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Abstract: Firm-level geo-referenced databases are becoming more and more a valu-
able resource in the hand of regional scientists. This paper aims at providing an overview 
of the main empirical approaches, based on spatial point pattern statistics, that allow 
to properly use this kind of data to analyze the distribution of economic agents on the 
geographical space. Both methodological and applied aspects are covered.

Keywords: micro-geographic data, spatial patterns of firms, spatial statistics.
JEL classification: R12, R30, C49.

1. Introduction

Over the past fifteen years, there has been a marked increase in the 
availability of geo-referenced firm-level data. The Italian Statistical Archive 
of Active Enterprises (ASIA), the Amadeus database of Bureau Van Dijck and 
the US Census Bureau’s Longitudinal Business Database (LBD) are just some 
examples of common firm-level databases that are now geo-referenced in 
almost their entirety. This important fact, together with the recent develop-
ments of technologies for the treatment of large amounts of data, has given 
rise to a promising stream of literature on the methodologies with which to 
analyse spatial patterns of economic agents (see, among many others, Du-
ranton, Overman, 2005; Marcon, Puech, 2010; Bocci, Rocco, 2016; Arbia 
et al., 2017; Cainelli, Ganau, 2018).

The use of micro-geographic data, instead of regional aggregates, has two 
main advantages. The first concerns the fact that the inferential conclusions 
drawn from the analyses of data aggregated at regional level are affected by 
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a statistical bias arising from the discretionally chosen partition of space (i.e. 
the so-called modifiable areal unit problem bias: see Arbia, 1989). The second 
advantage is that the theoretical models explaining spatial patterns of firms 
are generally grounded on the behaviour of the individual economic agent 
and hence can be tested empirically on regional aggregates only under the 
restrictive assumption of a homogeneous firm’s behaviour within the region.

This paper purpose is to present some of the main empirical approaches 
proposed in the regional science literature to assess micro-spatial patterns 
of firms. It also illustrates their implementation in different paradigmatic 
real-case scenarios. Since all these approaches have been developed by 
borrowing, explicitly or implicitly, from the methodological framework of 
spatial point pattern statistics, the article begins by introducing this statisti-
cal background. There follows a review of the methods for the analysis of 
the spatial distribution of firms in the context of both homogeneous and 
inhomogeneous territories. Finally, the paper concludes with some remarks 
and suggestions for future developments in this field.

2. Basic concepts and definitions

Traditional spatial econometrics based on the Cliff-Ord methodological 
framework (Cliff, Ord, 1972) assumes that the spatial locations of statisti-
cal units are exogenously given. Hence it is not appropriate to analyze and 
model spatial patterns of economic agents using micro-geographic data. 
Indeed, while it is natural and reasonable to treat the location of a region 
as given, spatial locations of micro-geographic units cannot be considered 
as fixed because they are not naturally given but result from the behaviour 
of economic agents.

The natural statistical framework in which to analyse and model spatial 
patterns of economic agents using micro-geographic data is, instead, that 
of spatial point pattern statistics. This subbranch of the broader spatial sta-
tistics discipline is devoted essentially to identifying and summarizing the 
structure and characteristics of patterns formed by entities (such as business 
establishments) that are distributed in space. In the typical cases of practi-
cal interest, where the space is two-dimensional and finite, entities can be 
suitably represented by points on a planar map and hence can be identified 
by two spatial coordinates (say longitude and latitude). An observed set of 
spatial coordinates representing a micro-geographic distribution of interest 
is often called a spatial point pattern.

The statistical analysis of an observed spatial point pattern is generally 
based on the assumption that its spatial coordinates are the realization of 
an underlying stochastic mechanism called spatial point process. While a 
comprehensive and rigorous introduction to this kind of stochastic process 
falls outside the scope of this paper (see instead Diggle, 2003 or Møller, 
Waagepetersen, 2004), here it is sufficient to define a spatial point process 
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simply as a stochastic mechanism that generates a set of points xi = (x1i, 
x2i) : i = 1, 2, …, where x1i and x2i represent, respectively, the longitudinal 
and latitudinal coordinates of the ith point (Diggle, 2003). As we shall show, 
point processes can be used to identify and study interesting characteristics 
of an observed spatial point pattern by making comparisons between the 
theoretical properties of an a priori specified underlying point process and 
the corresponding empirical complements estimated on the data.

The most important properties of a spatial point process are the so-called 
first-order and second-order intensity functions. Let us refer to the generic 
location x. If we consider that dx is an infinitesimally small spatial region 
around x, that N(dx) denotes the number of points located in it, and that |dx| 
represents its area, then the first-order intensity function can be defined as

 ( ) [ ( )]limx
dx

E N dx
dx 0 ; ;

m =
"; ;
) 3 [1]

(Diggle, 2003; Cressie, 1993).
Equation [1] can be interpreted as the expected number of points per 

unit observed in an infinitesimal region around the generic location x. 
Consequently, m(x)dx corresponds to the probability of finding a point in 
the close vicinity of x. If the first-order intensity is constant throughout the 
space, i.e. when m(x) = m, it corresponds to the expected number of points 
per unitary area and the point process is said to be stationary (Diggle, 2003).

Using the same notation as in Equation [1], the second-order intensity 
function can be defined as

 ( , )
[ ( ) ( )]

limx y
dx dy

E N dx N dy
,dx dy2 0 ; ;; ;

m =
"; ; ; ;
) 3 [2]

where x and y indicate two distinct generic locations (Diggle, 2003; Cressie, 
1993). Intuitively, m2(x, y)dxdy can be seen as the probability of observing two 
points within two infinitesimal regions around, respectively, the locations x 
and y (Diggle et al., 2007). Equation [2] essentially describes the kind and 
level of spatial interactions among points. In many practical circumstances it 
is reasonable to assume that the underlying spatial point process is isotropic, 
which implies that m2(x, y) depends exclusively on the distance s between loca-
tions x and y and not on their specific positions: that is m2(x, y) = m2(s) (Diggle, 
2003). To interpret the values of the second-order intensity function better, 
we can rely on a scaled version of Equation [2] that is called pair correlation 
function (Ripley, 1976, 1977), g(s) = m2(s)/m(x)m(y). Indeed, if the process gen-
erates points in x or y independently from one another, then g(s) = 1. This 
value indicates absence of spatial interaction among points. On the other hand, 
if the process generates points in x or y with a probability that is higher (or 
lower) than if they were independently generated, then g(s) > 1 (or g(s) < 1). 
The former case describes a situation of spatial attraction of points while the 
latter one identifies spatial repulsion (or inhibition) between points.
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If, in addition to being isotropic, the spatial point process is also station-
ary, say m(x) = m, then gst(s) = m2(s)/m

2 and, as a consequence, its second-order 
properties can be alternatively described by the so-called Ripley’s K-function 
(Ripley 1976, 1977), which can be defined as

 ( ) ( )K s g t tdt2 st
s

0
r= #  [3]

K(s) is the cumulative version of gst(s), under stationarity, and provides the 
expected number of further points located up to a distance s from? a ge-
neric point (Ripley, 1977). In the economic analyses where the underlying 
data-generating point process is stationary and isotropic (that is, when the 
territory can be treated as homogeneous), the K-function measures the mean 
(general) level of spatial interactions among the economic agents (such as 
firms or households) up to each distance s. The K-function has an impor-
tant advantage over the pair correlation function because it can be more 
straightforwardly estimated from an observed point pattern and, for many 
point processes, its theoretical form can be explicitly derived.

The approximately unbiased estimator of the K-function for a spatial 
point pattern with n points, observed in a study region A, is
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where |A| is the total area of A, sij is the distance between the ith and jth 
observed points, and I(sij ≤ s) is the indicator function such that I(sij ≤ s) = 1 
if sij ≤ s and 0 otherwise (Diggle, 2003). In most practical cases is computed 
using the Euclidean distance criterion, but essentially any other definition 
of distance (such as travel time or economic distance) can be applied as 
well. The term wij represents an adjustment factor that is needed to reduce 
potential negative biases in the estimates for the points located close to the 
boundary of A. Indeed, points near the boundary may be close to unob-
served points located outside A. Consequently, for these points, it may not 
be possible to count the actual number of further points located up to a 
distance s. Specifically, wij is equal to the proportion of the circumference 
of the circle centred on the ith point that passes through the jth point and 
lies within A. If s is much smaller than the extension of A, wij reduces the 
effects of boundary bias in the proper way.

3.  Spatial location patterns of economic agents in a 
homogeneous space: the CSR test

For many underlying point processes that can be appropriate in model-
ling the spatial behaviour of firms, it is possible to write the K-function in 
a closed form. This allows the K-function to be used for the identification 
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of the underlying point process by comparing its theoretical form with its 
empirical counterpart estimated on the observed point pattern of interest.

A useful preliminary analysis of a point pattern consists of verifying whether 
the data are consistent with the so-called hypothesis of Complete Spatial Ran-
domness (CSR), which states, essentially, that the observed points have been 
generated independently of each other (that is, with no attraction or repulsion 
among them) and with the same probability of being positioned in any possible 
location of the study region. Therefore, a point pattern under CSR has no spatial 
structure, neither in the form of spatial inhomogeneity nor because of spatial 
dependence. Deviations from the CSR hypothesis thus reveal the presence of 
interesting spatial location patterns that may warrant further investigation.

Formally, a complete spatial random point pattern can be considered 
as a realization of the homogeneous Poisson process (Diggle, 2003), which 
generates point patterns containing independent random points, uniformly 
distributed in a finite region A according to a constant first-order intensity, 
m(s) = m. Therefore, assessing whether an observed spatial point pattern is 
consistent with the CSR hypothesis corresponds to verifying whether the 
observed points may have been generated by a homogeneous Poisson pro-
cess. As shown by Ripley (1976), under this process, the theoretical form of 
the K-function is such that

 K(s) = rs2 , s > 0 [5]

Equation [5] then represents the null hypothesis of CSR and can be con-
sidered as a frame of reference within which to build a formal test. Indeed, 
significant deviations from this reference provide evidence in favour of the 
alternative hypothesis of either spatial inhomogeneity or spatial dependence, or 
both. In particular, K(s) > rs2 indicates that, on average, there are more points 
within a distance s from any point than should be expected in the case of CSR. 
If the observed point pattern represents the spatial distribution of firms in a 
homogeneous space, this kind of deviation would imply the presence of positive 
spatial interactions among economic agents, and hence clustering. In contrast, 
K(s) < rs2 means that, on average, there are fewer points within a distance s 
from any point than expected under CSR. This circumstance suggests, for 
example, the presence of negative spatial interactions among economic agents 
that make them locate at a distance s from each other.

In order to help the interpretation, K(s) can be normalized using linear 
transformations (Besag, 1977), such as

 ( ) ( )/L s K s s–r=  

which makes the CSR hypothesis represented by 0 for all values of s.
Since the sampling distribution of K̂(s) under CSR can be derived theo-

retically only in limited cases, inference about the CSR hypothesis is generally 
made by assessing the sampling distribution of K̂(d) by Monte Carlo simula-
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tions of the homogeneous Poisson process conditional on the observed data. 
As illustrated by Besag and Diggle (1977), it is indeed possible to obtain 
significance envelopes for the CSR hypothesis by, first of all, simulating m 
point patterns from the homogeneous Poisson process with a fixed number 
of points equal to the size of the observed data. Then, for any of the m 
generated point patterns, a different K̂(s) (or L̂(s)) can be computed. Finally, 
the 1/(m + 1) × 100% significance envelopes are obtained from the highest 
and lowest values of the K̂(s)'s (or L̂(s)'s) functions computed from the m 
simulated point patterns. The graph of the empirical function estimated on 
the data and the related significance envelopes against s makes it possible 
to draw conclusions about the CSR hypothesis. In particular, deviations of 
the empirical curve of K̂(s) (or L̂(s)) outside – upward or downward – the 
significance envelopes at some distances s imply significant departures from 
complete spatial randomness at those distances.

In order to illustrate this inferential procedure, Figure 1 shows the 
performance of the K-function-based CSR test in different stylized micro-
geographic distributions of firms. Specifically, the graphs in the figure 
portray the behaviour of L̂(s) against the distance s. In each of them, the 
solid curve represents the empirical function and the shaded area indicates 
the non-rejection region provided by the corresponding upper and lower 
significance envelopes for 999 realizations of a homogeneous Poisson pro-
cess. It is interesting to note that this kind of test can identify significant 
deviations from CSR (toward spatial concentration or repulsion) at varying 
spatial scales at once. An important advantage of this feature is that differ-
ent, and even opposite, spatial patterns taking place in the same area can 
be detected simultaneously. For instance, the point pattern represented in 
Case (v) exhibits spatial aggregation at small distances and repulsion at 
relatively higher distances in the form of small clusters of firms located far 
apart from each other. By contrast, Case (iv) is characterized by repulsion at 
small distances and aggregation at relatively higher distances in the form of 
a large-scale concentration of firms in the left part of the area within which 
they actually tend to be located while distancing each other.

Regional science applications of the K-function-based CSR test have 
concerned the assessment of spatial clustering of economic activities in 
different geographical and industrial contexts; see, among others, Barff 
(1987), Arbia (1989), Marcon and Puech (2003), Ó hUallacháin and Leslie 
(2007).
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Figure 1: Paradigmatic examples of the application of the K-function-based CSR test.
Source: Authors’ elaboration.
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Figure 1: Continue.
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4.  Spatial location patterns of economic agents in an 
inhomogeneous space: the relative approaches

The CSR test makes it possible to detect the presence of positive or negative 
spatial interaction among firms only under the assumption that the underlying 
point process is stationary, which implies that the space in which economic 
agents operate is essentially homogeneous. In practice, however, the space 
is seldom homogenous because of the action of exogenous factors that may 
exclude, limit or expand the possibility to establish firms in certain locations. 
For example, firms may not locate in some areas due to the occurrence of 
lawful and geophysical restrictions, or they may locate in certain areas due 
to the closeness to useful infrastructures, communication routes or because 
of favourable local taxation. Both the spatial statistics and applied regional 
science literatures have developed approaches to deal with the relaxation of 
the assumption of spatial homogeneity. They can be essentially divided into 
two different kinds: relative and absolute approaches. The former make it 
possible to control for the presence of spatial inhomogeneity by comparing 
the observed point pattern of interest with another observed point pattern 
that is potentially affected by the same sources of spatial heterogeneity. In a 
different way, the latter consider the direct estimation of the varying first-order 
intensity function. The main relative approaches are probably those based 
on the Diggle and Chetwynd (1991)’s D-function, Duranton and Overman 
(2005)’s K-density and Marcon and Puech (2010)’s M function. While the 
most popular absolute method is undoubtedly the one based on the use of 
the Baddeley et al. (2000)’s Kinhom-function.

4.1. Diggle and Chetwynd’s D-function method

Diggle and Chetwynd (1991) developed an approach that makes it pos-
sible to relax the assumption of spatial homogeneity by making use of the 
K-function within a case-control framework. This approach can be applied 
in those circumstances in which it is reasonable and meaningful to split the 
observed point pattern into a set of cases and a set of controls. The cases 
should be the points of interest, such as the firms of a given sector or the 
firms that exit the market in a certain time period. The controls should 
constitute a reference set of points located in the same space, such as the 
firms of all other sectors of the economy or the firms that still operate on the 
market. According to Diggle and Chetwynd (1991), if cases and controls are 
affected by the same unobserved exogenous factors of spatial heterogeneity, 
it is possible to assess actual positive (or negative) spatial dependence among 
cases if they are more (or less) spatially aggregated than the controls. With 
the aim of measuring the extra-aggregation (or extra-spreading) of cases 
with respect to controls, Diggle and Chetwynd (1991) suggested using the 
following statistic:
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 D(s) = Kcases(s) – Kcontrols(s) [6]

where Kcases(s) and Kcontrols(s) indicate the K-function for the cases and controls 
respectively. The rationale behind this framework is that the point pattern 
of controls can properly describe the underlying common varying first-order 
intensity. In this respect, D(s) = 0 suitably represents the null hypothesis of 
no spatial dependence of cases within an inhomogeneous space. As a conse-
quence, D(s) > 0 implies that the cases are relatively more spatially aggregated 
than the controls, while D(s) < 0 means that the cases are relatively less spa-
tially aggregated than the controls. The former circumstance indicates the 
presence of actual positive spatial interaction, and hence clustering, among 
cases; the latter one points towards negative spatial interaction, and hence 
repulsion, among cases.

D(s) can naturally be estimated using D̂(s) = K̂cases(s) – K̂controls(s), with 
K̂cases(s) and K̂controls(s) obtained through Equation [4], for the observed sets 
of cases and controls respectively. To determine whether D̂(s) is significantly 
different from zero and hence test the null hypothesis of no relative spatial 
interaction, Diggle and Chetwynd (1991) considered the so-called hypothesis 
of random labelling, formalized by Cuzick and Edwards (1990). This hypoth-
esis states that the observed points of the pattern are randomly «labelled» 
as cases or controls and hence it is logically equivalent to the hypothesis of 
absence of spatial interaction among cases. Therefore, D(s) = 0 can be prop-
erly tested using a Monte Carlo procedure that simulates m random point 
patterns, in each of which the observed «labels» of cases and controls are 
randomly permuted among the observed points. For each of the m randomly 
labelled patterns, a different D̂(s) can be computed. The 1/(m + 1) × 100% 
significance envelopes for the null hypothesis of no spatial interaction among 
cases can then be obtained from the highest and lowest values among the 
resulting m D̂(s)’s functions.

To illustrate the D-function-based approach to detecting relative spatial 
interaction of firms within an inhomogeneous space, we refer to an exam-
ple concerning the spatial distribution of firms exiting the lodging industry 
in the main island of Sicily (Italy). Specifically, we focus on the 164 tour-
ist accommodation services that entered the market in 2010 and that may 
have ceased to operate during the following period 2011-2015. The lodging 
industry is here composed of the following types of service: hotels, resorts, 
youth hostels, mountain refuges, holiday homes, farm stays, campgrounds 
and other short-stay accommodations1. Data were made available by the 
Italian National Institute of Statistics (ISTAT).

Figure 2 displays the map of the spatial distribution of the 164 lodging 
sector firms. The map also highlights the distinction between the 109 firms 

1 We consider the following NACE codes: I55100, I55201, I55202, I55203, I55204, I55205, 
I55300, I55902.
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that stayed in the market for the entire period 2011-2015 (empty circles) 
and the 55 firms that exited the market before the end of the same period 
(solid circles). Visual inspection of the map suggests that the space is very 
inhomogeneous since the lodging sector firms appear to be mostly located 
near the seaside. This implies that it is not realistic to consider the first-order 
intensity function as a constant.

With these data it may be interesting to detect the occurrence of some 
spatial pattern in the firm exit process, such as a contagion effect or local 
co-opetitive relationships. Due to the apparent inhomogeneity of the given 
territory, the K-function should not be employed to detect spatial depend-
ence among firms’ exits because it may lead to spurious results in which 
spatial interactions are confounded with spatial inhomogeneity. Since the 
location choices of firms which did and did not survive are likely to have 
concerned the same tourist destinations, we can properly detect significant 
spatial dependence among firm exits by verifying if firms that ceased to 
operate were more or less spatially aggregated than the firms surviving for 
the entire observed period. It is therefore possible to apply the D-function-
based test by labelling the firms that exited from market as «cases» and the 
firms that stayed in the market as «controls».

The result of the test is shown in Figure 3 and reveals that, at small 
distances (under 9 km), firms that ceased to operate were less spatially ag-
gregated then those which instead survived, thus indicating that firms’ exits 
in the lodging sector in Sicily tend to occur at a certain distance from the 
other firms’ exits. This evidence points towards a phenomenon of spatial 
local competition, instead of a contagion effect, where the failure of a lodg-
ing firm positively affects the survival of the others lodging firms located 
within 9 km.

The D-function-based test, as it has been presented here or in slightly 
modified versions, has been used in various regional science studies. For 

Figure 2: Locations of the 164 lodging sector firms that started to operate in 2010 in main Island of 
Sicily (Italy). Empty circles represent the 109 firms that survived between 2011 and 2015. Solid circles 
represent the 55 firms that ceased to operate between 2011 and 2015.
Source: Authors’ elaboration.
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instance, Sweeney and Feser (1998) used this inferential framework to assess 
how the spatial distribution of firms in North Carolina depends on their size; 
Feser and Sweeney (2000) focused on the spatial concentration of indus-
trial linkages; Marcon and Puech (2003) measured the level of geographic 
concentration of industries in France; Arbia et al. (2008) assessed the oc-
currence of knowledge spillovers through the analysis of the spatial pattern 
of patents and Kosfeld et al. (2011) studied the conditional concentration 
of industries in Germany.

4.2.  Duranton-Overman’s K-density and Marcon-Puech’s M func-
tion methods

An important stream of literature in the field of economic geography has 
focused on developing measures of geographic concentration of industries 
for geo-referenced firm-level data. These measures represent an attempt to 
overcome the methodological limits of the more traditional indices, such as 
the popular Location Quotient or Ellison-Glaeser Index (Ellison, Glaeser, 
1997), which make use of regional level data. The most established and 
frequently employed amongst these measures are perhaps the K-density and 
the M function, developed by Duranton and Overman (2005) and Marcon 
and Puech (2010), respectively.

Duranton and Overman (2005)’s K-density is logically related to the pair 
correlation function, g(s) = m2(s)/m(x)m(y), in that it can be regarded as an 
estimator of the probability density function of finding a point located at a 
given distance s from a generic point. Indeed, for an observed point pattern, 

Figure 3: Empirical D-function (continuous line) and the corresponding 99.9% significance bands 
(shaded area) for the firms’ exits in the lodging sector in Sicily (Italy), 2011-2015.
Source: Authors’ elaboration.
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K-density calculates the average number of pairs of points at each distance s 
and then normalizes by means of some smoothing operation so as to obtain 
a continuous function that sums to 1. Formally, the K-density for a point 
pattern of n firms is defined as:
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is a Gaussian kernel function à la Silverman (1986) with standard deviation 
h, which represents the smoother bandwidth. According to Duranton and 
Overman (2005) the optimal value of the h parameter can be set as per 
Equation [3.31] of Section 3.4.2 of Silverman (1986).

In order to assess the significant deviations K̂density of from the null hy-
pothesis of no spatial concentration of firms, Duranton and Overman (2005) 
suggested using significance envelopes obtained by randomly reassigning the 
firms among their locations. In particular, they suggest running a number 
of Monte Carlo simulations, in each of which the firms of a single industry 
(or of any given interesting typology) are randomly allocated among the 
locations of all firms of all industries (or of all the given typologies). In this 
setting, the null hypothesis of no spatial concentration of the firms of the 
same industry (or the same typology) is provided by the centre of the Monte 
Carlo simulated significance envelopes. Therefore, like the D-function, K-
density can detect relative spatial concentration of firms of a specific typol-
ogy. Duranton and Overman (2005) show that K-density can be weighted 
to also deal with the size of firms, as it may proxied, for example, by the 
value-added, the number of employees or the capital. See Duranton and 
Overman (2005) for further details.

In the past ten years K-density has been widely used to measure the 
spatial concentration of single industries. See, among others, Duranton and 
Overman (2008), Klier and McMillen (2008), Vitali et al. (2013), Koh and 
Riedel (2014), Kerr and Kominers (2015) and Behrens and Bougna (2015). 
Antonietti et al. (2013) used an approach similar to that of K-density to in-
vestigate the relationship between co-localization and vertical disintegration 
of the firms belonging to the knowledge intensive business service sector in 
the metropolitan area of Milan. Interestingly, Coniglio et al. (2018) have ap-
plied K-density to a non-geographical space; in particular, while referring to 
the level of relatedness between products in the product-space, they studied 
the export baskets of Italian provinces.

Marcon and Puech (2010)’s M function can be regarded as the cumulative 
counterpart of K-density, as it is logically related to the cumulative, instead 
of the density, distribution of the distances between pairs of points in a point 
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pattern of firms. It has been developed as a micro-geographic data-based 
version of the popular Location Quotient of industrial specialization, which 
is based on regional data. The M function is indeed an empirical function 
of the distance s that gives the proportion of firms of a given typology (e.g. 
a given industry) that are located within distance s from a generic firm of 
the same typology divided by the same proportion computed with respect 
to all firms of all typologies (e.g. of all industries). Considering an observed 
point pattern of n firms belonging to different typologies, the M function 
can be formally defined as
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where jc is another firm of the same typology of firm i, while j denotes another 
firm of any typology. The terms and represent weights associated with firms 
j and jc, respectively; while Wc and W represent the total weight of firms of 
the same typology of jc and the total weight of all n firms, respectively. The 
weights make it possible to account for the differing sizes of firms. There-
fore, if the firms’ size is not considered, the weights should be all set to 1.

Analogously to the Location Quotient, M̂(s) = 1 represents the null 
hypothesis of no concentration. As a consequence, if M̂(s) computed for 
a given typology of firms is significantly greater (or lower) than 1 at some 
distance s, we have significant relative spatial concentration (or dispersion) 
of firms of that typology. As with the K-density measure, the significance 
envelopes can be obtained by means of Monte Carlo simulations based on 
random reallocations of firms.

A number of empirical studies in the field of regional sciences and spa-
tial economics has used the M function: see for example Jensen and Michel 
(2011) and Moreno-Monroy and García (2016). Araldi and Fusco (2019), 
in particular, use a local version of the M function to investigate the local 
spatial pattern of retail activities in the French Riviera metropolitan area, 
in Southern France.

To give an example of the application of both the K-density and M 
function, here we analyse the spatial pattern of the single-plant firms of the 
metallurgical industry in the province of Trento (Italy) in 2009. In particular, 
the data of this example are a subset of the Statistical Register of Active 
Enterprises (ASIA), managed and updated by the Italian National Institute 
of Statistics (ISTAT). Figure 4 shows the spatial distribution of these firms 
together with that of all manufacturing industries of the economy in 2009. 
In the logic of both the K-density and the M function, to control for the 
inhomogeneity of space, the spatial distribution of all manufacturing single-
plants (Figure 4b) is used as the null distribution. The plots depicted in 
Figure 5 show the behaviour of the empirical K-density and M function, 
together with the corresponding 99% significance envelopes.
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Both measures show that metallurgical single-plant firms are signifi-
cantly more spatially concentrated than the firms of the whole manufactur-
ing industry, until at least 25 km. As a cumulative function which assesses 
spatial interactions among firms up to a given distance, the M function can 
detect the global pattern of spatial concentration more clearly. In contrast, 
as a density function which assesses spatial interactions among firms at a 

Figure 4: Spatial distribution of manufacturing firms in the province of Trento (Italy) in 2009: (a) the 98 
single-plants firms of the metallurgical industry; (b) all 1007 manufacturing single-plants.
Source: Authors’ elaboration.

Figure 5: Empirical K-density and M function (continuous lines) and the corresponding 99% significance 
bands (shaded areas) for the metallurgy sector single-plant firms in the province of Trento (Italy) in 2009.
Source: Authors’ elaboration.
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certain distance, the K-density can detect the occurrence of local clusters 
of firms more clearly. In this respect, Marcon and Puech (2010) show that 
the two functions constitute complementary, instead of alternative, ways to 
assess spatial concentration of industries. In fact, both measures should be 
employed to obtain an exhaustive picture of a spatial pattern of economic 
activities (Marcon, Puech, 2010). A further interesting discussion on the 
aspect of complementarities among alternative measures of localization can 
be found in Fratesi (2008).

5.  Spatial location patterns of economic agents in an 
inhomogeneous space: the absolute approaches

As clarified above, the approaches based on the use of the D-function, 
K-density and M function are able to control for spatial inhomogeneity by 
assessing relative spatial interaction. Indeed, they all find positive (or nega-
tive) spatial dependence between the economic activities of interest when 
their locations are seen to be more aggregated (or dispersed) than the trend 
in another reference point pattern observed in the same space. This implies 
that the results for different spatial patterns cannot be compared, over the 
same distances, if the reference point pattern is not the same. Indeed, if the 
reference point pattern changes, then the benchmark null distribution captur-
ing spatial inhomogeneity changes as well, thus invalidating any comparison.

Baddeley et al. (2000) developed the so-called Kinhom-function to detect 
and measure absolute, instead of relative, spatial interaction within an in-
homogeneous space, thus allowing comparisons to be made between differ-
ent point patterns observed in different spaces. It consists, essentially, in a 
generalization of Ripley’s K-function, which works with homogeneous point 
processes, to the case of inhomogeneous processes. An inhomogeneous point 
process is characterized by a spatially varying first-order intensity function, 
m(x). Provided that m(x) is bounded away from zero, Baddeley et al. (2000) 
have shown that the second-order properties of an isotropic inhomogeneous 
point process can be described by the Kinhom-function: that is, by

 ( ) ( ) ,K s g t tdt s2 0with
s

0
inhom 2r= # , with s > 0 

where g(s) = m2(s)/m(x)m(y) is the of the pair correlation functions introduced 
in Section 2. In the empirical circumstances where the underlying generating 
point process is inhomogeneous, the Kinhom-function measures the mean level 
of spatial interactions between points up to each distance s, while adjusting 
for spatial inhomogeneity, as described by m(x). In contexts where the space 
is inhomogeneous, a spatial point pattern characterized by the absence of 
spatial interactions can be considered as a realization of the so-called inho-
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mogeneous Poisson process which, informally, is like an homogeneous Pois-
son process where the constant first-order intensity, m, is substituted with 
a spatially varying first-order intensity, m(x). As a consequence, assessing 
whether an observed spatial point pattern is consistent with the hypothesis of 
no spatial interaction, under spatial inhomogeneity, corresponds to verifying 
whether the observed points may have been generated by an inhomogeneous 
Poisson process. As shown by Baddeley et al. (2000), if the underlying point 
process is an inhomogeneous Poisson process with first-order intensity m(x) 
and without spatial interactions between points then Kinhom(s) = rs2. There-
fore, if Kinhom(s) > rs2 (or Kinhom(s) < rs2), the underlying point process tends 
to generate point patterns that are more aggregated (or more spread) than 
point patterns that are realizations of an inhomogeneous Poisson process with 
first-order intensity m(x) (Diggle et al., 2007). To help the interpretation, the 
same linear transformation used for Ripley’s K-function can be employed, 
i.e. ( ) ( )/L s K s sinhom inhom r= - , which makes the null hypothesis of no spatial 
interactions represented by 0.

According to Baddeley et al. (2000), provided that m(x) is known, the 
approximately unbiased estimator of Kinhom(s) for a spatial point pattern with 
n points, observed in a study region A, is
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where the symbols have the same meaning as in Equation [4].
In most of the practical applications m(x) is not known a priori and it is 

not possible to identify the proper theoretical economic model specifying its 
functional form. Therefore, it is necessary to provide an estimation of the 
first-order intensity. The literature has suggested both parametric and non-
parametric estimation approaches. In those situations where a nonparametric 
estimate is a better choice, Baddeley et al. (2000) provided an estimator of 
m(x), which is an aptly modified version of the Berman and Diggle (1989)’s 
kernel estimator:
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where k(.) is a radially symmetric bivariate probability density function 
(generally of a Gaussian kind), h indicates the smoothing bandwidth and 

( ) ( )C x k x u duh j h j= -#  is an edge effects correction factor2.
Incorporating Equation [8] into Equation [7] makes it possible – in 

principle – to obtain approximately unbiased estimates of the Kinhom-function. 
Nevertheless, Diggle et al. (2007) have argued that estimating m(x) and 
Kinhom(s) using the same data, i.e. using only one realization of the underlying 

2 If geo-referenced street network data are available, it may be appropriate to consider the Net-
work Density Estimator of the first-order intensity proposed by Borruso (2008).
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point process, may produce spurious estimates because we cannot properly 
discriminate the effects due to spatial inhomogeneity and spatial interac-
tion without relying on some assumptions about the characteristics of the 
point process. For example, one may assume that the spatial scale of the 
first-order intensity is greater than that of the second-order intensity, and 
thus be able to separate the actual spatial interaction from spatial inhomo-
geneity by choosing a relatively high value for the bandwidth h (Diggle et 
al., 2007). In order to make this kind of assumption, it is necessary to have 
prior knowledge or theoretical prescriptions about the extent of spatial 
interactions amongst points.

Otherwise, following the example of Espa et al. (2013) among others, in 
some real data applications it may be appropriate to treat m(x) as a function 
of spatially referenced covariates proxying the inhomogeneity of space. The 
values of m(x) may then be estimated parametrically through a regression 
model. For example, in the cases of spatial patterns of firms, the covariates 
could be common localization factors shared by the firms operating in the 
same area, such as the locations of communication routes, infrastructures or 
firms of different vertically related industries. A computationally convenient 
model for m(x) is the log-linear specification:

 ( ) ( )expx z xj j
j

k

1
m b=

=
( 2/  [9]

where zj(x) is one of k spatially referenced covariates and bj is the correspond-
ing regression parameter. While assuming that the observed point pattern is 
the realization of an inhomogeneous Poisson process with intensity function 
m(x), the model in Equation [9] can be fitted to the data using maximum 
likelihood-based methods.

As with the K-function-based CSR test, described in Section 2, in order 
to assess the statistical significance of the deviations of K̂ inhom from the null 
hypothesis of no spatial interactions, we can rely on Monte Carlo significance 
envelopes obtained with simulations of the inhomogeneous Poisson process 
with m(x) estimated parametrically or non-parametrically using Equation [8] 
or Equation [9].

To illustrate how the Kinhom-function can be employed in practice, we 
refer to the problem of assessing the pattern of spatial competition in the 
distribution of supermarkets located in the municipality of Trento (Italy) in 
2004 (Figure 6a). In this case, it is obviously not realistic to treat the city’s 
territory as homogeneous since shops are naturally inclined to locate as close 
as possible to the potential market demand, which is clearly not equally 
distributed in the area. In this empirical circumstance it may be reasonable, 
for example, to use the number of households by census tract (Figure 6b) 
to proxy the spatial distribution of potential customers. Data were made 
available by the Italian National Institute of Statistics (ISTAT).
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To assess spatial interactions among the 82 supermarkets operating in the 
city’s territory, while adjusting for the spatial inhomogeneity of the potential 
market demand, the Kinhom-function-based test can be conducted by estimat-
ing the first order intensity function using Equation [9] and the number of 
households by census tract as a regressor capturing spatial inhomogeneity. 
The consequent estimation of the first order intensity provides the follow-
ing results:

 (x) = exp{-15.033 + 0.007h(x)} 

where h(x) is the number of households in the census tract of location x. 
The estimated regression parameter for h(x) is positive and significant (at 
the 5% level according to both the Wald and likelihood ratio tests). This 
shows that supermarkets tend to locate in the relatively more crowded 
census tracts. With m̂(x) we can then estimate K̂ inhom(s) and hence L̂ inhom(s) 
using Equation [8]. Figure 7 shows the plot of L̂inhom(s) and the correspond-
ing 99.9% significance envelopes. The graphical test provides evidence of a 
multifaceted localization phenomenon occurring at different spatial scales. 
Indeed, it is apparent that the Linhom-function is significantly greater than 
zero up to small distances (below 1.5 km), while it is significantly lower 

Figure 6: (a) spatial distribution of the 82 supermarkets in the city of Trento in 2004; (b) quartile dis-
tribution of the number of households by census tract in 2004.
Source: Authors’ elaboration.
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than zero up to distances greater than 2.5 km. This result suggests that, 
given the spatial distribution of potential market demand, the joint action 
of both positive and negative spatial externalities has led to the occurrence 
of spatial clusters of supermarkets with a spatial extension no greater than 
1.5 km that, on average, are located at least 2.5 km away from the other 
clusters of supermarkets.

In this example, the Kinhom-function-based test has enabled empirical dis-
entanglement of spatial inhomogeneity from spatial interaction in the spatial 
distribution of supermarkets in Trento. In particular, it has detected a strong 
tendency of stores to locate in secluded short-range clusters also because of 
real interactions among economic agents and not only as a consequence of 
a natural propensity to locate in the most crowded areas.

The Kinhom-function-based approach has been used, for example, in regional 
science studies by Arbia et al. (2012), Bonneu (2007) and Espa et al. (2013).

6. Conclusion

This article has provided a non-exhaustive, but hopefully representative, 
overview of the main empirical approaches to assessing spatial patterns of 
firms using micro-geographic data. Several studies (Duranton, 2008 and 
Combes et al., 2008 among others) have argued that these approaches, as 
opposed to the methods based on regionally aggregated data, should now 

Figure 7: Empirical Linhom-function (continuous line) and the corresponding 99.9% significance bands 
(shaded area) for the 82 supermarkets in the municipality of Trento (Italy), 2004.
Source: Authors’ elaboration.
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be preferred by researchers in the field of regional sciences. The use of 
geo-referenced micro-data is indeed a necessary requirement in analyses 
that consider interaction and contagion effects across units (e.g. consum-
ers, firms), especially in the case of units operating in the same geographi-
cal area. However, despite the increasing availability of data of this kind 
of their use is, unfortunately, still quite limited. This is probably for two 
main reasons. The first is that there is no clear link between the empirical 
evidence that can be obtained from the use of micro-geographic data based-
methods and the economic theories on industrial location. In this regard, 
some studies are moving in the direction of relating empirical analysis and 
theory (see e.g. Ellison et al., 2010 and Kerr, Kominers, 2015). The second 
reason concerns the fact that geo-referenced micro-data researchers typically 
have to deal with are affected by localization errors that can occur both 
because of faults in the geo-coding procedures and because of deliberate 
choices made by the data supplier for reasons related with privacy issues 
(Zimmerman, 2008). Learning how to cope with this source of errors is an 
important future methodological challenge, following the way opened by 
Arbia et al. (2017).

In line with the advances in spatial econometrics for regional data (see 
Fingleton, 2017), another methodological development that could make the 
use of geo-referenced micro-data even more fruitful concerns the extension 
from a pure cross-sectional setting to a spatio-temporal modelling frame-
work. An attempt in this direction has been made by Arbia et al. (2014) 
who proposed a method to assess the spatio-temporal concentration of 
firms’ locations. We argue that the development of a more comprehensive 
methodology that includes the dynamic component may benefit from the 
theory of spatio-temporal point processes (González et al., 2016), and we 
expect that it will be pursued in some future studies.
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