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Almost global convergence to practical
synchronization in the generalized Kuramoto
model on networks over the n-sphere

Johan Markdahl® '™ Daniele Proverbio® !, La Mi' & Jorge Goncalves 1.2

From the flashing of fireflies to autonomous robot swarms, synchronization phenomena are
ubiquitous in nature and technology. They are commonly described by the Kuramoto model
that, in this paper, we generalise to networks over n-dimensional spheres. We show that, for
almost all initial conditions, the sphere model converges to a set with small diameter if the
model parameters satisfy a given bound. Moreover, for even n, a special case of the gen-
eralized model can achieve phase synchronization with nonidentical frequency parameters.
These results contrast with the standard n =1 Kuramoto model, which is multistable (i.e., has
multiple equilibria), and converges to phase synchronization only if the frequency parameters
are identical. Hence, this paper shows that the generalized network Kuramoto models for
n>2 displays more coherent and predictable behavior than the standard n=1 model, a
desirable property both in flocks of animals and for robot control.
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tarting with Winfree’s seminal work in the late 1960s!,

synchronization phenomena have attracted the interests of

scientists in physics and other disciplines?>~4 and still remain
an active area of research with many open problems. One of the
most successful descriptors of synchronization phenomena is the
Kuramoto model, along with its many generalizations3-6. Part of
the appeal is its wide range of applicability in explaining phe-
nomena from the natural world and technology, including
flashing fireflies”8, circadian rythms>!%, neuronal networks!l,
power-grid networks!2, planar vehicle coordination!314, etc. The
Kuramoto model addresses this diversity of topics by capturing
essential aspects of weakly coupled oscillators!!, while still being
analytically and numerically tractable.

Many extensions of the Kuramoto model have been proposed.
Some bridged the Kuramoto model into the field of network
theory!>-19, extending it from complete graphs to complex
networks>*. A key question in this context is how the structure
of the network affects the onset of synchronization*. For
instance, Watts and Strogatz showed that synchronization is
ameliorated by the small-world property of networks?%21,
Moreover, it was demonstrated that scale-free networks re-
synchronize efficiently after small perturbations?2. Other topics
of interest include characterizing the equilibria of the homo-
geneous network Kuramoto model (i.e., with identical natural
frequencies) and their basin of attraction by theoretical and
numerical means23-24,

Most generalizations assign a single degree of freedom to each
oscillator, but there are exceptions where the oscillators evolve on
nonlinear manifolds?>-3!, Such extensions are partly motivated
by curiosity, e.g., the swarmalators?® or theoretical results on
geometric aspects of synchronization®2, and partly to address
applications like rigid-body attitude synchronization of robot
swarms33. In particular, the generalized n-sphere model provides
a unified framework for the heading orientation on S, the
pointing orientation on S?, and the full attitude of any rigid-body
on SO(3) using a map from the unit quaternions on S”. The n-
sphere Kuramoto model also appears in quantum synchroniza-
tion on the Bloch sphere?”>34, in opinion consensus dynamics3?,
and in computer science applications30-38,

In this paper, we complement the previous literature by
investigating the global convergence of network Kuramoto
models on nonlinear manifolds. Our model extends the n-
dimensional sphere Kuramoto model considered by Chandra,
Girvan, and Ott3*-4! to complex networks on ellipsoids. Like
them?3?, we find qualitative differences in the systems depending
on the dimension # of the sphere. Moreover, like them?*!, we
address the instability of incoherent equilibria but for finite
networks rather than in thermodynamic limit N — co. We fur-
ther characterize the convergence properties. For n > 2, i.e., for
all dimensions except that of the standard Kuramoto model
(n=1 in our notation), we find that the systems asymptotically
converges to synchronization almost globally (i.e., from almost
all initial conditions), provided that the spread of the frequency
matrices is sufficiently small in the norm. Moreover, for fre-
quency matrices that are all aligned and of even dimension n, we
show the asymptotical stability of a single point in the null space
of the frequency matrices. These two findings contrast with the
standard network Kuramoto model, which has multiple stable
equilibrium sets?>»?* and can only reach phase synchronization
in the homogenous case, where all-natural frequencies are
identical®. Hence, we show that the generalized network Kur-
amoto model displays more coherent behavior than the standard
model, an appealing property in systems such as groups of
animals, and for robust and reliable performance in robot
control.

Results and discussion

Kuramoto models. Kuramoto first proposed a network of N
harmonic oscillators on a plane, each with a natural frequency
w;’. An uncoupled oscillator satisfies X; = w2x;. Set x; = cos 6; for

unit amplitudes and phase angle 6;, then §;, = w,. The standard
Kuramoto model of a complex network of coupled oscillators is
given by

. N
0 = w; + 3 kysin(6; — ), (1)
=1

where i=1,...,N and k; is the coupling strength between
oscillator i and j. The coupling parameters k;; are weakly positive
and symmetric, kj; = kj; > 0. The network is recovered from k;; as a
graph G = (V,&) where the nodes are the oscillators and the
edges are node pairs with strictly positive coupling k;;.

The Kuramoto model is usually expressed in polar coordinates
as in Eq. (1) but it can also be formulated in Cartesian
coordinates x; = [cos 6, sin6;]" € R™"', where n=1 is the
dimension of the circle, which yields the dynamics

N
X, =Qx,+ A, — xixiT)j;1 kijx;. )
where the matrix Qe R*™™ " is skew-symmetric. The

Kuramoto model in Eq. (2) can easily be generalized. By changing
the dimensions # to any strictly positive integer, we obtain x; €
R™' with |x]l,=1 and ; as a skew-symmetric
(n+1) x (n+ 1) matrix. This yields the n-dimensional network
Kuramoto model.

For further perspective on the generalizations of Eq. (2), we
consider the network Kuramoto model with homogeneous
frequencies on the n-sphere. It is derived from Eq. (2) with
Q;=Q;=Q for all {i,j} € £. In this special case, like for the
standard network Kuramoto model with homogenous frequen-
cies, there is no loss of generality in setting Q;=0. In the
following, we refer to this system as the homogeneous model.
Note that the agent dynamics still differ with respect to k;; which
compose the effect of the network. The standard homogeneous
(and heterogeneous) Kuramoto model can be interpreted as a
gradient descent flow*>*3. The homogeneous Kuramoto model
on 8" can also be interpreted as a gradient descent flow on the
sphere surface:

. ov
X; = _P(Xi)g = (L

N
—xx,1) > kx; 3)
i = ij %

1N , X
V= 5;‘,;2::1 ki lx; — %01 = ijzzjl k(1 —x; - x;),

where P(x;): R"" — T, 8" v (I,4, —xx;7)v is an ortho-
gonal projection on the tangent space T, S" of the n-sphere at x;,
and V is a potential function that measures the distance to the
synchronized state.

Eq. (3) allows us to consider the natural frequency terms €; in
Eq. (2) as perturbations of a homogeneous model obtained when
all frequencies are equal. The advantage of such an approach is
that we can use the large arsenal of tools from the optimization
that are available for studying gradient descent flows. This idea
leads to our main result, which is valid for frequencies Q; that
have a small spread around their mean frequency %Zfil Q;. This
approach has also allowed us to generalize Eq. (3) to a large
number of spaces including the Stiefel manifold** and general
Riemannian manifolds#°.

We remark on a third generalization of the Kuramoto model
which turns out to be equivalent to the n-sphere model. It is easily
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verified that for any y,€&" ={z € R™ | zTAz =1}, the
ellipsoid £" is invariant under

N
y; = QAy,; + (In+1 - YiYiTA) Jg k¥, “)

see ref. 40, The change of variables x; = L "y,, where L is obtained
from the Cholesky decomposition A = LL T, reduces Eq. (4) to
Eq. (2) with Q; replaced by L TQ,L, see Supplementary Note 1 for
details. Hence, results about the sphere model in Eq. (2) also
apply to the ellipsoid model in Eq. (4).

Practical synchronization. We define all equilibria that are
contained in an open hemisphere as practically synchronized. We
refer to the other equilibria as dispersed, see Figs. 1 and 2 for
examples. Open hemispheres are geodesically convex sets, ie.,
each pair of points in an open hemisphere are connected by a
unique geodesic (a great circle). Open hemispheres are the largest
subsets of the n-sphere with this property. In particular, open
hemispheres are topologically equivalent to Euclidean space R".
Many results about the generalized Kuramoto model implicitly
utilize this property?$47. The global analysis of dispersed

a b

t

Fig. 1 Spaghetti plots of agent trajectories. Initial and end configurations
are indicated by small and large dots, respectively. a 10 agents of the
homogeneous model, Eg. (3), on the circle S', converge to a 1-twisted state
(a dispersed equilibrium) from a random initial condition, see Eq. (6). b 20
agents of the heterogeneous model, Eq. (2), on the sphere S? converge to
practical synchronization from initial conditions given by a dodecahedron
configuration.

equilibria, as carried out in this paper, is challenging since it
cannot rely on a reduction of a subset of the n-sphere to R”".

Our main results establish that any dispersed equilibrium point
of Eq. (2) is unstable in the sense of Lyapunov. Practical
synchronization vyields convergence to the desired set, ie.,
synchronization®8. Since all other equilibria are unstable, over
time almost all trajectories turn to practically synchronized
configurations. Most of the trajectories which originate near
dispersed equilibria diverge from them. The only exceptions are
the equilibria themselves and their (small) basins of attraction.
The set N of dispersed equilibria and their basins of attraction
have measure zero on (S")". This implies that an initial condition
that is uniformly distributed on (S")V has zero probability of
being in NV.

In order for our main results to hold, we require that the
spread of frequencies ; is small in the following sense:

Sio, - L3op)e s K iy
L —— . —(n — —X. - X
St Ng TR tijlee N(n+1) v

(1l -x- Xj) (5)
where K = min k;; and n > 2. The dependence of the bound in

tijjes ¥
Eq. (5) on (xi)f.i , can be removed. To do this, for dispersed
configurations (x;)}_,, consider the left-hand side of Eq. (5): it can
be upper bounded by a constant, obtained by replacing x; - x; in

the right-hand side by cos7/N. The value x; - x; = cos /N is

found through optimization as explained in Supplementary
Note 4. It holds for a path graph with N nodes that are
connected as an arc. This arc minimizes the bound in Eq. (5) for
dispersed configurations, while the total angle between agents

satisfies Y1 | acos X; - x; = 7. Note that the condition Eq. (5)

holds for the homogeneous model Eq. (3) except for phase

synchronizati0n33.

Interpretation. The result in Eq. (5) is surprising in light of what
we know about the standard network Kuramoto model Eq. (1).
Recall that Eq. (1) is multistable and has many other stable
equilibrium sets besides synchronization?3. These include the set

Fig. 2 Dispersed agent configurations and their corresponding graphs. a-c Points and bold lines represent the vertices and the edges in the graphs,

respectively. The network configurations on the sphere S? correspond to Platonic solids a dodecahedron and b icosahedron. The geometrical configuration
of Buckminsterfullerene molecules in ¢ corresponds to the Archimedean solid truncated icosahedron. These configurations are obtained when the coupling
parameters k; € {0, K3, i.e., the coupling is uniform apart from its dependence on the network, and the network structure is given by the graphs in d-f.
When the graph is given by one of d-f and the agents are in the corresponding dispersed configuration in a-c, then this is an unstable equilibrium of the

homogeneous Kuramoto model Eq. (3).
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Fig. 3 Convergence to synchronization. Evolution of a configuration with 9 agents connected by a cycle graph on the sphere S2. The configuration is
continuously deformed from the equator into a point on the north pole (i.e., synchronization) by letting the latitude parameter s in the map given by (Eq. 9)
decrease from s = z/2 to s = 0. An equivalent version of this continuous deformation is not possible for the standard Kuramoto model since the circle is a

simply connected manifold.

of g-twisted configurations of the homogeneous model Eq. (3),
given by

T,=106), C (-] |6, =¢+2gin/N, € R},  (6)
where the network is given by a cycle graph
Cy=(1,... ,N}L{{1,2},{2,3}, ..., (N, 1}}). ™)

On the 2-sphere, we can define g-twisted configurations as
equilibria of the homogeneous network Kuramoto model:

’T; ={(x)L, c R"™" | x, =Rx;; }

where R is a rotation by 2g7/N around a vector perpendicular to
{x1, ..., Xn}, and addition of subindices is modulo N. In contrast
to the g-twisted equilibria of the standard model?3, our main
result implies that Tf‘z is an unstable equilibrium manifold of

limited interest.

Since g-twisted configurations defined by 7 ; are unstable
equilibria of Eq. (2), one might conjecture that, on the 2-sphere,
there exist other configurations with analogous properties. The g-
twisted configurations have the geometric appearance of regular
polygons so regular polyhedra may be the equivalent of g-twisted
configurations on the 2-sphere. Candidates for such configura-
tions are the Platonic solids (the convex regular polyhedra in R?)
and Archimedian solids, as well as polyhedra corresponding to
molecules of the fullerene family*®. These configurations can be
inscribed in a 2-sphere, such that their vertices lie on the sphere
surface, see Fig. 2. Moreover, their edges have a certain symmetry
that makes the configurations into equilibria of the homogeneous
model Eq. (3), ie, the sum of agent positions > ;;cck;X;
projected on the tangent space T, S" is zero. By continuity of
solutions®?, there exist perturbed versions of these configurations
that are equilibria of the heterogeneous model. However, our
main result implies that they are unstable provided (Eq. 5) is
satisfied.

To understand why there is a difference between the cases of
n=1 and n>2, it helps to consider the homogeneous model
Eq. (3). Since the flow evolves along the negative gradient of V,
it follows that V is decreasing with time. Also note that for
kij# 0, by definition of V,

1 1

3 IIx; —xj||2 =(1-x; ~xj)S k_,]V
Let us consider a 1-twisted configuration on the circle or 2-
sphere, i.e., (Gi)fil €7, or (xi)fil € ’Tf. Then V is a sum of

circle chord lengths, V = Nsin’z/N — 0 as N — co. This
implies that

1 — cos(6,(1) — 6;(1) < kleinzﬂ/N (8)
ij

holds for all future times t€& [0,c0). In particular, for the
standard Kuramoto model to go from a configuration in T; toa

synchronized state, there must be a time 7 and a pair of
oscillators that satisfy |6;(t) — 6(7)| = 7. This is not possible for
large N, as it would contradict Eq. (8).

Consider instead a configuration (x;)Y, € ’T;. The equilibrium
(x;)Y, lies on a great circle, which we without loss of generality
assume to be the equator. We can perturb the agents towards the
north pole without increasing V. To see this, use spherical
coordinates

X; sin 6; cos ¢; sin s cos 2mi/ N
x;= [y, | = |sinf;sing;, | = |sinssin27ni/N |. (9)
z cos 6, cos's

By decreasing the s parameter from 7/2 at the equator to 0 at the
north pole we continuously deform the great circle into a point
while staying on the sphere, see Fig. 3. The value of the potential
function strictly decreases: V = 4N sinssin’?z/N — 0 as s — 0.

For a more intuitive understanding of this result, let again the
graph be the cycle given by Eq. (7). We may consider the agents
as beads on a string, where each bead is an agent and the string is
composed of all pairwise geodesic curves (great circles) that
connect any two neighboring agents. This idea is valid in the
much more general setting of gradient descent flows like Eq. (3)
on Riemannian manifolds M*. These flows are generalizations
of the homogeneous Kuramoto model with zero natural
frequencies. The fact that V is decreasing can again be used to
bound ||x; — x;,;]l. For sufficiently small agent distances, the
pairwise geodesics are unique and change continuously. This
implies that the string, i.e., the closed curve composed of all
pairwise geodesics, changes continuously. If M is multiply
connected, then by definition of this property, there exists at least
one closed curve which cannot be continuously deformed to a
point. Hence we only need to choose our initial conditions so that
the string approximates this curve and the topology of the
manifold will prevent synchronization.

The manifold property of being simply connected versus
multiply connected is one thing that distinguishes the circle from
all other spheres (we do not consider the 0-sphere S ={—1,1}).
The circle is multiply connected since it cannot be continuously
deformed to a point. The spheres are simply connected since any
closed curve can be continuously deformed to a point as we did
with the equator in Eq. (9) and Fig. 3. In this sense,
synchronization on the circle is more similar to synchronization
on SO(n), which is multiply connected, than to synchronization
on S". Note that the two manifolds are diffeomorphic S' =
SO(2) through the linear map

cos 0, } { cos 0;
—

_sin®.
f:sl_>30(z);[, o ]
sin 6;

sinf;,  cos#,

Phase synchronization. We have a second result that applies to
spheres S" of even dimension n. Define convergence to a point,
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ie, x;=x; for all {i,j} in &, as phase synchronization. We show
that phase synchronization is possible on S” in the case of
nonidentical natural frequencies. Like our first result Eq. (5), this
finding distinguishes the network Kuramoto model on S' and S*.
Phase synchronization on &' requires identical natural fre-
quencies, w; = w; for all {i,j} in £. A key difference between this
result and Eq. (5) is that it does not constrain the magnitude of
the frequency norms in any way. However, like the findings
of3%°1 it depends on the parity of the dimension # of the sphere.

Let ker(); denote the null space of the natural frequency matrix
Q. If there exists a nonzero vector v such that

N
span{v} = ﬂ ker Q) (10)
i=1
then for any initial condition which satisfies
{x,....xy} CH' (V) ={x €S" | v-x>0}, (11)

it holds that x; — v as t — oco. Moreover, v is an asymptotically
stable equilibrium. Note that if the frequency matrices satisfy the
synchronization condition given by our result, Eq. (5), then the
convergence to phase synchronization is almost global. Simula-
tions also indicate that condition (Eq. 11) is redundant. To
understand why it’s needed for the proof, see Supplementary
Note 5. To interpret the synchronization condition, consider the
2-sphere. If e.g., we chose v = e, it means Qx; = w;v X X;, where
w; € R. Initialize all agents in the northern hemisphere, then all
agents converge to phase synchronization in the north pole. Note
that a random Q; € so(n + 1) has full rank if #n is odd, whereby
v=0 and (Eq. 11) cannot hold. For even n however, the
dimension of ker(); is always at least 1.

It should be noted that condition (Eq. 10) refers to a special
case that would not appear if the frequency matrices are selected
uniformly at random. Rather, it suggests that all frequency
matrices are in a sense somewhat similar. This may occur in a
real-world system where the drift term in Eq. (2) is due to an
exterior cause. For example, if the agents are fish they may be
caught in a stream, or if they are drones the external influence
could be wind. Such situations can also be modeled by our
assumption (Eq. 5) which assumes the frequencies have a small
spread around a large mean value. Another scenario is a single
agent with a nonzero frequency matrix, perhaps due to a
malfunction in an otherwise homogeneous robotic system. From
a theoretical perspective, condition (Eq. 10) is interesting as a
counterexample to what one might assume based on the standard
Kuramoto model since it shows a counter-intuitive property of
the high-dimensional model.

To understand the mechanics behind the result (Eq. 11), it is
helpful to consider a two-agent case on S,

X = 2x; + I,y — X1X1T)k12x27 (12)

. T
X, = (L — X%, kX,

where €, yields a rotation around the vector e;. Consider three
cases: (i) If the agents are in sync, then agent 2 will break away
from agent 1 due to the drift term Q;x;. The only exception to
this is if x; belongs to kerQy, i.e., x; = e3; (ii) If the agents are on
different latitudes 60; # 6, in the spherical coordinates Eq. (9),
then the latitude 6; of the agent i with the lowest latitude will
increase. In sum, the agent with the lowest latitude 6; moves
closer to es; (iii) If the agents have the same latitude 6; = 0,, then
the drift term Q;x,; in the dynamics of agent 1 will cause it to
rotate at this latitude. However, both agents will also move closer
to the north pole. This is due to the coupling terms being aligned
with the tangent space of the great circle connecting the two
agents (see Fig. 4). The great circle connecting two points of the

i

Fig. 4 Positions and velocities in a two-agent system on the sphere S2.
One agent has clockwise drift around the z-axis (blue dot) and the other
agent is without drift (red dot). The two agents are situated at the same
latitude (purple circle). However, the coupling terms in the dynamics are
tangent to the great circle connecting both agents (black). The dark blue
vector is the sum of light blue vectors. The time derivatives of both agents
(dark blue and red arrows) are pointing north of the latitude on which the
agents lie. Hence, the latitudes are increasing.

same latitude has a segment at a higher latitude than the common
latitude of the two points themselves.

Simulations

Practical synchronization. We are interested in how geometric
and topological properties of the manifold affect the convergence
of Kuramoto models. To this end, we study a large family of
manifolds that include the n-spheres, the generalizations of S' =
SO(2) to the special orthogonal group SO(n), and other mani-
folds in-between. This family is the Stiefel manifolds St(p, n)
defined by

St(p,n) ={S € R"? | STS =1},

where p<n. The Stiefel manifolds are rectangular orthogonal
matrices; the manifold St(p, n) is composed of the first p columns
of all orthogonal matrices Q€ O(n). The following diffeo-
morphisms show the versatility of the Stiefel manifold framework
S(l,n+1) = &%, St(n—1,n)=S0O(n), and St(n, n) =O(n).
The Kuramoto model on Stiefel manifolds can be obtained as a
generalization of the gradient flow formulation for the n-sphere
model, Eq. (3). Along those lines, the following model is intro-
duced in**:

. oV
S, = —P(Si)g (13)

N N

= §;skew <SiT j; kijS]) + @y — SiSiT)jg kS,
1 N

V=-2>k

N
NS = SilP = X ki(p—S,S).
2ij=1 " IS: =Sl i,j§1 iP=Si'S)

Eq. (13) can be expressed as a coupled oscillator system by the
addition of frequency terms,
) )%
S =QS;+ 8,8 —P(S) < (14)
a5,

where Q € s0(n), E € s0(p). See refs. 442 for more details.
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Table 1 Probability of convergence to synchronization from a
random initial condition.

n

1 2 3 4 5 6 7 8 9

1 006 0595 1 1 1 1 1 1 1

2 0.05 092 1 1 1 1 1 1

3 0.06 092 1 1 1 1 1

4 0.05 091 1 1 1 1

p 5 0.06 0.89 1 1 1

6 0.05 090 1 1

7 0.06 090 1
8 0.06 0.90
9 0.06

Probability measure, u(B(S)) € [0, 1], of the basin of attraction B(S) of the sync manifold S on
the Stiefel manifold St(p, n) with parameters p, n for a cycle network with 5 agents given by the
graph Cs defined by Eq. (7). The calculation of u(8) is done by Monte Carlo integration using
M =104 samples of the uniform distribution on St(p, n) for each pair (p, n), see “Methods"
section for details. We set the threshold value e = 0.01 in Eq. (20) and the final time T=200.
Rows in the table fix p, columns fix n. An empty cell indicates that there is no Stiefel manifold for
that pair (p, n). Bold font indicates that (p, n) satisfies 2n — 1<p < p — 2 whereby our previous
result44 does not apply.

For the homogeneous model, we are interested in the measure
u(B(S)) of the basin of attraction B(S) of the synchronization
manifold S. To find an equivalent of u(B(S)) for practical
synchronization we introduce an order parameter

1 N
R=—28§.

Npi=1 (1)
The factor 1/p ensures that R = ||R||r=1 when all matrices are
equal, S; = S; for all {i, j} € £. By taking the average value of R at a
large time T over many simulations we get an index of
convergence to synchronization for Eq. (14) that is similar to
what u(B(S)) is for Eq. (13). Note that R is a generalization of the
order parameter of the standard Kuramoto model on S'3.

The details of numerical integration of Eq. (13) are given in the
“Methods” section. Results of the simulation are displayed in
Table 1. Note that almost global convergence to synchronization
on St(p, n) is observed for pairs (p, n) that satisfy p < n — 2. That
almost global convergence holds for pairs that satisfy p <2n/3 — 1
has been proved analytically**. However, we conjecture that it
also holds for p<n—2, which corresponds to all the simply
connected Stiefel manifolds®3. As we argued in the Interpretation
section based on ref. 4>, almost global convergence for all
connected graphs is impossible on a manifold that is multiply
connected. Failures to reach consensus occur when p € {n — 1, n},
i.e., for the special orthogonal group and the orthogonal group.
For the case of O(n), the probability that all agents belong to the
same connected component (detQ =1 or detQ = —1) is
2742 0.06, which explains the numbers on the diagonal where
p=n.

Many results that guarantee synchronization on nonlinear
space are limited to geodesically convex sets, e.g., hemispheres of
the n-sphere?8:47:48.54 This does not scale well for large N since
the probability that all N agents belong to a hemisphere decreases
exponentially with N. However, even though a theoretical
guarantee does not scale well, actual system performance may
still do. This is the case on S" for ne N\{1} for the
homogeneous model since S is almost globally stable33.

It is of interest to investigate how u(3) scales with N when the
consensus manifold is not almost globally stable. Figure 5 reveals
that on St(1,2) = S', u(B) decreases steadily with N (see also
ref. 23). On St(2,3)=~S0O(3), St(3,4) ~S0O(4), and St(4,5) =
SO(5) the value of u(B) settles on 0.5. Note that there is not any
immediate reason to expect that limy_, . u(B) even exists. For

each N =5k, where k € NN, there is a new g-twisted equilibrium
set that is stable on St(n — 1, n). However, there does not appear
to be any large difference between y(BB) when N =5k for k € IN
compared to N—1 except for the case of N=5. The size of
St(p, n)N grows with N. The average time required to satisfy our
simulation termination criteria increases with N. This introduces
a dependence on N in the bias towards underestimating (1), but
the effect is small as we have investigated by increasing the
termination time T.

We compare the size of the synchronization basin, u(B3(S))
with the average order parameter from M simulations,
1/MYY R, see Fig. 5. The way the y and R curves depend on
the number of agents N are strikingly similar. Inspect condition
Eq. (5) for n=2, a network given by the cycle graph Cy, and a
constant RHS obtained by setting (x;,x;) = cos7/N. This yields

N 1N 2K T\ 2
2
(? 19 -5 5 ”1‘”2) <5 (1-cog)

which suggest that Q; should scale as O(K/N*). However, the use
of (x,-,xj) = cos /N in the condition is conservative since it is
derived for a worst-case scenario. In simulations, we find that
scaling Q; as 1/N suffices to approximately replicate the u(B(S))

curves, see Fig. 5.

I

Phase synchronization. We use simulations to study the order
parameter R given by Eq. (15) as a function of the coupling
parameters K = min k;; under the assumptions of the synchro-

{ijle€
nization condition in Eq. (10). We draw Q,; such that (Q,), €
N(1,1) if s<t and (), € N(—1,1) if s>t Then we set
Q; = w;Q; where w;€N(0,1) for i=2,...,N. Generically, this
results in skew-symmetric matrices of maximal rank. However,
that means rank Q; = n for even n and rank Q; = n + 1 for odd n.
In particular, this implies the existence of a v satisfying Eq. (10)
for even n but not for odd n. We find that it is not necessary to
limit the initial conditions to a hemisphere as we required for our
analytic result; the simulated system is observed to converge to
phase synchronization from (almost) all initial conditions if a
single joint nullspace vector exists. We use the complete graph
G = Ky since it allows for a comparison of our findings with
similar results in refs. 3%°1, For this reason, we also use the
normalization factor 1/N in front of the coupling terms in Eq. (2).
In particular, we find that the phase transition from disorder to
synchronization is explosive and discontinuous for even » but not
for odd n where it is continuous, see Fig. 6. We expected this
difference based on Eq. (10) since the full rank of generic skew-
symmetric matrices with even dimension #n + 1 (the dimension of
the matrix, not the sphere) prevents condition Eq. (10) from
applying. We also find that practical synchronization holds when
small perturbations are added to each of the frequency matrices
(note that the condition of Eq. (5) does not need to be satisfied).

Methods

Proof sketch. A full derivation of the result in Section “Practical synchronization”
is given in Supplementary Note 2-4. This section provides a brief sketch of the
main ideas. For the sake of simplicity, we focus on the stronger assumption

N H
(Zrow)< >

2K
————(n—1—cosn/N)
{ijle¢ N(n+1)

- (1 = cos/N). (16)

Note that we do not require Zjlil .Qj = 0 in Eq. (5) for Eq. (16) to hold, rather we
just let each Q; be small in the norm.

Our approach is based on a matrix perturbation result>> that relates the
spectrum of three matrices. Let A(x) and B(x) be the linearization matrices
of (Eq. 2) and its particularization for Q; =0 (respectively) at a dispersed
equilibrium x = (xi)il. We bound the spectrum of A(x) = Q + B(x), where
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Fig. 5 Indicators of convergence to synchronization and practical synchronization. a Probability measure, u(B(S)) € [0, 1], of the basin of attraction B(S)
of the synchronization manifold S given by (Eq. 19) on the spheres S', S? and Stiefel manifold St(n — 1, n) = SO(n) (special orthogonal group) for
n€{3, 4,5} where the network is given by the graph Cy defined by Eq. (7) and the number of agents N e {2, ..., 40}. The probability measure u(B) is
calculated by Monte Carlo integration over M =104 system evolutions for each point. b Average value of the order parameter R given by Eq. (15); each
point corresponds to 104 simulations. The graph is the cycle graph Cy given by (7). We set the coupling parameters between neighboring agents i and j to
kij=1. The (s, t)-elements of the frequency matrix (€)),, € N (1, 1/N)? if s<t and (Q)y € N(=1,1/N?) if s > t, where (-, -) denotes a normal distribution.
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Fig. 6 The transition from incoherence to synchronization depends on the
parity (odd/even) of the dimension n of the n-sphere S". The order
parameter R is given by Eq. (15). The uniform coupling parameters k; =K
between agent i and j range from negative, where R =0 indicates
incoherence, to positive, where R =1 indicates synchronization. We take
the average value of R from M =103 system evolutions per point. We use
N =100 agents. To find the discontinuous phase transition for small K
values we have chosen a large final time T=2000.

Q = diag(Qy, ..
result on matrix perturbation:

., Qy), using skew-symmetry of Q and symmetry of B(x). The
>0 yields

[Re a(x) — B(x)I < [ A(X) = B(x)ll

N ) 3
= <§l Il Qi||2) ,

where Re a(x) and f(x) are the eigenvalues with the largest real part of A(x) and
B(x) respectively.

A lower bound for f(x) is known33. We use techniques from optimization to
derive the following inequality which holds at any dispersed equilibrium x,

1))
n+lfl COSN COSN.

17)

Bx)= (18)

Suppose that the assumption (Eq. 16) holds, then
N ) ;
Reat) — o= (31912

K 4 4
< (n—l—cos—) (l—cos—)
n+1 N. N.

< B(x),

where we used the result (Eq. 17). From |Re a(x) — B(x)| < f(x) we get Re a(x) >0.
It follows that the equilibrium x is exponentially unstable.

Simulations. We perform simulations to investigate how the basin of attraction
B(S) of the synchronization manifold S = St(p, n) depends on the Stiefel mani-
fold on which a generalized Kuramoto model evolves. Let @ : R x St(p, n)V —
St(p, n)" denote the flow of the homogeneous Kuramoto model, Eq. (13), i.e.,

D1, (5, ,) = (S,

given that (S,-(O))fi1 = (S,.<0)f.i] € St(p, n)V. Denote @ = ((D,.)fil. Let B(S) denote
the basin of attraction of the synchronization manifold S = St(p, n),

S={S), € Stip,m)" | S, =8, V{i,j} € &}, (19)

B(S) = {8,

i=1

€ Stp,m)" | lim,_  ®(t, (S)IL,) € S}

For the heterogeneous model, we have a practical synchronization manifold D of
(14) defined by

D= {(s,.),.i1 c (8" | 8, +8,5 — P(si)g% = o},

The existence of such a manifold for sufficiently small Q;, &; follows by a per-
turbation theory argument?$,

The probability measure y(B(S)) is the fraction of initial conditions for which
the system in Eq. (13) converges to the synchronization manifold S. The measure
w(B(S)) can be calculated by Monte Carlo integration:

$k§1 Hs(tlirg(l)<t, (Sic)f\;)) R w(B) as M — oo,

where 1 : St(p, n)N — {0, 1} is the indicator function and (Sf.‘)iil for each
ke{l,...,M} is a sample drawn from the uniform distribution on St(p, nN. A
uniform sample S is found by drawing X € R"*? such that each element of X is
independent and identically normally distributed A/(0, 1) and forming
§ = X(XTX) 356,

A stop criterion is needed to (approximately) calculate lim,_, @ (t, (S,-)fi 1)
The simulation synchronizes if

max + | (T, (8,)Y.) — (T, (S)Y.,) || <& 20)

(j.kye€ 2
for a threshold value € € (0, =) at a fixed time T. The tensor @(T, (Sk,O)kN:1) is

obtained by integrating Eq. (13) using the function ode45 in MATLAB. If Eq. (20)
is satisfied at T, we count this as a case of convergence to S. There are potential
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issues with long simulation times causing numerical errors to accumulate so that
either the system leaves the Stiefel manifold or is perturbed from B° into B. We
have dealt with such issues. In particular, there might be a bias towards

underestimating the value of 4(53) due to T < o, but the effect is small for large T.

Data availability

The data used in this paper is available from the GitHub account of the corresponding
author: https://github.com/johanmarkdahl/CommPhys2021. The data is also available on
request to the corresponding author.
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