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INTRODUCTION 
 
 
	
	
Infectious	 diseases	 represent	 a	 growing	 challenge	 in	 our	 increasingly	 interconnected	
world.	 Globalization,	 urbanization,	 environmental	 and	 climatic	 changes	 have	 all	
accelerated	 the	 spread	 of	 pathogens,	 making	 it	 more	 difficult	 to	 predict	 and	 contain	
outbreaks.	 Public	 health	must	 therefore	 expand	 its	 range	 of	 tools	 to	 face	 these	 rising	
threats.	 The	 recent	 COVID-19	 pandemic	 underscored	 the	 critical	 importance	 of	
mathematical	modeling,	as	governments	and	health	authorities	relied	heavily	on	model	
estimations	 to	guide	 life-saving	 interventions.	Mathematical	models	help	estimate	key	
epidemiological	parameters,	shed	light	on	the	mechanisms	of	transmission,	and	assess	
the	 risk	 of	 spread	 across	 populations.	 Additionally,	 they	 allow	 the	 retrospective	
evaluation	of	the	effectiveness	of	interventions	and	the	exploration	of	future	scenarios	
based	 on	 prospective	 public	 health	measures.	 To	 ensure	 that	 models	 are	 sufficiently	
robust	 to	 provide	 guidance	 for	 decision	 making,	 they	 need	 to	 accurately	 reflect	 the	
complexities	 of	 real-world	 pathogen	 transmission,	 and	 to	 adapt	 to	 rapidly	 evolving	
scenarios.	The	close	 interaction	between	modelers	and	public	health	practitioners	can	
provide	insights	that	are	critical	 for	monitoring	disease	trends,	assessing	transmission	
risks,	and	making	informed	decisions,	augmenting	the	intrinsic	value	of	epidemiological	
data.	
	

Background 
	
Although	 today's	 mathematical	 models	 are	 highly	 sophisticated	 and	 often	 capable	 of	
capturing	the	intricacies	of	disease	spread,	this	level	of	refinement	is	a	relatively	recent	
achievement	 in	 modern	 computational	 epidemiology	 [1].	 Over	 the	 past	 century,	 this	
evolving	field	has	made	remarkable	progress,	moving	from	early,	simplified	models	to	
more	 customized	 and	 realistic	 representations	 that	 are	 tailored	 to	 the	 specific	
heterogeneities	 of	 each	problem	 [2].	 This	 transition,	 from	a	 theoretical	 exploration	of	
general	 transmission	 laws	 to	 practical,	 data-driven	 applications,	 has	 made	 models	
increasingly	relevant	for	addressing	real-world	challenges	in	public	health.	
	
The	main	breakthrough	in	our	understanding	of	infectious	diseases	transmission	came	
with	the	pioneering	work	of	Kermack	and	McKendrick	in	1927	[3].	Their	 foundational	
model	 was	 the	 first	 systematic	 attempt	 to	 mathematically	 describe	 the	 dynamics	 of	
infectious	diseases,	 laying	 the	groundwork	 for	modern	epidemiological	modeling.	The	
well-known	 compartmental	models,	 such	 as	 the	 SIR	 (Susceptible-Infected-Recovered)	
model	 [4],	 derive	 almost	 directly	 from	 their	 work	 and	 remain	 key	 frameworks	 in	
epidemiology.	These	models	capture	the	essential	features	of	epidemics	at	the	population	
level,	introducing	critical	concepts,	such	as	the	basic	reproduction	number	R0	[5],	which	
quantifies	the	transmission	potential	of	infectious	agents	within	a	population	[6].	
	
Despite	 their	 influence	and	utility,	basic	 compartmental	models	are	 limited	by	certain	
simplifying	 assumptions.	 In	 their	 classical	 form,	 individuals	 in	 a	 population	 are	
indistinguishable	except	for	their	health	status,	either	susceptible,	infected,	or	recovered.	



 
 

This	assumption	of	homogeneous	mixing,	which	implies	that	contact	between	individuals	
occurs	randomly	and	uniformly,	has	been	largely	employed	for	its	simplicity	and	proved	
to	be	reasonable	when	modeling	large	populations	of	individuals	with	relatively	similar	
characteristics.	However,	homogeneous	mixing	is	most	often	an	oversimplification	of	the	
intricate	real-world	interactions	[7].	To	reflect	the	complexity	and	heterogeneity	of	actual	
populations	more	sophisticated	models	were	needed.	
	
In	this	perspective,	the	1980s	represented	a	pivotal	moment	in	epidemiological	modeling,	
with	 important	 studies	 highlighting	 the	 need	 to	 bridge	 the	 gap	 between	 theoretical	
models	and	real-world	data	[8].	Among	these	studies,	the	seminal	work	of	Anderson	and	
May	 [9,10]	was	particularly	 impactful	 in	pointing	out	 the	 importance	of	 incorporating	
biological	realism	into	mathematical	models	and	revealed	the	necessity	of	accounting	for	
various	types	of	heterogeneity.	Over	the	past	decades,	this	has	led	to	a	growth	in	research	
aimed	at	creating	more	refined	models,	 integrating	data-driven	insights,	and	including	
stochastic	elements	to	better	capture	the	random	nature	of	infectious	disease	outbreaks	
[11].	
	
One	of	the	critical	advancements	has	been	the	inclusion	of	age-structured	models,	driven	
by	 demographic	 data.	 In	 particular,	 stratification	 of	 populations	 by	 age	 has	 proven	
essential	 for	 modeling	 the	 dynamics	 of	 childhood	 diseases	 like	 measles	 or	 mumps	
[12,13,14,15],	as	age	may	correlate	with	susceptibility	to	infection,	immune	response,	and	
also	influence	contact	patterns	[16].	Beyond	age,	other	forms	of	heterogeneity	are	equally	
important.	For	example,	the	HIV	epidemic	in	the	1980s	highlighted	the	need	to	account	
for	variability	in	infectiousness,	as	individuals	exhibit	different	transmission	potentials	
over	the	course	of	their	infection	[17,18],	progressing	from	the	acute	to	the	chronic	stage,	
and	 eventually	 to	AIDS.	 Sexual	 contact	 networks	 exhibit	 significant	 variability,	with	 a	
small	core	group	of	individuals	with	high	contact	rates	playing	a	disproportionate	role	in	
sustaining	 the	 epidemic	 [19,20,21].	 The	 general	 concept	 of	 'superspreaders',	 i.e.,	 a	
minority	of	 individuals	responsible	for	the	majority	of	transmission	events,	extends	to	
various	 infectious	 diseases	 [22].	 This	 phenomenon	 underscores	 the	 importance	 of	
accounting	 for	 the	 structure	 of	 contact	 networks,	 which	 led	 to	 the	 interest	 toward	
network-based	epidemiological	models	over	the	past	few	decades	[22].	
	
Spatial	 dynamics	 represents	 an	 additional	 factor	 of	 heterogeneity	 in	 the	 spread	 of	
infectious	diseases,	particularly	 in	vector-borne	diseases	 like	Zika	and	dengue	[24,25].	
For	 such	 pathogens,	 transmission	 is	 influenced	 not	 only	 by	 the	 mobility	 of	 human	
populations	but	also	by	the	spatial	variability	in	vector	abundance.	One	type	of	model	that	
may	 explicitly	 include	 the	 spatial	 dimension	 are	metapopulation	models,	 which	 have	
been	 developed	 to	 capture	 both	 local	 transmission	 and	 the	 movement	 of	 human	
populations	between	regions	[26].	
	
The	 complexity	 of	 real-world	 systems	 presents	 significant	 challenges	 in	 model	
development.	While	 it	 is	 possible	 to	 include	 a	wide	 range	 of	 heterogeneities,	 such	 as	
contact	networks	or	spatial	structures,	 this	often	comes	with	trade-offs.	More	detailed	
models	require	a	higher	granularity	of	data,	a	larger	number	of	parameters	to	estimate,	
and	significantly	 increased	computational	costs.	 Individual-based	models,	 for	example,	
simulate	 the	 dynamics	 of	 individuals	 and	 their	 interactions	 in	 great	 detail,	 tracking	
characteristics	of	each	individual	in	a	population	over	time	[27,28].	These	models	allow	
for	the	representation	of	diverse	transmission	settings,	such	as	households,	schools,	and	
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workplaces	[29],	as	well	as	specific	scenarios	 like	hospital	transmission	[30]	or	sexual	
networks	 [31].	 Individual-based	 models	 make	 it	 possible	 to	 evaluate	 intervention	
strategies	 tailored	 to	 individuals	 (e.g.,	 contact	 tracing	 [32]	 or	 ring	 vaccination)	which	
would	be	difficult	to	assess	with	standard	compartmental	models.	However,	these	models	
are	 computationally	 intensive	 and	 may	 not	 always	 be	 necessary	 or	 practical	 to	
implement.	
	
An	 alternative	 approach	 that	 provides	 both	 a	 high	 level	 of	 detail	 and	 computational	
efficiency	is	offered	by	non-generative	Bayesian	inference	models,	which	can	be	applied	
to	individual	line-list	data.	Leveraging	spatial,	temporal,	or	genetic	information	included	
in	 such	 data,	 these	 models	 can	 be	 used	 to	 probabilistically	 reconstruct	 transmission	
chains	 (i.e.,	 infector-infectee	 pairs).	 They	 have	 been	 employed,	 for	 example,	 to	 study	
outbreaks	of	Ebola	[33],	chikungunya	[34],	dengue	[25],	and	others	[35,36].	These	models	
do	 not	 support	 scenario	 simulations	 but	 have	 proven	 effective	 to	 extract	 key	
epidemiological	insights	on	transmission	dynamics.	
	
In	general,	identifying	the	key	characteristics	of	a	pathogen’s	transmission	dynamics	can	
be	challenging,	requiring	modelers	to	carefully	balance	accuracy	with	practicality.	This	
balance	 is	 not	 only	 critical	 for	 retrospective	 analyses	 but	 becomes	 particularly	 vital	
during	infectious	disease	emergencies,	where	rapid,	data-driven	decisions	are	essential.	
 
Thesis in context 
	
In	 my	 PhD	 research,	 I	 focused	 on	 addressing	 current	 and	 impactful	 public	 health	
questions	by	 employing	a	 range	of	models	 tailored	 to	 the	 specific	 research	questions,	
heterogeneities	in	pathogen	transmission,	and	available	data.	This	work	was	conducted	
in	close	collaboration	with	local	health	authorities	and	research	institutes,	who	provided	
essential	 data,	 contributed	 to	 their	 interpretation,	 and	 helped	 to	 define	 the	 research	
questions.	Throughout	these	studies,	there	was	continuous	bidirectional	feedback	with	
the	stakeholders,	allowing	us	to	refine	and	adjust	the	models	and	analyzed	scenarios	to	
ensure	more	robust	and	relevant	results.	
	
The	 first	 part	 of	 the	 thesis	 (Chapters	 1	 and	 2)	 focuses	 on	 the	 COVID-19	 pandemic,	
specifically	the	period	between	2021	and	early	2022,	which	saw	the	emergence	of	several	
SARS-CoV-2	variants	of	concern	(VOCs).	A	critical	public	health	need	during	this	period	
was	the	rapid	characterization	of	the	epidemiological	features	of	these	variants,	which	
was	necessary	for	timely	adjustments	to	control	measures	and	policies.		
	
One	key	epidemiological	metric	is	the	generation	time,	defined	as	the	interval	between	
infection	events	within	a	transmission	pair.	The	distribution	of	generation	times	may	be	
interpreted	as	a	proxy	for	 infectiousness	over	time	and	influences	decisions	about	the	
duration	of	quarantine	and	isolation	[37].	However,	accurately	estimating	the	generation	
time	is	extremely	challenging	since	it	is	not	directly	observable.	A	related	quantity	that	
can	 be	 measured	 directly,	 using	 data	 from	 epidemiological	 investigations	 performed	
during	contact	tracing	activities,	is	the	serial	interval.	This	is	defined	as	the	time	between	
the	 onset	 of	 symptoms	 in	 the	 infector	 and	 the	 infectee	within	 a	 transmission	 pair.	 In	
absence	of	better	measures,	the	serial	interval	is	often	used	as	a	proxy	for	the	generation	
time.	However,	this	approximation	may	be	inaccurate	when	incubation	periods	have	a	
high	individual	variability	and	when	pre-symptomatic	transmission	is	important,	as	is	the	



 
 

case	for	SARS-CoV-2	[38,39].	In	some	rare	cases,	the	times	of	exposure	of	infectors	and	
infectees	 can	 also	 be	 determined	 within	 epidemiological	 investigations	 when	 the	
exposure	episodes	are	clear	and	well-defined	in	time,	leading	to	a	direct	measure	of	the	
generation	time.	However,	even	in	these	rare	cases,	the	measure	may	be	heavily	biased	
with	respect	to	the	desired	quantity.	Indeed,	studies	have	shown	that	competition	among	
infectors	for	available	susceptible	individuals	and	depletion	of	the	susceptible	pool	can	
artificially	 shorten	 the	 observed	 (“realized”)	 generation	 time,	 especially	 for	 highly	
transmissible	pathogens	[40].	This	happens	in	particular	for	transmission	settings	with	
small	populations	such	as	households,	which	are	often	those	targeted	by	epidemiological	
investigations.	 For	 example,	 it	 has	 been	 showed	 in	 [40],	 through	 a	 network-based	
transmission	model,	that	realized	generation	times	within	a	household	are	shorter	than	
in	 the	 general	 community	 due	 to	 competition	 effects	 and	 the	 rapid	 depletion	 of	
susceptibles.	Therefore,	direct	measures	of	serial	intervals	and	generation	times	may	be	
affected	by	the	context	of	transmission,	the	intensity	of	pathogen	transmissibility,	and	the	
presence	of	control	measures	and	may	not	represent	the	generation	time	that	would	be	
observed	in	the	general	population	(“intrinsic”	to	the	pathogen),	which	better	represent	
a	proxy	of	the	infectiousness	of	hosts	over	time	[41].	
	
To	address	the	challenge	of	estimating	the	intrinsic	generation	time,	the	Italian	national	
institute	 of	 health	 (Istituto	 Superiore	 di	 Sanità)	 [42],	 in	 collaboration	with	 the	 health	
authority	of	 the	province	of	Reggio	Emilia	 [43],	provided	us	with	extensive	household	
contact	tracing	data	for	SARS-CoV-2	cases.	The	datasets	included	individual	line-list	data	
from	6,272	cases	across	2,240	households	for	the	Alpha	variant,	3,452	cases	from	1,305	
households	 for	 the	 Delta	 variant,	 and	 23,122	 cases	 across	 8,903	 households	 for	 the	
Omicron	 variant,	 with	 information	 on	 symptom	 onset	 dates,	 test	 results,	 vaccination	
status,	and	quarantine	times	for	each	individual.	We	applied	a	Bayesian	inference	model	
to	 these	 data,	 in	 order	 to	 reconstruct	 transmission	 chains	 and	 estimate	 the	 intrinsic	
generation	time	for	the	Alpha,	Delta,	and	Omicron	variants.	These	estimates	aimed	to	fill	
a	significant	gap	in	existing	research.	Up	until	this	point,	few	studies	had	investigated	the	
generation	 time	 for	 these	 variants	 [44,45,46,47],	 most	 of	 which	 estimated	 context-
specific	realized	generation	times.		
	
Chapter	 1	will	 be	 based	 on	 the	 publication:	Manica	M,	 Litvinova	M,	De	Bellis	 A,	 et	 al.	
Estimation	of	the	incubation	period	and	generation	time	of	SARS-CoV-2	Alpha	and	Delta	
variants	from	contact	tracing	data.	Epidemiology	&	Infection.	2023;151:e5.	
	
Chapter	 2	 will	 be	 based	 on	 the	 publication:	 Manica	M,	 De	 Bellis	 A,	 Guzzetta	 G,	 et	 al.	
Intrinsic	generation	time	of	the	SARS-CoV-2	Omicron	variant:	An	observational	study	of	
household	transmission.	The	Lancet	Regional	Health–Europe.	2022;19.	
	
The	second	project	presented	in	this	thesis	(Chapter	3)	is	part	of	the	“Healthy	Sailing”	
initiative	 [48],	 a	 collaborative	effort	 involving	 leading	scientists	 in	maritime	 transport	
epidemiology	and	general	travel	medicine,	as	well	as	port	health	authorities	and	cruise	
line	companies.	This	project	is	a	research	and	innovation	action	aimed	at	improving	the	
quality	of	passenger	shipping	services	by	providing	an	evidence	base	for	the	effectiveness	
of	 proposed	measures	 to	 prevent,	mitigate,	 and	manage	 infectious	 diseases	 on	 board	
passenger	ships.	
	
Cruise	 ships,	 as	 semi-closed,	 crowded	 environments	 where	 international	 travelers	
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frequently	interact,	are	particularly	vulnerable	to	the	spread	of	infectious	diseases.	One	
of	the	major	health	threats	in	such	settings	is	gastrointestinal	outbreaks,	primarily	caused	
by	norovirus	[49].	During	a	norovirus	outbreak,	isolation	after	diagnosis	is	one	of	the	key	
interventions,	 with	 different	 protocols	 implemented	 in	 different	 cruise	 ships	 and	
conditions.	The	impact	of	the	duration	of	isolation	and	of	timely	diagnosis	remains	poorly	
quantified.	Our	study	aimed	to	fill	this	gap	to	provide	insights	in	optimal	strategies	for	
outbreak	management	onboard.	
	
The	University	of	Thessaly,	in	collaboration	with	the	travel	company	Celestyal	Cruises,	
provided	a	line-list	of	121	individual	epidemiological	records	from	a	large	outbreak	on	a	
cruise	ship,	 including	 information	on	symptom	onset,	diagnosis	date,	and	number	and	
type	of	symptom	episodes	before	diagnosis.	Using	a	Bayesian	model,	we	reconstructed	
transmission	chains,	explicitly	accounting	for	the	daily	routines	of	passengers	and	crew	
members	(e.g.,	nighttime	spent	in	cabins,	port	visits,	and	interactions	in	public	areas),	and	
incorporating	 diagnostic	 delays	 (i.e.,	 the	 time	 that	 elapses	 between	 infection	 and	
diagnosis).	 We	 then	 used	 a	 branching	 process	 model	 that	 stochastically	 generated	
infections	onboard	 to	explore	various	 intervention	scenarios,	 such	as	 faster	diagnoses	
and	alternative	isolation	protocols.	This	allowed	us	to	assess	the	potential	impact	of	these	
strategies	on	minimizing	virus	transmission.	To	date,	mathematical	modeling	literature	
of	norovirus	outbreaks	on	cruise	ships	include	only	one	previous	study	estimating	the	
effectiveness	of	 isolation	 [50], based	on	 the	 simplifying	and	unrealistic	assumption	of	
immediate	isolation	of	cases	upon	development	of	symptoms.	
	
The	 work	 presented	 in	 Chapter	 3	 is	 in	 the	 final	 stage	 of	 preparation,	 and	 it	 will	 be	
submitted	soon	for	publication.	
	
The	final	work	presented	in	this	thesis	(Chapter	4)	reports	the	results	of	a	collaboration	
I	undertook	during	my	visiting	period	at	the	University	Medical	Center	Utrecht	(UMCU)	
[51]	 in	partnership	with	 the	National	 Institute	 for	Public	Health	and	 the	Environment	
(RIVM)	 in	 the	 Netherlands	 [52].	 This	 collaboration	 emerged	 from	 a	 summer	 school	
organized	 by	 UMCU	 mathematical	 modeling	 of	 infectious	 diseases	 group,	 where	 I	
attended	as	a	student.	The	research	focused	on	modeling	the	population-level	impact	of	
introducing	a	potential	HIV	cure	on	the	dynamics	of	the	HIV	epidemic	among	men	who	
have	sex	with	men	(MSM)	in	the	Netherlands.	
	
Despite	encouraging	epidemiological	trends,	HIV	continues	to	pose	a	significant	burden	
on	the	MSM	population	in	high-income	countries.	HIV	prevalence	among	MSM	remains	
disproportionately	 high	 compared	 to	 the	 general	 population,	 with	 infection	 rates	
persisting	 despite	 the	 availability	 of	 highly	 effective	 interventions	 such	 as	 the	
antiretroviral	 therapy	(ART)	and	pre-exposure	prophylaxis	 (PrEP)	 [53,54].	While	ART	
treatments	have	transformed	HIV	from	a	fatal	disease	to	a	manageable	chronic	condition,	
individuals	 living	 with	 HIV	 still	 experience	 lifelong	 health	 challenges	 and	 a	 reduced	
quality	of	life.	On	the	other	hand,	PrEP	has	significantly	reduced	HIV	transmission,	but	
elimination	 goals	 are	 still	 far	 from	being	 achieved,	 even	 in	 contexts	 of	 relatively	 high	
coverage.	
	
The	global	 search	 for	 an	HIV	 cure	 is	 an	ongoing	priority	 in	biomedical	 research,	with	
notable	progress	 and	 frequent	breakthroughs	 in	 clinical	 trials	 [55].	However,	 there	 is	
limited	 research	 assessing	 how	 the	 introduction	 of	 a	 cure	 would	 influence	 HIV	



 
 

epidemiology	[56,57],	particularly	in	high-income	countries.	In	our	modeling	work,	we	
evaluated	the	population-level	impact	of	introducing	different	types	of	HIV	cures,	using	
simulations	 to	 explore	 the	 conditions	 under	 which	 a	 cure	 could	 either	 accelerate	 or	
potentially	reverse	the	current	decline	in	HIV	transmission	within	the	MSM	population.	
We	employed	a	deterministic	compartmental	model	that	accounted	for	different	stages	
of	the	disease	and	stratified	individuals	by	sexual	risk	groups,	based	on	heterogeneous	
sexual	 contact	 rates	 within	 the	 MSM	 population	 in	 the	 Netherlands.	 The	 model	 was	
calibrated	and	validated	using	behavioral	 survey	data	on	 sexual	 contacts	provided	by	
social	 scientists	 at	 UMCU,	 along	 with	 epidemiological	 records	 and	 data	 on	 times	 to	
diagnosis	from	the	RIVM.	
	
The	 work	 presented	 in	 Chapter	 4	 is	 in	 the	 final	 stage	 of	 preparation,	 and	 it	 will	 be	
submitted	soon	for	publication.	
 
I	contributed	as	first	author	in	the	studies	presented	in	Chapters	3	and	4,	as	co-first	author	
in	 Chapter	 2,	 and	 as	 one	 of	 the	 main	 co-authors	 in	 Chapter	 1.	 In	 all	 the	 projects,	 I	
contributed	by	developing	and	implementing	models	and	conducting	analyses.	
	
Additionally,	 I	 am	a	 co-author	on	 another	 study	on	 real-time	 forecasting	of	 norovirus	
outbreaks	onboard	cruise	ships	(in	the	final	stage	of	preparation)	and	main	author	in	two	
further	 ongoing	 studies,	 on	 COVID-19	 transmission	 onboard	 of	 cruise	 ships	 and	 on	
methicillin-resistant	Staphylococcus	Aureus	(MRSA)	transmission	in	a	paediatric	hospital.	
These	studies	will	be	briefly	discussed	in	the	Conclusion	chapter.
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Introduction 
 
The	 second	 year	 of	 the	 COVID-19	 pandemic	 has	 been	 characterized	 by	 the	 global	
emergence	of	several	lineages	which	were	able	to	replace	circulating	ones	thanks	to	their	
increased	transmissibility	[58].	In	particular,	2021	saw	the	sequential	rise	and	fall	of	two	
variants	of	concern,	Alpha	and	Delta,	the	latter	of	which	has	been	rapidly	outpaced	by	
Omicron	 around	 the	 end	 of	 2021.	 Compared	 to	 ancestral	 strains,	 scarce	 quantitative	
information	 is	 available	 on	 several	 variant-specific	 epidemiological	 quantities,	 among	
which	 the	 incubation	 period	 (i.e.,	 the	 time	 elapsed	 between	 the	 date	 of	 infection	 and	
symptom	 onset)	 and	 the	 generation	 time	 (i.e.,	 the	 time	 elapsed	 between	 the	 date	 of	
infection	 of	 a	 primary	 case	 and	 that	 of	 a	 secondary	 case).	 These	 two	 quantities	 are	
especially	important	to	define	the	duration	of	isolation	for	infectious	individuals	and	of	
quarantines	for	close	contacts	and	travelers,	as	well	as	protocols	for	community-based	
interventions	such	as	contact	tracing	activities	[59,60,61]	and	class/school	closures	[60	
,62].	The	knowledge	of	the	generation	time	distribution	also	informs	the	estimation	of	the	
net	 reproduction	 number	 (i.e.,	 the	 average	 number	 of	 new	 cases	 generated	 by	 an	
infectious	 case	 at	 a	 given	 time	 of	 the	 epidemic)	 [37],	 which	 is	 a	 key	 indicator	 for	
monitoring	epidemic	outbreaks	and	defining	population-level	measures,	such	as	physical	
distancing	and	movement	restrictions	[63].	
	
The	incubation	time	is	mostly	a	biologically	determined	parameter	since	it	depends	on	
virus	characteristics	and	virus-host	immunological	and	pathological	interactions.	On	the	
other	hand,	the	generation	times	that	occur	in	a	population	depend	on	the	interactions	
between	 infectious	 individuals	 and	 their	 contacts,	 and	 therefore	 may	 be	 subject	 to	
specific	 epidemiological	 conditions	 in	 which	 they	 are	 measured,	 including	 individual	
behaviors,	 environmental	 determinants,	 and	 control	 measures	 put	 in	 place	 [40].	 For	
example,	observable	generation	times	within	a	household	are	generally	shorter	than	in	
the	general	community	due	to	competition	effects	and	the	rapid	depletion	of	susceptibles	
[40].	 A	 distinction	 is	 therefore	 necessary	 between	 “realized”	 distributions	 of	 the	
generation	time,	which	are	actually	occurring	in	specific	networks	of	contacts,	and	the	
“intrinsic”	distribution,	i.e.,	the	one	that	is	expected	in	the	general	population	in	absence	
of	control	interventions	and	local	network	dynamics	[41].	The	intrinsic	generation	is	less	
sensitive	 to	 the	 transmissibility	conditions	of	 the	epidemiological	 setting	under	study.	
Here,	we	applied	a	Bayesian	inference	approach	to	COVID-19	contact	tracing	data	from	
the	province	of	Reggio	Emilia,	Italy,	during	2021	to	estimate	the	distribution	of	incubation	



 
 

periods	and	generation	times	(both	intrinsic	and	realized)	for	SARS-CoV-2	variants	Alpha	
and	Delta.	

 
Methods 
 
Data	
Contact	 tracing	 activities	 were	 carried	 out	 in	 the	 province	 of	 Reggio	 Emilia,	 Italy	
throughout	the	duration	of	the	pandemic	to	mitigate	the	spread	of	SARS-CoV-2.	Identified	
SARS-CoV-2	 cases	 occurring	 in	 the	 province	 were	 confirmed	 via	 a	 Polymerase	 Chain	
Reaction	 (PCR)	 assay,	 reported	 in	 real	 time	 to	 the	public	health	 service	of	 the	Reggio	
Emilia	local	health	authority	and	isolated	at	home	until	a	negative	PCR	test	result	and	for	
a	 maximum	 of	 21	 days.	 During	 the	 study	 period	 all	 antigenic	 positive	 tests	 were	
confirmed	 with	 PCR.	 All	 cases	 were	 contacted	 via	 telephone	 to	 identify	 their	 close	
contacts.	A	close	contact	was	defined	as	a	person	who	stayed	in	the	same	room	with	a	
confirmed	case	without	a	face	mask,	or	for	more	than	15	minutes	at	less	than	2	meters,	
between	 2	 days	 before	 and	 10	 days	 after	 symptom	 onset	 (for	 symptomatic	 cases)	 or	
diagnosis	(for	asymptomatic	infections).	Contacts	were	tested	and	quarantined	at	home	
for	10	days,	 if	 they	had	a	negative	PCR	test	result	at	 that	date,	or	 for	14	days	without	
testing	[64].	All	household	members	of	a	case	were	quarantined	until	a	negative	test	after	
the	end	of	the	isolation	period	for	the	index	case.	Compliance	with	at	least	one	of	the	tests	
proposed	by	the	public	health	service	was	97.0%	during	the	study	period	(March-October	
2021).	
	
Table 1-1. Descriptive statistics of SARS-CoV-2 cases in the household datasets for Alpha and Delta variants. 

	 ALPHA	 DELTA	
Period	 March	1	–	April	30,	2021	 August	1	–	October	31,	2021	
Number	of	cases	 6272	 3452	
Clinical	outcome	(%):	 	 	

Symptomatic	 3591	(57.3%)	 2680	(77.6%)	
Asymptomatic	 2681	(42.7%)	 772	(22.4%)	

Gender	(%):	 	 	
Male	(%)	 3058	(48.8%)	 1685	(48.8%)	
Female	(%)	 3214	(51.2%)	 1767	(51.2%)	

Age	group	(%):	 	 	
0-15	years	old	 1279	(20.4%)	 886	(25.7%)	
16-44	years	old	 2236	(35.7%)	 1181	(34.2%)	
45-64	years	old	 1915	(30.5%)	 948	(27.5%)	
65+	years	old	 842	(13.4%)	 437	(12.6%)	

Vaccination	status	at	the	
end	of	the	period	(%):	

	 	

1	dose		 222	(3.54%)	 226	(6.5%)	
2	doses	 78	(1.24%)	 1386	(40.2%)	
3	doses	 0	(0.0%)	 8	(0.2%)	
None	 5972	(95.2%)	 1832	(53.1%)	

Number	of	households	 2240	 1305	
Average	household	size	(2.5	
to	97.5	percentile	range)	

2.97	(2	–	6)	 2.83	(2	–	5)	

	
Data	on	test	results,	symptom	onset	date	(if	applicable),	and	setting	of	likely	transmission	
were	collected	for	all	 identified	cases	and	their	contacts	and	were	 linked	to	 individual	
records	 on	 vaccination	history	 (first,	 second,	 and	booster	 doses).	 The	date	 of	 the	 last	
reported	 contact	 with	 any	 known	 case	 within	 a	 cluster	 (date	 of	 last	 exposure),	 as	
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uncovered	by	epidemiological	investigations,	was	also	collected.	Appropriate	data	quality	
checks	 were	 conducted	 in	 strict	 collaboration	 with	 the	 Reggio	 Emilia	 local	 health	
authority	to	minimize	missing	information	and	accurately	define	household	clusters.	A	
household	cluster	was	defined	as	households	with	at	least	two	positive	individuals	with	
a	diagnosis	spaced	less	than	25	days	apart.	
	
Since	genomic	information	on	the	variant	was	not	available,	we	conservatively	defined	
two	time	periods	where	circulation	of	SARS-CoV-2	in	the	Region	was	almost	exclusively	
attributable	(at	least	~90%	prevalence)	to	variant	Alpha	(March	1	–	April	30,	2021)	and	
to	Delta	(August	1	–	October	31,	2021)	[65].	Statistics	of	the	corresponding	datasets	are	
summarized	in	Table	1-1.	
	
Estimation	of	the	incubation	period		
For	the	estimation	of	the	incubation	period,	we	selected	all	symptomatic	cases	with	a	date	
of	diagnosis	within	either	of	the	two	periods	defined	for	Alpha	or	Delta.	For	each	case,	the	
date	of	the	last	negative	PCR	test	TN	and	the	date	of	last	exposure	TL	were	used	to	set	the	
limits	for	the	earliest	and	last	exposure,	respectively.	We	note	that	the	dates	of	test	results	
included	in	the	database	are	always	referring	to	tests	taken	in	response	to	a	positivity	of	
a	contact	and	not	tests	taken	autonomously	by	contacts	for	other	reasons.	We	excluded	
all	cases	for	which	either	date	was	unavailable	or	for	which	the	condition	𝑇! ≤ 𝑇" ≤ 𝑇#,	
where	 TS	 is	 the	 date	 of	 symptom	 onset,	 did	 not	 hold.	 The	 resulting	 sample	 for	 the	
estimation	 contains	 193	 observations	 for	 Alpha	 and	 89	 for	 Delta.	 We	 used	 the	
generalization	of	the	Wilcoxon-Mann-Whitney	test	for	interval-censored	data	to	compare	
the	 empirical	 data	 in	 the	 two	 samples.	 Two	 parametric	 distributions	 (gamma	 and	
Weibull)	 were	 fit	 to	 the	 interval-censored	 empirical	 data	 on	 the	 time	 between	 likely	
infection	and	the	symptom	onset	[66,	67]	using	a	maximum	likelihood	optimization.	The	
best	fit	was	selected	based	on	the	minimum	Akaike	information	criterion	[68].	Confidence	
Intervals	(CI)	for	the	parameters	of	estimated	distributions	were	obtained	from	the	2.5	
to	97.5	percentile	range	of	estimates	over	10,000	bootstrap	samples	for	censored	data.	
See	 Appendix	 A	 for	 further	 details	 on	 the	 method	 and	 for	 sensitivity	 analyses	 on	
estimation	criteria.	
	
Estimation	of	the	generation	time	and	of	the	serial	intervals	
For	the	estimation	of	the	generation	time,	we	selected	only	household	clusters	for	which	
all	dates	of	diagnosis	were	included	in	either	of	the	two	periods	defined	for	Alpha	or	for	
Delta.	 To	 reduce	 the	 possibility	 of	 missed	 diagnoses	 in	 the	 households	 due	 to	 false	
negative	test	results,	we	further	selected	households	 for	which	undiagnosed	members	
had	at	least	two	negative	test	results.	Figure	1-1	shows	a	schematization	of	an	illustrative	
household	cluster,	with	the	corresponding	dates	of	infection,	symptom	onset,	diagnosis,	
and	 negative	 tests	 for	 individuals,	 as	 well	 as	 relevant	 intervals	 to	 be	 estimated.	 We	
adopted	 a	 Bayesian	 inference	 model	 for	 the	 reconstruction	 of	 transmission	 links	 in	
households	 already	 applied	 for	 the	 estimation	 of	 the	 generation	 time	 of	 the	 Omicron	
variant	[69,70].	The	model	exploits	the	temporal	information	on	SARS-CoV-2	infections	
recorded	in	the	dataset	to	probabilistically	identify,	 for	every	case,	the	likely	source	of	
infection	(from	outside	the	household	or	from	a	specific	household	member).		



 
 

 
Figure 1-1. Illustrative example of actual transmission dynamics in household clusters. A household with 4 members, of which 
A was infected outside the household (in the general community) at day 0 and then transmitted to cases B (asymptomatic) 
and C (symptomatic), while D remained uninfected. B and D were vaccinated with 1 and 2 doses respectively. A hypothetical 
epidemic curve in the general community, representing the external force of infection on household members, is reported on 
top of the graph. Circles indicate unobserved events; squares indicate observed events. Examples of the temporal intervals of 
interest for the estimates of this work are reported in the bottom part of the figure. Note that for the household serial interval 
and the realized household generation time, the source of infection (whether from outside the household or from a household 
member, and, in the latter case, which household member) is also unobserved and needs to be probabilistically reconstructed. 
Pre-symptomatic transmission and negative serial intervals are also possible but have not been included in this example for 
the sake simplicity. The intrinsic generation time is not displayed as it represents the distribution of generation times among 
infections occurring in the general population in a fully susceptible population [41].	

We	assumed	 the	 parameters	 for	 the	 generation	 time	 to	 be	Gamma-distributed.	 These	
parameters	 are	 simultaneously	 calibrated	 via	 a	 Markov	 Chain	 Monte	 Carlo	 approach	
where	 the	 likelihood	 of	 the	 observed	 data	 is	 defined	 mechanistically	 through	 the	
computation	of	the	force	of	infection	to	which	all	individuals	are	subject	over	time.	The	
force	of	infection	takes	into	account	the	SARS-CoV-2	incidence	in	the	general	community,	
and	the	individual	dates	of	infection	and	vaccination.	We	imputed	the	date	of	infection	for	
each	symptomatic	case	by	subtracting	from	the	date	of	symptom	onset	a	random	sample	
from	the	estimated	discretized	distribution	of	the	incubation	period.	We	then	computed	
the	diagnostic	delay	distribution	as	the	distribution	of	delays	between	dates	of	infection	
and	diagnosis	in	symptomatic	individuals.	Successively,	we	imputed	the	date	of	infection	
for	asymptomatic	cases	by	subtracting	from	the	date	of	diagnosis	a	random	sample	from	
the	 estimated	 diagnostic	 delay	 distribution.	 For	 both	 symptomatic	 and	 asymptomatic	
individuals,	 the	 probability	 of	 an	 imputed	 date	 of	 infection	 was	 weighted	 by	 the	
probability	of	false	negative	test	results	based	on	available	test	dates	and	results	for	each	
individual.	We	repeated	100	times	the	sampling	of	infection	dates	and	re-calibrated	on	
each	 resampling	 the	 Bayesian	 model.	 95%	 CrI	 for	 the	 estimated	 parameters	 were	
obtained	from	the	resulting	pooled	distributions.	All	technical	details	for	the	model	and	
calibration	 are	 reported	 in	 the	 Appendix.	 Using	 this	 Bayesian	 approach,	 we	 could	
estimate	at	the	same	time	both	the	parameters	of	the	intrinsic	generation	time	and	the	
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distributions	of	the	realized	household	generation	time	and	household	serial	interval.	For	
each	set	of	imputed	infection	dates	and	sample	from	the	joint	posterior	distribution	of	
parameters,	we	reconstructed	likely	transmission	chains	(i.e.,	the	source	of	infection	for	
each	case).	The	distribution	of	realized	generation	times	was	obtained	by	the	differences	
between	 infection	 dates	 in	 each	 inferred	 infector-infectee	 pair;	 correspondingly,	 the	
distribution	 of	 household	 serial	 intervals	was	 obtained	 from	 the	 differences	 between	
symptom	onset	dates	in	each	inferred	pair	of	symptomatic	infector-infectee.	
	
We	 evaluated	 the	 robustness	 of	 model	 results	 against	 six	 sensitivity	 analyses	 (SA)	
encoding	different	assumptions	in	the	model.	In	SA	(a),	we	relaxed	the	assumption	of	the	
baseline	 model	 that	 symptomatic	 and	 asymptomatic	 individuals	 have	 the	 same	
distribution	of	diagnostic	delays	by	considering	an	alternative	method	for	inferring	the	
date	 of	 infection	 of	 asymptomatic	 individuals.	 In	 SA	 (b)	 and	 (c),	we	 imputed	dates	 of	
infection	 using	 two	 alternative	 distributions	 of	 the	 incubation	 period	 previously	
estimated	 for	 ancestral	 SARS-CoV-2	 lineages	 [67,71].	 In	 SA	 (d)	we	 assumed	 a	 halved	
transmissibility	for	asymptomatic	individuals	[72].	In	SA	(e),	we	considered	the	possible	
protection	 from	 previous	 infection	 in	 a	 fraction	 of	 undiagnosed	 household	members.	
Finally,	 in	 SA	 (f),	 we	 considered	 a	 negligible	 adherence	 of	 household	 members	 to	
quarantine	(i.e.,	the	probability	of	being	infected	outside	the	household	was	unchanged	
upon	onset	of	quarantine	for	household	members).		
 

Results 
 
The	best	fit	for	the	distributions	of	the	incubation	period	was	a	gamma	distribution,	with	
a	mean	of	4.9	days	for	Alpha	(95%	Confidence	Intervals	of	the	mean,	CI,	4.4-5.4;	2.5	to	
97.5	percentile	range	of	the	mean	distribution	1-12	days)	and	of	4.5	days	for	Delta	(95%	
CI,	4.0-5.0;	2.5	to	97.5	percentile	range	of	the	mean	distribution	1-10	days)	(Figure	1-2	
and	Table	1-2).	The	differences	between	empirical	distributions	of	incubation	periods	for	
Alpha	and	Delta	 variants	were	not	 statistically	 significant	 (Wilcoxon-type	 test	p-value	
0.45).	Unsurprisingly,	the	estimate	for	the	incubation	period	was	longer	(mean:	7.3-7.4	
days	for	Alpha	and	6.2-6.3	days	for	Delta)	and	had	a	larger	uncertainty	when	including	in	
the	 estimation	 those	 cases	 for	 which	 the	 date	 of	 earliest	 exposure	 was	 unknown	
(Appendix	A),	 supporting	 the	 importance	 of	 considering	 only	 data	 samples	 for	which	
information	on	the	time	window	of	exposure	is	more	compelling.	
	
The	resulting	estimated	distribution	of	delays	between	infection	and	diagnosis	(used	to	
assign	infection	dates	for	asymptomatic	individuals)	had	a	mean	of	7.14	days	(2.5	to	97.5	
percentile	 range:	 3-15	 days)	 for	 the	 Alpha	 variant	 (Table	 1-2).	 The	 mean	 intrinsic	
generation	time	estimated	for	Alpha	was	7.12	days	(95%	CrI	of	the	mean:	6.27-8.44	days)	
and	the	mean	realized	household	generation	time	was	4.41	days	(95%CrI	of	the	mean:	
4.26-4.58	days)	(Figure	1-3	and	Table	1-2).	The	mean	household	serial	interval	was	2.43	
days	 (95%CrI	 of	 the	 mean:	 2.29-2.58	 days),	 with	 47.8	 %	 (95%CrI:	 45.5-49.8%)	 of	
transmission	events	being	pre-symptomatic	(i.e.,	secondary	cases	transmitted	by	cases	
who	would	develop	symptoms	after	the	transmission	event).	Sensitivity	analyses	yielded	
similar	results,	with	the	mean	intrinsic	generation	time	ranging	between	6.22	and	7.77	
days	(Figure	1-4),	 the	mean	realized	household	generation	time	ranging	between	4.09	
and	5.08	days,	and	the	mean	household	serial	 interval	ranging	between	2.14	and	2.53	
days	(Appendix	A).	



 
 

Table 1-2. Estimates for the incubation period, diagnostic delay, intrinsic and realized generation time, and household serial 
intervals. Reported parameters of shape and scale for the incubation period and intrinsic generation time refer to a gamma 
distribution. The mean distribution indicates the distribution obtained using the mean value estimated for the parameters. 

	 	 ALPHA	 DELTA	

INCUBATION	PERIOD	

mean	(95%CrI)	[days]	 4.9	
(4.4-5.4)	

4.5	
(4.0-5.0)	

2.5	to	97.5	percentile	range	of	the	
mean	distribution	[days]	 1-12	 1-10	

shape	mean	(95%CrI)	 3.08	
(2.56-3.86)	

4.43	
(3.26-6.70)	

scale	mean	(95%CrI)	 1.58	
(1.24-1.93)	

1.01	
(0.65-1.43)	

DIAGNOSTIC	DELAY	 mean	(2.5	to	97.5	percentile	range)	
[days]	

7.1	
(3-15)	

7.1	
(3-14)	

INTRINSIC	GENERATION	
TIME	

mean	(95%CrI)	[days]	 7.12	(6.27-8.44)	 6.52	(5.54-8.43)	
2.5	to	97.5	percentile	range	of	the	
mean	distribution	[days]	 1-18	 1-17	

shape	mean	(95%CrI)	 2.53	(2.27-3.21)	 2.49	(2.14-2.97)	

scale	mean	(95%CrI)	 2.83	(2.28-3.39)	 2.63	(2.19-3.21)	
REALIZED	HOUSEHOLD	
GENERATION	TIME	

mean	(95%CrI)	
[days]	 4.41	(4.26-4.58)	 4.05	(3.87-4.24)	

HOUSEHOLD	SERIAL	
INTERVAL	 mean	(95%CrI)	[days]	 2.43	(2.29-2.58)	 2.74	(2.62-2.88)	

PRE-SYMPTOMATIC	
TRANSMISSION	 mean	(95%CrI)	[%]	 47.8	(45.5-49.8)	 50.9	(48.4-53.0)	

	
	

 
Figure 1-2. Estimation of the incubation period for the Alpha and Delta SARS-CoV-2 variants. (A) Probability density function 
(PDF) of the estimated distribution of incubation period for Alpha variant with 95% CI based on nonparametric bootstrap 
resampling of the distribution parameters (10 000 samples). Line: mean PDF; shaded area: bootstrapped pointwise 95% CI. 
The inset shows the cumulative distribution function (CDF) of the empirical distribution (black line) where rectangles represent 
areas of non-unique empirical distribution function, CDF of the distribution fitted to interval-censored data (line) and 
bootstrapped pointwise 95% CI on probabilities (shaded area). (B) Same as (A), but for Delta variant.	

The	estimated	distribution	of	delays	between	infection	and	diagnosis	had	a	mean	of	7.12	
days	for	the	Delta	variant	(2.5	to	97.5	percentile	range:	3-14	days)	(Table	1-2).	The	mean	
intrinsic	generation	time	estimated	for	Delta	was	6.52	days	(95%CrI	of	the	mean:	5.54-
8.43	days)	and	the	mean	realized	household	generation	time	was	4.05	days	(95%CrI	of	
the	mean	3.87-4.24	days)	(Figure	1-3	and	Table	1-2).	The	mean	household	serial	interval	
was	2.74	days	(95%CrI	of	the	mean	2.62-2.88	days),	with	50.9%	(95%CrI:	48.4-53.0%)	
of	 transmission	 events	 being	 pre-symptomatic.	 Sensitivity	 analyses	 yielded	 similar	
results,	with	 the	mean	 intrinsic	 generation	 time	 ranging	 between	 5.95	 and	 7.38	 days	
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(Figure	1-4),	 the	mean	 realized	household	generation	 time	 ranging	between	3.84	and	
4.66	days,	and	the	mean	household	serial	interval	ranging	between	2.28	and	2.76	days	
(Appendix	A).	
	

 
Figure 1-3. Estimates of generation times and household serial intervals for the Alpha and Delta variants. (A) Distribution of 
the intrinsic generation time for the Alpha variant; solid line: mean estimate; shaded area: 95% CrI; (B) same as (A), but for 
Delta. (C) Distribution of the realised household generation time for the Alpha variant; bars: mean estimate over all 
reconstructed transmission chains; vertical lines: 95% CrI across all reconstructed transmission chains; (D) same as (C), but 
for Delta. (E) Distribution of the household serial interval for the Alpha variant; bars: mean estimate over all reconstructed 
transmission chains; vertical lines: 95% CrI across all reconstructed transmission chains; (F) same as (E), but for Delta.	

Discussion 
 
We	estimated	 the	distribution	of	 the	 incubation	period	and	generation	 time	 for	SARS-
CoV-2	Alpha	and	Delta	variants	by	analyzing	comprehensive	data	collected	during	contact	
tracing	activities	in	the	province	of	Reggio	Emilia,	Italy,	throughout	2021.	We	found	no	
statistical	difference	for	the	duration	of	the	incubation	period	for	Alpha	(mean:	4.9	days)	
and	Delta	(mean:	4.5	days)	variants.	Both	estimates	are	very	close	to	those	reported	for	
the	same	variants	in	a	recent	extensive	meta-analysis	(Alpha:	5.0	days;	Delta:	4.4	days)	
[73]	and	 in	 line	(albeit	slightly	shorter)	with	 those	obtained	 for	 the	ancestral	 lineages	
[66,71,74,75].	We	did	not	evaluate	the	dependence	between	age	and	incubation	periods	
for	Alpha	and	Delta	variants,	which	was	previously	evaluated	for	ancestral	lineages	[76].	
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Figure 1-4. Estimates of the mean intrinsic generation time for the Alpha and Delta variants under different assumptions with 
respect to the baseline model: (a) uses an alternative method of imputation for the dates of infection in asymptomatic cases; 
(b) and (c) use different distributions of the incubation period, taken from previous estimates for ancestral SARS-CoV-2 
lineages; (d) assumes a halved transmissibility for asymptomatic individuals; (e) considers the possibility of protection from 
previous natural infection in a fraction of undiagnosed individuals and (f) assumes no compliance of household members to 
quarantine. Full details on sensitivity analysis are reported in the Appendix A. 

Our	estimates	of	the	mean	generation	time	for	both	Alpha	(mean:	7.12	days)	and	Delta	
(mean:	 6.52	 days)	 are	 compatible	 with	 previous	 estimates	 for	 ancestral	 lineages	
[77,78,79,80,81],	including	a	previous	estimate	for	Italy	of	6.68	days	[82].	We	also	found	
comparable	 household	 serial	 intervals	 between	 Alpha	 (mean:	 2.43	 days)	 and	 Delta	
(mean:	 2.74	 days)	with	 similar	 proportions	 of	 pre-symptomatic	 transmissions	 (about	
50%	 for	 both	 variants).	 Previous	 estimates	 on	 both	 ancestral	 lineages	 and	Alpha	 and	
Delta	 variants	 are	 highly	 variable	 (due	 to	 the	 high	 sensitivity	 of	 these	 parameters	 to	
epidemiological	conditions	of	the	study	settings)	and	ranged	between	1.8	days	and	7.5	
days	[66,67,71,79,83]	for	the	serial	interval	and	between	13%	and	65%	[66,67,75]	for	the	
proportion	of	pre-symptomatic	transmission.	
	
Estimates	of	the	intrinsic	generation	time	may	depend	on	epidemiological	specificities	of	
the	geographical	setting	from	which	the	data	are	collected,	as	well	as	by	the	 inference	
method.	For	instance,	a	study	conducted	in	England	estimated,	using	a	different	approach,	
a	shorter	mean	intrinsic	generation	time	for	the	Alpha	(5.5	days)	and	Delta	variants	(4.7	
days)	[44].	Given	its	potential	sensitivity	to	local	factors,	we	point	out	the	need	to	obtain	
country-specific	estimates	of	the	distribution	of	the	generation	time.	For	what	concerns	
Italy,	this	study	suggests	the	adequacy	of	epidemiological	analyses	(i.e.,	computation	of	
reproduction	numbers;	modeling	estimates)	performed	by	assuming	a	distribution	of	the	
generation	time	similar	to	ancestral	lineages.	
	
A	main	 strength	of	 this	work	 consists	 in	 the	very	 large	population-based	dataset	 that	
comprehensively	covers	household	clusters	observed	in	the	province	of	Reggio	Emilia.	
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The	protocol	for	tracing	and	testing	contacts	was	the	same	in	the	Alpha	and	Delta	periods.	
Thanks	to	efforts	by	public	health	officials,	a	high	compliance	to	testing	was	achieved,	
with	only	3%	of	individuals	refusing	to	be	tested;	in	addition,	all	household	members	of	
cases	were	tested	on	the	same	date	of	the	first	diagnosis	in	the	household.	To	minimize	
the	 possibility	 that	 our	 data	 contain	 clusters	 due	 to	 other	 variants,	 we	 selected	 two	
periods	 where	 Alpha	 and	 Delta	 were	 largely	 dominant	 [66].	 However,	 for	 the	 Alpha	
period	a	residual	circulation	(7-8%	prevalence)	of	the	Gamma	variant	was	detected	in	the	
Emilia-Romagna	 region	 [65,84].	 The	 estimates	 of	 the	 intrinsic	 generation	 time	 can	be	
compared	across	periods	with	different	vaccination	coverage	since	the	model	 includes	
susceptibility	 and	 transmissibility	 variations	 according	 to	 the	 individual’s	 vaccination	
history.	A	limitation	in	the	estimation	of	the	incubation	period	was	the	use	of	censored	
interval	data	under	the	assumption	that	the	date	of	infection	was	bounded	by	the	date	of	
last	 negative	 test	 and	 the	 date	 of	 last	 exposure,	 as	 both	dates	may	 suffer	 of	 potential	
biases.	In	some	cases,	the	date	of	last	negative	test	may	be	a	too	stringent	limit	for	the	
date	of	first	exposure,	as	a	test	can	provide	false-negative	results	if	performed	in	the	days	
immediately	 successive	 to	 the	 date	 of	 infection.	 On	 the	 other	 hand,	 the	 date	 of	 last	
exposure	may	be	incorrectly	recorded	if	a	case	broke	from	isolation/quarantine	and	did	
not	 report	 further	 contacts	 to	 the	 tracing	 team	 for	 fear	 of	 administrative	 fines.	 These	
biases	 may	 have	 an	 impact	 on	 the	 estimation	 of	 incubation	 periods.	 However,	 the	
closeness	of	our	estimates	to	results	of	a	recent	extensive	meta-analysis	[73]	we	and	the	
high	 level	 of	 collaboration	 and	 trust	 between	 the	 population	 and	 the	 contact	 tracing	
teams	within	this	study	(as	witnessed	by	the	high	level	of	compliance	to	offered	tests)	
suggest	that	such	biases	may	be	mild	in	our	data.	
	
A	 limitation	 of	 the	model	 for	 the	 estimation	 of	 the	 generation	 time	 is	 its	 reliance	 on	
assumptions	 for	 the	 dates	 of	 infection	 of	 infected	 individuals.	 Ideally,	 these	 could	 be	
inferred	as	nuisance	parameters	in	the	model,	but	this	is	computationally	unfeasible	with	
the	large	number	of	cases	within	this	study.	Therefore,	dates	of	infection	were	imputed	
multiple	times	based	on	the	distribution	of	the	incubation	period	[25].	The	same	intrinsic	
limitation	of	 the	unobservability	of	 infection	 times	 is	shared	by	all	 transmission	chain	
reconstruction	models,	 but	 there	are	now	several	 examples	where	 these	models	have	
been	 proven	 to	 correctly	 identify	 the	 transmission	 dynamics	 of	 infectious	 outbreaks	
[25,33,34,85,86].	Estimates	were	substantially	robust	with	respect	to	different	methods	
of	 imputation	 and	 different	 distributions	 of	 the	 incubation	 period	 (Figure	 1-4	 and	
Appendix	A).	 Thus,	 potential	 biases	 in	 the	 estimate	of	 the	 incubation	period	 reported	
above	are	not	expected	to	propagate	to	the	generation	time.	A	specific	limitation	of	this	
study	was	the	lack	of	information	about	previous	SARS-CoV-2	infection	in	undiagnosed	
individuals.	 In	 the	main	analysis	we	assumed	 that	all	undiagnosed	 individuals	did	not	
have	a	pre-existing	protection	from	natural	immunity.	However,	in	a	sensitivity	analysis,	
we	 show	 that	 assuming	 full	 protection	 from	 previous	 infection	 in	 a	 fraction	 of	
undiagnosed	 individuals	 hardly	 affects	 our	 results	 (Appendix	 A).	 Another	 specific	
limitation	 is	 that	 we	 assumed	 100%	 compliance	 to	 quarantine	 protocols	 (i.e.,	 that	
household	 members	 quarantined	 after	 diagnosis	 of	 another	 member	 could	 only	 be	
infected	within	 the	household).	A	sensitivity	analysis	where	quarantines	of	household	
members	 are	 not	 considered	 (i.e.,	 0%	 compliance)	 yielded	 similar	 results	 to	 the	 ones	
illustrated	in	the	main	analysis	(Appendix	A).	
	
Results	from	this	study	suggest	that	the	length	of	the	incubation	period	and	generation	
time	 for	Alpha	and	Delta	variants	were	comparable	 to	 those	of	 the	ancestral	 lineages.	



 
 

These	 findings	 provide	 support	 to	 the	 recommendations	 of	 adopting	 duration	 of	
quarantine,	 isolation,	 and	contact	 tracing	operations	 similar	 to	 those	 for	 the	ancestral	
lineage.	This	work	also	confirms	the	suitability	of	the	adopted	method	for	estimating	the	
incubation	 periods	 and	 generation	 times	 on	 further	 emerging	 variants	 of	 concern,	
provided	that	high-quality	contact	tracing	data	are	available.	
 
Appendix A 
 
Estimation	of	the	incubation	period	
For	the	estimation	of	the	incubation	period,	we	considered	observations	on	individuals	
who	were	contacts	of	an	index	case	and	who	later	became	symptomatic	and	diagnosed	
with	 SARS-CoV-2.	 Among	 these,	we	 selected	 cases	 having	 a	 diagnosis	 in	 either	 of	 the	
selected	study	period	for	Alpha	(1021	cases)	or	Delta	(519	cases).	The	date	of	symptom	
onset	and	the	date	of	last	exposure	was	available	for	all	symptomatic	cases.	For	each	case,	
the	potential	incubation	period	was	bounded	by	the	date	of	the	latest	negative	test	result	
before	the	diagnosis	(earliest	possible	exposure)	and	by	the	date	of	the	last	exposure.	By	
considering	 the	 latest	 negative	 test	 as	 a	 proxy	 for	 the	 earliest	 possible	 exposure,	 we	
assume	the	test	to	have	a	perfect	sensitivity,	i.e.,	we	neglect	possible	negative	false	results	
which	are	especially	probable	in	the	earliest	days	after	infection.	We	excluded	172	Alpha	
cases	and	53	Delta	cases	for	which	the	information	on	exposure	were	conflicting	(e.g.,	last	
negative	test	successive	to	the	last	reported	exposure),	298	Alpha	cases	and	173	Delta	
cases	for	which	the	date	of	last	exposure	was	successive	to	symptom	onset,	and	358	Alpha	
cases	and	204	Delta	cases	for	which	only	a	date	of	last	exposure	was	available,	obtaining	
193	Alpha	cases	and	89	Delta	cases	for	the	main	analysis	(see	Figure	1-5	for	the	sample	
selection).	 The	 resulting	 censored	 intervals	 of	 the	 possible	 incubation	 periods	 are	
reported	for	all	cases	in	Figure	1-6.	

 
Figure 1-5. Workflow of sample selection. Gray boxes represent exclusion steps. The green box shows the sample used for the 
main analysis. The yellow box shows the additional sample used for a sensitivity analysis. 𝑛! represents the sample size for 
Alpha variant, 𝑛"  represents the sample size for Delta variant. 
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Figure 1-6. Incubation period censored data. Interval censored and non-censored observations for each case are ordered by 
their mid-points. 

We	estimated	both	Gamma	and	Weibull	distributions	using	the	censored	data.	Maximum	
likelihood	 estimations	 of	 the	 distribution	 parameters	 were	 calculated	 by	 using	 the	
fitdistrplus	 package	 in	 R.	 Direct	 optimization	 of	 the	 log-likelihood	 is	 performed	 using	
general-purpose	optimization	based	on	Nelder–Mead,	quasi-Newton	algorithm	for	both	
Gamma	 and	 Weibull	 distributions.	 Nonparametric	 bootstrap	 resampling	 was	 used	 to	
simulate	 uncertainty	 in	 the	 parameters	 of	 the	 estimated	 distributions.	 Results	 of	 the	
estimation	procedure	described	in	the	main	text	are	presented	in	Table	1-3.	
 
Table 1-3. Estimated distribution of the incubation period. SD: Standard Deviation. AIC: Akaike Information Criterion. 

Variant	 Distribution	 Parameters:	
mean	(SD)	

Mean	distribution	(days)	 AIC	
score	Mean	 SD	 2.5	to	97.5	

percentile	range		
Alpha	
(N=193)	

Gamma	 shape	=	3.08	(0.39),	
rate	=	0.63	(0.084)	

4.9	 2.8	 1.0	–	11.7	 506.9	

Weibull	 scale	=	5.52	(0.27),	
shape	=	1.83	(0.13)	

4.9	 2.8	 0.7	–	11.3	 510.7	

Delta	
(N=89)	

Gamma	 shape	=	4.43	(0.76),	
rate	=	0.99	(0.18)	

4.5	 2.1	 1.3	-		9.6	 261.3	

Weibull	 scale	=	5.09	(0.30),	
shape	=	2.10	(0.18)	

4.5	 2.2	 0.9	-		9.5	 267.1	

	
Sensitivity	analysis	
As	 a	 first	 sensitivity	 analysis,	 we	 added	 the	 observations	 with	 only	 the	 date	 of	 last	
exposure	 being	 available	 (see	 Figure	 1-5).	 For	 cases	 with	 unknown	 date	 of	 earliest	
possible	exposure,	we	set	the	maximum	boundary	of	the	incubation	period	to	21	days	
before	the	symptom	onset.	Figure	1-7	shows	the	censored	data	used	in	this	estimation.	
This	increased	both	the	sample	size	and	the	uncertainty	regarding	the	earliest	possible	
exposure,	 naturally	 increasing	 the	 average	 of	 the	 estimated	 incubation	 period	 (Table	
1-4).	This	shows	the	importance	of	considering	only	data	samples	for	which	information	
on	the	time	window	of	exposure	is	more	compelling.	Then,	we	repeated	the	main	analysis	
and	the	sensitivity	analysis	above	after	selecting	cases	falling	within	the	Alpha	or	Delta	
period	based	on	the	date	of	symptom	onset	rather	than	on	the	date	of	diagnosis,	obtaining	
similar	results	to	the	corresponding	analyses	above.	
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Figure 1-7. Incubation period censored data, including observations with no information on earliest possible exposure 
(sensitivity analysis A). Interval censored and non-censored observations for each case are ordered by their mid-points. 

 
Table 1-4. Estimated distribution of incubation period in sensitivity analyses. SD: Standard Deviation. AIC: Akaike Information 
Criterion. 

Variant	 Distribution	 Parameters:	
mean	(SD)	

Mean	distribution	(days)	 AIC	
score	Mean	 SD	 2.5	to	97.5	

percentile	range	
A) Date	of	the	last	exposure	available	(independently	from	availability	of	earliest	

exposure)	
Alpha	
(N=551)	

Gamma	 shape	=	3.75	(0.31),	
rate	=	0.51	(0.05)	

7.3	 3.8	 1.9	-	16.6	 770.9	

Weibull	 scale	=	8.33	(0.29),	
shape	=	2.23	(0.12)	

7.4	 3.5	 1.6	-	15.0	 764.7	

Delta	
(N=293)	

Gamma	 shape	=	4.58	(0.60),	
rate	=	0.73	(0.12)	

6.3	 2.9	 2.0	-	13.2	 376	

Weibull	 scale	=	7.07	(0.33),	
shape	=	2.49	(0.19)	

6.3	 2.7	 1.7	-	12.0	 380.2	

B) As	main	analysis,	but	cases	are	assigned	to	variant	via	date	of	symptom	onset	
Alpha	
(N=187)	

Gamma	 shape	=	3.12	(0.40),	
rate	=	0.65	(0.087)	

4.8	 2.7	 1.0	-	11.4	 495.5	

Weibull	 scale	=	5.45	(0.27),	
shape	=	1.84	(0.13)	

4.8	 2.7	 0.7	-	11.1	 499.2	

Delta	
(N=89)	

Gamma	 shape	=	4.70	(0.81),	
rate	=	1.04	(0.19)	

4.5	 2.1	 1.4	-	9.4	 255.9	

Weibull	 scale	=	5.10	(0.30),	
shape	=	2.14	(0.19)	

4.5	 2.2	 0.9	-	9.3	 263	

C) As	sensitivity	analysis	A),	but	cases	are	assigned	to	variant	via	date	of	symptom	onset	
Alpha	
(N=546)	

Gamma	 shape	=	3.71	(0.31),	
rate	=	0.50	(0.049)	

7.4	 3.8	 1.9	-	16.5	 769	

Weibull	 scale	=	8.45	(0.29),	
shape	=	2.21	(0.12)	

7.5	 3.6	 1.5	-	15.4	 763.1	

Delta	
(N=286)	

Gamma	 shape	=	4.75	(0.64),	
rate	=	0.76	(0.12)	

6.2	 2.9	 1.9	-	12.8	 367.7	

Weibull	 scale	=	7.04	(0.32),	
shape	=	2.51	(0.19)	

6.3	 2.7	 1.6	-	12.0	 373.3	
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Imputation	of	dates	of	infection	
The	task	of	reconstructing	transmission	chains	must	overcome	the	intrinsic	limitation	of	
the	unobservability	of	transmission	chains.	We	use	available	evidence	to	probabilistically	
impute	plausible	 infection	dates	 for	 all	 SARS-CoV-2	 cases	 in	our	dataset.	We	 combine	
observed	 dates	 of	 symptom	 onset,	 diagnosis,	 and	 negative	 test	 results	with	 available	
knowledge	on	 incubation	periods	and	 the	probability	of	 testing	positive	over	 time	 for	
infected	individuals.		
	
First,	we	 impute	the	dates	of	 infection	for	all	symptomatic	cases.	Let	𝑇$	be	the	date	of	
diagnosis	 (when	 the	 individual	 tested	positive),	𝑇!,#	 the	date	of	 the	n-th	negative	 test	
before	diagnosis,	and	𝑇#	the	date	of	symptom	onset;	we	define	the	following	probability	
𝑃% 	of	being	infected	on	day	𝑇% 	to	be	proportional	to	the	product	of	three	probabilities:	

• the	probability	of	having	an	incubation	period	equal	to	𝑇# − 𝑇% 	days;	
• the	probability	of	testing	positive	at	the	date	of	diagnosis	given	infection	at	day	𝑇%;	
• the	probability	of	 testing	negative	 (including	 false	negatives)	at	all	 the	dates	of	

negative	tests	given	infection	at	day	𝑇$;	
	

This	can	be	summarized	by	the	following	equation:	
	

𝑃%(𝑇%) = 𝑓(𝑇$ − 𝑇%) ⋅+,1 − 𝑓.𝑇!,' − 𝑇%/0
'

⋅ 𝑃#(𝑇( − 𝑇%)	 (1.1)	

	
where	𝑓(𝑡)	is	the	probability	of	a	SARS-CoV-2	case	of	testing	positive	after	a	time	t	since	
infection	and	𝑃#(𝑡) = ∫ 𝑝#(𝜏)𝑑𝜏

)*+	-./
) 	is	the	discretized	version	of	the	probability	density	

function	 of	 the	 incubation	 period	𝑝#(𝑡).	 For	𝑝#(𝑡)	we	 use	 the	 average	 variant-specific	
estimate	from	contact	tracing	data	in	Reggio	Emilia	defined	by	the	algorithm	above	as	a	
baseline,	 and	 two	 previous	 alternative	 estimates	 on	 ancestral	 lineages	 [67,71]	 as	
sensitivity	analyses	(see	Section	S5-b	and	S5-c).	For	𝑓(𝑡),	we	use	a	previously	estimated	
piecewise	logistic	function	with	one	breakpoint	[87],	also	discretized	at	intervals	of	one	
day.	For	each	symptomatic	case,	a	time	of	infection	𝑇% 	is	sampled	from	𝑃%(𝑡)	;	note	that	
this	 sampling	 allows	 for	 possible	 false	 negative	 results	 in	 dates	 𝑇!,'.	 The	 sample	 is	
repeated	K	=	100	times.		
	
For	asymptomatic	cases,	we	cannot	use	the	information	on	the	incubation	period	given	
that	no	date	of	symptom	onset	is	defined.	Therefore,	we	use	the	imputed	dates	of	infection	
for	 symptomatic	 cases	 to	define	a	distribution	of	diagnostic	delays	PD(x),	 defining	 the	
probability	of	being	diagnosed	after	x	days	from	infection.	An	empirical	approximation	of	
PD(x)	 will	 be	 given,	 for	 any	 x,	 by	 the	 fraction	 of	 all	 instances	 across	 the	 K	 stochastic	
samples	for	which	the	diagnostic	delay	𝑇0 =	𝑇$ − 𝑇% 		is	equal	to	x.	A	gamma	function	𝑝$	
for	the	probability	density	function	of	the	diagnostic	delay	is	then	fitted	to	the	empirical	
distribution	 using	 a	 maximum	 likelihood	 approach	 and	 then	 discretized	 as	 above	 to	
obtain	𝑃$(𝑥) = ∫ 𝑝$(𝜏)𝑑𝜏

1*+	-./
1 .	The	infection	date	of	asymptomatic	cases	can	then	be	

sampled	from	the	following	probability	
	

𝑃%(𝑇%) = 𝑓(𝑇$ − 𝑇%) ⋅+,1 − 𝑓.𝑇!,' − 𝑇%/0
'

⋅ 𝑃$(𝑇$ − 𝑇%)	 (1.2)	

	
Equation	(1.2)	has	the	same	rationale	as	that	of	Equation	(1.1),	except	that	instead	of	the	



 
 

incubation	period	term	we	consider	the	probability	of	having	a	diagnostic	delay	equal	to	
𝑇$ − 𝑇% ,	assuming	that	the	distribution	of	diagnostic	delays	for	asymptomatic	cases	is	the	
same	as	for	symptomatic	cases.	Because	this	assumption	cannot	be	tested,	we	use	as	a	
sensitivity	analysis	an	alternative	method	where	only	the	probabilities	of	negative	and	
positive	tests	are	used	to	define	the	𝑃% 	(see	Section	S5-a).	The	sampling	of	infection	times	
is	repeated	K	times	also	for	asymptomatic	cases.	
	
Assuming	 the	 imputation	 of	 incubation	 periods	 is	 correct,	 we	 obtain	 that	 12.6%	
(95%Credible	Intervals,	CrI:	11.6-13.7%)	of	negative	tests	is	a	false	negative	result	for	
the	Alpha	variant	and	18.1%	(95%CrI:	16.5-19.5%)	for	the	Delta	variant.	This	result	was	
used	to	define	the	criterium	of	inclusion	for	households	where	undiagnosed	cases	have	
at	least	two	negative	tests,	in	order	to	reduce	the	fraction	of	undiagnosed	positive	cases	
to	negligible	levels	(1.6%	for	Alpha	and	3.3%	for	Delta)	for	the	purpose	of	this	analysis.	
Figure	1-8	reports	the	estimated	empirical	and	fitted	distributions	of	diagnostic	delays	
for	variants	Alpha	and	Delta.	

 
Figure 1-8. Empirical and fitted distribution of the diagnostic delay, PD, estimated from symptomatic cases. Left: Alpha variant; 
Right: Delta variant. The histograms represent the empirical distribution given the imputed infection times for symptomatic 
individuals. The curves represent the fit of gamma functions. 

Estimation	of	the	generation	time	distribution	and	inference	of	transmission	links	
The	model	adopted	in	this	work	extends	the	approach	previously	proposed	in	[69].	We	
assumed	that,	at	any	time	𝑡,	a	susceptible	individual	𝑗	within	a	household	is	exposed	to	a	
force	of	infection	composed	of	two	components:		
	

𝜆2(𝑡) = 𝜆23(𝑡) + 𝜆24(𝑡)	 (1.3)	
	
where	𝜆23(𝑡)	 represents	 the	 force	of	 infection	 from	the	general	community	outside	the	
household,	and	𝜆24(𝑡)	represents	the	one	from	infected	members	inside	the	household;	
this	 considers	 the	 possibility	 that	 an	 individual	 can	 be	 infected	 either	 within	 the	
household	by	one	of	its	members	or	in	the	general	community.		
	
We	now	specify	the	two	components.	First,	we	describe	the	force	of	infection	at	time	t	
from	 the	 general	 community	 𝜆23(𝑡)	 as	 the	 forces	 of	 infection	 exerted	 at	 day	 t	 on	 the	
individual	 j	by	all	potential	 infectors	 in	the	general	community.	We	define	the	force	of	
infection	 from	 the	 general	 community	 as	 given	by	 the	 sum	of	 the	 individual	 forces	of	
infection	from	all	cases	that	were	infected	at	any	day	𝑧	before	𝑡.	The	force	of	 infection	
from	each	candidate	infector	was	proportional	to	the	relative	susceptibility	of	j	according	
to	his	vaccination	status	and	to	the	probability	of	infecting	t-z	days	after	infection;	we	also	
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considered	 the	 possibility	 that	 j	 was	 in	 quarantine/isolation	 at	 home	 at	 day	 𝑡	 and	
therefore	 could	 not	 have	 contacts	 with	 the	 general	 community.	 Therefore,	 we	 define	
𝜆25(𝑡)	as	follows:	
	

𝜆25(𝑡) = < 𝜓	𝐼𝑛𝑐(𝑧)	𝜒2(𝑡)Γ(𝑡 − 𝑧; 𝑎, 𝑏)𝑞2(𝑡)
6	∈	8..)

	 (1.4)	

	
where:	
- 𝜓	is	an	unknown	transmission	rate	from	the	general	community;	
- 𝐼𝑛𝑐(𝑧)	is	the	number	of	newly	infected	cases	at	time	z	outside	the	household	of	j	
- 𝜒2(𝑡)	 represents	 the	 relative	 susceptibility	 of	 individual	 j	 and	 changes	 over	 time	 t	

depending	on	the	dates	of	vaccination	of	j;		
- Γ(𝑡; 𝑎, 𝑏)	 represents	 the	distribution	of	 the	 intrinsic	 generation	 time	 at	 day	 t	 after	

infection,	for	which	we	assumed	a	discretized	Gamma	distribution	with	scale	𝑎	and	
shape	𝑏;	in	particular,	given	𝑔(𝑡; 	𝑎, 𝑏)	the	continuous	Gamma	probability	distribution,	
Γ(𝑡; 𝑎, 𝑏) = ∫ 𝑔(𝜏; 𝑎, 𝑏)𝑑𝜏)*+

) .	
- the	term	𝑞2(𝑡)	is	an	on/off	function	that	is	0	when	the	household	of	j	is	in	quarantine	

and	1	otherwise.	For	each	household,	a	quarantine	of	14	days	is	started	after	the	first	
diagnosis	and	reinstated	for	a	further	14	days	every	time	there	is	a	new	diagnosis	after	
the	previous	quarantine	has	ended.	

	
Since	𝐼𝑛𝑐(𝑧)	 is	unknown	due	to	underreporting,	we	considered	the	epidemic	curve	by	
date	 of	 symptom	 onset	 for	 the	 province	 of	 Reggio	 Emilia	 in	 the	 Italian	 integrated	
surveillance	 system	 [113,63],	 𝐼(𝑧),	 which	 is	 proportional	 to	 𝐼𝑛𝑐(𝑧)	 via	 an	 unknown	
reporting	parameter	u:	𝐼(𝑧) = 𝑢	𝐼𝑛𝑐(𝑧).	Thus,	Equation	(1.4)	becomes:		
	

𝜆25(𝑡) = <
𝜓
𝑢 	𝐼

(𝑧)	𝜒2(𝑡)Γ(𝑡 − 𝑧; 𝑎, 𝑏)𝑞2(𝑡)
6	∈	8..)

	 (1.5)	

	
Because	𝜓	 and	 u	 cannot	 be	 estimated	 at	 the	 same	 time	 due	 to	 their	 collinearity,	 we	
estimate	 a	 single	 free	 parameter	 𝛼	 that	 is	 a	 scaling	 factor	 accounting	 for	 both	
underreporting	of	cases	and	the	transmissibility	from	the	general	community.	This	allows	
to	make	the	problem	tractable	at	the	cost	of	losing	the	interpretability	on	the	estimated	
value	of	𝛼.	
	
Similarly,	we	describe	the	force	of	infection	at	time	t	from	the	general	community	𝜆24(𝑡)	
as	 the	 sum	 of	 all	 forces	 of	 infection	 exerted	 on	 the	 individual	 j	 by	 each	 household	
members	 with	 an	 earlier	 date	 of	 infection.	 The	 force	 of	 infection	 𝜆2,:4 (𝑡)	 from	 one	
household	 member	 i	 was	 proportional	 to	 the	 relative	 transmissibility	 of	 i	 at	 time	 𝑡	
(according	 to	 the	 vaccination	 status	 of	 i),	 the	 relative	 susceptibility	 of	 j	 at	 time	 𝑡	
(according	to	the	vaccination	status	of	j),	and	to	the	probability	of	transmitting	t-TI,i	after	
the	date	of	infection	𝑇%,: .	Therefore,	we	define	𝜆24(𝑡)	as:	
	

𝜆24(𝑡) = < 𝜆2,:4 (𝑡)
:∈;!

= < 𝛽𝜌:(𝑡)𝜒2(𝑡)Γ.𝑡 − 𝑇%,:; 𝑎, 𝑏/
:	∈	;!

	 (1.6)	

	
where:	



 
 

- i	is	an	index	running	over	the	set	Hj	of	infected	household	members	of	individual	j;		
- 𝜌:(𝑡)	represents	the	relative	transmissibility	of	individual	i,	and	changes	over	time	t	

depending	on	the	dates	of	vaccination	of	i;		
- 𝛽	is	a	free	parameter	scaling	the	transmissibility	inside	households.	
	
For	the	relative	susceptibility,	we	assumed	that	each	dose	may	reduce	the	susceptibility	
to	 a	 given	 value	 14	 days	 after	 inoculation;	 protection	 of	 each	 dose	 starts	 to	 wane	
immediately,	following	an	exponential	function,	increasing	again	the	susceptibility	over	
time.	When	the	booster	dose	(third	dose)	is	administered,	we	assume	no	waning	(note	
that	 the	booster	dose	started	 to	be	administered	 in	 Italy	 towards	 the	end	of	 the	Delta	
study	period,	with	only	3	individuals	in	our	data	having	received	it):	
	

𝜒2(𝑡) =

⎩
⎪
⎨

⎪
⎧1																																																𝑖𝑓	𝑡 < 𝑡<,+ + 14																							
1 − 𝜂(+)	𝑒?@()?)",$?+A)									𝑖𝑓	𝑡<,+ + 14 ≤ 𝑡 < 𝑡<,B + 14
1 − 𝜂(B)𝑒?@()?)",%?+A)										𝑖𝑓	𝑡<,B + 14 ≤ 𝑡 < 𝑡<,C + 14
1 − 𝜂(C)																																			𝑖𝑓	𝑡 ≥ 𝑡<,C + 14																							

			 (1.7)	

	
where	𝑡<,- 	is	the	date	of	vaccination	dose	d,	𝜂(-)	are	the	initial	effectiveness	of	dose	d	(i.e.,	
14	days	after	vaccination)	against	 the	considered	variant,	and	𝑤	 is	 the	waning	rate	of	
vaccine	 protection.	 Estimates	 of	 vaccine	 effectiveness	 and	waning	 rate	were	 obtained	
from	 a	 large-scale	 retrospective	 cohort	 study	 on	 the	 Italian	 population	 [89,90]	 and	
reported	in	Table	1-5.	
 

Table 1-5. Parameters for vaccine effectiveness and waning. 

Parameter Unit Alpha Delta 
Initial effectiveness of dose 1 𝜼(𝟏) % 49.2 49.4 
Initial effectiveness of dose 2 𝜼(𝟐) % 81.9 80.2 
Effectiveness of the booster dose 𝜼(𝟑) % - 80.2 
Waning rate w days-1 0 1/227 

 
For	the	relative	transmissibility,	we	assumed	a	reduction	by	𝜌	=	50%	after	14	days	from	
the	first	dose	[91,92]:	
	

𝜌:(𝑡) = W
1							𝑖𝑓	𝑡 < 𝑡<,+ + 14	
𝜌						𝑖𝑓	𝑡 ≥ 	𝑡<,+ + 14

	 (1.8)	

	
The	model	assigns	a	source	of	infection	𝑘2 	for	all	cases	by	choosing	from	either	a	generic	
source	 outside	 the	 household	 or	 from	 an	 infectious	 household	 member	 in	 Hj,	 with	
probability	proportional	to	the	contribution	of	each	source	to	the	total	force	of	infection	
𝜆2(𝑇%,2)	at	the	time	𝑇%,2 	at	which	j	was	infected.	The	probability	for	an	individual	j	of	being	
infected	at	time	𝑇%,2 ,		𝐿2 ,	is	given	by	the	product	of	the	probability	of	being	infected	by	the	
assigned	source	of	infection	on	that	day	(𝑃2)	and	the	probability	of	not	being	infected	up	
until	that	day	(𝑄2).	The	overall	 likelihood	of	the	observations	given	parameter	set	𝜃 =
(𝛼, 𝛽, 𝑎, 𝑏)	and	the	assigned	sources	of	infection	𝑘2 	is	given	by	the	product	of	individual	
probabilities	𝐿2:	
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𝐿.𝜃, 𝑘2/ = 	+𝐿2
2

	= 	+𝑃2𝑄2
2

		 (1.9)	

	
where	
	

𝑃2 =	\
𝜆23.TD,E/												if	𝑘2 	is	outside	the	household	
𝜆2.:4 .TD,E/											if	𝑘2 	is	household	member	𝑖			
1																								if	𝑗	is	uninfected																									

		 (1.10)	

	
For	infected	individuals,	𝑄2 	is	the	probability	that	j	has	not	been	infected	until	𝑡%,2 ,	namely	

𝑄2 =	𝑒?∫ G!())-)
&',!
( .	For	uninfected	individuals,	it	is	the	probability	that	j	has	never	been	

infected,	𝑄2 =	𝑒?∫ G!())-)
)
( .	

	
We	estimated	the	unknown	parameters	𝜃	and	the	source	of	infection	𝑘2for	all	cases	using	
a	Monte	 Carlo	Markov	 Chain	 (MCMC)	 procedure.	We	 considered	 uninformative	 prior	
distribution	 for	 all	 parameters	 (𝛼:	 Uniform(10-8,	 10-4);	 𝛽:	 Uniform(0.1,	 4);	 	 𝑎:	
Uniform(0.1,	5);	𝑏:	Uniform(0.1,	5).	At	each	step,	all	parameters	in	𝜃	are	updated	using	
reversible	normal	jumps.	Z=500	samples	from	the	posterior	distributions	obtained	by	the	
MCMC	for	each	of	the	K=100	samples	were	pooled	together	to	obtain	the	final	parameter	
distribution	and	the	distribution	of	the	sources	of	infection	for	each	case.	Each	sample	of	
the	 joint	 distribution	 of	 the	 sources	 of	 infection	 constitutes	 a	 possible	 reconstructed	
transmission	 chain.	 Although	 the	 low	 values	 of	 prior	 bounds	 of	𝛼	might	 suggest	 that	
importations	 from	 outside	 are	 limited,	 we	 also	 explored	 larger	 parameter	 regions.	
However,	 such	 initial	 explorations	 converged	 to	 degenerate	 distributions.	 The	 final	
posterior	 distribution	 of	 𝛼	 had	 a	 mean	 of	 7 ⋅ 10?H	 (95%CrI	 6 ⋅ 10?H − 8 ⋅ 10?H),	 that	
correspond	to	approximately	20%	of	infections	being	attributed	to	external	sources	for	
both	the	Alpha	and	Delta	variants	(see	the	next	section).	
	
The	 model	 for	 the	 inference	 of	 transmission	 links	 was	 implemented	 in	 C	 using	 GSL	
libraries	(version	2.6)	and	compiled	with	GCC	(version	4.2.1).		
	
The	code	used	to	run	the	model	is	available	at:	figshare.com/IGT_alpha_delta	.	
	
Additional	results	of	the	baseline	model	
Table	1-6	shows	statistics	on	the	posterior	distributions	of	parameters	for	the	intrinsic	
generation	time.	
 
Table 1-6. Statistics on the posterior distributions of parameters for the intrinsic generation time in the baseline model. 

Alpha	
Shape	variance	 0.04	
Scale	variance	 0.08	
Covariance	 -0.032	

Delta	
Shape	variance	 0.05	
Scale	variance	 0.07	
Covariance	 -0.024	

	
Statistics	on	reconstructed	transmission	links	
Given	 the	 set	 of	 50,000	 reconstructed	 transmission	 chains,	 it	 is	 possible	 to	 compute	

https://figshare.com/articles/dataset/IGT_alpha_delta/19802659?file=38662919


 
 

descriptive	 statistics	 on	 the	 number	 of	 infections	 acquired	 within	 or	 outside	 the	
household	accounting	for	household	size	(Table	1-7).	We	obtained	that	the	average	per-
household	 number	 of	 infections	 contracted	 from	 the	 general	 community	 was	 1.18	
(95%CrI	1.16	–	1.22)	during	the	Alpha	period	and	1.11	(95%CrI	1.08	–	1.14)	during	the	
Delta	period.	The	average	number	of	secondary	infections	generated	by	a	positive	case	
was	0.64	(0.63	–	0.65)	during	the	Alpha	period	and	0.60	(0.59	–	0.61)	during	the	Delta	
period.	 Table	 1-7	 shows	 how	 the	 model	 reconstructed	 transmission	 links	 within	
households	with	different	numbers	of	cases.	
	
Table 1-7. Statistics for the model-based reconstruction of transmission links in households by number of SARS-CoV-2 cases. 
Reported numbers are the average and their 95% CrI, in bold the total number of households in the sample. 

	 Number	 %	 Number	 %	
Households	with	2	SARS-CoV-2	cases	 1158	 100	 748	 100	

- Both	infected	in	the	general	community	 94	
(75-121)	

8	
(6-10)	

48	
(35-63)	

6	
(5-8)	

- One	infected	the	other	 1064	
(1034-1083)	

92	
(89-94)	

700	
(685-713)	

94	
(92-95)	

	 	 	 	 	
Households	with	3	SARS-Cov-2	cases	 611	 100	 338	 100	

- All	infected	in	the	general	community	 2	
(0-6)	

0	
(0-1)	

1	
(0-3)	

0	
(0-1)	

- One	transmission,	2	infected	in	the	general	
community		

75	
(58-94)	

12	
(9-15)	

31	
(20-42)	

9	
(6-12)	

- Two	transmissions,	same	infector	(1	
generation)	

248	
(221-277)	

41	
(36-45)	

143	
(121-167)	

42	
(36-49)	

- Two	transmissions,	different	infectors	(2	
generations)	

286	
(251-317)	

47	
(41-52)	

163	
(139-188)	

48	
(41-56)	

	 	 	 	 	
Households	with	4	or	more	SARS-Cov-2	cases	 471	 100	 219	 100	

- All	infected	in	the	general	community	 0	
(0-1)	

0	
(0-0)	

0	
(0-0)	

0	
(0-0)	

- One	transmission	 58	
(42-77)	

12	
(9-16)	

29	
(19-41)	

13	
(9-19)	

- Two	transmissions	 241	
(221-261)	

51	
(47-55)	

117	
(104-129)	

53	
(47-59)	

- Three	or	more	transmissions	 171	
(136-207)	

36	
(7-44)	

73	
(52-94)	

33	
(24-43)	

 
Stability	of	the	attributed	source	of	infection	
For	each	case,	we	considered	the	distribution	of	the	sources	of	infection	attributed	by	the	
model	through	the	reconstructed	chains	of	transmission	and	evaluated	its	stability.	We	
categorized	cases	according	to	whether	its	source	of	infection	was	consistently	(i.e.,	more	
than	75%	of	the	times	over	the	Z	sampling	of	infector	and	K	sampling	of	infectious	dates)	
attributed	to:	

• the	same	household	member;	
• transmission	within	household	but	from	different	potential	infectors;	
• transmission	in	the	general	community.	

	
The	setting	of	transmission	was	uncertain	(less	than	75%	consistency	in	attribution)	in	
about	 40%	 of	 cases	 (Figure	 1-9)	 in	 both	 the	 Alpha	 and	 Delta	 periods.	 This	 generally	
happened	when	two	or	more	cases	in	a	household	had	close	diagnosis	dates,	so	that	either	
could	have	been	infected	in	the	general	community	and	then	transmitted	to	the	other,	or	
both	could	have	been	infected	in	the	general	community,	depending	on	the	assigned	dates	
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of	infection.	
	
Sensitivity	analyses	
We	performed	six	sensitivity	analyses	(SA)	to	test	the	robustness	of	model	results	against	
different	model	assumptions.	The	first	three	SA	(a-c)	impact	on	the	main	unknown	of	the	
data,	 i.e.	 the	 imputed	 infectious	 periods	 of	 cases;	 the	 fourth	 (d)	 considers	 a	 reduced	
transmissibility	for	asymptomatic	individuals;	the	fifth	(e)	evaluates	the	possibility	that	a	
fraction	of	undiagnosed	 individuals	were	 fully	protected	 from	 infection	 from	previous	
natural	immunity:	the	sixth	(f)	assumes	that	any	effort	to	quarantine	positive	cases	would	
not	impact	the	force	of	infection	from	outside	the	household	(i.e.,	𝑞(𝑡) = 1	for	any	value	
of	t	in	Equation	(1.5)).	
 

 
Figure 1-9. Consistency in the attribution of the infector or the infector setting. The stacked barchart represents the proportion 
of individuals that were consistently (more than 75% of the times across Z sampling of sources and K sampling of infectious 
dates) or inconsistently attributed to either category. 

Imputation	of	dates	of	infection	in	asymptomatic	cases	(a)	
In	the	baseline	method	for	 the	imputation	of	dates	of	 infection,	we	 implicitly	assumed	
that	symptomatic	and	asymptomatic	cases	have	the	same	diagnostic	delay	distribution.	
We	assess	the	impact	of	this	assumption	by	considering	an	alternative	method	where	the	
date	 of	 infection	 of	 asymptomatic	 individuals	 was	 assigned	 only	 on	 the	 basis	 of	
information	on	diagnostic	date	and	negative	test	results.	In	this	additional	procedure	the	
factor	depending	on	PD	is	removed	from	Equation	(1.2),	resulting	in:	
	

𝑃(𝑗) = 𝑓(𝑡$ − 𝑗) ⋅ ∏
'
	[1 − 𝑓(𝑛 − 𝑗)]		 (1.11)	

	 	
Table	1-8	and	Figure	1-10	show	that	results	obtained	in	this	sensitivity	analysis	are	in	
line	with	the	baseline.		
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Table 1-8. Estimates for the intrinsic and realized generation time and serial intervals using an alternative method for the 
imputation of infection dates for asymptomatic individuals. 

	 	 ALPHA	 DELTA	

INTRINSIC	
GENERATION	TIME	

mean	(95%CrI)	[days]	 7.77	(6.96-8.74)	 7	(5.97-8.44)	

shape	mean	(95%CrI)	 2.43	(2.12-3.15)	 2.33	(2.03-2.78)	

scale	mean	(95%CrI)	 3.22	(2.62-3.65)	 3.02	(2.4-3.69)	
REALIZED	

GENERATION	TIME	
mean	(95%CrI)	[days]	 5.08	(4.87-5.33)	 4.39	(4.22-4.59)	

SERIAL	INTERVAL	 mean	(95%CrI)	[days]	 2.53	(2.37-2.72)	 2.76	(2.64-2.88)	

A. B.  
Figure 1-10. Comparison between baseline analysis and results obtained with sensitivity analysis a), using an alternative 
method for the imputation of infection dates for asymptomatic individuals. A. Alpha variant. B. Delta Variant. 

Table	1-9	shows	statistics	on	the	posterior	distributions	of	parameters	for	the	intrinsic	
generation	time.	
 
Table 1-9. Statistics on the posterior distributions of parameters for the intrinsic generation time in sensitivity analysis a). 

Alpha	
Shape	variance	 0.06	
Scale	variance	 0.07	
Covariance	 -0.048	

Delta	
Shape	variance	 0.03	
Scale	variance	 0.11	
Covariance	 -0.036	

 
Distribution	of	the	incubation	period	–	I	(b)	
In	 this	 sensitivity	 analysis,	 we	 reassigned	 infectious	 dates	 according	 to	 the	 baseline	
method,	but	using	a	different	probability	density	function	of	the	incubation	period	PS	in	
Equation	(1.1).	We	considered	a	gamma-distributed	estimate	for	Ps	with	shape	2.08	and	
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scale	3.03	as	derived	for	ancestral	lineages	in	[67].	Table	1-12	and	Figure	1-11	show	that	
results	obtained	in	this	sensitivity	analysis	are	in	line	with	the	baseline.		
 
 
Table 1-10. Estimates for the intrinsic and realized generation time and serial intervals using an alternative distribution of 
incubation periods estimated for ancestral lineages in [67]. 

	 	 ALPHA	 DELTA	

INTRINSIC	
GENERATION	TIME	

mean	(95%CrI)	[days]	 7.48	(6.72-8.48)	 7.38	(6.31-8.86)	

shape	mean	(95%CrI)	 2.46	(2.19-3.03)	 2.39	(2.06-2.92)	

scale	mean	(95%CrI)	 3.05	(2.58-3.5)	 3.1	(2.58-3.64)	

REALIZED	
GENERATION	TIME	

mean	(95%CrI)	[days]	 4.76	(4.60-4.92)	 4.66	(4.45-4.88)	

SERIAL	INTERVAL	 mean	(95%CrI)	[days]	 2.14	(1.98-2.32)	 2.28	(2.12-2.43)	

 

A. B.  
Figure 1-11. Comparison between baseline analysis and results obtained with sensitivity analysis b), using an alternative 
distribution of incubation periods estimated for ancestral lineages in [S2]. A. Alpha variant. B. Delta Variant. 

Table	1-11	shows	statistics	on	the	posterior	distributions	of	parameters	for	the	intrinsic	
generation	time.	
 
Table 1-11. Statistics on the posterior distributions of parameters for the intrinsic generation time in sensitivity analysis b). 

Alpha	
Shape	variance	 0.03	
Scale	variance	 0.06	
Covariance	 -0.026	

Delta	
Shape	variance	 0.05	
Scale	variance	 0.08	
Covariance	 -0.031	
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Distribution	of	the	incubation	period	–	II	(c)	
Similarly	 to	 SA	 b),	 we	 considered	 a	 further	 alternative	 for	 the	 gamma-distributed	
estimate	for	Ps	with	shape	4.23	and	scale	1.23,	as	derived	for	ancestral	lineages	in	[69].	
Table	1-12	and	Figure	1-12	show	that	results	obtained	in	this	sensitivity	analysis	are	in	
line	with	the	baseline.	
 
Table 1-12. Estimates for the intrinsic and realized generation time and serial intervals using an alternative distribution of 
incubation periods estimated for ancestral lineages in [69]. 

  ALPHA DELTA 

INTRINSIC 
GENERATION TIME 

mean (95%CrI) [days] 7.1 (6.22-8.45) 6.8 (5.8-
8.46) 

shape mean (95%CrI) 2.51 (2.25-3.07) 2.45 (2.11-
2.94) 

scale mean (95%CrI) 2.84 (2.35-3.42) 2.79 (2.27-
3.46) 

REALIZED 
GENERATION TIME 

mean (95%CrI) [days] 4.39 (4.25-4.56) 4.22 (4.05-
4.40) 

SERIAL INTERVAL mean (95%CrI) [days] 2.48 (2.35-2.62) 2.61 (2.46-
2.72) 

 

A.  B.  
Figure 1-12. Comparison between baseline analysis and results obtained with sensitivity analysis c), using an alternative 
distribution of incubation periods estimated for ancestral lineages in [69]. A. Alpha variant. B. Delta Variant. 

Table	1-13	shows	statistics	on	the	posterior	distributions	of	parameters	for	the	intrinsic	
generation	time.	
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Table 1-13. Statistics on the posterior distributions of parameters for the intrinsic generation time in sensitivity analysis c). 

Alpha	
Shape	variance	 0.04	
Scale	variance	 0.08	
Covariance	 -0.026	

Delta	
Shape	variance	 0.04	
Scale	variance	 0.10	
Covariance	 -0.036	

 
Reduced	transmissibility	for	asymptomatic	individuals	(d)	
In	 this	 sensitivity	 analysis,	 we	 consider	 a	 halved	 transmissibility	 for	 asymptomatic	
individuals	[72]	by	modifying	Equation	(1.8)	as	follows:	
	

𝜌:(𝑡) = W
𝜑: 							𝑖𝑓	𝑡 < 𝑡<,+ + 14	
𝜌𝜑: 						𝑖𝑓	𝑡 ≥ 	𝑡<,+ + 14

	 (1.12)	

	
where	𝜑: 	 is	1	 if	I	 is	symptomatic	and	0.5	 if	asymptomatic.	Table	1-14	and	Figure	1-13	
show	that	results	obtained	in	this	sensitivity	analysis	are	in	line	with	the	baseline.	
 
Table 1-14. Estimates for the intrinsic and realized generation time and serial intervals using a halved transmissibility for 
asymptomatic individuals. 

	 	 ALPHA	 DELTA	

INTRINSIC	
GENERATION	TIME	

mean	(95%CrI)	[days]	 7.24	(6.6-8.52)	 6.62	(5.81-8.25)	
shape	mean	(95%CrI)	 2.56	(2.17-3.03)	 2.43	(2.15-2.77)	

scale	mean	(95%CrI)	 2.85	(2.39-3.43)	 2.74	(2.29-3.36)	

REALIZED	
GENERATION	TIME	

mean	(95%CrI)	[days]	 4.51	(4.37-4.67)	 4.06	(3.92-4.22)	

SERIAL	INTERVAL	 mean	(95%CrI)	[days]	 2.49	(2.37-2.62)	 2.73	(2.62-2.85)	

 



 
 

A. B.  
Figure 1-13. Comparison between baseline analysis and results obtained with sensitivity analysis d), using a halved 
transmissibility for asymptomatic individuals. A. Alpha variant. B. Delta Variant. 

Table	1-15	shows	statistics	on	the	posterior	distributions	of	parameters	for	the	intrinsic	
generation	time.	
 
Table 1-15. Statistics on the posterior distributions of parameters for the intrinsic generation time in sensitivity analysis d). 

Alpha	
Shape	variance	 0.04	
Scale	variance	 0.07	
Covariance	 -0.041	

Delta	
Shape	variance	 0.03	
Scale	variance	 0.07	
Covariance	 -0.021	

 
 
Protection	from	previous	infection	in	a	fraction	of	undiagnosed	household	members	(e)	
In	 this	 sensitivity	 analysis,	 we	 assume	 that	 a	 fraction	 of	 individuals	 who	 were	
undiagnosed	were	not	susceptible	 to	 infection	due	to	 immunity	conferred	by	previous	
SARS-CoV-2	infection.	Using	previous	estimates	of	the	cumulative	SARS-CoV-2	attack	rate	
in	Italy	before	the	Alpha	and	the	Delta	waves	[93],	we	assume	that	15%	of	undiagnosed	
household	 cases	 during	 the	 Alpha	 period	 and	 20%	 of	 undiagnosed	 household	 cases	
during	the	Delta	period	were	immune.	These	cases	were	randomly	sampled	and	removed	
from	set	of	j	for	each	of	the	Z	repetitions	of	the	MCMC	procedure.	The	absence	of	these	
cases	impacts	on	the	component	of	Qj	of	the	likelihood	in	Equation	(1.9).	Table	1-16	and	
Figure	1-14	show	 that	 results	obtained	 in	 this	 sensitivity	analysis	 are	 in	 line	with	the	
baseline.	
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Table 1-16. Estimates for the intrinsic and realized generation time and serial intervals when assuming that 15% of 
undiagnosed cases in the Alpha period and 20% of undiagnosed cases in the Delta period were protected from infection via 
natural immunity from previous infection. 

	 	 ALPHA	 DELTA	

INTRINSIC	
GENERATION	TIME	

mean	(95%CrI)	[days]	 7.23	(6.39-8.57)	 6.52	(5.54-8.43)	

shape	mean	(95%CrI)	 2.48	(2.26-2.87)	 2.45	(2.13-2.87)	
scale	mean	(95%CrI)	 2.92	(2.45-3.44)	 2.75	(2.29-3.33)	

REALIZED	
GENERATION	TIME	

mean	(95%CrI)	[days]	 4.41	(4.27-4.56)	 4.06	(3.89-4.25)	

SERIAL	INTERVAL	 mean	(95%CrI)	[days]	 2.43	(2.29-2.58)	 2.75	(2.63-2.89)	

 

A. B.  
Figure 1-14. Comparison between baseline analysis and results obtained with sensitivity analysis e), assuming that 15% of 
undiagnosed cases in the Alpha period and 20% of undiagnosed cases in the Delta period were protected from infection via 
natural immunity from previous infection. A. Alpha variant. B. Delta Variant. 

Table	1-17	shows	statistics	on	the	posterior	distributions	of	parameters	for	the	intrinsic	
generation	time.	
 
Table 1-17. Statistics on the posterior distributions of parameters for the intrinsic generation time in sensitivity analysis e). 

Alpha	
Shape	variance	 0.03	
Scale	variance	 0.07	
Covariance	 -0.024	

Delta	
Shape	variance	 0.04	
Scale	variance	 0.08	
Covariance	 -0.022	

 
No	protection	from	infection	outside	the	household	during	quarantine	(f)		
In	this	sensitivity	analysis,	we	assume	that	the	imposed	quarantine	period	after	the	first	
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positive	diagnosis	would	not	impact	the	force	of	infection	from	outside	the	household	
(i.e.,	𝑞(𝑡) = 1	for	any	value	of	t	in	Equation	(1.5)).	Table	1-18	and	Figure	1-15	show	that	
results	obtained	in	this	sensitivity	analysis	are	in	line	with	the	baseline.	
 
Table 1-18. Estimates for the intrinsic and realized generation time and serial intervals when assuming no protection from 
outside infection during the quarantine period. 

	 	 ALPHA	 DELTA	

INTRINSIC	
GENERATION	TIME	

mean	(95%CrI)	[days]	 6.22	(5.77-6.65)	 5.95	(5.28-6.69)	

shape	mean	(95%CrI)	 2.48	(2.24-2.75)	 2.41	(2.15-2.73)	

scale	mean	(95%CrI)	 2.51	(2.18-2.89)	 2.48	(2.06-2.95)	

REALIZED	
GENERATION	TIME	

mean	(95%CrI)	[days]	 4.09	(3.96-4.21)	 3.84	(3.70-3.97)	

SERIAL	INTERVAL	 mean	(95%CrI)	[days]	 2.25	(2.1-2.38)	 2.61	(2.5-2.72)	

	
Table	1-19	shows	statistics	on	the	posterior	distributions	of	parameters	for	the	intrinsic	
generation	time.	
 
Table 1-19. Statistics on the posterior distributions of parameters for the intrinsic generation time in sensitivity analysis f). 

Alpha	
Shape	variance	 0.02	
Scale	variance	 0.03	
Covariance	 -0.021	

Delta	
Shape	variance	 0.02	
Scale	variance	 0.05	
Covariance	 -0.025	

 

A. B.  
Figure 1-15. Comparison between baseline analysis and results obtained with sensitivity analysis f), assuming no protection 
from outside infection during the quarantine period. A. Alpha variant. B. Delta Variant.
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CHAPTER 2 
 

 

Intrinsic generation time of the Omicron  
SARS-CoV-2 variant  

 
 
 
 

Introduction 
 
The	SARS-CoV-2	Omicron	variant	emerged	at	the	end	of	2021	and	was	able	to	completely	
replace	the	dominant	variant	Delta	with	a	swiftness	that	was	unprecedented	compared	
to	previously	emerged	lineages	[94].	The	exceptional	fitness	of	Omicron	is	likely	due	to	a	
combination	of	competitive	advantages,	including	an	increased	transmissibility	[95]	and	
the	ability	to	escape	the	immune	response	both	from	natural	infection	and	vaccination	
[96,97].	The	takeover	of	Omicron	was	accompanied	by	peak	incidence	values	that	were	
several	 times	 higher	 than	 the	 previous	 record	 in	 most	 countries	 of	 the	 world.	
	
Early	 after	 its	 emergence,	 studies	 have	 indicated	 that	 Omicron	 may	 have	 shorter	
incubation	period	[98,99,100]	and	serial	interval	[98,99,101].	This	observation,	although	
based	 on	 preliminary	 evidence,	 has	 led	many	 countries	 to	 abbreviate	 the	 duration	 of	
quarantine	and	isolation	[102,103]	in	the	attempt	to	contain	the	negative	effect	of	high	
simultaneous	 absenteeism	 on	 the	 economy.	 However,	 whether	 the	 reduction	 in	
incubation	periods	and	observed	serial	 intervals	reflects	a	reduction	of	the	generation	
time,	 i.e.,	 the	 time	 that	elapses	between	 the	 infection	episode	of	an	 infector	and	of	 its	
infectee,	 is	 still	 to	 be	determined.	 The	 generation	 time	 is	 an	 important	 parameter	 for	
monitoring	and	modeling	 infectious	diseases.	For	example,	 if	quarantine	and	 isolation	
mandates	are	based	on	the	generation	time	(as	a	proxy	of	infectiousness	over	time),	an	
underestimation	of	this	parameter	would	imply	an	early	release	of	individuals	when	they	
still	have	a	high	probability	to	infect	others,	resulting	in	a	reduced	effectiveness	of	the	
intervention;	on	the	other	hand,	an	overestimation	would	imply	an	unnecessarily	lengthy	
limitation	 of	 individual	 freedoms	 and	 increased	 absenteeism	 from	 school	 and	
workplaces,	 with	 impacts	 on	 the	 economy	 and	 the	 society.	 Biased	 estimates	 of	 the	
generation	 time	 also	 impact	 on	 the	 accuracy	 of	 the	 estimate	 of	 the	 net	 reproduction	
number,	which	 is	a	key	quantity	 for	epidemiological	 surveillance,	often	used	also	as	a	
parameter	 for	 deciding	 interventions.	 Finally,	 the	 generation	 time	 is	 largely	 used	 in	
scientific	 research	 (including	 mathematical	 modeling),	 for	 applications	 such	 as	
evaluating	the	effectiveness	of	interventions,	understanding	epidemiological	dynamics,	
reconstructing	transmission	chains.	



 
 

	
A	 direct	measure	 of	 the	 generation	 time	 cannot	 be	 obtained	 empirically	 because	 the	
infection	 episodes	 in	 a	 chain	 of	 transmission	 are	 generally	 unobservable.	 Even	when	
some	certainty	can	be	attributed	to	the	dates	of	infection	for	pairs	of	infectors-infectee	
via	 detailed	 epidemiological	 investigation,	 the	 observed	 (“realized”)	 generation	 times	
may	be	biased	by	the	specific	transmissibility	conditions,	including	the	structure	of	the	
study	population’s	contact	network,	individual	behaviors,	environmental	determinants,	
and	control	measures	put	in	place	[40].	For	example,	it	is	known	that	the	generation	time	
realized	in	households	is	remarkably	shortened	with	respect	to	the	one	observed	in	the	
general	community,	due	to	the	depletion	of	susceptible	individuals	and	the	competition	
of	simultaneously	infectious	individuals	to	find	susceptible	household	members	to	infect	
[40].	 In	 contrast	 to	 the	 realized	 generation	 time,	 occurring	 in	 a	 realistic	 network	 of	
contacts,	 the	“intrinsic”	generation	 time	represents	 the	generation	 time	that	would	be	
observed	 in	 a	 fully	 susceptible,	 homogenously	 mixed	 population	 [41].	 The	 intrinsic	
generation	 time	 is	 therefore	 less	 dependent	 on	 the	 specific	 conditions	 of	 the	
epidemiological	setting	from	which	it	is	inferred	but	must	be	estimated	with	the	use	of	
quantitative	inference	techniques.	
	

 
Figure 2-1. Illustrative example of a household cluster. A household with 5 members, of which #4 (asymptomatic) was infected 
outside the household (in the general community) and then transmitted to cases #5 and #3 (both symptomatic). Case #3 
infected #2 while #1 remained uninfected. . #3, #2 and #1 were vaccinated with 1 dose, 2 doses, and 2 doses + booster 
respectively. In the bottom part of the figure, we show examples of the temporal intervals of interest for this work. Note that 
for the household serial interval and the realized household generation time, the source of infection (whether from outside 
the household or from a household member, and, in the latter case, which household member) is also unobserved and needs 
to be probabilistically reconstructed. The intrinsic generation time is not displayed as it represents the distribution of 
generation times among infections occurring in the general population in a fully susceptible population [41]. 

In	this	study,	we	collected	the	data	for	23,122	SARS-CoV-2	infected	individuals	clustered	
in	 8,903	 households	 as	 determined	 from	 contact	 tracing	 operations	 in	 Reggio	 Emilia,	
Italy,	 between	 January	 1st	 and	 January	 31st,	 2022.	 We	 then	 leveraged	 a	 Bayesian	
inference	approach	to	estimate	the	distribution	of	the	generation	time	(both	intrinsic	and	
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realized),	 realized	 household	 serial	 interval,	 and	 contribution	 of	 pre-symptomatic	
transmission	for	SARS-CoV-2	Omicron	variant.	
 

Methods 
 
Data	
To	mitigate	the	spread	of	SARS-CoV-2,	contact	tracing	activities	were	carried	out	in	the	
province	 of	 Reggio	 Emilia,	 Italy,	 throughout	 the	 duration	 of	 the	 pandemic.	 Identified	
COVID-19	 cases	 occurring	 in	 the	 province	 were	 confirmed	 via	 a	 Polymerase	 Chain	
Reaction	 (PCR)	 assay,	 reported	 in	 real	 time	 to	 the	public	health	 service	of	 the	Reggio	
Emilia	local	health	authority,	and	isolated	at	home	until	either	a	negative	PCR	test	result	
or	 21	 days	were	 elapsed.	During	 the	 study	 period	 (from	 January	 1st	 to	 January	 31st,	
2022),	 both	 antigenic	 positive	 tests	 and	 PCR	 tests	 were	 considered	 for	 COVID-19	
diagnosis.	Household	members	were	tested	and	quarantined	at	home.	After	5	days	(for	
individuals	who	were	fully	vaccinated	more	than	4	months	before	the	date	of	contact)	or	
10	days	(for	unvaccinated	 individuals),	a	PCR	test	was	performed	and	 in	the	case	of	a	
negative	result	their	quarantine	was	ended.	If	the	test	was	not	taken,	household	members	
were	quarantined	for	14	days,	as	per	national	guidelines	[104].	Contacts	with	a	booster	
dose	or	complete	vaccination	cycle	or	recovered	from	a	previous	SARS-CoV-2	infection	in	
the	4	months	before	the	date	of	contact	were	not	subject	to	quarantine	and	were	tested	
only	upon	development	of	symptoms.	Compliance	with	at	least	one	of	the	tests	proposed	
by	the	public	health	service	was	97.4%	during	the	study	period.	
	
Data	on	test	results	and	symptom	onset	dates	(if	applicable)	for	all	identified	cases	and	
their	contacts	were	linked	to	individual	records	on	vaccination	history	(first,	second,	and	
booster	dose).	Appropriate	data	quality	 checks	were	 conducted	 in	 strict	 collaboration	
with	 the	 Reggio	 Emilia	 local	 health	 authority	 to	 minimize	 missing	 information	 and	
accurately	 define	 household	 clusters.	 A	 household	 cluster	was	 defined	 as	 households	
with	at	least	two	positive	individuals	with	a	diagnosis	spaced	less	than	14	days	apart.	
	
A	random	sample	of	new	diagnoses	was	characterized	for	the	viral	variants	of	SARS-CoV-
2.	Viral	RNA	was	extracted	from	nasopharyngeal	swab	and	specimens	were	screened	by	
a	commercial	multiplex	RealTime	PCR	assay	(SARS-CoV-2	Variants	 I	and	 II	Allplex	kit,	
Seegene;	Seoul,	South	Korea)	detecting	L452R,	W152C,	K417T,	K417N,	E484Q,	E484K,	
and	N501Y	mutations	and	HV69/70	deletion,	and	able	to	identify	SARS-CoV-2	variants	
Alpha,	Beta,	Gamma,	Delta,	Epsilon,	Omicron	BA.1	and	Omicron	BA.2.	
	
Ethics	
The	collection	of	data	used	for	this	manuscript	(surveillance	and	contact	tracing	data)	is	
compulsory	 in	 Italy	 according	 to	 national	 laws	 on	 infectious	 diseases.	 The	 COVID-19	
Italian	National	Working	group	on	Bioethics	has	stated	that	consensus	for	the	collection	
of	this	data	in	the	context	of	the	COVID-19	emergency	is	not	mandatory	(Rapporto	ISS	
COVID-19	n.	 34/2020),	 based	on	Guideline	12	of	 the	WHO	on	 ethical	 issues	 in	public	
health	surveillance.	The	legal	ordinance	n.	640	of	February	28	2020,	explicitly	declares	
Istituto	 Superiore	 di	 Sanità	 as	 entitled	 to	 collect	 data	 for	 COVID-19	 surveillance	 and	
contact	 tracing	 and	 that	 such	 data	 can	 be	 used	 and	 shared,	 upon	 anonymization,	 to	
advance	scientific	knowledge	on	this	new	disease.	
	
	



 
 

Estimation	of	the	incubation	period	
The	incubation	period	was	estimated	using	data	from	a	superspreading	event	occurred	
on	November	26,	2021,	in	Norway,	where	81	individuals	were	infected	with	the	Omicron	
variant	at	a	company’s	Christmas	dinner,	80	of	which	became	symptomatic	[98].	We	fitted	
a	 gamma	 distribution	 to	 the	 empirical	 distribution	 of	 incubation	 periods,	 and	 a	
nonparametric	 bootstrap	 resampling	 to	 assess	 uncertainty	 in	 the	 parameters	 (see	
Appendix	B	for	details).	
	
Table 2-1. Descriptive statistics of SARS-CoV-2 cases in the household dataset. 

Period	 JANUARY	1	–	31,	2022	
Number	of	cases	 23,122	
Clinical	outcome	(%):	 	

Symptomatic	 9,637	(41.7%)	
Asymptomatic	 13,465	(58.3%)	

Gender	(%):	 	
Male	(%)	 11,142	(48.2%)	
Female	(%)	 11,980	(51.8%)	

Age	group	(%):	 	
0-15	years	old	 6,138	(25.6%)	
16-44	years	old	 9,396	(39.1%)	
45-64	years	old	 5,952	(24.8%)	
65+	years	old	 2,532	(10.5%)	

Vaccination	status	at	the	end	of	the	period	(%):	 	
1	dose		 1,132	(4.9%)	
2	doses	 10,175	(44.0%)	
3	doses	 4,651	(20.1%)	
None	 7,164	(31.0%)	

Number	of	households	 8,903	
Mean	household	size	(95%	quantile)	 2.70	(2	–	5)	

	
Estimation	of	the	generation	time	and	serial	interval	
For	the	estimation	of	the	generation	time,	we	selected	only	household	clusters	for	which	
all	dates	of	diagnosis	were	included	between	January	1	and	January	31,	2022.	To	reduce	
the	possibility	of	missed	diagnoses	in	the	households,	we	further	selected	households	for	
which	 undiagnosed	 members	 had	 at	 least	 one	 negative	 test	 result.	 We	 extended	 a	
Bayesian	 inference	model	 for	 the	 reconstruction	 of	 transmission	 links	 in	 households	
[69,105].	 The	 model	 exploits	 the	 temporal	 information	 on	 SARS-CoV-2	 infections	
recorded	in	the	dataset	to	probabilistically	identify,	for	every	infection,	the	likely	source	
of	 infection	 (from	 outside	 the	 household	 or	 from	 a	 specific	 household	 member).	
Parameters	 for	 the	 generation	 time,	 which	 we	 assume	 to	 be	 gamma-distributed,	 are	
simultaneously	calibrated	via	a	Markov	Chain	Monte	Carlo	approach	where	the	likelihood	
of	the	observed	data	is	defined	mechanistically	through	the	computation	of	the	force	of	
infection	to	which	all	 individuals	are	subject	over	time.	The	force	of	 infection	includes	
information	on	the	temporal	incidence	of	cases	in	the	general	population,	on	the	date	of	
infection	and	vaccination	history	for	any	individual	and	on	previous	infection	from	other	
variants.	For	each	symptomatic	case,	the	date	of	infection	was	imputed	by	subtracting	the	
time	of	 symptom	onset	by	a	 randomly	 sampled	 incubation	period	 from	 the	estimated	
distribution.	 The	 imputed	 dates	 of	 infection	 for	 symptomatic	 individuals	 defined	 a	
distribution	of	delays	between	 infection	and	diagnosis	 (diagnostic	delay	distribution),	
which	was	used	to	impute	the	date	of	infection	of	asymptomatic	individuals	starting	from	
their	date	of	diagnosis.	For	both	symptomatic	and	asymptomatic	individuals,	we	set	to	
zero	the	probability	of	imputed	dates	of	infection	that	preceded	the	latest	negative	test	
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result.	The	sampling	of	infection	dates	was	repeated	100	times	and	the	Bayesian	model	
was	 re-calibrated	 on	 each	 resampling.	 Credible	 intervals	 (CrI)	 for	 the	 estimated	
parameters	were	obtained	from	the	95%	percentile	of	the	resulting	pooled	distributions.	
	
The	inferred	transmission	links	allowed	us	to	estimate,	in	addition	to	parameters	of	the	
intrinsic	generation	time,	the	distribution	of	the	realized	household	generation	time.	We	
also	 estimated	 the	distribution	of	 the	household	 serial	 interval	 from	 the	difference	of	
symptom	onset	dates	in	each	infector-infectee	pair	(as	inferred	by	the	model)	where	both	
are	 symptomatic.	 Figure	 2-1	 schematizes	 a	 potential	 household	 cluster,	 with	 an	
indication	 for	 each	 individual	 of	 the	 dates	 of	 infection,	 symptom	onset,	 diagnosis	 and	
negative	tests,	and	summarizes	the	relevant	quantities	for	the	purpose	of	the	study.	A	full	
description	of	the	Bayesian	inference	model	is	available	in	the	Appendix	B.	
	

	
Figure 2-2. Estimates of the generation time for the Omicron variant. A) Distribution of the intrinsic generation time; solid 
line: mean estimate; shaded area: 95% CrI; B) Distribution of the realized household generation time; bars: mean estimate; 
vertical lines: 95% CrI. 

Sensitivity	analysis	
To	test	the	robustness	of	our	results,	we	conducted	an	extensive	set	of	sensitivity	analyses	
where	we	considered:	a)	the	subset	of	380	households	(1,127	cases	in	total)	for	which	a	
case	was	genotyped	as	Omicron;	b)	the	subset	of	1,148	households	(2,770	cases	in	total)	
for	which	all	 individuals	were	unvaccinated;	c)	 the	estimated	 incubation	period	of	 the	
Delta	variant	(mean:	4.5	days;	standard	deviation:	2.1	days)	[105]	to	reassign	the	imputed	
infectious	dates	(baseline:	Omicron	variant	with	mean	3.5	days	and	standard	deviation:	
1.2	days);	d)	a	diagnostic	delay	for	asymptomatic	cases	that	was	50%	longer	than	that	for	
symptomatic	cases,	implemented	by	increasing	the	shape	of	the	gamma	distribution	by	
50%	(mean:	7.58	days;	standard	deviation:	1.61	days);	e)	similar	to	d),	but	implemented	
by	 changing	 the	 scale	 of	 the	 gamma	 distribution	 by	 50%	 (mean:	 7.58	 days;	 standard	
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deviation:	1.97	days);	f)	the	possibility	of	false	negatives	for	negative	test	results	when	
imputing	 infection	 dates;	 g)	 a	 halved	 transmissibility	 for	 asymptomatic	 individuals	
(baseline:	equal	to	symptomatic	individuals);	h)	a	halved	transmissibility	for	vaccinated	
individuals	(baseline:	equal	to	unvaccinated	individuals);	i)	a	scenario	in	which	any	effort	
to	quarantine	positive	 cases	would	not	 impact	 the	 force	of	 infection	 from	outside	 the	
household,	which	corresponds	to	the	extreme	case	where	there	is	0%	compliance	to	the	
policy	 (baseline:	 100%	 compliance);	 j)	 that	 previous	 infection	 from	 other	 variants	
provides	no	cross-protection	against	Omicron	(baseline:	56%	cross-protection	[106]).	
 
Results 
 
The	study	considered	8,903	households	with	mean	size	of	2.7	(standard	deviation:	1.05,	
95%	quantile:	2−5)	and	a	total	of	23,122	diagnosed	infections	diagnosed	between	January	
1st	 and	 January	 31st,	 2022.	 Of	 these,	 9,637	 (41.7%)	 were	 symptomatic	 and	 11,980	
(51.8%)	were	among	women	(see	Table	2-1).	A	significant	proportion	of	cases	included	
in	the	study	were	unvaccinated	(7,164,	corresponding	to	31%)	and	only	4,651	(20%)	had	
received	a	booster	dose	before	the	end	of	the	study	period,	compared	to	national	statistics	
on	the	vaccination	status	of	the	Italian	population	on	January	31	(17%	unvaccinated,	56%	
with	 a	 booster	 dose	 [107]).	 Further	 descriptive	 statistics	 on	 the	 data	 are	 provided	 in	
Table	2-1.	
	

	
Figure 2-3. Estimates of generation times for the Omicron variant under different sensitivity analyses. A) Posterior 
distributions of the mean intrinsic generation time; B) Mean distributions of the intrinsic generation time. Point: mean value; 
box: interquartile range; whiskers: 95% CrI. The labels on the y-axis represent the performed sensitivity analysis to evaluate 
the robustness of baseline model results against different model assumptions where we consider: a) only households 
genotyped as Omicron; b) only household composed of unvaccinated individuals; c) an incubation period for Omicron with 
the same distribution as previous estimates for Delta (mean: 4.5 days; standard deviation: 2.1 days) [77]; d) a prolonged 
diagnostic delay for asymptomatic individuals (mean: 7.58 days, standard deviation: 1.61 days); e) a prolonged diagnostic 
delay for asymptomatic individuals (mean: 7.58 days, standard deviation: 1.97 days); f) the possibility of false negative tests; 
g) a halved transmissibility for asymptomatic individuals; h) a halved transmissibility for vaccinated individuals; i) a scenario 
where any effort to quarantine positive cases would not impact the force of infection from outside the household; j) previous 
infection from other variants provides no cross-immunity against Omicron infection. 

From	 the	 analysis	 of	 symptom	 onset	 data	 of	 74	 individuals	 participating	 to	 a	
superspreading	 event	 in	 Norway	 [98],	 we	 estimated	 a	 gamma-distributed	 incubation	
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period	of	mean:	3.49	days	(standard	deviation:	1.20	days,	95%CI:	3.19−3.77),	see	Table	
2-2.	 By	 leveraging	 the	 estimated	 distribution	 of	 incubation	 period,	 we	 estimated	 a	
distribution	 of	 delays	 between	 infection	 and	 diagnosis	 having	 a	 mean	 of	 5.05	 days	
(standard	deviation:	 1.31	days,	 95%	quantile:	 3−7	days)	 (Table	2-2)	 for	 symptomatic	
subjects.	 By	 applying	 the	 Bayesian	 inference	 model,	 we	 estimated	 a	 mean	 intrinsic	
generation	time	of	6.84	days	(95%	CrI	of	the	mean:	5.72−8.60	days)	and	a	mean	realized	
household	generation	time	of	3.59	days	(95%	CrI	of	the	mean:	3.55−3.60	days)	(Figure	2-
2	and	Table	2-2).	
	
Table 2-2. Estimates for the incubation period, diagnostic delays, intrinsic and realized generation time, and household serial 
intervals of SARS-CoV-2 Omicron Variant. Reported parameters of shape and scale for the incubation period and intrinsic 
generation time refer to a gamma distribution. Estimates of the incubation period are derived from the analysis of 80 
participants to a single superspreading event in Norway. Data taken from [98]. 

INCUBATION	PERIOD		

MEAN	(95%CRI)	[DAYS]	 3.49	(3.19-3.77)	

95%	quantile	of	the	mean	distribution	[days]	 2-6	

shape	mean	(95%CrI)	 8.50	(6.14-13.20)	
scale	mean	(95%CrI)	 0.41	(0.25-0.68)	
standard	deviation	of	the	mean	distribution	[days]	 1.20	

	 	 	
DIAGNOSTIC	DELAY	FOR	
SYMPTOMATIC	
INDIVIDUALS	

mean	(95%	quantile)	[days]	 5.05	(3-7)	

standard	deviation	[days]	 1.31	
	 	 	

INTRINSIC	GENERATION	
TIME	

mean	(95%CrI)	[days]	 6.84	(5.72-8.60)	
95%	quantile	of	the	mean	distribution	[days]	 1-17	

shape	mean	(95%CrI)	 2.39	(2.01-3.34)	

scale	mean	(95%CrI)	 2.95	(1.81-4.25)	
standard	deviation	of	the	mean	distribution	[days]	 4.48	

	 	 	
REALIZED	HOUSEHOLD	
GENERATION	TIME	 mean	(95%CrI)	[days]	 3.59	(3.55-3.60)	

	 	 	
HOUSEHOLD	SERIAL	
INTERVAL	 mean	(95%CrI)	[days]	 2.38	(2.30-2.47)	

	 	 	
PRE-SYMPTOMATIC	
TRANSMISSION	 mean	(95%CrI)	[%]	 51.1	(45.5-55.7)	

	
The	 robustness	 of	 these	 estimates	 was	 tested	 against	 several	 sensitivity	 analyses	
regarding	 selected	 subsets	 of	 the	 sample	 (sensitivity	 analyses	 a	 and	 b),	 alternative	
imputation	methods	for	infection	times	(c-f)	and	alternative	modeling	assumptions	(g-j;	
see	Appendix	B	for	full	details).	All	sensitivity	analyses	yielded	comparable	results	with	
respect	 to	 the	 distribution	 of	 the	 intrinsic	 generation	 time	 (Figure	 2-3),	 with	 95%	
confidence	 intervals	 broadly	 overlapping	 with	 the	 baseline	 estimate,	 except	 for	 a	
significantly	shorter	mean	estimate	(5.09	days)	obtained	when	assuming	no	compliance	
to	household	quarantines.	The	longest	mean	realized	household	generation	time	(3.96	
days)	was	 estimated	 under	 the	 assumption	 of	 an	 incubation	 period	 equal	 to	 the	 one	
estimated	for	Delta,	while	the	shortest	(3.24	days)	was	estimated	when	considering	only	
unvaccinated	individuals.	
	



 
 

The	mean	household	serial	interval	in	the	baseline	analysis	was	2.38	days	(95%CrI	of	the	
mean:	 2.30−2.47	 days),	 with	 51.1%	 (95%CrI:	 45.5−55.7%)	 of	 transmission	 episodes	
being	pre-symptomatic	(i.e.,	secondary	cases	transmitted	by	cases	who	would	develop	
symptoms	 after	 the	 transmission	 episode).	 The	 mean	 household	 serial	 intervals	
estimated	in	sensitivity	analysis	ranged	between	1.89	and	2.38	days	(Appendix	B),	while	
the	mean	proportion	of	pre-symptomatic	transmission	ranged	between	51%	and	59%,	
comparable	to	the	baseline	estimate.	
 

Discussion 
 
We	 analyzed	 comprehensive	 data	 collected	 during	 contact	 tracing	 activities	 on	 over	
23,000	SARS-CoV-2	 cases	distributed	 in	 about	9,000	households	 from	 the	province	of	
Reggio	 Emilia,	 Italy,	 between	 January	 1	 and	 31,	 2022.	 Our	 estimate	 of	 the	 mean	
generation	 time	 (mean:	 6.8	 days)	 is	 compatible	with	 previous	 estimates	 for	 ancestral	
lineages	[77]	(including	a	previous	estimate	for	Italy	of	6.7	days	[82]).	Existing	estimates	
for	Alpha	and	Delta	were	in	the	same	range	in	a	study	similar	to	the	present	one	on	the	
same	study	population	 in	 Italy	 (6.0	and	6.6	days	 respectively	 [105]).	We	also	 found	a	
mean	household	serial	interval	of	2.38	days,	shorter	than	previous	estimates	for	Delta	of	
2.56	 on	 a	 similar	 study	 population	 [105].	 Available	 studies	 have	 suggested	 a	 shorter	
generation	time	of	Omicron	(between	50%	and	80%	the	one	of	Delta)	using	population-
level	data	on	the	growth	rate	of	Omicron	relative	to	Delta	in	Denmark	[45]	and	United	
Kingdom	[46].	An	analysis	of	43	infector-infectee	pairs	from	contact	tracing	data	in	Hong	
Kong	 [47]	 estimated	 a	 mean	 realized	 generation	 time	 of	 2.38	 days	 (95%	 confidence	
interval	2.01−2.80)	under	very	strict	control	measures	(population-wide	screenings	and	
quarantine	imposed	to	both	contacts	and	contacts	of	contacts)	that	are	known	to	reduce	
the	 realized	 generation	 time.	 Generalization	 of	 epidemiological	 estimates	 to	 different	
geographic	contexts	and	conditions	(and	therefore	their	direct	comparison)	always	needs	
to	be	made	with	caution.	We	believe	that	the	provided	estimate	may	be	representative	
for	places	with	similar	socio-economic	conditions	and	housing	structure.	For	example,	
the	mean	number	of	residents	per	housing	unit	is	similar	between	Reggio	Emilia	and	the	
rest	of	Italy	(Reggio	Emilia:	2.44;	Italy:	2.42;	national	range	across	NUTS1	aggregations:	
2.31−2.67)	and	similarly	for	the	mean	number	of	residents	per	room	(Reggio	Emilia:	0.55;	
Italy:	0.57;	national	range	across	NUTS1	aggregations:	0.54−0.63)	[108].	However,	other	
factors	such	as	seasonality	in	transmission,	mitigation	measures,	testing	efficiency,	or	the	
progression	 of	 the	 vaccination	 campaign	 may	 make	 direct	 comparison	 of	 estimates	
performed	at	different	 times	problematic,	 even	when	 they	 come	 from	 the	 same	study	
population.	
	
The	 result	 that	 the	 intrinsic	 generation	 time	 of	 the	 Omicron	 variant	 in	 Italy	 is	 not	
significantly	 shorter	 than	 previous	 lineages	 may	 be	 surprising	 with	 respect	 to	 the	
intuition	suggested	by	repeated	observations	of	shorter	incubation	periods	[98,99,100]	
and	serial	intervals	[98,99,101]	(the	latter	also	confirmed	by	this	study).	Realized	serial	
intervals	in	households	and	other	small-population	settings	such	as	schools,	workplaces,	
hospital	wards	and	nursing	homes,	may	be	a	biased	proxy	for	the	 intrinsic	generation	
time	 since	 they	 depend	 strongly	 on	 the	 epidemiological	 conditions	 of	 the	 study	
population	[41,40];	in	particular,	they	tend	to	be	shorter	when	transmissibility	is	higher	
(as	 in	 the	 case	 of	 the	 Omicron	 variant)	 because	 the	 competition	 for	 susceptible	
individuals	is	stronger	[40].	For	example,	simulating	transmission	in	households	through	
a	simple	generative	model	where	we	imposed	a	mean	generation	time	of	6.9	days,	the	
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mean	realized	generation	time	in	households	turned	out	to	be	4.7	days	because	of	this	
competition	 effect	 (see	 Appendix	 B).	 On	 the	 other	 hand,	 the	 incubation	 period	 only	
reflects	 a	 clinical	 condition	 (development	 of	 symptoms)	 that	 is	 known	 to	 be	 poorly	
correlated	 to	 infectiousness	 for	 COVID-19,	 given	 the	 large	 proportion	 of	 infections	
transmitted	 by	 asymptomatic	 and	 pre-symptomatic	 individuals.	 The	 duration	 of	 viral	
shedding	is	likely	a	better	biological	proxy	of	the	intrinsic	generation	time,	as	it	is	more	
closely	 related	 to	 the	 intrinsic	 infectiousness	 of	 an	 infected	 individual	 [109].	 Several	
studies	have	found	a	similar	duration	of	viral	shedding	for	Omicron	and	other	variants	
[110,111,112],	in	agreement	with	the	conclusions	from	our	study.	
	
A	main	 strength	of	 this	work	 consists	 in	 the	very	 large	population-based	dataset	 that	
comprehensively	covers	household	clusters	observed	in	the	province	of	Reggio	Emilia.	
Public	health	officials	made	efforts	to	have	high	compliance	to	testing	policies	(97.4%	of	
individuals	 who	 were	 offered	 a	 test	 accepted	 at	 least	 once),	 including	 testing	 all	
household	members	of	cases	at	the	date	of	the	first	diagnosis	in	the	household.	However,	
the	following	limitations	should	be	taken	into	consideration	to	interpret	our	results.	First,	
the	main	analysis	relied	on	cases	diagnosed	during	the	study	period.	The	prevalence	of	
the	 Omicron	 variant	 in	 the	 region	 (Emilia	 Romagna)	 was	 80%	 among	 infections	
diagnosed	on	January	3,	2022,	rising	to	99%	among	infections	diagnosed	on	January	17	
and	31	[65];	more	specifically,	over	97%	of	all	infections	diagnosed	in	Italy	on	January	31	
were	classified	as	Omicron	sublineage	BA.1	[65].	Therefore,	it	cannot	be	excluded	that	a	
minority	 of	 cases	 in	 our	 sample	 belonged	 to	 other	 variants.	 However,	 a	 sensitivity	
analysis	performed	on	380	households	(1,127	cases)	for	which	a	case	was	genotyped	as	
Omicron	 yielded	 compatible	 results.	 Second,	 the	model	 relies	 on	 assumptions	 for	 the	
dates	 of	 infection	 of	 infected	 individuals;	 nonetheless,	 estimates	 were	 substantially	
robust	with	respect	to	different	imputations	of	the	dates	of	 infection	(i.e.,	by	using	the	
incubation	period	estimated	for	Delta,	different	distributions	of	the	diagnostic	delay	for	
asymptomatic	individuals,	and	allowing	the	possibility	of	false	negative	test	results,	see	
Figure	 2-3	 and	 Appendix	 A).	 The	 same	 intrinsic	 limitation	 of	 the	 unobservability	 of	
infection	times	is	shared	by	all	transmission	chain	reconstruction	models,	but	there	are	
now	several	examples	where	 these	models	have	been	proven	 to	correctly	 identify	 the	
transmission	dynamics	of	infectious	outbreaks	[25,86].	It	is	also	important	to	stress	that	
for	traced	contacts,	the	detection	of	symptoms	was	done	at	the	time	of	diagnosis;	as	such,	
if	symptoms	appeared	in	the	days	following	the	positive	swab,	the	infected	individual	was	
recorded	as	asymptomatic.	Another	specific	limitation	is	that	compliance	to	quarantine	
protocols	is	unknown;	we	assumed	100%,	i.e.,	that	household	members	quarantined	after	
diagnosis	of	another	member	could	only	be	infected	within	the	household.	If	compliance	
was	 imperfect	 in	 the	 considered	 population,	 infected	 household	 members	 may	 have	
contracted	 the	 infection	 from	 the	 general	 community,	 especially	 considering	 the	 very	
high	incidence	observed	in	January	2022	in	Italy.	A	sensitivity	analysis	where	quarantines	
of	household	members	are	not	considered	(i.e.,	0%	compliance)	yielded	a	significantly	
shorter	mean	 intrinsic	 generation	 time	 (5.1	 vs	 6.8	 days),	 because	 in	 this	 case	 longer	
generation	 times	 that	were	attributed	 to	potential	household	 infectors	 in	 the	baseline	
analysis	are	preferentially	attributed	to	an	importation	from	the	general	community.	As	
a	 result,	 the	mean	 estimate	 of	 the	 intrinsic	 generation	 time	may	 be	 shorter	 than	 the	
baseline	 if	 compliance	 to	 quarantine	decreased	during	 the	period	when	Omicron	was	
dominant.	Lower	compliance	to	quarantine	is	possible	because	the	lower	severity	of	the	
Omicron	wave	 in	 Italy	 and	 a	 general	 relaxation	 of	 control	measures	 induced	 a	 lower	
perception	of	 risk.	Considering	 the	ability	of	Omicron	 to	escape	 the	 immune	response	



 
 

from	vaccination,	we	assumed	no	reduction	in	transmissibility	for	vaccinated	individuals.	
However,	 relaxing	 such	 assumption	 by	 halving	 the	 transmissibility	 for	 vaccinated	
individuals	yielded	shorter	yet	comparable	results	in	the	mean	estimate	of	the	intrinsic	
generation	time	(6.1	days).	Additional	sensitivity	analysis	investigating	uncertainties	on	
the	transmissibility	of	asymptomatic	individuals,	or	on	the	absence	of	cross-protection	
from	previous	infections	with	other	lineages	did	not	affect	the	main	results	significantly	
(Appendix	B).	
	
In	conclusion,	we	produced	robust	estimates	of	the	length	of	the	intrinsic	generation	time	
for	 Omicron	 in	 Emilia	 Romagna,	 Italy,	 suggesting	 limited	 variations	 with	 respect	 to	
ancestral	 lineages	 or	 variants	 Alpha	 and	 Delta	 obtained	 in	 the	 same	 country,	 and	
providing	 useful	 insights	 for	 further	 characterizing	 the	 transmission	 patterns	 of	 the	
SARS-CoV-2	Omicron	variant	and	for	policy	evaluation.	

	
Appendix B 
 
Estimation	of	the	incubation	period	
We	 fitted	 a	 gamma	 distribution	 to	 the	 empirical	 distribution	 of	 incubation	 periods	
observed	during	a	superspreading	event	(a	company	dinner)	occurred	on	November	26,	
2021,	in	Norway	[98].	A	nonparametric	bootstrap	resampling	was	performed	to	assess	
uncertainty	 in	 the	 parameters.	 In	 the	 epidemiological	 study,	 81	 of	 the	 tracked	
participants	 to	 the	dinner	developed	 infection	with	SARS-CoV-2,	and	80	of	 these	were	
symptomatic.	 We	 excluded	 6	 cases	 who	 had	 symptom	 onset	 before	 the	 event	 and	
considered	the	empirical	distribution	of	the	remaining	74	cases	for	the	baseline	estimate.	
As	 a	 sensitivity	 analysis,	 we	 excluded	 14	 further	 cases	 whose	 samples	 had	 not	 been	
sequenced	(as	they	could	have	been	infected	with	a	different	lineage)	and	5	who	had	come	
back	from	travels	abroad	(of	which	one	from	South	Africa)	within	one	week	before	the	
dinner	(as	they	could	have	contracted	the	variant	abroad).	
	
The	 resulting	 fits	 for	 the	 two	 analyses	 are	 substantially	 overlapping	 (Figure	 2-4).	We	
obtained	a	mean	incubation	period	for	Omicron	of	3.49	days	(standard	deviation:	1.20,	
95%	bootstrap	confidence	 interval,	bCI:	3.19-3.77	days)	 in	 the	baseline	analysis	 (blue	
line)	 and	 of	 3.45	 days	 (standard	 deviation:	 1.20	 days,	 95%	 bCI:	 3.13-3.80)	 in	 the	
sensitivity	analysis.	The	algorithm	for	the	fit	was	implemented	in	python	(version	3.9.7)	
using	package	scipy	(version	1.7.1).	
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Figure 2-4. Empirical and fitted distribution of the incubation period for variant Omicron, using data from [98]. 

Imputation	of	infection	dates	
The	task	of	reconstructing	transmission	chains	must	overcome	the	intrinsic	limitation	of	
the	unobservability	of	transmission	chains.	We	use	available	evidence	to	probabilistically	
impute	plausible	 infection	dates	 for	 all	 SARS-CoV-2	 cases	 in	our	dataset.	We	 combine	
observed	 dates	 of	 symptom	 onset,	 diagnosis,	 and	 negative	 test	 results	with	 available	
knowledge	on	 incubation	periods	and	 the	probability	of	 testing	positive	over	 time	 for	
infected	individuals.		
	
First,	we	impute	the	dates	of	 infection	for	all	symptomatic	cases.	Let	TD	be	the	date	of	
diagnosis	(when	the	individual	tested	positive),	TS	the	date	of	symptom	onset,	𝑇!	the	date	
of	the	last	negative	test	before	symptom	onset;	we	define	the	following	probability	PI	of	
being	infected	on	day	TI:	
	

𝑃%(𝑇%) = 𝑃#(𝑇( − 𝑇%) ⋅ 𝐻(𝑇% − 𝑇!)	 (2.1)	
	
where	PS(t)	is	the	probability	density	function	of	the	incubation	period	and	𝐻(𝑥)	is	the	
Heaveside	step	function	(i.e.,	𝐻(𝑥) = 0	for	𝑥 < 0	and	𝐻(𝑥) = 1	 for	𝑥 ≥ 0).	For	PS(t)	we	
use	 the	estimate	above	as	a	baseline,	and	an	alternative	estimate	on	 the	delta	 lineage	
[105]	as	sensitivity	analysis	(see	below).	For	each	symptomatic	case,	a	time	of	infection	
is	sampled	from	PI(t)	and	the	date	of	infection	TI	is	obtained	by	rounding	to	the	closest	
integer.	The	sample	is	repeated	K	=	100	times.	
	
For	asymptomatic	cases,	we	cannot	use	the	information	on	the	incubation	period	given	
that	no	date	of	symptom	onset	is	defined.	Therefore,	we	use	the	imputed	dates	of	infection	
for	 symptomatic	 cases	 to	define	a	distribution	of	diagnostic	delays	PD(x),	 defining	 the	
probability	of	being	diagnosed	after	x	days	from	infection.	An	empirical	approximation	of	
PD(x)	 will	 be	 given,	 for	 any	 x,	 by	 the	 fraction	 of	 all	 instances	 across	 the	 K	 stochastic	
samples	for	which	the	diagnostic	delay	TR	=	TD	–	TI	is	equal	to	x.	A	gamma	function	is	then	
fitted	to	the	empirical	distribution	using	a	maximum	likelihood	approach	to	obtain	PD(x).	
The	 infection	 date	 of	 asymptomatic	 cases	 can	 then	 be	 sampled	 from	 the	 following	
probability:	
	

𝑃%(𝑇%) = 𝑃$(𝑇$ − 𝑇%) ⋅ 𝐻(𝑇% − 𝑇!)	 (2.2)	



 
 

	
assuming	that	the	distribution	of	diagnostic	delays	for	asymptomatic	cases	is	the	same	as	
for	symptomatic	cases.	Figure	2-5	reports	the	estimated	empirical	and	fitted	distributions	
of	diagnostic	delays	for	variant	Omicron.	
	
The	 algorithm	 for	 the	 imputation	 of	 dates	 of	 infection	 was	 implemented	 in	 python	
(version	3.9.7)	using	packages	numpy	(version	1.20.3)	and	scipy	(version	1.7.1).	
	
Inference	of	transmission	links	
The	model	adopted	in	this	work	extends	the	approach	previously	proposed	in	[69,105].	
We	assumed	that,	at	any	time	t,	a	susceptible	individual	j	within	a	household	is	exposed	
to	a	force	of	infection	composed	of	two	components:		
	

𝜆2(𝑡) = 𝜆23(𝑡) + 𝜆24(𝑡)	 (2.3)	
	

 
Figure 2-5. Empirical and fitted distribution of the diagnostic delay PD for variant Omicron, estimated from symptomatic cases. 
The histogram represents the empirical distribution given the imputed infection times for symptomatic individuals. The curve 
represents the fitted gamma function. 

where	𝜆23(𝑡)	 represents	 the	 force	of	 infection	 from	the	general	community	outside	the	
household,	and	𝜆24(𝑡)	represents	the	one	from	infected	members	inside	the	household.	
	
We	define:	
	

𝜆25(𝑡) = < 𝛼𝐼(𝑧)𝜒2(𝑡)Γ(𝑡 − 𝑧; 𝑎, 𝑏)	𝑞2(𝑡)
6	∈	8..)

	 (2.4)	

	
where:	
- 𝛼	is	a	free	parameter	scaling	the	transmissibility	in	the	general	community;	
- 𝐼(𝑧)	 is	 proportional	 to	 the	 number	 of	 newly	 infected	 cases	 at	 time	 z	 outside	 the	

household	 of	 j,	 obtained	 from	 epidemic	 curves	 by	 date	 of	 symptom	 onset	 for	 the	
province	of	Reggio	Emilia	in	the	Italian	integrated	surveillance	system	[63,113];	

- 𝜒2(𝑡)	 represents	 the	 relative	 susceptibility	 of	 individual	 j	 and	 changes	 over	 time	 t	
depending	on	the	dates	of	vaccination	of	j	and	on	cross-protection	given	by	previous	
infection	with	other	SARS-CoV-2	lineages;		
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- Γ(𝑡; 𝑎, 𝑏)	 represents	 the	distribution	of	 the	 intrinsic	 generation	 time	 at	 day	 t	 after	
infection,	for	which	we	assumed	a	discretized	Gamma	distribution	with	scale	𝑎	and	
shape	𝑏;	in	particular,	given	g(t;	a,	b)	the	continuous	Gamma	probability	distribution,	
Γ(𝑡; 𝑎, 𝑏) = ∫ 𝑔(𝜏; 𝑎, 𝑏)𝑑𝜏)*+

) ;	
- qj(t)	 is	an	on/off	 function	 that	 is	0	when	 the	household	of	 j	 is	 in	quarantine	and	1	

otherwise.	 For	 each	 household,	 a	 quarantine	 of	 14	 days	 is	 started	 after	 the	 first	
diagnosis	and	reinstated	for	a	further	14	days	every	time	there	is	a	new	diagnosis	after	
the	previous	quarantine	has	ended.	

	
In	this	analysis	(and	similarly	in	the	previous	chapter),	we	assumed	that	each	household	
member	 has	 an	 independent	 probability	 of	 acquiring	 infection	 from	 outside	 the	
household.	While	this	simplification	was	necessary	to	ensure	tractable	and	interpretable	
estimates,	it	may	not	account	for	correlated	exposures	[114],	such	as	multiple	household	
members	being	exposed	during	shared	external	activities.	
	
In	addition,	we	define	𝜆24(𝑡)	as:	
	

𝜆24(𝑡) = < 𝜆2,:4 (𝑡)
:∈;!

= < 𝛽𝜒2(𝑡)Γ.𝑡 − 𝑇%,:; 𝑎, 𝑏/
:	∈	;!

	 (2.5)	

	
where:	
- i	is	an	index	running	over	the	set	Hj	of	infected	household	members	of	individual	j;		
- 𝛽	is	a	free	parameter	scaling	the	transmissibility	inside	households.	
	
For	the	relative	susceptibility,	we	assumed	that	a	vaccine	dose	starts	to	be	protective	14	
days	after	inoculation:	
	

𝜒2(𝑡) =

⎩
⎪
⎨

⎪
⎧
			1																																																				𝑖𝑓	𝑡 < 𝑡<,+ + 14																							
(1 − 𝜒(+)	𝑒?@$I)?)",$?+AJ)									𝑖𝑓	𝑡<,+ + 14 ≤ 𝑡 < 𝑡<,B + 14
(1 − 𝜒(B)𝑒?@%I)?)",%?+AJ)										𝑖𝑓	𝑡<,B + 14 ≤ 𝑡 < 𝑡<,C + 14
(1 − 𝜒(C)𝑒?@*I)?)",*?+AJ)										𝑖𝑓	𝑡 ≥ 𝑡<,C + 14																							

			 (2.6)	

	
Where	𝑡<,- 	is	the	date	of	vaccination	dose	d,	𝜒(-)	are	the	initial	effectiveness	of	dose	d	(i.e.,	
14	days	after	vaccination)	against	the	considered	variant,	and	𝑤- 	 is	the	waning	rate	of	
vaccine	protection	for	dose	d.	Estimates	of	vaccine	effectiveness	and	waning	rate	were	
obtained	from	a	large-scale	test-negative	case–control	study	[115]	and	reported	in	Table	
2-2.	 To	 reproduce	 at	 best	 the	 vaccines	 administered	 in	 Italy,	 we	 considered	 the	
effectiveness	 estimated	 for	 a	 COMIRNATY	 vaccine	 for	 the	 main	 schedule	 and	 a	
heterologous	booster	with	Spikevax	vaccine.	The	waning	rate	assumed	in	this	chapter	is	
based	on	a	preliminary,	unpublished	version	of	[90].	The	value	of	𝑤- 	here	is	higher	since	
Omicron	 had	 a	 higher	 ability	 to	 escape	 vaccine	 protection,	 as	 marked	 by	 reported	
increase	 in	breakthrough	 infections.	The	 authors	 of	 [90]	 later	 refined	 their	 results	 by	
incorporating	additional	data	into	their	meta-analysis,	published	after	this	paper.	
	
	
	



 
 

Table 2-2. Parameters for vaccine effectiveness and waning. 

Parameter	 Unit	 Dose	 Value	
Initial	effectiveness	(14	days	after	dose)	 %	 1	 0	

2	 76.3	
3	 76.5	

Waning	rate	 days-1	 1	 0	
2	 1/74.5	
3	 1/195.3	

	
For	individuals	who	had	a	previous	infection	with	a	different	lineage,	we	assumed	a	cross-
protection	𝜂=56%	[106]	before	he	receives	a	complete	primary	vaccination	cycle	(first	
two	doses),	and	a	non-waning	protection	equal	to	the	one	conferred	by	the	booster	dose	
after	completion	of	the	primary	cycle	[106]:	
	

𝜒2(𝑡) = v
1 − 𝜂															𝑖𝑓	𝑡 < 𝑡<,B + 14																							
1 − 𝜒(C)										𝑖𝑓	𝑡 ≥ 𝑡<,B + 14																							

			 (2.7)	

	
The	model	assigns	a	source	of	infection	𝑘2 	for	all	cases	by	choosing	from	either	a	generic	
source	 outside	 the	 household	 or	 from	 an	 infectious	 household	 member	 in	 Hj,	 with	
probability	proportional	to	the	contribution	of	each	source	to	the	total	force	of	infection	
𝜆2(𝑇%,2)	at	the	time	𝑇%,2 	at	which	j	was	infected.	The	overall	likelihood	of	the	observations	
given	parameter	set	𝜃 = (𝛼, 𝛽, 𝑎, 𝑏)	and	the	assigned	sources	of	infection	𝑘2 	is	given	by:	
	

𝐿.𝜃, 𝑘2/ = 	+𝑃2𝑄2
2

		 (2.8)	

	
where	
	

𝑃2 =	\
𝜆23.TD,E/												if	𝑘2 	is	outside	the	household	
𝜆2.:4 .TD,E/											if	𝑘2 	is	household	member	𝑖			
1																								if	𝑗	is	uninfected																									

		 (2.9)	

	
For	infected	individuals,	𝑄2 	is	the	probability	that	j	has	not	been	infected	until	𝑇%,2 ,	namely	

𝑄2 =	𝑒?∫ G!())-)
+',!
( .	For	uninfected	individuals,	it	is	the	probability	that	j	has	never	been	

infected,	𝑄2 =	𝑒?∫ G!())-)
)
( .	

	
We	estimated	the	unknown	parameters	𝜃	and	the	source	of	infection	𝑘2for	all	cases	using	
a	Monte	Carlo	Markov	Chain	(MCMC)	procedure.	At	each	step,	all	parameters	 in	𝜃	are	
updated	using	reversible	normal	jumps.	Z=500	samples	from	the	posterior	distributions	
obtained	by	the	MCMC	for	each	of	the	K=100	samples	were	pooled	together	to	obtain	the	
final	parameter	distribution	and	the	distribution	of	the	sources	of	infection	for	each	case.	
	
The	 model	 for	 the	 inference	 of	 transmission	 links	 was	 implemented	 in	 C	 using	 GSL	
libraries	(version	2.6)	and	compiled	with	GCC	(version	4.2.1).		
	
The	code	used	to	run	the	model	is	available	at:	figshare.com/IGT_omicron	.	
	

https://figshare.com/s/c05e5e2b0b36f7e5344e?file=35057821
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Table 2-3. Statistics for the model-based reconstruction of transmission links in households by number of SARS-CoV-2 cases. 

	 Number	 %	
Households	with	2	SARS-CoV-2	cases	 5,579	 100	

- Both	infected	in	the	general	community	 642	(540-770)	 11.5	(9.7-13.8)	
- One	infected	the	other	 4,937	(4,809-5,039)	 88.5	(86.2-90.3)	

	 	 	
Households	with	3	SARS-Cov-2	cases	 2,080	 100	

- All	infected	in	the	general	community	 18	(9-29)	 0.8	(0.4-1.4)	
- One	transmission,	2	infected	in	the	general	

community		 349	(300-410)	 16.8	(14.4-19.7)	

- Two	transmissions,	same	infector	(1	generation)	 838	(792-884)	 40.3	(38.1-42.5)	
- Two	transmissions,	different	infectors	(2	

generations)	 875	(795-944)	 42.0	(38.2-45.4)	

	 	 	
Households	with	4	or	more	SARS-Cov-2	cases	 1,244	 100	

- All	infected	in	the	general	community	 0	(0-2)	 0	(0-0.2)	
- One	transmission	 174	(144-208)	 14	(11.6-16.7)	

- Two	transmissions	 637	(604-670)	 51.2	
(48.6-53.9)	

- Three	or	more	transmissions	 432	(372-494)	 34.8	(29.9-39.7)	
	
	
Statistics	on	reconstructed	transmission	links	
The	mean	per-household	number	of	infections	contracted	from	the	general	community	
was	1.15	(95%CrI	1.13	–	1.18).	The	mean	number	of	secondary	infections	generated	by	a	
positive	 case	 was	 0.56	 (95%CrI	 0.55	 –	 0.57).	 Table	 2-3	 shows	 how	 the	 model	
reconstructed	transmission	links	within	households	with	different	numbers	of	cases.	
	
Stability	of	the	attributed	source	of	infection	
For	each	case,	we	considered	the	distribution	of	the	sources	of	infection	attributed	by	the	
model	and	evaluated	its	stability.	We	categorized	cases	according	to	whether	its	source	
of	 infection	was	consistently	 (i.e.,	more	 than	75%	of	 the	 times	over	 the	Z	 sampling	of	
infector	and	K	sampling	of	infectious	dates)	attributed	to:		

• The	same	household	member;		
• transmission	within	household	but	from	different	potential	infectors;		
• transmission	in	the	general	community.	

	
The	setting	of	transmission	was	uncertain	(less	than	75%	consistency	in	attribution)	in	
about	40%	of	cases	(Figure	2-6).	This	generally	happened	when	two	or	more	cases	in	a	
household	 had	 close	 diagnosis	 dates,	 so	 that	 either	 could	 have	 been	 infected	 in	 the	
general	community	and	then	transmitted	to	the	other,	or	both	could	have	been	infected	
in	the	general	community,	depending	on	the	assigned	dates	of	infection.	
	



 
 

 
Figure 2-6. Consistency in the attribution of the infector or the infector setting. The stacked barchart represents the proportion 
of individuals that were consistently (more than 75% of the times across Z sampling of sources and K sampling of infectious 
dates) or inconsistently attributed to either category. 

Sensitivity	Analyses	
We	performed	ten	sensitivity	analyses	(SA)	to	test	the	robustness	of	model	results	against	
different	model	assumptions.	The	first	SA	(a)	applies	the	baseline	model	to	a	subset	of	
380	households	(1,127	cases	in	total)	for	which	a	case	was	genotyped	as	Omicron;	the	
second	(b)	applies	 the	baseline	model	 to	a	subset	of	1,148	households	(2,770	cases	 in	
total)	for	which	all	individuals	were	unvaccinated;	the	third	to	sixth	(c,	d,	e,	f)	impact	on	
the	main	unknown	of	the	data,	i.e.,	 the	imputation	of	 infection	times.	 In	particular,	the	
third	SA	(c)	assumes	an	incubation	period	equal	to	one	previously	estimated	for	Delta	
[105]	(mean:	4.5	days	and	standard	deviation	2.1	days)	to	reassign	the	imputed	infectious	
dates	(baseline:	Omicron	variant	with	mean	3.5	days	and	standard	deviation	1.2	days);	
the	fourth	(d)	considers	a	distribution	of	the	diagnostic	delay	for	asymptomatic	cases	that	
is	50%	longer	than	that	for	symptomatic	cases,	implemented	by	increasing	the	shape	of	
the	gamma	distribution	by	50%	(mean:	7.58	days;	standard	deviation:	1.61	days);	 the	
fifth	(e)	is	similar	to	(d),	but	implemented	by	changing	the	scale	of	the	gamma	distribution	
by	50%	(mean:	7.58	days;	standard	deviation:	1.97	days);	Figure	2-7	shows	a	comparison	
of	the	diagnostic	delay	distributions	used	in	SA	(d)	and	(e).	The	sixth	SA	(f)	allows	false	
negatives	test	results	when	imputing	infection	dates;	the	seventh	to	tenth	SA	(g,	h,	i,	 j)	
consider	slightly	different	model	assumptions.	In	particular,	the	seventh	(g)	considers	a	
reduced	 transmissibility	 for	 asymptomatic	 individuals;	 the	 eighth	 (h)	 considers	 a	
reduced	transmissibility	for	vaccinated	individuals,	the	ninth	(i)	assumes	that	any	effort	
to	 quarantine	 positive	 cases	would	not	 impact	 the	 force	 of	 infection	 from	outside	 the	
household	(i.e.,	𝑞(𝑡) = 1	for	any	value	of	t	in	Equation	(2.4)	)	which	corresponds	to	a	0%	
compliance	to	 the	policy;	 the	tenth	(j)	evaluates	the	possibility	 that	previous	 infection	
from	other	variants	provides	no	residual	natural	immunity.	

15%21%23%41%
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0 25 50 75 100
Frequancy (%)

Source is:
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from outside (>0.75 confidence)
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Figure 2-7. Diagnostic delays distributions for asymptomatic individuals. “Baseline” represents the distribution used in the 
main analysis, equal to the one estimated for asymptomatic cases; “Increased shape” is the distribution used in SA (d); 
“Increased scale” is the one used in SA (e). 

Only	households	with	confirmed	omicron	genotype	(a)	
In	this	sensitivity	analysis	we	considered	only	the	subset	of	households	 for	which	one	
case	has	been	 classified	as	Omicron	after	 genotyping	 (380	households,	 1,127	 cases	 in	
total).	Results	are	reported	in	Table	2-4.	
	
Table 2-4. Estimates for the intrinsic and realized household generation time and household serial intervals when considering 
only households with a confirmed Omicron genotype. 

INTRINSIC	GENERATION	TIME	 mean	(95%CrI)	[days]	 6.20	(5.14-7.99)	

shape	mean	(95%CrI)	 2.51	(2.1-3.58)	

scale	mean	(95%CrI)	 2.53	(1.6-3.64)	

Standard	deviation	of	the	
mean	distribution	[days]	

3.95	

REALIZED	HOUSEHOLD	GENERATION	TIME	 mean	(95%CrI)	[days]	 3.39	(3.36-3.4)		
HOUSEHOLD	SERIAL	INTERVAL	 mean	(95%CrI)	[days]	 2.27	(2.1-2.44)		

PRE-SYMPTOMATIC	TRANSMISSION	 mean	(95%CrI)	[%]	 55.6	(51.8-59.2)		

	
Only	households	including	unvaccinated	individuals	(b)	
In	 this	 sensitivity	 analysis	 we	 considered	 only	 the	 subset	 of	 households	 where	 all	
individuals	 were	 unvaccinated	 (1,148	 households;	 2,770	 cases	 in	 total).	 Results	 are	
reported	in	Table	2-5.	
	
Table 2-5. Estimates for the intrinsic and realized household generation time and household serial intervals when considering 
only households where all individuals were unvaccinated. 

INTRINSIC	GENERATION	TIME	 mean	(95%CrI)	[days]	 7.65	(6.73-8.36)	

shape	mean	(95%CrI)	 2.08	(1.89-2.35)	

scale	mean	(95%CrI)	 3.69	(3.23-4.01)	

Standard	deviation	of	the	
mean	distribution	[days]	

5.31	



 
 

REALIZED	HOUSEHOLD	GENERATION	TIME	 mean	(95%CrI)	[days]	 3.24	(3.23-3.26)	

HOUSEHOLD	SERIAL	INTERVAL	 mean	(95%CrI)	[days]	 1.89	(1.77-2.01)	

PRE-SYMPTOMATIC	TRANSMISSION	 mean	(95%CrI)	[%]	 57.4	(54.8-60.2)	

 
Only	households	including	unvaccinated	individuals	(c)	
In	 this	 sensitivity	analysis	we	considered	an	alternative	distribution	of	 the	 incubation	
period,	previously	estimated	for	the	Delta	variant,	with	mean	4.5	days	(shape:	4.43;	scale:	
1.01)	[105].	Results	are	reported	in	Table	2-6.	
	
Table 2-6. Estimates for the intrinsic and realized household generation time and household serial intervals using an 
alternative distribution of the incubation period. 

INTRINSIC	GENERATION	TIME	 mean	(95%CrI)	[days]	 6.87	(6.15-8.12)	

shape	mean	(95%CrI)	 2.81	(2.09-3.49)	

scale	mean	(95%CrI)	 2.53	(1.80-3.59)	

Standard	deviation	of	the	
mean	distribution	[days]	

4.15	

REALIZED	HOUSEHOLD	GENERATION	TIME	 mean	(95%CrI)	[days]	 3.96	(3.96-3.97)	

HOUSEHOLD	SERIAL	INTERVAL	 mean	(95%CrI)	[days]	 2.02	(1.96-2.08)	
PRE-SYMPTOMATIC	TRANSMISSION	 mean	(95%CrI)	[%]	 58.8	(53.8-63.6)	

 
Longer	diagnostic	delay	for	asymptomatic	cases	(increased	shape	of	gamma	distribution)	
(d)	
In	 this	sensitivity	analysis	we	 increased	by	50%	the	diagnostic	delay	of	asymptomatic	
cases.	For	asymptomatic	cases,	we	considered	a	gamma	function	that	has	the	same	scale	
parameter	as	that	estimated	for	symptomatic	cases,	and	a	shape	parameter	that	 is	1.5	
times	that	estimated	for	symptomatic	cases.	Results	are	reported	in	Table	2-7.	
	
Table 2-7. Estimates for the intrinsic and realized household generation time and household serial intervals using a longer 
diagnostic delay (increased shape) for asymptomatic cases. 

INTRINSIC	GENERATION	TIME	 mean	(95%CrI)	[days]	 6.87	(5.94-8.07)	

shape	mean	(95%CrI)	 2.51	(2.01-3.27)	
scale	mean	(95%CrI)	 2.83	(1.86-3.76)	

Standard	deviation	of	the	
mean	distribution	[days]	

4.39	

REALIZED	HOUSEHOLD	GENERATION	TIME	 mean	(95%CrI)	[days]	 3.68	(3.67-3.68)	

HOUSEHOLD	SERIAL	INTERVAL	 mean	(95%CrI)	[days]	 2.28	(2.22-2.33)	

PRE-SYMPTOMATIC	TRANSMISSION	 mean	(95%CrI)	[%]	 55.3	(50.4-59.9)	

 
Longer	diagnostic	delay	for	asymptomatic	cases	(increased	scale	of	gamma	distribution)	(e)	
In	 this	sensitivity	analysis	we	 increased	by	50%	the	diagnostic	delay	of	asymptomatic	
cases.	For	asymptomatic	cases,	we	considered	a	gamma	function	that	has	the	same	shape	
parameter	 as	 that	 estimated	 for	 symptomatic	 cases,	 and	a	 scale	parameter	 that	 is	1.5	
times	that	estimated	for	symptomatic	cases.	Results	are	reported	in	Table	2-8.	
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Table 2-8. Estimates for the intrinsic and realized household generation time and household serial intervals using a longer 
diagnostic delay (increased scale) for asymptomatic cases. 

INTRINSIC	GENERATION	TIME	 mean	(95%CrI)	[days]	 6.92	(6.01-8.07)	

shape	mean	(95%CrI)	 2.58	(2.02-3.3)	

scale	mean	(95%CrI)	 2.77	(1.88-3.76)	

Standard	deviation	of	the	
mean	distribution	[days]	

4.36	

REALIZED	HOUSEHOLD	GENERATION	TIME	 mean	(95%CrI)	[days]	 3.79	(3.79-3.8)	

HOUSEHOLD	SERIAL	INTERVAL	 mean	(95%CrI)	[days]	 2.29	(2.23-2.34)	

PRE-SYMPTOMATIC	TRANSMISSION	 mean	(95%CrI)	[%]	 55	(49.9-59.6)	

 
False	negative	test	allowed	when	imputing	infection	dates	(f)	
In	 this	 sensitivity	 analysis	 we	 allowed	 for	 false	 negative	 test	 results	 when	 imputing	
infection	dates,	i.e.	we	removed	the	factor	𝐻(𝑇% − 𝑇!)	in	Equations	1	and	2.	Results	are	
reported	in	Table	2-9.	
	
Table 2-9. Estimates for the intrinsic and realized household generation time and household serial intervals when allowing 
for false negative test when imputing infection dates. 

INTRINSIC	GENERATION	TIME	 mean	(95%CrI)	[days]	 6.68	(5.58-8.08)	

shape	mean	(95%CrI)	 2.42	(2.04-3.3)	

scale	mean	(95%CrI)	 2.83	(1.8-3.75)	

Standard	deviation	of	the	
mean	distribution	[days]	

4.34	

REALIZED	HOUSEHOLD	GENERATION	TIME	 mean	(95%CrI)	[days]	 3.4	(3.39-3.4)	

HOUSEHOLD	SERIAL	INTERVAL	 mean	(95%CrI)	[days]	 2.23	(2.18-2.29)	

PRE-SYMPTOMATIC	TRANSMISSION	 mean	(95%CrI)	[%]	 54	(49.4-58.1)	

 
Reduced	transmissibility	for	asymptomatic	individuals	(g)	
In	 this	 sensitivity	 analysis,	 we	 consider	 a	 halved	 transmissibility	 for	 asymptomatic	
individuals	 [116]	 by	 multiplying	 Equation	 (2.5)	 by	 an	 individual	 transmissibility	 𝜑: ,	
where	𝜑: 	is	1	if	i	is	symptomatic	and	0.5	if	asymptomatic.	Results	are	reported	in	Table	2-
10.	
	
Table 2-10. Estimates for the intrinsic and realized household generation time and household serial intervals using a halved 
transmissibility for asymptomatic individuals. 

INTRINSIC	GENERATION	TIME	 MEAN	(95%CRI)	[DAYS]	 6.66	(5.78-7.99)	

shape	mean	(95%CrI)	 2.55	(2.05-3.22)	

scale	mean	(95%CrI)	 2.65	(2.06-3.42)	

Standard	deviation	of	the	
mean	distribution	[days]	

4.19	

REALIZED	HOUSEHOLD	GENERATION	TIME	 mean	(95%CrI)	[days]	 3.58	(3.57-3.58)		
HOUSEHOLD	SERIAL	INTERVAL	 mean	(95%CrI)	[days]	 2.36	(2.29-2.42)	
PRE-SYMPTOMATIC	TRANSMISSION	 mean	(95%CrI)	[%]	 51.3	(46.4-55.6)	

	
 
 



 
 

Reduced	transmissibility	for	vaccinated	individuals	(h)	
In	 this	 sensitivity	 analysis,	 we	 consider	 a	 halved	 transmissibility	 for	 vaccinated	
individuals	 [116]	by	 considering	𝜑: 		 =	 0.5	 for	 vaccinated	 and	𝜑: 	 =	 1	 for	 unvaccinated	
individuals.	Results	are	reported	in	Table	2-11.	
	
Table 2-11. Estimates for the intrinsic and realized household generation time and household serial intervals using a halved 
transmissibility for vaccinated individuals. 

INTRINSIC	GENERATION	TIME	 mean	(95%CrI)	[days]	 6.06	(5.5-6.62)	

shape	mean	(95%CrI)	 2.09	(1.9-2.3)	

scale	mean	(95%CrI)	 2.91	(2.45-3.39)	

Standard	deviation	of	the	
mean	distribution	[days]	

4.20	

REALIZED	HOUSEHOLD	GENERATION	TIME	 mean	(95%CrI)	[days]	 3.46	(3.45-3.47)		
HOUSEHOLD	SERIAL	INTERVAL	 mean	(95%CrI)	[days]	 2.26	(2.22-2.32)		
PRE-SYMPTOMATIC	TRANSMISSION	 mean	(95%CrI)	[%]	 53.0	(48.6-56.8)	

	
 
No	protection	from	infection	outside	the	household	during	quarantine	(i)	
In	this	sensitivity	analysis,	we	assume	that	the	imposed	quarantine	period	after	the	first	
positive	diagnosis	would	not	 impact	 the	 force	of	 infection	 from	outside	the	household	
(i.e.,	𝑞(𝑡) = 1	for	any	value	of	t	in	Equation	(2.4)).	Results	are	reported	in	Table	2-12.	
	
Table 2-12. Estimates for the intrinsic and realized household generation time and household serial intervals when assuming 
no protection from outside infection during the quarantine period. 

INTRINSIC	GENERATION	TIME	 MEAN	(95%CRI)	[DAYS]	 5.09	(4.37-5.78)	

shape	mean	(95%CrI)	 2.44	(2.09-4.21)	

scale	mean	(95%CrI)	 2.14	(1.06-2.7)	

	 Standard	deviation	of	the	
mean	distribution	[days]	

3.30	

REALIZED	HOUSEHOLD	GENERATION	TIME	 mean	(95%CrI)	[days]	 3.39	(3.38-3.4)		
HOUSEHOLD	SERIAL	INTERVAL	 mean	(95%CrI)	[days]	 2.22	(2.16-2.28)	

PRE-SYMPTOMATIC	TRANSMISSION	 mean	(95%CrI)	[%]	 53.6	(48.7-57.5)	
	

 
No	protection	from	previous	infection	(j)	
In	this	sensitivity	analysis,	we	assume	that	the	previous	infection	would	not	impact	the	
susceptibility	to	Omicron	infection	of	an	individual.	Results	are	reported	in	Table	2-13.	
	
Table 2-13. Estimates for the intrinsic and realized household generation time and household serial intervals when assuming 
no protection from previous infection. 

INTRINSIC	GENERATION	TIME	 MEAN	(95%CRI)	[DAYS]	 6.88	(5.72-8.75)	

shape	mean	(95%CrI)	 2.37	(2-3.29)	

scale	mean	(95%CrI)	 2.99	(1.83-4.35)	

Standard	deviation	of	the	
mean	distribution	[days]	

4.52	

REALIZED	HOUSEHOLD	GENERATION	TIME	 mean	(95%CrI)	[days]	 3.59	(3.55-3.59)		
HOUSEHOLD	SERIAL	INTERVAL	 mean	(95%CrI)	[days]	 2.38	(2.3-2.46)	
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PRE-SYMPTOMATIC	TRANSMISSION	 mean	(95%CrI)	[%]	 51.1	(45.3-55.7)	
	

	
Epidemiological	context	
In	 the	 Emilia	 Romagna	 region,	 where	 our	 study	 area	 is	 located,	 Omicron	 became	
dominant	in	the	second	half	of	December	2021	(Table	2-14),	causing	a	large	upsurge	of	
cases	that	subsided	by	the	end	of	January	(Figure	2-8).		A	second	smaller	wave	occurred	
since	early	March,	likely	due	to	the	expansion	of	sublineage	BA.2	(Table	2-14	and	Figure	
2-8).	The	selected	study	period	allows	to	include	a	large	majority	of	cases	from	the	first	
Omicron	wave	while	minimizing	the	risk	of	including	multiple	sublineages	with	different	
transmissibility	in	the	data,	which	would	require	a	significant	complication	of	the	adopted	
model.	
	
Table 2-14. Prevalence of the Omicron variant in genomic surveillance surveys conducted within the Emilia Romagna region, 
December 2021-April 2022. Data from [65]. 

Relative	prevalence	 2021	 2022	
Dec	6	 Dec	20	 Jan	3	 Jan	17	 Jan	31	 Mar	7	 Apr	4	

Omicron	 0.6%	 16.5%	 79.4%	 99%	 98.7%	 100%	 100%	
of	which	BA.1	 NA*	 NA*	 NA*	 97%**	 97%**	 41.7%	 6.4%	
BA.2	 NA*	 NA*	 NA*	 3%**	 3%**	 58.3%	 94.6%	

*	Sublineages	were	not	genotyped	on	December	6,	December	20	and	January	3.	
**	Sublineages	were	genotyped	at	the	national	level	on	January	17	and	31.	
 

 
Figure 2-8. Daily number of diagnosed cases in the province of Reggio Emilia between December 1, 2021 and April 15, 2022. 
The study period of this work (January 1-31, 2022) is highlighted in light blue. Data from the Integrated Surveillance System 
of the Istituto Superiore di Sanità [63,113]. 

Simulation	of	within-household	transmission	
To	illustrate	the	difference	between	the	intrinsic	and	realized	generation	time,	we	built	a	
simple	computational	model	capable	of	generating	 infections	within	households	while	
accounting	for	the	possibility	of	acquiring	infections	from	the	community.	First,	we	built	
a	population	of	 individuals	distributed	 in	households	according	 to	 Italian	 statistics	on	
household	 size	 [117].	 Then,	we	 consider	 each	 individual	 to	 be	 subject	 to	 the	 force	 of	
infection	defined	in	Equations	3-5,	where	I(z)	is	the	number	of	symptomatic	cases	in	the	
province	of	Reggio	Emilia	and	parameters	have	been	set	to	arbitrary	values.	In	particular,	
we	 imposed	 𝑎 = 2.3	 and	 𝑏 = 3	 for	 the	 gamma-distribution	 of	 the	 generation	 time,	
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corresponding	to	a	mean	intrinsic	generation	time	of	6.9	days	(standard	deviation:	4.6	
days).	 Every	 time	 an	 infection	 within	 the	 household	 occurs,	 we	 record	 the	 date	 of	
infection	and	the	infector;	for	infections	imported	from	the	community	we	only	recorded	
the	 date	 of	 infection.	 In	 this	way,	we	 can	 reconstruct	 the	 distribution	 of	 the	 realized	
generation	times	in	household.	
	
The	model	 is	 implemented	 stochastically	with	 a	 time	 step	 of	 1	 hour	 and	 applied	 to	 a	
population	 of	 2,000	 households	 for	 a	 duration	 of	 60	 days,	 where	 day	 1	 represented	
December	16,	2021,	and	day	60	represented	February	14,	2022.	After	running	the	model,	
we	filtered	households	with	at	least	two	cases,	with	less	than	14	days	elapsing	between	
two	consecutive	infections,	and	with	all	diagnoses	comprised	in	the	period	January	1-31,	
2022.	We	obtained	a	mean	realized	generation	time	in	households	of	4.72	days	(standard	
deviation:	0.09	days);	95%CrI	of	the	mean:	4.54-4.90	days),	i.e.,	significantly	shorter	than	
the	intrinsic	one,	under	parameters	for	transmissibility	(𝛼 = 5 ⋅ 10?K	and	𝛽 = 0.5)	that	
resulted	 in	an	attack	rate	of	70%	and	 in	a	 rate	of	1.13	 imported	cases	per	household.  
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Transmission dynamics of Norovirus 
on cruise ships 

 
 

 
 

Introduction 
	
Norovirus	is	a	main	cause	of	outbreaks	of	gastroenteric	 infections	(GI)	on	cruise	ships	
[118].	 Norovirus	 can	 spread	 explosively	 on-board,	 either	 through	 an	 environmental	
reservoir	 (contaminated	 food,	 water	 or	 surfaces),	 or	 through	 person-to-person	
transmission.	 In	turn,	person-to-person	transmission	can	happen	directly	during	close	
social	contacts,	or	via	the	ingestion	of	virus	particles	aerosolized	through	vomitus	or	feces	
[119].	
	
In	addition	to	direct	consequences	on	travelers’	health,	outbreaks	of	norovirus	may	cause	
the	disruption	of	holidays	for	affected	passengers	and	co-travelers,	temporary	shortages	
of	 crew	 members	 for	 routine	 cruise	 operations,	 and	 high	 costs	 related	 to	 the	
implementation	of	infection	control	measures	for	cruise	companies,	with	a	remarkable	
economic	burden	[120].	If	we	exclude	the	temporary	effect	of	the	COVID-19	pandemic	on	
the	 cruise	 passenger	market	 [121],	 the	 number	 of	 passengers	 worldwide	 has	 seen	 a	
steady	 and	 rapid	 expansion	 since	 2004	 [122],	 suggesting	 a	 potentially	 higher	 future	
impact	of	norovirus	outbreaks	on	the	tourism	industry	in	the	near	future.	
	
Standards	for	hygiene	and	plans	for	prevention	and	management	measures	(PMM)	have	
been	 defined	 by	 multiple	 international	 institutions	 [123,124,125].	 Pre-embarkation	
screening,	syndromic	surveillance	on-board,	isolation	of	infected	individuals,	application	
of	 environmental	 decontamination	 and	 education	 of	 crew	 and	 passengers	 on	 hand	
washing	 and	 rapid	 reporting	 of	 symptoms	 have	 been	 identified	 among	 the	 main	
preventative	 measures	 [123,124,125].	 Outbreak	 management	 measures	 may	 include	
active	 surveillance,	 enhanced	 disinfection	 of	 public	 surfaces,	 discontinuation	 of	 self-
service	restaurants,	and	social	distancing	[123,124,125].		
	
A	better	understanding	of	the	dynamics	of	norovirus	spread	on-board	is	critical	to	assess	
the	effectiveness	of	control	interventions.	In	this	work,	we	analyze	an	individual	line-list	
of	GI	cases	from	a	large	outbreak	on	a	cruise	ship	[126]	to	probabilistically	reconstruct	
transmission	 chains	 on-board,	 assess	 the	 importance	 of	 diagnostic	 delays	 on	
transmission	and	evaluate	the	effectiveness	of	alternative	case	isolation	scenarios.	
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Methods 
	
We	considered	data	from	an	outbreak	of	121	GI	cases,	reported	over	a	7	days	voyage	in	a	
cruise	ship	calling	Mediterranean	ports	 [126].	Data	consisted	 in	a	 line-list	of	 reported	
cases	with	information	on	case	gender,	role	(passenger	or	crew	member),	cabin	number,	
time	of	symptom	onset,	date	of	diagnosis,	type	of	symptoms	(vomiting	or	diarrhea)	and	
number	of	vomiting	and	diarrhea	episodes	until	diagnosis.	For	65	of	121	cases	there	was	
a	PCR	confirmation	of	norovirus	presence	in	stools,	therefore	we	assumed	that	all	121	GI	
cases	 were	 caused	 by	 norovirus.	 The	 cruise	 carried	 1229	 passengers	 and	 487	 crew	
members	 (9.7%	 attack	 rate	 among	 passengers,	 0.4%	 among	 crew,	 7.1%	 overall).	
Summary	information	for	the	analyzed	outbreak	is	reported	in	Table	3-1,	and	the	number	
of	cases	by	time	of	symptom	onset	(panel	A)	and	by	date	of	diagnosis	(panel	B)	are	shown	
in	Figure	3-1.		
	
We	applied	a	Bayesian	model	 to	probabilistically	reconstruct	 transmission	chains	(i.e.,	
who	 infected	whom)	[69,70,105].	For	each	susceptible	 individual	on	board,	 the	model	
defines	a	force	of	infection	(FOI)	exerted	over	time	by	infected	individuals,	considering	
the	 possibility	 of	 cases	 infected	 before	 first	 embarkation,	 of	 infection	 among	 people	
sharing	cabins	during	night-time,	transmission	among	travelers	on	board	of	the	ship,	and	
acquisition	 of	 infection	 during	 visits	 in	 ports	 of	 calling.	 The	 FOI	 is	 a	 function	 of	 the	
generation	time,	modeled	as	a	Gamma	distribution	with	a	mean	of	87.6	hours	[127],	and	
includes	 increased	 transmission	 rates	 for	 cases	 who	 reported	 vomiting	 (2.12-fold	
increase),	diarrhea	(1.39-fold),	or	both	(2.95-fold)	[128].	The	model	explicitly	represents	
the	 isolation	protocol	 observed	on	board,	 by	 assuming	 that	diagnosed	 individuals	 are	
immediately	confined	in	their	cabins	for	72	hours.	Isolation	results	in	the	impossibility	to	
transmit	 to	 people	 other	 than	 cabin	 members.	 The	 model	 assigns	 likely	 infectors	 by	
selecting	which	potential	index	case	contributed	the	most	to	an	individual’s	FOI	at	their	
time	of	infection.	
	
Table 3-1. Summary information for the considered outbreak data. 

Total	number	of	cases	
	

121	
Symptoms	(%)	

	 	

	
Only	vomit	 1	(0.8%)	

	
Only	diarrhea	 25	(20.7%)	

	
Both	 95	(78.5%)		
None	 0	(0%)	

Gender	(%)	
	 	

	
Male	 54	(44.6%)		
Female	 67	(55.4%)	

Role	(%)	
	 	

	
Passengers	 119	(98.3%)		
Crew	members	 2	(1.7%)	

	
The	model	was	calibrated	using	a	Markov	Chain	Monte	Carlo	procedure	with	Metropolis-
Hastings	 sampling	 algorithm;	 free	model	 parameters	were	 the	 transmission	 rates	 for	
each	route	of	infection,	the	average	prevalence	of	norovirus	in	port	communities,	and	the	
unknown	infection	times	of	each	case.	Since	the	data	reported	the	date	but	not	the	time	



 
 

of	diagnosis,	model	calibration	was	repeated	Z=50	times	after	imputing	for	all	reported	
cases	their	time	of	diagnosis	(in	hours).	The	time	was	sampled	uniformly	over	the	date	of	
diagnosis,	excluding	night	hours	(between	midnight	and	8am)	and	times	preceding	the	
time	of	symptom	onset	if	this	occurred	on	the	same	date	as	diagnosis.	M=2500	parameter	
values	 and	 reconstructed	 transmission	 chains	 were	 sampled	 from	 the	 posterior	
distributions	 of	 the	 Z	 calibration	 procedures	 and	 pooled	 together	 to	 obtain	 the	 final	
results.	To	evaluate	results	with	respect	to	the	potential	underreporting	of	cases,	we	run	
sensitivity	analyses	where	we	re-calibrated	the	model	assuming	levels	of	underreporting	
of	23%	and	40%	[129,130].	Full	model	specifications	are	provided	in	the	Appendix	C.	
	

 
Figure 3-1. Epidemic curves, disaggregated by passengers (pax) and crew members (crew).  A. Hourly time series by symptom 
onset. B. Daily time series by date of diagnosis. 
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To	assess	 the	overall	effectiveness	of	alternative	 isolation	protocols	and	 the	 impact	of	
diagnostic	delays,	we	additionally	developed	a	branching	process	model	 [131],	where	
each	infected	individual	is	assumed	to	generate	a	theoretical	number	of	cases	sampled	
from	a	negative	binomial	distribution	with	mean	proportional	to	the	basic	reproduction	
number	 𝑅8	 and	 overdispersion	 ν.	 The	 time	 of	 theoretical	 secondary	 infections	 was	
distributed	according	to	the	distribution	of	the	generation	time	[127];	infections	whose	
sampled	time	would	fall	within	the	isolation	period	of	the	infector,	or	after	the	end	of	the	
cruise,	were	discarded	from	the	realized	infections.	The	branching	process	model	does	
not	explicitly	distinguish	cabin	transmission	or	importation	of	cases	during	tours.	
	
We	assumed	that	two	cases	were	infected	before	embarkation	(based	on	results	from	the	
reconstructed	transmission	chains),	and	their	symptom	onset	time	was	fixed	at	those	of	
the	first	two	symptomatic	cases	in	the	dataset;	their	time	of	infection	was	established	by	
subtracting	an	incubation	period	sampled	from	a	log-normal	distribution	with	mean	32.6	
hours	 [132],	 until	 the	 assigned	 infection	 time	 preceded	 embarkation.	 For	 each	 case	
transmitted	on-board,	the	date	of	symptom	onset	was	assigned	by	adding	to	the	time	of	
infection	an	incubation	period	sampled	from	the	same	distribution.	The	time	of	diagnosis	
(corresponding	to	the	time	of	isolation	start)	was	assigned	for	all	infections	by	adding	a	
diagnostic	 delay	 sampled	 from	 an	 empirical	 distribution	 (determined	 from	 observed	
outbreak	data	in	the	baseline	analysis);	infections	for	which	the	assigned	diagnosis	time	
fell	after	the	end	of	the	cruise	were	considered	as	unreported.	The	time	at	which	isolation	
ended	for	each	case	was	assigned	by	adding	a	fixed	duration	of	isolation	(72	hours	in	the	
baseline	analysis)	to	the	time	of	diagnosis.		
	
The	observed	outbreak	may	be	 interpreted	as	an	 individual	realization	of	a	stochastic	
process,	which	the	branching	process	aims	to	represent.	Therefore,	we	calibrated	 free	
model	 parameters	 (𝑅8	 and	 𝜈)	 by	 using	 a	 particle	 filtering	 approach	 [133]	 weighing	
particles	(model	trajectories)	by	the	mean	squared	error	(MSE)	between	the	modeled	and	
observed	 epidemic	 curves,	 and	 exploring	 parameters	 by	 grid	 search.	 The	 best-fitting	
parameter	sets	were	then	used	to	simulate	seven	alternative	intervention	scenarios.	In	
the	first	four,	isolation	of	diagnosed	cases	was	reduced	from	72	hours	(baseline	scenario,	
i.e.	 the	 strategy	 actually	 implemented	 onboard)	 to	 48	 and	 24	 hours	 or	was	 not	 done	
altogether.	In	two	other	scenarios	we	maintained	the	72	hours	isolation,	but	the	empirical	
diagnostic	delays	after	symptoms	were	either	increased	or	reduced	by	50%.	Finally,	we	
considered	 a	 “perfect”	 isolation	 scenario,	where	 for	 all	 cases	 isolation	was	 immediate	
after	 the	development	of	 first	 symptoms	and	 lasted	until	 the	end	of	 the	 cruise.	Model	
outputs	were	the	relative	reduction	in	the	total	number	of	cases	observed	in	the	cruise	
compared	to	a	scenario	with	no	 interventions,	and	the	effective	reproduction	number,	
measured	as	 the	mean	number	of	 secondary	cases	realized	 in	 the	cruise	by	 infections	
occurring	within	 day	 2	 of	 voyage.	 Considering	 only	 infections	 from	 the	 early	 days	 of	
voyage	allows	to	reduce	the	right-censoring	effects	due	to	 infections	that	would	occur	
after	the	end	of	the	cruise.	Full	details	on	the	branching	process	model	and	calibration	
are	reported	in	Appendix	C.	
 

Results 
 
In	the	model-reconstructed	transmission	chains	for	the	considered	outbreak,	4.5%	(95%	
credible	interval,	CrI:	1.7%-8.3%)	of	infections	on	average	occurred	before	embarkation,	
7.3%	(95%CrI:	2.5%-10.7%)	were	transmitted	in	the	cabin	and	88.0%	(95%CrI:	82.7%-



 
 

93.4%)	 occurred	 in	 public	 spaces	 of	 the	 ship.	 Acquisition	 during	 visits	 at	 ports	 was	
estimated	to	be	negligible.	
	
Based	on	the	reconstructed	transmission	chains,	the	effective	reproduction	number	(i.e.,	
the	number	of	secondary	cases	caused	by	a	single	 infectious	 individual)	declined	over	
time	for	cases	infected	later,	together	with	their	delay	between	the	time	of	infection	and	
that	 of	 diagnosis,	 hereafter	 termed	 “infection	 diagnostic	 delay”	 (Figure	 3-2).	 Cases	
already	carrying	the	virus	before	embarkation	on	the	cruise	ship	caused	an	average	of	
about	7.6	secondary	infections	each	(95%CrI	of	4.4-14.5).	Individuals	infected	during	the	
first	24	hours	of	cruise	went	on	to	cause	about	3.0	(95%CrI	1.5-5.2)	secondary	cases	each;	
the	effective	reproduction	number	decreased	briskly	in	the	following	days,	and	crossed	
the	epidemic	threshold	of	1	for	infections	that	occurred	at	after	24	hours	since	the	start	
of	the	cruise.	
 

 
Figure 3-2. Reproduction number and infection diagnostic delay over the course of the outbreak. Boxplots (top) show the 
distribution of infection diagnostic delays (in hours) for cases infected on each day of the voyage. The bar plot (bottom) 
represents the estimated effective reproduction number for cases infected on each day of the voyage. The bars indicate the 
mean estimate, while the error bars indicate the 95%CrI of the mean over all the reconstructed chains. 

The	 model	 estimates	 that	 60%	 (95%CrI:	 55%-65%)	 of	 cases	 did	 not	 transmit	 the	
infection	further,	while	11%	of	individuals	went	on	to	cause	3	or	more	secondary	cases	
(Figure	 3-3A).	 Fitting	 negative	 binomial	 distributions	 to	 the	 offspring	 distributions	
associated	 to	 model-reconstructed	 transmission	 chains	 resulted	 in	 a	 mean	
overdispersion	 parameter	 of	 0.42	 (95%CrI:	 0.28-0.62),	 indicating	 the	 existence	 of	
superspreading	individuals	disproportionately	contributing	to	transmission.	This	result	
is	 confirmed	 in	 Figure	 3-3B,	 displaying	 the	 cumulative	 proportion	 of	 cases	 caused	 by	
infectors	ranked	by	their	number	of	secondary	cases;	the	figure	shows	that	the	top	20%	
of	 infectors	were	responsible	 for	77%	(95%CrI:	71%-83%)	of	all	 cases,	 in	accordance	
with	 the	Pareto	rule	 [134],	and	 the	 top	10%	was	responsible	 for	57%	(95%CrI:	48%-
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65%)	of	all	cases.	
	
Figure	3-4	shows	a	disaggregation	of	the	model-estimated	mean	number	of	secondary	
cases	by	presence	of	vomit	among	symptoms,	and	by	infection	diagnostic	delay.	The	mean	
number	of	secondary	cases	generated	by	cases	who	experienced	vomiting	episodes	was	
estimated	 by	 the	 model	 at	 1.02	 (95%CrI:	 0.88-1.15),	 significantly	 higher	 than	 the	
corresponding	value	for	cases	with	no	vomiting	(mean	0.70,	95%CrI:	0.28-1.28;	Student’s	
t-test	p-value	<<	10-6)	(Figure	3-4A).	The	estimated	mean	number	of	secondary	cases	
disaggregated	by	infection	diagnostic	delay	increased	from	0.39	(95%CrI:	0.27-0.51)	for	
infections	diagnosed	within	2	days,	to	1.89	(95%CrI:	1.13-2.81)	for	delays	between	2	and	
3	days,	and	to	5.13	(95%CrI:	3.14-8.25)	for	delays	larger	than	3	days	(Figure	3-4B).	
	

 
Figure 3-3. Superspreading in the considered outbreak. A. Distribution of the number of secondary cases generated by infected 
individuals. Bars indicate mean values over 125,000 reconstructed transmission chains, while error bars indicate the 95%CrI; 
B. Cumulative proportion of secondary cases ranked by infectors. The points indicate the average value, while the error bars 
indicate the 95%CrI over all the reconstructed chains. 
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Figure 3-4. A Number of secondary cases generated by individuals with and without vomiting episodes; B Number of 
secondary cases stratified by infection diagnostic delay. Bars indicates mean values; error bars indicate the 95%CrI of the 
mean over all the reconstructed chains. 

The	model	estimated	a	mean	number	of	secondary	cases	for	the	top	10%	of	infectors	of	
5.64	(95%CrI:	4.83-6.42),	12.5-fold	higher	than	the	remainder	of	cases	(0.45;	95%CrI:	
0.38-0.54)	(Figure	3-5A).	The	mean	diagnostic	delay	for	the	top	10%	of	infectors	was	83	
hours	(95%CrI:	70-96	hours),	much	larger	than	the	one	for	the	remainder	of	cases	(47	
hours,	 95%CrI:	 44-50	 hours)	 (Figure	 3-5B).	 The	 top	 10%	 of	 infectors	 experienced	
gastrointestinal	 symptoms	 (vomiting	or	diarrhea)	with	a	halved	 frequency	 (mean	4.8,	
95%CrI:	3.5-6.4	per	day)	compared	to	the	remainder	of	infected	individuals	(mean	9.8,	
95%CrI:	9.1-10.6	per	day)	(Figure	3-5C).		
	
All	findings	remained	robust	when	considering	a	potential	underreporting	of	cases	up	to	
40%	(see	Appendix	C).	
	

 
Figure 3-5. Characteristics of superspreaders (top 10% of infectors) compared to other cases. A Mean number of secondary 
cases. Bars indicate the mean estimate, error bars indicate the 95%CrI across the 125000 reconstructed chains. B Infection 
diagnostic delays. C Frequency of gastrointestinal symptoms per day. Boxplots represent the mean, IQR and 95%CrI of the 
mean across the 125000 reconstructed chains. 
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The	calibration	of	the	branching	process	model	to	outbreak	data	resulted	in	an	estimated	
value	 for	 the	 basic	 reproduction	 number	𝑅8	 of	 15.6	 (95%CrI	 11.5-20.4)	 and	 for	 the	
overdispersion	in	the	offspring	distribution	𝜈	of	0.13	(95%CrI	0.10-0.18)	(see	Appendix	
C).	We	found	that,	even	in	absence	of	any	control	strategies,	the	effective	reproduction	
number	on	board	decreased	to	9.8	(95%	Prediction	Interval	(PI)	of	the	mean:	7.1-12.7)	
due	 to	 the	 short	 duration	 of	 the	 cruise,	 since	 a	 fraction	 of	 secondary	 cases	would	 be	
transmitted	by	infectious	individuals	after	disembarkation	(Figure	3-6A).	The	isolation	of	
cases	in	their	cabins	for	24,	48	and	72	hours	further	reduced	the	reproduction	number	to	
7.8	 (95%PI:	 5.3-10.5),	 6.0	 (95%PI:	 4.2-7.9)	 and	 4.9	 (95%PI:	 3.0-7.1)	 respectively.	
Reductions	 and	 increases	 by	 50%	 in	 observed	 diagnostic	 delays	 after	 symptoms	
(maintaining	isolation	for	72	hours	as	in	the	baseline)	would	have	a	mild	impact	on	the	
effective	 reproduction	number.	Even	 in	 a	perfect	 control	 scenario	where	all	 cases	 are	
diagnosed	 and	 isolated	 instantaneously	 after	 symptom	onset	 and	until	 the	 end	 of	 the	
cruise,	the	reproduction	number	would	still	be	significantly	above	the	epidemic	threshold	
at	 3.8	 (95%PI	 of	 the	mean:	 2.1-5.7).	 Perfect	 isolation	 would	 have	 led	 to	 averting	 on	
average	89%	of	cases	that	would	occur	in	absence	of	isolation	(Figure	3-6B).	We	estimate	
that	the	implemented	control	scenario	with	72-hours	isolation	of	a	case	after	diagnosis	
averted	about	71%	of	the	potential	cases.	The	proportion	of	averted	cases	goes	down	to	
60%	in	the	case	of	72-hours	isolation	but	with	50%	longer	symptom	diagnostic	delays,	
and	 up	 to	 81%	with	 50%	 shorter	 symptom	 diagnostic	 delays.	 Reducing	 the	 isolation	
duration	to	48	and	24	hours	respectively	would	avoid	67%	and	50%	of	cases	compared	
to	a	no-intervention	scenarios.	The	probability	of	observing	an	outbreak,	which	is	defined	
as	a	cruise	where	the	number	of	total	cases	exceeds	2%	of	the	passenger	population,	was	
above	90%	in	all	scenarios,	except	those	envisioning	a	marked	reduction	of	diagnostic	
delays	(Figure	3-6C).	
 

 
Figure 3-6. Impact of alternative control scenarios. A Effective reproduction number. For the theoretical basic reproduction 
number, the bar represents the mean and error bar represent the 95%CrI of the posterior distribution estimated. For scenarios, 
bars indicate mean values over 100 simulations and error bars indicate the 95%PI of the mean. B Mean relative reduction in 
the total expected cases compared to a scenario with no interventions. C Probability of an outbreak (defined as >2% of 
passengers infected). 

Discussion 
 
We	 reconstructed	 likely	 transmission	 chains	 during	 a	 large	 norovirus	 outbreak	 on	 a	
cruise	ship	calling	Mediterranean	ports,	providing	insights	in	the	transmission	patterns	
on	board.	We	estimated	that	the	majority	of	cases	occurred	in	public	spaces	on	the	cruise	
ship	 (almost	 90%),	 with	 limited	 transmission	 in	 cabins	 and	 a	 negligible	 number	 of	
infections	 acquired	 during	 tours	 in	 visited	 ports.	 We	 identified	 a	 strong	 degree	 of	
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superspreading,	with	20%	of	patients	being	responsible	for	almost	80%	of	the	infections	
diagnosed	on	board.	Delays	between	infection	and	diagnosis	emerged	as	a	key	driver	of	
outbreak	dynamics.	The	association	of	longer	diagnostic	delays	with	higher	numbers	of	
secondary	cases	corresponds	to	the	increased	opportunities	to	transmit	the	infection	to	
others	 through	social	 contacts	on	 the	ship	before	being	 isolated	 in	 their	cabins	 for	72	
hours.	The	top	10%	of	infectors,	who	transmitted	on	average	12.5	times	more	cases	than	
the	rest	of	the	infected	individuals,	were	characterized	by	diagnostic	delays	that	were	on	
average	 twice	 the	 ones	 for	 the	 rest	 of	 cases.	 The	halved	 frequency	 of	 gastrointestinal	
symptoms	 in	 the	top	10%	of	 infectors	compared	to	 the	rest	of	cases	may	explain	why	
these	 individuals	 had	 longer	 delays	 in	 health-seeking	 behavior,	 indicating	 that	 the	
difficulty	 in	 timely	 identifying	 mild	 cases	 may	 play	 a	 critical	 role	 in	 transmission	
dynamics.	 Awareness	 of	 the	 existence	 of	 norovirus	 spread	 on-board	 after	 the	 first	
diagnosed	 cases,	 diffused	among	passengers	 via	 information	 campaigns	on	board	and	
word-of-mouth,	may	have	led	to	the	reduction	over	time	of	diagnostic	delays,	facilitating	
outbreak	management.	Results	were	robust	when	considering	the	possibility	of	a	non-
negligible	 fraction	 of	 infections	 remaining	 underreported	 at	 the	 end	 of	 the	 cruise	
[129,130].	
	
Simulations	 based	 on	 a	 branching	process	model	 estimated	 the	 basic	 reproduction	 of	
norovirus	on	board	of	the	cruise	at	about	15,	a	value	that	is	compatible	with	high	values	
estimated	in	other	crowded	settings	[50,127].	This	theoretical	value	does	not	correspond	
to	the	actual	average	number	of	secondary	infections	(“effective	reproduction	number”)	
on	 board	 because	 a	 proportion	 of	 all	 infections	would	 occur	 after	 the	 end	 of	 voyage	
duration,	which	was	7	days	in	the	considered	cruise.	Longer	voyages	are	likely	subject	to	
higher	 effective	 reproduction	 numbers.	 The	 implemented	 protocol	 of	 isolation	 for	 72	
hours	after	diagnosis	reduced	the	estimated	effective	reproduction	number	to	4.9	(95%PI	
3.0-7.1).	This	value	is	consistent	with	the	95%CrI	of	4.4-14.5	for	individuals	who	carried	
the	virus	at	embarkation	and	of	1.5-5.2	for	individuals	infected	on	the	first	day,	estimated	
by	the	transmission	chain	reconstruction	model.	
	
We	 estimated	 that	 the	 implemented	 isolation	 protocol	 has	 avoided	 about	 71%	 of	
potential	cases	that	would	be	observed	in	its	absence.	Choosing	protocols	with	shorter	
durations	 of	 isolation	 would	 have	 avoided	 significantly	 less	 cases,	 while	 halving	
diagnostic	delays	after	symptoms	might	further	improve	the	effectiveness	of	the	protocol,	
increasing	the	proportion	of	avoided	cases	to	80%.	Even	in	absence	of	diagnostic	delays	
and	 with	 permanent	 isolation	 of	 cases,	 the	 reproduction	 number	 would	 still	 remain	
largely	 above	 the	 epidemic	 threshold	 of	 1	 and	 a	 >70%	 probability	 of	 observing	 a	
cumulative	attack	rate	among	passengers	higher	than	2%.	Previous	modeling	studies	[50]	
have	estimated	the	effectiveness	of	isolation	in	reducing	the	outbreak	size,	but	did	not	
consider	the	effect	of	diagnostic	delays,	assuming	sudden	isolation	of	cases.	
	
This	study	has	several	limitations.	First,	we	did	not	have	sufficient	data	to	explicitly	model	
potential	 environmental	 or	 foodborne	 transmission.	 Although	 the	 literature	 suggests	
direct	person-to-person	transmission	is	predominant	[50],	environmental	contamination	
could	also	play	a	role	in	norovirus	outbreaks	and	requires	further	investigation.	Second,	
the	 present	 analysis	 is	 based	 on	 a	 single	 outbreak,	 albeit	 characterized	 by	 a	 large	
cumulative	incidence	(9.7%	among	passengers),	and	caution	should	be	exercised	when	
generalizing	the	findings	to	other	settings	or	outbreaks.	The	unique	conditions	of	a	cruise	
ship	may	not	fully	represent	other	environments	where	norovirus	spreads.	Our	finding	
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that	 the	 risk	 of	 importation	 from	 port	 visits	 is	 negligible	 may	 not	 hold	 for	 other	
geographical	 contexts	with	 higher	 endemic	 norovirus	 prevalence	 and	 less	 strict	 hand	
hygiene	and	food	handling	norms.	Given	the	small	number	of	cases	occurring	in	crew,	we	
approximated	 transmission	 as	 occurring	 entirely	 in	 the	 passenger	 population	 and	we	
could	not	study	the	effect	of	isolation	separately	on	the	passenger	and	crew	populations.	
	
Our	findings	confirm	the	difficulty	of	halting	norovirus	transmission	on	board,	and	the	
fundamental	role	of	timely	isolation	of	cases	to	control	transmission	in	confined	settings	
like	 cruise	 ships.	 The	 low	 frequency	 of	 symptoms	 and	 long	 diagnostic	 delays	 in	
superspreaders	 suggest	 the	 importance	 of	 passenger	 education	 towards	 seeking	
immediate	health	assistance	when	experiencing	gastrointestinal	symptoms	on	board,	to	
reduce	the	probability	of	outbreaks	and	their	cumulative	incidence.	
 
Appendix C 
 
Inference	of	transmission	pairs	
At	 any	 time	 t,	 we	 assume	 that	 each	 susceptible	 individual	 j	 is	 exposed	 to	 a	 force	 of	
infection	(FOI):	
	

𝜆2(𝑡) = 𝜆2L(𝑡) + 𝜆2#(𝑡) + 𝜆25(𝑡)	 (3.1)	
	
where	𝜆2L(𝑡)	represents	the	FOI	from	infected	cabinmates,	𝜆2#(𝑡)	represents	the	FOI	from	
infected	 individuals	 onboard	 the	 ship	 outside	 cabin	 (in	 public	 spaces),	 and	 𝜆25(𝑡)	
represents	the	FOI	from	infected	individuals	offboard	during	visits	at	ports.	
	
The	FOI	from	infected	cabinmates	is	defined	as:	
	

𝜆2L(𝑡) = < 𝜆2:L (𝑡) = <𝛽L𝜌:(𝑡)𝛤(𝑡 − 𝜏:; 𝑎, 𝑏)
:∈L!:∈L!

𝛩�ℎ ≤ ℎL
(M'-)�	 (3.2)	

	
where:	

• 𝐶2 	is	the	set	of	individuals	who	share	the	same	cabin	as	individual	j;	
• 𝛽L 	is	a	free	model	parameter	scaling	the	transmissibility	inside	cabins;	
• 𝜌:(𝑡)	is	the	relative	increase	in	infectivity	of	the	potential	infector	𝑖	based	on	their	

symptoms	status	at	time	t:	𝜌:(𝑡) = 𝜌:< = 2.120	if	the	individual	𝑖	had	at	least	one	
vomit	 episode,	𝜌:(𝑡) = 𝜌:- = 1.390	 if	 the	 individual	 𝑖	 had	 at	 least	 one	 diarrhea	
episode,	 𝜌:(𝑡) = 𝜌:<𝜌:- = 2.947	 if	 the	 individual	 𝑖	 experienced	 both	 kinds	 of	
symptomatic	episodes	[128],	𝜌:(𝑡) = 1	if	the	individual	𝑖	did	not	have	symptoms	
at	time	𝑡;	

• 𝛤(𝑥; 𝑎, 𝑏)	 is	the	discretized	distribution	of	the	generation	time,	i.e.	the	time	that	
elapses	 between	 infection	 episodes	 of	 an	 infector-infectee	 pair,	 assumed	 to	 be	
distributed	as	a	Gamma	with	shape	𝑎 = 3.35	and	rate	𝑏 = 0.92	(mean	generation	
time:	3.65	days)	[127];	

• 𝜏: 	represents	the	time	of	infection	of	individual	𝑖;	
• 𝛩(𝑋)	 is	a	Heaviside	step	 function	 that	 is	1	when	 the	condition	𝑋	 is	 true,	and	0	

otherwise.	It	 is	devised	in	such	a	way	that	the	FOI	within	the	cabin	occurs	only	
between	midnight	and	08:00,	when	passengers	are	assumed	to	withdraw	in	their	
cabins	for	sleeping;	



 
 

• ℎ	represents	the	hour	of	the	day	and	is	calculated	by	using	the	modulo	operation	
on	the	total	time	t,	with	respect	to	a	24-hour	cycle.	In	other	words,	ℎ = 𝑡N3-	BA.	For	
example,	if	𝑡 = 26	then	ℎ = 26N3-	BA = 2,	corresponding	to	02:00	in	the	morning.	
Time	t	is	initialized	at	t	=	0,	which	corresponds	to	the	beginning	of	the	first	day	of	
travel	at	midnight	(00:00);	

• ℎL
(M'-) =08:00	is	the	hour	at	which	we	assume	passengers	to	leave	the	cabin.	

	
The	FOI	 in	public	spaces	accounts	for	the	contribution	from	infected	individuals	(both	
cabinmates	and	others)	during	daytime.	This	FOI	is	only	applicable	to	a	potential	infector-
infectee	pair	if	neither	individual	is	in	quarantine	at	the	time	being	considered	and	at	least	
one	of	the	following	condition	holds:	(i)	it	is	a	day	of	navigation	at	sea,	i.e.	without	a	stop	
in	a	port;	(ii)	the	time	falls	before	or	after	times	of	disembarkment	for	tour;	(iii)	both	the	
infector	and	the	infected	stay	on	board	of	the	ship	despite	the	possibility	of	disembarking	
to	visit	the	port	destination.	
	
The	FOI	from	public	spaces	of	the	ship	is	defined	as:	
	
𝜆2#(𝑡) = <𝜆2:# (𝑡) = <𝛽#𝜙:2𝜌:𝛤(𝑡 − 𝜏:; 𝑎, 𝑏)

:O2

⋅ �1 − 𝑞2(𝑡)� .1 − 𝑞:(𝑡)/
:O2

⋅ �,.1 − 𝛿(𝑡)/ + 𝛿(𝑡).1 − 𝑝2/(1 − 𝑝:)0𝛩�ℎ > ℎ5
(().P))�𝛩�ℎ

≤ ℎ5
(M'-)� + 𝛩�ℎ > ℎL

(M'-)�𝛩�ℎ ≤ ℎ5
(().P))� + 𝛩�ℎ > ℎ5

(M'-)��	

(3.3)	

	
where:	

• 𝛽#	is	a	free	parameter	scaling	the	transmissibility	onboard	in	public	spaces	of	the	
ship;	

• 𝜙:2 = W
1				if	𝑖 ∉ 𝐶2
𝜙				if	𝑖 ∈ 𝐶2

		and	𝜙 ≥ 1	is	a	free	parameter	accounting	for	increased	relative	

transmissibility	 in	 public	 areas	 among	 cabinmates,	who	may	 be	more	 likely	 to	
contribute	more	to	the	FOI	of	a	cabinmate	even	when	outside	the	cabin,	since	they	
are	more	likely	to	spend	time	in	close	contact;	

• 𝑞2(𝑡)	is	a	Kronecker	delta-function	accounting	for	quarantine	of	individual	𝑗	over	
time:	it	is	one	if	individual	𝑗	is	quarantined	in	cabin	at	time	𝑡	and	zero	otherwise.	

• 𝛿(𝑡)	is	delta-function	that	equals	one	if	the	day	associated	to	the	time	𝑡	is	a	day	of	
port	stop	of	the	cruise,	and	zero	otherwise;	

• 𝑝2 	is	the	probability	that	the	individual	𝑗	goes	on	the	daily	visit	at	ports.	We	assume	
that	𝑝2 = 90%,	if	 𝑗	 is	 a	 passenger	 and	𝑝2 = 0%	 if	 𝑗	 is	 a	 crew	member	 (i.e.,	 the	
disembarkment	of	crew	members	for	visiting	ports	is	considered	negligible);	

• ℎ5
(().P))=10:00	and	ℎ5

(M'-)=18:00	are	the	hours	at	which	we	assume	the	port	visits	
start	and	end,	respectively.	

• 𝛩(𝑋)	is	devised	in	such	a	way	that	the	FOI	in	public	spaces	occurs	only	between	
08:00	and	10:00	or	between	18:00	and	midnight,	when	passengers	are	assumed	
to	be	outside	cabins.	During	days	without	port	stop,	𝛩(𝑋)	allows	the	FOI	in	public	
spaces	to	occur	also	between	10:00	and	18:00;	

	
The	FOI	 from	 the	general	port	population	accounts	 for	 the	contribution	 from	 infected	
individuals	encountered	offboard	during	the	designated	post	visit	hours.	This	FOI	is	only	
relevant	if	the	individual	𝑗	visits	a	port	and	is	not	in	quarantine,	and	is	defined	as:	
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𝜆25(𝑡) = 𝛽Q𝛼𝑝2𝛿(𝑡) �1 − 𝑞2(𝑡)� 	𝛩�ℎ > ℎ5

(().P))�𝛩�ℎ ≤ ℎ5
(M'-)�	 (3.4)	

	
where	𝛼	 is	 a	 free	 parameter	 representing	 the	 relative	 prevalence	 of	 norovirus	 in	 the	
general	port	population	and	𝛽Q	is	a	free	parameter	scaling	the	transmissibility	offboard	
during	post	visits.	𝛩(𝑋)	 is	devised	in	such	a	way	that	the	FOI	during	visits	occurs	only	
between	10:00	and	18:00.	
	
A	schematics	of	a	typical	day	schedule	is	illustrated	in	Figure	3-7.	
	
The	model	assigns	a	source	of	infection	𝑘2 	for	all	cases	by	choosing	from	sources	of	one	
of	 the	 three	 settings	 of	 transmission	 (an	 infector	within	 cabins,	 an	 infector	 in	 public	
spaces	onboard,	or	a	generic	source	of	infection	in	offboard	port	visits)	with	probability	
𝜋2: 	proportional	to	the	contribution	of	each	source	to	the	total	FOI	at	the	time	𝜏2 	at	which	
𝑗	was	infected:	
	

𝜋2: = �
𝜆2:L .𝜏2/, for	all	infectors	𝑖	in	the	cabin				
𝜆2:# .𝜏2/, for	infectors	𝑖	in	public	spaces	of	the	ship
𝜆25.𝜏2/, for	transmission	offboard	during	port	visits

	

	
The	 set	 of	 sources	 of	 infections	 𝑘2 	 represents	 the	 probabilistically	 reconstructed	
transmission	chain	for	a	given	set	of	parameters	and	imputed	infection	times.	
 

 
Figure 3-7. Instance of daily schedule and exposure to force of infections on days with tours offboard. 

Initialization	of	times	of	diagnosis	and	infection	
Since	for	each	GI	case	on	the	ship	only	the	date	of	diagnosis	is	known	(measured	in	days	
from	the	cruise	start)	and	not	the	specific	time	of	diagnosis,	we	first	impute	for	each	case	
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𝑗	the	time	of	diagnosis	𝑑2 	by	sampling	uniformly	across	the	date	of	diagnosis,	excluding	
night	hours	(between	midnight	and	8am).		
	
For	each	case	𝑗,	we	then	initialize	an	imputed	time	of	infection	𝜏2 	by	sampling	values	with	
probability	𝑃%(𝜏)	of	being	infected	on	the	time	step	𝜏,	defined	as:	
	

𝑃%(𝜏) = 𝑃𝓈(𝑠 − 𝜏)	 (3.5)	
	
where	𝑃𝓈(𝑥)	is	the	discretized	(on	time	steps	of	length	1	hour)	and	normalized	probability	
distribution	of	 the	 incubation	period,	 i.e.,	 the	probability	 to	develop	symptoms	after	a	
time	 𝑥	 since	 infection.	 The	 continuous	 probability	 density	 function	 of	 the	 incubation	
period	used	to	build	𝑃𝓈(𝑥)	 is	a	 log-normal	with	parameters:	𝜇𝓈 = 0.182	days	and	𝜎𝓈 =
0.494	days	(mean	incubation	period:	1.36	days) [132].		
	
The	index	case	(or	cases)	that	brought	the	virus	on	board	and	started	the	outbreak	must	
have	been	infected	either	before	embarkation	or	during	the	first	port	visits.	In	order	to	
impute	the	index	case(s),	we	compare	the	minimum	value	among	the	imputed	infection	
times,	𝜏N,	with	the	time	of	first	embarkation	on	the	ship,	𝑇MNS	(assumed	to	be	at	19: 00	
on	the	first	day),	and	with	the	time	of	first	port	visit,	𝑇T .	If	𝜏N < 𝑇MNS ,	then	the	index	case	
was	imported	at	first	embarkation	on	the	ship	and	no	further	operation	is	needed.	Any	
other	case	with	time	of	infection	before	𝑇MNS ,	besides	the	one	corresponding	to	𝜏N,	was	
considered	 as	 imported.	 If	 𝜏N < (𝑇MNS + 𝑇T)/2	,	 i.e.	 the	 minimum	 imputed	 time	 of	
infection	is	closer	to	first	embarkation	than	to	the	first	port	visit,	then	we	still	assume	that	
the	index	case	was	also	imported	at	first	embarkation,	and	we	forcedly	reassign	the	time	
of	 infection	 for	 the	 index	case	as	𝑇MNS − 1.	All	other	cases	are	assumed	 to	be	 infected	
during	 the	 cruise,	 including	 during	 visits	 at	 ports.	 If	 𝜏N > (𝑇MNS + 𝑇T)/2,	 we	 forcedly	
reassign	all	times	of	infection	comprised	between	(𝑇MNS + 𝑇T)/2	and	𝑇T	to	𝑇T ,	under	the	
assumption	that	they	were	all	index	cases	infected	during	the	first	port	visit.	
	
Calibration	
After	imputing	the	times	of	diagnosis	and	the	starting	points	for	the	times	of	infection	of	
all	cases,	we	estimated	the	free	model	parameters	(𝛼, 𝛽U , 𝛽(, 𝛽Q , 𝜙),	the	unknown	times	of	
infection	𝜏2 	and	the	source	of	 infection	𝑘2 	 for	each	case	𝑗,	using	a	Monte	Carlo	Markov	
Chain	 (MCMC)	 procedure.	 The	 MCMC	 calibration	 was	 then	 repeated	 for	 Z=50	 times	
different	model	initializations.	
	
The	 overall	 likelihood	 of	 the	 observed	 cases,	 given	 the	 set	 of	 parameters	 𝜔 =
(𝛼, 𝛽U , 𝛽(, 𝛽Q , 𝜙),	the	times	of	infection	𝜏2 ,	and	the	sources	of	infection	𝑘2 ,	is	given	by:	
	

ℒ.𝜔, 𝜏2 , 𝑘2/ =+𝑃2𝑄2𝑊2𝐼2
2

	 (3.6)	

	
where	𝑃2 	represents	the	likelihood	that	j	was	infected	by	𝑘2:	
	



Chapter 3 77 

𝑃2 =

⎩
⎪
⎨

⎪
⎧𝜆2V!

L .𝜏2/, if	transmission	occurred	in	the	cabin				

𝜆2V!
# .𝜏2/, if	transmission	occurred	in	public	spaces	of	the	ship

𝜆25.𝜏2/, if	transmission	occurred	offboard	during	port	visits
1, if	𝑗	is	uninfected

	 (3.7)	

	
𝑄2 	represents	the	likelihood	that	j	was	not	infected:	
	

𝑄2 = �𝑒
?∫ G!())-)

,!
( , if	𝑗	is	infected	

𝑒?∫ G!())-)
)
( , if	𝑗	is	uninfected

	 (3.8)	

	
The	factor	𝑊2 	is	the	contribution	to	the	likelihood	of	the	incubation	period	for	individual	
𝑗,	 that	 is	𝑊2 = 𝑃𝓈.𝑠2 − 𝜏2/,	where	𝑠2 	 is	 the	known	 time	of	 symptom	onset	and	𝜏2 	 is	 the	
inferred	 time	 of	 infection.	 Finally,	 𝐼2 = 𝛼	 if	 the	 individual	 𝑗	 has	 been	 imported	 from	
outside	before	embarkation,	and	𝐼2 = 1 − 𝛼	if	the	infection	of	𝑗	occurred	onboard	or	if	𝑗	
remained	uninfected	during	the	whole	voyage.	
	
At	 each	 step,	 all	 parameters	 (𝜔	 and	 infection	 times	 𝜏2)	 are	 updated	 using	 reversible	
normal	jumps.	The	MCMC	algorithm	was	run	for	400000	iterations,	with	the	first	300000	
discarded	as	burn-in.	We	discarded	(assigning	a	zero	likelihood)	all	the	realizations	with	
infection	 times	 that	 involve	 a	 situation	 with	 no	 possibility	 of	 transmission	 (e.g.,	 the	
infection	time	of	a	given	individual	is	sampled	during	night	hours,	but	there	are	no	other	
cabinmates	infected	yet).	M=2500	samples	were	drawn	from	the	posterior	distributions	
obtained	by	the	MCMC.	Results	from	the	𝑀	 × 𝑍 = 125000	MCMC	were	pooled	together	
to	obtain	the	final	parameter	distribution	and	the	distribution	of	the	sources	of	infection	
for	each	case.	Figure	3-8	reports	the	posterior	distributions	of	estimated	parameters.	
	
The	 code	 used	 to	 run	 the	 model	 will	 be	 available	 upon	 publication	 of	 the	 paper	 at:	
github.com/alfredodebellis	.	
 

 
Figure 3-8. Pooled posterior distributions of free parameters of the model obtained by MCMC. A norovirus prevalence in the 
general population; B transmission rate within cabins; C transmission rate in public spaces; D transmission rate offboard 
during port visits; E increased relative transmissibility in public spaces for cabinmates. 
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Sensitivity	analyses	with	underreporting	
Available	estimates	suggest	that	between	23%	and	40%	of	cases	may	go	undetected	in	a	
norovirus	 outbreak	 on	 cruise	 ships	 [129,130].	 In	 the	 baseline	 analysis,	 we	 implicitly	
assumed	that	all	infections	in	the	outbreak	have	been	reported.	In	this	section	we	test	the	
robustness	 of	 our	 conclusions	 when	 accounting	 for	 underreporting.	 To	 tackle	 this	
question,	we	apply	the	same	model	by	applying	it	to	a	line	list	of	cases	where	an	additional	
number	of	underreported	cases	 is	synthetically	generated	 in	such	a	way	that	 the	total	
proportion	of	underreported	cases	is	23%	or	40%.	For	each	synthetically	generated	case,	
the	symptom	onset	date	is	assigned	with	multinomial	probability	based	on	the	observed	
time	 series	 by	 symptom	 onset.	 The	 hour	 of	 symptom	 onset	 is	 assigned	with	 uniform	
probability	throughout	the	day	of	symptom	onset.	We	sampled	whether	the	individual	
had	 vomiting	 or	 diarrhea	 with	 probabilities	 given	 by	 the	 proportions	 of	 cases	 with	
vomiting	 (𝑝< = 79%)	 or	 diarrhea	 (𝑝- = 99%)	 observed	 during	 the	 cruise	 among	
reported	cases.		
	
The	 figures	 below	 demonstrate	 that	 our	main	 conclusions	 from	 the	 baseline	 analysis	
remain	 consistent,	 even	 when	 underreporting	 is	 included	 into	 the	model.	 Figure	 3-9	
shows	 trends	 similar	 to	 the	 baseline	 for	 both	 the	 distribution	 of	 secondary	 cases	
generated	by	infectors	and	the	proportion	of	secondary	cases	ranked	by	infectors.	
	

 
Figure 3-9. Top: Distribution of the number of secondary cases generated by infectors. The bars indicate the average value, 
while the error bars indicate the 95%CrI over all the reconstructed chains. A Underreporting of 23%; B Underreporting of 40%; 
Bottom: Cumulative proportion of secondary cases ranked by infectors. The points indicate the average value, while the error 
bars indicate the 95%CrI over all the reconstructed chains. C Underreporting of 23%; D Underreporting of 40%. 

We	define	the	“effective	infectious	period”	as	the	interval	during	which	individuals	may	
transmit	 the	 infection.	 For	 reported	 cases,	 this	 corresponds	 to	 the	 time	 between	 the	
infection	and	diagnosis,	while	for	underreported	cases	it	is	the	time	between	the	infection	
and	the	end	of	the	cruise.	Figure	3-10	shows	that	the	mean	number	of	secondary	cases	
generated	by	infectors	increases	with	a	longer	effective	infectious	period,	consistent	with	
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findings	from	the	baseline	analysis.	Figure	3-11	illustrates	the	differences	in	the	effective	
infectious	period	and	the	mean	number	of	secondary	cases	between	superspreaders	(top	
10%	infectors)	and	other	cases.	Consistent	with	results	from	the	baseline	analysis,	both	
the	effective	infectious	period	and	the	mean	number	of	secondary	cases	are	significantly	
higher	for	superspreaders.	Finally,	Figure	3-12	shows,	in	line	with	the	baseline	analysis,	
a	 decreasing	 trend	 in	 the	 distributions	 of	 the	 effective	 infectious	 period	 over	 time	 of	
infection	of	 cases	 (from	embarkation),	 along	with	a	decaying	distribution	of	 the	 time-
varying	reproduction	number.	

 
Figure 3-10. Number of secondary cases stratified by effective infectious period. The bars indicate the average value, while 
the error bars indicate the 95%CrI over all the reconstructed chains. A Underreporting of 23%; B Underreporting of 40%. 

 

Figure 3-11. Characteristics of superspreaders compared to other infectors. A,C Boxplot of effective infectious period 
distribution of superspreaders (top 10% of infectors) and of other cases; B,D Average number of secondary cases generated 
by superspreaders (top 10% of infectors) and by other cases. The bars indicate the average value, while the error bars indicate 
the 95%CrI over all the reconstructed chains. A,B Underreporting of 23%; C,D Underreporting of 40%. We estimate that the 
average percentage of not diagnosed superspreaders is 27% (95%CrI: 7% - 47%) and 43% (95%CrI: 23% - 63%) when 
underreporting is 23% and 40%, respectively. 
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Figure 3-12. Reproduction number and diagnostic delay over the course of the outbreak. The box plots show the distribution 
of effective infectious period (in hours) for cases infected each day of the voyage (top). The bar plot (bottom) represents the 
estimated reproduction number for cases before and during the voyage. The bars indicate the average value, while the error 
bars indicate the 95%CrI over all the reconstructed chains. A Underreporting of 23%; B Underreporting of 40%. 

Branching	process	
Model	description	
To	assess	 the	overall	effectiveness	of	alternative	 isolation	protocols	and	 the	 impact	of	
diagnostic	 delays,	 we	 implemented	 a	 stochastic	 branching	 process	 model	 [131]	 that	
allows	to	simulate	the	generation	of	secondary	cases	in	the	considered	outbreak	under	
different	 assumptions.	 In	 the	 branching	 process,	 each	 infector	 generates	 a	 random	
number	of	 secondary	 infections,	which	 is	 sampled	 from	an	offspring	distribution.	The	
mean	of	this	distribution	corresponds	to	the	basic	reproduction	number	(𝑅8).	Based	on	
the	evidence	of	superspreading	that	we	found	via	transmission	chain	reconstruction,	we	
selected	a	negative-binomial	distribution	for	the	offspring	distribution,	with	a	mean	of	𝑅8	
and	an	overdispersion	parameter	𝜈	[22].	The	branching	process	was	applied	to	the	total	
population	carried	on	the	ship,	with	no	distinction	between	passengers	and	crew.	Within	
this	population,	we	assumed	homogeneous	mixing	and	disregarded	heterogeneities	 in	
transmissibility	by	symptom	status.		
	
In	the	data,	two	individuals	had	symptom	onset	on	day	2	of	the	voyage.	Accordingly,	we	
initialized	 the	model	with	 two	 index	cases,	assuming	 these	cases	were	 imported	 from	
outside	the	population.	Their	infection	times	were	sampled	from	the	incubation	period	
distribution	 considered	 before	 and	 constrained	 to	 occur	 before	 embarkation	 (since	 a	
negligible	 number	 of	 individuals	 was	 infected	 in	 port	 visits,	 according	 to	 the	
reconstructed	chains.	
	
Then,	for	each	newly	infected	individual	𝑖)	(where	𝑖) = 1,… , 𝐼)),	we	sample	the	number	
of	secondary	cases	𝐽:& 	they	generate	from	the	negative-binomial	offspring	distribution:	
	

𝐽:&~𝑁𝑒𝑔𝐵𝑖𝑛(𝑅8 ⋅ 𝜌(𝑡), 𝜈)	 (3.9)	
	
where	𝜌(𝑡)	represents	the	proportion	of	susceptible	individuals	at	time	t,	computed	as	
the	difference	between	 the	 total	population	size,	𝑁)3) = 𝑁W.1 + 𝑁UPM@ = 1229 + 487 =
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1716,	and	the	cumulative	number	of	infections	before	time	t,	𝑁%(𝑡),	rescaled	by	𝑁)3) .	
	
For	each	secondary	case	𝑗:& 	(where	𝑗:& = 1,… , 𝐽:&),	we	assign	an	infection	time	by	sampling	
from	the	generation	time	distribution;	infections	occurring	during	the	infector’s	isolation	
period,	which	begins	upon	diagnosis	and	lasts	for	a	time	that	depend	on	the	considered	
scenario,	were	discarded	and	considered	as	averted	by	the	intervention;	those	occurring	
after	the	end	of	the	cruise	were	also	discarded.	As	a	result,	the	actual	number	of	realized	
infections	was	 always	 lower	 than	 the	 theoretical	 number	of	 secondary	 cases	 sampled	
from	the	offspring	distribution	even	in	scenarios	without	isolation.	For	each	infection	that	
was	not	discarded,	we	assign	a	time	of	symptom	onset	by	adding	to	the	time	of	infection	
a	sample	from	the	incubation	period;	and	we	assign	a	time	of	diagnosis	by	adding	to	the	
time	of	symptom	onset	a	sample	from	a	diagnostic	delay	distribution	which	depends	on	
the	 day	 of	 symptom	 onset	 of	 the	 case	 (see	 Section	 “Empirical	 diagnostic	 delay	
distribution”	 below)	 and	 on	 the	 isolation	 scenario.	 Secondary	 infections	 for	 which	
diagnosis	occurred	after	the	end	of	the	voyage	were	considered	as	unreported	but	could	
contribute	to	transmission	on-board.		
	
Calibration	
To	calibrate	the	branching	process	model	to	the	observed	time-series	of	norovirus	cases	
by	 symptom	 onset	 and	 diagnosis,	 we	 used	 a	 combination	 of	 grid	 search	 and	 particle	
filtering	[133]. The	two	free	model	parameters	were	the	basic	reproduction	number	𝑅8	
and	the	overdispersion	of	the	offspring	distribution	𝜈.		
	
For	 particle	 filtering,	 we	 used	 a	 discretized	 version	 of	 the	 branching	 process	 model	
described	 above,	 with	 a	 time	 step	 of	 Δ𝑡	 =	 1	 hour.	 For	 a	 given	 parameter	 set,	 the	
performance	of	the	model	was	evaluated	at	each	time	step	using	a	mean-squared	error	
(MSE)	function,	comparing	the	number	of	reported	cases	in	simulated	trajectories	against	
the	observed	time	series,	aggregated	by	time	of	symptom	onset	over	4-hour	intervals	and	
by	date	of	diagnosis	over	24-hour	intervals.	At	each	aggregated	time	of	analysis	(i.e.,	𝑡X# =
0 − 4	ℎ𝑜𝑢𝑟𝑠, 4 − 8	ℎ𝑜𝑢𝑟𝑠, 8 − 12	ℎ𝑜𝑢𝑟𝑠, …,	for	trajectories	by	time	of	symptom	onset	and	
𝑡X0 = 0 − 24	ℎ𝑜𝑢𝑟𝑠, 24 − 48	ℎ𝑜𝑢𝑟𝑠, 48 − 72	ℎ𝑜𝑢𝑟𝑠, …,	 for	 trajectories	 by	 date	 of	
diagnosis),	the	MSE	of	a	particle	𝑤	is	defined	by:	
	

MSE@Y (𝑡X#) = MSE@Y (𝑡X#) = �𝑋@# (𝑡X#) − 𝐷#(𝑡X#)�
B
	 (3.10)	

	
and	
	

MSE@Z (𝑡X0) = MSE@Z (𝑡X0) = .𝑋@0(𝑡X0) − 𝐷0(𝑡X0)/
B	 (3.11)	

	
where	𝑋@# (𝑡X#)	 is	 the	 trajectory	of	particle	𝑤	 by	 time	of	 symptom	onset;	𝑋@0(𝑡X0)	 is	 the	
trajectory	of	 the	particle	𝑤	by	date	of	diagnosis;	𝐷#(𝑡X#)	 is	 the	 time	series	of	observed	
cases	by	time	of	symptom	onset;	𝐷0(𝑡X0)	is	the	time	series	of	observed	cases	by	date	of	
diagnosis.	The	resulting	total	score	of	particle	𝑤	was	given	by	1/MSE@ ,	where:	
	

MSE@ =<MSE@Y (𝑡X#)
)-
.

+<MSE@Z (𝑡X0)
)-
/

	 (3.12)	

	



 
 

The	particle	filtering	algorithm	consists	of	two	steps:	
1) At	each	time	step	𝑡,	W=1000	particles	were	generated	and	the	M=100	with	the	

best	scores	(i.e.,	the	100	lowest	MSE@)	were	selected;	
2) From	 the	 top	 M	 particles,	 W	 particles	 were	 sampled	 with	 replacement,	 with	

probabilities	 weighted	 by	 their	 score.	 These	 W	 particles	 were	 then	 used	 to	
reinitialize	the	model	to	generate	the	next	time	step	(𝑡 + 1).	

	
The	 frequent	 resampling	 of	 particle	 filtering	 can	 lead	 to	 the	 so-called	 degeneracy	
problem,	where	only	a	 few	particles	dominate	 the	simulation,	 reducing	 the	variability	
necessary	 to	 accurately	 represent	 the	 outbreak	 dynamics	 [133].	 To	 prevent	 this	 and	
ensure	sufficient	diversity	among	the	particles,	we	repeated	the	particle	filtering	process	
S=5	times,	each	time	starting	from	different	random	seeds.		
	
The	selected	M	particles	from	all	S	procedures	were	pooled	together	and	the	final	score	
for	the	given	parameter	set	was	given	by	their	average	mean	squared	error:	
	

MSE =
1
𝑆<

1
𝑀<MSEN

N(

	 (3.13)	

	
To	estimate	parameter	values,	we	evaluated	the	MSE	for	values	of	𝑅8	between	8	and	24,	
with	steps	equal	to	0.25,	and	values	of	𝜈	from	0.1	to	0.6,	with	steps	equal	to	0.02,	using	a	
grid	search	(i.e.,	testing	all	combination	of	parameter	values,	corresponding	to	a	total	of	
65x26=1690	 parameter	 sets	 explored).	 Figure	 3-13	 illustrates	 the	 values	 of	 the	 MSE	
across	the	explored	parameter	sets.	Considering	the	𝐾=100	parameter	sets	with	lowest	
MSE,	the	estimated	average	basic	reproduction	number	is	15.6	(95%CrI	11.5-20.4)	and	
the	estimated	average	overdispersion	is	0.13	(95%CrI	0.10-0.18).	Figure	3-14	shows	the	
fit	of	the	𝑀 × 𝑆 × 𝐾		trajectories	against	observed	data.	
	

 
Figure 3-13. Grid of mean squared error (MSE) values across parameter sets for basic reproduction number and 
overdispersion. Lower MSE values indicate better fits of the model to observed data. 
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Figure 3-14. Comparison of pooled selected particles from the branching process model for the top 100 parameter sets with 
actual data for the time series. Top: New cases by time of symptom onset; Bottom: Cumulative cases by reporting day (day 
of diagnosis).	

Empirical	diagnostic	delays	distributions	
The	diagnostic	delay	 from	symptom	onset	 refers	 to	 the	 interval	between	 the	onset	of	
symptoms	and	the	diagnosis	of	cases.	Since	the	available	data	only	included	the	day	of	
diagnosis,	not	the	specific	time,	the	probability	distribution	of	the	diagnostic	delay	was	
estimated	by	 imputing	 for	all	cases	a	diagnostic	 time	sampled	uniformly	over	the	day,	
under	the	constraint	that	diagnoses	occurred	during	daytime	(between	08:00	and	23:59)	
and	always	after	the	onset	of	symptoms	(since	no	norovirus	screening	was	implemented	
on	 the	ship).	The	 imputation	process	was	repeated	NA=50	times,	and	a	distribution	of	
diagnostic	 delays	 was	 obtained	 by	 pooling	 together	 diagnostic	 delays	 from	 the	 NA	
imputations.	Because	cases	with	later	symptom	onset	tended	to	have	smaller	diagnostic	
delays,	due	to	the	right	censoring	imposed	by	the	end	of	the	cruise,	we	estimated	different	
diagnostic	delay	distributions	based	on	the	day	of	symptom	onset	(Figure	3-15).	
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Figure 3-15. Empirical diagnostic delay distribution, disaggregated by day of symptom onset. Vertical dashed lines indicate 
mean values of distributions. 

Output	analysis	
A	schematic	description	of	scenarios	considered	is	presented	in	Table	3-2.	Results	for	all	
scenarios	were	obtained	by	running	L=100	stochastic	iterations	with	the	top	𝐾	parameter	
sets.		
	
We	computed	three	main	outputs	for	each	scenario:	the	effective	reproduction	number,	
the	 relative	 change	 in	 the	 total	 number	 of	 cases	 observed	 during	 the	 cruise,	 and	 the	
probability	of	an	outbreak.	
	
 
Table 3-2. Synopsis of scenarios. 

Name Descrip,on Dura,on of 
isola,on  

Diagnos,c delay distribu,on 

S0 baseline 72h empirical 
S1 no isola2on 0h empirical 
S2 24h isola2on 24h empirical 
S3 48h isola2on 48h empirical 
S4 baseline isola2on, 

increased diagnos2c 
delay 

72h increased by 50% 

S5 baseline isola2on, 
reduced diagnos2c 
delay 

72h reduced by 50% 

S6 perfect isola2on un2l end of 
cruise 

no delay (immediate diagnosis upon 
symptoms) 
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The	 effective	 reproduction	 number	was	 computed	 by	 averaging	 the	mean	 number	 of	
secondary	infections	caused	by	cases	that	were	either	imported	before	embarkation	or	
infected	within	the	first	two	days	of	the	voyage.	This	choice	is	based	on	the	observation	
that	the	number	of	secondary	cases	tends	to	decline	sharply	for	infections	occurring	later	
in	the	cruise	due	to	the	right	truncation	caused	by	the	end	of	the	cruise	(see	Figure	3-16	
for	the	reproduction	number	disaggregated	by	time	of	infection	of	the	cases).	
 

 
Figure 3-16. Mean time-dependent reproduction number 𝑅# across alternative scenarios. Bars indicate mean values over 100 
simulations. 

For	each	scenario	𝑋,	the	relative	change	Δ[	in	the	total	number	of	cases	was	calculated	as	
the	percentage	change	in	the	mean	number	of	cases	expected	for	the	considered	scenario,	
𝐶\	(calculated	over	the	𝐿 × 𝐾	simulations),	compared	to	the	mean	number	of	cases	𝐶#+	
expected	for	scenario	S1,	where	no	isolation	was	implemented:	
	

Δ[ = 100 ⋅
𝐶#+ − 𝐶\
𝐶#+

	 (3.14)	

	
where	𝐶\ =

+
]
∑ +

"
∑ 𝐶\,V,^^V 	and	𝐶\,V,^ 	represents	the	number	of	cases	generated	in	the	𝑙-th	

simulation	with	the	𝑘-th	parameter	set	in	scenario	𝑋.	
	
The	probability	of	an	outbreak	was	determined	as	the	proportion	of	the	𝐿 × 𝐾	simulations	
where	 the	 number	 of	 reported	 cases	 was	 larger	 than	 2%	 of	 the	 total	 passenger	
population,	corresponding	to	a	threshold	outbreak	size	of	𝑆)4P = 0.02 ⋅ N_`a =	25	cases.	
The	threshold	was	referred	only	to	the	passengers	population	as	these	represented	the	
vast	majority	of	reported	cases	in	the	considered	data.	
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CHAPTER 4 
 
 

Epidemiological impact of a  
prospective HIV cure 

 
 
 
 
 
Introduction 
 
Over	the	past	decades,	significant	progress	has	been	made	toward	achieving	the	United	
Nations	 Sustainable	 Development	 Goal	 of	 ending	 the	 HIV	 epidemic	 by	 2030	 [135].	
Successes	in	curbing	HIV	transmission	are	particularly	evident	among	men	who	have	sex	
with	 men	 (MSM)	 in	 several	 European	 countries,	 including	 the	 Netherlands	 [136,	
137,138].	 HIV	 incidence	 in	 this	 population	 has	 been	 declining	 due	 to	 public	 health	
interventions	such	as	pre-exposure	prophylaxis	(PrEP)	[139]	and	test-and-treat	[140].	
	
Despite	encouraging	epidemiological	trends,	HIV	continues	to	pose	a	substantial	burden	
for	 the	 MSM	 population.	 HIV	 prevalence	 among	 MSM	 is	 disproportionately	 high	
compared	to	the	general	population	[53,54].	HIV	infection	is	lifelong,	and	MSM	with	HIV	
continue	to	experience	impaired	quality	of	life	despite	effective	ART	[141,142,143,144].	
Compared	to	uninfected	controls,	MSM	with	HIV	have	worse	physical	and	mental	health	
due	to	chronic	comorbidities,	physical	impairments,	and	social	factors	such	as	stigma,	and	
negative	 interpersonal	 and	 social	 experiences	 [141,142,143].	 Emerging	 biomedical	
technologies,	such	as	an	HIV	cure,	could	 improve	the	well-being	of	people	with	HIV	in	
various	life	domains,	similar	to	the	impact	of	ART	availability	in	the	past	[145].	Therefore,	
developing	an	HIV	cure	is	considered	a	global	priority	[146,147,148].	
	
Biomedical	 research	 and	 clinical	 trials	 for	 curative	 HIV	 interventions	 are	 advancing	
rapidly	[55,149].	To	date,	five	patients	have	been	cured	of	HIV	through	invasive	stem	cell	
transplants	[150],	but	a	scalable	cure	has	yet	to	be	developed.	The	consensus	is	that	an	
acceptable	and	scalable	cure	for	HIV	will	most	likely	require	a	combination	of	strategies	
targeting	different	aspects	of	HIV	infection	[146,148,151].	An	elimination,	or	sterilizing,	
cure,	 aiming	 for	 the	 complete	 removal	 of	HIV	 from	 the	 body,	 represents	 the	 ultimate	
treatment	goal.	However,	HIV	post-treatment	control	(PTC),	also	known	as	a	functional	
cure,	where	the	virus	remains	suppressed	below	detectable	levels	without	ongoing	ART,	
could	be	a	more	attainable	goal.	Strategies	that	are	currently	being	developed	aim	at	both	
an	 elimination	 cure	 (gene	 editing,	 latency-reversing	 agents	 combined	 with	 immune	
stimulators,	T-cell	therapy,	therapeutic	vaccines,	etc.)	[146,151,152]	and	at	PTC	(‘block	
and	 lock’,	 CCR5	 inactivation,	 and	 broadly	 neutralizing	 antibodies,	 etc.)	



 
 

[151,153,154,155].	
	
A	tool	commonly	used	to	guide	drug	development,	known	as	the	target	product	profile	
(TPP),	has	been	developed	to	align	stakeholders	around	a	set	of	attributes	for	a	potential	
HIV	 cure	 [148].	 The	 TPP	 outlines	 important	 characteristics	 of	 a	 cure	 such	 as	 target	
population,	clinical	efficacy,	protection	from	re-infection,	and	time	until	viral	rebound.	
The	characteristics	of	a	cure	intervention	could	have	major	consequences	not	only	for	the	
quality	of	life	of	people	affected	by	HIV	but	also	for	virus	transmission	at	the	population	
level.	 It	 is	 often	 hypothesized	 that	 a	 cure	 could	 aid	 in	 controlling	 the	 epidemic	
[146,147,155].	However,	 there	 is	 little	research	 investigating	whether	and	how	a	cure	
would	affect	HIV	transmission	dynamics.	In	a	PTC	scenario	with	a	risk	of	viral	rebound,	
individuals	could	become	infectious	again.	In	an	elimination	scenario,	if	a	cure	does	not	
confer	immunity,	cured	individuals	could	still	be	vulnerable	to	re-infection.	
	
From	the	early	days	of	the	HIV	pandemic,	mathematical	modeling	played	an	important	
role	 in	 advancing	 our	 understanding	 of	 HIV	 epidemiology,	 evaluating	 the	 impact	 of	
interventions,	and	shaping	public	health	strategies	[156,157,158].	For	example,	the	study	
by	 Granich	 et	 al.	 [140]	 demonstrated	 the	 effectiveness	 of	 test-and-treat	 in	 reducing	
transmission,	significantly	influencing	the	Joint	United	Nations	Programme	on	HIV/AIDS	
policy	to	end	the	AIDS	epidemic	by	2030.	Understanding	how	emerging	HIV	technologies,	
such	as	a	potential	cure,	may	affect	the	future	course	of	the	epidemic	is	key	to	their	future	
successful	 population-based	 implementation.	 We	 investigated	 this	 question	 using	 a	
transmission	model	 fitted	to	sexual	behavior	and	epidemiological	data	 for	MSM	in	 the	
Netherlands.	 We	 evaluated	 the	 impact	 of	 introducing	 PTC	 and	 elimination	 cure	 and	
explored	under	which	assumptions	regarding	cure	characteristics	these	cure	scenarios	
may	accelerate	or	reverse	the	observed	decline	of	the	HIV	epidemic.	Finally,	we	discussed	
the	 implications	 of	 our	 findings	 for	 the	 population-based	 implementation	 of	 cure	
interventions.	
 
Results 
 
Dynamics	without	cure	
The	model	was	fitted	to	data	from	the	HIV	Monitoring	Foundation	on	the	number	of	new	
HIV	diagnoses	and	to	the	estimated	number	of	undiagnosed	cases	from	2017	till	2022	
(Figure	 4-1)	 [136].	 The	 model	 reproduced	 well	 the	 declining	 trends	 in	 new	 annual	
diagnoses	and	in	the	number	of	undiagnosed	cases.	The	number	of	new	cases	per	100,000	
persons	per	year	was	estimated	to	decrease	from	74	(95%	Prediction	Interval	(PI)	33–
127)	in	2017	to	39	(95%PI	14–67)	in	2022,	with	a	slower	decline	later.	The	estimated	
average	time	to	diagnosis	was	28	months	(95%	Credible	Interval	(CrI)	24–33)	months,	
consistent	with	the	Dutch	Monitoring	Foundation	data	[136].	The	model	predicted	that	
the	proportions	of	diagnoses	within	6	months,	between	6	to	12	months,	and	more	than	
12	months	since	HIV	infection	were	22%	(95%PI	20%–24%),	14%	(95%PI	13%–16%),	
and	63%	(95%PI	60%–66%),	 respectively,	also	aligning	with	 the	data	 from	the	Dutch	
Monitoring	 Foundation	 [136].	 The	 estimated	 HIV	 prevalence	 was	 almost	 constant,	
around	6%–7%	throughout	 the	considered	period,	which	 is	 in	 the	range	observed	 for	
MSM	in	Western	Europe	[53].	The	model	was	additionally	validated	using	independent	
data,	not	included	in	the	model	fitting,	on	the	numbers	of	individuals	on	PrEP	and	ART,	
new	imported	cases	on	ART,	and	ART	coverage	among	all	infected	individuals	from	2017	
till	2022	(Figure	4-12).	
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Figure 4-1. Model fit to HIV surveillance data for MSM in the Netherlands. (a) New diagnoses, (b) estimated number of 
undiagnosed cases, and (c) new cases. The red dots and the error bars correspond to the mean estimates and the 95% 
confidence intervals in the data from the HIV Monitoring Foundation [2]. The mean trajectories estimated from the model 
are shown as orange lines. The orange shaded regions correspond to 95% prediction intervals based on 100 samples from the 
joint posterior parameter distribution. 

Cure	scenarios	
Our	 analysis	 was	 guided	 by	 the	 TPP,	 which	 outlines	 the	 minimum	 and	 optimum	
characteristics	of	a	cure	intervention	[148].	We	developed	a	transmission	model	for	the	
PTC	and	elimination	scenarios	(see	Figure	4-6	and	Methods).	In	both	scenarios,	the	cure	
was	targeted	at	virologically	suppressed	individuals	on	ART,	aligning	with	the	minimum	
requirement	 for	 the	 target	 population	 as	 specified	 in	 the	 TPP	 [148].	 From	 an	 HIV	
dynamics	perspective,	the	key	difference	between	PTC	and	elimination	is	that,	in	the	PTC	
scenario,	the	HIV	reservoir	within	the	individual	is	not	completely	removed,	allowing	for	
the	possibility	of	viral	 rebound	and	potential	onward	 transmission.	 In	contrast,	 in	 the	
elimination	 scenario,	 all	 HIV	 including	 the	 rebound-competent	 reservoir,	 is	 fully	
removed,	 meaning	 the	 individual	 is	 cured	 but	 remains	 susceptible	 to	 re-infection.	
Individuals	who	experienced	a	viral	rebound	in	the	PTC	scenario	or	re-infection	in	the	
elimination	 scenario	were	 diagnosed	with	 a	 delay	 that	 depended	 on	 the	 assumptions	
about	 viral	 load	 monitoring	 and	 testing	 of	 cured	 individuals.	 When	 exploring	 a	
prospective	cure,	many	characteristics	are	not	known	in	advance,	such	as	efficacy	(the	
proportion	 of	 individuals	 effectively	 cured),	 the	 annual	 uptake	 (the	 proportion	 of	
individuals	cured	each	year	among	all	eligible),	or	the	diagnostic	delay	(the	time	between	
re-infection	or	rebound	and	diagnosis)	for	cured	individuals.	In	both	cure	scenarios,	we	
explored	 annual	 uptakes	 of	 10%,	 50%	 and	 90%,	 and	 efficacy	 of	 20%	 and	 90%,	
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corresponding	 to	 the	minimum	 and	 optimum	 values	 in	 the	 TPP	 [148].	Moreover,	 we	
considered	 three	 monitoring	 strategies,	 where	 the	 average	 (across	 all	 HIV	 stages)	
diagnostic	delay	for	individuals	who	experienced	a	viral	rebound	or	re-infection	was	(i)	
28	months	[136],	reflecting	the	current	standard	of	care,	(ii)	3	months,	corresponding	to	
the	 testing	 interval	 for	 PrEP	 users	 [159],	 and	 (iii)	 two	 weeks,	 as	 frequently	 used	 in	
analytical	treatment	interruptions	studies	[160].	A	cure	intervention	was	assumed	to	be	
introduced	in	2026	and	to	achieve	maximum	uptake	within	3	years.	We	compared	the	
epidemic	trajectories	for	the	two	cure	scenarios	and	the	model	without	a	cure,	projecting	
outcomes	 until	 2034.	 A	 detailed	 description	 of	 the	model	 equations,	 parameters,	 and	
assumptions	is	provided	in	Methods,	Figure	4-6,	and	Table	4-3.	
	

 
Figure 4-2. Projections of HIV dynamics under the PTC scenario. (a) New cases (primary infections in naive individuals), (b) 
new rebounds (new cases of viral rebound in cured individuals), (c) prevalence (proportion of individuals with HIV), and (d) 
cure coverage (proportion of cured individuals among all eligible) for different times until viral rebound. The red vertical 
arrows indicate the cure introduction. The mean trajectories from the model are shown as solid lines. The shaded regions 
correspond to 95% prediction intervals based on 100 samples from the joint posterior parameter distribution. Different shades 
of blue correspond to different times until viral rebound. The projections of the model without a cure are shown in orange. 
Parameters: cure efficacy of 90%, annual cure uptake of 90%, and diagnostic delay of cured individuals who experience a viral 
rebound of 3 months. 
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Figure 4-3. Impact of PTC on HIV dynamics under varying PTC characteristics. (a) Mean change in cumulative cases relative 
to the no-cure scenario and (b) mean cumulative rebounds from the introduction of PTC in 2026 to the end of the simulation 
in 2034. 
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Dynamics	for	PTC	scenario	
We	 first	 explored	 how	 the	 dynamics	 under	 the	 PTC	 scenario	 might	 unfold	 based	 on	
different	assumptions	about	the	time	to	viral	rebound	in	cured	individuals.	We	simulated	
the	model	with	average	rebound	times	of	2	years	and	6	years,	as	well	as	the	possibility	of	
perfect	 PTC	 (i.e.,	 no	 rebound).	 The	 extremes	 (2	 years	 to	 rebound	 and	 no	 rebound)	
represent	 the	 minimum	 and	 optimal	 requirements	 outlined	 in	 the	 TPP	 [148].	 We	
assumed	90%	cure	efficacy	and	90%	annual	cure	uptake,	along	with	a	3-month	diagnostic	
delay	for	rebound	cases.	Projections	of	the	epidemic	dynamics	for	these	parameters	are	
shown	in	Figure	4-2.	Perfect	PTC,	with	no	risk	of	rebound,	resulted	 in	 the	 fewest	new	
cases	among	naive	individuals	compared	to	the	no-cure	scenario,	8	(95%PI	4–13)	versus	
33	(95%PI	11–64)	per	100,000	persons	per	year	in	2034.	If	the	time	to	viral	rebound	was	
6	years,	the	estimated	number	of	new	cases	decreased	to	23	(95%PI	10–47)	per	100,000	
persons	per	year,	but	the	number	of	new	rebounds	was	high	and	greatly	exceeded	the	
number	of	new	cases	 in	naive	 individuals.	For	a	shorter	rebound	time	of	2	years,	new	
cases	 increased	 to	 41	 (95%PI	 17–90)	 per	 100,000	 persons	 per	 year,	 and	 rebounds	
increased	 even	 further.	 The	 prevalence	 remained	 nearly	 constant	 regardless	 of	 the	
rebound	time,	and	cure	coverage	was	lower	for	shorter	rebound	times.	
	
Impact	of	PTC	under	varying	PTC	characteristics	
We	 further	 systematically	 compared	 the	 impact	 of	 PTC	 under	 varying	 cure	 efficacy,	
uptake,	 time	 to	 rebound,	 and	 diagnostic	 delay	 from	 its	 introduction	 in	 2026	 to	 2034	
(Figure	 4-3).	 Perfect	 PTC	 consistently	 resulted	 in	 fewer	 cases	 in	 naive	 individuals,	
regardless	of	diagnostic	delay	(Figure	4-3,	top	rows).	The	largest	and	smallest	reductions	
in	cumulative	cases	over	this	period,	compared	to	the	no-cure	scenario,	were	observed	at	
the	extreme	values	of	cure	uptake	and	efficacy,	52%	average	reduction	for	90%	uptake	
and	 90%	 efficacy,	 and	 3%	 average	 reduction	 for	 10%	 uptake	 and	 20%	 efficacy.	
Intermediate	reductions	in	cases	were	predicted	for	all	other	parameter	combinations.	
Whether	imperfect	PTC	increased	or	decreased	cases	in	naive	individuals	from	2026	to	
2034,	compared	to	the	no-cure	scenario,	depended	on	diagnostic	delay	and	rebound	time	
(Figure	4-3,	middle	and	bottom	rows).	In	the	absence	of	a	specific	monitoring	strategy	to	
diagnose	rebounds	(i.e.,	with	the	current	standard	of	care,	a	28-month	diagnostic	delay),	
the	 introduction	of	PTC	consistently	 led	to	more	cases.	Larger	 increases	 in	cases	were	
predicted	for	shorter	rebound	time,	and	higher	PTC	uptake	and	efficacy.	Conversely,	with	
frequent	monitoring	 of	 cured	 individuals	 (i.e.,	 a	 2-week	 diagnostic	 delay),	 cumulative	
cases	were	consistently	reduced	compared	to	the	no-cure	scenario.	The	largest	average	
reductions	in	cumulative	cases	were	between	41%	for	a	rebound	time	of	6	years	and	23%	
for	a	rebound	time	of	2	years.	However,	an	estimated	4,695	(95%PI	4,485–4,847)	and	
11,310	(95%PI	10,836–11,653)	rebounds	per	100,000	persons	were	predicted	to	occur	
alongside	these	maximum	case	reductions.	For	comparison,	only	561	(95%PI	184–1,074)	
cases	 per	 100,000	 persons	 were	 estimated	 during	 the	 same	 period	 in	 the	 no-cure	
scenario.	
	
Dynamics	for	elimination	scenario	
Like	in	the	PTC	scenario,	the	dynamics	under	the	elimination	scenario	assumed	a	90%	
cure	efficacy.	The	introduction	of	the	elimination	cure	led	to	a	consistent	reduction	in	the	
number	 of	 new	 cases	 in	 naive	 individuals,	with	 values	 varying	 based	 on	 cure	 uptake	
(Figure	4-4).	For	90%	uptake,	the	estimated	number	of	new	cases	decreased	to	8	(95%PI	
4–13)	per	100,000	persons	per	 year	 in	 2034,	which	 is	 comparable	 to	 the	 outcome	of	
perfect	PTC.	Similarly,	for	lower	uptakes,	new	cases	also	declined,	with	9	(95%PI	5–14)	
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new	cases	for	a	50%	uptake	and	22	(95%PI	9–39)	new	cases	for	a	10%	uptake.	Notably,	
across	the	entire	range	of	cure	uptakes	considered,	the	estimated	number	of	re-infections	
in	cured	individuals	remained	low,	approaching	only	about	2	re-infections	per	100,000	
persons	 per	 year	 in	 2034.	 Furthermore,	 unlike	 in	 the	 PTC	 scenario,	 HIV	 prevalence	
markedly	dropped	after	the	introduction	of	the	elimination	cure,	reaching	3.60%	(95%PI	
3.38%–3.74%)	for	a	10%	uptake	and	falling	to	less	than	1%	for	uptakes	above	50%.	The	
model	 also	 indicated	 that	 for	 lower	uptakes,	 no	 equilibrium	 in	HIV	dynamics	was	 yet	
observed.	
	

 
Figure 4-4. Projections of HIV dynamics under the elimination scenario. (a) New cases (primary infections in naive individuals), 
(b) new re-infections (secondary infections in cured individuals), (c) prevalence (proportion of individuals with HIV), and (d) 
cure coverage (proportion of cured individuals among all eligible) for different cure uptakes. The red vertical arrows indicate 
the cure introduction. The mean trajectories from the model are shown as solid lines. The shaded regions correspond to 95% 
prediction intervals based on 100 samples from the joint posterior parameter distribution. Different shades of green 
correspond to different cure uptakes. The projections of the model without a cure are shown in orange. Parameters: cure 
efficacy of 90% and diagnostic delay of cured individuals who experience re-infection of 3 months. 

Impact	of	elimination	under	varying	cure	characteristics	
A	systematic	comparison	of	 the	 impact	of	 the	elimination	cure	under	varying	efficacy,	
uptake,	and	diagnostic	delay	of	re-infected	individuals	is	shown	in	Figure	4-5.	Similar	to	
perfect	 PTC,	 the	 elimination	 cure	 consistently	 reduced	 cases	 in	 naive	 individuals,	
regardless	 of	 diagnostic	 delay.	 Like	 before,	 the	 largest	 and	 smallest	 reductions	 in	
cumulative	 cases	 over	 the	 2026-2034	period	were	 observed	 at	 the	 extreme	 values	 of	
uptakes	 and	 efficacy,	 with	 the	 reduction	 ranging	 from	 3%	 to	 52%	 for	 all	 parameter	
combinations	explored.	For	all	diagnostic	delays,	the	estimated	number	of	re-infections	
remained	low,	not	exceeding	16	re-infections	per	100,000	persons	throughout	the	entire	
period.	
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Figure 4-5. Impact of the elimination cure on HIV dynamics under varying cure characteristics. (a) Mean change in cumulative 
cases (primary infections in naive individuals) relative to the no-cure scenario and (b) mean cumulative re-infections 
(secondary infections in cured individuals) from the introduction of the cure in 2026 to the end of the simulation in 2034. The 
color bar scale is the same as that in Figure 4-3 for direct comparison. 

Robustness	and	sensitivity	analyses	
Our	 results	 remained	 robust	 across	 different	 years	 of	 cure	 introduction.	 Potential	
behavioral	 changes	 among	MSM	 in	 response	 to	 a	 cure	 based	 on	 survey	 data	 did	 not	
qualitatively	affect	the	overall	outcomes.	Specifically,	eight	years	post-cure,	the	number	
of	 new	 HIV	 cases	 was	 still	 lower	 for	 the	 elimination	 cure	 compared	 to	 the	 no-cure	
scenario,	though	this	was	not	necessarily	the	case	for	imperfect	PTC.	Sensitivity	analyses	
regarding	the	infectivity	of	individuals	after	viral	rebound	indicated	that	our	projections	
for	the	PTC	scenario	were	the	most	optimistic.	In	contrast,	the	results	for	the	elimination	
cure	were	consistent	across	varying	assumptions	about	the	 infectivity	of	re-infections.	
Further	details	on	the	sensitivity	analyses	can	be	found	in	the	Appendix	D.		
 
Methods 
 
The	mathematical	transmission	model	was	calibrated	using	behavioral,	epidemiological,	
and	 surveillance	 data	 specific	 to	 the	 MSM	 population	 in	 the	 Netherlands.	 Parameter	
estimates	were	obtained	by	fitting	the	model	to	observed	trends	in	new	HIV	diagnoses	
and	 the	 estimated	 number	 of	 undiagnosed	 cases	 from	 2017	 to	 2022.	 This	 calibrated	
model	was	then	used	to	explore	the	potential	impact	of	hypothetical	HIV	cure	scenarios	
on	the	epidemic	dynamics	at	population	level.		
 
Data	
Sexual	 contact	 rates	 data	were	 taken	 from	 the	 survey	 described	 in	 [145].	Within	 the	
survey,	 the	 participants	 were	 asked	 questions	 about	 their	 current	 sexual	 behavior	
(number	of	new	partners	in	the	last	six	months)	and	preventive	behavior	(condom	use	
habits),	 as	 well	 as	 potential	 changes	 after	 the	 introduction	 of	 the	 two	 different	 cure	
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scenarios	 introduced	above.	Out	of	 the	participants	 surveyed,	 a	 total	of	N	=	529	MSM	
provided	responses	 regarding	changes	 in	 sexual	and	preventive	behaviors	 concerning	
casual	sexual	contacts	for	both	current	circumstances	and	hypothetical	cure	scenarios.		
	
Data	on	the	monthly	number	of	PrEP	users	over	time,	available	from	June	2019	to	April	
2022,	were	taken	from	[161].	All	epidemiological	data,	such	as	new	diagnoses	per	year,	
new	imported	cases	already	on	treatment,	cases	on	treatment,	proportion	of	diagnoses,	
and	secondary	estimates	such	as	the	number	of	undiagnosed	cases,	HIV	incidence	and	
HIV	prevalence,	were	taken	from	the	Dutch	HIV	Monitoring	Foundation	reports	[136].	
We	considered	yearly	data	from	2015	to	2022.		
 
Transmission	model	
The	 model	 was	 implemented	 in	 Rstudio	 (version	 2022.12.0+353)	 using	 a	 system	 of	
ordinary	differential	equations	for	the	number	of	individuals	in	different	compartments	
describing	the	state	of	individuals.	The	population	was	stratified	by	the	average	number	
of	new	sexual	partners	per	year	into	sexual	risk	groups	𝑙,	where	𝑙 = 1, . . . , 𝑛	with	𝑙 = 1	
and	𝑙 = 𝑛	corresponding	to	the	lowest	and	the	highest	risk	groups,	respectively.		
	
Susceptible	individuals	can	be	infected	at	time-dependent	rate	𝐽(𝑡)	(i.e.,	force	of	infection)	
by	having	sexual	interactions	with	the	infectious	population.	Upon	infection,	they	enter	
the	 acute	 HIV	 stage.	 As	 the	 disease	 progresses,	 these	 individuals	 transition	 through	
various	stages,	at	different	constant	rates	𝜌V ,	from	the	chronic	stage	to	the	AIDS	stage.	In	
particular,	𝑘 = 1	represents	the	acute	stage,	𝑘 = 2	the	chronic	stage,	𝑘 = 3	the	AIDS	stage.	
We	have	also	included	a	non-sexually	active	AIDS	stage	(𝑘 = 4)	to	account	for	individuals	
who	are	no	longer	sexually	active	due	to	the	severity	of	their	condition.	From	this	 last	
stage,	 individuals	 may	 die	 at	 rate	 𝜌A	 because	 of	 AIDS.	 Throughout	 this	 disease	
progression,	individuals	may	be	diagnosed	at	different	constant	rates,	𝜏V ,	depending	on	
their	 current	 stage	 𝑘.	 Once	 diagnosed,	 they	 may	 either	 die	 because	 of	 HIV-related	
complications,	at	rate	𝜌$ ,	or	begin	ART,	at	rate	𝜂.	Once	on	ART,	individuals	can	still	die	
from	HIV-related	causes	at	rate	𝛾.	We	assume	that	the	infectivity	of	diagnosed	and	treated	
individuals	is	the	same.	Susceptible	individuals	may	opt	in	and	out	of	PrEP	programs,	at	
rates	 𝑘bc(𝑡)	 and	 𝑘bdd.	 PrEP	 reduces	 the	 risk	 of	 infection,	 offering	 protection	 with	 an	
effectiveness	 of	 1 − 𝛺.	 Individuals	 who	 get	 infected	 while	 on	 PrEP	 have	 reduced	
transmissibility	 and	 are	 diagnosed	 more	 rapidly	 (at	 rate	 𝜏Q)	 due	 to	 regular	 visits	
associated	with	PrEP	usage.	Individuals	can	enter	or	leave	the	sexually	active	population	
over	time.	Susceptible	individuals	are	recruited	into	the	population	at	rate	𝛽𝑁8,	and	each	
person	enters	 a	 specific	 risk	group	 𝑙	with	probability	𝑞^ .	 The	natural	outflow	 from	all	
compartments	 occurs	 at	 rate	𝜇.	 In	 addition,	 importation	 of	 infected	 individuals	 (both	
undiagnosed	or	already	on	treatment)	 is	also	modeled.	Specifically,	 the	 importation	of	
individuals	already	on	treatment	occurs	at	a	time-dependent	linearly	increasing	rate	𝑀X𝑡,	
while	 undiagnosed	 infected	 individuals	 are	 imported	 at	 a	 constant	 rate	𝑀% .	 Imported	
cases	are	assigned	to	risk	group	𝑙	with	probability	𝑄^ ,	and	to	HIV	stage	𝑘	with	probaility	
𝑝V .	When	a	 cure	 is	 introduced,	 individuals	on	ART	become	eligible	 for	 this	 treatment.	
Depending	on	the	cure’s	efficacy	𝑒,	they	may	either	be	successfully	cured	at	rate	𝑒𝛼(𝑡),	
moving	 to	 the	 cured	 compartment,	 or	 experience	 a	 cure	 failure,	 at	 rate	 (1 − 𝑒)𝛼(𝑡),	
remaining	on	ART	until	death	at	rate	𝛾.		



 
 

 
Figure 4-6. Schematic of the transmission model with cure. Recruitment into and exit from the sexually active population are 
not shown. A detailed description of the model equations, parameters, and assumptions for (a) post-treatment control and 
(b) elimination cure is given in the Supplementary Material.  

In	the	post-treatment	control	(PTC)	scenario,	cured	individuals	may	experience	a	viral	
rebound	at	rate	𝜑.	Upon	rebound,	they	re-enter	the	chronic	stage,	bypassing	the	acute	
stage,	and	continue	through	the	disease	progression	at	rates	𝜌V .	They	can	be	re-diagnosed	
at	 rates	 𝜏VL ,	 depending	 on	 the	 specific	 stage	 𝑘,	 or	 die	 from	 AIDS	 at	 rate	𝜌A.	 As	 with	
individuals	on	ART,	cured	individuals	may	also	die	at	rate	𝛾.	In	the	elimination	scenario,	
cured	individuals	are	assumed	to	revert	to	a	susceptible	state,	where	they	can	either	be	
re-infected	or	start	a	PrEP	program.	Upon	re-infection,	they	enter	the	acute	stage,	and	
they	follow	the	same	disease	progression	and	diagnosis	patterns	as	in	the	PTC	scenario.	
	
The	system	of	differential	equations	of	the	models	is	reported	in	the	Appendix	D,	together	
with	the	table	with	the	description	of	all	the	parameters	of	the	model	(Table	4-3).	The	
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schematics	of	PTC	and	elimination	models	are	illustrated	in	Figure	4-6a	and	Figure	4-6b,	
respectively.		
	
Model	calibration	
Sexual	partner	change	rate	
We	used	survey	data	to	estimate	the	number	of	new	sexual	partners	per	year	by	sexual	
risk	group,	weighted	on	condom	use,	 in	 the	MSM	population.	A	 full	explanation	of	 the	
estimation	is	reported	in	Appendix	D.		
	
Diagnostic	delay	
We	set	diagnostic	rates	for	the	AIDS	stages	3	and	4,	𝜏C	and	𝜏A	respectively,	such	that	the	
average	waiting	time	before	being	diagnosed	with	AIDS	is	1	month.	On	the	other	hand,	
diagnostic	 rates	 for	 the	acute	and	chronic	 stages,	𝜏+	 and	𝜏B	 respectively,	 remain	 to	be	
reconstructed.	We	calibrate	those,	prior	to	the	fitting	of	the	other	model	parameters,	by	
means	of	a	simple	stochastic	model	simulating	the	dynamics	of	disease	progression	and	
diagnoses.	We	describe	the	procedure	in	Appendix	D.		
	
Estimation	of	parameters	
The	parameters	of	our	model	to	be	calibrated	were:	the	probability	of	transmission	per	
sexual	partner	𝜆;	the	mixing	parameter	𝜔	(assortativity	of	contacts	by	risk	group);	the	
infectivity	of	diagnosed/treated	 individuals	𝜀;	 the	number	of	newly	 imported	 infected	
undiagnosed	 individuals	 per	 year	 𝑀%;	 and	 an	 additional	 number	 of	 undiagnosed	
individuals	 at	 initialization	 to	 allow	 the	model	 to	 burn-in	𝑈8;	 the	 infected	 population	
fraction	used	to	split	initialized	and	imported	infected	cases	into	risk	group	𝑙,	with	𝑙 =
1, . . . , 𝑛,	𝑄^ .	 To	 calibrate	 those,	we	 used	 an	Approximate	Bayesian	 Computation	 (ABC)	
approach	based	on	Latin	Hypercube	Sampling	(LHS).	The	detailed	procedure	to	obtain	
approximations	 of	 the	 posterior	 distributions	 of	 all	 the	 estimated	 parameters	 is	
presented	in	Appendix	D.	
	
HIV	cure	rollout		
We	modeled	the	cure	rollout	by	using	a	time-dependent	cure	uptake	rate,	assumed	to	be	
equal	for	all	risk	groups,	𝛼(𝑡),	that	grows	logistically	since	the	start	of	the	rollout	until	a	
maximum	uptake	value	αmax	within	3	years.		
	
Model	outcomes		
The	model	outcomes	were	annual	new	cases	(primary	infections	in	naive	individuals)	and	
the	change	in	cumulative	cases	compared	to	the	no-cure	scenario	from	2026	to	2034.	For	
PTC,	annual	and	cumulative	viral	rebounds,	while	for	the	elimination	cure,	annual	and	
cumulative	re-infections	(secondary	infections	in	cured	individuals)	were	also	estimated	
over	the	same	period.	HIV	prevalence	was	calculated	as	the	ratio	of	individuals	in	specific	
compartments	and	the	total	population	size.	For	PTC,	the	relevant	compartments	were	
𝐼V , 𝐼Q , 𝐷, 𝐴, 𝐴Le , 𝐶,	and	𝐼VL 	(𝑘 = 1,2,3,4),	with	cured	individuals	included	because	their	HIV	
reservoir	 is	 not	 completely	 removed	 after	 PTC.	 For	 the	 elimination	 cure,	 the	
compartments	considered	were	𝐼V , 𝐼Q , 𝐷, 𝐴, 𝐴Le , 𝐼LQ ,	and	𝐼VL 	(𝑘	 = 1,2,3,4).	Cure	coverage	
was	calculated	as	the	proportion	of	cured	individuals	among	all	eligible	(𝐴, 𝐴Le ,	and	𝐶	
compartments).		
	
	
Sensitivity	analyses		



 
 

In	the	sensitivity	analyses,	we	explored	the	impact	on	model	projections	of	(i)	the	year	of	
cure	introduction,	(ii)	risk	compensation	following	cure	introduction,	and	(iii)	infectivity	
of	individuals	after	rebound	and	re-infection.	The	results	of	these	analyses	are	provided	
in	Appendix	D.		
 
Discussion 
 
In	 light	 of	 rapidly	 advancing	HIV	 cure	 research	 [151],	 it	 is	 essential	 to	 anticipate	 the	
potential	population-level	impact	of	cure	implementation	before	effective	interventions	
become	available.	From	a	public	health	perspective,	an	effective	cure	intervention	should	
align	with	the	United	Nations	Sustainable	Development	Goal	of	ending	the	HIV	epidemic	
[53].	Indeed,	there	is	a	common	assumption	that	the	successful	introduction	of	a	cure	will	
contribute	to	controlling	the	HIV	epidemic	[146,147,155].	In	the	context	of	concentrated	
epidemics	in	high-income	countries,	where	HIV	incidence	is	already	low,	this	assumption	
implies	that	the	implementation	of	a	cure	should	not	disrupt	the	decline	in	HIV	infections	
achieved	under	the	current	standard	of	HIV	care	and	prevention.		
	
Our	analyses	revealed	that	introducing	either	type	of	cure	could	alter	the	course	of	the	
HIV	epidemic.	The	impact	differed	between	perfect	PTC	and	elimination	cure,	which	both	
have	the	potential	to	accelerate	the	current	decline	in	HIV	incidence,	and	imperfect	PTC,	
which	 could	 reverse	 that	 progress.	 This	 divergence	 in	 the	 potential	 outcomes	 of	 cure	
scenarios	underscores	the	importance	of	evaluating	their	public	health	impacts,	which,	
for	now,	can	only	be	done	through	mathematical	modeling.	
	
The	model	projections	indicate	that	while	perfect	PTC	consistently	resulted	in	a	decrease	
in	 HIV	 incidence	 (by	 up	 to	 50%	 for	 optimal	 characteristics),	 imperfect	 PTC	 could	
drastically	increase	new	infections	and	undermine	HIV	control.	Notably,	the	increase	in	
incidence	was	observed	for	plausible	parameter	combinations.	For	example,	a	3-month	
diagnostic	delay,	which	matches	the	testing	interval	for	PrEP	users	[159],	and	the	TPP’s	
minimum	requirement	of	2	years	before	relapse	[148]	might	be	achievable	in	a	real-world	
setting.	HIV	incidence	under	imperfect	PTC	increased	in	the	model	because	individuals	
who	experienced	viral	rebound	became	infectious	and	could	transmit	 the	virus	before	
being	 diagnosed.	 This	 led	 to	 a	 counterintuitive	 effect	 where	 higher	 incidence	 was	
observed	for	higher	cure	uptakes	and	efficacies.	The	more	 individuals	were	cured,	 the	
more	rebound	cases	occurred,	leading	to	an	increase	in	new	infections.	This	effect	could	
be	mitigated	by	developing	PTC	interventions	with	longer	times	to	rebound	or	through	
stricter	monitoring.	However,	even	 if	 imperfect	PTC	reduced	HIV	 incidence,	managing	
numerous	rebound	cases	could	pose	a	challenge	in	the	real	world	and	lead	to	adverse	
health	outcomes	for	patients.	MSM	with	HIV	have	also	raised	concerns	about	imperfect	
PTC	because	of	fear	of	transmitting	the	virus	to	their	partners	[145].	Frequent	rebound	
episodes	 would	 require	 ongoing	 efforts	 for	 rapid	 viral	 load	 monitoring	 and	 timely	
diagnosis	of	rebounds	to	maximize	the	public	health	benefits	of	any	PTC	intervention.	
	
In	 contrast,	 the	 elimination	 scenario	 presents	 a	 more	 optimistic	 outlook	 for	 HIV	
dynamics.	Our	findings	suggest	that	elimination	cure	would	always	reduce	HIV	incidence	
among	naive	individuals,	with	projected	new	infections	decreasing	to	a	comparable	level	
seen	 for	 perfect	 PTC	 (50%	 for	 optimal	 characteristics).	 Importantly,	 the	 elimination	
scenario	 would	 maintain	 a	 low	 number	 of	 re-infections,	 which	 is	 relevant	 for	 MSM	
particularly	vulnerable	to	HIV	acquisition.	The	main	reason	for	few	re-infections	under	
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the	elimination	cure	and	a	potentially	large	number	of	rebounds	under	imperfect	PTC	is	
that	the	rate	of	re-infections	depends	on	the	infectious	population,	while	rebounds	occur	
at	a	constant	rate	among	those	previously	cured.	
	
It	is	recognized	that	mathematical	modeling	can	help	advance	HIV	cure	research	[162].	
However,	few	studies	have	modeled	the	population-level	impact	of	cure	strategies.	To	our	
knowledge,	 this	 is	 the	 first	 study	 to	 assess	 the	potential	 impact	 of	 an	HIV	 cure	 on	 an	
epidemic	concentrated	among	MSM	in	a	Western	country.	We	ensured	the	reliability	of	
our	model	to	accurately	project	HIV	dynamics	without	a	cure	by	performing	inference	on	
key	model	parameters	and	conducting	validation	tests	on	multiple	datasets.	Unlike	other	
studies	assessing	interventions	for	HIV	control	[161,163,164],	our	model	incorporated	
importations	 of	 new	 HIV	 infections	 from	 abroad,	 which	 is	 crucial	 for	 capturing	 the	
openness	of	the	MSM	population	in	low-incidence	settings.	The	strength	of	our	modeling	
approach	 under	 cure	 scenarios	 lies	 in	 its	 ability	 to	 project	 HIV	 dynamics	 without	
requiring	precise	information	on	the	biological	mechanisms	underlying	a	cure.	Instead,	
our	analyses	were	guided	by	the	TPP,	using	the	full	range	of	acceptable	values	for	several	
cure	characteristics	[148].	
	
While	our	findings	are	particularly	relevant	for	similar	epidemics	among	MSM	in	Western	
countries,	they	align	qualitatively	with	two	previous	modeling	studies	for	a	generalized	
epidemic	 in	 heterosexual	 populations	 in	 Africa	 [56,57].	 These	 studies,	 though	 not	
formally	fitted	to	data,	also	suggested	that	a	PTC-like	intervention	without	sustained	viral	
suppression	could	lead	to	an	increase	in	HIV	incidence.	However,	our	results	differ	from	
[57],	as	we	found	that	the	timing	of	cure	introduction	did	not	alter	the	outcomes	of	cure	
scenarios.	This	discrepancy	may	be	explained	by	the	 fact	 that	 the	HIV	epidemic	 in	 the	
Netherlands	was	estimated	to	be	close	to	reaching	a	low	stable	level	of	incidence,	unlike	
the	more	dynamic	epidemic	in	South	Africa.		
	
Additionally,	there	is	concern	that	the	introduction	of	a	cure	could	shift	perceptions	of	
HIV	risk,	severity,	and	prevention,	as	observed	when	ART	became	widely	available	[165].	
Our	study	is	the	first	to	incorporate	actual	survey	data	on	potential	behavioral	changes	
among	MSM	following	the	introduction	of	a	cure	into	sensitivity	analyses.	Our	findings	
suggest	that	risk	compensation	could	further	reduce	the	effectiveness	of	imperfect	PTC,	
while	having	minimal	impact	on	the	outcomes	of	elimination	cure.	Therefore,	real-world	
cure	interventions	may	need	to	be	accompanied	by	additional	prevention	strategies	to	
address	the	potential	rise	in	risky	behaviors.		
	
Our	study	has	several	limitations.	First,	we	used	a	classical	deterministic	compartmental	
model	 rather	 than	 an	 equivalent	 stochastic	 approach.	 Given	 the	 large	 population	 size	
modeled,	stochastic	effects,	such	as	the	random	extinction	of	the	epidemic,	are	likely	to	
have	minimal	impact	in	this	context.	Additionally,	as	our	goal	was	not	to	provide	precise	
forecasts	 but	 rather	 to	 identify	 broad	 epidemiological	 trends,	we	 believe	 the	 average	
behavior	captured	by	our	deterministic	model	sufficiently	reflects	the	population-level	
transmission	 dynamics.	 However,	 stochastic	 models	 generally	 offer	 a	 more	 realistic	
representation	of	reality	by	incorporating	variability.	Developing	a	stochastic	version	of	
our	model	could	enhance	its	realism	and	robustness,	representing	a	potential	direction	
for	 future	 work.	 Another	 assumption	 inherent	 to	 our	 ODE	 model	 is	 the	 use	 of	 an	
exponential	distribution	for	the	time	until	viral	rebound.	While	this	distribution	may	not	
fully	 capture	 the	 biological	 variability	 of	 relapse	 timing,	 it	 provides	 a	 straightforward	



 
 

framework	for	analysis,	especially	 in	the	absence	of	empirical	data.	This	simplification	
allows	 for	 conceptual	 comparisons	 across	 cure	 scenarios	 without	 introducing	
unnecessary	 model	 complexity.	 Second,	 in	 line	 with	 the	 call	 for	 equitable	 HIV	 cure	
solutions	 [166,167,168,169],	our	analysis	did	not	 focus	on	 targeting	cure	strategies	 to	
specific	population	groups	based	on	behavior	or	HIV	status.	Instead,	in	agreement	with	
the	inclusion	criteria	for	many	HIV	cure	trials	[170]	and	the	minimum	requirement	in	the	
TPP	[148],	our	model	assumes	that	a	cure	is	administered	to	MSM	on	ART.	Since	most	
MSM	with	HIV	in	the	Netherlands	are	diagnosed	and	receive	effective	treatment	[136],	
this	assumption	likely	has	minimal	impact	on	our	findings.	Third,	despite	the	formulation	
of	 the	 TPP,	 uncertainty	 remains	 around	 several	 biological	 parameters	 for	 cured	
individuals.	Based	on	data	from	ART	interruption	studies,	we	assumed	that	the	infectivity	
of	 individuals	 following	 viral	 rebound	 would	 be	 similar	 to	 that	 observed	 during	 the	
chronic	 stage	 of	 HIV	 infection	 [171,172].	 Conversely,	 for	 individuals	 re-infected	 after	
elimination	 cure,	 we	 assumed	 their	 infectivity	 would	 resemble	 the	 acute	 stage	 of	
infection,	similar	to	what	occurs	with	superinfection	by	a	different	HIV	subtype	[173]	or	
re-infection	with	hepatitis	C	virus	 [174,175].	While	 these	assumptions	are	biologically	
plausible,	 they	 remain	 hypothetical.	 Our	 sensitivity	 analyses	 demonstrated	 that	 high	
infectivity	could	undermine	the	effectiveness	of	 imperfect	PTC	and	should	be	carefully	
considered	when	developing	this	cure	strategy.		
	
In	summary,	our	study	suggests	that	the	elimination	cure	has	the	potential	to	reduce	new	
HIV	 infections,	 contribut-	 ing	 to	 the	 United	 Nations	 Sustainable	 Development	 Goal	 of	
ending	the	HIV	epidemic,	while	imperfect	PTC	could	increase	infections	if	rebounds	are	
not	 carefully	 monitored.	 These	 findings	 emphasize	 the	 importance	 of	 strategically	
developing	 and	 implementing	 cure	 interventions	 to	 maximize	 their	 benefits	 for	
individual	and	public	health.  
 
Appendix D 
 
The	 code	 used	 to	 run	 the	 model	 will	 be	 available	 upon	 publication	 of	 the	 paper	 at:	
github.com/alfredodebellis	.	
 
Calibration	of	diagnostic	delay	
We	implemented	a	simple	stochastic	model	where	we	simulate	the	state	progression	of	Z	
=	1000	individuals	initialized	at	the	acute	stage.	We	sampled	𝑁f 	=	10000	uniform	values	
of	𝜏+ 	and	𝜏B 		in	the	intervals	[1/12,	2]	and	[1/12,	1],	respectively.	We	set	diagnostic	rates	
for	 the	AIDS	stages	3	and	4,	𝜏C 	and	𝜏A 	respectively,	such	that	 the	average	waiting	time	
before	being	diagnosed	with	AIDS	is	1	month.	Then,	for	each	sampled	pair,	we	ran	the	
model	described	 in	Algorithm	3-1.	We	define	a	 relative	error	 threshold	𝜖	 = 10%	and	
accept	all	the	pairs	such	that	the	proportions	of	diagnoses	happened	before	6	months,	
between	6	and	12	months,	and	after	12	months	after	infection	match	(with	a	tolerance	
given	by	ϵ)	available	data.	The	output	of	the	reconstructed	proportions	of	diagnosed	per	
period	is	reported	in	Figure	4-7.	In	Figure	4-8	we	show	the	distributions	of	τ1,	τ2.	
	
	
	
	
	
	

https://github.com/alfredodebellis
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Algorithm 4-1. Pseudocode for the stochastic model to build the distribution of diagnostic delays 

	

 
Figure 4-7. Model validation against data on proportion to diagnoses within different time ranges. The orange rectangles 
represent data from the HIV monitoring foundation. The blue rectangles and the error bars represent the mean estimates 
and the 95% credible intervals estimated by the stochastic model in Algorithm 3-1 after calibration of the diagnostic delays 

 

 

Figure 4-8. Estimated diagnosis rates. a Histograms of diagnosis rates for acute and b chronic HIV stages fitted via the 
approximate Bayesian computation framework. The vertical continuous line indicates the mean value. The vertical dashed 
lines indicate the bounds of the 95% credible interval. 
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Model	equations	
Post-treatment	control	
The	 equations	 for	 the	 numbers	 of	 individuals	 in	 risk	 group	 𝑙, 𝑙	 = 	1, . . . , 𝑛,	 who	 are	
susceptible	(𝑆^),	susceptible	on	PrEP	(𝑆^Q),	infected	but	not	diagnosed	(𝐼 V)	in	stage	𝑘, 𝑘	=	
1	(acute),	2	(chronic),	3	(AIDS),	4	(AIDS	without	sexual	activity),	infected	while	on	PrEP	
(𝐼Q),	diagnosed	(𝐷^),	treated	on	ART	(𝐴^),	cured	and	virally	suppressed	without	ART	(𝐶^),	
not	effectively	suppressed	after	cure	and	thus	still	on	ART	(𝐴^Le),	infectious	due	to	viral	
rebound	l	after	a	cure	failure	(𝐼 VL )	read	as	follows		
	

𝑑𝑆^(𝑡)
𝑑𝑡 = 𝛽𝑁8𝑞^ + 𝑘^

3TT𝑆^Q(𝑡) − .𝜇 + 𝐽 (𝑡) + 𝑘^3'(𝑡)/𝑆^(𝑡) 

𝑑𝑆^Q(𝑡)
𝑑𝑡 = 𝑘^3'(𝑡)𝑆^(𝑡) − .𝜇 + Ω𝐽 (𝑡) + 𝑘^

3TT/𝑆^Q(𝑡) 

𝑑𝐼 +(𝑡)
𝑑𝑡 = 𝑀%𝑄^𝑝+ + 𝐽 (𝑡)𝑆^(𝑡) − (𝜇 + 𝜌+ + 𝜏+)𝐼 +(𝑡) 

𝑑𝐼 V(𝑡)
𝑑𝑡 = 𝑀%𝑄^𝑝V + 𝜌V?+𝐼 V?+(𝑡) − (𝜇 + 𝜌V + 𝜏V)𝐼 V(𝑡) 

𝑑𝐼Q(𝑡)
𝑑𝑡 = Ω𝐽 (𝑡)𝑆^Q(𝑡) − (𝜇 + 𝜏^Q)𝐼Q(𝑡) 

𝑑𝐷^(𝑡)
𝑑𝑡 =<𝜏V𝐼 V(𝑡)

V

+ 𝜏^Q𝐼Q(𝑡) +<𝜏VL𝐼 VL (𝑡)
V

− (𝜇 + 𝜌$ + 𝜂)𝐷^(𝑡) 
𝑑𝐴^(𝑡)
𝑑𝑡 = 𝑀X𝑄^𝑡 + 𝜂𝐷^(𝑡) − .𝜇 + 𝛾 + 𝛼(𝑡)/𝐴^(𝑡) 

𝑑𝐶^(𝑡)
𝑑𝑡 = 𝑒𝛼(𝑡)𝐴^(𝑡) − (𝜇 + 𝛾 + 𝜙)𝐶^(𝑡) 

𝑑𝐴^Le(𝑡)
𝑑𝑡 = (1 − 𝑒)𝛼(𝑡)𝐴^(𝑡) − (𝜇 + 𝛾)𝐴^Le(𝑡) 

𝑑𝐼 +L (𝑡)
𝑑𝑡 = 𝜙𝐶^(𝑡) − (𝜇 + 𝜌+ + 𝜏+L)𝐼 +L (𝑡) 

𝑑𝐼 VL (𝑡)
𝑑𝑡 = 𝜌V?+𝐼 V?+L (𝑡) − (𝜇 + 𝜌V + 𝜏VL)𝐼 VL (𝑡)	

(4.1)	

 
where 𝑘 = 2,3,4 and 𝑙	 = 	1, . . . , 𝑛. 
 
The force of infection in risk group 𝑙 is written as 
	

𝐽 (𝑡) = 𝜆𝑐^<𝑀^^0(𝑡) �𝜀Q
𝐼 0Q(𝑡)
𝑁^0(𝑡)

+ 	𝜀
𝐷^0(𝑡) + 𝐴^0(𝑡) + 𝐴^0

Le(𝑡)
𝑁^0(𝑡)^0

+	<
ℎV𝐼^0V(𝑡) + ℎVL𝐼 0V

L (𝑡)
𝑁^0(𝑡)V

¸ 
(4.2)	

 
𝑁^(𝑡) is the population size of risk group 𝑙 
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𝑁^(𝑡) = 𝑆^(𝑡) + 𝑆^Q(𝑡) +<[𝐼 V(𝑡) + 𝐼 VL (𝑡)] + 𝐼Q(𝑡) + 𝐷^(𝑡)
V

+ 𝐴^(𝑡)

+ 𝐴^Le(𝑡) + 𝐶^(𝑡) 
(4.3)	

 
and 𝑀^^0(𝑡) is the mixing matrix 
	

𝑀^^0(𝑡) = 𝜔
𝑐^0𝑁^0(𝑡)

∑ 𝑐^00^00 𝑁^00(𝑡)
+ (1 − 𝜔)𝛿^^0 (4.4)	

 
where 𝛿^^0 = 1 if 𝑙 = 𝑙g and 𝛿^^0 = 0 otherwise. 
 
Elimination	
The equations for the numbers of individuals in risk group 𝑙, 𝑙	 = 	1, . . . , 𝑛, who are naive 
susceptible (𝑆^), naïve susceptible on PrEP (𝑆^Q), cured and susceptible after complete 
elimination of HIV (𝐶^), susceptible after cure and on PrEP (𝐶^Q), primarily infected but not 
diagnosed (𝐼 V), re-infected after a cure (𝐼 VL ) in stage 𝑘, 𝑘 = 1 (acute), 2 (chronic), 3 (AIDS), 4 
(AIDS without sexual activity), infected while on PrEP (𝐼Q), re-infected after a cure while on 
PrEP (𝐼LQ), diagnosed (𝐷^), treated on ART (𝐴^), cured and virally suppressed without ART 
(𝐶^), not effectively suppressed after cure and thus still on ART (𝐴^Le), are given by  
	

𝑑𝑆^(𝑡)
𝑑𝑡 = 𝛽𝑁8𝑞^ + 𝑘^

3TT𝑆^Q(𝑡) − .𝜇 + 𝐽 (𝑡) + 𝑘^3'(𝑡)/𝑆^(𝑡) 

𝑑𝑆^Q(𝑡)
𝑑𝑡 = 𝑘^3'(𝑡)𝑆^(𝑡) − .𝜇 + Ω𝐽 (𝑡) + 𝑘^

3TT/𝑆^Q(𝑡) 

𝑑𝐶^(𝑡)
𝑑𝑡 = 𝑒𝛼(𝑡)𝐴^(𝑡) + 𝑘^

3TT𝐶^Q(𝑡)

− .𝜇 + 𝐽 (𝑡) + 𝑘^3'(𝑡)/𝐶^(𝑡) 
𝑑𝐶^Q(𝑡)
𝑑𝑡 = 𝑘^3'(𝑡)𝐶^(𝑡) − .𝜇 + Ω𝐽 (𝑡) + 𝑘^

3TT/𝐶^Q(𝑡) 

𝑑𝐼 +(𝑡)
𝑑𝑡 = 𝑀%𝑄^𝑝+ + 𝐽 (𝑡)𝑆^(𝑡) − (𝜇 + 𝜌+ + 𝜏+)𝐼 +(𝑡) 

𝑑𝐼 V(𝑡)
𝑑𝑡 = 𝑀%𝑄^𝑝V + 𝜌V?+𝐼 V?+(𝑡) − (𝜇 + 𝜌V + 𝜏V)𝐼 V(𝑡) 

𝑑𝐼 +L (𝑡)
𝑑𝑡 = 𝐽 (𝑡)𝐶^(𝑡) − (𝜇 + 𝜌+ + 𝜏+L)𝐼 +L (𝑡) 

𝑑𝐼 VL (𝑡)
𝑑𝑡 = 𝜌V?+𝐼 V?+L (𝑡) − (𝜇 + 𝜌V + 𝜏VL)𝐼 VL (𝑡) 

𝑑𝐼Q(𝑡)
𝑑𝑡 = Ω𝐽 (𝑡)𝑆^Q(𝑡) − (𝜇 + 𝜏^Q)𝐼LQ(𝑡) 

𝑑𝐼LQ(𝑡)
𝑑𝑡 = Ω𝐽 (𝑡)𝐶^Q(𝑡) − (𝜇 + 𝜏^Q)𝐼Q(𝑡) 

𝑑𝐷^(𝑡)
𝑑𝑡 =<𝜏V𝐼 V(𝑡)

V

+ 𝜏^Q �𝐼Q(𝑡) + 𝐼LQ(𝑡)� +<𝜏VL𝐼 VL (𝑡)
V

− (𝜇 + 𝜌$ + 𝜂)𝐷^(𝑡) 

(4.5)	



 
 

𝑑𝐴^(𝑡)
𝑑𝑡 = 𝑀X𝑄^𝑡 + 𝜂𝐷^(𝑡) − .𝜇 + 𝛾 + 𝛼(𝑡)/𝐴^(𝑡) 

𝑑𝐴^Le(𝑡)
𝑑𝑡 = (1 − 𝑒)𝛼(𝑡)𝐴^(𝑡) − (𝜇 + 𝛾)𝐴^Le(𝑡) 

 
where 𝑘 = 2,3,4 and 𝑙	 = 	1, . . . , 𝑛. 
 
The force of infection in risk group 𝑙 is written as 
	

𝐽 (𝑡) = 𝜆𝑐^<𝑀^^0(𝑡) �𝜀Q
𝐼 0Q(𝑡) + 𝐼 0LQ(𝑡)

𝑁^0(𝑡)
+ 	𝜀

𝐷^0(𝑡) + 𝐴^0(𝑡) + 𝐴^0
Le(𝑡)

𝑁^0(𝑡)^0

+	<
ℎV𝐼^0V(𝑡) + ℎVL𝐼 0V

L (𝑡)
𝑁^0(𝑡)V

¸ 
(4.6)	

 
𝑁^(𝑡) is the population size of risk group 𝑙: 
	
𝑁^(𝑡) = 𝑆^(𝑡) + 𝑆^Q(𝑡) + 𝐶^(𝑡) + 𝐶^Q(𝑡)

+<[𝐼 V(𝑡) + 𝐼 VL (𝑡)] + 𝐼Q(𝑡) + 𝐼LQ(𝑡) + 𝐷^(𝑡)
V

+ 𝐴^(𝑡) + 𝐴^Le(𝑡) (4.7)	

 
and 𝑀^^0(𝑡) is the mixing matrix as above. 
 
Sexual partner change rates 
We	used	survey	data	to	estimate	the	number	of	new	sexual	partner	per	year,	weighted	on	
condom	use,	in	the	MSM	population.	For	each	risk	group,	we	define	as	sexual	contact	rate	
change	𝑐^ 	the	product	of	the	number	of	new	partners	times	a	binary	condom	use	variable	
equal	 to	 zero	 if	 the	 individual	 reported	 to	 always	 using	 condoms	 and	 equal	 to	 one	
otherwise.	After	building	the	empirical	distribution	of	casual	sexual	contact	rate	change,	
we	 added,	 for	 each	 individual,	 zero,	 one	 or	 two	 steady	 partners	 via	 multinomial	
probabilities	𝑝8# 	= 	0.425,	𝑝+#=	0.483	and	𝑝B#=	0.092,	estimated	from	data	in	the	current	
scenario	concerning	only	individuals	that	were	recruited	through	the	Aids	Care	Service	
(ACS)	program	[176].	We	modeled	the	empirical	histogram	of	observed	values	of	𝑐^under	
each	scenario	using	a	Weibull	distribution.	The	CDFs	are	illustrated	in	Figure	4-9,	with	
vertical	 dashed	 lines	 indicating	 the	 intervals	 defining	 all	 the	 risk	 groups’	 rates.	 We	
assume	that	the	proportions	of	the	population,	𝑞^ ,	belonging	to	each	risk	groups	will	not	
change	after	the	introduction	of	a	cure.	The	results	obtained	represents	the	rates	per	six	
months.	To	obtain	yearly	estimates,	we	multiply	the	rates	by	1.5	[177].		
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Figure 4-9. Cumulative density function of sexual partner change rates. a Current scenario, b PTC cure scenario and c 
elimination cure scenario. The red circles correspond to the empirical distribution data from the survey. The blue line 
corresponds to the Weibull distribution that better fit the data. The parameters of the fitted Weibull are reported in the legend 
of each panel. 

Calibration of free parameters 
The	free	parameters	of	our	model	to	be	calibrated	were:	the	probability	of	transmission	
per	sexual	partner	𝜆;	the	mixing	parameter	ω	(groups	assortativity	of	contacts);	the	
infectivity	of	diagnosed/treated	individuals	ε;	the	number	of	newly	imported	infected	
undiagnosed	individuals	per	year	MI;	and	an	additional	number	of	undiagnosed	
individuals	at	initialization	to	allow	the	model	to	burn-in	𝑈8;	the	infected	population	
fraction	𝑄^ 	used	to	split	initialized	and	imported	infected	cases	into	risk	group	𝑙,	with	
𝑙	 = 	1, . . . , 𝑛.	To	calibrate	those,	we	used	an	Approximate	Bayesian	Computation	(ABC)	
approach	based	on	Latin	Hypercube	Sampling	(LHS).	The	procedure	consists	of	two	
sequential	steps.	First,	we	sampled	from	L	=	40000	parameters	sets,	generated	through	
the	LHS	based	on	the	prior	ranges	reported	in	Table	4-3,	for	which	the	condition	𝑄+ <
	𝑄B < 𝑄C < 𝑄A	holds.	After	normalizing	all	the	𝑄^ 	such	that	∑ 𝑄^^ =	1,	we	sampled	
parameters	from	the	generated	list	and	simulated	the	epidemic	dynamics	for	each	set.	
The	performance	of	each	simulation	was	evaluated	by	comparing	the	simulated	new	
diagnosed	per	year	and	the	number	of	undiagnosed	individuals	with	the	data	time	
series.	We	accepted	a	parameter	set	if	it	met	the	following	criteria:	i)	the	simulated	
yearly	diagnoses	fell	within	10%	of	the	observed	data	points,	and	ii)	the	annual	number	
of	undiagnosed	cases	remained	within	the	uncertainty	intervals	of	the	observed	data	
throughout	the	calibration	period	(2017-2022).	Additionally,	we	constrained	the	
estimated	number	of	imported	undiagnosed	cases	per	year	to	be	less	than	upper	bound	
of	the	HIV	incidence	in	2022,	estimated	by	the	Dutch	Monitoring	Foundation,	which	is	
150	new	cases.	We	accepted	300	parameter	sets,	and	then	we	sampled	100	accepted	
sets	to	produce	cure	scenarios	with	variability.		
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The	 fitted	 curves	 are	 reported	 in	 Figure	 4-1.	 The	 empirical	 distribution	 of	 accepted	
parameters	and	the	Pearson	correlations	between	parameters	are	showed	in	Figure	4-10	
and	Figure	4-11,	respectively.	The	model	is	validated	on	the	number	of	PrEP	users	and	
the	 number	 of	 newly	 imported	 individuals	who	 are	 already	 on	 treatment.	 These	 two	
quantities	 were	 also	 used	 to	 calibrate	 a	 time-dependent	 functional	 form	 of	 the	 PrEP	
uptake	and	the	rate	of	importation	from	abroad	of	treated	individuals	(see	next	section	
for	details).	We	show	such	validations	in	Figure	4-12a	and	Figure	4-12b.	We	assume	that,	
after	2022,	the	number	of	PrEP	users	remains	at	a	maximum	capacity	of	𝑁QN.1	=	10A.	We	
validated	our	model	calibration	further	through	the	number	of	treated	individuals	and	
the	 proportion	 of	 treated	 out	 of	 the	 infected	 individuals	 over	 time	 (Figure	 4-12c	 and	
Figure	4-12d).	An	additional	validation	of	our	model	is	reported	Figure	4-13,	where	we	
show	how	the	average	proportions,	 throughout	 the	 time	window	of	 the	simulation,	of	
infected	individuals	per	risk	group	remain	almost	constant.		
	

 
Figure 4-10. Estimated free parameters. Histograms of all the parameters of the model fitted via the approximate Bayesian 
computation framework. a Transmission probability per partner; b mixing (assortativity) parameter; c infectivity of diagnosed 
and treated individuals; d number of newly imported undiagnosed cases rescaled by the birth rate and the population size; e 
number of not detected cases at the initialization of the model in 2015; f probability to be in the risk group 1 of imported 
cases; g probability to be in the risk group 2 of imported cases; h probability to be in the risk group 3 of imported cases; (i) 
probability to be in the risk group 4 of imported cases. The vertical continuous line indicates the mean value. The vertical 
dashed lines indicate the bounds of the 95% credible interval. 
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Figure 4-11. Spearman correlation for each pair of parameters fitted via the approximate Bayesian framework.  

 

 
Figure 4-12. Model validation against HIV surveillance data for MSM in the Netherlands. a Number of individuals on PrEP, b 
new imported cases on ART, c number of individuals on ART, and d ART coverage among all infected individuals. The red dots 
and the error bars correspond to the mean estimates and the 95% confidence intervals in the data from a the national STI 
surveillance database and b–d the HIV Monitoring Foundation. The mean trajectories estimated from the model are shown 
as orange lines. The orange shaded regions correspond to 95% prediction intervals based on 100 samples from the joint 
posterior parameter distribution.  
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Figure 4-13. Proportions of infected individuals per risk group over time. Proportions, throughout the time window of the 
fitting simulations, of infected individuals for each of the four risk group. 

Linear assumptions 
Based on observed data, we assume a linear increase of the annual number of individuals on 
PrEP and of the number of new imported cases already on treatment per year. We then fitted 
two linear models to estimate the slopes, 𝑀X and 𝑀Q, of the lines to drive the related 
compartment variables in the compartmental model. While MA enters directly the equation of 
the model (see Equations (4.1) and (4.5)) for the compartment A, further assumptions should 
be made for PrEP users. Data on PrEP users start from 2019 and end in 2021. However, based 
on the fact that pilot trials on PrEP were ongoing even before, we model PrEP enrolling already 
from 2015. Hence, we split data in two regions, namely 2015-2019 and 2019-2021, and 
estimated two different slopes, 𝑀Q

:  and 𝑀Q
T , respectively. Since we assume that only risk 

groups 3 and 4 are eligible for PrEP, we weighted 𝑀Q
:  and 𝑀Q

Twith population fractions 𝑞C and 
𝑞A, thus leading to four different values that are 𝑀Q,C

: , 𝑀Q,C
T , 𝑀Q,A

: , and 𝑀Q,A
T . To use the linearity 

assumption of PrEP users in our model, we take the equation for the derivative of 𝑆^Q and we 
focus on the case where the outflux from the compartment that is not due to PrEP dropout is 
negligible, that is:  
	

𝑑𝑆^Q(𝑡)
𝑑𝑡 ≈ 𝜅^3'(𝑡)𝑆^(𝑡) − 𝜅^

3TT𝑆^Q(𝑡) (4.8)	

 
A linear growth of 𝑆Q translate in a constant derivative, 𝑑𝑆Q	/𝑑𝑡	 ≈ 	𝑀Q . Inserting this in the 
Equation (4.8), we obtain that the PrEP uptake rate, for each risk group 𝑙, should take the 
following form:  
	

𝜅^3'(𝑡) ≈
𝑀Q,^
\ + 𝜅^

3TT𝑆^Q(𝑡)
𝑆^(𝑡)

 (4.9)	

 
where 𝑋 = 𝑖 before 2019 and 𝑋 = 𝑓 after. 
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Tables 
 
Table 4-1. Description of cure scenarios. The scenarios are reproduced from our previous qualitative study on the perceived 
impact of an HIV cure by people living with HIV and key populations vulnerable to HIV in the Netherlands [144]. PTC = post-
treatment control. 

Type	of	scenario	 Description	
PTC	 Imagine	that	this	treatment	has	been	extensively	tested,	is	safe	and	now	

available	for	everyone	living	with	HIV.	The	purpose	of	this	treatment	is	to	
suppress	HIV	in	the	body	long-term	without	ART.		

• After	this	treatment,	the	immune	system	suppresses	HIV.		
• If	HIV	is	suppressed	without	HIV	medication,	then:		

o HIV	is	still	present	in	the	body.	
o There	is	a	small	chance	that	HIV	will	become	active	again,	

which	is	why	it	is	necessary	to	have	blood	tests	done.	Every	
six	months	up	till	three	years	after	the	treatment.		

o Taking	HIV	medication	is	not	necessary	anymore.	
o It	is	not	possible	to	contract	HIV	again	or	transfer	HIV.	
o PrEP	or	condom	use	is	not	necessary	to	prevent	HIV.	

	
Elimination	 Imagine	that	this	treatment	has	been	extensively	tested,	is	safe	and	now	

available	for	everyone	living	with	HIV.		
• This	treatment	removes	HIV	from	the	body.	
• Blood	tests	are	used	to	determine	whether	the	treatment	is	

successful.	Every	6	months,	up	till	3	years	after	the	treatment.		
• If	HIV	is	successfully	removed	from	the	body,	then:		

o It	is	not	necessary	to	take	HIV	medication	(ART).	
o There	is	no	chance	of	HIV	becoming	active	again.		
o It	is	not	possible	to	transfer	HIV.	
o It	is	not	possible	to	contract	HIV	again.	This	treatment	does	

not	provide	immunity	to	HIV.	
o It	is	recommended	to	use	PrEP	and/or	condoms.	
o It	is	still	advised	to	test	for	HIV	regularly.	

	
 
Table 4-2. Scenarios tested and relation to TTP. Different parameter values and modeling decisions represent various 
scenarios that have been tested and are compared to the minimum and optimum values outlined in the Target Product Profile 
(TPP) [148], there named as time of remission, clinical efficacy, and protection from reinfection. In our PTC scenario, full 
protection is assumed, while the elimination scenario assumes no protection.  

	 Minimum	TTP	 Optimum	TTP	 	

Varied	characteristics	 	   
Efficacy,	𝒆	 20%	 90%  
Time	to	rebound,	𝟏/𝝓	 2 years	 6 years never 
Protection	from	reinfection	 None	 Full  
Fixed	characteristics	 	   
Target	population	 Virologically	suppressed	on	ART	 -  

 
 
 
 



 
 

Table 4-3. Summary of the model parameters. 

Description (unit) Notation Value Reference 
Duration of stage 𝒌 in undiagnosed 
individuals (years) 

1/𝜌1 1/𝜌2 = 0.14, 1/𝜌3 = 8.44, 
1/𝜌4 = 1.18, 1/𝜌5 = 1.32 

[178-182] 

Probability of being in stage 𝒌 
(proportional to the duration of stage 
𝒌) 

𝑝1 𝑝2 = 0.01, 𝑝3 = 0.76,	
𝑝4 = 0.11, 𝑝5 = 0.12 

- 

Duration of survival of diagnosed 
individuals (years) 

1/𝜌6 11 [178,180,183] 

Duration of survival of treated 
individuals (years) 

1/𝛾 61 [178,180,183] 

Infectivity in stage 𝒌 of undiagnosed 
individuals 

ℎ1 ℎ2 = 0.62, ℎ3 = 0.12,	
ℎ4 = 0.64, ℎ5 = 0 

[178,181,182] 

Infectivity of individuals infected on 
PrEP 

𝜀7 ℎ2/2 assumed 

Total initial population size 𝑁8 210,000 [164] 
Initial susceptible population fractions 
of risk group 𝒍 

𝑞9 𝑞2 = 0.45, 𝑞3 = 0.35,	
𝑞4 = 0.13, 𝑞5 = 0.07 

[184] 

Rate of entrance in the sexually active 
population (1/year) 

𝛽 1/45 [184] 

Duration of sexual life (years) 1/𝜇 45 [184] 
Diagnostic delay in AIDS stages, 3 and 
4 (years) 

1/𝜏4,5 1/12 assumed 

Treatment delay after diagnosis in risk 
group 𝒍 (years) 

1/𝜂 0.125 [185] 

PrEP effectiveness 1 − 𝛺 0.86 [139,186] 
Duration on PrEP in risk group 𝒍 (years) 1/𝜅9

:;; 5 [164] 

PrEP uptake rate in risk group 𝒍 
(1/year) 

𝜅9:<(𝑡) - Eq. (9) 

Diagnosis rate for individuals in risk 
group 𝒍 infected on PrEP (1/year) 

𝜏97 4 [159] 

Diagnostic delay (95% CrI) for 
individuals in acute stage (years) 

1/𝜏2 1.31	(0.81 − 1.53) estimated 

Diagnostic delay (95% CrI) for 
individuals in chronic stage (years) 

1/𝜏3 3.42	(2.59 − 3.74) estimated 

Average number of new partners in 
risk group 𝒍 in the current situation 
(1/six months) 

𝑐9 𝑐2 = 0.52, 𝑐3 = 3.81,	
𝑐4 = 11.16, 𝑐5 = 28.56 

estimated 

Average number of new partners in 
risk group 𝒍 after introducing PTC cure 
(1/six months) 

𝑐9 𝑐2 = 1.03, 𝑐3 = 6.42,	
𝑐4 = 17.15, 𝑐5 = 40.02 

estimated 

Average number of new partners in 
risk group 𝒍 after introducing 
elimination cure (1/six months) 

𝑐9 𝑐2 = 0.90, 𝑐3 = 5.90,	
𝑐4 = 16.25, 𝑐5 = 39.04 

estimated 

Average transmission probability (95% 
CrI) per partnership 

𝜆 0.031	(0.011	 − 	0.080) estimated 

Average mixing parameter (95% CrI) 𝜔 0.494	(0.014	 − 	0.969) estimated 
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Average infectivity (95% CrI) of 
diagnosed/treated individuals 

𝜀 0.016	(4.081	 × 	10⁻⁴	
− 	5.028	 × 	10⁻²) 

estimated 

Infected population fraction in risk 
group 1 

𝑄2 0.096	(0.004	 − 	0.212) estimated 

Infected population fraction in risk 
group 2 

𝑄3 0.195	(0.057	 − 	0.295) estimated 

Infected population fraction in risk 
group 3 

𝑄4 0.298	(0.175	 − 	0.403) estimated 

Infected population fraction in risk 
group 4 

𝑄5 0.411	(0.279	 − 	0.661) estimated 

Cure effectiveness (%) 𝑒 Varied - 
Maximal cure uptake in risk group 𝒍 
(%) 

𝛼V9=>? Varied - 

Maximum cure uptake rate in risk 
group 𝒍 (1/year) 

𝛼9=>? 𝑙𝑛[1	 −	𝛼V9=>?/100] - 

Cure uptake rate in risk group 𝒍 𝛼9(𝑡) Logistic grow within 3 years [139] 
Cure uptake in risk group 𝒍 (%) 𝛼V9(𝑡) {1 − 	𝑒𝑥𝑝[−𝛼9(𝑡)]} ⋅ 100 

 
- 

Diagnostic delay for rebound 
(PTC)/reinfected (elimination) cases in 
stage 𝒌 (years) 
 

1/𝜏1̅@  Varied - 

Duration of viral suppression without 
ART in the PTC scenario (years)  
 

1/𝜙 Varied - 

 
Table 4-4. Uniform priors of free parameters. 

Parameter	 Interval	
𝝉𝟏	 [0.01, 2]	
𝝉𝟐	 [0.01, 1]	
𝝀	 [0.01, 0.15]	
𝝎	 [0, 1]	
𝜺	 [0, 0.06]	

𝑴𝑰/(𝜷𝑵𝟎)		 [0, 0.05]	
𝑼𝟎	 [0, 2000]	

𝑸𝒍,	𝒍 = 𝟏,… , 𝒏	 [0, 1]	
 
 
 
 
 
 
 
 
 
Sensitivity analyses figures 
 



 
 

 
Figure 4-14. Impact of the cure dynamics on the HIV dynamics when behavioral changes are included. New cases (primary 
infections in naive individuals) with different types of behavioral changes introduced (different colors). The red arrow indicates 
the cure introduction. The mean trajectories from the model are shown as solid lines. The shaded regions correspond to 95% 
prediction intervals based on 100 samples from the joint posterior parameter distribution. The projections of the model 
without a cure are shown in orange. Parameters: cure efficacy of 90%, cure uptake of 90%, diagnostic delay of cured 
individuals who experience a viral rebound of 3 months. a PTC cure scenario with time to rebound of 6 years; b elimination 
cure scenario. 

 

 
Figure 4-15. Impact of the PTC cure on the HIV dynamics if the first stage after rebound is acute. a New cases (primary 
infections in naive individuals), b new rebounds (new cases of viral rebound in cured individuals), c prevalence (proportion of 
individuals with HIV), and c cure coverage (proportion of cured individuals among all eligible) as a function cure uptake. The 
red arrows indicate the cure introduction. The mean trajectories from the model are shown as solid lines. The shaded regions 
correspond to 95% prediction intervals based on 100 samples from the joint posterior parameter distribution. Different shades 
of blue correspond to different times until viral rebound. The projections of the model without a cure are shown in orange. 
Parameters: cure efficacy of 90%, cure uptake of 90% and diagnostic delay of cured individuals who experience a viral rebound 
of 3 months. 
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Figure 4-16. Impact of the elimination cure on the HIV dynamics if the first stage after re-infection chronic. a New cases 
(primary infections in naive individuals), b new re-infections (infections in cured individuals), c prevalence (proportion of 
individuals with HIV), and c cure coverage (proportion of cured individuals among all eligible) as a function cure uptake. The 
red arrows indicate the cure introduction. The mean trajectories from the model are shown as solid lines. The shaded regions 
correspond to 95% prediction intervals based on 100 samples from the joint posterior parameter distribution. Different shades 
of green correspond to different cure uptakes. The projections of the model without a cure are shown in orange. Parameters: 
cure efficacy of 90% and diagnostic delay of cured individuals who experience re-infection of 3 months. 

 

 
Figure 4-17. Impact of the PTC cure on the HIV dynamics if the cure is introduced 4 years later, in 2030. a New cases (primary 
infections in naive individuals), b new rebounds (new cases of viral rebound in cured individuals), c prevalence (proportion of 
individuals with HIV), and c cure coverage (proportion of cured individuals among all eligible) as a function cure uptake. The 
red arrows indicate the cure introduction. The mean trajectories from the model are shown as solid lines. The shaded regions 
correspond to 95% prediction intervals based on 100 samples from the joint posterior parameter distribution. Different shades 
of blue correspond to different times until viral rebound. The projections of the model without a cure are shown in orange. 
Parameters: cure efficacy of 90%, cure uptake of 90% and diagnostic delay of cured individuals who experience a viral rebound 
of 3 months. 
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Figure 4-18. Impact of the elimination cure on the HIV dynamics if cure is introduced 4 years later, in 2030. a New cases 
(primary infections in naive individuals), b new re-infections (infections in cured individuals), c prevalence (proportion of 
individuals with HIV), and c cure coverage (proportion of cured individuals among all eligible) as a function cure uptake. The 
red arrows indicate the cure introduction. The mean trajectories from the model are shown as solid lines. The shaded regions 
correspond to 95% prediction intervals based on 100 samples from the joint posterior parameter distribution. Different shades 
of green correspond to different cure uptakes. The projections of the model without a cure are shown in orange. Parameters: 
cure efficacy of 90% and diagnostic delay of cured individuals who experience re-infection of 3 months.  
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CONCLUSION 
 
 
 

 
In	 this	 thesis,	 I	 addressed	 specific	 public	 health	 questions	 by	 studying	 three	 distinct	
infectious	disease	scenarios,	each	involving	different	transmission	mechanisms	caused	
by	 different	 viruses:	 airborne	 transmission	 (SARS-CoV-2),	 faecal-oral	 transmission	
(norovirus),	 and	 sexual	 transmission	 (HIV).	 By	 applying	 context-specific,	 data-driven	
modeling	 techniques,	 such	 as	 Bayesian	 probabilistic	 models,	 stochastic	 branching	
processes,	 and	 stratified	 ODE	 models,	 I	 reconstructed	 transmission	 dynamics	 and	
assessed	the	potential	impact	of	public	health	interventions.	These	models	were	tailored	
to	 the	 unique	 characteristics	 of	 each	 disease	 and	 its	 affected	 population,	 in	 order	 to	
provide	actionable	insights	in	response	to	the	research	questions	raised	by	stakeholders.	
	
In	this	chapter,	I	will	summarize	the	main	results	of	these	studies,	discuss	their	scientific	
and	practical	impact	and	highlight	the	critical	role	of	collaborations	with	data	providers	
and	public	health	stakeholders.	
	
The	first	two	chapters	focus	on	estimating	the	generation	time	of	the	Alpha,	Delta,	and	
Omicron	variants	of	SARS-CoV-2,	a	key	parameter	for	understanding	the	epidemiology	of	
any	pathogen.	Knowledge	of	the	generation	time	distribution	is	useful	for	estimating	the	
reproduction	 number,	 the	 primary	 metric	 for	 monitoring	 epidemic	 progression	
[187,188].	It	also	informs	the	development	of	mathematical	models	used	to	understand	
transmission	 dynamics,	 evaluate	 interventions,	 and	 forecast	 epidemic	 trends.	
Additionally,	from	a	public	health	perspective,	it	plays	a	practical	role	in	guiding	decisions	
about	contact	tracing	protocols,	quarantine	durations,	and	isolation	measures.	
	
To	provide	reliable	estimates	of	the	intrinsic	generation	time,	we	used	household	contact	
tracing	data	from	the	Reggio-Emilia	province	in	Italy.	We	applied	on	these	data	a	Bayesian	
inference	model	to	reconstruct	transmission	chains	from	line-list	epidemiological	data.	
Our	estimates	of	the	mean	intrinsic	generation	time	for	all	variants	considered	ranged	
from	6	to	6.8	days,	consistent	with	those	for	the	ancestral	 lineage	of	SARS-CoV-2.	This	
finding	 retrospectively	 supported	 the	 continuation	 of	 the	 same	 contact	 tracing,	
quarantine,	and	isolation	protocols	used	for	the	ancestral	lineage	also	for	the	Alpha	and	
Delta	waves.	However,	 during	 the	Omicron	phase,	 isolation	 and	 quarantine	 durations	
were	reduced,	partly	due	to	the	large	volume	of	cases,	that	would	have	led	to	excessive	
numbers	of	people	being	 isolated	 for	extended	periods,	partly	 to	 the	observation	 that	
Omicron	generally	caused	milder	illness,	and	finally	due	to	the	belief	that	Omicron	had	a	
shorter	generation	time,	as	suggested	by	several	studies	at	the	time.	A	study	from	Hong	
Kong	based	on	contact	tracing	data	estimated	the	realized	generation	time	in	a	context	
with	 strict	 control	 measures	 that	 are	 known	 to	 bias	 downward	 this	 estimate	 [47].	
Additional	 studies	 had	 provided	 preliminary	 and	 indirect	measures	 of	 the	 generation	
time	 using	 mathematical	 models	 describing	 trajectories	 of	 variant	 frequencies	 from	
population-level	data	in	Denmark	and	the	United	Kingdom	[45,46]	(the	latter	of	which	



 
 

was	 eventually	 not	 published).	 Both	 of	 them	 suggested	 a	 reduced	 value	 compared	 to	
Delta.	Our	mathematical	model	based	on	household	contact	tracing	data	and	accounting	
for	 transmission	 heterogeneity	 provided	 a	 more	 direct	 and	 robust	 estimate	 of	 the	
intrinsic	generation	 time	while	still	 reproducing	 the	shorter	realized	generation	 times	
and	serial	intervals.	These	results	influenced	subsequent	modeling	studies	published	by	
independent	research	groups,	achieving	a	significant	scientific	impact	and	reinforcing	the	
importance	of	accurate	generation	time	estimates	in	shaping	public	health	strategies	(e.g.,	
[189],	[190]).		
	
Direct	 interactions	 with	 Reggio	 Emilia	 local	 health	 authorities	 were	 essential	 for	
clarifying	 data	 collection	 methods,	 identifying	 biases,	 and	 defining	 the	 appropriate	
filtering	criteria.	These	discussions	also	provided	a	clear	understanding	of	 the	contact	
tracing	and	isolation	protocols	in	place,	which	were	explicitly	integrated	into	our	models.	
Similarly,	collaboration	with	the	Istituto	Superiore	di	Sanità	offered	invaluable	insights	
into	nationwide	distancing	measures,	helping	refine	the	accuracy	of	models,	guiding	the	
interpretation	of	the	findings,	and	their	appropriate	communication	to	the	public.	
	
In	the	third	chapter,	I	focused	on	modeling	norovirus	transmission	aboard	cruise	ships,	
where	confined	environments	amplify	the	risk	of	large-scale	outbreaks.	These	outbreaks	
not	only	pose	significant	health	risks	but	also	have	considerable	economic	implications,	
as	 cruise	 operators	 face	 high	 costs	 associated	 with	 infection	 control	 measures.	
Mathematical	 modeling	 studies	 on	 norovirus	 transmission	 in	 such	 settings	 remain	
extremely	 limited.	 To	 date,	 we	 identified	 only	 one	 other	 study	 that	 evaluated	 the	
effectiveness	of	 isolation	 in	 reducing	outbreak	size	 [50].	The	 study	estimated	 that	 the	
reduction	 in	 the	 number	 of	 cases	 following	 complete	 and	 permanent	 isolation	
immediately	after	symptom	onset	was	between	85%	and	97%,	close	to	our	estimate	of	
“perfect	 isolation”	at	91%.	Our	model	was	able	to	further	evaluate	the	effectiveness	of	
more	 realistic	 isolation	 protocols	 and	 to	 evaluate	 the	 impact	 of	 diagnostic	 delays.	 In	
particular,	we	found	that,	in	the	presence	of	diagnostic	delays,	an	isolation	protocol	of	72	
hours	 for	 each	 diagnosed	 case	 (as	 implemented	 during	 the	 considered	 outbreak)	
prevented	71%	of	potential	cases.	Halving	diagnostic	delays	could	further	decrease	the	
size	of	outbreaks	by	increasing	the	effectiveness	to	80%.	
	
Our	 findings	also	revealed	 the	presence	of	norovirus	superspreaders	who	contributed	
disproportionately	 to	 transmission.	 Superspreaders	were	associated	with	 significantly	
longer	diagnostic	 delays	 and	 lower	 frequency	 of	 symptoms,	 suggesting	 that	 the	 latter	
induced	the	patients	to	postpone	health-seeking,	thereby	allowing	for	more	occasions	to	
transmit	the	infection	before	isolation.	This	result	highlights	the	importance	of	passenger	
education	 towards	 seeking	 immediate	 health	 assistance	 when	 experiencing	
gastrointestinal	 symptoms	on	board,	 to	 reduce	 the	probability	 of	 outbreaks	 and	 their	
cumulative	incidence.	
	
Once	 again,	 there	 were	 extensive	 interactions	 with	 the	 University	 of	 Thessaly	 for	
understanding	 the	 specificities	 of	 transmission	 onboard	 cruise	 ships	 and	 identify	
potential	biases	in	data	collection,	such	as	underreporting.	Their	input	was	additionally	
essential	 for	 interpreting	 the	 significance	 of	 results	 within	 the	 domain	 of	 maritime	
transport	epidemiology,	which	has	its	own	peculiarities	and	practices.	
	
The	results	of	this	study	have	also	laid	the	foundation	for	additional	research,	in	which	I	
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am	 involved	 as	 a	 co-author.	 This	 new	work	 continues	 to	 explore	 norovirus	 outbreak	
dynamics	on	cruise	ships,	with	a	particular	focus	on	the	performance	of	automated	real-
time	 forecasting	models.	 In	recent	years,	 the	 task	of	 forecasting	 infectious	disease	has	
been	 a	 growing	 field	 of	 investigation,	 with	 applications	 to	 endemic	 diseases	 such	 as	
seasonal	influenza	[191]	or	emerging	infections	such	as	Ebola	[192]	or	COVID-19	[193].	
However,	while	research	efforts	have	been	mostly	focused	on	open	populations,	with	the	
aim	of	supporting	national	or	regional	public	health	authorities,	our	study	is	the	first	to	
address	the	problem	of	forecasting	on	semi-closed	populations.	In	this	work,	we	assess	
the	performance	of	a	real-time	forecasting	system	projecting	norovirus	cases	on	board	
cruise	ships,	in	order	to	evaluate	the	feasibility	of	an	integration	of	forecasts	within	the	
ship’s	surveillance	system	software.	By	comparing	different	prediction	models,	we	found	
that	 the	 best	 forecasting	 performance	 came	 from	 a	 model	 that	 incorporates	 both	
diagnostic	delays	before	case	isolation	and	superspreading	phenomena.	Specifically,	by	
integrating	overdispersion	in	the	distribution	of	secondary	cases,	as	estimated	in	Chapter	
3,	we	demonstrated	that	up	to	78%	of	data	points	were	more	accurately	predicted	by	
models	accounting	for	transmission	heterogeneity	caused	by	superspreaders,	compared	
to	a	standard	baseline	used	to	benchmark	forecasts.	These	findings	might	have	practical	
implications	 for	 cruise	 line	 companies.	 	 Having	 demonstrated	 the	 accuracy	 of	 simple	
predictive	 models	 paves	 the	 way	 for	 integrating	 them	 into	 syndromic	 surveillance	
systems	 onboard,	 with	 the	 potential	 to	 enhance	 and	 improve	 outbreak	 monitoring,	
management	and	prevention.	This	integration	is	currently	being	prototyped	by	engineers	
of	the	National&Kapodistrian	University	of	Athens	within	the	Healthy	Sailing	project.	
	
In	the	fourth	chapter,	I	focused	on	the	population-level	impact	of	introducing	a	potential	
HIV	cure	among	men	who	have	sex	with	men	(MSM)	in	the	Netherlands.	Research	on	how	
a	prospective	HIV	cure	might	influence	transmission	dynamics	at	the	population	level	is	
still	limited.	We	identified	only	two	studies	that	explored	this	issue	focusing	on	African	
settings	 or	 heterosexual	 populations	 [56,57],	 leaving	 a	 gap	 in	 understanding	 how	 a	
potential	 cure	might	 affect	 the	 epidemic	 dynamics	within	MSM	 communities	 in	 high-
income	countries.	To	fill	this	gap,	we	employed	a	compartmental	deterministic	model	that	
incorporated	heterogeneity	in	sexual	activity	and	infectiousness	profiles,	calibrated	using	
national	behavioral	and	epidemiological	data.	Our	model-based	evaluation	indicated	that	
caution	is	needed	in	the	future	deployment	of	HIV	cures.	Specifically,	we	found	that	a	cure	
that	 would	 temporarily	 suppress	 HIV	 in	 the	 host,	 but	 is	 subject	 to	 failure	 and	 viral	
rebound,	 could	 disrupt	 the	 current	 declining	 trend	 in	 HIV	 incidence	 observed	 in	 the	
Netherlands.	In	contrast,	a	cure	that	would	completely	eliminate	the	virus	from	the	host	
would	 consistently	 reduce	 HIV	 cases	 despite	 the	 possibility	 of	 reinfection	 for	 cured	
individuals,	 leading	to	a	reduction	of	up	to	50%	in	cumulative	 incidence	over	the	next	
decade.	
	
Our	findings	qualitatively	align	with	previous	modeling	studies	focused	on	generalized	
HIV	epidemics	 in	heterosexual	populations	 in	Africa	[56,57],	which	similarly	 indicated	
that	interventions	lacking	sustained	viral	suppression	could	result	in	an	increase	in	HIV	
incidence.	
	
Also	in	this	case,	close	collaboration	with	researchers	from	diverse	backgrounds	at	both	
RIVM	and	UMCU	was	essential	in	refining	the	model	and	ensuring	its	relevance	to	real-
world	public	health	contexts.	The	RIVM	provided	key	epidemiological	data,	while	UMCU	
social	 scientists	 offered	 insights	 into	behavioral	 patterns	within	 the	MSM	community,	



 
 

improving	 the	 accuracy	 of	 our	 model’s	 assumptions.	 Additionally,	 interactions	 with	
medical	 experts,	 both	 from	 RIVM	 and	 UMCU,	 improved	 our	 understanding	 of	 HIV	
treatments,	guiding	the	selection	and	simulation	of	cure	scenarios.	
	
In	 addition	 to	 the	 work	 presented	 in	 Chapters	 1-4,	 I	 have	 been	 leading	 the	
implementation	 of	 two	 further	 research	 projects	 that	 are	 ongoing	 and	 have	 not	 yet	
yielded	results	substantial	enough	to	be	included	in	this	thesis.	Both	studies	involve	the	
use	 of	 individual-based	 models	 (IBM),	 a	 class	 of	 models	 particularly	 well-suited	 for	
simulating	complex	population	settings	and	capturing	individual	behaviors,	allowing	for	
the	assessment	of	individually	targeted	intervention	strategies.	
		
The	first	was	the	development	of	an	IBM	designed	to	replicate	social	and	epidemiological	
dynamics	aboard	cruise	ships	in	the	context	of	COVID-19	outbreaks	in	the	fall	of	2020.	By	
simulating	 the	 daily	 activities	 of	 passengers	 and	 crew	 members,	 such	 as	 their	 cabin	
routines,	mealtimes,	participation	in	onboard	entertainment,	and	port	visits,	this	model	
provides	a	highly	detailed	representation	of	the	population	movements	and	gathering	in	
different	spaces,	also	accounting	for	restrictions	existing	at	the	time.	We	leverage	data	
provided	by	the	MSC	cruise	line	company,	including	ship	layouts,	cabin	divisions,	capacity	
and	opening	hours	of	entertainment	venues	onboard,	and	we	integrate	epidemiological	
dynamics	of	SARS-CoV-2	transmission	and	testing.	This	model	aims	to	understand	the	
transmission	dynamics	onboard	and	to	assess	the	effectiveness	of	various	intervention	
strategies,	 such	 as	 individual	 isolation	 and	 closure	 of	 venues,	with	 the	 perspective	 of	
contributing	to	optimize	the	management	of	COVID-19	outbreaks	and	other	respiratory	
viruses	on	board.	
		
Additionally,	 I	 developed	 another	 IBM	 to	 replicate	 the	 dynamics	 of	 patients	 within	 a	
pediatric	 hospital.	 This	model	 was	 built	 using	 detailed	 data	 directly	 provided	 by	 the	
hospital,	including	movement	patterns	between	wards,	admissions	and	discharges,	and	
the	distributions	of	durations	of	stay	in	the	hospital.	The	model	is	applied	to	the	study	of	
the	transmission	dynamics	of	methicillin-resistant	Staphylococcus	aureus	(MRSA)	[194],	a	
significant	threat	in	healthcare	settings.	We	additionally	incorporated	data	on	diagnostic	
testing,	isolation	protocols,	treatment	regimens	and	patient	medical	procedures	that	are	
relevant	 for	MRSA	transmission.	 	This	work	aims	 to	provide	 insights	on	 the	 impact	of	
patient	 transfer	 networks	 across	 wards	 and	 infection	 control	 measures	 (e.g.,	 testing	
strategies	 at	 admission,	 isolation	 and	 cohorting),	 and	 fits	 in	 the	 broader	 scope	 of	
understanding	and	contrasting	the	spread	of	antimicrobial-resistance	(AMR).	
	
In	summary,	all	the	work	performed	within	the	thesis	shares	the	common	objective	of	
addressing	 practical	 research	 questions	 to	 tackle	 real-world	 public	 health	 challenges.	
Close	 collaboration	with	data	providers	 and	domain	experts,	who	were	 also	 the	main	
beneficiaries	 of	 the	 research	 outcomes,	 was	 essential	 throughout	 my	 work.	 This	
collaborative	 approach	 is	 crucial	 in	 modern	 epidemiology	 [2]	 and	 has	 increased	 the	
robustness	 of	 the	 presented	models	 and	 the	 relevance	 of	 produced	 results	 through	 a	
deeper,	otherwise	unattainable,	understanding	of	the	dynamics	at	play.		
	
In	recent	years,	the	frequency	of	new	epidemic	threats	due	to	emerging	and	re-emerging	
pathogens	 has	 increased,	 driven	 by	 a	 range	 of	 complex	 and	 interconnected	 factors.	
Globalization,	with	its	unprecedented	levels	of	international	travel,	facilitates	the	rapid	
spread	of	pathogens	across	borders	[195].	Urbanization,	which	results	in	more	densely	
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populated	environments,	provides	fertile	ground	for	diseases	to	spread	[196].	Growing	
socio-economic	 inequalities	 increase	 the	 risk	 of	 disease	 exposure	 and	 limit	 access	 to	
healthcare	in	vulnerable	regions,	possibly	hampering	the	containment	of	epidemics	at	the	
source	 [197].	 Global	 warming	 is	 expanding	 the	 habitats	 of	 vectors	 like	 mosquitoes,	
contributing	 to	 the	 rise	 of	 vector-borne	 diseases	 in	 previously	 unaffected	 geographic	
areas	[198,199].	Other	anthropogenic	environmental	changes	such	as	the	disruption	of	
natural	 habitats	 affect	 the	 interface	 between	 humans	 and	 wildlife,	 favoring	 their	
encounters	and	increasing	the	probability	of	zoonotic	spillover	events	and	the	adaptation	
of	 new	 pathogens	 to	 humans	 [200].	 A	 specific	 emerging	 threat	 is	 constituted	 by	 the	
progressive	spread	of	AMR	which	risks	disrupting	decades	of	progress	in	the	treatment	
of	bacterial	and	fungal	infections	[201].	As	public	health	authorities	worldwide	face	these	
new	 challenges,	 the	 incorporation	 of	 epidemiological	 modeling	 in	 surveillance	 and	
decision	making	is	increasingly	becoming	a	strategic	tool.	To	be	effective,	models	must	
capture	the	intricate	dynamics	of	disease	transmission	across	diverse	populations	and	
settings,	as	well	as	the	specificities	of	available	data	for	the	considered	research	question.	
The	 tailored	 approach	 adopted	 in	 this	 thesis,	 integrating	 diverse	 expertise	 and	 data	
within	modeling	activities,	may	result	in	more	reliable	insights	for	guiding	policymakers	
toward	better	informed	decisions.	
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