

UNIVERSITY
OF TRENTO

 DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

QUERIES AND UPDATES IN THE CODB
PEER TO PEER DATABASE SYSTEM

Enrico Franconi, Gabrie l Kuper, Andrei Lopatenko
and Ilya Zaihrayeu

August 2004

Technical Report # DIT-04-088

Also: Proc. of the 30th International Conference on Very Large Data Bases
(VLDB'04), 2004

.

Queries and Updates in the coDB

Peer to Peer Database System

Enrico Franconi†, Gabriel Kuper‡, Andrei Lopatenko†,§, Ilya Zaihrayeu‡

†Free University of Bozen–Bolzano, Faculty of Computer Science, Italy,
franconi@inf.unibz.it, lopatenko@inf.unibz.it

‡University of Trento, DIT, Italy,
kuper@acm.org, ilya@dit.unitn.it

§University of Manchester, Department of Computer Science, UK

Abstract

In this short paper we present the coDB P2P
DB system. A network of databases, possibly
with different schemas, are interconnected by
means of GLAV coordination rules, which are
inclusions of conjunctive queries, with possi-
bly existential variables in the head; coordi-
nation rules may be cyclic. Each node can be
queried in its schema for data, which the node
can fetch from its neighbours, if a coordination
rule is involved.

1 Introduction

In the paper [Franconi et al., 2003] we introduced a
general logical and computational characterisation of
peer-to-peer (P2P) database systems. We first de-
fined a precise model-theoretic semantics of a P2P sys-
tem, which allows for local inconsistency handling. We
then characterised the general computational proper-
ties for the problem of answering queries to such a
P2P system. Finally, we devised tight complexity
bounds and distributed procedures in few relevant spe-
cial cases. The basic principles of the characterisation
given in [Franconi et al., 2003] are: (a) the role of the
coordination formulas between nodes is for data mi-
gration (as opposed to the role of logical constraints in
classical data integration systems); (b) computation is
delegated to single nodes (distributed local computa-
tion); (c) the topology of the network may dynamically

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,

Toronto, Canada, 2004
This work has been partially supported by the EU projects

Sewasie, KnowledgeWeb, and Interop.

change; (d) local inconsistency does not propagate; (e)
computational complexity can be low.

In the paper [Franconi et al., 2004] we thoroughly
analysed a distributed procedure for the problem of
local database update in a network of database peers,
as defined in [Franconi et al., 2003]. The problem
of local database update is different from the prob-
lem of query answering. Given a P2P database sys-
tem, the answer to a local query may involve data
that is distributed in the network, thus requiring the
participation of all nodes at query time to propa-
gate in the direction of the query node the relevant
data for the answer, taking into account the (pos-
sibly cyclic) coordination rules bridging the nodes.
On the other hand, given a P2P database system, a
“batch” update algorithm will be such that all the
nodes consistently and optimally propagate all the
relevant data to their neighbours, allowing for sub-
sequent local queries to be answered locally within a
node, without fetching data from other nodes at query
time. The update problem has been considered impor-
tant by the P2P literature; most notably, recent pa-
pers focused on the importance of data exchange and
materialisation for a P2P network [Fagin et al., 2003;
Daswani et al., 2003].

The coDB P2P DB system we present here imple-
ments the above ideas in a very general fashion. A
network of databases, possibly with different schemas,
can be interconnected by means of GLAV coordination
rules, which are inclusions of conjunctive queries, with
possibly existential variables in the head. Each node
can be queried in its schema for data, which the node
can fetch from its neighbours, if a coordination rule is
involved. Note that rules can be cyclic, i.e., a fix-point
computation may be needed among the nodes in order
to get all the data that is needed to answer a query. In
the abovementioned papers we have showed the cor-
rectness of the procedures we have implemented in the
coDB system.

coDB supports dynamic networks: even if nodes
and coordination rules appear or disappear during the

Figure 1: First level architecture

computation, the proposed algorithm will eventually
terminate with a sound and complete result (under
appropriate definitions of the latter, see [Franconi et
al., 2004]).

2 The Architecture

We implement database peers on top of JXTA [Project
JXTA, 2004]. JXTA specifies a set of protocols which
provide implementation of basic, as well as rather so-
phisticated P2P functionalities. As basic functionali-
ties we can distinguish: definition of a peer on a net-
work; creation of communication links between peers
(called pipes); creation of messages, which can enve-
lope arbitrary data (e.g. code, images, queries); send-
ing messages onto pipes, etc. Examples of more so-
phisticated functionalities provided by JXTA are: cre-
ation of peer groups; specification of services and their
implementation on peers; advertising of network re-
sources (i.e. peers, pipes, peer groups, services, etc.)
and their discovery in a distributed, decentralised en-
vironment. JXTA has a number of advantages for de-
veloping P2P applications. It provides IP independent
naming space to address peers and other resources,
it is independent of system platforms (e.g. Microsoft
Windows, Macintosh or UNIX) and networking plat-
forms (e.g. Bluetooth, TCP/IP), it can be run on
various devices such as PCs or PDAs, and provides
support for handling firewalls and NATs. We have
chosen JXTA since it already gives practically all ba-
sic building blocks for developing P2P applications and
thus allow the developer to concentrate on implemen-
tation of specific functionalities a given application is
required to provide.

The first level logical architecture of a node, in-
spired by [Bernstein et al., 2002], is presented on Fig-
ure 1. A node consists of P2P Layer, Local Database
(LDB) and Database Schema (DBS). DBS describes
part of LDB, which is shared for other nodes. P2P
Layer consists of User Interface (UI), Database Man-
ager (DBM), JXTA Layer and Wrapper. Nodes con-
nect to a P2P database network by means of connect-
ing to other peer(s), as it is schematically shown on
Figure 1 (see the arrow from JXTA Layer to the net-
work and arrows between nodes in the network).

By means of UI users can commence network

queries and updates, browse streaming results, start
topology discovery procedures, and so on. Among
other things, UI allows to control other modules of
P2P Layer. For instance, user can modify the set of
coordination rules w.r.t. other nodes, define connec-
tion details for Wrapper, etc. DBM processes both
user queries and queries coming from the network, as
well as global and query-dependent update requests.
It is also responsible for processing of query results
coming both from LDB and the network, as well as
for processing of updates results coming from the net-
work. Finally, DBM manages propagation of queries,
update requests, query results and update results on
the network. JXTA Layer is responsible for all node’s
activities on the network, such as discovering of previ-
ously unknown nodes, creating pipes with other nodes,
sending messages containing queries, update requests,
query results, etc. Wrapper manages connections to
LDB and executes input database manipulation oper-
ations. This is a module which is adjusted depending
on the underlying database. For instance, when LDB
does not support nested queries, then this is the re-
sponsibility of Wrapper to provide this support. Yet
another task of Wrapper is retrieval and maintenance
of DBS.

The LDB rectangle stands for RDBMS. It has
dashed border to mean that local database may be
absent. Nevertheless DBS must always be specified
in order to allow a node to participate on the net-
work. In this situation a given node acts as a me-
diator for propagating of requests and data, and all
required database operations (as join and project) are
executed in Wrapper. The DBS rectangle has rounded
corners because it represents a repository, where DBS
is stored. Arrows between UI and DBM as well as ar-
rows between JXTA Layer, Wrapper and DBM have
the same graphical notation because they represent
procedure calls between different execution modules.
The arrow between JXTA Layer and the network has
another notation because it represents communication
supported by JXTA. The arrows connecting Wrapper,
DBS and LDB have yet another notation because the
communication they denote is LDB dependent.

Nodes may import data from their acquaintances
using definitions of coordination rules. The head of a
coordination rule is a conjunctive query which refers to
some local relation at a given node, and the body is an-
other conjunctive query (sharing some variables with
the head) which refers to relations of an acquaintance.
In data integration literature this kind of mapping be-
tween two schemas is called Global-Local-As-View, or
GLAV [Lenzerini, 2002]. The body of a coordination
rule may also contain a set of comparison predicates
which specify constraints over the domain of particular
attributes of the acquaintance’s relations. In order to
import data from a node’s acquaintance using a given
coordination rule definition, the acquaintance executes
the coordination rule and sends the results back to that
node.

Figure 2: Query interface

A global update in a P2P database network is a pro-
cess of updating nodes’ databases using all definitions
of coordination rules they maintain. A global update
is started when some (dedicated) node sends to all
its acquaintances global update requests, containing
definitions of appropriate coordination rules. These
acquaintances executes the queries, respond with the
query results, and propagate the global update to their
acquaintances, and so on. The global update request
propagation is stopped at some node if that node has
no acquaintances to propagate the request, or if that
node has already received this request message. For
the purpose of global update identification, all global
update request messages carry the same unique iden-
tifier generated at the node which started the global
update procedure. We use JXTA to generate global
updates identifiers.

3 The Algorithm

Herein we provide a concise description of the global
update algorithm [Franconi et al., 2004]. In order to
understand how nodes process incoming query results
and when results propagation is complete, we intro-
duce some additional notions. We call coordination
rules, incoming links at some node, if these rules are
used by some other (acquainted) nodes for importing
data from that given node. We call coordination rules,
outgoing links at some node, if that node uses these
rules in order to import data from its acquaintances.
We say that an incoming link is dependent on an out-
going link, or that an outgoing link is relevant for some
incoming link, if the head of the outgoing link reference
to a relation, which is referenced by a body subgoal of
the incoming link.

Query propagation is being done using extension
of “diffusing computation” approach [Lynch, 1996].
When node gets a query request, it answers it using
local data immediately, and it forwards it through all
outgoing links. Each query request is labelled by a se-
quence of IDs of nodes it passed through. A node does
not propagate a query request, if its ID is contained in
the label of query request.

Query results coming from an acquaintance via
some outgoing link (say, O) can be seen as an addi-
tional, possibly empty set of tuples (say, T) for the

relations (R) referenced by the head of this outgoing
link. This, in turn, means that re-computing of incom-
ing links, dependent on O, may produce new results
for the acquainted nodes. For performance reasons,
it is important to avoid duplication in producing and
propagating data. Therefore we first remove from T

those tuples which are already in R, and get the set
of tuples T ′. If the conjunctive query in the head of
the rule contains existential variables, then fresh new
marked null values are used in tuples of T ′. Then, T ′

is added to R. Incoming links, which are dependent
on O, are computed by substituting R by T ′. The rea-
son for that is avoiding producing query results which
might have been already produced for these incoming
links. For each incoming link i we get query results Ri.
Afterwards, we delete from Ri those tuples which have
been already sent to the incoming link, and then send
remaining tuples onto i. The receiver node processes
these results analogously and may evoke, in turn, fur-
ther results’ propagation. Therefore, incoming data
can be seen as a result of transitive propagation of
query results via a path of nodes, which we call update
propagation path. At each node in the path, we rec-
oncile and store results sent to corresponding incom-
ing links until global update processing is complete for
that node.

The global update processing is finished for some
node (we say that after this the node is in the state
“closed”) if all outgoing links are in the state “closed”.
Initially, when a node starts a global update propaga-
tion or receives a global update request message, it is
in the state “open” and all its outgoing links (if any)
are in the state “open”. An acquaintance closes an in-
coming link (and, respectively, outgoing link at some
acquainted node) if all its outgoing links which are rel-
evant for this incoming link are in the state “closed”. A
node closes its outgoing link if a) it got query results for
all the maximal paths1 passing through it; b) all query
results did not bring any new data to local database.
When all outgoing links of a node are in the state
“closed”, then the node is also in the state “closed”.
The global update processing is complete, when all
nodes are in the state “closed”. It is worth saying
that our algorithm processes global update properly
in the presence of cyclic dependencies and guarantees
termination. Under a proper global update processing
nodes update their databases with all data that can
be retrieved from their acquaintances, taking into ac-
count transitive dependencies between incoming and
outgoing links. After the termination of the algorithm
each node contains a sound and complete set of data
(with respect to the semantics given in [Franconi et
al., 2003]).

In addition to global updates handling and query
answering at a node, coDB supports a topology discov-

1By maximal dependency path for a node I and query Q, we
call a dependency path which a) originates in the node initiated
Q, b) passes node I; c) is simple; d) can not be extended to any
other simple dependency path by adding nodes to the tail.

Figure 3: Peer discovery window

ery algorithm. When a node starts, it creates pipes
with those nodes, w.r.t. which it has coordination
rules, or which have coordination rules w.r.t. the given
node. Several coordination rules w.r.t. a given node
can use one pipe to send requests and data. If some co-
ordination rules are dropped and a pipe is not assigned
any coordination rule, then this pipe is also closed.

4 The Demo

In the demo we will measure the performance of vari-
ous networks arranged in different topologies: we need
to start-up all the nodes, establish coordination rules
between pairs of nodes, run a set of experiments and,
finally, collect statistical information. In order to fa-
cilitate these tasks we provide some peer (called super-
peer) with some additional functionalities. In particu-
lar, that peer can read coordination rules for all peers
from a file and broadcast this file to all peers on the
network. Once received this file, each peer looks for
relevant coordination rules and creates necessary pipe
connections. If a coordination rules file is received
when a peer has already set up coordination rules and
pipes, then it drops “old” rules and pipes, and creates
new ones, where necessary. Thus, a super-peer can
dynamically change the network topology at runtime.
Each node shows to its user the other nodes it has
pipes with, and w.r.t. which nodes it has incoming
and outgoing links. It also shows which other nodes
(not acquaintances) it has discovered with the help of
JXTA (Figure 3).

For the purposes of collecting experimental data,
each node has an additional statistical module. This
module accumulates various information about global
updates such as: total execution time of an update,
number of query result messages received per coordi-
nation rule and the volume of the data in each message,
longest update propagation path, and so on. During
the lifetime of a network, each node accumulates this
information. A super-peer has the possibility to col-
lect, at any given time, statistical information from all
nodes on the network. Then, the super-peer processes
all incoming statistical messages, aggregates them and
creates a final statistical report.

For intermediate nodes, global update processing
is done on the background, transparently for the user.

Each node maintains a global update processing report
and makes it available for the user on request. The re-
port includes information about starting and finishing
times of an update, volume of data transferred, which
acquaintances have been queried and to which nodes
query results have been sent.

References

[Bernstein et al., 2002] P. Bernstein, F. Giunchiglia, A. Ke-
mentsietsidis, J. Mylopoulos, L. Serafini, and I. Zaihrayeu.
Data management for peer-to-peer computing: A vision.
Workshop on the Web and Databases, WebDB, 2002.

[Calvanese et al., 2003] Diego Calvanese, Elio Damaggio,
Giuseppe De Giacomo, Maurizio Lenzerini, and Riccardo
Rosati. Semantic data integration in p2p systems. In Proc. of
the VLDB International Workshop On Databases, Informa-
tion Systems and Peer-to-Peer Computing (DBISP2P-2003),
2003.

[Calvanese et al., 2004] Diego Calvanese, Giuseppe De Gia-
como, Maurizio Lenzerini, and Riccardo Rosati. Logical foun-
dations of peer-to-peer data integration. In Proc. of the 23rd
ACM SIGACT SIGMOD SIGART Sym. on Principles of
Database Systems (PODS-2004), 2004. To appear.

[Daswani et al., 2003] Neil Daswani, Hector Garcia-Molina,
and Beverly Yang. Open problems in data-sharing peer-to-
peer systems. In ICDT 2003, 2003.

[Fagin et al., 2003] Ronald Fagin, Phokion G. Kolaitis,
Renée J. Miller, and Lucian Popa. Data exchange:
Semantics and query answering. In Proceedings of the
9th International Conference on Database Theory, pages
207–224. Springer-Verlag, 2003.

[Franconi et al., 2003] Enrico Franconi, Gabriel Kuper, Andrei
Lopatenko, and Luciano Serafini. A robust logical and
computational characterisation of peer-to-peer database sys-
tems. In Proc. of the VLDB International Workshop On
Databases, Information Systems and Peer-to-Peer Comput-
ing (DBISP2P-2003), 2003.

[Franconi et al., 2004] Enrico Franconi, Gabriel Kuper, Andrei
Lopatenko, and Ilya Zaihraeu. A distributed algorithm for
robust data sharing and updates in p2p database networks.
In Proc. of the EDBT International Workshop on Peer-to-
Peer Computing and Databases, 2004.

[Ghidini and Serafini, 1998] Chiara Ghidini and Luciano Ser-
afini. Distributed first order logics. In Franz Baader and
Klaus Ulrich Schulz, editors, Frontiers of Combining Systems
2, Berlin, 1998. Research Studies Press.

[Halevy et al., 2003] Alon Y. Halevy, Zachary G. Ives, Dan Su-
ciu, and Igor Tatarinov. Schema mediation in peer data man-
agement systems. In ICDE, 2003.

[Hellerstein, 2003] Joseph M. Hellerstein. Toward network data
independence. SIGMOD Rec., 32(3):34–40, 2003.

[Kementsietsidis et al., 2003] Anastasios Kementsietsidis,
Marcelo Arenas, and Renee J. Miller. Mapping data in
peer-to-peer systems: Semantics and algorithmic issues. In
Proceedings of the SIGMOD International Conference on
Management of Data (SIGMOD’03), 2003.

[Lenzerini, 2002] Maurizio Lenzerini. Data integration: A theo-
retical perspective. In Lucian Popa, editor, Proceedings of the
Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, pages 233–246, 2002.

[Lynch, 1996] Nancy A. Lynch. Distributed Algorithms. Mor-
gan Kaufmann Publishers Inc., 1996.

[Project JXTA, 2004] Project JXTA, 2004. See
http://www.jxta.org.

[Serafini et al., 2003] Luciano Serafini, Fausto Giunchiglia,
John Mylopoulos, and Philip A. Bernstein. Local relational
model: A logical formalization of database coordination. In
CONTEXT 2003, pages 286–299, 2003.

