given TFPG and comparing them to the precedence

constraints in the system model is negligible in comparison to computing

the precedence constraints in the system model; it took at most 2.3s, and

most cases where executed in less than 1s.

65

3.8. RELATED WORK

3.8 Related Work

Traditionally, TFPGs received considerable interest as a basis for diagnosis

implementations and system health management [Misra et al., 1992, Of-

sthun and Abdelwahed, 2007, Abdelwahed et al., 2009]. In this thesis we

are interested in techniques to assess how well TFPGs represent the faulty

behaviors of a reference system model and in methods to compute TFPGs

automatically from such models. We present the main results in this area.

[Strasser and Sheppard, 2011] develop a method to address the difficulty

in building TFPGs with as few errors as possible, where errors are wrong

relationships between faults, their effects, and the alarms. The technique

for adding individual missing links or removing wrong links uses historical

maintenance data coming from the actual implementation and computes

probabilities for links between failure and monitoring events (graph nodes).

The quality of the improvement depends on the quality of the data, and

complete removal of errors cannot in general be guaranteed. Time bounds

and mode constraints are also not considered by this technique. Finally,

this method relies on a number of maintenance interventions on an imple-

mentation that record the alarms and identify through inspection the true

cause of the alarms, and is thus not applicable at design time.

[Dubey et al., 2013] describe an approach to automatically generate TF-

PGs within a framework for component-based real-time software systems

(ARINC-653 Component Model). Several types of failures and violations

are defined for each component type, such as user-code failures and dead-

line violations, and the knowledge of how the whole assembly is structured

is used to derive a corresponding TFPG. The synthesis approach relies on

knowledge of local component behavior specified by data and control flow

graphs to derive port and component-level TFPGs, and uses the structural

knowledge to combine these local results in a TFPG covering the entire as-

66

CHAPTER 3. TIMED FAILURE PROPAGATION GRAPHS

sembly. The structure of the TFPG thus reflects the functional component

topology of the overall system. Relying on a specific component model,

the method is applicable only to software systems implementing it.

A similar framework for TFPG synthesis is presented in [Priesterjahn

et al., 2013]. It is also based on a component-based modeling framework

(MechatronicUML), but here the components’ behaviors are specified by

timed automata as opposed to static information encoded in data and

control flow graphs. The algorithm explores the behaviors of the timed au-

tomaton resulting from synchronization of all component automata, and

aims to build TFPGs that relate failures in a component’s input to dis-

crepancies in its outputs. These relationships are discovered by comparing

each path of the zone graph representing the nominal behavior to each path

of all zone graphs of the behavior under predefined failure contexts. Also

the time bounds on propagation delay are computed during the traversal.

By encoding component behavior as a timed automaton it is possible to

consider more complex behavioral patterns that emerge by comunication

among components and sequences of state changes inside the components.

However, this also makes TFPG synthesis more difficult compared to the

structural approach in [Dubey et al., 2013]. No experimental evaluation of

the approach is given and it is thus difficult to assess its scalability.

The approach to TFPG synthesis in [Priesterjahn et al., 2013] differs

with our contribution in the following ways. First, we support generic

finite and infinite-state transition systems as opposed to timed automata;

this allows us for instance to deal with systems where time is modeled in a

discrete fashion, or which have infinite-domain variables other than clocks.

On the other hand we don’t have continuous time in our framework, which

is something we want to address in future work. We provide a number of

formal TFPG properties that our validation and synthesis approaches refer

to; in [Priesterjahn et al., 2013] instead no formal characterization of the

67

3.8. RELATED WORK

synthesis result is given. Our synthesis framework is more generic in that

no particular modeling approach and specification language is assumed.

Failure modes and discrepancies are not bound to input and output ports of

components, but can be general Boolean functions over the state variables

of the system. Finally, by mapping the problem to the model-checking

framework, state-of-the-art verification tools can be directly applied.

TFPGs are not the only formalism to study failure propagation. Be-

sides FMEA and FTA, also Bayesian networks have been studied for this

purpose (e.g. [Bobbio et al., 2001]), also for health management solutions

that integrate TFPGs and Bayesian networks [Oonk and Maldonado, 2016].

Their focus however is on probabilistic modeling of failures and their ef-

fects, whereas TFPGs describe a system’s temporal fault propagation in a

multi-mode context.

Temporal-causal graphs are directed graphs that describe how various

system parameters affect each other over time. They can be used to iden-

tify the propagation effects of faults based on the relationships between

parameters, as done for instance in [Narasimhan and Biswas, 2007]. TF-

PGs instead model sequences of failure events and alarms with information

on time delays between related pairs of events, and target thus a higher

abstraction level.

A causality framework that points, like TFPGs, at a higher abstraction

level is causality checking [Leitner-Fischer and Leue, 2013]. The definitions

of causality given in [Halpern and Pearl, 2005] are adapted to finite-state

transition systems, which enables the causal analysis of system evolutions

over time. The goal of this analysis is to identify the minimal sets of events

that lead to a specific top-level effect, including constraints on their order-

ing and on the absence of events that inhibit the effect. This framework

can also be used to model and discover failure propagations as sequences of

events. The event orders in these sequences however are specific for a cho-

68

CHAPTER 3. TIMED FAILURE PROPAGATION GRAPHS

sen effect, i.e. for the traces leading to the top-level effect, and might not

hold in general. TFPGs instead aim at representing an ordering among

failure-related events that is valid for all possible executions, and addi-

tionally integrate this information with time delays and mode constraints

between related events.

3.9 Summary

In this chapter we made several contributions that facilitate working with

TFPGs as abstractions of a timed dynamic system model. TFPGs abstract

the failure propagations in such a model in terms of discrete ordering of

failure events and their Boolean combination, time bounds on the delays

between these events, and mode constraints on the propagations. These

features make them very useful as reference models for designing fault

protection.

The developed techniques address two problems that are important for

practical use of TFPGs. First, the issue of validating a given TFPG against

a model of the system dynamics; validating the assumptions they represent

is important if fault protection architectures are to be designed based on

them. Second, the issue of generating a TFPG automatically from the

system model; saving on modeling cost (and time) is crucial for improving

their acceptance in real projects.

To adress these problems we developed a trace-based semantics for TF-

PGs to map system traces to corresponding TFPG traces. A definition

of when a TFPG trace satisfies the TFPG constraint is given. Based on

these results we introduced a technique based on model-checking to check

whether all system traces comply with the constraints encoded by a given

TFPG, and whether its edge parameters can be made more accurate. Fi-

nally we described a synthesis algorithm that first synthesizes the underly-

69

3.9. SUMMARY

ing graph of the TFPG, then removes redundant edges to make the TFPG

more readable for engineers, and finally improves the parameters on edges.

The approach has been fully implemented using symbolic model-checking

techniques for infinite-state transition systems. The advantage of this re-

duction to model-checking is that we can use – off-the-shelf – state-of-

the-art tools as a reasoning back-end instead of ad-hoc implementations,

and thus automatically benefit from advancements in the field. A thor-

ough evaluation based on a number of syntetic and industrial benchmarks

demonstrates the practicality of the approach. The results are encourag-

ing, because in aerospace projects, for instance, the size of the TFPGs

used in the tests corresponds to relevant problems at the unit to subsys-

tem level. Positive feedback is reported also from the application in an

industrial setting by the industrial partners in the FAME project [Euro-

pean Space Agency, 2011]. Further case studies on an application in an

industrial context are described in Chapter 5.

There are several interesting directions for future work. First of all we

would like to extend the framework and algorithms to dense-time models

such as hybrid automata. This would allow to explicitly reason on the

continuous evolution of real-valued variables and thus higher expressivity

and a more natural modeling style for physical phenomena. The whole

chain from definitions to algorithms would need to be lifted to the hybrid

case, but we don’t expect major problems for this line of work.

To improve scalability we will investigate TFPG analysis in a compo-

sitional framework based on assume-guarantee reasoning. Related results

have recently been developed for Fault Tree Analysis in [Bozzano et al.,

2014b], which studies ways to relate contract failures among various com-

pontents in an architecture. It would however remain to be seen whether

limiting the propagation analysis to contract violations is useful in practice,

or if at least discrepancies need to refer to more concrete implementation

70

CHAPTER 3. TIMED FAILURE PROPAGATION GRAPHS

details.

We would also like to investigate exploration of the solution space for

TFPG synthesis. For instance, depending on the order in which parameters

are tightened, different solutions might be obtained. The reason for this

is that our interpretation of TFPG satisfaction is a local one focusing on

individual nodes, and therefore situations can arise where different ways

to obtain local consistency exist by differently balancing all parameter

assignments in the graph. A challenge will be to identify metrics that can

rank different solutions, and also what exactly the relevant dimensions to

be investigated are. One interesting property to consider is diagnosability,

and dimensions of interest could be simplification vs. tightening of edges,

or also per-mode TFPG synthesis with subsequent merging of individual

TFPGs.

Finally we note that our approach to validate and generate TFPGs is

purely based on temporal reasoning, in the sense that we observe the tem-

poral ordering of failure events without considering architectural structure

of the underlying system (if available). This could result in propagation

paths that reflect pure temporal correlations and are thus counter-intuitive

to engineers. Investigating TFPG synthesis approaches that take into con-

sideration also structural information might thus produce clearer TFPGs

in such cases. In general, it could also be a way to improve synthesis per-

formance through a bootstrapping step that creates a first version of the

TFPG using only structural information. Care however needs to be taken

not to discard also propagations between nodes that are not related from a

functional point-of-view in terms of system functions, but which effectively

have some relationship on a lower level.

71

3.9. SUMMARY

72

Chapter 4

Diagnosability Analysis

A key element in an FDIR architecture are the monitors or alarms1 used

for the detection step. They signal the presence of faults and are used

to trigger isolation and recovery procedures. What makes the activity of

designing monitors challenging is the partial observability of the system’s

state. The faulty conditions and their effects cannot be observed directly,

but have to be inferred from the available sensors and measurements. This

process is often referred to as diagnosis [Reiter, 1987], and the component

performing diagnosis and raising alarms or triggering monitors is usually

called a diagnoser.

The task of verifying the feasibility of diagnosis based on the available

observations is called diagnosability analysis, and is the focus of this chap-

ter. After developing, in the previous chapter, a type of failure analysis

that validates and automatically generates temporal models of failure event

sequences, in this chapter we investigate diagnosability analysis as a failure

analysis that studies whether a specific condition that needs to be diag-

nosed does indeed have a distinctive effect on the available observations.

We build on the framework of [Bozzano et al., 2014a] for the specification

and generation of on-line model-based diagnosers that sample the system

under diagnosis at constant intervals. The framework was developed within
1The terms “monitor” and “alarm” are used interchangeably.

73

the AUTOGEF and FAME projects of the European Space Agency (see

[AUTOGEF, 2016] and [FAME, 2016]). It is very expressive, including

temporally extended diagnosis conditions, various forms of delay, and is

defined, based on temporal epistemic logic, on single points of individual

traces. Delay constraints on the diagnosis can be used to require alarms

being triggered before more severe conditions occur.

Within this framework, we consider two fundamental problems in di-

agnosability. The first problem, verification of diagnosability, amounts to

checking whether the available sensors are sufficient to infer the desired

information on the hidden behavior of the system, for instance the pres-

ence of faults. Verification of diagnosability (also known as “diagnosability

verification”, or “diagnosability checking”) may confirm that the choice of

sensors is adequate or may pinpoint deficiencies of the choice. The second

problem, synthesis for diagnosability, aims at identifying subsets of the

available sensors that are sufficient to ensure diagnosability, while possibly

minimizing some cost function. Synthesis for diagnosability (also known as

“synthesis of observability requirements”, “sensor placement”, and “sensor

selection for diagnosability”) may support the design process by automat-

ically devising the most suitable choice of sensors, among many possible

choices, thus reducing overall costs.

We remark the difference between diagnosability and the problem of di-

agnoser effectiveness as described in [Bozzano et al., 2015c]. Diagnosability

is a property of a partially observable plant, i.e. whether the information

conveyed by the available sensors is sufficient (for an ideal diagnoser) to

carry out a given diagnosis task. The analysis of diagnosability is a funda-

mental phase during the design of the plant: if the plant is not diagnosable,

then it is impossible to build a diagnoser for it. Diagnoser effectiveness,

instead, is the problem of verifying whether a given diagnoser behaves

as expected. This problem can be directly seen as a problem of model-

74

CHAPTER 4. DIAGNOSABILITY ANALYSIS

checking the properties of the composition of the plant and the diagnoser.

In some sense, diagnosability is a more difficult problem, because it says

something on all possible diagnosers. Diagnoser effectiveness is out of the

scope of this chapter.

We develop the following contributions.

1. First we extend the framework with the notion of context. “Universal”

diagnosability in all possible operational contexts and along all pos-

sible system evolutions is very difficult to achieve, and with contexts

we provide a means to specify what behaviors must be diagnosable.

We encode the conditions under which we can expect the FDIR to

operate and be able to infer the required information. For example,

it may be unreasonable to expect that a faulty condition is detected

if an arbitrary large number of concurrent faults can happen; another

common assumption is to limit the number of faults occurring at the

same time (e.g. single-fault assumption).

2. The second key contribution is a practical algorithm for diagnosability

verification and an analysis of its theoretical properties. The classical

way to falsify diagnosability is to identify specific pairs of traces called

critical pairs [Jiang et al., 2001, Cimatti et al., 2003]. These consist of

two executions that are observationally indistinguishable but only one

of them contains a condition that should be detected. The existence of

a critical pair results in the impossibility for a diagnoser to ascertain

whether the condition actually occurred.

With the increased expressiveness of the framework however the task

of proving diagnosability becomes more complex. We show how the

absence of critical pairs is both a necessary and sufficient condition

for diagnosability in many important cases, and describe what infor-

mation we obtain from the check in cases where it is only a necessary

75

condition.

We show how the existence of a critical pair for a given plant can be

reduced to checking whether a suitable temporal formula, expressed

in LTL, holds over the corresponding twin-plant. The twin-plant

consists of two replicas of the original system model, so as to encode

the space of indistinguishable traces and to produce critical pairs. This

reduction approach has distinctive advantages over using epistemic

model-checking as in [Bozzano et al., 2014a]; for instance it allows us

to leverage recent developments in temporal logic model-checking for

finite- and infinite-state models. Further advantages are discussed in

more detail in Section 4.6.

3. The third contribution is an effective synthesis algorithm for diagnos-

ability, able to produce all sensor configurations that ensure diagnos-

ability, and are possibly minimal (with respect to set inclusion) or

optimal (with respect to a given cost function). We achieve this by

building a parameterized twin-plant, that can be seen as a symbolic

representation of the mapping between the space of sensor configu-

rations and the corresponding plants. The idea is to use a single

parameterized model, where each parameter models the availability

of a specific sensor. The algorithm exploits the symbolic representa-

tion of the space of sensor configurations to prune the search based

on monotonicity considerations. Intuitively, if a sensor configuration

is not sufficient for diagnosability, none of its subsets can be.

Our synthesis approach differs from the state-of-the-art approaches

like [Grastien, 2009] that use an enumerative strategy guided by the

cost function. In early design phases, cost functions might not be avail-

able, thus the ability to reason on the whole sensor configuration space

and perform “what-if” analysis provides an additional value. Fur-

76

CHAPTER 4. DIAGNOSABILITY ANALYSIS

thermore, our benchmarks show that even when having information

on the costs, the enumerative approach is not guaranteed to perform

better. Finally, by directly leveraging a parameter-synthesis engine,

we can benefit from the continuous improvements from the model-

checking community without the need of developing domain-specific

algorithms.

All techniques for diagnosability were implemented within the xSAP

platform, with nuXmv as a back-end. We carried out an evaluation on

a comprehensive set of realistic benchmarks from various application do-

mains, in part shared with the experiments in Section 3.7. The results

demonstrate the effectiveness of the approach on benchmarks of industrial

size. Partial results were published in [Bittner et al., 2012] (parameterized

twin-plant) and [Bittner et al., 2014a] (cost-driven parameter synthesis ap-

plied to diagnosability), and a journal article summarizing the chapter is

being prepared for submission.

The chapter is structured as follows. In Section 4.1 we define the prob-

lem of diagnosability verification. In Section 4.2 we present the twin-plant

construction for diagnosability checking. In Section 4.3 we describe the

problem of synthesis for diagnosability. In Section 4.4 we describe the

symbolic parameterized twin-plant representation, and discuss the algo-

rithms for diagnosability synthesis. In Section 4.5 we experimentally eval-

uate the proposed methods on a set of benchmarks from various domains.

In Section 4.6 we discuss the related work. In Section 4.7 we draw some

conclusions and outline directions for future activities.

4.1 Verification: Problem Definition

In this section we define the problem of verification of diagnosability. We

first define the framework for diagnoser specification, and then discuss the

77

4.1. VERIFICATION: PROBLEM DEFINITION

T mem

obs? Diagnoser
Al0· · ·
Aln

X ′

X

Xo

Figure 4.1: A plant and its diagnoser.

notion of diagnosability.

4.1.1 Specifying a Diagnoser

Diagnosability is best understood in the context of the design of a diag-

noser. Consider Figure 4.1. The lower part, with solid lines, represent the

plant: T is the transition relation that maps the (assignment to the) cur-

rent state variables X to the (assignment to the) next state variables X ′;

mem is the memory element, transforming the next state to the current

one in response to the clock tick. The obs? block defines the observable

variables. The upper part of Figure 4.1, with dashed lines, represents the

FDI component, also referred to as diagnoser. The diagnoser is a module

that runs in parallel to the plant, driven by the observable variables Xo,

and raises some alarms Al0, . . . , Aln in correspondence to events of inter-

est, called diagnosis conditions. The behaviour of the diagnoser is typically

specified by a set of requirements, describing the relationship between the

alarms to be raised and the occurrence of the corresponding diagnosis con-

ditions. It is in principle possible that the requirements are impossible

to satisfy, for example because the available sensors do not convey suffi-

cient information to appropriately raise the alarms in a correct and timely

fashion. Verification of diagnosability can be intuitively seen as a form

of requirements validation, i.e. checking whether the requirements of the

78

CHAPTER 4. DIAGNOSABILITY ANALYSIS

diagnoser can indeed be realized.

Assumptions

The following assumptions are used in the rest of the chapter. Given is

always a system under diagnosis modeled as a transition system, whose

diagnosability we want to analyze. A context specification can be used to

limit the analysis to behaviors of interest. As we build upon the results

of [Bozzano et al., 2014a], we adopt the LTL view of time, i.e. every transi-

tion of the system corresponds to one unit of time or one tick passing. The

diagnoser is a deterministic transition system having access to the observ-

able signals of the plant. The diagnoser and the plant are synchronously

connected, i.e. for each transition of the plant there is a corresponding tran-

sition of the diagnoser. The diagnoser does not influence the behaviour of

the system (we consider active diagnosis [Sampath et al., 1998] beyond the

scope of this chapter). The diagnoser has perfect recall, i.e. it is able to

keep track of all the history of the plant. This is the general assumption

in the literature on diagnosability, and it is opposed to bounded recall (see

e.g. [Gario, 2016]).

Diagnosis Conditions

The central element for the specification of an FDI requirement is the diag-

nosis condition to be monitored, denoted with β. In order for the diagnosis

condition to be evaluated by a diagnoser, we require that β encodes a prop-

erty on the past, i.e., given a prefix of a trace πk, we can say whether β is

satisfied in π[k] or not. Formally, a diagnosis condition for S is any formula

β built according to the following rule: β ::= p | β1 ∧ β2 | ¬β | Yβ | β1Sβ2

where p is an atomic proposition over the state variables X.

In this formalism, we can express complex diagnosis conditions (see

Figure 4.2). First, it is possible to model fault detection (whether any fault

79

4.1. VERIFICATION: PROBLEM DEFINITION

β1 =̇ (f1 ∨ . . . ∨ fn)

β2 =̇ (f3)

β3 =̇ (f2 ∧ O≤3f1)

β4 =̇ H≤10(Heat ∧ |t− tprev| ≤ ε)

Figure 4.2: Examples of Diagnosis Conditions

is present), with β =̇ (f1 ∨ . . . ∨ fn), and fault identification (which of the

possible faults is present), with β =̇ (fi) for a specific i. We might also want

to restrict the detection to a particular sub-system, or identification among

two similar faults might not be of interest. Second, it is possible to express

sequences of relevant situations, e.g. f2 preceded of up to three ticks by f1,

by stating β =̇ (f2 ∧ O≤3f1). Finally, it is possible to define as diagnosis

conditions for an infinite-state system some relation between the values of

a real-valued variable over time. For example, with β =̇ H≤10(Heat ∧ |t−
tprev| ≤ ε) we define a diagnosis condition where t does not change more

than a small amount ε for 10 cycles even if the heater is on, with tprev being

a variable recording the value of t in the previous state.

Alarm Conditions

Besides the diagnosis condition, representing the property we want to di-

agnose, we are interested in the temporal delay between the occurrence of

this condition and the raising of an associated alarm. Indeed it is realis-

tic to assume that faults can go undetected for a certain amount of time,

and clearly stating how long this interval can be at most is crucial for

guaranteeing real-time properties of the overall fault protection solution.

The specific bound on diagnosis delay can for instance be derived from a

preceding TFPG analysis (see Chapter 3); when a propagation between

two nodes needs to be avoided, a monitor should trigger within at most

tmin time units to guarantee detection before the unwanted propagation

80

CHAPTER 4. DIAGNOSABILITY ANALYSIS

(recovery time not included).

In this chapter, we follow [Bozzano et al., 2015c] and consider three

kinds of alarm conditions, which we denote with ExactDel(Al, β, d),

BoundDel(Al, β, d), and FiniteDel(Al, β):

1. ExactDel(Al, β, d) specifies that whenever β is true, Al must be

triggered exactly d steps later and Al can be triggered only if d steps

earlier β was true. Formally, for any trace π of the system, if β is true

along π at the time point i, then Al is true in π[i+ d] (completeness);

if Al is true in π[i], then β must be true in π[i− d] (correctness).

2. BoundDel(Al, β, d) specifies that whenever β is true, Al must be

triggered within the next d steps and Al can be triggered only if β

was true within the previous d steps. Formally, for any trace π of the

system, if β is true along π at the time point i then Al is true in π[j],

for some i ≤ j ≤ i + d (completeness); if Al is true in π[i], then β

must be true in π[j′] for some i− d ≤ j′ ≤ i (correctness).

3. FiniteDel(Al, β) specifies that whenever β is true, Al must be trig-

gered in a later step and Al can be triggered only if β was true in

some previous step. Formally, for any trace π of the system, if β is

true along π at the time point i then Al is true in π[j] for some j ≥ i

(completeness); if Al is true in π[i], then β must be true in π[j′] for

some 0 ≤ j′ ≤ i (correctness).

Figure 4.3 shows an example of admissible responses for the various

alarms to the occurrences of the same diagnosis condition β. In the case of

BoundDel(Al, β, 4) the alarm can be triggered at any point as long as it is

within the next 4 time-steps. This is quite different from having 5 different

81

4.1. VERIFICATION: PROBLEM DEFINITION

β

ExactDel(Al, β, 2)

BoundDel(Al, β, 4)

FiniteDel(Al, β)

Figure 4.3: Examples of alarm responses to the diagnosis condition β.

LTL Formulation

Alarm Condition Correctness Completeness

ExactDel(Al, β, d) G(Al→ Ydβ) G(β → XdAl)

BoundDel(Al, β, d) G(Al→ O≤dβ) G(β → F≤dAl)

FiniteDel(Al, β) G(Al→ Oβ) G(β → FAl)

Figure 4.4: ASL Alarm conditions as LTL formulae

alarms ExactDel(Al0, β, 0), . . . , ExactDel(Al4, β, 4) and considering

their disjunction (Al0 ∨ · · · ∨ Al4), since the latter requires that we are

always able to exactly pin-point the moment in which the diagnosis condi-

tion occurred, while the former provides a degree of flexibility. Similarly,

FiniteDel(Al, β) is of particular theoretical interest since it captures the

idea that, in some systems, the delay might be finite but unbounded.

The meaning of the alarm conditions is further clarified in Figure 4.4,

where we associate to each alarm condition type an LTL formalization

encoding the concepts of correctness and completeness. The first conjunct

expresses correctness, and intuitively says that whenever the diagnoser

raises an alarm, then the fault must have occurred. Completeness, the

second conjunct, intuitively encodes that whenever the fault occurs, the

alarm will be raised.

We denote alarm conditions with Ξ. An alarm condition constrains the

behavior of the diagnoser to respond to events that occur in the plant.

These are typically non-observable events, and thus the diagnoser may

need to infer their occurrence by only relying on the observable behavior

82

CHAPTER 4. DIAGNOSABILITY ANALYSIS

of the plant. Thus, when we say that a diagnoser D for S satisfies an alarm

condition Ξ, we mean that the composition between D and S satisfies the

LTL formula corresponding to Ξ in Figure 4.4.

A context constrains the operational setting of the environment in which

we place the plant. Consider the situation in which multiple concurrent

faults are extremely unlikely to happen. From the engineering point of

view, it might make sense to study the diagnosability of the system under

a single-fault assumption. For this reason we introduce the concept of

context (denoted by Ψ) as a subset of the possible traces of the plant (i.e.

Ψ ⊆ Π(S)). Note that it makes little sense to propagate this operational

choice within the system model and thus to blur the line between system

modeling and operational requirements. In many cases indeed we are not

dealing with a restriction of the model under analysis, but an assumption

on an external influence such as a controller or the environment, which are

by definition not part of the system being modeled.

We remark that the framework is very rich: it encompasses infinite-state

systems, temporally extended monitoring conditions over states and events,

various forms of delay, and an operational context. In fact, it captures the

main forms of diagnosability in the literature. The expressiveness of the

framework is discussed in greater detail, from a technical standpoint, in

Section 4.6.

4.1.2 From Diagnosability to Critical Pairs

Let an alarm condition, also referred to as a diagnoser specification, be

given. The problem of verification of diagnosability amounts to checking

whether it is possible for any diagnoser to satisfy the diagnoser specifica-

tion. Following [Bozzano et al., 2015c], which adopts an epistemic point-

of-view on diagnosis and diagnosability, we provide a definition of diagnos-

ability that is more fine-grained compared to related work, that is, as a

83

4.1. VERIFICATION: PROBLEM DEFINITION

property of specific points of system traces. We also show how this can be

generalized to whole traces and to sets of traces. Furthermore, compared

to [Bozzano et al., 2015c], we use a richer notion of diagnosability rela-

tive to an operational context Ψ. In the following we assume that alarm

conditions are analyzed individually, and replace the alarm signal Al with

◦.

Definition 14. Let S be a plant, Ξ := ExactDel(◦, β, d) an alarm con-

dition, Ψ ⊆ Π(S) a context, a trace π1 ∈ Ψ and i a trace index. We

say that Ξ is trace diagnosable in 〈π1, i〉 w.r.t. Ψ iff π1, i |= β ⇒ (∀π2 ∈
Ψ · obs(πi+d1) = obs(πi+d2)⇒ π2, i |= β).

Definition 15. Let S be a plant, Ξ := BoundDel(◦, β, d) an alarm con-

dition, Ψ ⊆ Π(S) a context, a trace π1 ∈ Ψ and a trace index i. We say

that Ξ is trace diagnosable in 〈π1, i〉 w.r.t. Ψ iff π1, i |= β ⇒ (∃j ∈ N i ≤
j ≤ i+d · ∀π2 ∈ Ψ · obs(πj1) = obs(πj2)⇒ ∃k ∈ N j−d ≤ k ≤ j ·π2, k |= β).

Definition 16. Let S be a plant, Ξ := FiniteDel(◦, β) an alarm condi-

tion, Ψ ⊆ Π(S) a context, a trace π1 ∈ Ψ and i a trace index. We say

that Ξ is trace diagnosable in 〈π1, i〉 w.r.t. Ψ iff π1, i |= β ⇒ (∃j ∈ N i ≤
j · ∀π2 ∈ Ψ · obs(πj1) = obs(πj2)⇒ ∃k ∈ N k ≤ j · π2, k |= β).

With these definitions we can say something about a specific point of a

specific trace. We now extend them to sets of traces, always relative to a

context Ψ.

• An alarm condition is trace diagnosable on a trace π ∈ Ψ w.r.t. Ψ iff

it is trace diagnosable w.r.t. Ψ in 〈π, i〉 for all i ∈ N.

• An alarm condition is system diagnosable w.r.t. Ψ iff for all π ∈ Ψ it

is trace diagnosable on π w.r.t. Ψ.

84

CHAPTER 4. DIAGNOSABILITY ANALYSIS

• An alarm condition is system diagnosable (i.e. diagnosable in the clas-

sical sense of [Sampath et al., 1996]) iff it is system diagnosable in

Ψ = Π(S) (i.e. on all traces of the plant).

We now relate the diagnosability property to the existence of a pair of

traces of the plant, referred to as critical pair. These pairs of traces are

the standard way to falsify diagnosability since [Jiang et al., 2001, Cimatti

et al., 2003], as looking for them is an easier way to prove or disprove

diagnosability than building a diagnoser (e.g. [Sampath et al., 1995]). We

adapt the concept to each type of alarm pattern.

Definition 17 (Critical Pair). Let S be a plant, β a diagnosis condition,

and Ψ ⊆ Π(S) a context. We say that π1, π2 ∈ Ψ are a critical pair for an

alarm condition Ξ at time i iff π1, i |= β and:

• if Ξ =̇ ExactDel(◦, β, d), then obs(πi+d1) = obs(πi+d2) and π2, i 6|= β;

• if Ξ =̇ BoundDel(◦, β, d), then obs(πi+d1) = obs(πi+d2), and π2, j 6|= β

for all j ∈ [i− d, i+ d];

• if Ξ =̇ FiniteDel(◦, β), then obs(π1) = obs(π2), and π2, j 6|= β for

all j.

We say that π1, π2 ∈ Ψ are a critical pair for Ξ if it is one for some time

point i ∈ N.

In [Sampath et al., 1995] the notion of critical pair is used to define

the idea of diagnosability. In our framework, we use a richer notion of

diagnosability, and therefore, we need to discuss the relation between the

existence of a critical pair and the diagnosability of the system. In the

next two sections we will show that while the existence of a critical pair

is a sufficient condition for non-diagnosability, in some cases it is not a

necessary condition.

85

4.1. VERIFICATION: PROBLEM DEFINITION

Diagnosability Verification via Critical Pairs: Correctness

First we establish the correctness of the critical pair approach of verifying

diagnosability. Correctness requires that when a critical pair is found, the

respective alarm condition must indeed not be diagnosable for the given

system. This is straight-forward in all cases.

Theorem 8 (Critical Pairs: Correctness). Let S be a plant, Ξ an alarm

condition, Ψ ⊆ Π(S) a context, π1 ∈ Ψ a trace, and i ∈ N a trace index.

If a trace π2 ∈ Ψ exists such that π1, π2 are a critical pair for Ξ at time i

as per Definition 17, then Ξ is not trace diagnosable in π1, i w.r.t. Ψ.

Proof. Assume there exists a trace π2 ∈ Ψ such that π1, π2 are a critical

pair for Ξ at time i, but Ξ is trace diagnosable in π1, i w.r.t. Ψ. We show

for each type of pattern that this leads to a contradiction.

Ξ := ExactDel(◦, β, d) From Definition 17 we know that π1, i |= β, obs(πi+d1) =

obs(πi+d2), and π2, i 6|= β. Such a pair of traces is however not possible

if Ξ is diagnosable, since, according to Definition 14, π1, i |= β and

obs(πi+d1) = obs(πi+d2) imply that π2, i |= β, which is not true on the

critical pair.

Ξ := BoundDel(◦, β, d) From Definition 17 we know that π1, i |= β, obs(πi+d1) =

obs(πi+d2), and ∀j ∈ [i−d, i+d]·π2, j 6|= β. Such a pair of traces is how-

ever not possible if Ξ is diagnosable, since, according to Definition 15,

π1, i |= β implies that ∃j ∈ [i, i+d] such that either obs(πj1) 6= obs(πj2),

which is not true for any j by construction of the critical pair, or

∃k ∈ [j − d, j] · π2, k |= β, which is also not true, as k is by definition

within [i− d, i+ d], and we know that for none of these time points β

holds on π2.

Ξ := FiniteDel(◦, β) From Definition 17 we know that π1, i |= β, obs(π1) =

obs(π2), and ∀j ∈ N · π2, j 6|= β. Such a pair of traces is however not

86

CHAPTER 4. DIAGNOSABILITY ANALYSIS

possible if Ξ is diagnosable, since, according to Definition 16, π1, i |= β

implies that ∃j ∈ N · i ≤ j such that either obs(πj1) 6= obs(πj2),

which is not true for any j by construction of the critical pair, or

∃k ∈ [0, j] ·π2, k |= β, which is also not true for whatever j we choose.

Diagnosability Verification via Critical Pairs: Completeness

We now investigate the completeness of the critical pair method. By

completeness we mean that whenever an alarm condition is diagnosable,

we would like to prove it by proving the absence of critical pairs. For

ExactDel this property is shown as follows.

Theorem 9 (Critical Pairs: Completeness for ExactDel). Let S be a

plant, Ξ := ExactDel(◦, β, d) an alarm condition, and Ψ ⊆ Π(S) a

context. If Ξ is not system diagnosable w.r.t. Ψ, then a critical pair as per

Definition 17 must exist in Ψ.

Proof. Assume Ξ is not system diagnosable w.r.t. Ψ. Following Defini-

tion 14 and the definition of being system diagnosability w.r.t. a context,

this means that for some π1 ∈ Ψ and some trace index i ∈ N we have

π1, i |= β and ∃π2 ∈ Ψ s.t. obs(πi+d1) = obs(πi+d2) and π2, i 6|= β. These

π1, π2 match the critical pair definition for ExactDel in Definition 17.

For BoundDel and FiniteDel, the relationship between diagnosabil-

ity and the existence of critical pairs is more complex. We discuss both

cases separately.

BoundDel We show now an example where the absence of critical pairs

for a given d does not prove diagnosability with the same d. This prob-

lem exists only with delays d > 0, because with d = 0 we have that

87

4.1. VERIFICATION: PROBLEM DEFINITION

Figure 4.5: BoundDel(◦, F, 1) is not system diagnosable in this system, but no critical

pair exists for that delay.

BoundDel(◦, β, 0) and ExactDel(◦, β, 0) express identical constraints

on the traces of Ψ (see e.g. Figure 4.4).

Assume the traces shown in Figure 4.5 are the only traces in some plant

S, that our context of interest includes all of them, and that they are

all observationally indistinguishable. The diagnosis condition of interest

is the proposition F , which marks faulty states; we assume that only the

shown states are marked with F . The alarm condition BoundDel(◦, F, 2)
is trace diagnosable in this example in all states of traces marked with

F . Furthermore, BoundDel(◦, F, 1) is not system diagnosable, with a

violation occurring in trace 1 at time t3. However, from these traces it is

not possible to construct a BoundDel critical pair for delay d = 1, only

for d = 0.

It is important to note here that the problem is not in the specific

definition of BoundDel critical pairs, but the fact that falsification is

done only considering pairs of traces. By the increased expressiveness of

the framework to define alarm conditions, in the case of Figure 4.5 a witness

for non-diagnosability of BoundDel(◦, F, 1) in trace 1 at point t3 consists

of all three traces, whereas with only two traces diagnosability cannot be

disproved.

Intuitively, the reason for this mismatch between the delay of the alarm

condition and the delay of corresponding critical pairs is that with BoundDel

88

CHAPTER 4. DIAGNOSABILITY ANALYSIS

critical pairs we need to look backwards and forwards in order not to miss

occurrences of β. A critical pair thus requires the absence of β in a diameter

of 2d in the second trace, relative to the point i in the first one. The absence

of BoundDel critical pairs for a delay d does however prove diagnosabil-

ity with a delay bound d′ = 2d. Without making further assumptions a

lower bound cannot be guaranteed from the absence of critical pairs, even

a d′ = 2d− 1. An example of this is again the system of Figure 4.5.

Theorem 10 (Critical Pairs: Completeness for BoundDel (Upper Bound)).

Let S be a plant, Ξ := BoundDel(◦, β, 2d) an alarm condition, and Ψ ⊆
Π(S) a context. If no critical pair π1, π2 ∈ Ψ for Ξ′ := BoundDel(◦, β, d)
exists (Definition 17), then Ξ is system diagnosable w.r.t. Ψ.

Proof. Assume no critical pair for Ξ′ exists, but Ξ is not diagnosable. The

fact that Ξ is not diagnosable implies that ∃π1 ∈ Ψ, ∃i ∈ N such that

π1, i |= β and, furthermore, ∀j ∈ [i, i + 2d] · ∃π2 ∈ Ψ such that obs(πj1) =

obs(πj2) and ∀k ∈ [j − 2d, j] · π2, k 6|= β. In particular, for π1 and i we

pick j = i + d, for which we know exists a π2 ∈ Ψ such that π1, i |= β,

obs(πi+d1) = obs(πi+d2), and ∀k ∈ [i− d, i + d] · π2, k 6|= β. π1, π2 are thus a

critical pair for Ξ′ in Ψ, which contradicts the initial assumption that no

such pair exists in Ψ.

We now introduce an assumption under which the absence of critical

pairs for some Ξ := BoundDel(◦, β, d) indeed proves the diagnosability

of that Ξ. Specifically, we restrict ourselves to cases where β is monotonic,

that is, for some reason it holds that on any point i of any trace π ∈ Ψ,

if β holds at time i, then it also holds at any time j ≥ i. The monotonic-

ity assumption is quite common in the existing literature. In particular,

[Sampath et al., 1995] (and all successive works based on it) the diagno-

sis condition is defined as the occurrence of a fault event at some point

89

4.1. VERIFICATION: PROBLEM DEFINITION

in the past, i.e. β := Of for some proposition f , which has monotonic

behavior. As proven in [Bozzano et al., 2015c], this can be reduced to a

BoundDel problem. From a practical point of view, all permanent faults

have a monotonic behavior. Moreover, monotonicity is not limited to the

past occurrence of fault events. Indeed, all diagnosis conditions of the form

β := Oβ′, such as the ones described in [Jéron et al., 2006], are monotonic.

Theorem 11 (Critical Pairs: Completeness for BoundDel (Monotonic-

ity)). Let S be a plant, Ξ := BoundDel(◦, β, d) an alarm condition, and

Ψ ⊆ Π(S) a context. Furthermore we assume that β is monotonic in S,

i.e. for every trace π ∈ Ψ we have π |= G(β → Gβ). If Ξ is not system

diagnosable w.r.t. Ψ, then a critical pair as per Definition 17 must exist in

Ψ.

Proof. If Ξ is not system diagnosable w.r.t. Ψ, then for some π1 ∈ Ψ and

some i ∈ N we have that π1, i |= β, and ∀j ∈ [i, i + d]∃π2 ∈ Ψ such that

obs(πj1) = obs(πj2) and ∀k ∈ [j − d, j] · π2, k 6|= β. From this we know that

there exists a trace π2 ∈ Ψ (specifically, for j = i + d) such that we have

obs(πi+d1) = obs(πi+d2) and ∀k ∈ [i, i+d] ·π2, k 6|= β. From the monotonicity

of β it furthermore follows that ∀k ∈ [i− d, i + d] · π2, k 6|= β. From these

properties it follows that π1, π2 is a critical pair for Ξ.

FiniteDel Also in the case of FiniteDel the absence of critical pairs

does not necessarily prove diagnosability. Imagine a situation where the

context encodes a fairness constraint that causes the observations after a

failure to always diverge eventually, but that this event can be delayed

indefinitely. In this case it is impossible to find a pair of traces that are

forever observationally equivalent, but where one has the fault and the

other one does not. A witness for non-diagnosability here indeed would

consist of an infinite set of traces.

90

CHAPTER 4. DIAGNOSABILITY ANALYSIS

For infinite-state systems, even if Ψ denotes Π(S), we can construct an

example in which for any given d we can find a pair of traces that require

a delay d+ 1 to be diagnosable. Consider for instance a system in which a

variable c decreases at each step (e.g., c′ = c/2) after a failure occurs and

that the fault’s detection requires c to reach a certain fixed threshold. By

choosing an initial value for c that is arbitrarily high, we can postpone for

arbitrarily many steps the distinguishability of both traces.

However, if we require S to be finite state and the Ψ to be characterized

by an invariant property, then the absence of critical pairs does indeed

prove FiniteDel diagnosability.

Theorem 12 (Critical Pairs: Completeness for FiniteDel). Let S be a

finite state plant, Ξ := FiniteDel(◦, β) an alarm condition. Let Ψ ⊆
Π(S) be the set of traces that satisfies a corresponding invariant property.

If Ξ is not system diagnosable w.r.t. Ψ, then there must exist a critical pair

for Ξ according to Definition 17.

Proof. We prove the theorem by constructing a critical pair for Ξ. We

assume that β := p for some proposition p. All other cases can be reduced

to this case by extending S with a monitor tracking β to identify whether

it holds in any given point of a trace. The same strategy of introducing

monitors is used in [Bozzano et al., 2014a].

• From the non-diagnosability of Ξ we know that there exists a π1 ∈ Ψ

and ∃i ∈ N such that Ξ is not trace diagnosable in π1, i.

• We then pick a j such that j ≥ i + N × N , that is, we consider at

least N ×N more steps in π1 after the point i, where N is the size of

the state space of S.

• According to the definition of diagnosability this means that there

must be another trace π2 ∈ Π(S) such that obs(πj1) = obs(πj2) and for

91

4.1. VERIFICATION: PROBLEM DEFINITION

all k ∈ N with k ≤ j we have π2, k 6|= β.

• As the state space of S is finite, of dimension N , there can be at most

N × N combinations of pairs of states, which means that at some

point l ∈ N with i < l ≤ j the pair (π1[l], π2[l]) has already been seen

before, i.e. there is some l′ ∈ N with i ≤ l′ < l such that π1[l
′] = π1[l]

and π2[l
′] = π2[l].

• From π1 we now extract a new trace

π1′ := s0, i1, s1, . . . , il′, sl′, (il′+1, sl′+1, . . . , il, sl)
ω. The part between

parentheses is the loop that is repeated ad infinitum.

• Note that π1′ is also a trace belonging to Ψ, because the invariant

property defining Ψ is true in every state of it by virtue of being built

from π1.

• The same procedure is performed for π2, obtaining another trace π2′ ∈
Ψ.

• Both π1′ and π2′ have the same observations up to l− 1 and then loop

back to the same synchronization point l′, hence obs(π1′) = obs(π2′).

• Furthermore by construction from π1 we have π1′, i |= β.

• Finally, it holds that for all k ∈ N we have π′2 6|= β.

• π1′, π2′ thus are a critical pair for Ξ.

This result can be generalized to any context representing a safety prop-

erty, since it can be encoded as an invariant by extending the original plant

with a corresponding monitor – see for instance [Baier and Katoen, 2008]

for finite-state systems, which we are interested in in Theorem 12.

92

CHAPTER 4. DIAGNOSABILITY ANALYSIS

The reasoning done in the proof of Theorem 12 does not apply if the

traces in Ψ are characterized by a liveness property, because such properties

can be falsified only on infinite traces. Detecting violation or satisfaction of

the property on a finite prefix, e.g. with a monitor, is thus not possible, and

we cannot construct the traces π1′ and π2′ in a way that guarantees they

are still traces of Ψ. The proof strategy also does not work for infinite-state

systems, where identifying loops as done here might not even be possible.

We show now several monotonicity properties of alarm conditions that

can be used to say something about the diagnosability of related alarm

conditions.

Theorem 13 (Monotonicity). The following conditions hold for all S, β,

Ψ.

1. if some Ξ is diagnosable relative to context Ψ, then so it is relative to

all contexts Ψ′ ⊂ Ψ

2. if ExactDel(◦, β, d) is diagnosable,

then so is BoundDel(◦, β, d)

3. if BoundDel(◦, β, d) is diagnosable for some d,

then so is FiniteDel(◦, β)

4. if ExactDel(◦, β, d) is diagnosable for some d,

then so is ExactDel(◦, β, d′) for all d′ > d

5. if BoundDel(◦, β, d) is diagnosable for some d,

then so is BoundDel(◦, β, d′) for all d′ > d

Proof. We rely on Definitions 14, 15, and 16 of trace diagnosability to show

these properties by case.

1. Assume Ξ is diagnosable in Ψ but not in Ψ′. Since Ψ′ ⊂ Ψ, if a set of

traces disproving it exists in Ψ′, then it must also exist in Ψ, and Ξ is

not diagnosable in Ψ, reaching a contradiction.

93

4.2. VERIFICATION: ALGORITHMS

2. Pick any π1 ∈ Ψ and any i ∈ N such that π1, i |= β. Since ExactDel(◦, β, d)
is trace diagnosable in π1, i, the j required by BoundDel can be

set to j = i + d, because for all other traces π2 ∈ Ψ such that

obs(πj1) = obs(πj2) we can set the k required by BoundDel to k = i,

since from ExactDel diagnosability we know that π2, k |= β.

3. Similarly, for any BoundDel trace diagnosable π1, i such that π1, i |=
β, the respective indices j and k as required by BoundDel also exist

for FiniteDel.

4. Pick any π1 ∈ Ψ and any i ∈ N such that π1, i |= β. ExactDel

diagnosability states that for any other trace π2 ∈ Ψ that has the

same observations as π1 up to i+ d it must hold that π2, i |= β. This

also holds for any d′ > d, because we will still have π2, i |= β, whether

obs(πi+d
′

1) = obs(πi+d
′

2) or not.

5. Similarly, the index j as required by BoundDel trace diagnosability

is also a valid choice for any d′ > d, since the index k as required for

d is also a valid choice for d′, since we will still have π2, k |= β for any

π2 with same observability up to j.

4.2 Verification: Algorithms

The verification of diagnosability for an alarm condition Ξ on the plant

S, as defined in the previous section, amounts to proving the absence of

a critical pair. In this section, we reduce verification of diagnosability for

a given alarm specification Ξ to the problem of model-checking a suitable

temporal formula on a model that is derived from S, called the twin plant.

The twin plant construction is based on two copies of S, such that a trace

94

CHAPTER 4. DIAGNOSABILITY ANALYSIS

T mem

obs?

T mem

obs?

=

X ′

X

X ′

X

Xo

Xo

ObsEq

Figure 4.6: Twin Plant

in the twin plant corresponds to a pair of traces of S. The temporal

formula CP (Ξ,Ψ) constrains the two traces to be a critical pair for the

alarm condition Ξ with respect to Ψ. We show how to define the twin

plant as a symbolic transition system, and the temporal property to be

checked.

4.2.1 Twin Plant

The idea of coupled twin plant for a plant S, originally proposed by [Jiang

et al., 2001], is a plant obtained from two copies of S. The state of Twin(S)

is composed of the state components of the two copies of the plant, which

evolve independently from each other, according to the transition relation

T . The output of Twin(S) is a Boolean variable, obtained by comparing

the two sets of observable variables of the two copies of S (see Figure 4.6).

Definition 18 (Twin Plant). The twin plant of S = 〈X,Xo, I, T 〉 is the

STS Twin(S) = 〈V V, ∅, II, TT 〉, where:

• V V =̇ XL ∪XR ∪ObsEq;

95

4.2. VERIFICATION: ALGORITHMS

• II(V V) =̇ I(XL) ∧ I(XR) ∧ (ObsEq↔
∧
x∈Xo

xL = xR)

• TT (V V, V V ′) =̇ T (XL, X
′
L) ∧ T (XR, X

′
R)∧

ObsEq′ ↔ (ObsEq ∧
∧
x∈Xo

x′L = x′R)

The totality of Twin(S) follows from the totality of S. There is a

one-to-one correspondence between Π(S)×Π(S) (pairs of traces of S) and

Π(Twin(S)) (traces of Twin(S)). The variable ObsEq keeps track on

whether the observable state variables have diverged in the past. If it

evaluates to false, then on the two traces at some point two observables

had different values between the two copies. We will use this variable to

identify critical pairs, on which we require that the observations do not

diverge up to some point of interest.

A trace of Twin(S)

πLπR =̇ (s0,L, s0,R,ObsEq0), (i1,L, i1,R), (s1,L, s1,R,ObsEq1), . . .

can be decomposed into two traces of S:

πL =̇ s0,L, i1,L, s1,L, . . . and πR =̇ s0,R, i1,R, s1,R, . . .

Conversely, given two traces in Π(S), the corresponding trace in Π(Twin(S))

can be reconstructed by simulating the value of ObsEq over time.

Theorem 14. Let πL, πR ∈ Π(S) be two traces. πL and πR are such that

obs(πkL) = obs(πkR) (i.e., indistinguishable up to k) iff the trace πLπR ∈
Π(Twin(S)) is such that πLπR[k] |= ObsEq.

Proof. Using the definition of ObsEq in Definition 18, we proceed by in-

duction on k.

k = 0) obs(π0
L) = obs(π0

R) iff obs(s0,L) = obs(s0,R) iff s0,Rs0,L |=∧
x∈Xo

xL = xR iff (Definition 18) s0,Rs0,L |= ObsEq iff πLπR[0] |=
ObsEq

96

CHAPTER 4. DIAGNOSABILITY ANALYSIS

Ξ CP (Ξ,Ψ)

ExactDel(◦, β, d) =̇ ΨL ∧ΨR ∧ F (ObsEq ∧ YdβL ∧ Yd¬βR)

BoundDel(◦, β, d) =̇ ΨL ∧ΨR ∧ F (ObsEq ∧ YdβL ∧ H≤2d¬βR)

FiniteDel(◦, β) =̇ ΨL ∧ΨR ∧ (G ObsEq) ∧ (F βL) ∧ (G ¬βR)

Table 4.1: Critical Pair: LTL formulae

k > 0) The inductive hypothesis tells us that the two traces are indistin-

guishable up to k − 1 iff πLπR[k − 1] |= ObsEq. By using this fact,

we just need to show that the relation is preserved for the state sk.

Formally, obs(πkL) = obs(πkR) iff obs(πk−1
L)obs(sk,L)obs(ik,L) =

obs(πk−1
R)obs(sk,R)obs(ik,R) iff πLπR[k−1] |= ObsEq and sk,Rsk,L |=∧

x∈Xo
xL = xR iff (Definition 18) πLπR[k] |= ObsEq

4.2.2 Verification via Model-Checking

A result of Theorem 14 is that critical pairs of the plant can be mapped

to special traces on the twin plant. Thus, it is possible to reduce the prob-

lem of diagnosability for S to a problem of finding those special traces

in Twin(S). This problem can then be solved using model-checking tech-

niques. In particular, for each pattern Ξ defined in the previous section, we

generate – given the diagnosis condition and the delay – a temporal prop-

erty CP (Ξ,Ψ) to be checked on Twin(S), as defined in Table 4.1. We call

such formula the critical pair property, that is satisfied by the critical pairs

of Ξ in Ψ.

In the following we assume that the traces in a context can be character-

ized by an LTL property. With a little abuse of notation, we interchange-

ably use Ψ as a subset of Π(S) and as an LTL formula characterizing that

subset. In the formulae of Table 4.1, we write βL for β(XL) and βR for

97

4.2. VERIFICATION: ALGORITHMS

β(XR), and similarly for ΨL and ΨR. For instance, βL ∧¬βR identifies the

states of the twin plant where the left state satisfies the diagnosis condi-

tion, and the right one does not. ΨL forces the subtrace over L symbols of

a twin plant trace to belong to Ψ.

Intuitively, the property CP (ExactDel(◦, β, d),Ψ) states the exis-

tence of a pair of traces in Ψ that are (i) indistinguishable until a given

time t, (ii) d steps before (i.e. t − d) β holds in the left trace, and (iii) in

the same state (t− d) β does not hold on the right one. For the bounded

case, CP (BoundDel(◦, β, d),Ψ) states the existence of a pair of traces

in Ψ that are (i) indistinguishable until a given time t, (ii) d steps before

(i.e. t− d) β holds in the left trace, and (iii) β does not hold on the right

trace in the range from t − 2d to t. In the finite delay case, the property

CP (FiniteDel(◦, β),Ψ) states the existence of a pair of traces in Ψ that

are (i) indistinguishable, (ii) β holds at some unspecified point in the left

trace, and (iii) β never holds in the right one.

Theorem 15. Let S be a plant, Ψ ⊆ Π(S) a context, and Ξ an alarm

condition. A critical pair for Ξ exists in Ψ iff Twin(S) 6|= ¬CP (Ξ,Ψ).

Proof. We reason by cases and use the LTL semantics to prove the theo-

rem. We use Theorem 14 to guarantee that we only look at pairs of traces

that are observationally equivalent up to some k ∈ N.

Exact Let Ξ := ExactDel(◦, β, d). Twin(S) 6|= ¬(ΨL∧ΨR∧F (ObsEq∧
YdβL ∧ Yd¬βR)) iff ∃ππ ∈ Π(Twin(S)), decomposable in πLπR, such

that (by semantics of LTL) πL ∈ Ψ, πR ∈ Ψ, ∃k ∈ N with k ≥ d

such that ππ, k |= ObsEq, i.e. obs(πkL) = obs(πkR), πL, k − d |= β, and

πR, k − d 6|= β, iff πLπR ∈ Ψ are a critical pair for Ξ.

Bounded Let Ξ := BoundDel(◦, β, d). Twin(S) 6|= ¬(ΨL ∧ ΨR ∧
F (ObsEq ∧ YdβL ∧ H≤2d¬βR)) iff ∃ππ ∈ Π(Twin(S)), decompos-

able in πLπR, such that (by semantics of LTL) πL ∈ Ψ, πR ∈ Ψ,

98

CHAPTER 4. DIAGNOSABILITY ANALYSIS

∃k ∈ N with k ≥ d such that ππ, k |= ObsEq, i.e. obs(πkL) = obs(πkR),

πL, k − d |= β, and ∀j ∈ [k − 2d, k] · πR, j 6|= β, iff πLπR ∈ Ψ are a

critical pair for Ξ.

Finite Let Ξ := FiniteDel(◦, β). Twin(S) 6|= ¬(ΨL∧ΨR∧(G ObsEq)∧
(F βL)∧(G ¬βR)) iff ∃ππ ∈ Π(Twin(S)), decomposable in πLπR, such

that (by semantics of LTL) πL ∈ Ψ, πR ∈ Ψ, ∀k ∈ N · obs(πkL) =

obs(πkR) and thus obs(πL) = obs(πR), πL, j |= β for some j ∈ N, and

πR, j 6|= β for any j ∈ N, iff πLπR ∈ Ψ are a critical pair for Ξ.

Theorem 16 establishes several monotonicity properties of critical pairs

w.r.t. different alarm conditions. It is in some sense dual to Theorem 13,

which describes monotonicity properties in cases a specification is diag-

nosable. In particular, we show in Theorem 16 that critical pairs for

BoundDel are also critical pairs for ExactDel, that critical pairs for

FiniteDel are also critical pairs for BoundDel, and that critical pairs

for ExactDel and BoundDel w.r.t. a delay d are also witnesses for

non-diagnosability with a delay d′ < d. Cases 3. and 4. have an additional

condition that is satisfied by the way we build the twin plant.

Theorem 16 (Monotonicity). The following conditions hold for all β, d, d′.

1. |= CP (BoundDel(◦, β, d),Ψ)→ CP (ExactDel(◦, β, d),Ψ)

2. |= CP (FiniteDel(◦, β),Ψ)→ CP (BoundDel(◦, β, d),Ψ)

3. |= (ObsEq→ HObsEq)→
(CP (ExactDel(◦, β, d′),Ψ)→ CP (ExactDel(◦, β, d),Ψ))

(for all d′ > d)

4. |= (ObsEq→ HObsEq)→
(CP (BoundDel(◦, β, d′),Ψ)→ CP (BoundDel(◦, β, d),Ψ))

(for all d′ > d)

99

4.2. VERIFICATION: ALGORITHMS

Proof.

1. |= CP (BoundDel(◦, β, d),Ψ)→ CP (ExactDel(◦, β, d),Ψ)

iff

[ΨL∧ΨR ∧F (ObsEq∧YdβL∧H≤2d¬βR)]→ [ΨL∧ΨR ∧F (ObsEq∧
YdβL ∧ Yd¬βR)].

Syntactically the expressions are similar and we just need to show that

H≤2d¬βR → Yd¬βR. This is true at any point i >= d of any trace.

Note that we only need to consider points i >= d, because otherwise

we get that the left-hand side of the implication is false (due to Y dβL).

2. |= CP (FiniteDel(◦, β),Ψ)→ CP (BoundDel(◦, β, d),Ψ)

iff

[ΨL∧ΨR∧ (G ObsEq)∧ (F βL)∧ (G ¬βR)]→ [ΨL∧ΨR∧F (ObsEq∧
YdβL ∧ H≤2d¬βR)].

We consider only traces that satisfy the context, and G(ObsEq∧¬βR),

and s.t. at a point i the trace satisfies βL (FβL). The same trace

satisfies the right-hand side of the implication at the time point i+ d.

3. for all d′ > d : (ObsEq → HObsEq) → ([ΨL ∧ ΨR ∧ F (ObsEq ∧
Yd

′
βL ∧ Yd

′¬βR)]→ [ΨL ∧ΨR ∧ F (ObsEq ∧ YdβL ∧ Yd¬βR)]).

Let us call t the point in the trace that satisfies the eventuality

(ObsEq∧Yd′βL ∧Yd
′¬βR), and let k = d′− d, and t− k be the point

in which we evaluate the corresponding eventuality (ObsEq∧YdβL∧
Yd¬βR). It follows that we are evaluating βL and βR on the same

point t − d′, and therefore we only need to show that if t |= ObsEq

then t−k |= ObsEq. However, this follows from the assumption that

ObsEq→ H ObsEq.

4. This follows the same reasoning as case 3.

100

CHAPTER 4. DIAGNOSABILITY ANALYSIS

4.3 Synthesis: Problem Definition

Figure 4.7: Example lattice of sensor configurations.

We now consider the problem of synthesis for diagnosability. The idea

is to provide ways to compute a set of configurations of sensors that are

sufficient to perform diagnosis. Once we have this set, we can rank the

configurations according to various criteria. Specifically, given a set of sen-

sors, we would like to find all sensor configurations (i.e. subsets of sensors)

that ensure diagnosability and may also respect some other useful prop-

erties (e.g. being optimal with respect to a given cost function). This

can provide practical benefits in many domains, by reducing costs, weight,

power-consumption, or simply by allowing to replace more complex sen-

sors with simpler ones. A sensor configuration is sometimes referred to as a

set of observability requirements, since it describes the information that is

required to be observable in order for the diagnosis to be possible [Bittner

et al., 2012].

In order to study the impact of different sensor configurations on the

diagnosability of the plant, we introduce the concept of plant restriction

101

4.3. SYNTHESIS: PROBLEM DEFINITION

w.r.t. a sensor configuration, in which we consider a modified plant in which

only the sensors in the sensor configuration can be used.

Definition 19 (Sensor Configuration, Plant Restriction). Let S = 〈X,Xo, I, T 〉
be a plant. A sensor configuration for S is a subset of Xo. The restriction

of S to the sensor configuration sc, written S↓sc, is 〈X,Xo ∩ sc, I, T 〉.

We can thus apply the techniques described in Section 4.2 to verify

whether a given sensor configuration sc is sufficient to make the alarm

condition diagnosable in the system. The set of all such configurations sc

is defined as follows.

Definition 20 (DiagSC). Let an alarm condition Ξ and a context Ψ for

the plant S be given. The set of diagnosable sensor configurations, denoted

with DiagSC(S,Ξ,Ψ), is the set of sensor configurations sc ⊆ Xo such that

Ξ is diagnosable in S↓sc relative to Ψ.

Figure 4.7 shows an example lattice of sensor configurations for a setting

with three sensors: A, B, C. The configurations marked with green (all

supersets of {B} and {C}) are diagnosable, corresponding to DiagSC; the

configurations marked in red are not diagnosable. Once we have this set

DiagSC, we can perform different types of analyses. For example, we might

be interested in finding the configurations that are minimal w.r.t. subset

inclusion, optimal w.r.t. a cost function, or Pareto-Optimal [Pareto, 1906]

w.r.t. multiple cost functions.

The set of minimal sensor configurations DiagMinSC(S,Ξ,Ψ) is defined

as:

{sc ∈ DiagSC(S,Ξ,Ψ) | for all sc′ (sc, sc′ 6∈ DiagSC(S,Ξ,Ψ)}.

In Figure 4.7, DiagMinSC corresponds to {B} and {C}. An interesting

(and useful) property of diagnosability is its monotonicity w.r.t. to set

inclusion.

102

CHAPTER 4. DIAGNOSABILITY ANALYSIS

Theorem 17. If Ξ is diagnosable in S↓sc, then it is diagnosable in S↓sc′ for

all sc′ such that sc ⊆ sc′ ⊆ Xo; that is, DiagSC(S,Ξ,Ψ) is upward-closed:

sc ∈ DiagSC(S,Ξ,Ψ) implies that for all sc′ ⊆ Xo such that sc′ ⊇ sc then

sc′ ∈ DiagSC(S,Ξ,Ψ).

Proof. This follows from Definitions 14, 15, and 16. Let sc′ ⊃ sc, s.t.

sc′ ⊆ Xo, and let us assume that sc ∈ DiagSC(S,Ξ,Ψ). We will show that

sc′ ∈ DiagSC(S,Ξ,Ψ) as well.

In particular, we discuss it for FiniteDel(◦, β), but the same reason-

ing can be applied to the other cases. Recall from Definition 16 that Ξ is

diagnosable iff π1, i |= β ⇒ (∃j ∈ N i ≤ j · ∀π2 ∈ Ψ · obs(πj1) = obs(πj2) ⇒
∃k ∈ N k ≤ j ·π2, k |= β). If this is satisfied, then increasing the number of

observables will preserve its satisfaction. Notice that a change in observ-

able variables only affects the projection function obs(·) of the definitions.

By declaring more variables as observable, the projection will contain the

same variables as before, plus the new ones. Let π1, π2, j be such that they

satisfy the above condition. If we increase the number of observables, then

either they are not observationally equivalent anymore (and thus the im-

plication becomes vacuously satisfied), or if they are, then π2 must satisfy

the additional conditions (i.e., ∃k ∈ N k ≤ j · π2, k |= β) since this is not

changed by the choice of observables. When quantifying over observation-

ally equivalent traces and increasing the set of observables we can end-up

with a set that is a subset (or at most equal) to the previous. Thus, we do

not need to consider any additional combination of π1, π2, j.

This result tells us that knowing DiagMinSC we can obtain also DiagSC.

In Figure 4.7 it can be seen how DiagSC consists of all supersets of the

minimal configurations {B} and {C}.
As with DiagSC, also with DiagMinSC we can perform interesting anal-

103

4.3. SYNTHESIS: PROBLEM DEFINITION

yses. For instance, we might ask what sensor is not present in any minimal

configuration; this should give some hints on what sensors give a weak

contribution in diagnosing the diagnosis condition at hand. Conversely, we

might ask whether there is a sensor that is present in all configurations,

and thus essential for diagnosability.

When redundancy of sensors becomes important, the property of mini-

mality might not be sufficient. If any sensor s of a minimal sensor config-

uration sc is removed, the alarm condition is (by definition of minimality)

not diagnosable anymore, and w.r.t. diagnosability we thus have |sc| single

points of failure. However, if we have the complete DiagSC, we can easily

search for sensor configurations that are robust w.r.t. the outage of any

single sensor, by considering only configurations whose immediate prede-

cessors in the lattice are still diagnosable. In Figure 4.7 such a set is the

configuration {B,C}.
Given a cost function of the form Cost : 2Xo → R, the set of cost-

optimal sensor configurations DiagOptSC(S,Ξ,Ψ,Cost) is defined as:

{sc ∈ DiagSC(S,Ξ,Ψ) | for all sc′ ∈ DiagSC(S,Ξ,Ψ),Cost(sc) ≤ Cost(sc′)}

Assume that Cost is monotonic w.r.t. set-inclusion, i.e. Cost(sc1) <

Cost(sc2) if sc1 (sc2. Intuitively, this means that by adding sensors

to a configuration we always increase its cost. By virtue of this prop-

erty we can limit the search within DiagMinSC instead of working on the

whole DiagSC. Note that from DiagOptSC we cannot deduce the whole

set of DiagSC. If A, B, and C have costs 1, 2, and 3, respectively, then

DiagOptSC consists of {B}, whose supersets are a strict subset of DiagSC.

The computation of DiagOptSC might make sense only when precise infor-

mation on costs is available, for instance at more advanced project stages.

At earlier exploratory stages of a project an engineer might rather focus

on performing various what-if analyses based on the complete set of good

104

CHAPTER 4. DIAGNOSABILITY ANALYSIS

configurations (DiagSC).

It can also be the case that multiple cost functions are present (e.g.

weight, production cost, power-consumption), and they must be taken into

account at the same time. Formally, consider M cost functions Costi :

2Xo → R, with ~Cost(sc) =̇ 〈Cost1(sc); . . . ;CostM(sc)〉. We write

〈a1; . . . ; aM〉 < 〈b1; . . . ; bM〉 iff for all i ai ≤ bi and for some i ai < bi.

The Pareto front for diagnosability is the set DiagParSC(S,Ξ,Ψ, ~Cost),

defined as:

{sc ∈ DiagSC(S,Ξ,Ψ) | for all sc′ ∈ DiagSC(S,Ξ,Ψ), ~Cost(sc′) 6< ~Cost(sc)}

If the cost function is monotonic, then every (Pareto) optimal configuration

is also minimal: i.e., DiagOptSC(S,Ξ,Ψ,Cost) ⊆ DiagMinSC(S,Ξ,Ψ)

and DiagParSC(S,Ξ,Ψ, ~Cost) ⊆ DiagMinSC(S,Ξ,Ψ).

Finally, note how the notion of Pareto-optimality is a generalization not

only of optimality w.r.t. mono-dimensional cost functions, but also w.r.t.

sensor configuration minimality. The latter can be seen as having one cost

function per sensor, where each cost function returns a high cost when the

sensor is activated, and a low cost when it is not. In the following we will

focus on the two optimization problems commonly studied in the literature,

i.e. identifying DiagOptSC and DiagMinSC, and explore different strategies

for computing them.

4.4 Synthesis: Algorithms

Computing sensor configurations under which a given alarm condition is

diagnosable can be achieved in various ways. In this section we first de-

scribe various enumerative approaches from the literature adapted to our

setting (Section 4.4.1), and then propose a fully symbolic approach to man-

age the search (Section 4.4.2). Whereas the enumerative approaches try to

105

4.4. SYNTHESIS: ALGORITHMS

directly compute DiagMinSC and DiagOptSC, the symbolic approach first

computes DiagSC and applies any optimization criteria afterwards. Fur-

thermore, while the enumerative methods exploit certain diagnosability-

specific characteristics of the problem, the symbolic approach is based on a

general parameter synthesis technique for monotonic problems. We briefly

mention the possible extension of parameter synthesis with costs in Sec-

tion 4.4.3 which could be an interesting way to efficiently compute sensor

configurations, but is an open research problem. Finally, we describe a

schematic overview of problems and algorithmic approaches to synthesis,

pointing out some interesting directions for future work (Section 4.4.4).

Due to the incompleteness of the critical-pair approach in the cases

mentioned in Section 4.1.2 we obtain over-approximations of the sets that

we would actually want to compute. For BoundDel, in case the diagnosis

condition is not monotonic and when synthesizing for a delay d we obtain

solutions that are guaranteed to be diagnosable with a delay of 2d; the true

bound for individual solutions might of course be lower. For FiniteDel,

in case of infinite-state models or liveness properties defining the context,

the set of configurations being computed may contain elements that are not

diagnosable at all, which limits its applicability. The returned set however

can still be useful, as it gives information on what observables are necessary

(though not sufficient) to guarantee diagnosability.

4.4.1 Synthesis by Enumeration

The simplest way to perform synthesis is to enumerate all sensor configura-

tions and verify for each whether it makes the alarm condition diagnosable.

This approach, however, has a complexity that is exponential in the number

of sensors. Some algorithms in the literature aim to find just one solution.

To find one configuration in DiagMinSC is indeed linear in the number of

sensors; one just needs to try dropping the sensors one-by-one, and keep-

106

CHAPTER 4. DIAGNOSABILITY ANALYSIS

function ComputeDiagOptSC (S,Ξ,Ψ,Cost)

1 SC := {2XO}
2 do

3 sc := argminsc∈SC(Cost(sc))

4 π := check[Twin(S↓sc) |= ¬CP (Ψ,Ξ)]

5 if (π = nil) return sc

6 SC := {sc ∈ SC|sc ∩ getObsReq(S, π, sc) 6= ∅}
7 while SC 6= ∅
8 return nil // Non-Diagnosable

Figure 4.8: Algorithm to compute one element of DiagOptSC.

ing only those where a critical pair is generated when they are dropped

(see the top-down approaches in [Jiang et al., 2003b, Briones et al., 2008]).

However, already looking for a single solution with minimum cardinality

(every sensor has a cost of 1) is, for finite-state automata, NP-complete as

shown in [Yoo and Lafortune, 2002a].

To lower the impact of the problem’s complexity, in [Briones et al.,

2008] a technique is introduced that allows a more informed search, ex-

ploiting domain-specific properties. It is also enumerative in nature, but

analyzes any given critical pair and identifies what specific observables can

distinguish it. Specifically, it tries to identify what individual sensors can

be activated such that the corresponding observable projection of the two

traces in the critical pair becomes different. This technique is combined

with the bottom-up strategy of [Jiang et al., 2003b], an algorithm that

identifies one element of DiagMinSC by incrementally adding observables.

Based on this idea of analyzing critical pairs, in [Grastien, 2009] a best-

first approach using a cost function is proposed to guide the enumeration

of the sensor configurations, with the goal of identifying one element of

DiagOptSC. The outline of this algorithm is shown in Figure 4.8.

The approach is bottom-up, following the monotonicity of the cost func-

107

4.4. SYNTHESIS: ALGORITHMS

tion. At each iteration, we pick the next best configuration sc according

to the cost function Cost (Line 3), and then perform the diagnosability

check (Line 4). The first sensor configuration to be checked is the “empty”

one (i.e. no sensor at all is used), which has a cost of 0. If no critical pair

is found, sc is sufficient to make the system diagnosable (within the frag-

ments identified in Section 4.1), and since we performed a best-first search,

we know that it is also cost-optimal, i.e. a member of DiagOptSC, and

we return it (Line 5). Otherwise, we call the function getObsReq(S, π, sc)

(Equation 4.1) to understand what sensors can distinguish it and remove

all configurations from the search space that do not have at least one such

sensor (Line 6). Whenever a critical pair is found that cannot be disam-

biguated even by using all possible sensors, getObsReq(S, π, sc) will eval-

uate to the empty-set, SC will be set to ∅, and the algorithm will return

“not-diagnosable” (Line 8).

Note that we can generalize this best-first search procedure and optimize

for set-inclusion, thus looking for an element of DiagMinSC. For this we

have to pick, in Line 3, a candidate sc that is not a superset of any other

candidate sc′. If it turns out to be diagnosable, it is guaranteed to be a

member of DiagMinSC.

The set SC has two loop-invariant properties which are guaranteed by

the update in Line 6. First, it contains only sensor configurations that have

not been explored yet (i.e. it cannot contain a set sc that was checked in

some previous iteration); second, it contains only elements that are hitting

sets over all observability requirements identified by getObsReq() so far

(guaranteed by the intersection test).

The function getObsReq(S, π, sc) inspects a trace (π) of Twin(S↓sc),

and returns the set of sensors that are sufficient to disambiguate the critical

pair π:

{s ∈ (Xo \ sc) | Twin(S↓sc∪{s}), πLπR 6|= CP (Ξ,Ψ)} (4.1)

108

CHAPTER 4. DIAGNOSABILITY ANALYSIS

As pointed out in [Briones et al., 2008], each of the new sensors is

sufficient to disambiguate the given trace. However, note that here the

notion of getObsReq is more subtle because of the increased expressiveness

of the patterns being analyzed. In our framework it is not sufficient to

choose a sensor that will cause the observations to be eventually different,

but we need the sensor to be able to disambiguate the traces within the

time-bound imposed by the delay of the alarm configuration. For instance,

for an alarm condition BoundDel(◦, β, 5), if β occurs at time t, then we

need the new sensor to disambiguate the traces within t+ 5 steps.

The termination of the algorithm is guaranteed by the fact that the

search space is finite and that at each iteration at least one element of SC

is dropped. If we analyzed all sensor configurations without ever finding a

diagnosable one, then the system is not diagnosable.

The above algorithm stops after one solution is found; however, we can

store this solution and continue the search with the next-best candidate.

Due to the monotonicity of the diagnosability problem, we can exclude

candidates that are a super-set of previous solutions, thus substantially

pruning the search space. This procedure allows us, in principle, to com-

pute the exact sets DiagOptSC and DiagMinSC. As shown in Section 4.5,

this can work well in some cases, but in many others it does not scale up,

especially for computing DiagMinSC. For this reason, we propose a tech-

nique to be able to symbolically reason on the set of sensor configurations

without the need of enumerating them one by one.

4.4.2 Synthesis via Parameter Synthesis

The key idea to effectively compute DiagSC is the use of a purely symbolic

representation of the state-space of all possible sensor configurations. To

this aim we introduce the Parameterized Twin Plant. Using this type of

twin plant we can reduce the problem of computing DiagSC to a problem

109

4.4. SYNTHESIS: ALGORITHMS

of parameter synthesis for model-checking, for which we can apply off-the-

shelf tools and algorithms.

Parameterized Twin Plant We first construct a symbolic representation of

the set {S↓sc|sc ⊆ Xo}, i.e., the set of all possible restrictions of S.

Definition 21 (Parameterized Twin Plant). The Parameterized Twin

Plant of S = 〈X,Xo, I, T 〉 is the symbolic transition system ParTwin(S) =

〈V V, ∅, II, TT 〉, where:

• V V =̇ XL ∪ XR ∪ ObsEq ∪ A, where A = {as|s ∈ Xo} is a set of

Boolean variables;

• II(V V) =̇ I(XL) ∧ I(XR) ∧ (ObsEq↔
∧
x∈Xo

ax → xL = xR)

• TT (V V, V V ′) =̇ T (XL, X
′
L) ∧ T (XR, X

′
R) ∧ NoChange(A) ∧

ObsEq′ ↔ (ObsEq ∧
∧
x∈Xo

ax → x′L = x′R),

where

NoChange(A) =̇
∧
as∈A

a′s ↔ as

The Parameterized Twin Plant is a symbolic representation of the set

of all the restrictions of plant S to some sc, based on the values to the so-

called activation parameters in A. The conjunct NoChange(A) forces the

variables in A not to change. The key difference with respect to Twin(S)

is the definition of ObsEq, that is now conditioned by the value of the

activation parameters A. When a parameter is false, the value of the cor-

responding variable no longer contributes to the observational equivalence,

making it (de facto) unobservable. There exists a bijection between sensor

configurations and assignments to the activation parameters. Specifically,

sc corresponds to an assignment µsc to the variables in A, such that, for

all s ∈ Xo, µsc |= as iff s ∈ sc. Instantiating ParTwin(S) with respect to

110

CHAPTER 4. DIAGNOSABILITY ANALYSIS

µsc results exactly in the Twin(S↓sc), i.e. ParTwin(S)↓µsc
= Twin(S↓sc).

When sc = Xo, and µsc assigns > to all the variables in A, we obtain

Twin(S). We also notice that the space of configurations induces a parti-

tion on the set Π(ParTwin(S)). Any two partitions contain the same set

of traces, modulo projection of the values to A and ObsEq.

The symbolic representation results in some clear advantages. First of

all, the parametric model allows for an off-the-shelf reuse of routines for

parameter synthesis, which, as shown in Section 4.5, has important perfor-

mance benefits. Second, since subsumption between sensor configurations

boils down to logical entailment, it is possible to exploit the monotonicity

property. Excluding configurations from the search process can be done

symbolically by strengthening the transition relation. For instance, to ex-

clude all configurations that have neither sensor s1 nor sensor s2, we can

use TT := TT ∧ (as1 ∨ as2). When looking for DiagSC this means that we

do not need to maintain a dedicated data structure to manage the search.

Third, the symbolic representation allows to reason over multiple sensor

configurations at the same time, instead of looking at a single configuration

at a time.

Parameter Synthesis for Model-Checking Based on the parameterized twin

plant, we reduce the problem of synthesis for diagnosability to a problem

of parameter synthesis for model-checking, for which several algorithms

are available (e.g. [Cimatti et al., 2008, André et al., 2009, Cimatti et al.,

2013a, Bittner et al., 2014a, Bozzano et al., 2015d]). Due to the mono-

tonicity assumption we can exploit specialized algorithms such as the ones

in [Bozzano et al., 2015d] that are used, for instance, in the field of Model-

Based Safety Assessment to construct Fault Trees [Bozzano et al., 2007,

2015a].

The parameter synthesis problem is such that we can directly express

111

4.4. SYNTHESIS: ALGORITHMS

function ParamSynth (S,a, φ)

1 badConfigs := ⊥;

2 do

3 π := check[S |= ¬badConfigs→ φ]

4 if (π = ∅) do

5 return (¬badConfigs)
6 endif

7 curBad := generalize(Proj(A, π0))

8 badConfigs := badConfigs ∨ curBad
9 while (true)

Figure 4.9: Basic algorithm for symbolic computation of DiagSC via parameter

synthesis. S is the parametric system (parameterized twin plant), a is the set of

parameters (activation variables), φ is the proof obligation any valid solution needs to

satisfy (¬CP (Ξ,Ψ)).

the problem:

{sc | Twin(S↓sc) |= ¬CP (Ξ,Ψ)}

and obtain the set DiagSC as a result. This is achieved without the need

of considering each possible configuration independently.

The algorithm in Figure 4.9 gives a high-level view of the general ap-

proach. The idea is to collect all the sets of sensors for which S↓sc is not

diagnosable (badConfigs in Line 1), and then complement the set (Line

5). The call to the model-checker looks for a violation of φ, in this case

a critical pair, caused by one of the unexplored configurations (Line 3).

If no violation is found, then all the sensor configurations for which the

check fails have been excluded, and the (symbolic representation of the)

complement set is returned (Line 5). Otherwise, the bad sensor configu-

ration is extracted from the counterexample, generalized by assumption of

monotonicity to a set of bad configurations (Line 7), and added to the set

to be blocked (Line 8).

112

CHAPTER 4. DIAGNOSABILITY ANALYSIS

The specific algorithm we use in the implementation (see [Bozzano et al.,

2015d]) improves on this algorithm by using the bad configurations to

directly strengthen the transition relation, instead of integrating them into

the proof obligation. Furthermore it efficiently exploits the monotonicity

in the lattice by exploring it via cardinality constraints.

The approach is close in spirit to the inverse method [Cimatti et al.,

2008, André et al., 2009]. The main difference is in the fact that, because

of monotonicity, it is sufficient to block bad configurations using the clause

obtained by dropping the negated literals.

Identifying DiagMinSC and DiagOptSC The result of the parameter syn-

thesis call is a symbolic formula over the variables in A representing the

set DiagSC. Various symbolic reasoning methods can be used to compute

the sets of interest. A simple yet efficient method to extract DiagMinSC

is to use a sat solver to enumerate all minimal models of the returned

expression; we chose this method for our implementation described in Sec-

tion 4.5. Based on this list, and assuming monotonic costs, DiagOptSC

can be obtained by filtering all minimal solutions that do not have opti-

mal cost. Other approaches to directly compute cost-optimal solutions in

combinatorial problems are for instance discussed in [Bjørner et al., 2015].

4.4.3 Cost-Driven Parameter Synthesis

A third possible approach is the extension of parameter synthesis with a

notion of costs, and use this to directly compute DiagMinSC, DiagOptSC,

or also DiagParSC, instead of computing the complete set of DiagSC.

Cost-driven parameter synthesis is an open research problem that has

not received much attention so far. In [Bittner et al., 2014a] we investi-

gated Pareto-optimal parameter synthesis with two-dimensional cost func-

tions. We consider a generic parameter synthesis problem with Boolean

113

4.4. SYNTHESIS: ALGORITHMS

parameters and an invariant property as a proof obligation. The parameter

valuations are monotonic w.r.t. property satisfaction: if the proof obliga-

tion holds for one particular valuation, it holds for all of its supersets in

terms of parameters being set to “true”. Furthermore a two-dimensional

cost function is assumed as given, which too is monotonic: supersets of

valuations have a higher cost on both cost dimensions. The synthesis goal

is to find the Pareto-optimal parameter valuations.

The monotonicity assumptions apply also for diagnosability: property

satisfaction is upward monotonic w.r.t. the addition of new sensors, and

monotonicity of cost functions is also common in practice. As only a very

restricted subset of our diagnosability definitions can be mapped to this

parameter synthesis framework, here we report only the main findings and

discuss possible future work to support a wider set of diagnosability prob-

lems.

The approach explores the lattice induced by the cost functions in an

enumerative way top-down, i.e. starting from the most expensive valuation.

The cost dimensions are optimized in alternation, by fixing one dimension

and trying to find the lowest possible cost on the other dimension. The

monotonicity on costs and on the parameters are used to prune the search

space.

The implementation is based on a parameterized transition system sim-

ilar to the parameterized twin-plant, representing in a symbolic way all

possible instantiations of the “ground” transition system. The choice of

parameter assignments is moved inside the proof obligation, and the model-

checker can always reason on the same system. This property, the fact that

we proceed top-down and that we have invariant proof obligations allows

us to exploit an essential feature in the IC3-based implementation. When

a property holds, IC3 will return an inductive invariant, represented sym-

bolically, that is an over-approximation of the reachable states, in our case

114

CHAPTER 4. DIAGNOSABILITY ANALYSIS

of the parameterized transition system. This inductive invariant can be

directly used with a sat solver to check for property violations of cheaper

candidates, instead of calling the model-checker for verifying if a candidate

is a valid solution. If it doesn’t admit a violation of the proof obligation,

then the selected valuation is indeed valid as the check was done with

an over-approximation of the reachable states. Else, we switch back to

standard model-checking calls.

Part of the experiments include ExactDel diagnosability checks with

an empty context (system-diagnosability) and a propositional diagnosis

condition. The corresponding proof obligation is reduced to an invariant

by adding a counter to the transition system that measures the delay up

to divergence of the observable signals. The proposed technique is com-

pared to the standard inverse method, which enumerates bad valuations

and prunes the search space using the monotonicity of the valuations while

ignoring costs. The performance gain is in orders of magnitude, which

clearly shows the potential of the approach. Note that this technique can-

not be applied to the “bottom-up” best-first approach of [Grastien, 2009],

which is falsification-focused; it tries to first identify non-diagnosable solu-

tions until it hits diagnosable ones, and thus counterexample traces instead

of inductive invariants are returned by the model-checker.

To support all diagnosability checks presented in this chapter we will

try to extend the approach in future work to generic LTL properties. LTL

reasoning using IC3 is an active research area. Here we rely on inductive

invariants in order to quickly prune the search space, but a similar concept

is not present for many IC3 based LTL algorithms. This would need to be

identified and implemented before we can apply the developed parameter

synthesis approach to our diagnosability problems.

115

4.5. EXPERIMENTAL EVALUATION

DiagSC DiagMinSC DiagOptSC DiagParSC

Cost-Driven Enumerative Section 4.4.1

Symbolic
Param-Synthesis Section 4.4.2

Cost-Driven Param-Synthesis Section 4.4.3

Figure 4.10: Synthesis of all configurations: Schematic view

4.4.4 Schematic Overview

In this section we discussed several possibilities to solve the synthesis prob-

lem. The choice of algorithm depends on the type of problem that needs

to be addressed and on whether we want to use symbolic or enumerative

techniques. Figure 4.10 provides a schematic overview of the dimensions

that we take into account in this chapter. Cost-driven parameter synthesis

is still mostly an open research problem. For this reason, in the next sec-

tion, we focus the experimental evaluation on the cost-driven enumerative

approach and on the parameter-synthesis one.

4.5 Experimental Evaluation

This section describes the experiments performed to evaluate the feasibility

of the proposed techniques in solving the verification and synthesis prob-

lems. We first describe the implementation of the algorithms, then the

system models used for the tests, the experimental set-up, and finally the

results.

4.5.1 Implementation

For verification of diagnosability we use the LTL model-checking proce-

dures provided by nuXmv, a symbolic model-checker for infinite-state

transition systems [Cavada et al., 2014]. The synthesis algorithms pro-

posed in previous sections have been implemented within xSAP [Bittner

116

CHAPTER 4. DIAGNOSABILITY ANALYSIS

et al., 2016a], a platform for Model-Based Safety Assessment (MBSA),

which relies on nuXmv as a back-end. We use MathSAT [Cimatti et al.,

2013b] for the sat-solving steps. The implementation is also at the core

of the diagnosability functionalities of the COMPASS toolset [Bozzano

et al., 2009, COMPASS, 2016], a design environment for system-software

co-engineering. We implemented three synthesis algorithms: Symbolic,

Enumerative-Minimal, and Enumerative-Optimal. All implemen-

tations work on the parameterized twin-plant. The enumerative algorithms

enforce the choice of a sensor configuration through the proof obligation.

The Symbolic algorithm computes DiagMinSC by first computing

DiagSC and then minimizing the result. To compute DiagSC it maps the

diagnosability problem to the parameter synthesis framework of nuXmv

and calls nuXmv’s procedures off-the-shelf. Specifically, the procedure we

call implements the approach of [Bozzano et al., 2015d], which explores

the lattice of parameter valuations using cardinality layers. In the case of

diagnosability this means exploring the lattice of sensor configurations top-

down, i.e. starting with all sensors, then exploring all candidates with one

sensor less, and so on. As soon as a non-diagnosable configuration is found

in such a cardinality layer it is dropped from the search space, along with

all its subsets. The synthesis procedure returns a symbolic representation

of DiagSC. We use the sat solver to enumerate all minimal solutions,

along with their costs.

The Enumerative-Minimal algorithm tries to directly compute Di-

agMinSC using the enumerative best-first approach with sensor config-

uration minimality as an optimization criteria. At each iteration we use

a sat solver to compute a minimal hitting-set sc over the sets of sensors

obtained by getObsReq() for all critical pairs found so far, excluding any

solutions that have already been identified along with, by monotonicity,

their supersets. We remark that sc must be a hitting set, because any-

117

4.5. EXPERIMENTAL EVALUATION

thing else has already been proven not to be diagnosable. Furthermore we

require it to be a minimal hitting-set, else it could happen that we obtain a

non-minimal solution. If the candidate is diagnosable it is added to the set

of minimal solutions. If not, getObsReq() is executed on the critical pair,

the disambiguating observables stored in a symbolic representation, and

the next iteration is started. The algorithm continues until the solutions

identified so far represent all minimal hitting-sets.

The Enumerative-Optimal algorithm is similar to Enumerative-

Minimal, but uses as an optimization criteria the sum of costs of each

individual sensor and aims thus at directly computing DiagOptSC. The

implementation uses a priority-queue to which candidates are pushed on-

demand. At each round a candidate sc with lowest cost is retrieved from

the queue and it is checked whether it contains at least one sensor needed

to disambiguate all critical pairs found so far, i.e. whether it is a hitting-

set of all observational requirements. If yes, diagnosability is checked for

sc. If no, then for each disambiguating observable o of the critical pair not

covered by sc, a new configuration sc ∪ o is added to the queue, which is

then polled again. If the diagnosability check fails, the priority queue is

updated the same way, adding one new sc′ = sc ∪ o for each o that can

disambiguate the new critical pair. The algorithm iterates until the queue

contains no more candidates with optimal cost.

For the two enumerative algorithms we implemented the getObsReq()

function by parsing the critical pair and collecting all observables that

diverge in at least one point of the trace. For BoundDel and ExactDel

we furthermore check whether the additional observables disambiguate the

two traces “in time”, by asserting that the critical pair at hand is not

a critical pair for the chosen alarm condition and the augmented sensor

configuration. This is done by asking the model-checker whether the pair

of traces is also a critical pair for one of the new sensor configurations.

118

CHAPTER 4. DIAGNOSABILITY ANALYSIS

4.5.2 Benchmark Set

To investigate the performance of diagnosability verification and synthesis

with the described algorithms we used the following benchmark models.

Some are shared with the experimental evaluation of the TFPG algorithms,

but due to the underlying framework of diagnosability we interpret time in

them differently. The context definitions, if any, are all expressed by safety

properties. The diagnosis conditions are mostly monotonic (permanent

faults), with exception of models Orbiter, RoverSmall, RoverBig

and wbs.

acex and autogen are directly taken from the TFPG benchmarks.

The goal is to diagnose whether certain states have been visited, based on

partial observability of the state vector.

Orbiter, RoverSmall, and RoverBig are models of an orbiter and

of a planetary rover developed in the OMCARE project [Bozzano et al.,

2008, 2011]. These models are taken from the benchmarks in [Bittner et al.,

2012]. They describe the functional level, with various relevant subsystems

including sensors and failure modes. The diagnosis property used for the

benchmarks is whether a component has failed.

CassiniDiscrete, CassiniDiscrete2, and CassiniInfstate are vari-

ants of the Cassini model in the TFPG chapter. CassiniInfstate is an

infinite-state variant, using reals to describe propellant levels in tanks and

flow magnitudes in the pipes. Available observations are commands, space-

craft acceleration, and flow magnitude in various pipe segments. The di-

agnosis condition is whether the helium tank has a leak. A context is used

to limit the system to valve configurations of interest.

c432 is a Boolean circuit used as a benchmark in the DX Competi-

tion [Feldman et al., 2010], whose gates can permanently fail (inverted

output). The observables are the inputs and output values for the gates

119

4.5. EXPERIMENTAL EVALUATION

of the circuit. The property is whether a single gate of a certain group

of gates is faulty. A context specification is used to limit the analysis to

single fault cases.

Guidance is also taken from the TFPG chapter. Certain actions and

intermediate milestones are the observables. The diagnosis condition is

passing a specific state of the procedure.

PowerDist is taken from the TFPG chapter as well. Commands to the

system, power availability in various parts and broken-status of switches

are the observables. The diagnosis condition here is the failure of a specific

power line; we use a context to avoid triggering of masking failures.

The wbs and x34 use cases are reused as well. Contexts are used to ex-

clude masking faults and to model assumptions on the external controller.

Basic indicators on the size of the models are given in Table 4.2: number

of Boolean variables, number of real-valued variables, number of reachable

states (where it was feasible to compute them), diameter of the state space

(minimum number of steps to reach any reachable state starting from any

initial state), and number of observables. Note that these metrics refer

to the original plant, not to the (parameterized) twin plant. The com-

plete experiments are available at http://es.fbk.eu/people/bittner/

phd_diag_expeval.tar.bz2.

4.5.3 Experimental Set-Up

With the experimental evaluation we want to investigate feasibility, scal-

ability w.r.t. alarm patterns, delay bounds, and number of observables,

and specifically for synthesis, comparison of symbolic and enumerative ap-

proaches to synthesis. To this aim we created several instances for each

use case, with variations in alarm pattern, delay bound, and sets of ob-

servables, resulting in a total of 589 instances. As especially for synthesis

we want to focus on cases that admit at least some solutions, all these

120

http://es.fbk.eu/people/bittner/phd_diag_expeval.tar.bz2
http://es.fbk.eu/people/bittner/phd_diag_expeval.tar.bz2

CHAPTER 4. DIAGNOSABILITY ANALYSIS

model # bool var # real var # reach diam # obs

acex 31 0 219.4 96 21

autogen 99 0 212.0 20 20

guidance 98 0 247.5 70 62

powerdist 83 0 211.0 31 41

c432 356 0 n.a. n.a. 196

orbiter 39 0 218.9 33 15

roversmall 60 0 245.9 31 20

roverbig 158 0 n.a. n.a. 62

cassini 176 0 244.2 8 58

cassini2 265 0 213.3 18 56

cassini-inf 122 30 n.a. n.a. 96

x34 549 0 n.a. n.a. 491

wbs 1179 0 n.a. n.a. 167

Table 4.2: Model Properties

instances are diagnosable.

For the experiments we used a cluster where each node has 100GB of

RAM and a 12-core CPU running at 2.67GHz. Each test was run on a

single core, with a new invocation of the model-checker. Timeout was set

at 900 seconds, memory cap to 16GB. Parallel test executions were limited

to three to limit time skew.

4.5.4 Results: Verification

The results of the benchmarks show the feasibility of performing verifi-

cation of diagnosability via symbolic LTL model-checking. Only 22 out

of 589 use cases timed out, all belonging to RoverBig, especially with

BoundDel and ExactDel. In all other cases the model-checker was

able to prove diagnosability.

A clear increase in runtime can be observed when using more restrictive

alarm patterns. In Figure 4.11a the run-times of FiniteDel instances are

121

4.5. EXPERIMENTAL EVALUATION

compared to all BoundDel instances with same characteristics (model,

diagnosis condition, and observables) except bound; for BoundDel vs

ExactDel the situation is very similar, and a considerable increase in

difficulty can be observed for each case. As a consequence one might need

to trade-off verification runtime versus guarantees on diagnosability. For

instance, in rapid prototyping sessions response time is usually more im-

portant, and one could choose to verify FiniteDel at first, considering

the delay bound only later on during the design process.

A similar situation can be observed when increasing the delay bound.

This has a recognizable effect on verification runtime in most models, es-

pecially for ExactDel. To study these trends in detail we selected two

models, one with a low increase in runtime, one with a higher one, and cre-

ated additional test instances by increasing the delay bound from 0 to 30,

by increments of 1. The results are shown in Figure 4.11b and reflect the

situation for the other benchmarks. Interestingly, there is no clear change

when going from non-diagnosable to diagnosable; cassini inf becomes di-

agnosable at bound 3 (both patterns); cassini dis2 becomes diagnosable

at bound 19 for BoundDel, and is not diagnosable with any bound in

ExactDel. This result shows that proving diagnosability for a lower

bound is potentially easier, and that thus, by monotonicity of diagnosabil-

ity w.r.t. the delay bound, a strategy based on iterative deepening might

pay off for proving diagnosability with a higher bound.

Finally, no correlative pattern between number of observables and ver-

ification runtime emerged from the tests.

4.5.5 Results: Synthesis

Synthesis of observables is as expected more difficult, but still feasible,

also on the industrial models. The results show the feasibility and in some

regards advantage of using an off-the-self implementation of parameter

122

CHAPTER 4. DIAGNOSABILITY ANALYSIS

1e−01 1e+00 1e+01 1e+02 1e+03

1e
−

01
1e

+
00

1e
+

01
1e

+
02

1e
+

03

FiniteDel

B
ou

nd
D

el
TO
MO

TO M
O

(a) FiniteDel vs BoundDel

(b) Effect of increasing delay bound.

Figure 4.11: Verification run-times with different patterns and delay bounds.

123

4.5. EXPERIMENTAL EVALUATION

synthesis as opposed to a custom algorithm for synthesis of observables.

They also show the relevance of the cost function for the enumerative

approach.

As a preliminary remark, note that in the results for Symbolic, the

time to extract the minimal solutions from the expression returned by the

parameter synthesis engine is for all runs less than 0.2s.

Significant performance differences can be observed between the sym-

bolic method and the enumerative algorithms. When the goal is to com-

pute DiagOptSC, one can use Symbolic and optimize afterwards, or

use Enumerative-Optimal to compute the solutions directly. The per-

formance of the enumerative approach as compared to the symbolic one

however greatly depends on the specific costs assigned to the sensors.

For the instances in Figure 4.12a we fixed for every observable of each

model a random cost between 1 and 8. In this case the enumerative method

clearly outperforms the symbolic one, because the search is quickly driven

towards the optimal solutions and the cost bound avoids further explo-

ration of the search space.

However, when using a flat cost for all sensors (every sensor has cost

1), the performance of Enumerative-Optimal is comparable to Sym-

bolic (see Figures 4.12b and 4.12d), despite the fact that Symbolic also

computes all minimal solutions and thus potentially provides a more useful

result to the engineer. Flat costs are used when the goal is to optimize the

cardinality of the sensor configurations, that is to compute the configura-

tions that use the least number of sensors. This is the case, for instance,

when each sensor has the same weight or power consumption, and the goal

is to minimize overall weight or power consumption. For synthesis be-

havior, flat costs mean that the enumerative algorithm, in the worst case,

enumerates all candidates in each cardinality layer, up to the layer where

the first solution is found. This can work well in cases where solutions have

124

CHAPTER 4. DIAGNOSABILITY ANALYSIS

1 5 10 50 100 500 1000

1
5

10
50

10
0

50
0

Symbolic

E
nu

m
er

at
iv

e
(O

pt
im

al
)

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

TO

MO

TO M
O

(a) Symb vs. Enum-Optimal

1 5 10 50 100 500 1000

1
5

10
50

10
0

50
0

Symbolic

E
nu

m
er

at
iv

e
(O

pt
im

al
, f

la
t c

os
ts

)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

TO

MO

TO M
O

(b) Symb vs. Enum-Optimal (flat costs)

1 5 10 50 100 500 1000

1
5

10
50

10
0

50
0

Symbolic

E
nu

m
er

at
iv

e
(M

in
im

al
)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

TO

MO

TO M
O

(c) Symb vs. Enum-Minimal

0 200 400 600 800 1000 1200 1400

Number of solved instances

T
im

e
(s

ec
)

1

10

50

100

300

600

900

Enumerative (Minimal)
Enumerative (Optimal, flat costs)
Symbolic
Enumerative (Optimal)

(d) Comparison by solved instances

Figure 4.12: Comparison of run-times (seconds) for symbolic vs. enumerative synthesis

(TO: out of time, MO: out of memory; blue: diagnosable instances; red:

non-diagnosable instances). Total number of instances: 1504; Symbolic solved: 1224;

Enumerative-Optimal solved: 1421; Enumerative-Optimal (flat costs) solved:

1181; Enumerative-Minimal solved: 764.

125

4.5. EXPERIMENTAL EVALUATION

very low cardinality, but quickly degrades when the first solutions are only

in higher layers. Indeed, the use-case CassiniDiscrete2 has optimal-cost

solutions very low in the lattice (cardinality 1) and the algorithm converges

quickly after only a few iterations. On the other hand, the use-case c432

has only one solution, but of cardinality 15, and needs significantly more

iterations to converge, if terminating at all.

Furthermore, Figures 4.12c and 4.12d show that the symbolic approach

is better suited at computing all minimal solutions. Profiling of the al-

gorithms’ behavior shows that the symbolic method often needs to iden-

tify much fewer critical pairs for convergence. The reason seems to be

that through the top-down exploration guided by cardinality layers, the

symbolic method identifies “tighter” critical pairs, where fewer observ-

ables diverge along the traces, resulting in a higher pruning effect through

monotonicity of diagnosability.

In terms of how the alarm pattern affects synthesis runtime, all three al-

gorithms show an increase in difficulty going from FiniteDel to BoundDel

as in verification tests. However, the choice between BoundDel and

ExactDel does not seem to be a relevant factor for resulting runtime. For

all three algorithms a similar effect of delay bound on synthesis runtime

can be observed as for verification, in that the problem tends to become

more difficult with higher bounds.

As opposed to verification, adding more observables in the case of syn-

thesis has a clear effect on runtime for all synthesis algorithms. The sym-

bolic method and the enumerative method computing all minimal solutions

show steep increases in runtime for most use cases. The symbolic method

scales a bit better on average, reflecting the results in Figure 4.12. The

Enumerative-Optimal method exhibits a more modest increase in run-

time adding more observables. Interestingly, it is in some cases very sen-

sitive to changes in the search and solution space. It shows in general also

126

CHAPTER 4. DIAGNOSABILITY ANALYSIS

(a) incrementally enlarging set of observables

(b) min/mean/max runtimes for samples of each cardinality

Figure 4.13: Effect of number of observables on synthesis runtime (wbs model,

enumerative algorithm with costs).

an increase in runtime with more observables, but when the additional ob-

servables allow new optimal solutions with lower cost, the convergence can

improve significantly. This behavior can be seen for instance for the wbs

model in Figure 4.13a. These samples are from the additional benchmarks

127

4.5. EXPERIMENTAL EVALUATION

described in the next paragraph; they are incremental in the sense that

every sample has a strict superset of the observables of the predecessors.

To test how the absolute number of observables relates to runtime we

took two models, CassiniInf and wbs and computed for each 15 series of

incremental subsets of observables (435 use cases for CassiniInf and 480

for wbs in total). We thus obtained, for each use case, 15 samples of observ-

able configurations for various cardinality layers. Costs are fixed upfront

between 1 and 8 for each sensor. For each sample we ran the three al-

gorithms to synthesize all configurations that are FiniteDel-diagnosable.

The results, which are also included in the plots of Figure 4.12, show that

the run-times of all three algorithms has little relation to the absolute

number of observable. This can be seen for instance in Figure 4.13b, which

shows the minimum, maximum, and average runtime for Enumerative-

Optimal at each cardinality level. The average runtime steadily increases

with more observables, but there are large differences between the min-

imum and maximum values at each cardinality. The run-times increase

faster for the other two algorithms, but the situation is similar. This sug-

gests that, rather than the absolute number of observables, it is important

how the solution space is positioned in the search space.

Finally, we would like to remark the importance of the efficiency of

the Symbolic algorithm. It shows that using generic parameter synthesis

procedures for monotonic problems as opposed to specific algorithms for

synthesis of observables does pay off in terms of performance. The map-

ping makes it also possible to directly exploit any future advancements in

parameter synthesis, which is a more generic problem and thus receives

broader attention from the research community. The ability to efficiently

compute all (minimal) diagnosable solutions is also significant as it directly

enables selection criteria that go beyond monotonic cost functions. For in-

stance, solutions that are optimal w.r.t. a non-monotonic cost function can

128

CHAPTER 4. DIAGNOSABILITY ANALYSIS

be extracted from the symbolic expression returned by parameter synthesis

by using a pseudo-Boolean constraint solver or any other reasoning engine

that is able to deal with costs natively.

4.6 Related Work

Since the seminal work of [Sampath et al., 1995], diagnosability has been

the subject of a large body of works, both for verification and for synthesis.

In the following we compare the proposed approach to these works in terms

of framework, approaches to verification, and approaches to synthesis.

4.6.1 Frameworks for Diagnosability

The framework adopted in this chapter is highly expressive: it encom-

passes finite and infinite-state systems, temporally extended conditions to

be diagnosed, various forms of delay, and temporally extended diagnosis

contexts to exclude unrealistic scenarios from the analysis. It is therefore

possible to embed most of the other frameworks for diagnosability, which

are specialized to subsets of these features, within it.

As a first remark, notice that the works in [Sampath et al., 1995, Jiang

et al., 2001, Yoo and Lafortune, 2002b, Jiang and Kumar, 2002, Cimatti

et al., 2003, Jéron et al., 2006, Rintanen and Grastien, 2007, Biswas et al.,

2010, Ye and Dague, 2010, Madalinski et al., 2010, Li et al., 2015, Boussif

and Ghazel, 2015] rely on the hypothesis of finite-state plant. An excep-

tion are the works in [Tripakis, 2002, Altisen et al., 2006, Xu et al., 2010,

Biswas et al., 2006, Daigle et al., 2009, Bayoudh and Travé-Massuyès, 2014,

Bresolin and Capiluppi, 2013, Di Benedetto et al., 2011], which work with

dense-time models, and in [Morvan and Pinchinat, 2009, Chédor et al.,

2014, Cabasino et al., 2012], which explicitly deal with specific classes

of infinite-state transition systems. Dense-time modeling frameworks are

129

4.6. RELATED WORK

out-of-scope for the present chapter, where we focus on discrete-time only.

However, it is worth noting that in some approaches a discrete abstrac-

tion is proposed to deal with hybrid automata. In [Bayoudh and Travé-

Massuyès, 2014], for instance, a hybrid automaton is abstracted to a purely

discrete model in a way that preserves certain diagnosability properties of

the original automaton. On the resulting abstraction then any algorithm

for finite-state systems can be used.

By adopting LTL contexts to restrict the set of traces being considered,

we can in principle enforce also fairness constraints on these traces and

thus investigate diagnosability under fairness assumptions on the transition

system. The use of fairness constraints is relevant only for FiniteDel,

where we do not fix an a-priori bound for diagnosis. However, as noted in

Section 4.1.2, the critical pair method in the case of such constraints can

be used only for falsification and not for verification.

Classical approach and trace diagnosability

Most of the works on diagnosability refer to the framework of [Sampath

et al., 1995], for instance [Jiang et al., 2001, Yoo and Lafortune, 2002b,

Rintanen and Grastien, 2007, Morvan and Pinchinat, 2009, Biswas et al.,

2010, Ye and Dague, 2010, Madalinski et al., 2010, Cabasino et al., 2012,

Chédor et al., 2014, Li et al., 2015]. In these works, diagnosability requires

detection of a fault event within a finite number of steps; a counterexample

is a pair of infinite traces where one contains the fault event, the other one

does not, and both produce the same observations ad infinitum.

On one hand our frameworks differs in that it uses temporally extended

fault models and has various notions of delay. Furthermore, the definition

of diagnosability given in [Sampath et al., 1995] might be stronger than

necessary, since it is defined as a global property of the plant. Imagine the

situation where a few traces are not diagnosable because they represent a

130

CHAPTER 4. DIAGNOSABILITY ANALYSIS

scenario that is possible but not realistic, or to be excluded by assumption.

The presence of these traces breaks system diagnosability. By using the

concepts of trace diagnosability we redefine diagnosability from a global

property expressed on the plant to a local property on single traces. With

a context specification we can then easily exclude these traces, as shown

in Section 4.1, and better characterize the scenarios where we require di-

agnosability.

In [Ye et al., 2016] the notion of manifestability is introduced; a fault is

manifestable if there is at least one trace on which it can be diagnosed. In

some sense it takes trace-diagnosability to the extreme and tries to check

whether diagnosis is ever possible.

Temporally extended diagnosis conditions

Extensions of the framework of [Sampath et al., 1995] that model faults as

temporally extended properties instead of simple events are presented in

[Jiang and Kumar, 2002, Jiang et al., 2003a, Jéron et al., 2006, Bozzano

et al., 2014a]. In the present framework we adopt the notion of diagnosis

condition of [Bozzano et al., 2014a].

The most basic extension is described in [Jiang et al., 2003a], which

requires an alarm to be raised after an occurrence of k faults of the same

fault class; the authors also describe specialized checking procedures. The

framework of [Jéron et al., 2006] is more expressive and uses diagnosis

conditions of the form Oβ, where β is a safety property. The approach is

less general than our fault models which use generic Past-LTL. It can for

instance not verify whether a diagnoser will be able to generate the alarm

for all occurrences of a temporary condition along any trace, just for fixed

number of occurrences.

Finally, in [Jiang and Kumar, 2002] a fault is a generic LTL property.

This framework is not comparable to ours. On one hand, full LTL is

131

4.6. RELATED WORK

obviously more expressive than LTL with only past operators. However,

the LTL fault formula is evaluated only at the first point of the trace and

not at every point of it as in our case.

Delay bound requirements

Definition 15 is a generalization of Sampath’s definition of diagnosability:

Theorem 18. [Bozzano et al., 2015c] Let S be a plant such that there is

no cycle of unobservable events, and let p be a propositional formula, then

p is diagnosable (as defined in [Sampath et al., 1995]) in S iff there exists

d such that BoundDel(◦,Op, d) is diagnosable in S.

This notion of delay is used in all related works on finite-state systems,

where it is equivalent in asking whether the condition β is FiniteDel

diagnosable. In fact, the counterexamples that are being looked for in the

related work match our definition of FiniteDel critical pairs.

In the present chapter we explicitly distinguish between BoundDel and

FiniteDel in order to study specialized proof methods, which becomes

important when going beyond finite state spaces and system-diagnosability.

Furthermore, by defining diagnosability on individual points of individual

traces and allowing non-monotonic diagnosis conditions, the delay require-

ment must be evaluated in every one of those points instead of only the

first one where the condition occurs. We also allow the specification of

ExactDel alarm conditions, a new type of delay constraint introduced

in [Bozzano et al., 2014a].

Dynamic and uncertain observations

Instead of operating with a static set of observables, in [Cassez et al.,

2007] and [Wang et al., 2008] it is assumed that sensors can be enabled

and disabled during execution of the plant to save operating costs. The

132

CHAPTER 4. DIAGNOSABILITY ANALYSIS

goal is to minimize the number of active sensors at any time during the

plant’s run, and turn on only those that are strictly necessary to preserve

diagnosability of the fault event. In the present chapter we only consider

a static choice of observations (sensors are always switched on).

Diagnosability w.r.t. masks over observable events is a way to model

uncertainty in observations and is discussed in various works [Jiang et al.,

2003b, Cassez et al., 2007, Su et al., 2016]. In [Su et al., 2016] these

masks are described as logically uncertain observations, i.e. observations

that cannot be discriminated. The authors describe also the class of tem-

porally uncertain observations, that is when the order in which observable

events were generated is not clear.

In our framework the observations are regarded as certain, but to some

extent these uncertainties can be modeled also here. To realize logically

uncertain observations one could introduce new observable signals that are

functions over the original observables plus possibly an uncertainty factor

such as sensor faults or amount of signal noise. Also temporally uncertain

observations can in principle be modeled in our framework by using buffers

that non-deterministically delay the output signal. Furthermore, by using

the synthesis procedures described in the present work we can also reason

over these uncertain observable signals to find the most cost-efficient level

of sensor precision that still guarantees diagnosability.

Distinguishing sets of states

The framework in [Cimatti et al., 2003] deals with finite-state systems,

and expresses the diagnosis condition as a non-temporal pair of conditions

to be separated with delay 0; in [Bittner et al., 2012] and [Boussif and

Ghazel, 2015] it is extended with different notions of delay. This approach

is incomparable with the choices made in the present chapter. On one hand,

by using temporal specifications we can obtain richer fault models, and we

133

4.6. RELATED WORK

also have several ways to express delay requirements; but then again we do

not express diagnosability as being able to distinguish a pair of properties.

The focus here is on the diagnoser that one will eventually build, and

thus on the condition for which it will need to generate an alarm. The

approach chosen in this chapter was found to be simpler and yet adequate

in practical cases. The xSAP and COMPASS tool-sets for instance are

based – as far as diagnosability is concerned – on the theoretical framework

expressed in this chapter. A similar motivation applies also to use an LTL

context referring to the traces of the original plant, as opposed to referring

directly to twin-plant traces as done in [Cimatti et al., 2003]; indeed trace

diagnosability refers to single traces, not pairs of traces.

4.6.2 Verification of Diagnosability

Verification of diagnosability has been studied in a variety of works. In

[Sampath et al., 1995] the classical definition of diagnosability for DES

and an algorithm to check it are given, based on building a diagnoser for

the system under observation. The diagnoser contains cycles of ambiguous

belief states if and only if the condition is not diagnosable.

Since the diagnoser method is exponential in the number of system

states, in [Jiang et al., 2001] the twin-plant approach is introduced as a

more efficient alternative that is polynomial in the number of states. The

key idea is to avoid building the diagnoser and instead only compare pairs of

indistinguishable infinite traces by exploring the twin-plant. The system

is diagnosable iff no such pair exists. In [Yoo and Lafortune, 2002b] a

similar method is described. This twin-plant based approach has become

the standard way to study diagnosability. Variations of the method have

been studied in [Jéron et al., 2006, Cabasino et al., 2009, Morvan and

Pinchinat, 2009, Madalinski et al., 2010, Cabasino et al., 2012, Chédor

et al., 2014].

134

CHAPTER 4. DIAGNOSABILITY ANALYSIS

In order to avoid using ad-hoc constructions as in the methods above,

in [Jiang and Kumar, 2002] the problem of diagnosability is reduced to

LTL model-checking. This strategy is also adopted in [Cimatti et al.,

2003], which furthermore uses symbolic techniques to address the problem

of state explosion; this is the general approach that we also adopt in the

present chapter and validate empirically. Another symbolic approach to

diagnosability to deal with state explosion, based on the twin-plant, is also

advocated in [Rintanen and Grastien, 2007], which proposes a sat encoding

for falsification of diagnosability, similar to bounded model-checking.

In [Grastien, 2009] a specialized backward-directed algorithm is pro-

posed starting from an ambiguous state and trying to reach an initial state.

The intuition here is that when a fault occurs and it quickly produces

observable symptoms that cause divergence of traces, a backward search

should reach a fix-point much sooner than a corresponding forward search,

thus saving computation time. The same idea is reformulated in [Li et al.,

2015].

Compositional approaches that aim at dealing with the complexity of

bigger systems are described in [Schumann and Pencolé, 2007, Ye and

Dague, 2010], where the results of local twin-plant checks for individual

components are integrated to infer the global diagnosability property. In

comparison, we adopt a monolithic approach and try to address state-

explosion via symbolic model-checking.

In this chapter we have shown that when increasing the expressiveness

of the diagnosability framework, the standard twin-plant method cannot

be used in all cases as a verification method (though it always works for

falsification). This opens interesting opportunities for future research.

135

4.6. RELATED WORK

Diagnosability via Temporal-Epistemic Logic

Epistemic logic has been used to describe and reason about knowledge

of agents and processes. There are several ways of extending epistemic

logic with temporal operators, and in [Bozzano et al., 2014a] the logic

KL1 [Halpern and Vardi, 1989] is used to reason about an ideal diag-

noser. KL1 extends LTL with the epistemic operator K. The intuitive

semantics of Kβ is that the diagnoser knows, by only looking at the ob-

servable behavior of the system, that β holds in the current execution.

The definition of the semantics of K can take into account multiple aspects

such as observability, synchronicity and memory. A semantics for ASL

based on Temporal Epistemic Logic (TEL) has been described in [Bozzano

et al., 2015c], providing a sound and complete technique for performing

diagnosability testing using Temporal Epistemic logic model-checking. For

example, the diagnosability test for ExactDel(A, β, n) consists of the

KL1 formula G(β → XnKY nβ), stating that whenever β occurs, exactly

n steps afterwards, the diagnoser knows that n steps before β occurred.

Since K is defined on observationally equivalent traces, the only way to fal-

sify the formula would be to have a trace in which β occurs, and another

one (observationally equivalent at least for the next n steps) in which β did

not occur; but this is in contradiction with the definition of diagnosability

as given in Definition 14.

In many practical situations for which the critical pairs approach is com-

plete for diagnosability verification, the twin-plant construction presents

several advantages over the TEL encoding. First, the level of maturity of

tools and techniques for LTL model-checking is significantly higher than

for TEL. This is particularly true for what concerns SAT/SMT based algo-

rithms for infinite-state systems that TEL model-checkers are mostly lack-

ing, and when available support only some particular semantics [Cimatti

136

CHAPTER 4. DIAGNOSABILITY ANALYSIS

et al., 2016], or solve a problem that is as hard as building the diagnoser

for the system, thus defeating the purpose of performing the diagnosabil-

ity test as a validation step. Second, encoding the concept of context in

the specification is much more difficult in the TEL framework where the

context must be embedded within the plant model, in order to provide a

different interpretation of the K operator. Third, the twin-plant framework

provides a clean way to go from verification to synthesis. On the contrary,

in the TEL framework, the synthesis problem would need to be encoded as

a problem of finding an agent that satisfies the property. That, however,

is a problem that has never been studied.

4.6.3 Synthesis for Diagnosability

Also synthesis for diagnosability has been studied in various works, mostly

for finite-state systems, and usually with non-symbolic (explicit-state) ap-

proaches.

In [Debouk et al., 2002] an optimal way to navigate the search space

of sensor configurations is presented in search for a cost-optimal solution.

A-priori probabilities for a configuration to be diagnosable are used as a

bias to guide search. The approach is independent of the specific system

dynamics at hand, as it takes the diagnosability test as a black-box, but

has restrictive assumptions on the cost of configurations: any configuration

with cardinality k has lower cost than any configuration with cardinality

k+1, and within each cardinality layer, a total order in terms of costs exist.

In the present work we do not assume such restrictions, and the cost of a

configuration is simply the sum of the cost of each sensor.

In [Jiang et al., 2003b] two general algorithms are described for com-

puting optimal sensor sets for different observation problems. For diagnos-

ability, the authors rely on the verification approach of [Jiang et al., 2001].

The first strategy is top-down in that it checks for each sensor whether it

137

4.6. RELATED WORK

can be removed without breaking diagnosability. If so, the sensor is re-

moved. The second strategy is bottom-up; it adds sensors until the system

becomes diagnosable, then applies the first method. The result of both

procedures is one minimal sensor configuration.

In [Briones et al., 2008] the two algorithms of [Jiang et al., 2003b] are

improved by directly exploiting critical pairs to discover observability re-

quirements. The idea is the same as in Equation 4.1, except that in our

case a more generic definition is needed to account for all possible alarm

specifications. It is not described how to integrate this technique with an

efficient verification engine. In [Santoro et al., 2014] this idea of bottom-

up search with analysis of critical pairs is extended to identify all minimal

solutions. It does however not apply the minimization step (top-down)

and thus might check more configurations than necessary. The algorithm

iterates until all solutions have been enumerated.

Building on the idea of [Briones et al., 2008] of extracting observability

requirements from critical pairs, [Grastien, 2009] proposes to use best-

first search to identify a cost-optimal solution. The idea is to check the

best candidate at every turn. If it makes the system diagnosable, a cost-

optimal solution has been found; else, the observability requirements are

extracted from the critical pair and all candidates that do not satisfy them

are removed from the search space. LTL model-checking on the twin-

plant is proposed as a verification back-end, similar to [Cimatti et al.,

2003]; implementation strategies for managing the search space are not

discussed.

Our own previous work [Bittner et al., 2012] on synthesis for diagnos-

ability follows the framework of [Cimatti et al., 2003]. We introduced the

notion of parameterized twin-plant as a way to reason about diagnosability

under different observables using a single model; this is a central feature of

our approach, as it enables incrementality features in solvers across various

138

CHAPTER 4. DIAGNOSABILITY ANALYSIS

calls. Two algorithms are described. The first one corresponds to algorithm

Enumerative-Optimal of Section 4.5, except that we use different proof

obligations. The second one computes all diagnosable configurations and

minimizes afterwards; it is similar to the parameter-synthesis approach

proposed here, but does not exploit the monotonicity of the problem as

efficiently (see [Bozzano et al., 2015d]).

In [Bittner et al., 2014a] a symbolic approach for synthesis of Pareto-

optimal parameter assignments is presented, with synthesis of observables

for diagnosability as defined in [Bittner et al., 2012] as an application ex-

ample. It explores the lattice induced by cost functions top-down. The

efficiency of this approach relies on the reduction of diagnosability to in-

variant checking and the use of inductive invariants for fast reduction of

diagnosable sensor configurations. The approach is thus not directly ap-

plicable to our LTL formulation of the problem.

4.7 Summary

In this chapter we proposed a comprehensive approach to the problems of

verification of diagnosability and synthesis for diagnosability. We formally

defined an extended version of the problems, starting from expressive pat-

terns that take into account various forms of delay in the diagnosability

and the operating conditions. The adequacy of the critical-pair method to

verify diagnosability as the standard approach in the literature is studied

in detail. For many important fragments of the framework, the absence of

critical pairs is indeed a necessary and sufficient condition for diagnosabil-

ity, but in some cases it is only a necessary one.

As opposed to most related works, we rely in all cases on off-the-shelf

symbolic LTL model-checking as a way to identify critical pairs, prove the

absence thereof, and synthesize optimal sensor configurations, instead of

139

4.7. SUMMARY

implementing specialized procedures. This enables our approach to au-

tomatically benefit from any advancement made in this field, for both

finite-state and infinite-state transition systems.

We provide efficient implementations of two enumerative best-first al-

gorithms that analyze critical pairs to discover observability requirements;

the first one uses sensor cost as optimization criteria, the other one set-

inclusion. These two algorithms are compared to a symbolic off-the-shelf

implementation of parameter synthesis with support for monotonic prob-

lems.

With a comprehensive experimental evaluation based on realistic models

we also demonstrated the practical applicability of the proposed algorithms

to a variety of problems formulated with the new framework, for verification

and for synthesis. The performance of the proposed symbolic approach

to compute all diagnosable sensor configurations shows the feasibility of

optimization w.r.t. criteria going beyond (monotonic) cost functions.

There are many promising directions for future work. First we will

investigate a possible extension of the critical-pair method to falsify diag-

nosability, in order to cover also the fragments where the absence of such

pairs is only a necessary condition, possibly extending them to a notion

of “critical sets”. This will also include studying corresponding implemen-

tations, possibly based on LTL model-checking as opposed to epistemic

model-checking.

Second, we will extend the framework by relaxing some of the assump-

tions, to include a form of asynchronous composition between the diag-

noser, in the style of [Bozzano et al., 2015c], to allow for an asynchronous

integration in the overall system architecture. A very important concept is

also the one of bounded recall, of particular concern in systems with very

limited computational resources.

Third, we will consider lifting the proposed approach from the case of

140

CHAPTER 4. DIAGNOSABILITY ANALYSIS

transition systems to the case of hybrid systems, that integrate continu-

ous dynamics [Henzinger, 2000] and a logic such as HRELTL to express

requirements over continuous traces [Cimatti et al., 2015b]. We will adopt

some recent SMT-based techniques, that are becoming relevant for the

analysis of networks of hybrid automata [Cimatti et al., 2012, Mover et al.,

2013, Cimatti et al., 2015a]. With this step we will also harmonize the

time model with the TFPG framework which we also plan to update to

the hybrid setting; this will allow us to work on the same models with the

same interpretation of time.

Finally, we plan to investigate other forms of synthesis for diagnosabil-

ity, for example to find the minimum delay in an alarm condition. In many

practical situations, we are interested in knowing the minimum value of d

for which we have e.g. BoundDel diagnosability; this induces an associ-

ated optimization problem. A more complex problem is to synthesize the

individual sensors (e.g. choosing against which thresholds variables should

be monitored), driven for example by considerations based on the sensor

fault tolerance or noise tolerance.

141

4.7. SUMMARY

142

Chapter 5

Industrial Application

In this chapter we describe the application of the techniques presented

in the previous chapters in two different projects, in which we were able

to study their adequacy in an industrial setting. Before describing the

detailed contributions in the following sections, we give a brief overview of

these projects.

FAME

In the FAME project of the European Space Agency – FAME is short for

“Failure and Anomaly Management Engineering” – a novel, model-based,

integrated process for FDIR design was proposed [European Space Agency,

2011, FAME, 2016]. It aims at enabling a consistent and timely FDIR con-

ception, development, verification and validation. The process is supported

by a model-based toolset covering a wide range of formal analyses. In [Bit-

tner et al., 2014b] the project and its results are described in more detail.

Here we give a brief overview to contextualize our contributions.

The problem FAME tried to address is that often the quality of FDIR

implementations is suboptimal due to a lack of standardized development

guidelines (development phases covering the whole life-cycle, key docu-

ments as inputs and outputs of these phases). Furthermore it becomes

143

Figure 5.1: FAME Process Overview

more and more difficult to deal with the increasing complexity using tra-

ditional informal analysis means, especially considering the amount of po-

tential failure scenarios. FAME thus proposed a clearly structured FDIR

development process, with key documents and artefacts, integrated with

formal model-based analysis technology.

Figure 5.1 shows the overall FAME process. The main steps are the

following.

Analyze User Requirements All user requirements that impact the de-

sign of the FDIR are collected, including RAMS (reliability, availabil-

144

CHAPTER 5. INDUSTRIAL APPLICATION

ity, maintainability, and safety) and autonomy requirements. Also a

mission phase and spacecraft operational mode matrix is built, as re-

quirements might apply only to specific combinations of those. For

instance, autonomy requirements might not be the same for each mis-

sion phase.

Define Partitioning/Allocation RAMS and autonomy requirements are

allocated per mission phase / operational mode. Moreover, the FDIR

architecture is modeled, including identification of functional decom-

position, sub-system HW/SW partitioning, sub-system functions and

redundancy, integration of pre-existing FDIR functionalities, and def-

inition of FDIR levels. Also the distribution of the FDIR functional-

ities is taken into account: FDIR management can be decentralized,

hierarchical or a combination of both.

Perform Timed Failure Propagation Analysis In this step a timed

failure propagation model (TFPM) is developed, based on inputs

from preceding RAMS analyses such as FTA, FMEA, hazard anal-

ysis, and observable fault symptoms. Also diagnosability properties

of the TFPM are analyzed.

Define FDIR Objectives and Strategies Starting from RAMS and au-

tonomy requirements and exploiting the previous results on FDIR and

failure propagation analysis, in this step the system-level FDIR objec-

tives (such as required behavior in presence of failures) and subsystem-

level FDIR strategies (steps to be performed given fault detection and

respective objectives) are established.

Design In the design phase the detailed FDIR implementation is defined

(identification of parameters to be monitored, ranges, isolation and

reconfiguration actions), along with a detailed software specification

145

(suitability of standard message passing services, definition of addi-

tional services) and spacecraft database (SDB) specification (insertion

of monitoring information, definition of recovery actions, link between

monitoring and recovery actions).

Implement FDIR, V&V The last step is concerned with the implemen-

tation of FDIR in hardware and/or software, and its verification and

validation with respect to the specifications.

Note how on the process level the term “timed failure propagation

model” is used, thus separating process from supporting technology, in

our case TFPGs. From the process point-of-view it is thus not required

that TFPGs are the propagation models to be used, but it is important

to have a system-wide model of timed failure propagation that serves as

a central reference of the failure behavior the FDIR needs to deal with.

As opposed to adopting the more static notion of failure modes, which

can be interpreted as system states, propagation modeling focuses on the

sequences of failure effects throughout the system.

Research Stay at ESA/ESTEC

Further contributions on the topics of this dissertation were produced dur-

ing a 10-month research stay at ESA ESTEC in Noordwijk (The Nether-

lands), in which we studied the application of TFPGs as a failure analysis

in “Solar Orbiter” (SOLO).

Solar Orbiter is a Sun-observing satellite under development by the Eu-

ropean Space Agency. It will orbit the Sun to perform various scientific

observations which are very difficult or impossible to do from Earth. Dur-

ing its operation the satellite will come closer to the Sun than even the

planet Mercury. Currently the launch is planned for October 2018.

146

CHAPTER 5. INDUSTRIAL APPLICATION

The FDIR requirements on SOLO are much more stringent than on

typical Earth-observing satellites, especially due to the intensity of solar

radiation. One of the main challenges is to continuously protect the space-

craft by keeping a heat-shield oriented towards the Sun. Many faults are

highly time-critical as they can quickly cause considerable damage to the

spacecraft. Detection, isolation, and recovery need thus to be performed

in extremely short time frames.

Three case studies (presented in the following sections) on timed failure

propagation analysis were performed in collaboration with an ESA software

engineer from the SOLO project. For this we analysed the project doc-

umentation related to FDIR (mostly FMECA and FDIR design coverage

documents) and the general software/hardware architecture (for instance

the Control Algorithm Specification). These documents were at a pre-CDR

(Critical Design Review) level.

Collecting the necessary information for the case studies was very chal-

lenging especially due to the huge amount of documentation, which was

several hundreds of pages just for the documents effectively used. Addi-

tionally we found that the information needed for the case studies was

scattered throughout the documents, and collecting and interpreting ev-

erything required substantial work and several interactions with engineers.

A formal and structured approach to interpret this information, for in-

stance by using TFPG modeling, is thus a clear benefit and increases the

confidence in the completeness of the analysis.

Based on the experience made in these case studies we were thus able

to evaluate the application of TFPGs in a real project. The proprietary

information that we used for our study is subject to non-disclosure, and

therefore cannot be quoted literally in this thesis. However, we remark

that the models created for the case studies are generic; the problems the

case studies deal with are quite universal and do not apply only to SOLO.

147

Chapter Contributions In this chapter we document the following contri-

butions.

• In Section 5.1 we describe a method to translate a TFPG into a tran-

sition system specified in SMV, such that it can be used as a basis for

diagnoser synthesis. This was developed for FAME.

• In Section 5.2 we present two TFPG case studies for SOLO: one look-

ing at error propagation within software, and one studying failure

propagation during detection and isolation activities. The results

demonstrate the adequacy of the developed framework and imple-

mentation.

• In Section 5.3 we investigate the suitability of TFPGs as a way for

system-wide propagation modeling as proposed in FAME. We develop

a use case for one particular propagation chain in SOLO. Furthermore,

based on the case study, we make some observations of using TFPGs

as a way to assess and tune FDIR design coverage and to support

diagnostic activities during testing and operations.

In Sections 5.2 and 5.3, which cover case studies on SOLO, we also

describe how the analyses helped to raise five issues that were submitted

to the FDIR critical design review. Four of them were classified as major,

one as minor. The issues led in most cases to improvement of the available

design documentation and in one case modification of the design, as the

analysis unveiled a missing consistency check.

We summarize our findings in Section 5.4 and give an outlook on possible

future work in terms of further case studies and practical applications.

148

CHAPTER 5. INDUSTRIAL APPLICATION

5.1 Enabling Diagnoser Synthesis via TFPGs

In FAME, TFPGs are used to capture the timed failure propagation be-

havior of a system model that describes both nominal and faulty dynamics.

Not only are they used as a failure analysis like FTA and FMEA, they also

serve directly as an input to the synthesis of a diagnoser, thus bridging

the gap between failure analysis and FDIR implementation with formal

model-based techniques. This positioning of TFPGs in the FAME flow

can be seen in Figure 5.1. The TFPG is produced and validated (or gen-

erated automatically) using the algorithms of Chapter 3, and then used to

automatically build a diagnoser. The contribution described in this section

is a translation method from TFPG to transition systems expressed in the

SMV language, which enables this automated step from TFPGs to the

synthesis of a diagnoser.

The diagnoser synthesis approach used in FAME is based on the frame-

work of [Bozzano et al., 2015c]. It is similar to the framework used in

Chapter 4, with the exception that, in order to accommodate the asyn-

chronous modeling style used in FAME, the composition between diagnoser

and system model is asynchronous. Time is assumed to advance during tick

events, and no time is assumed to pass during other transitions. The diag-

noser is synchronized only on observable transitions including ticks: upon

receiving these interrupt signals, its state is updated and alarm signals are

raised accordingly.

As a TFPG is effectively an abstraction of a more detailed system model

and thus a simpler model, the diagnoser synthesis task is easier. Further-

more the resulting diagnoser will be smaller, as it doesn’t have to reason

over all state variables. Being an abstraction though can at the same time

be a disadvantage, as less information is available to the diagnoser, which

thus might produce less accurate diagnoses.

149

5.1. ENABLING DIAGNOSER SYNTHESIS VIA TFPGS

For diagnosis via TFPGs also the approach in [Abdelwahed et al., 2009]

can be used. As new observable discrepancies activate or timeouts trig-

ger on expected discrepancy activations, the reasoning algorithm is run to

update the set of hypothetical TFPG states. The difference w.r.t. the di-

agnosis approach in FAME is that the diagnostic reasoning is pre-compiled

into the diagnoser data structure. It contains rules to update its state

(transition rules) based on new observations that can be applied in con-

stant time. This on the other hand directly allows not only the diagnoser

itself to be formally verified, but also the integrated product of diagnoser

and system model. The latter is not straightforward with diagnosis di-

rectly reasoning over the TFPG, as algorithm and model are separate and

would have to be translated to a unified formal model on which verifica-

tion can be performed. The synthesized diagnoser however is the formal

model, and thus the gap between verification model and implementation is

much smaller. Furthermore, with constant-time updates it should also be

easier to estimate worst-case execution time for the synthesized diagnoser.

On the other hand the update time (and synthesis time) might be unrea-

sonably large for bigger models, in addition to a more expensive synthesis

step.

5.1.1 TFPG-to-SMV Translation

We describe now how a TFPG can be translated into an SMV model. We

use the TFPG shown in Figure 5.2a as a running example for this section

to illustrate individual steps. The state-space of the SMV code that we

will generate is shown in Figure 5.2b, and the complete code itself can be

found in Appendix A.

The state variables of the translation follow the definition of TFPGs

(Definition 1) and comprise the system mode, edge timers counting for

how long an edge has been active, and the activation status of failure

150

CHAPTER 5. INDUSTRIAL APPLICATION

(a) sample TFPG

(b) state-space of SMV translation

Figure 5.2: Sample TFPG with state-space of corresponding SMV translation. e1 is the

upper edge with the guard [1, 2]{M1}, e1 the lower edge with the guard [0, 1]{M2}.
Possible initial states are marked with a circled i.

modes and discrepancies corresponding to the graph nodes. Furthermore

we assign one label to each transition with an input variable. On top of

151

5.1. ENABLING DIAGNOSER SYNTHESIS VIA TFPGS

these variables we then define a number of transition rules in SMV as

follows.

Transition Types

There are three types of transitions: node-activation, mode-change, and

time-tick. All changes made during a discrete transition of the SMV model

must belong to one of these transition types, and no two changes during

one transition can belong to different transition types. This guarantees the

assumption that discrete changes in the corresponding TFPG state occur

only during untimed transitions. The following SMV code represents this

label:

IVAR trans_type : {NODE_ACTIVATION, MODE_CHANGE, TIME_TICK};

During a node activation transition, all node activations are performed

that are mandatory, and non-deterministically also any one that is possible.

A mode change transition updates the system mode. When only one mode

exists, mode change transitions never occur. If only one system mode is

mentioned in the TFPG, the mode change label can be dropped. Finally,

a time tick represents the passing of one discrete time unit; with respect

to time, node activations and mode changes are regarded as instantaneous,

i.e. they don’t happen during a timed transition.

For the translation we discretize the time intervals in the TFPG, divid-

ing each constant by a fixed sampling interval δ. For the example we use

δ := 1. The system state is thus sampled, via TFPG abstraction, every

time unit; the passing of this time unit is represented by the tick transition.

System Mode

The system mode is declared as an enumerative type in the main SMV

module.

152

CHAPTER 5. INDUSTRIAL APPLICATION

VAR system_mode : {MODE1, MODE2, ...};

No constraints for mode switches are specified, i.e. mode switches can

change the current mode to any other mode. However, to enforce that

during a mode-change transition a new mode is actually selected (in cases

where multiple possible modes exist), we add the following transition con-

straint to the main SMV module.

TRANS trans_type = MODE_CHANGE <-> system_mode != next(system_mode);

next is an SMV keyword that causes an expression to be evaluated in the

state after a transition. The expression system mode != next(system mode)

thus states that the system mode in the current state is different from the

system mode in the next state.

Failure Mode Nodes

Failure mode nodes are represented using the following SMV modules:

MODULE failuremode (trans_type)

VAR status : {OFF, ACTIVE};

ASSIGN init(status) := {OFF, ACTIVE};

ASSIGN next(status) := case

trans_type != NODE_ACTIVATION : status;

status = OFF : {OFF, ACTIVE};

TRUE : status;

esac;

The status of a failuremode can change to active, during transitions of

type node activation, independently from any other state variable. Once a

failure mode – or also a discrepancy node, as shown below – is activated,

it remains activated forever.

For the running example we declare the following failuremode node.

VAR failuremode_Stuck : failuremode (trans_type);

153

5.1. ENABLING DIAGNOSER SYNTHESIS VIA TFPGS

Discrepancy Nodes

Discrepancy nodes are represented in a similar way, but have additional

activation constraints depending on the edges that connect to them. The

SMV module of discrepancies is specific to the node semantics and the

number of incoming edges. The following code shows the declaration of an

OR node with two incoming edges, using a naming convention according to

node type:

MODULE or_node_2 (edge1, edge2, trans_type)

For an AND node with three incoming edges the module header is:

MODULE and_node_3 (edge1, edge2, edge3, trans_type)

For the small running example we will declare the following node:

VAR or_node_Overheat :

or_node_2 (edge_Stuck_to_Overheat_1, edge_Stuck_to_Overheat_2, trans_type);

Next we define for each type of module a can fire and a must fire

signal, which tell whether the node can or must be activated, depending on

the status of connected edges. For the OR node with two incoming edges,

as in the running example, they will be defined as follows:

DEFINE can_fire := (edge1.can_fire | edge2.can_fire) & !must_fire;

DEFINE must_fire := edge1.must_fire | edge2.must_fire;

In words, an OR node can fire if at least one incoming edge can fire, but

none must fire. An OR node must fire if any incoming edge must fire. Note

that the two signals are modeled to be mutually exclusive for obtaining the

correct behavior of the activation status variable as defined below. This is

guaranteed by adding, for OR nodes, a corresponding explicit constraint.

For AND nodes these signals are defined as follows, assuming three incom-

ing edges in this example. The two signals are mutually exclusive without

additional constraints.

154

CHAPTER 5. INDUSTRIAL APPLICATION

DEFINE can_fire :=

(edge1.can_fire | edge1.must_fire) &

(edge2.can_fire | edge2.must_fire) &

(edge3.can_fire | edge3.must_fire) &

(edge1.can_fire | edge2.can_fire | edge1.can_fire);

DEFINE must_fire := edge1.must_fire | edge2.must_fire | edge1.must_fire;

In words, an AND node can fire if at least one incoming edge can fire and

all others can or must fire. An AND node must fire if all incoming edges

must fire.

The rest of the SMV code of discrepancies is common for both OR and

AND nodes, and implements the activation status.

VAR status : {OFF, ACTIVE};

ASSIGN init(status) := case

trans_type != NODE_ACTIVATION : status;

can_fire : {OFF, ACTIVE};

must_fire : ACTIVE;

TRUE : status;

esac;

For an OR node d, a propagation can reach or activate d iff some edge

e = (v, d) has been active for at least tmin(e) (can fire signal) and at

most tmax(e) (must fire signal) discrete time units. This guarantees that

the ψOR·A proof obligation holds for d. When an edge e = (v, d) is active

for exactly tmax(e) time units, then time will not pass before either d

activates, or the system switches to a mode where the edge is not active.

This guarantees that the ψOR·B proof obligation holds. For AND nodes the

situation is similar, except that node activation can occur if all incoming

edges can or must fire, and node activation must occur if all incoming edges

must fire.

To guarantee that during node-activation transitions some node (failure

mode or discrepancy) actually gets activated, we add the following transi-

155

5.1. ENABLING DIAGNOSER SYNTHESIS VIA TFPGS

tion constraint, similar to the one for mode changes. In our example we

instantiate this rule for the nodes failuremode A and or node B.

TRANS trans_type = NODE_ACTIVATION <->

failuremode_{ID0}.status != next(failuremode_{ID0}.status) |

or_node_{ID1}.status != next(or_node_{ID1}.status) |

and_node_{ID2}.status != next(and_node_{ID2}.status) |

...;

To disable timed transition when some node must fire, we use the fol-

lowing constraint. In the example this involves only the node or node B.

TRANS (or_node_{ID1}.must_fire | and_node_{ID2}.must_fire | ...)

-> trans_type != TIME_TICK;

Edges

Edges are used to identify whether a propagation from the source node to

the target node can occur, and effectively implement the timed behavior.

Their module signature is defined as follows.

MODULE edge (tmin, tmax, tmax_is_infinity, source, target, trans_type,

system_mode_is_compatible)

An edge is declared by setting the tmin and tmax parameters to the

respective constants, source and target to the respective node variables,

trans type to the respective variable from the main SMV module, and

system mode is compatible to a Boolean expression that indicates if the

edge is active in the current system mode. If there is only one possible

system mode or if the edge is compatible with all system modes, this last

parameter can be set to the constant TRUE.

For cases where tmax =∞, the parameter tmax is infinity is set to

true; this allows the firing to be delayed ad-infinitum. tmax is set to the

same value as tmin, to limit the range of the counter variable.

Two edges are declared in the example, as follows.

156

CHAPTER 5. INDUSTRIAL APPLICATION

VAR edge_Stuck_to_Overheat_1 :

edge (1, 2, FALSE, failuremode_Stuck, or_node_Overheat,

trans_type, system_mode=M1);

VAR edge_Stuck_to_Overheat_2 :

edge (0, 1, FALSE, failuremode_Stuck, or_node_Overheat,

trans_type, system_mode=M2);

An edge is active if its source node has been activated by some preceding

propagation, the system is in a compatible mode, and the target node

hasn’t been activated yet by a parallel propagation. This implies that once

a discrepancy node is marked as activated, all incoming edges are marked

as inactive because the propagation across them cannot occur anymore.

DEFINE is_active := source.status = ACTIVE &

system_mode_is_compatible &

target.status = OFF;

Furthermore, each edge module contains a counter variable that is used

to measure the time elapsed from the last activation of the edge. The timer

is disabled (set to 0) whenever the edge is not active.

VAR counter : 0..tmax;

ASSIGN init(counter) := 0;

ASSIGN next(counter) := case

-- edge is not active, counter is reset

next(!is_active) : 0;

-- increment by one delta unit

counter < tmax & trans_type=TIME_TICK : counter + 1;

-- keep as-is

TRUE : counter;

esac;

Based on these counters we can now define when the edge can fire, i.e.

when the propagation can occur.

DEFINE can_fire :=

is_active & counter >= tmin & (counter < tmax | tmax_is_infinity);

157

5.1. ENABLING DIAGNOSER SYNTHESIS VIA TFPGS

DEFINE must_fire :=

is_active & counter = tmax & !tmax_is_infinity;

In the special cases where 0 = tmin = tmax or where 0 = tmin and

∞ = tmax we don’t need any counters and can use the following simplified

SMV module definition.

MODULE instant_edge (source, target, tmax_is_infinity, system_mode_is_compatible)

DEFINE is_active := source.status = ACTIVE &

target.status = OFF &

system_mode_is_compatible;

DEFINE can_fire := is_active & tmax_is_infinity;

DEFINE must_fire := is_active & !tmax_is_infinity;

The discrete edge timers on one hand enable the diagnoser synthesis

technique of [Bozzano et al., 2015c], which uses them to reason on the time

passing between observable discrepancy activations. On the other hand

they bit-blast the range from 0 to tmax. If the chosen sampling interval δ

is too small or the interval too big, the state-space of the resulting diagnoser

will also be significantly bigger; in fact, diagnoser synthesis is exponential

in the number of system states. But choosing a too coarse δ can have

a detrimental effect on diagnosability, as the diagnoser will consequently

work with less precise time measurements. A possible solution could be to

drop timers where they don’t affect diagnosability, i.e. where measuring the

delay between observable events is not necessary to diagnose the condition

of interest. For the purpose of diagnosis we would thus over-approximate

the original TFPG. This will be investigated in future work.

TFPG Effectiveness Within the FAME project we also investigated apply-

ing the techniques of Chapter 4 to the asynchronous case used in [Bozzano

et al., 2015c]. We focused on FiniteDel diagnosability of propositional

158

CHAPTER 5. INDUSTRIAL APPLICATION

MeasNone

MeasBias

MeasErr

Meas

None

IMU1

Meas

Bias

IMU1

Meas

Err

IMU1

Meas

None

Meas

Bias

Meas

Err

Compute

None

Compute

Bias

Compute

Err

Exec

Err

Bad

Attitude

[0, 0]{∗}

[0, 0]{∗}

[0, 0]{∗}

[0, 2]{∗}

[0, 2]{∗}

[0, 2]{∗}

[0, 2]{∗}

[0, 2]{∗}

[0, 2]{∗}

[0, 20]{∗}

[0, 20]{∗}

[0,
20

]{∗
}

[0,∞]{∗}

Figure 5.3: TFPG for the primary IMU in TGO. Bold circled nodes are monitored

discrepancies used by the diagnoser.

diagnosis conditions, which effectively corresponds to the classical defini-

tion of [Sampath et al., 1995]. We used this to investigate diagnosability

of the SMV translations of TFPGs as they were used for diagnoser syn-

thesis. The twin plant was synchronized only on tick transitions and on

observable discrepancy activations. Modes were assumed to be frozen, as

no mode transition information is contained in a TFPG. This is an assump-

tion often also made in practice, i.e. failure effects are analyzed assuming

a stable system mode.

ExoMars Case Study: IMU Measurements We now briefly describe the case

study done by Thales Alenia Space in FAME, documented in more detail

in [Bittner et al., 2014b]. We focus on the results of diagnoser synthesis

via TFPGs discretized using the SMV translation scheme described above.

The case study involved the ExoMars Trace Gas Orbiter (TGO) mission,

a spacecraft that was launched to study the atmosphere of Mars and to

function as a relay station for a later mission. Specifically, the FAME

analysis focused on the effect of IMU (Inertial Measurement Unit) faults

on attitude control during Mars orbit insertion.

159

5.2. FOCUSED PROPAGATION MODELING

The TFPG shown in Figure 5.3 was developed to reason about several

potential IMU-related failure events that could lead to a bad spacecraft

attitude. It shows the propagation behavior in the primary IMU. The

overall model contains also the backup IMU, for which a separate TFPG

was developed (not shown here). A diagnoser was synthesized for a total

of six alarm specifications, covering both IMUs. The state-space of this

diagnoser had 2413 reachable states. Integrated with the system model

of the orbiter, it was then used to proceed with design of the recovery

strategies. The overall FDIR design was further analyzed using model-

checking, and the effectiveness of the solution was verified. In particular

it was shown that the FDIR component, when integrated with the system

model, detected the faults according to the alarm specifications and led

the system to a specific target configuration.

5.2 Focused Propagation Modeling

We now describe two case studies, done in the context of Solar Orbiter as

a shadow engineering activity, in which we applied the TFPG algorithms

of Chapter 3. Here we don’t consider TFPGs in the context of the FAME

process as in the previous section. Rather, the goal here was to study their

general adequacy, in terms of usefulness to analyze propagation problems

found in a real spacecraft design, in terms of performance, and in terms of

the characteristics of the theoretical framework. Some of the feedback was

also used to improve the TFPG synthesis algorithm.

As a basis for modeling we studied several FDIR-related documents of

the SOLO project, such as FMECAs at unit, subsystem and system levels,

FDIR design coverage documentation, and software design documents to

understand the overall control architecture and logic. We studied propaga-

tion problems involving the Attitude and Orbit Control System (AOCS),

160

CHAPTER 5. INDUSTRIAL APPLICATION

which is responsible for realising the system-level requirement to keep the

heat-shield facing the Sun when in close proximity. Hence the so-called

“feared event” is a severe off-pointing during this mission phase which

could lead to loss of the spacecraft. The AOCS uses, in a redundant con-

figuration, sensors such as inertial measurement units (IMU), sun sensors

(FSS), and star trackers (STR) to estimate the spacecraft’s attitude and

motion, and computes control commands to be sent to actuators such as the

propulsion system (CPS) and reaction wheels (RWS). The analysis scope

in this section is focused on specific components and scenarios, whereas in

Section 5.3 we will focus more on the system perspective. With this we

evaluate the TFPG analysis framework and implementation in different

types of application scenarios.

The models were developed in SLIM, the modeling language of the

COMPASS family of tools, to which also the FAME tool belongs. Subse-

quently they were translated to SMV, the language of nuXmv and xSAP

which are the verification engines used by the COMPASS tools.

5.2.1 Case Study: Gyroscope Processing

The first case study involved modeling and analysis of the gyroscope chan-

nel processing function, a piece of software which reads different types of

raw gyroscope sensor data coming from the IMU, retrieved over the bus

and stored in the datapool. From these values the function computes the

rotation rate around the axis on which the channel’s gyroscope is posi-

tioned, along with health flags indicating whether data is corrupted, and

how. In total the software function has 7 input variables and 13 output

variables.

The function runs on the main computer and is called cyclically at fixed

intervals. The overall function is composed of smaller subfunctions, some

of which have internal state variables (in total 8) to store values computed

161

5.2. FOCUSED PROPAGATION MODELING

in previous cycles for various purposes. Time elapses by one unit during

tick events. After each tick, the values in the datapool are updated and the

function uses them to compute, through various consecutive steps, the new

output values. For the analysis purpose the duration of this computation

is assumed to be instantaneous.

For this software function we created a model representing various com-

putational steps on an abstract level. Variables with values in the reals are

abstracted to discrete domains, such as “normal”, “degraded”, and “erro-

neous”. For degraded data readings we assume that the internal checks

might or might not detect the corruption, thus including the possibility

of detectable and undetectable levels of data corruption due to selected

thresholds. Based on the IMU FMECA, 13 hardware faults where defined,

which influence the values stored in the datapool to be used by the process-

ing function. In the analysis we adopt the common single-fault assumption.

The faults are constrained to occur at the beginning of a cycle, such that

we can analyze how many cycles (ticks) a fault needs to propagate to the

function outputs.

Failure modes are the 13 faults. We chose two discrepancies of interest

expressed over the output values: degraded (and possibly undetectable)

output measurements, and a Boolean data health flag indicating data cor-

ruption. The goal was to understand the temporal relationship between

faults, the health flag, and degraded (and hence possibly not detected)

rate estimations. No multi-mode dynamics are given. The finite-state

SMV model has in total 16 Boolean input variables and 84 Boolean state

variables. The system diameter of the corresponding reachable state-space

is 105; this is the upper bound on the least number of transitions that

need to be taken to reach any state from the set of initial states. In total

3488 states are reachable. The model thus has relatively few reachable

states, but a considerable depth. The reason is that certain states can

162

CHAPTER 5. INDUSTRIAL APPLICATION

Figure 5.4: Extract of TFPG for the gyroscope processing function. Single-fault

assumption is used in the system model, hence only one failure mode can be active at

any time. Mode constraints are not shown, as only one mode exists.

only be reached after executing the function several times, and since the

function itself also consists of several steps, the overall execution can be

quite long. This is important for the performance of model-checkers, which

typically decreases with an increasing model depth. The complexity could

be avoided by collapsing several computational steps into a single atomic

transition, but this on the other hand would make modeling more difficult.

We ran the synthesis and tightening procedures on the problem. We

didn’t have a clear expectation on the propagation behavior and thus

chose synthesis over the manual construction of the TFPG. Figure 5.4

shows part of the synthesized TFPG. Most failure modes have the same

edge as “FM B”, and we don’t show them here for clarity. The following

observations can be made from this result.

• “FM B” and the failure modes not shown immediately trigger the

health monitor and can thus be recognized and adequately handled

by the overall IMU processing (if the flag will be used correctly by

subsequent functions); the fault doesn’t lead to degraded output (but

163

5.2. FOCUSED PROPAGATION MODELING

always erroneous output).

• Also “FM D” immediately triggers the health monitor; furthermore,

after exactly one cycle, it will also reach the rate estimation; this is

represented by the edge from the virtual AND node.

• “FM C” will affect the rate estimation within one cycle; it might,

depending on the fault magnitude, also trigger the monitor, but this

is not guaranteed (tmax = +∞).

• Finally, “FM A” immediately results in degraded estimations; the

edge from “out degr” to “out not valid” furthermore shows that, after

at least one cycle, also the health monitor may trigger, but this is not

guaranteed.

These results precisely and concisely show the different propagation be-

haviors possible in the gyroscope channel processing function, and give

formal support to the predictions made in FMECA and FDIR design cov-

erage documents.

Several observations can also be made w.r.t. the adequacy of the frame-

work and performance of the algorithms developed in Chapter 3.

Timing Model The timing model, which differentiates between timed and

untimed transitions, comes in handy here. From the analysis point-of-

view, the sequence of computation steps is executed instantly. This is of

course not true in reality, but is sufficient at this level of abstraction and

doesn’t matter for the analysis objective. Indeed, precise quantification of

individual algorithm steps is difficult as it would require benchmarking all

functional steps in the compiled executable, which wasn’t available. From

the modeling point-of-view, however, it would be very uncomfortable or

even impossible to squash all computation steps into one single transition,

164

CHAPTER 5. INDUSTRIAL APPLICATION

which the standard LTL view on time, where every transition is a tick,

would require.

Semantics of tmax = +∞ The semantics of tmax = +∞ is very useful here,

as in the model we have a situation where the propagation might occur at

some point, but might very well also never occur at all. The reason is a

non-deterministic transition choice in the system model, that is whether

a degraded measurement will trigger internal threshold-based checks. We

work with discretized measurement ranges and use this to simulate different

magnitudes of degradation; erroneous measurements are assumed always

to exceed those threshold, but degraded ones might not. In the TFPG this

situation can be represented by +∞. The alternative interpretation that

resembles a fairness constraint, i.e. the propagation will always eventually

occur but this moment can be delayed by an arbitrary amount of time,

would make it impossible to represent this.

TFPG Simplification Simplification of the synthesized graph is essential

for manual inspection. Without it the TFPG would be unreadable for

engineers. Indeed already at this level the interpretation of Figure 5.4 is

not totally straight-forward.

Performance As for performance, we notice that, on an average desktop

computer, synthesis and simplification was completed in 4 seconds by us-

ing bdd-based algorithms for minimal cut-set computation. Interestingly,

when using IC3 as a back-end engine for cut-sets, graph synthesis takes 210

seconds, which seems to imply that bdd-based reasoning is much better

suited to handle the type of model we obtained. For tightening our imple-

mentation at the moment can only use IC3 as an engine, because it always

reasons on an infinite-state model, as bounds for tmax are not known a-

165

5.2. FOCUSED PROPAGATION MODELING

priori. The performance of IC3 seems to decrease with increasing depth

of the model, an observation that can be made also in the experiments in

Section 3.7. In this specific model the tightening takes 43 minutes, due to

the high model depth and the fact that several IC3 calls to search for tight

parameter assignments were necessary. The considerable discrepancy with

the runtime of the graph synthesis step is due to the fact that graph synthe-

sis is not concerned with timings, and efficient finite-state model-checking

can be used for the developed model. This shows the necessity to investi-

gate more efficient tightening procedures, perhaps based on a reduction to

finite-state models.

5.2.2 Case Study: Thruster-Valve Stuck

The second case study we performed for TFPG modeling focused on a time-

critical propagation scenario. The analysis scope is very different w.r.t. the

first case study. We model a flow-control valve of the propulsion system

being stuck-open, thus causing a rotation of the spacecraft that might

jeopardise the safe zone of the spacecraft attitude. In the case of Solar

Orbiter this relates to the requirement to keep the heat-shield pointing

towards the Sun. This scenario is illustrated in Figure 5.5a. The analysis is

focused on one axis only, which is a reasonable constraint. In Solar Orbiter

it can be any thruster that is able to cause the heat-shield to be pointed

away from the Sun, in any direction. Note that for other missions similar

requirements exist, i.e. keeping the high-gain antennas always pointed to

Earth in order to maintain ground contact.

The goal of the case study was to formally validate a timing analysis

done by hand, which is the basis for estimating the worst-case spacecraft

off-pointing. The chosen scenario was well understood from a discrete per-

spective: it consists of fault occurrence, detection, and several isolation

steps. We developed the TFPG shown in Figure 5.5c; the nodes A1 to

166

CHAPTER 5. INDUSTRIAL APPLICATION

(a) scenario

(b) model layout

(c) TFPG topology (M: monitor; A1-5: off-nominal acceleration phases).

Figure 5.5: Thruster-Valve stuck case study.

167

5.2. FOCUSED PROPAGATION MODELING

A5 are different acceleration phases corresponding to different fault prop-

agation stages, up to the point where fault isolation completely stops the

propagation; the node M is a monitor that will be used to trigger the fault

isolation. Recovery to an operational state is not included in the analysis;

this is acceptable as it is common practice in mission operations to return

to operational state only under operator control. The TFPG also contains

delay bounds – derived from the documentation – whose precision is in

tenths of milliseconds and whose values range from milliseconds to several

seconds. For this TFPG we aimed at performing a completeness check,

which would confirm the worst-case timing estimates made by engineers.

In Figure 5.5b an abstract overview of the developed model is given1.

The physical state mainly includes the real-valued spacecraft rotation rate

which develops according to an acceleration, which is constant in each prop-

agation phase. The software measures the rate via the IMU and feeds it into

the FDIR logic, which consists of several tasks. These tasks are scheduled

together with nominal activities. When an off-nominal rate is detected, an

alarm triggers, and the FDIR sends several commands to the propulsion

system and performs several software operations. The propulsion system

includes several valves, in one of which the fault can occur. The spacecraft

acceleration is set according to the current configuration of the propulsion

system. Delays incur in all parts of the model, from task scheduling to data

transmission via communication infrastructure and propulsion system re-

configuration. All basic delays and acceleration constants are modeled in

the same detail as found in the documentation, and the model is thus rep-

resentative for the real physical behavior. Overall the model consists of 7

Boolean and 1 real input variables, as well as 18 Boolean and 5 real state

1The actual model can not be presented here due to confidentiality restrictions. However, the model

presented in this thesis provides the key elements and concepts that are applicable to many generic

spacecraft designs that face similar challenges. Truster-stuck-open is a well-known failure mode that is

critical in all missions where high-pointing accuracy is required during time-critical orbital manoeuvres.

168

CHAPTER 5. INDUSTRIAL APPLICATION

variables.

A first completeness check was run with bounded model-checking to

have a quick feedback on the delay bound estimates. This check showed

that they were not fully accurate with respect to the developed model (the

completeness check failed), and the tmax bound on some segments needed

to be increased. In other words this meant that the isolation phase took

longer in the model than we expected.

As our current implementation of automatic tightening assumes a TFPG

that is complete to begin with, we performed a number of manual iterations

based on bounded model-checking to identify time bounds that made the

completeness test pass. We proceeded in an ad-hoc manner with a mix

of linear and binary search steps, based on our knowledge of the problem,

and tested several possible values until finding a solution that was precise

down to millisecond level. This manual interaction with the model-checker

took a couple of hours.

The completeness check on the final TFPG using the IC3 model-checking

engine in nuXmv was able to prove the established bounds, with a runtime

of 30 minutes on a high-end workstation. This is a relevant result not only

from an application perspective, giving feedback on worst-case behavior

in a critical scenario, but also from an analysis performance perspective.

Indeed they show that it is feasible to analyse very focused but highly

accurate propagation problems, and prove respective TFPG properties.

Also in this case study the model traces are rather long. As the model

is infinite-state, it is not possible to compute a model diameter. However,

the smallest number of steps to reach a state where the last discrepancy

in the TFPG is triggered is 90. On the other hand, also here the choice

of MTL time model as opposed to LTL is important, also for facilitating

modeling but especially for performance reasons. Indeed if we would want

to discretize time progression in the model with a sub-millisecond precision,

169

5.3. ARCHITECTURAL PROPAGATION MODELING

the traces would have several thousands of steps and analysis would be

completely unfeasible.

Critical Design Review Even though we were not able to follow up in

detail with engineers on the small discrepancies in the propagation delay

estimates, the analysis made it possible to raise two issues at the FDIR

critical design review of SOLO.

The modeling of this scenario and the TFPG analysis showed that in

the documentation it was not clear if the complete duration of the last

propagation edge in the TFPG was considered in the worst-case analysis for

spacecraft off-pointing. The issue was raised during CDR, and worst-case

off-pointing estimates as reported in the documentation were confirmed as

accurate.

Furthermore, the spacecraft can be in several operational modes, and

thus in principle the TFPG mode labels should cover all of them. For

the analysis we followed the documentation and made an explicit assump-

tion of mode-stability for the whole propagation scenario up to the first

mode-switching triggered by the FDIR itself. For CDR the issue was raised

whether mode-switching is of relevance to the propagation scenario. A cor-

ner case was identified by the review panel and confirmed not to influence

propagation dynamics, and hence to be covered by FDIR.

5.3 Architectural Propagation Modeling

In this section we try to look at a broader application scope of TFPGs.

Whereas in the previous section we studied their application to specific

scenarios or components and thus used TFPGs as a type of focused analy-

sis tool, here we try to study whether it is possible and what the challenges

would be to use them to model failure propagation from an architectural

170

CHAPTER 5. INDUSTRIAL APPLICATION

point-of-view, from unit to subsystem and system levels. These three layers

are the usual architectural divisions in spacecraft system design, and also

often match the hierarchical organization of FDIR designs, where failures

are to be detected, isolated, and recovered at the lowest possible imple-

mentation level.

We describe the results of a third case study and discuss possible appli-

cations of TFPGs with an architectural focus, as well as ideas for future

work:

• in Section 5.3.1 we describe a TFPG modeling case study for SOLO

that covers several propagations from unit to subsystem level (AOCS),

and describe our findings on using TFPGs as a formalism for prop-

agation modeling across architectural layers; we also describe three

contributions to the SOLO FDIR critical design review;

• in Section 5.3.2 we describe the advantages of assessing FDIR design

coverage via TFPGs, and briefly outline potential future work on using

TFPGs as a framework for FDIR tuning;

• finally, in Section 5.3.3 we argue that TFPGs could be used for diag-

nostic support during testing/operations in addition to or instead of

FMECA tables.

5.3.1 Case Study: IMU to AOCS

The objective of the third case study on applications of TFPGs was to

see what kind of topology we would obtain when adopting an architec-

tural perspective, to get hints on overall complexity, and to see how FDIR

monitors can be integrated in TFPGs to study FDIR design coverage.

The FAME process suggests to build TFPGs based on the results of pre-

vious analyses such as FMEA or FTA. In typical spacecraft design projects

171

5.3. ARCHITECTURAL PROPAGATION MODELING

FMEA tables are the central source of information on failure propagation.

The ECSS standards indicate FMEA as the primary failure analysis tool,

used in all project phases from feasibility analysis (Phase A) up to disposal

(Phase F):

“The FMEA is an integral part of the design process as one tool

to drive the design along the project life cycle.” ([ECSS-Q-ST-

30-02C, 2009], Section 4.1 on General requirements).

FTA instead is recommended as a focused analysis for selected cases:

“The supplier shall perform a FTA for [...] selected undesir-

able events which could have catastrophic, critical or major con-

sequences; [...]” ([ECSS-Q-ST-40-12C, 2008], Section 5.1.1 on

Applicability).

For the case study we thus focus on FMEA analyses, as these are much

more common in spacecraft projects. They are organized according to

the three architectural layers (unit, subsystem, system): for every com-

ponent or product at each layer a dedicated FMEA is done and a cor-

responding table is produced. Typical columns in an FMEA table are

(see [ECSS-Q-ST-30-02C, 2009]): ID, item/block, function, failure mode,

failure cause, mission phase / operational mode, failure effects, severity,

detection method / observable symptoms, and compensating provisions.

We focused on propagations originating from the IMU, reaching subsys-

tem (AOCS) and system (spacecraft) levels, and furthermore focused only

on one system mode. Already with this limited focus, propagation model-

ing turned out to be non-trivial and several challenges could be identified.

Approximately five different design documents that together have sev-

eral hundreds of pages were instrumental in creating the model. This shows

172

CHAPTER 5. INDUSTRIAL APPLICATION

how information related to FDIR is fragmented in current project docu-

mentation structures, even when limited to a very narrow scope. Further-

more, also interpreting the documents was not easy, even in collaboration

with ESA engineers. This gives an intuition of how difficult it is to man-

ually validate the FDIR design of the whole spacecraft and to verify that

the overall FDIR design is coherent and covers all possible (and reasonably

probable) effects of faults. Similar issues were also encountered in the case

studies of Section 5.2.

Failure modes and discrepancies The first issue was to decide what infor-

mation from the FMEA should be included in the TFPG as failure mode

and discrepancy nodes. In other words we asked the question, what are

the events that constitute the failure propagation sequences?

The natural candidates here are the failure modes and the correspond-

ing failure effects. In cases where the failure mode is associated to a func-

tion, as opposed to a hardware or software component, the failure effect

is usually identical to the failure mode, especially at unit level. In our

case this was applicable to all unit-level failure modes, and for them we

added a single node to the TFPG, declared as TFPG failure mode node.

For failure modes two possibilities were considered: relying on the unit-

level FMECA done earlier in the project, which contained a detailed set of

failure modes, or the consolidated unit-level FMECA produced for CDR,

which grouped together unit failure modes that from the FDIR perspective

were not distinguished. We chose the first option, which allowed a more

accurate integration of monitors in the TFPG and thus a better evalua-

tion of FDIR completeness. The choice also made it possible to identify

a failure mode that was not considered in the consolidated FMECA done

for CDR. When considering diagnosis applications, this choice would make

the diagnosis also more expressive.

173

5.3. ARCHITECTURAL PROPAGATION MODELING

At subsystem level the identification was more challenging. Each row in

the subsystem table had one associated failure mode, but often more than

one failure effect. While the failure modes represented a consolidated list

of items (at all levels), the failure effects were less structured. Identifying

propagation events thus required interpretation of the informal textual

description of what effects a certain failure mode has, in order to extract

a consolidated set of propagation events. A specific challenge here was

that certain events were mentioned in various parts of different FMEA

tables, but the textual description slightly differed, and thus unambiguous

identification was not straightforward. Another challenge consisted in the

fact that it seemed to be possible to derive distinctive propagation events

from both failure mode and failure effect column entries. Whether a failure

mode at subsystem level should be modeled in the TFPG as a separate

event needed to be assessed by looking at the individual case.

A number of discrepancies were thus derived at subsystem level, declared

as OR nodes. They were not declared as AND nodes, because in FMEA the

single-fault assumption is used: failures are not caused by combinations of

lower-level events (indeed this cannot be represented in FMEA) but can be

traced back to single root events. We assume here that all failure events at

subsystem level can be traced back to events at unit level, and thus don’t

introduce dedicated TFPG failure mode nodes at subsystem level.

Finally, we also wanted to investigate the integration of monitors into

the TFPG, and thus added the monitors established by the proposed FDIR

design. Two categories of monitors are commonly used, also in SOLO:

standard monitors (SMON), which are simple Boolean expressions over

raw or computed observable signals, and functional monitors (FMON),

which are composed of a set of standard monitors. Functional monitors can

have either AND semantics, or OR semantics; when using AND semantics,

the monitor triggers when all associated standard monitors have triggered,

174

CHAPTER 5. INDUSTRIAL APPLICATION

whereas for OR semantics just one SMON needs to trigger. Standard

monitors can be seen as fault symptoms, and functional monitors, which

are used to trigger recoveries, represent slightly more complex diagnoses

and are from an architectural point-of-view comparable to the alarms we

require diagnosers to produce in Chapter 4.

The design of these monitors thus perfectly matches the notion of OR

and AND discrepancies in TFPGs. Just as the nodes in TFPGs, these

monitors are conditional on the occurrence of a fault, otherwise false alarms

would be possible. Furthermore we note how the standard monitors match

the notion of a discrepancy being defined by a Boolean expression over

system variables, whereas functional monitors match the notion of virtual

discrepancies that are defined based on other discrepancies that have edges

towards it.

Even though in this case study we didn’t create a system model to com-

pare the TFPG against, it became clear that a considerable difficulty would

be in defining certain TFPG nodes. It seems to be pretty straightforward

at the unit level, in our case with clear effects on the IMU hardware. How-

ever, at the subsystem level the FMEA uses terms such as “fast”, “slow”,

and “high”, without a formal definition being available in the project docu-

mentation. For a precise definition, which we would need for TFPG valida-

tion or synthesis, additional interaction with engineers would be necessary.

Beyond TFPG validation, such information would make validation of the

FDIR more effective.

Qualitative Edges The next question to consider was how to connect the

nodes. We first focus on the qualitative graph topology. Two approaches

to link failure mode and discrepancy nodes (excluding monitor nodes for

a moment) were identified based on the FMEA tables: “forward linking”

by considering the columns for failure effects at the higher architectural

175

5.3. ARCHITECTURAL PROPAGATION MODELING

level (this was chosen for the case study), and “backward linking” via

the possible-cause column. By “forward” we mean following the same

direction as the propagation, and by “backward” the opposite direction as

the propagation.

For forward linking we focus on one FMEA table row and look at the

prediction of failure effects at the next level. These should match with

the failure effects of some failure mode at the higher level. Relating table

rows was possible this way but not fully straightforward, due to the less

structured content of failure effect table cells. What we were able to do with

this approach was to match rows of different FMEA levels. However, since

the FMEA rows at subsystem level in our use case correspond to more than

one node in the TFPG, additional interpretation of the nature of individual

events and interaction with engineers were necessary to establish the exact

temporal ordering via TFPG edges. This additional knowledge allowed us

to create a clearer propagation model compared to how the FMEA tables

represent propagation.

A second approach to relate FMEA rows is, in principle, the possible-

cause column, which should enable a backward linking. However we found

this to be conflicting with our choice of forward linking, because in the

available tables this backward perspective had an implicit assumption of

fault isolation. It indicated failures at a lower level that are not detectable

or recoverable at that level, thus excluding all failure modes for which

monitors and recoveries were defined there.

It seems thus that, in fact, two different implicit and possibly conflicting

propagation models are present in the FMEA tables: one where FDIR

fails or is not executed and the failure thus propagates further to the next

level (forward linking), and one where FDIR cannot, by design, prevent a

propagation (backward linking).

Edges towards monitor discrepancies were easier to establish, also bene-

176

CHAPTER 5. INDUSTRIAL APPLICATION

fiting from the preceding modeling steps. In “Failure Effect Summary List”

(FESL) tables the standard and functional monitors are associated with

the consolidated failure modes. Based on this and the precise definitions

of the monitors it was possible to establish the edges from TFPG nodes to

SMON nodes; edges from SMON to FMON nodes directly followed from

the definition of FMON monitors.

Edge Constraints In this case study we focused only on one mode. How-

ever, in FMEA tables effects of failure modes can be bound to certain

operational modes. This information can be used to establish mode labels

in the TFPG.

We also didn’t model refined time bounds on the propagations, but set

them to default values of tmin = 0 and tmax = +∞. These values represent

the extreme cases of propagation delays. In the case of monitors, immediate

propagation means that the monitor triggers immediately as soon as the

associated condition becomes true (best case), and infinite delay means

that the monitor will never trigger (false negative, worst case). In the case

of unmonitored failure effects, the interpretation is swapped. Immediate

propagation is the worst case, because there is zero time to react, and

infinite delay is the best case in the sense that the feared event will never

occur.

TFPG Properties The structure of the TFPG that we developed for this

case study is shown in Figure 5.6. It has the following properties:

• 13 failure modes (IMU-gyro failure modes)

• 19 discrepancies (4 subsystem/system-level failure mode/effect items,

9 standard monitors, 6 functional monitors)

• 13 edges from failure modes to failure effect discrepancies

177

5.3. ARCHITECTURAL PROPAGATION MODELING

• 22 edges from failure modes and discrepancies to standard monitors

• 9 edges from standard monitors to functional monitors

• 3 edges among failure modes/effects encoded as discrepancies

For this example it can be seen that the failure modes and the monitors

constitute the biggest sets of nodes, while the unobservable failure effects

are significantly fewer in number. This shows that gyroscope failures have

a limited number of effects on the system in terms of feared events, and

that all but the top-level one are captured by monitors.

Results The result of this case study is a TFPG that models failure propa-

gations rooting in the IMU more clearly and in a more integrated way than

the corresponding FMEA documentation. We showed a way to integrate

standard and functional monitors in the TFPG. This makes a more formal

assessment of FDIR design coverage possible (discussed in Section 5.3.2)

and also potentially better supports, compared to FMEA, diagnostic ac-

tivities during later project phases (see Section 5.3.3).

In the TFPG it can be seen that no connections are made between

SMON nodes, as no information was available to allow such modeling.

It would be interesting though to see whether such connections could be

established, and whether that would lead to different (better) FMON def-

initions.

Timings were not considered in the TFPG. This would have required

more interaction with project engineers in order to learn how to derive this

information from the documentation. The information might not even be

available as it is usually not considered during FMEA. Compared to FMEA

the TFPG makes it clear that, without further information and from a

formal point-of-view, we need to assume propagation can be instantaneous

178

CHAPTER 5. INDUSTRIAL APPLICATION

F
ig

u
re

5.
6:

T
F

P
G

of
th

e
IM

U
-t

o-
A

O
C

S
ca

se
st

u
d
y.

F
M

:
fa

il
u
re

m
o
d
e;

F
E

:
(u

n
ob

se
rv

ab
le

)
fa

il
u
re

eff
ec

t;

S
M

O
N

:
st

an
d
ar

d
m

on
it

or
;

F
M

O
N

:
fu

n
ct

io
n
al

m
on

it
or

.

179

5.3. ARCHITECTURAL PROPAGATION MODELING

or might never occur at all, forcing engineers to be explicit about timing

aspects.

With respect to delay bound modeling, an interesting follow-up case

study would be to try using TFPG models with such maximally permissive

time bounds for a specific task that FMEA is used for. The ECSS standards

require FMEA to provide the following result during Phase B:

“Identification of failures requiring failure detection and recovery

action in a time interval greater than the time to an irreversible

consequence [...].” ([ECSS-Q-ST-30-02C, 2009], Section 6.4, item

e.1).

The clear identification and definition of propagation events and links

gives a more formal framework to investigate this question, and by inte-

grating also monitors in the TFPG allows to directly compare worst-case

(fastest) propagation times to feared events and worst-case (slowest) trig-

gering delay of potential monitors. The delay estimates might not even

have to be precise down to milliseconds to identify potentially critical sce-

narios, and likewise to identify scenarios where further analysis is not nec-

essary.

The qualitative information contained in the graph of Figure 5.6, disre-

garding timing and mode information, could also be represented in tabular

format, similar to FMEA. It is however arguable that the result is an

FMEA table, as all nodes that are not roots of the graph would need to

be declared as failure mode nodes, which is not intuitive from a method-

ological point-of-view. In plain tabular format it would also be impossible

to represent AND semantics, which might be used by FMON monitors,

or in the case of multiple-fault modeling. Fault trees could also be used

to represent the qualitative relationships between nodes, and would also

support AND semantics. Indeed, this is the basic idea on which our TFPG

180

CHAPTER 5. INDUSTRIAL APPLICATION

synthesis approach is based. But depending on how exactly the fault trees

are built, this might result in 7 to 19 different trees, making it more difficult

to obtain a global picture on possible failure scenarios and the relationship

between monitors and failure effects.

Critical Design Review The modeling efforts described in this section raised

several questions that were forwarded to the CDR panel.

A first question regarded the rationale behind the hierarchical place-

ment of two failure modes, as their direct effects, according to FMECA,

influences the whole system. This issue was identified as our modeling goal

was, based on failure effects, to link unit and subsystem levels. Thus it

was not fully clear how many monitor/response safety layers were in place

to prevent propagation to system level. It was clarified during the review

that while the failure effects influenced the whole system, the failure modes

were placed at subsystem level because detection, isolation, and recovery

involves only that subsystem. Hierarchical placement in the FMEA anal-

yses thus is not always oriented on the “architectural perimeter” of the

fault effect, but is sometimes rather based on the architectural structure

of FDIR.

To identify unit-level failure modes we were using the detailed FMECA

at unit-level instead of the consolidated one developed for CDR. The con-

solidated FMECA results are the ones used to assess FDIR design coverage,

and summarize, especially at unit-level, several failure modes into com-

bined ones. However, during our analysis we discovered one failure mode

at unit-level that, according to the unit-level FMECA, was not detectable

at unit-level. In the design coverage tables however all consolidated unit-

level failure modes are detectable at unit-level with the proposed monitors.

It was confirmed during the review that in fact detection of the identified

failure mode at unit-level is possible, and that the FMECA table was in-

181

5.3. ARCHITECTURAL PROPAGATION MODELING

complete. The information on what monitor would handle the failure mode

was added to the documentation. In addition, also the association with

subsystem-level monitors was clarified.

Finally, by trying to model the IMU-to-AOCS TFPG we identified an

ambiguity on the exact ordering of propagation events; this situation was

clarified as well during the review. The problem is that propagation is

supposed to connect failure effects at various levels. As shown in the case

study, identifying those events and connecting them is not always intuitive.

5.3.2 Assessment and tuning of FDIR design coverage

The general problem that drove the TFPG case studies was the valida-

tion of FDIR design coverage. This meant to check whether every failure

mode is caught by a monitor at the same architectural level to guarantee

its detection, what propagations to higher levels are possible and whether

monitors at the higher level were in place as a fall-back detection mecha-

nism.

FDIR design coverage is usually based on “Failure Effect Summary List”

(FESL) tables, of which a simplified example is given in Table 5.1. For each

architectural component, from units to subsystems, such a table is made.

The first set of columns describes the failure mode and is derived directly

from the FMEA tables; the example contains the failure mode (FM), func-

tion/item (FUN/ITM) which the failure mode is associated to, failure effect

(FE), possible cause (PC), and textual description of observable symptoms

(OBS). The second set of columns (M1 to M3) are the monitors; selected

cells (marked with X) indicate that the monitor of that column is expected

to trigger following the failure mode of that row. The third set of columns

shows the recoveries; marks associate recoveries with failure modes they

are supposed to isolate and possibly recover the system from. Recovery

information is integrated in FESL tables only for convenience, as the pre-

182

CHAPTER 5. INDUSTRIAL APPLICATION

cise association between monitors and recoveries is described elsewhere.

However, these tables are the main source of information for associating

failure modes and monitors.

FMEA Information Monitors Recoveries

FUN/ITM FM FE PC OBS M1 M2 M3 R1 R2

. . . X X X

. . . X X X X

Table 5.1: Simplified example of Failure Effect Summary List (FESL) table layout.

Multiple monitors can be associated to a failure mode row. Recoveries are included for

convenience, their precise association with monitors is specified elsewhere.

Based on these tables, engineers reviewing and assessing FDIR design

coverage are interested in the following two main questions:

1. How exactly are the monitors related to the failure mode row?

2. What happens if FDIR at this level fails in terms of propagation?

The experience with SOLO shows that both questions are not trivial

when working with typical FMEA tables. Each failure mode may contain

more than one distinct event which have to be identified by interpreting

the textual informal description in the row cells. Furthermore, if multiple

monitors are assigned to the row, then there is no information in the ta-

ble on what exact event each monitor is associated with. With TFPGs,

instead, it is possible to clearly describe what the events of interest are

and how we assume them to be related in a temporal sense among them-

selves and w.r.t. the monitors. From a purely qualitative point-of-view,

coverage can thus be assessed by checking what monitors are reachable

from every (unobserved) failure event. With the delay bounds TFPGs give

also additional information not contained at all in FESL tables, and allow

to compare fastest propagation time to the next event against the slow-

est propagation time towards the monitor (upper detection delay bound).

183

5.3. ARCHITECTURAL PROPAGATION MODELING

TFPGs also clearly state the worst-case when no timing information is

given, by setting the tmax delay towards monitors to +∞, which means the

monitor might never trigger at all. FESL tables however seem to have a

more optimistic view and assume that the monitors will always trigger in

response to the failure mode or one of the failure effects.

The second important question is also not straightforward to answer

with FESL tables, being directly derived from FMEA tables: What will

happen in terms of propagation when the FDIR fails to detect a failure

mode or to recover from it, and is a fall-back monitor/response pair in place

to capture the propagation? In the case study described in Section 5.3.1

we showed that propagations between different architectural layers can

be represented in TFPGs, thus connecting local information into a global

propagation model. This then allows to assess how many and which failure

events with associated monitors a propagation has to go through before

reaching a point where no further monitors (and recoveries) exist.

The experience of the case study showed that precise modeling of failure

propagation and relationship of failures and monitors is difficult based on

commonly used project documentation, due to the fact that relevant in-

formation is scattered over several documents. On the other hand, TFPG

modeling offers a clear and concise picture on failure propagation. It would

thus be interesting to see whether the documentation typically used to as-

sess FDIR coverage could be generated from TFPGs, resulting in docu-

ments that are more consistent and perhaps much more concise.

FDIR Tuning It does seem thus that the task of checking FDIR design

coverage can be reduced to the task of building a TFPG from the FMEA

and FESL tables. The result is a unified model relating failure modes,

effects, and monitors. Beyond its application to FDIR design validation,

it should also be possible to use such TFPGs for tuning the overall FDIR

184

CHAPTER 5. INDUSTRIAL APPLICATION

implementation as follows.

A usual first task during recoveries is, right after the associated moni-

tor triggers, to disable other monitors that might trigger other interfering

recoveries. Choosing what exact monitors should be disabled is challeng-

ing and could be supported by TFPGs. A possible algorithm could be to

compute all possible nodes that can reach a monitor M of interest, and

then check what other monitors are reachable as well from those nodes.

This gives an over-approximation of what monitors can trigger too after

M triggers, and the associated recoveries can be checked for compatibility

with the recovery associated with M .

A second possible way to use TFPGs for tuning FDIR exploits timing

information on the edges. Fault identification, as opposed to simple de-

tection, is sometimes achieved by waiting “long enough” for the “right”

monitor to trigger. Figure 5.7 shows a small but realistic example. Three

failures are possible: the IMU can break, the star tracker (STR), or the

bus that connects both to the central computer.

Figure 5.7: Example for filter tuning. The filter values for the IMU and STR monitors

need to be chosen such that for each failure mode the corresponding monitor will trigger

first.

The goal is to trigger, for each failure, a corresponding recovery. The

default approach in most FDIR implementations to launch recoveries is to

execute the one associated to the first monitor that triggers. Assuming

single-faults, for both IMU and STR failures only the appropriate monitor

185

5.3. ARCHITECTURAL PROPAGATION MODELING

will trigger. However, with a bus failure it might happen that the IMU

or STR monitors will trigger before the BUS monitor, thus causing the

wrong recovery to be executed. What can be done is to delay, in the FDIR

implementation, the triggering of IMU and STR monitors by a value δ

such that, if FM-BUS occurs, the BUS monitor will trigger first. More

precisely we require that tmax(E3) < tmin(E2) + δIMU and tmax(E3) <

tmin(E4) + δSTR. Naturally this would also mean to delay the recoveries

for IMU and STR failures – but not the propagation towards the SMON

in the TFPG.

Finally, a third possible application of TFPGs for FDIR tuning is to tune

thresholds and detection filters which are often used in monitor definitions.

Thresholds are commonly used to detect the presence of faults through

abnormal readings; filters, which can be counters or timers, are used to

specify how long or how many times the threshold violation has to persist

such that a fault can be confirmed and spurious triggerings be excluded.

Figure 5.8: Example use case for monitor threshold and detection filter tuning. Values

need to be found that optimize the monitor’s reactivity without introducing false alarms.

An example is shown in Figure 5.8. Assume SMON is defined by an

expression φ := v ≥ θ (where v is a variable being measured and θ a

threshold dividing nominal and off-nominal values), and by a filter value

f that indicates how many times in a row the sampling of v has to result

in φ evaluating to true. The analysis framework described in Chapter 3,

specifically the TFPG completeness check, can then be used to validate

186

CHAPTER 5. INDUSTRIAL APPLICATION

the choices for θ and f . For this a model is needed that describes the

dynamic nominal and faulty behavior of the system of reference. If only

the threshold and filter choices for SMON shall be evaluated, only the proof

obligations ψOR·A(SMON,Γ) and ψOR·B(SMON,Γ) need to be checked. An

automatic procedure to optimize θ and f can be obtained by lifting the

validation problem with fixed values to a parameter synthesis problem: θ

and f parameterize the implementation of SMON inside the model, and

the tmax values of the two edges are used as optimization criteria – lower

tmax values mean better worst-case detection delays.

5.3.3 Diagnostic support for testing and operations

The analysis of project documentation and the development of the TFPG

described in Section 5.3.1 and interaction with ESA engineers also raised

the issue of diagnostic support via FMEA/FMECA results. Even though

we didn’t have the opportunity to investigate this topic further, we identi-

fied three promising directions for future work and case studies.

The ECSS Standard on FMEA/FMECA states, referring to Phase D

(production or ground qualification testing), that:

The FMEA/FMECA shall be utilized as a diagnostic tool in order

to support the failure diagnosis during the qualification and the

elimination of potential failures.

(ECSS-Q-ST-30-02C, Section 6.6.)

Furthermore, referring to Phase E (utilization):

The FMEA/FMECA performed at system level in phase C/D

shall be utilized as support to diagnostic activities (in-flight and

on ground) in order to support system maintenance and restoring.

(ECSS-Q-ST-30-02C, Section 6.7.)

187

5.3. ARCHITECTURAL PROPAGATION MODELING

Even using the FMEA results for very thorough diagnostic troubleshoot-

ing as required by ECSS, in practice it is sometimes difficult or even im-

possible to identify root causes of events. This then causes healthy com-

ponents to be marked as unhealthy and corresponding redundancies to be

activated, just because it is not clear what exactly caused a specific issue

and because it cannot be risked to use a possibly compromised unit or

to rely on a compromised fault-detection mechanism. In fact the problem

doesn’t seem to be as much one of fault detection than one of precisely

identifying the faulty component or item, hence making it impossible to

perform more fine-grained recoveries. Furthermore, in missions that have

to guarantee double-fault-tolerance this can also result in adding additional

redundant units or components to the system, which increases spacecraft

weight, power consumption, system complexity, and costs in general. This

could in principle be avoided by a better understanding of how various

faults are connected and how they influence the available monitors. Im-

proving diagnosability is thus a very important issue in practice, both from

an operational perspective (unnecessarily losing redundancy during opera-

tions results in reduced capability to deal with subsequent faults) and from

an economical perspective (unnecessarily adding redundancy in the design

increases various costs).

Our experience during the case studies showed that TFPGs can be used

to represent failure propagations and association of monitors with failure

events more precisely than FMEA and FESL tables. The conjecture is that

the higher precision and formality in propagation modeling, and possibly

the addition of timing information where known, can help to produce better

diagnosis results.

As a first follow-up activity it would thus be interesting to see whether

formal propagation modeling with TFPGs would alleviate the kind of di-

agnosis problems mentioned above, either by being able to associate more

188

CHAPTER 5. INDUSTRIAL APPLICATION

accurate diagnoses to monitors that trigger recoveries online, or when be-

ing used as a support for manual diagnosis or troubleshooting in addition

or instead of FMEA tables.

A second question that should be investigated is to use the diagnosis

approach based on discretized TFPGs as described in Section 5.1. The

case study in FAME was rather focused, and it would be interesting to

see whether applying the diagnoser synthesis on architectural TFPGs that

span the whole system would result in better diagnosability as compared to

the diagnoses represented by functional monitors. As observables the stan-

dard monitors and possibly other observable symptoms can be used, and

the diagnoser alarms would be computed based on those observations and

by reasoning on the TFPG structure and the delays between key events.

5.4 Summary

In this chapter we described several ways in which TFPGs can be applied

in a project setting. In Section 5.1 a translation of TFPGs to the SMV lan-

guage is presented with the goal to enable, on top of it, diagnoser synthesis

in the sense of [Bozzano et al., 2015c]. This technique has the potential to

improve diagnostic accuracy, as discussed in Section 5.3.3.

In Section 5.2 we describe two case studies on TFPG validation and

synthesis, based on the ESA Solar Orbiter project. One of them focuses on

a software component, and another analyzes a critical propagation scenario

at a higher abstraction level. They show the adequacy of the framework

developed in Chapter 3 as well as the performance on a detailed and re-

alistic model. Contributions to the SOLO FDIR critical design review are

described.

In Section 5.3 a third case study is presented on modeling propagation

across architectural layers, as well as the integration of FDIR monitors in

189

5.4. SUMMARY

the resulting propagation model. The usefulness of this modeling approach

for FDIR design coverage and diagnostic support is demonstrated. The

TFPG we obtained is comparable in complexity to the experiments in

Section 3.7, which confirms that those are based on realistic problems.

Also based on this case study contributions to the SOLO CDR were made.

During the research stay at ESTEC we didn’t perform case studies for

diagnosability due to a lack of time, but instead focused on potential ap-

plications of TFPGs to maximize our findings on that topic. However, the

general experience and interaction with engineers also clearly showed the

importance of diagnosability analysis as described in Chapter 4, especially

for enabling effective redundancy management through more precise fault

localization.

When using TFPGs for diagnosis we make the essential assumption of

simple observable discrepancies (standard monitors) being available. But

what if such monitors are not given and it is not clear how to derive them,

such that specific diagnostic objectives can be met? Do we even have

enough information to implement such monitors, given a set of observables

and knowledge of the system behavior? What if we need to diagnose some-

thing more complex than a Boolean expression over state variables, such

as an anomalous behavior? This is the challenge that the framework and

algorithms described in Chapter 4 on diagnosability try to deal with.

The present dissertation focuses on propagation modeling and diagnosis

tasks. Working with actual project documentation on FDIR designs we

were also able to identify several opportunities for future work specifically

dealing with recovery aspects.

First we want to point out that the developed framework for TFPG

analysis can be used to validate the effectiveness of fault isolation, that

is the ability to stop faults from propagating. Indeed this has been done

in the case study of Section 5.2.2. In some sense this is done by duality,

190

CHAPTER 5. INDUSTRIAL APPLICATION

as TFPGs describe propagations that are indeed possible and cannot be

isolated in all circumstances.

Beyond fault isolation, there is a clear need for a framework to formu-

late recovery requirements, similar in spirit to the specification framework

used in Chapter 4 for expressing diagnosis requirements. Recovery re-

quirements are usually formulated in natural informal language or only

implicitly, and a clear pattern language can help to streamline and formal-

ize them. Based on such formal patterns it is important to investigate the

issues of validating a given recovery strategy, checking the existence of one

and automatically computing it. For this it could be considered to rely on

planning frameworks, as suggested in FAME.

191

5.4. SUMMARY

192

Chapter 6

Conclusion

In this dissertation we advanced the state-of-the-art in formal failure analy-

sis. In many modern engineering systems safety and availability are critical

properties, and a thorough assessment of how faults impact a system – and

thus potentially compromise those properties – is fundamental.

Timed Failure Propagation Analysis The first technique we investigated

are Timed Failure Propagation Graphs. TFPGs are well-suited to model

how faults affect a system over time and have distinctive advantages over

traditional modeling techniques. A framework was developed to treat TF-

PGs as abstractions of transition systems. Such models can be used to

describe the dynamic behavior of a system, including behavior in presence

of faults. Based on this framework, algorithms are developed for validating

TFPGs with respect to and synthesizing TFPGs from transition systems.

The techniques for TFPG validation, where a TFPG is given, can thus be

used by an engineer to validate the assumptions on failure propagation en-

coded in the TFPG. The techniques for TFPG synthesis can be used when

such assumptions cannot be made. The implementation core is based on

symbolic model-checking, which is one of the main technologies in formal

verification. Experimental results show promising performance and thus

the potential of the approach for industrial application.

193

Diagnosability Analysis The second technique for failure analysis that was

investigated is diagnosability analysis. The goal here is to study whether

failures affect the available observables in a way that makes diagnosis pos-

sible within a specific time frame. The contribution builds on epistemic

definitions of diagnosability that are extended with the notion of oper-

ational context. Verification of diagnosability under these definitions is

reduced to checking the existence of critical pairs; necessity and sufficiency

properties of this approach are analyzed. The implementation relies on

model-checking of the twin-plant, which is used to produce indistinguish-

able pairs of traces. The synthesis problem for diagnosability is also ad-

dressed: the goal here is to identify subsets of the possible observables that

still guarantee diagnosability but also optimize the total cost. We propose

a synthesis algorithm that relies on a parameterized twin-plant and reduc-

tion of the problem to parameter synthesis; experimental results show the

competitive performance w.r.t. state-of-the-art approaches.

Industrial Application In the FAME project a method to translate TFPGs

to the SMV language was developed, with the goal of performing diagnos-

ability analysis and synthesis of diagnosers on top of it. The approach was

validated by an industrial partner in a case study for the ExoMars Orbiter.

During a research stay at ESTEC three case studies were developed

based on a spacecraft currently under development. The case studies

showed the adequacy of the framework and the performance of the imple-

mentation. They furthermore show the advantages of TFPGs in formally

and concisely representing the relationship between failure propagations

and monitors, which makes it considerably easier to review an FDIR de-

sign. The benefits of TFPG modeling were also demonstrated through

several contributions to the critical design review of the analyzed mission.

During the review of FDIR documentation at ESA also the high practi-

194

CHAPTER 6. CONCLUSION

cal relevance of diagnosability analysis became evident. A big problem in

fact is that often failure identification can be done only to a degree that

requires reconfiguration of larger parts of the spacecraft, without the possi-

bility to precisely locate the source of the failure. By worst-case reasoning

this results in declaring potentially healthy components as unhealthy. Di-

agnosability analysis can alleviate the situation by proving that either the

precise diagnosis is actually possible, or by showing that indeed not enough

observables are available.

Future Work Many promising directions of future work exist for all topics

mentioned in this dissertation. Several are discussed in the respective chap-

ters, and here we would like to point out two issues concerning a tighter

integration of TFPGs and diagnosability of transition systems.

First of all we want to extend the diagnosability framework to use more

expressive encodings of time as they are also used for our TFPG approach.

This would make it possible to reuse the same system models for both

analyses, which is instrumental to design consistency.

Based on this we want to develop TFPGs containing only feared events,

and design the monitors to be integrated with diagnoser synthesis. Inte-

gration of failure propagation dynamics and monitoring facilities not only

enables a more global analysis, but is also very useful for supporting FDIR

design review as shown in the case studies. For this we need to investigate

the issue of zero-recall diagnosability and diagnoser synthesis to identify

monitor implementations. The standard monitors typically used in FDIR

design can be described as zero-recall diagnosers, as they are evaluated con-

sidering just the current state of all observables. As in current industrial

FDIR design, such monitors probably need to focus on simpler conditions,

as diagnosis of more complex conditions is unlikely to be feasible by ob-

serving single snapshots of observations.

195

Finally, development of a specification framework for recovery require-

ments is necessary. Based on this we will investigate definitions of recover-

ability for transition systems or possibly dense-time frameworks, as well as

corresponding algorithms to automatically compute recovery procedures.

196

Bibliography

S. Abdelwahed, G. Karsai, N. Mahadevan, and S.C. Ofsthun. Practical im-

plementation of diagnosis systems using timed failure propagation graph

models. Instrumentation and Measurement, IEEE Transactions on, 58

(2):240–247, 2009.

Karine Altisen, Franck Cassez, and Stavros Tripakis. Monitoring and

Fault-Diagnosis with Digital Clocks. In International Conference on

Application of Concurrency to System Design. IEEE Computer Society,

2006.

Rajeev Alur and Thomas A Henzinger. Real-time logics: complexity and

expressiveness. Information and Computation, 104(1):35–77, 1993.

Étienne André, Thomas Chatain, Laurent Fribourg, and Emmanuelle En-

crenaz. An Inverse Method for Parametric Timed Automata. Interna-

tional Journal of Foundations of Computer Science, 20(5):819–836, 2009.

AUTOGEF. AUTOGEF Project Web Page: https://es.fbk.eu/

projects/autogef_main, 2016. URL https://es.fbk.eu/projects/

autogef_main.

Christel Baier and Joost-Pieter Katoen. Principles of Model Checking.

MIT Press, 2008.

Anupa Bajwa and Adam Sweet. The Livingstone model of a main propul-

197

https://es.fbk.eu/projects/autogef_main
https://es.fbk.eu/projects/autogef_main
https://es.fbk.eu/projects/autogef_main
https://es.fbk.eu/projects/autogef_main

BIBLIOGRAPHY

sion system. In Proceedings of the IEEE Aerospace Conference, pages

63–74, 2003.

Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli.

Satisfiability Modulo Theories. In Handbook of Satisfiability, pages 825–

885. 2009.

Mehdi Bayoudh and Louise Travé-Massuyès. Diagnosability Analysis of

Hybrid Systems Cast in a Discrete Event Framework. Discrete Event

Dynamic Systems, 24(3):309–338, 2014.

A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic Model-checking

without BDDs. In International Conference on Tools and Algorithms

for the Construction and Analysis of Systems, pages 193–207. Springer,

1999.

Armin Biere, Cyrille Artho, and Viktor Schuppan. Liveness Checking as

Safety Checking. Electronic Notes in Theoretical Computer Science, 66

(2):160–177, 2002.

S Biswas, D Sarkar, S Mukhopadhyay, and A Patra. Diagnosability Anal-

ysis of Real Time Hybrid Systems. In IEEE International Conference on

Industrial Technology, pages 104–109. IEEE, 2006.

Santosh Biswas, Dipankar Sarkar, Siddhartha Mukhopadhyay, and Amit

Patra. Fairness of Transitions in Diagnosability of Discrete Event Sys-

tems. Discrete Event Dynamic Systems, 20(3):349–376, 2010.

B Bittner, M Bozzano, Alessandro Cimatti, M Gario, and Alberto Grig-

gio. Towards pareto-optimal parameter synthesis for monotonic cost

functions. In Proceedings of the 14th Conference on Formal Methods

in Computer-Aided Design, pages 23–30. FMCAD Inc, 2014a.

198

BIBLIOGRAPHY

Benjamin Bittner, Marco Bozzano, Alessandro Cimatti, and Xavier Olive.

Symbolic Synthesis of Observability Requirements for Diagnosability. In

AAAI Conference on Artificial Intelligence, 2012.

Benjamin Bittner, Marco Bozzano, Alessandro Cimatti, Regis De Ferluc,

Marco Gario, Andrea Guiotto, and Yuri Yushtein. An Integrated Process

for FDIR Design in Aerospace. In Model-Based Safety and Assessment,

pages 82–95. Springer, 2014b.

Benjamin Bittner, Marco Bozzano, Roberto Cavada, Alessandro Cimatti,

Marco Gario, Alberto Griggio, Cristian Mattarei, Andrea Micheli, and

Gianni Zampedri. The xSAP Safety Analysis Platform. In Tools and

Algorithms for the Construction and Analysis of Systems, pages 533–

539. Springer, 2016a.

Benjamin Bittner, Marco Bozzano, and Alessandro Cimatti. Automated

synthesis of timed failure propagation graphs. In Proceedings of the

Twenty-Fifth International Joint Conference on Artificial Intelligence

(IJCAI 2016), pages 972–978, 2016b.

Benjamin Bittner, Marco Bozzano, Alessandro Cimatti, and Gianni

Zampedri. Automated verification and tightening of failure propaga-

tion models. In Proceedings of the 30th AAAI Conference on Artificial

Intelligence (AAAI 2016), 2016c.

Nikolaj Bjørner, Anh-Dung Phan, and Lars Fleckenstein. νZ - An Optimiz-

ing SMT Solver. In International Conference on Tools and Algorithms

for the Construction and Analysis of Systems, pages 194–199. Springer,

2015.

Andrea Bobbio, Luigi Portinale, Michele Minichino, and Ester Cian-

camerla. Improving the analysis of dependable systems by mapping fault

199

BIBLIOGRAPHY

trees into bayesian networks. Reliability Engineering & System Safety,

71(3):249–260, 2001.

Abderraouf Boussif and Mohamed Ghazel. Diagnosability Analysis of

Input/Output Discrete-Event Systems Using Model-Checking. IFAC-

PapersOnLine, 48(7):71–78, 2015.

M Bozzano, A Cimatti, A Guiotto, A Martelli, M Roveri, A Tchaltsev,

and Y Yushtein. On-board Autonomy via Symbolic Model-based Rea-

soning. In ESA Workshop on Advanced Space Technologies for Robotics

and Automation, 2008.

M. Bozzano, A. Cimatti, M. Roveri, and A. Tchaltsev. A Comprehensive

Approach to On-Board Autonomy Verification and Validation. In Pro-

ceedings of the International Joint Conference on Artificial Intelligence,

2011.

M. Bozzano, A. Cimatti, A. Fernandes Pires, D. Jones, G. Kimberly,

T. Petri, R. Robinson, and S. Tonetta. Formal Design and Safety Analy-

sis of AIR6110 Wheel Brake System. In Proc. CAV 2015, pages 518–535,

2015a.

Marco Bozzano, Alessandro Cimatti, and Francesco Tapparo. Symbolic

Fault Tree Analysis for Reactive Systems. In International Symposium

on Automated Technology for Verification and Analysis, pages 162–176,

2007.

Marco Bozzano, Alessandro Cimatti, Joost-Pieter Katoen, Viet Yen

Nguyen, Thomas Noll, and Marco Roveri. The COMPASS approach:

Correctness, modelling and performability of aerospace systems. In Com-

puter Safety, Reliability, and Security, pages 173–186. Springer, 2009.

200

BIBLIOGRAPHY

Marco Bozzano, Alessandro Cimatti, Marco Gario, and Stefano Tonetta.

Formal Design of Fault Detection and Identification Components Using

Temporal Epistemic Logic. In International Conference on Tools and

Algorithms for the Construction and Analysis of Systems, pages 326–

340, 2014a.

Marco Bozzano, Alessandro Cimatti, Cristian Mattarei, and Stefano

Tonetta. Formal Safety Assessment via Contract-Based Design. In In-

ternational Symposium on Automated Technology for Verification and

Analysis, pages 81–97. Springer, 2014b.

Marco Bozzano, Alessandro Cimatti, Marco Gario, and Andrea Micheli.

Smt-based validation of timed failure propagation graphs. In Twenty-

ninth AAAI Conference on Artificial Intelligence, 2015b.

Marco Bozzano, Alessandro Cimatti, Marco Gario, and Stefano Tonetta.

Formal Design of Asynchronous FDI Components using Temporal Epis-

temic Logic. Logical Methods in Computer Science, 2015c.

Marco Bozzano, Alessandro Cimatti, Alberto Griggio, and Cristian

Mattarei. Efficient Anytime Techniques for Model-Based Safety Anal-

ysis. In Computer Aided Verification - 27th International Conference,

CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings,

Part I, pages 603–621, 2015d.

Aaron R Bradley. SAT-based model checking without unrolling. In

Verification, Model Checking, and Abstract Interpretation, pages 70–87.

Springer, 2011.

Davide Bresolin and Marta Capiluppi. A Game-theoretic Approach to

Fault Diagnosis and Identification of Hybrid Systems. Theoretical Com-

puter Science, 493:15–29, 2013.

201

BIBLIOGRAPHY

L.B. Briones, A. Lazovik, and P. Dague. Optimal Observability for Diag-

nosability. In International Workshop on Principles of Diagnosis, 2008.

Maria Paola Cabasino, Alessandro Giua, and Carla Seatzu. Diagnosability

of Bounded Petri Nets. In IEEE Conference on Decision and Control,

pages 1254–1260. IEEE, 2009.

Maria Paola Cabasino, Alessandro Giua, Stéphane Lafortune, and Carla

Seatzu. A New Approach for Diagnosability Analysis of Petri Nets Using

Verifier Nets. IEEE Transactions on Automatic Control, 57(12):3104–

3117, 2012.

Christos G. Cassandras and Stéphane Lafortune. Introduction to Discrete

Event Systems, Second Edition. Springer, 2008.

F. Cassez, S. Tripakis, and K. Altisen. Sensor Minimization Problems

with Static or Dynamic Observers for Fault Diagnosis. In International

Conference on Application of Concurrency to System Design, pages 90–

99. IEEE, 2007.

Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio,

Alessandro Mariotti, Andrea Micheli, Sergio Mover, Marco Roveri, and

Stefano Tonetta. The nuXmv symbolic model-checker. In Computer

Aided Verification, pages 334–342. Springer, 2014.

Sébastien Chédor, Christophe Morvan, Sophie Pinchinat, and Hervé Marc-

hand. Diagnosis and Opacity Problems for Infinite State Systems Mod-

eled by Recursive Tile Systems. Discrete Event Dynamic Systems, 2014.

Alessandro Cimatti and Alberto Griggio. Software model checking via IC3.

In Computer Aided Verification, pages 277–293. Springer, 2012.

202

BIBLIOGRAPHY

Alessandro Cimatti, Charles Pecheur, and Roberto Cavada. Formal Verifi-

cation of Diagnosability via Symbolic Model-Checking. In International

Joint Conference on Artificial Intelligence, pages 363–369, 2003.

Alessandro Cimatti, Luigi Palopoli, and Yusi Ramadian. Symbolic Com-

putation of Schedulability Regions Using Parametric Timed Automata.

In Real-Time Systems Symposium, 2008, pages 80–89. IEEE, 2008.

Alessandro Cimatti, Sergio Mover, and Stefano Tonetta. SMT-Based Ver-

ification of Hybrid Systems. In AAAI Conference on Artificial Intelli-

gence, 2012.

Alessandro Cimatti, Alberto Griggio, Sergio Mover, and Stefano Tonetta.

Parameter Synthesis with IC3. In International Conference on Formal

Methods in Computer-Aided Design, pages 165–168, 2013a.

Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma, and

Roberto Sebastiani. The mathsat5 smt solver. In Tools and Algorithms

for the Construction and Analysis of Systems, pages 93–107. Springer,

2013b.

Alessandro Cimatti, Alberto Griggio, Sergio Mover, and Stefano Tonetta.

IC3 Modulo Theories via Implicit Predicate Abstraction. In International

Conference on Tools and Algorithms for the Construction and Analysis

of Systems, pages 46–61. Springer, 2014.

Alessandro Cimatti, Alberto Griggio, Sergio Mover, and Stefano Tonetta.

HyComp: An SMT-based Model-checker for Hybrid Systems. In Inter-

national Conference on Tools and Algorithms for the Construction and

Analysis of Systems, pages 52–67. Springer, 2015a.

Alessandro Cimatti, Marco Roveri, and Stefano Tonetta. HRELTL: A

203

BIBLIOGRAPHY

Temporal Logic for Hybrid Systems. Information and Computation, 245:

54–71, 2015b.

Alessandro Cimatti, Marco Gario, and Stefano Tonetta. A lazy approach

to temporal epistemic logic model checking. In International Conference

on Autonomous Agents & Multiagent Systems, pages 1218–1226. Inter-

national Foundation for Autonomous Agents and Multiagent Systems,

2016.

Koen Claessen and Niklas Sörensson. A Liveness Checking Algorithm that

Counts. In International Conference on Formal Methods in Computer-

Aided Design, pages 52–59. IEEE, 2012.

Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking.

MIT Press, 1999.

COMPASS. COMPASS Project Web Page: http://compass.

informatik.rwth-aachen.de, 2016. URL http://compass.

informatik.rwth-aachen.de.

Matthew J Daigle, Xenofon D Koutsoukos, and Gautam Biswas. An Event-

based Approach to Integrated Parametric and Discrete Fault Diagnosis

in Hybrid Systems. Transactions of the Institute of Measurement and

Control, 2009.

Rami Debouk, Stéphane Lafortune, and Demosthenis Teneketzis. On an

Optimization Problem in Sensor Selection. Discrete Event Dynamic Sys-

tems, 12(4):417–445, 2002.

Maria D Di Benedetto, Stefano Di Gennaro, and Alessandro D’Innocenzo.

Verification of Hybrid Automata Diagnosability by Abstraction. IEEE

Transactions on Automatic Control, 56(9):2050–2061, 2011.

204

http://compass.informatik.rwth-aachen.de
http://compass.informatik.rwth-aachen.de
http://compass.informatik.rwth-aachen.de
http://compass.informatik.rwth-aachen.de

BIBLIOGRAPHY

Abhishek Dubey, Gabor Karsai, and Nagabhushan Mahadevan. Fault-

adaptivity in hard real-time component-based software systems. In Soft-

ware engineering for self-adaptive systems II, pages 294–323. Springer,

2013.

ECSS-E-ST-70-11C. Space engineering; Space segment operability. Tech-

nical report, 2008.

ECSS-Q-ST-30-02C. Space product assurance; Failure modes, effects (and

criticality) analysis (FMEA/FMECA). Technical report, 2009.

ECSS-Q-ST-40-12C. Space product assurance; Fault tree analysis – Adop-

tion notice ECSS/IEC 61025. Technical report, 2008.

N. Eén and N. Sorensson. Temporal Induction by Incremental SAT Solving.

Electronic Notes in Theoretical Computer Science, 89(4):543–560, 2003.

European Space Agency. Statement of Work: FDIR Development and

Verification & Validation Process, 2011. Appendix to ESTEC ITT AO/1-

6992/11/NL/JK.

FAME. FAME Project Web Page: http://es.fbk.eu/projects/fame_

main, 2016. URL http://es.fbk.eu/projects/fame_main.

A. Feldman, T. Kurtoglu, S. Narasimhan, S. Poll, D. Garcia, Johan

de Kleer, Lukas Kuhn, and A.J.C. van Gemund. Empirical Evaluation

of Diagnostic Algorithm Performance Using a Generic Framework. In-

ternational Journal of Prognostics and Health Management, Sep 2010.

ISSN 2153-2648.

Marco Gario. A Formal Foundation of FDI Design via Temporal Epistemic

Logic. PhD thesis, University of Trento, 3 2016. Fulltext available at

https://marco.gario.org/phd/.

205

http://es.fbk.eu/projects/fame_main
http://es.fbk.eu/projects/fame_main
http://es.fbk.eu/projects/fame_main

BIBLIOGRAPHY

Alban Grastien. Symbolic Testing of Diagnosability. In International

Workshop on Principles of Diagnosis, 2009.

Joseph Y Halpern and Judea Pearl. Causes and explanations: A structural-

model approach. part i: Causes. The British journal for the philosophy

of science, 56(4):843–887, 2005.

Joseph Y Halpern and Moshe Y Vardi. The complexity of Reasoning About

Knowledge and Time. Lower Bounds. Journal of Computer and System

Sciences, 38(1):195–237, 1989.

Thomas A Henzinger. The Theory of Hybrid Automata. In Verification of

Digital and Hybrid Systems, pages 265–292. Springer, 2000.

Thierry Jéron, Hervé Marchand, Sophie Pinchinat, and Marie-Odile

Cordier. Supervision Patterns in Discrete Event Systems Diagnosis.

In International Workshop on Discrete Event Systems, pages 262–268.

IEEE, 2006.

S. Jiang, Z. Huang, V. Chandra, and R. Kumar. A Polynomial-time Algo-

rithm for Diagnosability of Discrete Event Systems. IEEE Transactions

on Automatic Control, 46(8):1318–1321, 2001.

Shengbing Jiang and R Kumar. Failure Diagnosis of Discrete Event Sys-

tems with Linear-Time Temporal Logic Fault Specifications. In American

Control Conference, volume 1, pages 128–133. IEEE, 2002.

Shengbing Jiang, Ratnesh Kumar, and Humberto E Garcia. Diagnosis of

Repeated/Intermittent Failures in Discrete Event Systems. IEEE Trans-

actions on Robotics and Automation, 19(2):310–323, 2003a.

Shengbing Jiang, Ratnesh Kumar, and Humberto E Garcia. Optimal Sen-

sor Selection for Discrete-event Systems with Partial Observation. IEEE

Transactions on Automatic Control, 48(3):369–381, 2003b.

206

BIBLIOGRAPHY

Ron Koymans. Specifying real-time properties with metric temporal logic.

Real-time systems, 2(4):255–299, 1990.

François Laroussinie, Nicolas Markey, and Philippe Schnoebelen. Tempo-

ral Logic with Forgettable Past. In Symposium on Logic in Computer

Science, pages 383–392, 2002.

Florian Leitner-Fischer and Stefan Leue. Causality checking for complex

system models. In Verification, Model Checking, and Abstract Interpre-

tation, pages 248–267. Springer, 2013.

Boyu Li, Ting Guo, Xingquan Zhu, and Zhanshan Li. Reverse Twin Plant

for Efficient Diagnosability Testing and Optimizing. Engineering Appli-

cations of Artificial Intelligence, 38:131–137, 2015.

Agnes Madalinski, Farid Nouioua, and Philippe Dague. Diagnosability Ver-

ification with Petri Net Unfoldings. International Journal of Knowledge-

Based and Intelligent Engineering Systems, 14(2):49–55, 2010.

Robin McDermott, Raymond J Mikulak, and Michael Beauregard. The

basics of FMEA. SteinerBooks, 1996.

K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,

1993.

K.L. McMillan. Interpolation and SAT-based Model-checking. Lecture

Notes in Computer Science, pages 1–13, 2003.

Amit Misra. Senor-based diagnosis of dynamical systems. PhD thesis,

Vanderbilt University, 1994.

Amit Misra, Janos Sztipanovits, Al Underbrink, Ray Carnes, and Byron

Purves. Diagnosability of dynamical systems. In Third International

Workshop on Principles of Diagnosis, 1992.

207

BIBLIOGRAPHY

Christophe Morvan and Sophie Pinchinat. Diagnosability of Pushdown

Systems. In Haifa Verification Conference, pages 21–33. Springer, 2009.

Sergio Mover, Alessandro Cimatti, Ashish Tiwari, and Stefano Tonetta.

Time-aware Relational Abstractions for Hybrid Systems. In International

Conference on Embedded Software, pages 1–10. IEEE, 2013.

Sriram Narasimhan and Gautam Biswas. Model-based diagnosis of hybrid

systems. IEEE Transactions on Systems, Man, and Cybernetics, Part A,

37(3):348–361, 2007.

Stanley C Ofsthun and Sherif Abdelwahed. Practical applications of timed

failure propagation graphs for vehicle diagnosis. In Autotestcon, 2007

IEEE, pages 250–259. IEEE, 2007.

Stephen Oonk and Francisco J Maldonado. Automated maintenance path

generation with bayesian networks, influence diagrams, and timed failure

propagation graphs. In IEEE AUTOTESTCON, 2016, pages 1–9. IEEE,

2016.

Joël Ouaknine and James Worrell. Some recent results in metric temporal

logic. In Formal Modeling and Analysis of Timed Systems, pages 1–13.

Springer, 2008.

Vilfredo Pareto. Manuale di economia politica, volume 13. Società Editrice

Libraria, 1906.

Ludovic Pintard, Christel Seguin, and Jean-Paul Blanquart. Which au-

tomata for which safety assessment step of satellite fdir? In Computer

Safety, Reliability, and Security, pages 235–246. Springer, 2012.

Claudia Priesterjahn, Christian Heinzemann, and Wilhelm Schafer.

From timed automata to timed failure propagation graphs. In

Object/Component/Service-Oriented Real-Time Distributed Computing

208

BIBLIOGRAPHY

(ISORC), 2013 IEEE 16th International Symposium on, pages 1–8.

IEEE, 2013.

Raymond Reiter. A Theory of Diagnosis from First Principles. Artificial

Intelligence, 32:57–95, 1987.

Jussi Rintanen and Alban Grastien. Diagnosability testing with satisfia-

bility algorithms. In International Joint Conference on Artificial Intelli-

gence, 2007.

Ana Rugina, Cristiano Leorato, and Elena Tremolizzo. Advanced valida-

tion of overall spacecraft behaviour concept using a collaborative mod-

elling and simulation approach. In Enabling Technologies: Infrastructure

for Collaborative Enterprises (WETICE), 2012 IEEE 21st International

Workshop on, pages 262–267. IEEE, 2012.

Meera Sampath, Raja Sengupta, Stéphane Lafortune, Kasim Sinnamo-

hideen, and Demosthenis Teneketzis. Diagnosability of Discrete-event

Systems. IEEE Transactions on Automatic Control, 40(9):1555–1575,

1995.

Meera Sampath, Raja Sengupta, Stephane Lafortune, Kasim Sinnamo-

hideen, and Demosthenis Teneketzis. Failure Diagnosis using Discrete-

event Models. IEEE Transactions on Control Systems Technology, 4(2):

105–124, 1996.

Meera Sampath, Stephane Lafortune, and Demosthenis Teneketzis. Active

Diagnosis of Discrete-event Systems. IEEE Transactions on Automatic

Control, 43(7):908–929, 1998.

Leonardo Santoro, Marcos Moreira, and Joao Basilio. Computation of

Minimal Diagnosis Bases of Discrete-Event Systems: Method of the Trees

of Event Sets. In Anais do XX Congresso Brasileiro de Automatica, 2014.

209

BIBLIOGRAPHY

Anika Schumann and Yannick Pencolé. Scalable diagnosability checking

of event-driven systems. In International Joint Conference on Artificial

Intelligence, pages 575–580, 2007.

Shane Strasser and John Sheppard. Diagnostic alarm sequence maturation

in timed failure propagation graphs. In AUTOTESTCON, 2011 IEEE,

pages 158–165. IEEE, 2011.

Xingyu Su, Marina Zanella, and Alban Grastien. Diagnosability of

Discrete-Event Systems with Uncertain Observations. In International

Joint Conference on Artificial Intelligence, pages 1265–1271, 2016.

Stavros Tripakis. Fault Diagnosis for Timed Automata. In International

Symposium on Formal Techniques in Real-Time and Fault-Tolerant Sys-

tems, pages 205–221. Springer, 2002.

Dirk van Dalen. Logic and structure (3. ed.). Universitext. Springer, 1994.

W Vesely, F Goldberg, N Roberts, and D Haasl. Fault tree handbook

(nureg-0492). Washington, DC: Division of Systems and Reliability Re-

search, Office of Nuclear Regulatory Research, US Nuclear Regulatory

Commission, 1981.

W. Wang, S. Lafortune, and F. Lin. Optimal Sensor Activation in Con-

trolled Discrete Event Systems. In IEEE Conference on Decision and

Control, pages 877–882. IEEE, 2008.

Brian C Williams and P Pandurang Nayak. A model-based approach to

reactive self-configuring systems. In Proceedings of the National Confer-

ence on Artificial Intelligence, pages 971–978, 1996.

Songyan Xu, Shengbing Jiang, and Ratnesh Kumar. Diagnosis of Dense-

time Systems Under Event and Timing Masks. IEEE Transactions on

Automation Science and Engineering, 7(4):870–878, 2010.

210

BIBLIOGRAPHY

Lina Ye and Philippe Dague. An Optimized Algorithm for Diagnosability

of Component-based Systems. pages 143–148, 2010.

Lina Ye, Philippe Dague, Delphine Longuet, Laura Brandán Briones, and

Agnes Madalinski. Fault manifestability verification for discrete event

systems. In European Conference on Artificial Intelligence, pages 1718–

1719, 2016.

Tae-Sic Yoo and Stéphane Lafortune. NP-Completeness of Sensor Selection

Problems Arising in Partially Observed Discrete Event Systems. IEEE

Transactions on Automatic Control, 47(9):1495–1499, 2002a.

Tae-Sic Yoo and Stéphane Lafortune. Polynomial-time Verification of Di-

agnosability of Partially Observed Discrete Event Systems. IEEE Trans-

actions on Automatic Control, 47(9):1491–1495, 2002b.

211

Appendix A

TFPG-to-SMV

With the translation rules presented in Section 5.1, we produce for the

small running example the following SMV model. The corresponding state

space is shown in Figure 5.2b.

MODULE main

IVAR trans_type : {NODE_ACTIVATION, MODE_CHANGE, TIME_TICK};

VAR system_mode : {M1,M2};

VAR failuremode_Stuck : failuremode (trans_type);

VAR or_node_Overheat : or_node_2 (edge_Stuck_to_Overheat_1,

edge_Stuck_to_Overheat_2, trans_type);

VAR edge_Stuck_to_Overheat_1 : edge (1, 2, FALSE, failuremode_Stuck,

or_node_Overheat, trans_type, system_mode=M1);

VAR edge_Stuck_to_Overheat_2 : edge (0, 1, FALSE, failuremode_Stuck,

or_node_Overheat, trans_type, system_mode=M2);

TRANS trans_type = MODE_CHANGE <-> system_mode != next(system_mode);

TRANS trans_type = NODE_ACTIVATION <->

failuremode_Stuck.status != next(failuremode_Stuck.status) |

or_node_Overheat.status != next(or_node_Overheat.status);

TRANS or_node_Overheat.must_fire -> trans_type != TIME_TICK;

MODULE failuremode (trans_type)

VAR status : {OFF, ACTIVE};

ASSIGN init(status) := {OFF, ACTIVE};

213

ASSIGN next(status) := case

trans_type != NODE_ACTIVATION : status;

status = OFF : {OFF, ACTIVE};

TRUE : status;

esac;

MODULE or_node_2 (edge1, edge2, trans_type)

DEFINE can_fire := (edge1.can_fire | edge2.can_fire) & !must_fire;

DEFINE must_fire := edge1.must_fire | edge2.must_fire;

VAR status : {OFF, ACTIVE};

ASSIGN init(status) := OFF;

ASSIGN next(status) := case

trans_type != NODE_ACTIVATION : status;

can_fire : {OFF, ACTIVE};

must_fire : ACTIVE;

TRUE : status;

esac;

MODULE edge (tmin, tmax, tmax_is_infinity, source, target, trans_type,

system_mode_is_compatible)

DEFINE is_active := source.status = ACTIVE &

system_mode_is_compatible &

target.status = OFF;

DEFINE can_fire := is_active & counter >= tmin &

(counter < tmax | tmax_is_infinity);

DEFINE must_fire := is_active & counter = tmax &

!tmax_is_infinity;

VAR counter : 0..tmax;

ASSIGN init(counter) := 0;

ASSIGN next(counter) := case

next(!is_active) : 0;

counter < tmax & trans_type=TIME_TICK : counter + 1;

TRUE : counter;

esac;

214

	Introduction
	Technical Background
	Preliminaries
	Symbolic Transition Systems
	Temporal Logic
	Linear Temporal Logic
	Metric Temporal Logic

	Symbolic Model-Checking

	Timed Failure Propagation Graphs
	Background
	Trace-Based Semantics
	System Abstraction
	Behavioral Validation
	Completeness
	Edge Tightness

	Synthesis
	Graph Synthesis
	Graph Simplification
	Edge Tightening

	Implementation
	Experimental Evaluation
	Use Cases and Set-Up
	Behavioral Validation and Automated Tightening
	Graph Synthesis

	Related Work
	Summary

	Diagnosability Analysis
	Verification: Problem Definition
	Specifying a Diagnoser
	From Diagnosability to Critical Pairs

	Verification: Algorithms
	Twin Plant
	Verification via Model-Checking

	Synthesis: Problem Definition
	Synthesis: Algorithms
	Synthesis by Enumeration
	Synthesis via Parameter Synthesis
	Cost-Driven Parameter Synthesis
	Schematic Overview

	Experimental Evaluation
	Implementation
	Benchmark Set
	Experimental Set-Up
	Results: Verification
	Results: Synthesis

	Related Work
	Frameworks for Diagnosability
	Verification of Diagnosability
	Synthesis for Diagnosability

	Summary

	Industrial Application
	Enabling Diagnoser Synthesis via TFPGs
	TFPG-to-SMV Translation

	Focused Propagation Modeling
	Case Study: Gyroscope Processing
	Case Study: Thruster-Valve Stuck

	Architectural Propagation Modeling
	Case Study: IMU to AOCS
	Assessment and tuning of FDIR design coverage
	Diagnostic support for testing and operations

	Summary

	Conclusion
	Bibliography
	TFPG-to-SMV

