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A Quaternionic Bernstein Theorem

Alessandro Perotti

Abstract. We prove a four-dimensional version of a Bernstein’s theo-
rem, with complex polynomials being replaced by quaternionic polyno-
mials. Moreover, using an Almansi-type decomposition of polynomials,
we formulate the quaternionic Bernstein’s inequality in terms of four-
dimensional zonal harmonics and Gegenbauer polynomials.
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1. Introduction

The famous Bernstein’s inequality for complex polynomials (first established
in this form by M. Riesz in 1914) states that:

Theorem. (A) If p(z) is a complex polynomial of degree d and max|z|=1 |p(z)| =
M , then |p′(z)| ≤ dM for |z| = 1, with equality holding if and only if p(z) is
a multiple of the power zd.

Recently [15], Bernstein’s inequality has been proved for quaternionic
polynomials with coefficients on one side. The inequality in the complex case
can be deduced from a more general theorem, proved by Bernstein [3] in 1930.

Theorem. (B) Let p(z) and q(z) be two complex polynomials with degree of
p(z) not exceeding that of q(z). If q(z) has all its zeros in {|z| ≤ 1} and
|p(z)| ≤ |q(z)| for |z| = 1, then |p′(z)| ≤ |q′(z)| for |z| = 1.

It is then natural to pose the following question: Is it possible to extend
Theorem (B) to quaternionic polynomials?

This short note gives an answer to this question. We show that a quater-
nionic version of Theorem (B) holds true only after imposing an assumption
on the second polynomial (Theorem 2.1). We must require that the quater-
nionic polynomial Q ∈ H[X] on the right-hand side of the inequality has
every coefficients belonging to a fixed commutative subalgebra of H, i.e., to a
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isomorphic copy of C. We also show in Proposition 2.7 that the assumption
made on Q in Theorem 2.1 is necessary. This restricted version of the Bern-
stein Theorem is, however, sufficient to deduce, as in the complex case, the
quaternionic Bernstein’s inequality: if P ∈ H[X] is a quaternionic polynomial
of degree d, then the sup-norms satisfy ‖P ′‖ ≤ d‖P‖ (Corollary 2.4).

In Sect. 3, we restate the inequality in terms of four-dimensional zonal
harmonics and Gegenbauer polynomials. To obtain this form, we use results
from [12] to obtain an Almansi-type decomposition of a quaternionic poly-
nomial.

We refer the reader to [5,6,9] for definitions and properties concerning
the algebra H of quaternions and many aspects of the theory of quaternionic
slice-regular functions, a class of functions which includes polynomials and
convergent power series, and more generally for slice functions. The ring H[X]
of quaternionic polynomials is defined by fixing the position of the coefficients
with respect to the indeterminate X (e.g., on the right) and by imposing
commutativity of X with the coefficients when two polynomials are multiplied
together (see, e.g., [11, Sect. 16]). Given two polynomials P,Q ∈ H[X], let
P ·Q denote the product obtained in this way. A direct computation (see [11,
Sect. 16.3]) shows that if P (x) �= 0, then

(P · Q)(x) = P (x)Q(P (x)−1xP (x)), (1)

while (P ·Q)(x) = 0 if P (x) = 0. In particular, if P has real coefficients, then
(P · Q)(x) = P (x)Q(x). In this setting, a (left) root or zero of a polynomial
P (X) =

∑d
h=0 Xhah is an element x ∈ H, such that P (x) =

∑d
h=0 xhah = 0.

A subset A of H is called circular, or axially symmetric, if, for each
x ∈ A, A contains the whole set (a 2-sphere if x �∈ R, a point if x ∈ R)

Sx = {pxp−1 ∈ H | p ∈ H
∗}, (2)

where H
∗ := H \ {0}. In particular, for any imaginary unit I ∈ H, SI = S is

the 2-sphere of all imaginary units in H. It is well known (see, e.g., [5, Sect.
3.3]) that if P �≡ 0, the zero set V (P ) consists of isolated points or isolated
2-spheres of the form (2).

2. A Bernstein-Type Theorem

Let I ∈ S and let CI ⊂ H be the real subalgebra generated by I, i.e., the
complex plane generated by 1 and I. If CI contains every coefficient of P ∈
H[X], then we say that P is a CI -polynomial. Every CI -polynomial P is one-
slice-preserving, i.e., P (CI) ⊆ CI . If this property holds for two imaginary
units I, J , with I �= ±J , then it holds for every unit and P is called slice-
preserving. This happens exactly when all the coefficients of P are real.

Let P (X) =
∑d

k=0 Xkak be a polynomial of degree d ≥ 1 with quater-
nionic coefficients. Let P ′(X) =

∑d
k=1 Xk−1kak be the derivative of P . For

every I ∈ S, let πI : H → H be the orthogonal projection onto CI and
π⊥

I = id − πI . Let P I(X) :=
∑d

k=1 Xkak,I be the CI -polynomial with coeffi-
cients ak,I := πI(ak).
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We denote by B = {x ∈ H | |x| < 1} the unit ball in H and by S
3 = {x ∈

H | |x| = 1} the unit sphere.
We recall that a quaternionic polynomial, as any slice-regular function,

satisfies the maximum modulus principle [5, Theorem 7.1]. Let

‖P‖ = max
|x|=1

|P (x)| = max
|x|≤1

|P (x)|

denote the sup-norm of the polynomial P ∈ H[X] on B. Given y ∈ S
3, let us

denote

My(P ) := max
z∈Sy

|P (z)|, my(P ) := min
z∈Sy

|P (z)|.

Theorem 2.1. (Bernstein-type theorem) Let P,Q ∈ H[X] be two quaternionic
polynomials with degree of P not exceeding that of Q. Assume that there exists
I ∈ S, such that Q is a CI-polynomial. If V (Q) ⊆ B and |P (x)| ≤ |Q(x)| for
x ∈ S

3, then |P ′(x)| ≤ |Q′(x)| for x ∈ S
3 ∩ CI . For every x = α + Jβ ∈ S

3,
if P ′ is not identically zero on Sx, it holds

|P ′(x)| ≤
√

2Mx(P ′)
√

Mx(P ′)2 + mx(P ′)2
max {|Q′(xI)|, |Q′(xI)|} (3)

with xI = α + Iβ. Moreover, it holds ‖P ′‖ ≤ √
2‖Q′‖.

Before proving the theorem, we state a technical lemma about a norm
estimate that holds for quaternionic polynomials and more generally for any
continuous slice function.

Lemma 2.2. Let P ∈ H[X], y ∈ S
3 with P not identically zero on Sy. Let

I ∈ S be fixed. Then, it holds

|P (x)| ≤
√

2My(P )
√

My(P )2 + my(P )2
max {|P (xI)|, |P (xI)|}

for every x = α + Kβ ∈ Sy, where xI = α + Iβ ∈ Sy ∩ CI .

Proof. Let M := My(P ), m := my(P ). We may assume that y is not real.
Since P is a slice function, it can be expressed as P (x) = P o

s (x)+Im(x)P ′
s(x),

where P o
s and P ′

s are constant functions on Sy (the spherical value and the
spherical derivative of P , respectively [7, Sect. 3.3]). Let 〈u, v〉 denote the
Euclidean scalar product of u, v ∈ H. Then, for every x ∈ Sy, it holds

|P (x)|2 = C + 2〈v, Im(x)〉,
where C = |P ◦

s (y)|2 + | Im(y)|2|P ′
s(y)|2 and v := P ◦

s (y)P ′
s(y). If v ∈ CJ , then

we get as in [9, Lemma 5.3] that

M = max
Sy∩CJ

|P (x)| and m = min
Sy∩CJ

|P (x)|.

Therefore, it holds M2 = C + 2| Im(v)|| Im(y)|, m2 = C − 2| Im(v)|| Im(y)|,
whence M2 +m2 = 2C. Let x̃ ∈ Sy ∩CI = {xI , xI} be such that 〈v, Im(x̃)〉 ≥
0. Then

max {|P (xI)|2, |P (xI)|2} = |P (x̃)|2 ≥ C =
M2 + m2

2
,
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whence

M2 ≤ 2M2

M2 + m2
max {|P (xI)|2, |P (xI)|2},

which is equivalent to the thesis. �

Example 2.3. A simple example illustrating Lemma 2.2 is given by the linear
polynomial P (X) = 2X − j − k. Let y = i. Then, Si = S and Mi(P ) =∣
∣P (−(j + k)/

√
2)

∣
∣ = 2 +

√
2, mi(P ) =

∣
∣P ((j + k)/

√
2)

∣
∣ = 2 − √

2. The in-
equality of the Lemma is then

|P (x)| ≤ 1 +
√

2√
3

max {|P (xI)|, |P (xI)|} for every x ∈ S.

Let I be orthogonal to (j + k)/
√

2; for example, I = i. Then

max {|P (xi)|, |P (xi)|} = |P (i)| =
√

6,

showing that the constant 1+
√
2√

3
is the best one in the estimate above.

Proof of Theorem 2.1. Let λ ∈ H with |λ| > 1 and set R := Q − Pλ−1 ∈
H[X]. The polynomials Q and RI = Q − (Pλ−1)I are CI -polynomials, and
then, they can be identified with elements of CI [X], with deg(RI) ≤ deg(Q).
For every x ∈ CI , it holds

|RI(x) − Q(x)| = |(Pλ−1)I(x)| = |πI((Pλ−1)(x))| ≤ |(Pλ−1)(x)| =
|P (x)|

|λ| .

If x ∈ S
3 ∩ CI = {x ∈ CI | |x| = 1}, then

|RI(x) − Q(x)| ≤ |P (x)|
|λ| ≤ |Q(x)|

|λ| ≤ |Q(x)|. (4)

In view of Rouché’s Theorem for polynomials in CI [X], RI and Q have
the same zeros in the disc {x ∈ CI | |x| < 1}. Moreover, if |x| = 1 and
Q(x) = 0, the inequality (4) gives RI(x) = 0. Since deg(RI) ≤ deg(Q) and
V (Q) ⊆ B, we get that V (RI)∩CI ⊆ B∩CI . From the complex Gauss–Lucas
Theorem, we get V (R′) ∩ CI ⊆ V ((RI)′) ∩ CI ⊆ B ∩ CI .

Now, let x ∈ CI with |x| > 1 be fixed and define λ := Q′(x)−1P ′(x) ∈
H. Observe that Q′(x) �= 0 again from the complex Gauss–Lucas Theorem
applied to the polynomial Q considered as element of CI [X]. If |λ| > 1, the
polynomial R = Q − Pλ−1 ∈ H[X] defined as above has zero derivative
at x: R′(x) = Q′(x) − P ′(x)λ−1 = 0, contradicting what obtained before.
Therefore, it must be |λ| ≤ 1, i.e., |P ′(x)|/|Q′(x)| ≤ 1 for all x ∈ CI with
|x| > 1. By continuity, |P ′(x)| ≤ |Q′(x)| for all x ∈ CI with |x| = 1.

To prove (3), we apply Lemma 2.2 to P ′ and use the inequalities |P ′(xI)|
≤ |Q′(xI)|, |P ′(xI)| ≤ |Q′(xI)|. The last statement follows from a general
property of slice functions (see again [9, Lemma 5.3]): since Q′ is a CI -
polynomial, its maximum modulus on the 2-sphere Sx is attained at one
of the points xI = α + Iβ, xI = α − Iβ of the intersection Sx ∩ CI . �

Corollary 2.4. (Bernstein’s inequality) If P ∈ H[X] is a quaternionic poly-
nomial of degree d, then ‖P ′‖ ≤ d‖P‖.
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Proof. Let M = ‖P‖ and apply the previous theorem to P (X) and Q(X) =
MXd. Since Q is slice-preserving, the first inequality in the thesis of Theo-
rem 2.1 holds for every I ∈ S. �

Remark 2.5. The proof of Theorem 2.1 makes use of the complex Gauss–
Lucas Theorem. One could hope to obtain a better estimate by means of a
quaternionic Gauss–Lucas Theorem. Unfortunately, this last result is valid
only for a small class of quaternionic polynomials, as it has been showed in
[8].

The inequality of Corollary 2.4 is best possible with equality holding if
and only if P is a multiple of the power Xd. One implication is immediate. If
P (X) = Xda, with a ∈ H and d ≥ 1, then ‖P ′‖ = ‖dXd−1a‖ = d|a| = d‖P‖.
We show the converse.

Proposition 2.6. If P ∈ H[X] is a quaternionic polynomial of degree d, and
|P ′(y)| = d‖P‖ at a point y ∈ S

3, then P (X) = Xda, for an a ∈ H with
|a| = ‖P‖.
Proof. We can assume that P (X) is not constant. Let b = P ′(y)−1 and set
Q(X) := P (X)b =

∑d
k=1 Xkak. Then, Q′(y) = 1, ‖Q‖ = 1/d and ‖Q′‖ ≤ 1.

Let I ∈ S, such that CI � y. Then

1 = Q′(y) =
∑

k kyk−1ak = πI(Q′(y)) =
∑

k kyk−1πI(ak) = (QI)′(y).

If x ∈ CI ∩ S
3, it holds

∣
∣(QI)′(x)

∣
∣ =

∣
∣
∣
∣
∣

∑

k

kxk−1πI(ak)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
πI

(
∑

k

kxk−1ak

)∣
∣
∣
∣
∣
≤

∣
∣
∣
∣
∣

∑

k

kxk−1ak

∣
∣
∣
∣
∣

= |Q′(x)| ≤ 1.

This means that the CI -polynomial QI , considered as an element of CI [X],
satisfies the equality in the classic Bernstein’s inequality. The same inequality
implies that

1 = max
x∈CI∩S3

|(QI
|CI

)′(x)| ≤ d max
x∈CI∩S3

|QI
|CI

(x)| ≤ d‖Q‖ = 1,

i.e., maxx∈CI∩S3 |QI
|CI

(x)| = 1/d. Therefore, the restriction of QI to CI coin-
cides with the function xdc, with c ∈ CI , |c| = 1/d

QI(x) =
d∑

k=1

xkπI(ak) = xdc for every x ∈ CI .

This implies that πI(ad) = c, πI(ak) = 0 for each k = 1, . . . , d − 1 and Q can
be written as Q(X) = Xdc + Q̃(X), with the coefficients of Q̃ belonging to
C

⊥
I = π⊥

I (H). When x ∈ CI ∩ S
3, Q̃(x) ∈ C

⊥
I , and then

1
d2

≥ |Q(x)|2 = |xdc|2 + |Q̃(x)|2 =
1
d2

+ |Q̃(x)|2.

This inequality forces Q̃ to be the zero polynomial, and then, P (X) =
Q(X)b−1 = Xdcb−1. �
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We now show that in Theorem 2.1, the assumption on Q to be one-slice-
preserving is necessary.

Proposition 2.7. Let

P (X) = (X − i) · (X − j) · (X − k), Q(X) = 2X · (X − i) · (X − j).

Then, V (Q) = {0, i} ⊆ B and |P (x)| ≤ |Q(x)| for every x ∈ S
3, but there

exists y ∈ S
3, such that |P ′(y)| > |Q′(y)|.

Proof. By a direct computation, we obtain

P (X) = X3 − X2(i + j + k) + X(i − j + k) + 1,

Q(X) = 2X3 − 2X2(i + j) + 2Xk,

P ′(X) = 3X2 − 2X(i + j + k) + i − j + k,

Q′(X) = 6X2 − 4X(i + j) + 2k.

Let P1(X) = X − k, Q1(X) = 2X, P2(X) = (X − j) · P1(X), Q2(X) =
(X − j) ·Q1(X). Then, P (X) = (X − i) ·P2(X) and Q(X) = (X − i) ·Q2(X).
For every x ∈ S

3 \ {j}, using formula (1), we get

|P2(x)| = |x − j||(x − j)−1x(x − j) − k| ≤ 2|x − j| = |x − j||2x| = |Q2(x)|.
Since P2(j) = Q2(j) = 0, the inequality holds also at j. From this, we

obtain, for each x ∈ S
3 \ {i}

|P (x)| = |x − i||P2((x − i)−1x(x − i))| ≤ |x − i||Q2((x − i)−1x(x − i))|
= |Q(x)|.

Since P and Q vanish at i, |P (x)| ≤ |Q(x)| for every x ∈ S
3.

Let y = 1
10

(
1 + 9i + 4j − √

2k
) ∈ S

3. An easy computation gives

|P ′(y)|2 =
7
25

(5 +
√

2) � 1.80, |Q′(y)|2 =
4
25

(10 − 3
√

2) � 0.92.

�

3. Bernstein Inequality and Zonal Harmonics

Since the restriction of a complex variable power zm to the unit circumference
is equal to cos(mθ) + i sin(mθ), the classic Bernstein inequality for complex
polynomials can be restated in terms of trigonometric polynomials. In this
section, we show that a similar interpretation is possible in four dimensions,
by means of an Almansi-type decomposition of quaternionic polynomials and
its relation with zonal harmonics in R

4.
Quaternionic polynomials, as any slice-regular function, are biharmonic

with respect to the standard Laplacian of R4 [12, Theorem 6.3]. In view of
Almansi’s Theorem (see e.g. [1, Proposition 1.3]), the four real components
of such polynomials have a decomposition in terms of a pair of harmonic
functions. The results of [12] can be applied to obtain a refined decomposition
of the polynomial in terms of the quaternionic variable.

Let Zk(x, a) denote the real four-dimensional (solid) zonal harmonic of
degree k with pole a ∈ S

3 (see, e.g., [2, Ch.5]). The symmetry properties of
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zonal harmonics imply that Zk(x, a) = Zk(xa, 1) for every x ∈ H and any
a ∈ S

3. Moreover, it holds [12, Corollary 6.7(d)]

xk = Z̃k(x) − x Z̃k−1(x) for every x ∈ H and k ∈ N, (5)

where Z̃k(x) is the real-valued zonal harmonic defined by Z̃k(x) := 1
k+1Zk(x, 1)

for any k ≥ 0 and by Z̃−1 := 0.
In the following, we will consider polynomials in the four real variables

x0, x1, x2, x3 of the form A(x) =
∑d

k=0 Z̃k(x)ak, with quaternionic coeffi-
cients ak ∈ H. They will be called zonal harmonic polynomials with pole 1.
All these polynomials have an axial symmetry with respect to the real axis:
for every orthogonal transformation T of H � R

4 fixing 1, it holds A◦T = A.

Proposition 3.1. (Almansi-type decomposition) Let P ∈ H[X] be a quater-
nionic polynomial of degree d ≥ 1. There exist two zonal harmonic polyno-
mials A, B with pole 1, of degrees d and d − 1, respectively, such that

P (x) = A(x) − xB(x) for every x ∈ H. (6)

The restrictions of A and B to the unit sphere S
3 are spherical harmonics

depending only on x0 = Re(x).

Proof. Let P (X) =
∑d

k=0 Xkck. Formula (6) follows immediately from (5)
setting

A(x) =
d∑

k=0

Z̃k(x)ck and B(x) =
d−1∑

k=0

Z̃k(x)ck+1.

The restriction of Z̃k(x) to the unit sphere S
3 is equal to the Gegenbauer (or

Chebyshev of the second kind) polynomial C
(1)
k (x0), where x0 = Re(x) (see

[12, Corollary 6.7(e)]). This property implies immediately the last statement.
�

Remark 3.2. See [13,14] for an extension of the Almansi decomposition to
polynomials or more generally slice-regular functions on quaternions and Clif-
ford algebras.

Thanks to the previous decomposition, the quaternionic Bernstein in-
equality of Corollary 2.4 can be restated in terms of Gegenbauer polynomials
C

(1)
k (x0). Let d ∈ N. For any (d + 1)-uple α = (a0, . . . , ad) ∈ H

d+1, let
Qα : S3 → H be defined by

Qα(x) :=
d∑

k=0

(C(1)
k (x0) − xC

(1)
k−1(x0))ak

for any x = x0 + ix1 + jx2 + kx3 ∈ S
3 (where we set C

(1)
−1 := 0). Being the

restriction to S
3 of the quaternionic polynomial P (X) =

∑d
k=0 Xkak, which

has biharmonic real components on H, Qα is a quaternionic valued spherical
biharmonic of degree d (see, e.g., [10]).
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Corollary 3.3. Let α = (a0, . . . , ad) and α′ = (a1, 2a2, . . . , kak, . . . , dad, 0) ∈
H

d+1. Then, it holds

if |Qα(x)| =

∣
∣
∣
∣
∣

d∑

k=0

(
C

(1)
k (x0) − xC

(1)
k−1(x0)

)
ak

∣
∣
∣
∣
∣
≤ M for every x ∈ S

3,

then |Qα′(x)| =

∣
∣
∣
∣
∣

d−1∑

k=0

(
C

(1)
k (x0) − xC

(1)
k−1(x0)

)
(k + 1)ak+1

∣
∣
∣
∣
∣
≤ dM

for every x ∈ S
3.

Proof. Let P (X) =
∑d

k=0 Xkak. From formula (5), it follows that the restric-
tion of P ′ to the unit sphere is the spherical biharmonic Qα′ . Corollary 2.4
permits to conclude. �

Remark 3.4. Let P ∈ H[X] be a polynomial with Almansi-type decomposi-
tion P (x) = A(x) − xB(x) and let y = α + Jβ ∈ S

3, α, β ∈ R, β > 0. Let
v = A(y)B(y). It follows from general properties of slice functions [9, Lemma
5.3] that if v ∈ R, then |P ||Sy is constant, while if v �∈ R, then the maximum
modulus of P on the 2-sphere Sy ⊂ S

3 is attained at the point α + Iβ, with
I = Im(v)/| Im(v)|, while the minimum modulus is attained at α − Iβ. In
principle, this reduces the problem of maximizing or minimizing the modulus
of P on the unit sphere (or ball) to a one-dimensional problem.

Example 3.5. Consider the polynomial P (X) = (X − i) · (X − j) · (X − k) of
Proposition 2.7. Since the first four zonal harmonics are

Z̃0(x) = 1, Z̃1(x) = 2x0, Z̃2(x) = 3x2
0 − x2

1 − x2
2 − x2

3,

Z̃3(x) = 4x0(x2
0 − x2

1 − x2
2 − x2

3),

the Almansi-type decomposition of P is P (x) = A(x) − xB(x), with

A(x) = Z̃3(x) + Z̃0(x) + (i + k)
(
Z̃1(x) − Z̃2(x)

)
− j

(
Z̃1(x) + Z̃2(x)

)

= (1 + 4x3
0 − 4x0x

2
1 − 4x0x

2
2 − 4x0x

2
3) + (i + k)(2x0 − 3x2

0 + x2
1 + x2

2 + x2
3)

− j(2x0 + 3x2
0 − x2

1 − x2
2 − x2

3),

B(x) = (3x2
0 − x2

1 − x2
2 − x2

3) + i(1 − 2x0) − j(1 + 2x0) + k(1 − 2x0)

harmonic polynomials. Their restrictions to S
3 are the spherical harmonics

A|S3(x) = (1 − 4x0 + 8x3
0) + i(1 + 2x0 − 4x2

0) + j(1 − 2x0 − 4x2
0)

+ k(1 + 2x0 − 4x2
0),

B|S3(x) = (−1 + 4x2
0) + i(1 − 2x0) − j(1 + 2x0) + k(1 − 2x0).

Following the observation made in Remark 3.4, since Im(A(y)B(y)) = 4((α−
1)i + αk), where α = Re(y), y ∈ S

3, one can find the 2-sphere Sy ⊂ S
3 where

the maximum modulus of P is attained. A direct computation gives Re(y) =
(1 − √

19)/6 ∼ −0.56 and the corresponding maximum value ‖P‖ ∼ 4.70
attained at the point ỹ = (1 − √

19)/6 − i(5 +
√

19)/12 + k(1 − √
19)/12 of

S
3.
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Some of the results presented in this note can be generalized to the gen-
eral setting of real alternative *-algebras, where polynomials can be defined
and share many of the properties valid on the quaternions (see [7]). The poly-
nomials of Proposition 2.7 can be defined every time the algebra contains an
Hamiltonian triple i, j, k, i.e., when the algebra contains a subalgebra isomor-
phic to H (see [4, Sect. 8.1]). This is true, e.g., for the algebra of octonions
and for the Clifford algebras with signature (0, n), with n ≥ 2. In all such
algebras, one can repeat the previous proofs and get the analog of Theorem
2.1, as well as of the Bernstein inequality (see also [15] for this last result).
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