
Atmospheric Environment 275 (2022) 119008

Available online 23 February 2022
1352-2310/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Field calibration of a low-cost sensors network to assess traffic-related air 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Deployment and test of a low-cost sen-
sors network for NO2 alongside the 
Brenner highway. 

• Development of a multivariate regres-
sion with two temperature-dependent 
classes of coefficients. 

• Good agreement with reference in-
struments throughout a year-long 
validation. 

• Data analysis shows the relation be-
tween valley winds and concentration 
patterns. 

• Operational employment of low-cost 
sensors as a counter-check for the con-
centration values estimated by a 
dispersion model.  
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A B S T R A C T   

This paper presents the results of a field campaign aiming at testing the ability of a network of low-cost elec-
trochemical sensors to measure nitrogen dioxide concentration levels alongside one of the major Italian highway 
arteries. The results of a double on-field calibration, allowing for investigating the performance of the sensors 
under a broad range of weather conditions, are first shown and discussed. Different regression models are tested 
and their performance is widely assessed. Then, the measurements of the calibrated sensors are analyzed during a 
year-long field campaign, testing their performance against reference air quality stations and paying particular 
attention to different statistical indices. Results show a satisfactory performance of the low-cost sensors, high-
lighting their suitability to complement measurements from standard air quality stations, to reach a wider spatial 
coverage and to monitor pollutant concentrations in critical situations, when standard measurements are usually 
not feasible. Moreover, the dataset available from the year-long field campaign allows to extensively investigate 
nitrogen dioxide concentrations alongside the highway, pointing out in particular the strict relationship between 
pollutant concentration patterns and meteorological phenomena typical of Alpine valleys, such as daily-periodic 
thermally-driven wind systems.   
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1. Introduction 

Over the last few years the increasing use of low-cost sensors for air 
pollution monitoring has generated a large debate, mainly concerning 
their actual reliability. The main weak spots of low-cost sensors (Kar-
agulian et al., 2019; Concas et al., 2021; Clements et al., 2017; Spinelle 
et al., 2013; Popoola et al., 2016) are:  

● lower accuracy than traditional reference instruments;  
● need for frequent and location-specific calibrations;  
● high sensitivity to atmospheric variables (especially humidity and 

temperature);  
● cross-sensitivity to other gases;  
● slow response with time-varying pollutant concentrations;  
● drift and degradation. 

Nevertheless, in environmental monitoring, a high-resolution sam-
pling, both spatially and temporally, is essential to obtain representative 
information of air quality conditions and a complete understanding of 
the processes under study. Traditional approaches for monitoring air 
pollution generally make use of very expensive, complex, stationary 
equipment, which limits data collection (Watson et al., 1995). Hence, in 
order to monitor the pollution level in a given region, air quality stations 
are generally located at a few points where the highest concentration is 
expected, namely near the emission sites, like specific chimneys or major 
roads, along with some monitoring points accounting for background 
concentrations from minor and distributed pollution sources (EPA-AU, 
2008). On the other hand, thanks to their reduced cost, size and con-
sumption, new low-cost sensors allow the installation of denser moni-
toring networks for integrating the limited information on the spatial 
distribution of air pollutants provided by traditional measurements 
(Spinelle et al., 2015, 2017; Zikova et al., 2017a,b; Popoola et al., 2018; 
Borrego et al., 2016; Heimann et al., 2015). 

In the present work, the potentiality of low-cost sensors to monitor 
air quality close to major roads and to evaluate the effects of mitigation 
strategies aiming at reducing vehicles’ emissions is assessed. Actions 
aiming at reducing pollutant emissions from transport have increased 
over recent years in Europe, in order to improve air quality conditions. 
In particular, thanks to increasingly strict emission standards for vehi-
cles, emissions from this sector have decreased since 1990, despite an 
increase of traffic fluxes. Between 1990 and 2017, emissions of NOx from 
transport decreased by 40%, those of SOx by 66%, and those of CO and 
non-methane VOCs by 87%. Between 2000 and 2017, emissions of 
PM2.5 decreased by 44% (EEA, b). Nevertheless, road transport is yet 
the major responsible for NOx emissions, considering especially diesel 
cars. As a consequence, NO2 concentrations often exceed the annual 

standard limit of 40 μg m−3 close to major roads in many European 
countries (EEA, b). Hence, different policies are implemented in Euro-

pean states in order to reduce NOx emissions and improve air quality, 
including reduced speed limits (EEA, a). Reduced speed limits are 
effective not only in reducing NOx emissions, but also for non-exhaust 
releases from tires, brakes, and road abrasion, which contribute to 
emissions of primary PM2.5. However, in Italy this policy cannot be 
applied, as the enforcement of speed limits for environmental purposes 
is currently not allowed by the Italian road traffic code. In this context, 
the EU LIFE BrennerLEC project1 aims at testing the effects of reduced 
speed limits on NO2 concentrations. The final goal of the project is to 
implement a “low emission corridor (LEC)” for the A22 highway, which 
carries the heaviest traffic load in the whole Alpine region, with 11.1 
million vehicles crossing the Brenner Pass between Austria and Italy in 
2019. At a regional level, traffic on the A22 highway causes 41% of NOx 
road transport emissions, which in turn is responsible for 60% of the 
total NOx emissions. In the project, a proactive system for the manage-
ment of speed limits based on current and predicted meteorological, air 
quality and traffic conditions has been developed. Moreover, in the 
framework of BrennerLEC, an extensive experimental campaign was 
carried out in order to assess the benefits associated to speed reduction. 
This includes traditional air quality monitoring stations, for both (urban 
and rural) background and for highway-related emissions, as well as a 
supplementary network of low-cost sensors, in order to improve the 
spatial coverage of air quality data. In the present work, an in-depth 
analysis of the performance of the low-cost sensors is presented, 
analyzing in particular data from two in-field calibrations (summer and 
winter periods) and from a year-long outdoor validation. It is worth 
highlighting that an outdoor evaluation of the performance of this kind 
of sensors over one year is a rare case in the literature. Here the focus is 
on NO2, which is the most significant traffic-related air pollutant. The 
main aim is to investigate the long-term reliability of low-cost sensors in 
monitoring roadside NO2 concentrations under different meteorological 
conditions and to highlight the potentiality of a dense network of sensors 
to capture peculiar roadside dispersion patterns. In the BrennerLEC 
project, the dynamic management of the speed limits is based on the air 
quality conditions predicted by means of a dispersion model; long-term 
performance assessment of low-cost sensors is crucial because they are 
employed operationally as a counter-check for the concentration values 
estimated by the model. The paper is organized as follows. Section 2 
presents the field campaign and the study area, as well as the method-
ology adopted for the calibration of the low-cost sensors. The results of 

Abbreviations 

EU European Union 
MOSS Metal oxide semiconductor sensor 
ECS Electrochemical sensor 
APPA-TN Environmental Protection Agency of Province of the 

Autonomous Trento 
APPA-BZ Environmental Protection Agency of Province of the 

Autonomous Bolzano 
WMO World Meteorological Organization 
AQ AirQino 
MR Multivariate regression 
T-MR Temperature-dependent multivariate regression 
SP Spline interpolation 

RF Random Forest 
OOB Out-of-bag 
CORR Correlation coefficient 
NSME Normalised mean square error 
FB Fractional bias 
FAC2 Fraction within a factor of two 
MB Mean bias 
MGE Mean gross error 
NMB Normalised mean bias 
NMGE Normalised mean gross error 
RMSE Root mean squared error 
COE Coefficient of efficiency 
IOA Index of agreement 
CQ Conditional quantile  

1 This research was funded by the LIFE program, grant number LIFE15 ENV/ 
IT/000281, through the “BrennerLEC” project. 
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the calibration are presented in Section 3, while Section 4 shows the 
performance of the sensors during the year-long field campaign. In 
Section 5 data from the low-cost sensors are analyzed in order to char-
acterize NO2 concentrations along the A22 highway. Finally, conclu-
sions are presented in Section 6. 

2. Materials and methods 

2.1. Choice of the low-cost sensor technology 

Detectors for monitoring nitrogen dioxide can be based on different 
technologies: currently available sensors include metal oxide semi-
conductor, electrochemical, infrared and photo-ionisation detector 
sensors. Both metal oxide semiconductor and electrochemical detectors 
are employed in the BrennerLEC project, as they are the least expensive 
and most widely used technologies in low-cost sensing units. Metal oxide 
semiconductor and electrochemical sensors (hereinafter MOSSs and 
ECSs respectively) present similar characteristics considering both price, 
being inexpensive compared to traditional chemiluminescence sensors 
used in official air quality stations, and the relatively high sensitivity, 
which allows measurements in ambient air. Moreover, both types of 
sensors have small size, which allows the possibility to install them also 
close to major roads. ECSs require lower power draw than MOSSs, as the 
latter need an electric heater. On the other hand, MOSSs have generally 
a longer lifespan and higher resilience against weather conditions than 
ECSs. In general, sensitivity is affected by atmospheric conditions and by 
other gases for both of them, even if the sensitivity of ECSs is less 
influenced by temperature and humidity than for MOSSs (Concas et al., 
2021). However, low humidity and high temperatures can dry out the 
electrolyte and damage the detector. 

For the BrennerLEC field campaign we adopted the MOSSs Sens-IT 
(Unitec, 2018) and MiCS-2710 (e2v, 2008) sensors, and the ECSs 
Alphasense NO2-A43F sensor (Alphasense, 2019). Table 1 shows the 
main characteristics of the three sensors, referring to nitrogen dioxide 
measurements; range and precision specifications are obtained from the 
manufacturer’s data-sheets (Unitec, 2018; e2v, 2008; Alphasense, 
2019), while the calibration interval from the literature review provided 
by Concas et al. (2021). 

A preliminary analysis of the data collected from these sensors 
highlighted that the Alphasense NO2-A43F presents the best perfor-
mance in measuring NO2 concentrations when compared with reference 
measurements. Therefore, the results presented in this work, including 
the calibration and the year-long measurements campaign, focus on the 
measurements performed with this kind of sensors only. 

2.2. AirQino sensors board 

AirQino (hereinafter AQ) is a custom-made printed circuit board 
(PCB) developed by the Institute of BioEconomy of the Italian National 
Research Council (CNR-IBE). The board integrates a set of commercial 
low-cost sensors for various meteorological, aerosol and gaseous mea-
surements and acts as an Arduino shield allowing for flexible sampling 
programming. The PCB integrates sensors for air temperature and 
relative humidity (AM2315 Adafruit, New York City, NY, USA), partic-
ulate matter concentration (SDS011, Nova Fitness, Jinan, China) and 
CO2 (S8, SenseAir, Delsbo, Sweden). The board also integrates a set of 

sensors for gaseous pollutants such as CO (TGS-2600, Figaro Inc., 
Arlington Heights, IL, USA), total VOCs (MiCS-5524, SGX Sensortech, 
Neuchatel, Switzerland), NO2 (MiCS-2710, SGX Sensortech) and O3 
(MiCS-2614, SGX Sensortech). For the BrennerLEC application, auxil-
iary NO (NO-A4, Alphasense, Great Notley, Essex, United Kingdom) and 
NO2 (NO2-A43F, Alphasense) sensors were added to the AirQino board. 
AQ is also equipped with a GPS unit and a General Packet Radio Service 
(GPRS) modem, allowing for precise time-stamping, geo-localization of 
the measurements and data transmission to a centralized server. Finally, 
a watchdog module is used to reset the processing unit of the AQ every 
24 h to bypass eventual software failures. The whole electronics and 
sensors are enclosed in a waterproof box where air circulation is guar-
anteed by two Ingress protection (IP) 33 ventilation devices (mod. 
3540631, Fibox Inc., Glen Burnie, MD, USA) and a MC20080V1 brush- 
less fan (Sunon Inc., Brea, CA, USA) with a nominal flow-rate of 2.7 
m−3 h−1. To accurately measure air temperature and relative humidity 
the relevant sensor is exposed through the box, but thoroughly protected 
with a radiation shield. Similarly, the particulate matter sensor has a 
separate inlet and an internal fan able to provide continuous air circu-
lation at 0.75 m3 h−1. The system is directly powered by 220 V AC power 
through a 12 V AC-DC transformer and it then redistributes a steady 5 V 
DC power to the electronics through an internal DC-DC converter. Power 
consumption is 200 mA - 12 V DC, about 2.5 W. AQ performance was 
tested against reference sensors in both urban and extreme environ-
ments with satisfying accuracy (Zaldei et al., 2017; Gualtieri et al., 2017; 
Cavaliere et al., 2018; Carotenuto et al., 2020). 

2.3. Reference air quality stations 

Three reference monitoring stations were installed alongside the A22 
highway at a distance of 8 m from the traffic lane centerline. They are 
equipped with meteorological sensors and reference gas analysers for 
NO, NO2, NOx O3, CO and particulate matter. Measurements are carried 
out in parallel to the low-cost sensors, as discussed in the next sections. 
Two stations (ML103 and ML107) are managed by the Environmental 
and Climate Protection Agency of the Autonomous Province of Bolzano 
(APPA-BZ) and one (BL164) by the Environmental Protection Agency of 
the Autonomous Province of Trento (APPA-TN). Both agencies are 
partner of the BrennerLEC project. The reference measurements of NO2 
are used for the calibration of the low-cost sensors, data validation and 
comparison. All three stations monitor atmospheric NO, NO2 and NOx 
concentrations using the Horiba APNA-370 detector (Horiba). 
APNA-370 is included in the “List of Designated Reference and Equiv-
alent Methods” of the United States Environmental Protection Agency 
for measuring ambient concentrations of NO2 (EPA-US, 2020). The 
working principle is a cross-flow modulated semi decompression 
chemiluminescence method. It employs an internal dry-method sam-
pling device to achieve the highest levels of sensitivity and accuracy. 
The stations measure also the principal meteorological parameters, 
including air temperature and relative humidity, atmospheric pressure, 
rainfall, wind speed and direction, and solar radiation. APPA-TN em-
ploys a Davis Vantage Pro2 weather station, while APPA-BZ uses SIAP +
MICROS sensors. Both are compliant with the standards of the World 
Meteorological Organization (WMO, 2018). 

2.4. Set-up of the field campaign and data collection 

The A22 (or Brenner) highway, which connects the Po Plain to 
Austria through the Brenner Pass, is one of the most important Italian 
and European motorways, representing in particular the busiest Alpine 
corridor. It is a crucial connection for transports between southern and 
northern Europe by moving approximately 40′000 vehicles per day, 
with higher peaks during holidays. Considering the economical impact 
of this infrastructure, it is estimated that more than 30 million tonnes of 
freight are transported by road along the Brenner corridor each year 
(Cavallaro and Sommacal, 2018). 

Table 1 
Main characteristics of the low-cost sensors adopted to measure NO2 concen-
trations in the BrennerLEC project.  

Sensor Range Precision Calibration 
(μg m−3) (μg m−3) (month) 

MiCS-2710 94–9400 9 Every 12 
NO2-A43F 0–1880 9 Every 12 
Sens-IT 20–470 19 Every 6  
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A22 is a dual carriageway consisting of two lanes of traffic in each 
direction (with the lane nearest to the center being reserved for over-
taking) and two hard shoulders on the sides. Each lane is about 4 m wide 
and the shoulders around 3 m. The Brenner highway is 315 km long, but 
in the present work we consider a stretch of about 60 km (from Egna-Ora 

to Rovereto South), where 10 AQ sensors were installed. Here the A22 
highway follows the floor of the Adige Valley, which is north/south 
oriented and has a fairly constant width of 2–3 km, with adjacent 
mountain peaks reaching heights around 2000 m above the valley floor 
(Fig. 1). The AQ sensors were installed in fixed positions alongside the 
highway at heights between 4 and 8 m above ground level and at a 
horizontal distance of 8 m from the traffic lane centerline. The field 
campaign started in 2018 and in the present work data from a full year, 
from March 2019 to February 2020, are considered. 

The 10 low-cost sensors allowed us to collect a comprehensive 
spatio-temporal dataset, which was complemented by traffic data 
coming from several inductive loops measuring vehicles number and 
velocity. Table 2 summarizes the main information on the location of the 
AQ sensors and of the reference air quality stations. 

Note that the position of the sensors is marked by the distance from 
the Brenner Pass expressed in kilometers, as usual for highways. Also the 
air quality stations acronyms (ML103, ML107 and BL164) contain the 
distance from the Brenner Pass. All the sites were selected to guarantee 
that observations are as much as possible representative of a large area 
and not significantly affected by local effects. In particular, the location 
of the AQ sensors has been selected in homogeneous and straight 
stretches of the highway, with no tollbooths and service stations nearby, 
as they may significantly influence cars velocity and, consequently, 
emissions rates. Moreover, sensors were installed far from industrial or 
residential areas, which may affect local pollutant concentrations 
introducing additional emissions. Two AQ sensors (AQ1 and AQ3, at km 
103.7 and 164.4 respectively) were installed on the roof of two reference 
air quality stations, ML103 and BL164, along the south carriageway 
(southward flow of traffic), allowing for a direct comparison of NO2 
measurements. On the other hand, the comparison of the measurements 
of the low-cost sensor installed at km 107.8 on the North carriageway 
(AQ4) with the reference observations performed at ML107 on the other 
side of the highway allows to evaluate the effects of local meteorological 
conditions on pollutant dispersion on both sides of the road. A similar 
comparison can be performed also at km 103.7. At km 105.2, the pres-
ence of two AQ sensors at different heights (4 m and 10 m) permits to 
investigate also the variation of pollutant concentrations with elevation. 

AQ sensors collect data with a 2-min time resolution and, through 
General Packet Radio Service (GPRS) technology, they send geolocated 
measures to a web application server allowing to visualize, manipulate 
and share real-time information. Raw data collected by the AQ sensors 
are aggregated into hourly averages so as to make data analysis more 
robust. 

Air quality and meteorological measurements at the reference sta-
tions are registered at 10-min intervals. Also in this case hourly averages 
are calculated for a direct comparison with the AQ sensors. 

2.5. Meteorological characteristics of the site 

The highway lies on the floor of the Adige Valley, where the patterns 
of pollutant concentrations are expected to be strictly related to atmo-
spheric processes typical of Alpine valleys (Tomasi et al., 2019; Falocchi 
et al., 2020; Giovannini et al., 2020). In particular, the main factors 
affecting pollutant dispersion in the Adige Valley are the development of 
strong and frequent thermal inversions at night, especially during 
wintertime (Tomasi et al., 2017), and the presence of a valley wind 
system, especially in spring and summer (Giovannini et al., 2017). As a 
consequence, higher pollutant concentrations are expected in the cold 
months, due to the reduced mixing induced by the stable stratification 
characterizing the valley atmosphere in this period. On the other hand, 
valley winds, which typically blow down-valley (northerly winds) at 
night and in the first part of the morning and up-valley (southerly winds) 
from late morning to early evening, are expected to strongly influence 
the diurnal cycle of pollutant concentrations. The presence of a 
well-developed valley wind system in the Adige Valley can be clearly 
appreciated from the wind roses at the three reference air quality 

Fig. 1. Map of the study area showing the A22 highway (black line), the po-
sition of the AQ sensors (red circles) and of the official air quality stations (blue 
crosses). (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 

Table 2 
Main information on the positioning of the low-cost sensors and of the reference 
air quality stations.  

Tag Location (km) Carriageway Elevation (m) 
AQ1 103.7 South 4 
AQ2 103.7 North 4 
AQ3 164.4 South 4 
AQ4 107.8 North 4 
AQ5 105.2 North 10 
AQ6 132.8 South 4 
AQ7 105.2 South 10 
AQ8 105.2 North 4 
AQ9 167.9 South 4 
AQ10 113.4 North 4 
ML103 103.7 South 3.1 
ML107 107.8 South 3.4 
BL164 164.4 South 3.95  
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stations reported in Fig. 2. Wind direction is always aligned with the 
valley axis, marking the direction of down- and up-valley winds. In 
spring and summer both down- and up-valley winds are well developed, 
while in winter northerly (downvalley) winds are predominant, since in 
this season the solar radiation is too weak for the development of the 
thermal contrasts driving up-valley winds (Giovannini et al., 2017). 

2.6. Calibration models 

Two field campaigns were carried out in order to calibrate the AQ 
sensors. The first field calibration was carried out in June 2018 on the 
rooftop of an operational APPA-TN air quality station, in the city of 
Trento, close to a major suburban road. The 10 AQ sensors were installed 
side by side and data were collected during the whole month of June 

2018. A second period of calibration was required to test the sensors 
under a wider range of climatic conditions. It took place in the first two 
weeks of February 2019 and the AQ sensors were installed on the roof of 
the reference station ML103. The winter field calibration allowed to 
calibrate the AQ sensors under higher NO2 concentrations and different 
weather conditions, such as lower temperatures and higher relative 
humidity. The hot- and cold-season calibration data (a total of 6 weeks) 
were merged and jointly used to find the best regression curve. 

We tested four calibration models, i.e. two multivariate regressions, 
a spline interpolation and a random forest algorithm, using the R open- 
source software, version 3.6.3 “Holding the Windsock” (R-Team, 2006), 
for implementation and validation. 

The first method is a simple multiple linear regression, the extension 
of a classical linear least-squares regression involving n explanatory 

Fig. 2. Wind roses at ML103, ML107 and BL164 reference stations.  
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variables: 
yij =

∑n

k=0
xikαkj + εij (1)  

where yij is the i-th NO2 reference measurement (NO2−ref) for the j-th 
sensor, xik is the i-th value of the k-th explanatory variable, αkj is the 
regression coefficient of the k-th explanatory variable for the j-th sensor 
and εij is the residual. Note that xi0 = 1 implies α0j to be the regression 
intercept. 

Several works adopting multivariate regressions for the calibration 
of low-cost sensors highlighted that the addition of temperature (T) and 
relative humidity (RH) to the explanatory variables of the model 
generally improves significantly the accuracy of the calibration (Spinelle 
et al., 2015; Masson et al., 2015; Piedrahita et al., 2014; Popoola et al., 
2016; Borrego et al., 2016). Mijling et al. (2018) showed that the models 
including T as explanatory variable outperform the ones including RH. 
Moreover, the same study highlighted that, when both variables are 
used as predictors, the accuracy of the calibration was very similar to the 
one obtained adopting only T. Preliminarily calibration tests performed 
in the present work confirmed these findings, highlighting that the 
sensor response depends more strongly on T than on RH, and that the 
two variables are colinear (Alphasense, 2019; Mijling et al., 2018). In 
particular, the inclusion of RH among the explanatory variables did not 
improve the results significantly. Hence, RH was not considered for the 
calibration in the present work. Most literature studies adopt ambient air 
temperature as explanatory variable (Popoola et al., 2016). Here we 
decided to adopt the internal air temperature measured by the AQ 
sensors (Tint), as this is the temperature directly affecting the sensor 
behavior. We observed that the internal sensor temperature is about 4 ◦C 
higher than the ambient temperature all the year through, while being 
roughly equivalent in trends. Hence their effect as explanatory variable 
in the regression is highly comparable as well. 

We investigated the influence of all the available variables on NO2 
measurements and found that only the inclusion of ozone (O3) as 
explanatory variable improved significantly the results. O3 is directly 
measured by the AQ platform. Considering raw NO2 data (NO2−raw), we 
found that the best results were obtained using a second degree poly-
nomial of NO2−raw. Hence, we modeled the final calibration curve as a 
multivariate regression (MR), including a (quadratic) polynomial 
regression and a multiple linear regression: 
NO2−ref = α0 + α1NO2

2−raw + α2NO2−raw + α3O0.1

3
+ α4T4

int (2)  

where the indexes i and j are omitted for sake of simplicity. The expo-
nents in the explanatory variables of the linear part of Eq. (2), namely 
O0.1

3 and T4
int , were calculated from two separate, prior power regression 

models. We applied the ordinary method of (non-linear) least squares to 
calculate the calibration coefficients. The constant terms of the 
quadratic and multiple linear regressions merge into the α0 addend. It is 
worth noting that only variables measured by the AQ platform have 
been used for the calibration, thus allowing the results obtained in the 
present work to be extended also to other contexts, being independent 
from external measurements. 

The second method uses the same MR shown in Eq. (2). The differ-
ence lies in the calculation of the α coefficients. We noticed that α values 
vary significantly if the two calibration periods are considered sepa-
rately. Hence, we calculated two different sets of the α coefficients for 
the summer and the winter periods. The criterion for choosing the set of 
α coefficients is simply based on the internal temperature (Tint) 
measured by the AQ sensors. In particular, we found that the best cutoff 
value is Tint = 20◦C. Therefore, in this second approach (T-MR), we 
apply two multivariate regressions, depending on the value of the in-
ternal temperature measured by the AQ sensors. 

Although MR and T-MR allow for a quadratic regression between 
NO2−raw and NO2−ref, the two models are still considered a linear 
regression since they are linear in the regression coefficients. It is worth 

noting that a MLR may include any interaction term between the pre-
dictors, even without one of them being a polynomial of the others. 

The third method is based on a spline interpolation (SP) (Fritsch and 
Carlson, 1980; Chambers et al., 1990). In particular, we generated a 
cubic B-spline regression using the same predictor variables as in the 
MR. The method generates a basis matrix for representing the family of 
piecewise polynomials with the specified internal breakpoints and de-
gree, evaluated at the values of the predictor variable. This represen-
tation has the advantage that the estimation of the unknown function 
reduces to the estimation of the coefficients associated with the basis 
functions (Perperoglou et al., 2019). 

Finally, the fourth method implements the Breiman’s random forest 
(RF) algorithm (Breiman, 2001). Several works showed that a successful 
calibration of low-cost sensors can be achieved using 
machine-learning-based models, such as artificial neural networks and 
random forests (Spinelle et al., 2015; Zimmerman et al., 2018; De Vito 
et al., 2009; Esposito et al., 2016). Here the randomForest R package 
(Liaw and Wiener, 2014) was used in order to implement a multiple 
regression forest. Again, in order to allow a uniform comparison, 
NO2−raw, O3 and Tint were selected as predictors. In Breiman’s algorithm 
a cross-validation or a test subset are not necessary to determine an 
unbiased estimate of the error, thanks to the out-of-bag (OOB) approach 
(Breiman, 2001; Boehmke and Greenwell, 2019). In OOB error estimate, 
each tree is built from a different bootstrap sample, i.e. a subset 
randomly selected with replacement from the original data. Each tree is 
trained on 63.2% of the data and the leftover 36.8% is used to assess the 
performance, similarly to cross-validation. 

Table 3 
Statistical performance indexes for the calibration models.  

CORR 
Tag MR T-MR SPL RF 
AQ1 0.77 0.93 0.93 0.92 
AQ2 0.84 0.89 0.95 0.93 
AQ3 0.94 0.97 0.97 0.96 
AQ4 0.95 0.96 0.97 0.96 
AQ5 0.93 0.95 0.96 0.95 
AQ6 0.61 0.89 0.94 0.94 
AQ7 0.89 0.94 0.95 0.94 
AQ8 0.87 0.89 0.94 0.93 
AQ9 0.90 0.96 0.97 0.96 
AQ10 0.89 0.92 0.94 0.93 
NMSE 
Tag MR T-MR SPL RF 
AQ1 0.14 0.05 0.05 0.06 
AQ2 0.10 0.07 0.04 0.05 
AQ3 0.04 0.02 0.02 0.03 
AQ4 0.04 0.03 0.02 0.03 
AQ5 0.04 0.03 0.03 0.03 
AQ6 0.21 0.07 0.04 0.04 
AQ7 0.07 0.04 0.04 0.04 
AQ8 0.08 0.07 0.04 0.05 
AQ9 0.07 0.03 0.02 0.03 
AQ10 0.07 0.05 0.04 0.04 
FAC2 
Tag MR T-MR SPL RF 
AQ1 0.89 0.93 0.94 0.93 
AQ2 0.93 0.96 0.97 0.97 
AQ3 0.97 0.98 0.99 0.98 
AQ4 0.97 0.98 0.98 0.97 
AQ5 0.97 0.97 0.98 0.98 
AQ6 0.81 0.95 0.98 0.97 
AQ7 0.93 0.97 0.98 0.97 
AQ8 0.94 0.96 0.97 0.97 
AQ9 0.95 0.98 0.98 0.98 
AQ10 0.94 0.96 0.97 0.97  
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3. Performance of the calibration models 

Several statistical indexes can be used to assess the accuracy of the 
predictions of a model (see for instance Patryl and Galeriu (2011); 
Thunis et al. (2012); Pederzoli et al. (2012); Chang and Hanna (2004, 
2005) and, paying special attention to regressions, Spuler et al. (2015); 
Botchkarev (2019)). The calculation of multiple performance metrics is 
always recommended, as each index takes into account a particular 
aspect of the comparison between model predictions and observations. 
The performance metrics used here include the correlation coefficient 
(CORR), the normalised mean square error (NMSE) and the fraction of 
predictions within a factor of two of observations (FAC2). Other per-
formance measures, i.e. the fractional bias (FB), the mean bias (MB), the 
mean gross error (MGE), the normalised mean bias (NMB), the nor-
malised mean gross error (NMGE), the root mean squared error (RMSE), 
the coefficient of efficiency (COE) based on LeGates and McCabe (2013) 
and the index of agreement (IOA) based on Willmott et al. (2012), are 
presented in the supplementary material. 

The data analysis presented hereinafter was carried out by means of 
the Openair R package (Carslaw and Ropkins, 2012; Carslaw, 2019), 
specifically developed for air pollution measurements. This package 
allows for data importation and manipulation, calculation of a wide 

range of statistical performance indexes and plot of different types of 
graphics (such as the Taylor diagram, the conditional quantile plot, the 
pollution rose and the polar plot), which can be useful for the inter-
pretation of data. The values of CORR, NMSE and FAC2 are listed in 
Table 3, while the other performance metrics are reported in Table S1 of 
the Supplementary material. 

SPL and RF models show very high correlation factors (always 
greater than 0.9) for all AQ sensors during the calibration period. T-MR 
improves significantly the correlation level obtained with MR, with 
values above 0.9, confirming the effectiveness of a temperature- 
dependent approach. The same is true for NMSE. Table 3 shows that 
T-MR indeed generates NMSE values smaller than MR, although not 
always reaching the low values of SPL and RF. FB is close to zero for all 
the calibration models and AQ sensors (Table S1, supplementary ma-
terial), thus indicating the absence of systematic errors. However, good 
values for FB, CORR and NMSE are not sufficient conditions for a good 
model (Patryl and Galeriu, 2011). In fact, NMSE and FB are influenced 
by the possible occurrence of high observed and predicted values and 
CORR by the possible good match for a few extreme pairs (Chang and 
Hanna, 2005). On the other hand, the presence of outliers does not affect 
FAC2 values. FAC2 presents very similar values for T-MR, SPL and RF, 
while, also in this case, MR shows the worst performance, corroborating 

Fig. 3. Scatterplots of reference versus AQ calibrated NO2 concentrations for the four models.  
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the superiority of T-MR with respect to MR. The other performance 
metrics (Table S1, supplementary material) confirm once again that 
T-MR, SPL and RF models are effective in predicting the observations. 
For example, COE>0.6 implies that the absolute values of the differ-
ences between the observations and the model predictions are less than 
40% of the difference between the observations and their mean and 
IOA>0.7 indicates that the sum of the error magnitudes is less than 30% 
of the sum of the observed deviation magnitudes (LeGates and McCabe, 
2013; Willmott et al., 2012; Carslaw, 2019). 

In order to further analyze the models performance, Fig. 3 shows the 
scatterplots of the reference measurements against the calibrated hourly 
concentrations for the four models. The red and blue dots indicate the 
summer and winter calibrations, respectively. The overall performance 
is satisfactory for all the four models, as almost all the points (>90%) are 
within the FAC2 curves (dashed lines), albeit the correlation decreases at 
the lowest values. Again, T-MR appears to be more accurate than MR, 
and comparable to SPL and RF. 

The goodness of the calibration models has been evaluated also with 
the Taylor diagram (Taylor, 2001; Cordero et al., 2018; Carslaw, 2019) 
in Fig. 4. 

Taylor diagram displays CORR (proportional to the polar angle from 
the y axis), the centered RMSE (proportional to the distance from the 
reference point, i.e. the grey arcs) and the standard deviation (the radial 
distance). It is worth pointing out that in Fig. 4 data are normalised, so as 
the standard deviation of NO2−ref is 1. CORR and centered RMSE for T- 
MR, SPL and RF are very similar, while the standard deviation is slightly 
underestimated by RF. On the other hand, MR performs markedly worse 
than the other models for 6 of the 10 AQ sensors. On the basis of the 
statistical analysis of the performance of the different calibration 
models, it can be concluded that T-MR, SPL and RF present similar ac-
curacy in reproducing the observed reference NO2 values. However, 
given the simplicity of T-MR with respect to the other two methods, the 
former model is selected for the following environmental analyses. In 
fact, the aim of the BrennerLEC project is to adopt operationally the low- 
cost sensors to support the implementation of environmental policies, 
keeping the calibration technique as simple as possible. Hence, the T-MR 
method is adopted in the following analyses for the evaluation of the 
suitability of the low-cost sensors for monitoring NO2 concentrations 

during the full year from March 2019 to February 2020. 

4. Long term validation 

As mentioned above (Section 2.6), only AQ1 and AQ3 sensors were 
installed at the same location of the reference stations (ML103 and 
BL164 respectively), hence allowing for a direct comparison. Here we 
present the statistical evaluation of the performance of these two sen-
sors, extended to the whole year of validation. Table 4 shows that the 
low-cost sensors measurements, adopting the T-MR model, compare 
reasonably well with the reference ones. As expected, the statistical in-
dexes present slightly worse values with respect to the calibration pe-
riods, due to the fact that during the whole year the AQ sensors 
experienced levels of concentration and meteorological conditions far 
more variable with respect to the six-week calibration period. Possible 
small drifts of the NO2, O3 or Tint sensors may also explain the slight 
deterioration of the sensors performance. CORR and NMSE values 
slightly deteriorate with respect to the calibration, but still highlighting 
a good level of accuracy. On the other hand, FAC2 assumes fairly the 
same values as in the calibration period. Month-by-month values of the 
statistical indexes do not reveal a significant loss of accuracy throughout 
the year of validation; they rather show that the sensors consistently 
performed better in winter than summer (which will be discussed 
below). The same statistical performance indexes as in Table S1 are 
shown in Table S2 (supplementary material) for the year of validation, 
pointing out that the overall accuracy is still satisfactory for both 
sensors. 

An overall satisfying behavior of AQ1 and AQ3 throughout the 
validation period can also be seen in the scatterplots presented in Fig. 5. 
AQ1 and AQ3 do not exhibit systematic errors, thus pointing out their 
long-term reliability. A long lifespan under a wide range of operating 
conditions is essential for making the low-cost sensors effective in 
monitoring air pollutants levels. 

Finally, the performance of the low-cost sensors is also analyzed 
using conditional quantile (CQ) plots (Wilks, 2019; Carslaw, 2019) on a 

Fig. 4. Taylor diagrams of the calibration models predictions against the 
reference values. 

Table 4 
Statistical performance indexes for AQ1 and AQ3 for the year-long validation.  

Sensor AQ1 vs Station ML103 
Time period CORR NMSE FAC2 
Entire year 0.78 0.07 0.95 
March 2019 0.85 0.09 0.93 
April 2019 0.68 0.16 0.93 
May 2019 0.52 0.26 0.82 
June 2019 0.71 0.15 0.92 
July 2019 0.75 0.13 0.96 
August 2019 0.67 0.13 0.95 
September 2019 0.63 0.11 0.97 
October 2019 0.52 0.16 0.95 
November 2019 0.83 0.12 0.99 
December 2019 0.91 0.04 0.99 
January 2020 0.90 0.03 0.99 
February 2020 0.84 0.05 0.98 
Sensor AQ3 vs Station BL164 
Time period CORR NMSE FAC2 
Entire year 0.79 0.08 0.93 
March 2019 0.90 0.10 0.93 
April 2019 0.63 0.21 0.90 
May 2019 0.64 0.19 0.90 
June 2019 0.57 0.21 0.90 
July 2019 0.57 0.23 0.85 
August 2019 0.61 0.17 0.91 
September 2019 0.58 0.17 0.93 
October 2019 0.57 0.17 0.95 
November 2019 0.78 0.22 0.91 
December 2019 0.94 0.04 0.99 
January 2020 0.93 0.04 0.99 
February 2020 0.89 0.07 0.96  
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seasonal basis (Figs. 6 and 7). In these diagrams, the reference mea-
surements are split into bins according to the calibrated values of the 
low-cost sensors. The median of AQ values (red line), the 25/75th 
(yellow shading) and 10/90th (orange shading) quantile intervals are 
plotted in comparison to the diagonal (blue line), which represents a 
perfect model. The histograms in the lower part of the panels represent 

the counts of calibrated AQ (shaded grey) and reference (thin blue line) 
values. Considering AQ1, the best performance is reached in winter, 
when the median well matches the perfect model line, the spread in the 
quantiles is narrower and the two distributions are very similar. On the 
other hand, in spring, summer and autumn AQ1 tends to underestimate 
high concentrations and to overestimate low concentrations. Errors are 

Fig. 5. Scatterplots of ML103 versus AQ1 (left panel) and BL103 versus AQ3 (right panel) NO2 measurements throughout the year-long validation.  

Fig. 6. Conditional quantile plot of ML103 versus AQ1 NO2 measurements divided by season throughout the year-long validation.  
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more evident in autumn, when also the histograms of AQ1 and of the 
reference observations differ more significantly. The behavior is similar 
also for AQ3, but with a generally better agreement with the reference 
measurements in all the seasons. Fig. 7 also shows that in summer the 
median line overlaps the perfect model line for concentrations lower 
than 50 μg m−3, while it tends to be below the diagonal for higher 
concentrations. The reason why the winter period shows the best 
agreement probably lies in the dual form of T-MR. During spring and 
autumn the internal temperature of the AQ sensors may oscillate around 
the cut-off value of 20 ◦C, enhancing the uncertainty. On the other hand, 
in winter and in summer Tint is always lower and higher than 20 ◦C, 

respectively. The difference between winter and summer performance is 
likely due to the fact that the winter calibration took place close to the 
highway and hence under working conditions more similar to those of 
the validation period. Furthermore, Alphasense NO2-A43F technical 
specifications (Alphasense (2019)) recommend a working temperature 
range of −30–50 ◦C. The sensors registered higher internal temperatures 
almost every day during summer, while not reaching the lower limit 
during winter. 

5. Nitrogen dioxide concentrations close to the highway 

In accordance with the EU air quality directive (2008/EC/50), the 
Italian decree-law 155/2010 provides two limit values for the protection 
of human health from exposure to NO2. First, hourly concentrations 
cannot exceed 200 μg m−3 more than 18 times in a year and, second, the 
annual mean value cannot exceed 40 μg m−3. While the first law-limit is 
always respected also close to the motorway, Table 5 shows that yearly 
average concentrations (March 2019–February 2020) exceed 40 μg m−3 

for all AQ sensors and for all the three reference air quality stations. This 
result highlights the importance of policies aiming at reducing NO2 
emissions, as those implemented in the BrennerLEC project. 

It is well known that pollutant concentrations in the atmosphere are 
controlled by the emission rates and by the interaction between 
dispersion and meteorological processes. In particular, NO2 levels close 
to a highway follow typical daily and weekly cycles mostly related to the 
traffic flow. Figs. 8–10 show, for different sensors, the same types of 
graphics: 

Fig. 7. Conditional quantile plot of BL164 versus AQ3 NO2 measurements divided by season throughout the year-long validation.  

Table 5 
NO2 mean values (μg m−3) in the period March 2019–February 2020 
measured by the AQ sensors and the reference air quality stations.  

Sensor/Station NO2 concentration (μg m−3) 
AQ1 48–0 
AQ2 49.5 
AQ3 56.2 
AQ4 48.9 
AQ5 45.4 
AQ6 48.8 
AQ7 49.6 
AQ8 44.8 
AQ9 52.1 
AQ10 52.4 
ML103 51.6 
ML107 48.8 
BL164 53.3  
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● the average diurnal cycles for each day of the week (top panel)  
● the average diurnal cycle considering all the data (bottom left panel)  
● the yearly cycle on a monthly basis (bottom center panel)  
● the weekly cycle on a daily basis (bottom right panel) 

In all the graphics the shaded areas represent the 95% confidence 
intervals. 

Figs. 8 and 9 confirm that AQ1 and AQ3 are able to reproduce 
reasonably well the measurements of the reference stations ML103 and 
BL164, considering in particular the cyclic variability of NO2 at different 
temporal scales. Daily and weekly NO2 trends are consistent with the 
cyclic variations of traffic volumes along the A22 highway (see Fig. 11). 
The daily patterns show the two typical peaks of NO2 concentration, one 
in the morning and one in the early evening. The peaks are driven by the 
diurnal cycle of traffic, which presents higher volumes at the beginning 
and at the end of the working day. The peaks in NO2 concentrations are 
less pronounced on weekend days, when the heavy vehicles circulation 
is subject to restrictions (Fig. 11). The annual trend shows the charac-
teristic higher NO2 concentrations during wintertime. As highlighted in 
Section 2.5, this wintertime maximum is to be ascribed mainly to 
meteorological conditions, rather than to enhanced emissions, due to 
the presence of very stable stratifications with frequent ground-based 

temperature inversions. In fact, close to the highway the controlling 
source is the traffic, that does not show any wintertime peak (see 
Fig. 11), except during the Christmas holidays. On the other hand, 
during cold months, emissions from domestic heating are certainly 
higher, but they are expected to play a minor role on NO2 concentrations 
close to the highway. Furthermore, during wintertime the conversion of 
traffic-emitted NO to NO2 is facilitated by stagnant air conditions, while 
the weak solar radiation inhibits the splitting of NO2 into NO and O (see 
e.g. Roberts-Semple et al., 2012). The top and bottom-left panels of 
Fig. 8 show that the evening peaks of the AQ2 sensor installed along the 
North carriageway are lower compared to measurements along the 
South carriageway (AQ1 and ML103). This is not observed in the 
morning peaks. Fig. 11 shows that this trend is not ascribable to the 
traffics volumes on the North and South carriageways, as they are 
similar. The difference is likely due to the fact that the stretch of the 
Brenner highway where these sensors are installed (i.e. at km 103.7) is 
SW-NE oriented (see Fig. 1). As mentioned in Section 2.5, up-valley 
winds (blowing from South) prevails during the day. Hence the sen-
sors along the North carriageway are upwind with respect to the emis-
sion source, resulting in a local reduction of NO2 concentration levels in 
contrast to the South carriageway. On the contrary, at night concen-
trations measured by AQ2 (North carriageway) are higher than those 

Fig. 8. NO2 time variation plots of AQ1, AQ2 sensors and ML103 reference station throughout the one-year validation. The legend displays within round brackets the 
carriageway side where the measuring instruments are placed. 
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measured by AQ1 and ML103 (South carriageway), as downvalley winds 
(from North) typically blows during nighttime. 

Fig. 10 allows to examine the variation of NO2 concentration with 
height. The two sensors AQ5 and AQ8 (10 m and 4 m above the ground 
level respectively) measure very similar values. Several effects has to be 
considered to explain the behavior of NO2 levels so close to the source 
along the highway. The key components are likely the interaction of 
vehicle-induced turbulence with the mean flow near the highway and 
the buoyant rise of the exhaust gas mixture. In particular, the vehicle- 
induced turbulence may favour the development of a well-mixed layer 
close to the ground, thus explaining similar concentrations at different 
heights. However, further investigations are ongoing to ascertain a 
correct understanding. 

Finally, given the availability of meteorological data from the 
reference stations, polar plots have been generated using the “polarPlot” 

Openair function (Carslaw, 2019), in order to analyze the relation be-
tween wind speed and direction and NO2 concentrations. In the polar 
plot the wind speed is proportional to the radial distance, the wind di-
rection is plotted according to the polar angle and the color scale rep-
resents the NO2 hourly-averaged concentration. 

Figs. 12 and 13 show respectively the polar plots for AQ1 and AQ3 
(right panels), compared to ML103 and BL164 reference measurements 

(left panels) for the whole year of validation. AQ1 and AQ3 capture 
reasonably well the behavior of NO2 concentrations of the reference 
stations, albeit both low-cost sensors tend to overestimate the lowest 
values and to underestimate the highest ones, especially considering 
AQ3. The polar plots indicate that the highest NO2 levels occur under 
low wind speed conditions, as expected. Moreover, they clearly show 
that NO2 concentrations are higher when sensors are downwind with 
respect to the highway, which runs from SW to NE both at km 103.3 and 
at km 164.4. The role of valley winds is even more recognizable when 
comparing NO2 concentration patterns collected along the South and the 
North carriageways, i.e. considering the comparisons between ML103 
and AQ2 in Fig. 12 and between ML107 and AQ4 in Fig. 14. They indeed 
exhibit symmetrical patterns with respect to the highway orientation, 
which are consistent with the variation of the along-valley wind direc-
tion and hence of the leeward side of the highway. Also, the AQ sensors 
along the North carriageway measure lower values of concentration, as 
they are downwind with respect to the emission source during night-
time, when the traffic load decreases substantially. Therefore the polar 
plots confirm the strict relation between NO2 levels and valley winds, as 
also evidenced by the time variation plots. 

Fig. 9. NO2 time variation plots of AQ3 sensor and BL164 reference station throughout the one-year validation. The legend displays within round brackets the 
carriageway side where the measuring instruments are placed. 
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6. Conclusions 

This work aimed at assessing the performance of a network of 10 
low-cost electrochemical sensors in monitoring NO2 concentration 
levels alongside the Brenner highway, one the most important Alpine 
corridor for freight transportation. The low-cost electrochemical sensors 
are part of the AirQino system, a custom-made printed circuit board, 
which integrates a set of commercial low-cost sensors for various 
meteorological, aerosol and gaseous measurements. It was shown that 
the choice of the regression model and of the parameters adopted plays a 
key role for suitably calibrating the low-cost sensors, as the raw mea-
sures are substantially affected by different environmental factors, 
which have to be properly taken into account. We tested four calibration 
models: two multivariate regressions (one standard and one with 
temperature-conditioned coefficients), a spline interpolation and a 
random forest algorithm. As may be expected, the more advanced 
models, i.e. the latter two, showed the best agreement. However, results 
obtained from the calibration phase highlighted that the performance of 
a simple multivariate regression was comparable to the more sophisti-
cated models in terms of performance metrics, when the regression co-
efficients are adapted to vary with the temperature. In particular, two 
different sets of calibration parameters were obtained, depending on the 

internal temperature measured by the low-cost sensors. Hence, after 
testing the four models, we adopted this type of regression as the best 
compromise between complexity and performance. It is worth high-
lighting that all the calibration algorithms tested in the present work 
depend only on measurements performed by the AirQino system itself, 
in order to make the procedure independent from external measure-
ments and thus easily exportable also to other contexts. The perfor-
mance of the low-cost sensors was then evaluated during a year-long 
field campaign, by means of comparison against reference air quality 
stations. As expected, the statistical performance metrics slightly dete-
riorated with respect to the calibration periods, but the overall accuracy 
remained satisfactory. In particular, the low-cost sensors showed a low 
level of drift during the yearly measurement campaign, which is a 
remarkably long period for this kind of sensors. The analysis showed 
that the low-cost sensors were able to reproduce the typical temporal 
variability of NO2 concentrations, considering daily, weekly and yearly 
cycles. These trends were consistent with the traffic volumes registered 
by inductive-loop detectors along the highway. Moreover, the low-cost 
sensors were capable of capturing the different patterns of the NO2 
concentration field along North and South carriageways. In particular, 
concentrations displayed a symmetrical dependence on wind direction 
on the two sides of the highway, highlighting that daily-periodic 

Fig. 10. NO2 time variation plots of AQ5 and AQ8 sensors throughout the one-year validation. The legend displays within round brackets the carriageway side and 
the height where the measuring instruments are placed. 
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thermally-driven circulations play a crucial role in modulating pollutant 
concentrations close to major roads located in valleys. The results of this 
study pointed out that low-cost sensors can be a valuable solution to 

complement reference air quality measurements, providing the possi-
bility to reach a wider spatial coverage and to monitor pollutant con-
centrations in critical situations, where standard measurements are 

Fig. 11. Average hourly traffic volumes throughout the year of validation registered by an inductive-loop detector at km 103.7 of the Brenner highway and split by 
light/heavy vehicles (solid lines) and North/South carriageways (dashed lines). 

Fig. 12. NO2 polar plots of ML103, AQ1 and AQ2 NO2 concentrations throughout the year-long validation.  
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usually not feasible. However, it is also highlighted that an expert 
management of this kind of sensors is needed, in order to continuously 
evaluate the goodness of the calibration and to detect possible failures. 
In particular, an automatic data quality procedure should be imple-
mented in order to early detect possible drifts. To this regard, this study 
demonstrated the long-term stability of the sensors tested, under 
remarkably different environmental conditions. However, further in-
vestigations are needed to investigate more in detail this aspect, which is 
crucial for a widespread diffusion of this kind of sensors. 
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Fig. 13. NO2 polar plots of BL164 and AQ3 NO2 concentrations throughout the year-long validation.  

Fig. 14. NO2 polar plots of ML107 and AQ4 NO2 concentrations throughout the year-long validation.  
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