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Abstract
The interfaces play a key role in many engineering problems involving geologic materials. In particular, slope stability

analyses of ancient landslides (that were subjected to large displacements along a slip surface) need the formulation of ad

hoc interface elements. The mechanical response of slip surfaces in clays is affected by hydro-chemo-mechanical inter-

actions and by rate effects and this paper presents the formulation of an innovative zero-thickness interface element for

dealing with these kinds of effects. The proposed interface element is an extension of the modified zero-thickness element

proposed by Goodman et al. (J Soil Mech Found Div ASCE 94:637–659, 1968). In addition to solid displacement, we

consider the flow of water and the diffusion of a single salt in the fluid phase. Terzaghi’s effective stress principle is used

leading to the usual hydro-mechanical coupling within the interface element. The fluxes of water and salt are considered in

the longitudinal and in transversal directions of the interface element. For the constitutive relation, we propose an

innovative nonlinear elastic energy that improves the numerical convergence in the occurrence of interface opening. The

Mohr–Coulomb yield surface is used for the plastic regime in which we considered the effects of strain rate and salt

concentration on the shearing behaviour of the interface element. The proposed element has been implemented in a user-

defined subroutine of ABAQUS. The typical effects of salt concentration and displacement rate and the typical model

responses for the longitudinal and transversal fluxes of salt and pore fluid are discussed in detail. Finally, the proposed

interface element is validated through the comparison with experimental results.

Keywords Discontinuities � Finite element method � Hydro-chemo-mechanical coupling � Strain-rate � Zero-thickness
interface element

1 Introduction

It is well-accepted that interfaces play a key role in many

engineering problems related to geologic materials

[29, 42, 52, 55, 56, 59, 61]. We can just recall the para-

mount importance of discontinuities in rock mechanics

[29], in petroleum engineering [56], in CO2 sequestration

[42], and in geothermal energy exploitation [55]. In addi-

tion, the interfaces are very important for describing the

boundary between soil and engineering structures, such as

retaining walls, piles, and tunnels. Although the majority of

these interface problems involve only hydro-mechanical

coupling, due to the contemporary presence of the pore

fluid and the solid skeleton, there are examples in which

more complex formulations are needed, such as in

geothermal piles in which the interface must account for

the whole thermo-hydro-mechanical coupling [11].

Interfaces have also a special interest in slope stability

analyses of ancient landslides, which underwent large

displacements along a slip surface. As a result, these

interfaces separate the same geologic material, namely the

stable soil with respect to the failing mass, and their

properties are the results of the large displacements that

occurred in the previous geologic history. In clays, the

main characteristic of these slip surfaces is that slope dis-

placements are concentrated in narrow shear zones [57],
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where the shear strength reaches the minimum value that

the soil can reach, due to the realignment of clay particles

induced by the large displacements. This fact is well

known and the minimum strength is denoted as residual

strength and its properties have been fairly well

investigated.

One important aspect of the residual shear strength that

has been highlighted is the dependence of the residual

strength on pore fluid composition: the variations of

residual friction angles can be very large depending on the

salt concentration of pore fluid and the activity of clay [15].

This fact is very important since it could be exploited for

slope stabilization of ancient landslides [18, 19]. In addi-

tion, several results reported in the literature show a

dependence of the residual shear strength on the displace-

ment rate [16]. This is also very important for forecasting

the landslide movements because many engineering

structures suffer damages due to an interaction with a

slowly moving landslide [18].

Finally, the interfaces may deeply affect the ground fluid

flows, because they can constitute a preferential path along

the longitudinal direction or, in contrast, can prevent the

flux in their transversal direction. Di Maio et al. [19] have

recently shown that the hydraulic conductivity along the

slip surface in a clayey slope is more than two orders of

magnitude higher than that of the landslide body.

Several types of interface elements have been proposed

to model the discontinuities in geomaterials or soil-struc-

ture interfaces [14, 27]. The joint element proposed by

Goodman et al. [27] is the earliest one in which two par-

allel surfaces with two nodes on each of them are consid-

ered and the interface is assumed to have virtually a zero

thickness. In this interface element, a high value is assigned

to the normal stiffness in order to prevent the penetration

and overlapping of the two surfaces of the interface ele-

ment with respect to each other. Reviews and applications

of this element are available in various publications. Beer

[6] has extended Goodman’s element to three-dimension.

Yuan and Chua [60] and Amar Bouzid et al. [1] have

presented the exact solution of an axisymmetric joint ele-

ment when the applied load is axisymmetric or non-ax-

isymmetric. Day and Potts [12] discussed the numerical

instabilities of Goodman’s element such as high-stress

gradient and ill-conditioning of the stiffness matrix. These

numerical instabilities are due to the large aspect ratio (i.e.

the ratio of length to thickness) of the joint element which

can be reduced by decreasing the size of the element.

Goodman’s element has been adapted to several applica-

tions such as in soil nailing [59], in concrete-faced rock-fill

dams involving an interface between gravel cushion layers

and concrete-face slabs [61], in soil-pile interaction [52], in

frictional damping system [22]. Kaliakin and Li [30]

developed a 6-node zero-thickness element as a solution

for preventing the stress oscillation and ill-conditioning

that occur in some applications of the joint element in finite

element analysis. Coutinho et al. [10] modified Goodman’s

element by adding a link element to eliminate kinematic

inconsistencies.

Desai et al. [14] developed a thin solid element in order

to simulate the interface behaviour under static and

dynamic loading. The stiffness matrix of this element is

computed as an isoparametric solid element but the con-

stitutive matrix has only normal and shear components. In

other words, the components related to the in-plain normal

strain are assumed to be equal to zero. Experimental tests

have been performed to investigate the effect of various

factors such as normal stress, displacement amplitude, and

the number of loading cycles on the behaviour of a sandy

concrete interface [13]. Sharma and Desai [50] developed

an interface element similar to a continuum (finite) element

whereas its constitutive response has been defined differ-

ently from that of the neighbouring ‘‘solid’’ elements and a

constant thickness was used in the definition of strain. It

has been proposed that the constitutive matrix is trans-

formed from a local to a global coordinate system.

Previous studies have considered only the mechanical

behaviour of interface elements and the coupling between

stresses with pore pressure was neglected. Ng and Small

[38] proposed an interface element, based on Goodman’s

element in which Biot’s consolidation theory was used to

model the coupling of water pressure and displacement of

solid interfaces or rock joints and the fluid flow through the

discontinuity is a function of the pressure gradient. Nguyen

and Selvadurai [39] have studied the coupled behaviour of

rock joints and have considered that the longitudinal per-

meability of the rock joints changes with shearing and

gouge material between the surfaces of the interface.

Segura and Carol [46] proposed that the transversal flow

must be included in addition to the longitudinal flow

(Fig. 1). The formulation was developed for a single node,

double node, and triple node in the element thickness, thus

both transversal and longitudinal flows have been pre-

served [47]. The double nodded element has been extended

to obtain a fully coupled hydro-mechanical model in terms

of nodal displacement and pore pressure [48, 49]. Luo and

Peng [34] further developed the formulation of Goodman’s

element for considering the hydro-mechanical coupling

based on Biot’s consolidation theory. Cerfontaine et al. [9]

developed a 3D fully coupled hydro-mechanical formula-

tion of triple nodded interface element. The coupling is

created by the longitudinal fluid flow which depends on the

gap size, whereas the effective stress was computed based

on Terzaghi’s principle. A fully coupled thermo-hydro-

mechanical formulation has been proposed for a 3D zero-

thickness interface element by Cui et al. [11].
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Concerning the constitutive model describing the inter-

face response, in most cases, the Mohr–Coulomb yield

criterion has been used for describing the irreversible

behaviour of the interface element. The elastic behaviour

was represented by linear or nonlinear functions in which

normal and shear responses are decoupled. Samtani [43]

and Samtani et al. [44] proposed a constitutive model for

thin-layer interface elements in which the time-dependent

behaviour of interface material has been considered in

addition to the elastic and plastic behaviour. Gennaro and

Frank [23] studied the interface behaviour between gran-

ular soil and structure. They proposed a constitutive rela-

tion based on the Mohr–Coulomb yield function which

accounted for the dilatancy of soil during shearing. Kara-

batakis and Hatzigogos [31] studied the creep behaviour of

interface elements with a constant thickness and concluded

that the size and properties of the interface and neigh-

bouring solid elements affect the creeping behaviour.

Barton and Bandis [3–5] proposed a nonlinear, phe-

nomenological model for rock joints based on the Mohr-

Culoumb criterion and considering the joint roughness

coefficient (JRC), and the joint compression strength (JCS).

Wang et al. [58] developed a constitutive model for rock

joints in which shear anisotropy is incorporated in the

elastic deformation by introducing a shape function in the

elastic shear stiffness. Finally it is worth mentioning the

hypoplastic models that have been proposed to model the

interface behaviour [51, 53, 54]. In particular, Stutz and

Mašı́n [51] presented a hypoplastic model for 3D interfaces

in fine-grained soils, whereas Stutz et. al [53] proposed a

hypoplastic model including in-plane stresses within the

interface.

Although the previous literature review is not probably

exhaustive, we can conclude that just a minor part of the

published works have considered the hydro-mechanical

coupling, and even fewer of them have considered the rate

dependency. In any case, to the best of the Authors’

knowledge, no formulation has been proposed for taking

account of chemical and rate interaction at an interface. In

this paper, such an interface element is proposed starting

from the modified Goodman’s element [30], in which both

the flow of water and salt diffusion are considered in

addition to the mechanical response. This allows the sim-

ulation of discontinuities, cracks, pre-existing slip surfaces,

and soil-structure interfaces. For the sake of simplicity,

here it is assumed that a single salt may diffuse in the pore

fluid and reference is made to the clay properties at the

residual state. Anyway, the approach here presented can be

easily extended to other applications in geotechnical

engineering, just implementing suitable constitutive

relationships.

The paper is organized as follows. The governing

equations of the interface element consist of the momen-

tum balance for the interface region and the mass balance

of pore water and diffusing salt as explained in Sect. 2. The

chemo-mechanical, rate-dependent constitutive response of

the interface is described in Sect. 3. In particular, an

innovative hyper-elasticity law is proposed in Sect. 3.1 for

improving the numerical treatment when tensile displace-

ments are applied. The finite element formulation is pre-

sented in Sect. 4. Solid displacements, pore pressure, and

salt concentration have been selected as nodal unknowns.

The interface element has been implemented in a user-

defined subroutine (UEL) of ABAQUS [28] and typical

simulations are presented in Sect. 5. Model validation and

the comparisons with experimental results are presented in

Sect. 6. Finally, the conclusions are drawn in Sect. 7.

In this work, vectors and matrices are denoted with bold

characters, whereas scalar quantities are denoted with plain

characters.

Fig. 1 Interface element between two continua with longitudinal and transversal fluxes
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2 The balance equations

The proposed interface element is assumed to be composed

of two phases: the solid and the fluid phase (denoted with

the upper case subscript S or W), the latter including pore

water and dissolved salt as water species (denoted with the

lower case subscript s or w). From a geometrical point of

view, this element consists of two parallel surfaces which

can be considered even to be perfectly superposed for the

mechanical response (in fact it can be considered a zero-

thickness interface element) and are separated by a finite

gap for the fluxes of water and salt. These two surfaces may

have different pore pressures and salt concentrations with

respect to each other. The following conservation laws

must be considered: the conservation of momentum, the

mass conservation of pore fluid, and the mass conservation

of diffusing salt. Let us assume that the x- and y-coordi-

nates are parallel and orthogonal to the discontinuity,

respectively. Figure 2 shows the positive direction of the

relevant quantities in the balance equations.

2.1 Momentum balance

From a mechanical point of view, the proposed interface

can be visualized as a bed of non-linear, normal and shear

(Winkler) springs, acting between the two (superposed)

surfaces defining the interface. The mechanical response of

these springs depends on salt concentration and displace-

ment rate.

It is worth emphasizing that the two surfaces defining

the interface have null in-plane (longitudinal, transversal,

and bending) stiffnesses. Thus the mechanical contribu-

tions of the interface element consist only of the normal

and shear stiffnesses of the springs. As a result, the con-

servation of momentum reduces to imposing the equilib-

rium of internal stresses with applied external pressures fn

and fs, in the normal and tangential directions to the

interface,

rn ¼ f topn ¼ �f botn ; rs ¼ f tops ¼ �f bots ; ð1Þ

where rn and rs are the total normal and shear stresses

(positive when tensile), the superscripts top and bot denote

the top and bottom surfaces of the interface element. The

equalities f topn ¼ �f botn and f tops ¼ �f bots hold true for null

body and inertial forces, as assumed herein.

2.2 Mass balance of pore water

For the fluid flow, the proposed interface consists of two

parallel surfaces with a finite gap h and different perme-

abilities in the longitudinal and transversal directions [40].

The two surfaces of the interface may have different pore

pressures when the discontinuity is filled with a low-per-

meable material.

As a result, there can be both a longitudinal and a

transversal water flow between the interface surfaces. The

transversal flow is induced by a pore pressure difference

between the top and bottom surfaces of the interface ele-

ment. Since all species (namely solid grains, pore fluid, and

diffusing salt) are assumed incompressible and the inter-

face element is perfectly saturated, the mass balance

equation reduces to the continuity condition.

The longitudinal strain of the discontinuity may not be

null, in general, and is defined as follows

�l ¼
o

ox

utop þ ubot

2

� �
; ð2Þ

where utop and ubot are the longitudinal displacements of

the top and bottom surfaces. Let us introduce also the

normal strain �n, defined as follows [6, 11, 12, 30, 38]:

�n ¼ vtop � vbot; ð3Þ

with vtop � vbot the relative normal displacement of the two

surfaces with vtop and vbot the transversal displacements of

the top and bottom surfaces, respectively. As a result, the

normal strain has the units of a length L.

Through standard arguments, the mass balance equation

for pore fluid contained in a volume element of dimension

dx and dy can be written as

1

h

o�n
ot

þ o�l
ot

þ oJlW
ox

þ oJtW
oy

¼ 0; ð4Þ

where �n is divided by h due to the definition given in

Eq. (3).

It is worth noting that all quantities appearing in Eq. (4)

depend only on the x variable (namely they are constant in

the transversal direction). Thus, if Eq. (4) is integrated

along y, we obtain

Fig. 2 Conventions for the interface region in (a) momentum balance,

(b) mass balance of pore water, (c) mass balance of salt in the fluid

phase
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o�n
ot

þ h
o�l
ot

þ h
oJlW
ox

þ
Z
h

oJtW
oy

dy ¼ 0; ð5Þ

where the last term obviously reduces toZ
h

oJtW
oy

dy ¼ JtW
� �h

0
¼ JbotW þ JtopW ; ð6Þ

where JbotW and JtopW are the outflow fluxes (with units L/T)

through the bottom and top surfaces of the discontinuity,

due to the leak-off from the discontinuity towards the

neighbouring porous media. It is worth noting that Eq. (5)

coincides in part with the analogous equation used by

[47, 49]. The term ðo�n=ot þ ho�l=otÞ is the rate of volume

change of the discontinuity (with units L/T) and hJlW is the

longitudinal flux of fluid (with units L2=T) along the

interface element. Equation (5) represents a continuity

equation in the longitudinal direction of the discontinuity,

in which the volume change of the solid skeleton is coupled

with both the longitudinal and transversal fluxes of water. It

is worth adding that the second term in Eq. (5) is often

neglected in the literature.

Longitudinal water flux: The interface is assumed to

have a finite, non-null thickness to allow water flux in the

longitudinal direction of the interface. The longitudinal

flux JlW can be obtained from the generalized fluxes of

water and salt in porous media as follows [37]:

JlW ¼ � Kl

qwg
opmW
ox

� qwgl

� �
þ x

Kl

qwg
cmsW

RT

v
ðMÞ
s

v
oð Ln cmsWÞ

ox

 !
;

ð7Þ

in which Kl (with units L/T) is the hydraulic conductivity of

the interface in the longitudinal direction, gl is the com-

ponent of the gravity vector g in the longitudinal direction,

R is the ideal gas constant equal to 8.31451 J/(K mol), T is

absolute temperature, x is the osmotic efficiency of the

infilled material at the discontinuity, v is the ratio of molar

volume of fluid phase to the molar volume of water, v
ðMÞ
s

is the molar volume of salt, qw is the density of water, and

cmsW is the salt concentration at the mid-plane of the dis-

continuity, namely cmsW ¼ ðctopsW þ cbotsWÞ=2, with ctopsW and

cbotsW the salt concentrations at the top and bottom surfaces

of the discontinuity (see Sect. 2.3). Equivalently, pmW ¼
ðptopW þ pbotW Þ=2 is the pore pressure at the mid-plane of the

discontinuity, with ptopW and pbotW the pore pressures of the

top and bottom surfaces, respectively. Note that the lon-

gitudinal flux of water (and of salt) is based on the mean

value of pore pressure (and of salt concentration) as pro-

posed by Segura and Carol [46, 47, 49].

Transversal water flux: The transversal flux of water

JtW (with units L/T) between the two surfaces of the

interface, is assumed to be defined by the generalized

fluxes [37, 40, 49]:

JtW ¼ � Kt

qwg
ptopW � pbotW

h
� qwgt

� �
þ x

Kt

qwg
cmsW

RT

v
ðMÞ
s

v
Ln ctopsW=c

bot
sW

� �
h

 !
;

ð8Þ

where Kt (with units L/T) is the hydraulic conductivity in

the transversal direction to the discontinuity and gt is the

component of the gravity vector g in the transversal

direction. If Kt=h is very small, the discontinuity turns out

to be a barrier to the flux of water in the orthogonal

direction to the discontinuity, thus preventing the fluid flow

in the transversal direction. In this case, the two surfaces of

the discontinuity have different pore pressures with respect

to each other. In contrast, if Kt=h is very large, the two

surfaces of the discontinuity have the same pore pressure.

2.3 Mass balance of salt in the fluid phase

In this work, a single salt is assumed to diffuse in the fluid

phase for the sake of simplicity. Moreover, the solid par-

ticles are assumed to be not reactive, thus there is no mass

transfer between the solid and fluid phases. This assump-

tion is acceptable, due to the typically small amount of

infilling material. In addition to the salt diffusion induced

by a concentration gradient, there is an advective transport

of salt due to the pore fluid flow.

Salt concentration csW in the fluid phase is defined as a

non-dimensional quantity equal to the ratio of the volume

of the salt with respect to the volume of the fluid phase

(csW ¼ VsW=VW ). Note that the sum of the concentrations

of the species in the fluid phase (i.e. water and salt) is equal

to one (i.e. csW þ cwW ¼ 1).

Similarly to the flow of water, salt may diffuse along

both the longitudinal and transversal directions of the dis-

continuity. In analogy with Eq. (4), through standard

arguments, the mass balance of salt for a volume element

with dimensions dx and dy is

nW
ocsW
ot

þ csW
1

h

o�n
ot

þ o�l
ot

� �
þ oJlsW

ox
þ oJtsW

oy
¼ 0; ð9Þ

where nW is the porosity of the infilling material in the

discontinuity (nW ¼ 1 if the discontinuity is empty) and

JlsW and JtsW are the longitudinal and transversal fluxes of

salt along the discontinuity.

Similarly to Eq. (4), Eq. (9) can be integrated in the

transversal direction (namely y axis), thus, taking into

account that salt concentration varies linearly in the y

direction, we obtain
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nWh
ocmsW
ot

þ cmsW
o�n
ot

þ h
o�l
ot

� �

þ h
oJlsW
ox

þ JtopsW þ JbotsW ¼ 0;

ð10Þ

where JtopsW and JbotsW are the salt leakages from the top and

bottom surfaces of the discontinuity, respectively, due to

the salt diffusion towards the neighbouring porous media,

and cmsW is the mean value of salt concentration, coincid-

ing with the salt concentration at the intermediate plane of

the discontinuity. It is worth remarking that a null transfer

of water and salt has been assumed between the solid and

fluid phases.

The longitudinal flux of salt is given by the sum of the

advective flow of salt due to the fluid flow and the diffusion

flux as:

JlsW ¼ cmsW vladv þ JdlsW ; ð11Þ

where vladv is the longitudinal advective velocity due to the

longitudinal water flow ( vladv ¼ JlW � JdlsW
� �

=nW that is

strictly valid for negligible osmotic efficiency) and JdlsW is

the longitudinal diffusion flux of salt.

In the balance equation of salt, the advective term is

important for advection-dominated problems which have a

value of Peclet number Pe ¼ j vladvjl=Dl larger than 1, l is a

characteristic length of the discontinuity element and Dl is

the diffusion coefficient along the longitudinal direction of

the discontinuity.

Similar considerations hold true for the transversal flux

of salt

JtsW ¼ cmsW vtadv þ JdtsW ; ð12Þ

where vtadv is the transversal advective velocity

( vtadv ¼ JtW � JdtsW
� �

=nW ) and JdtsW is the transversal diffu-

sion flux of salt. It is worth noting that in the transversal

direction, the Peclet number Pe ¼ j vtadvjh=Dt is typically

very small, due to the small value of the thickness h, thus in

most cases, no regularization is needed.

Longitudinal salt diffusion: The diffusion of salt in the

longitudinal direction is given by the generalized fluxes of

water and salt [37] applied to the 1D element.

JdlsW ¼ �nWcmsWDl
oð Ln cmsWÞ

ox

� �

þ xcmsW
Kl

qwg
opmW
ox

� qwgl

� �
;

ð13Þ

where Dl (with units L2/T) is the effective diffusion coef-

ficient for the transmission of salt in the longitudinal

direction.

Transversal salt diffusion: Similarly to the transversal

flow of water, the transversal flux of salt is related to the

salt concentration at the top and the bottom surfaces of the

interface element (Fig. 3):

JdtsW ¼ �nWcmsWDt

Ln ctopsW=c
bot
sW

� �
h

 !

þ xcmsW
Kt

qwg
p
top
W � pbotW

h
� qwgt

� �
;

ð14Þ

where Dt (m/s) is the transversal diffusion coefficient.

Equivalently to pore fluid flow, the discontinuity may be

filled with a material having a very low diffusion coeffi-

cient (i.e. a low value of Dt=h), thus the discontinuity

becomes an obstacle to the diffusion of salt in the normal

direction to the discontinuity. In this case, the salt con-

centrations on the surfaces of the discontinuity are different

with respect to each other. In contrast, for very high values

of Dt=h, the salt concentrations on the surfaces of the

discontinuity are equal to each other.

3 Constitutive relationships

The proposed constitutive model for simulating the rate-

dependency and the chemo-mechanical coupling of the

interface was developed with special attention to the

observed response of clayey soils at residual strength.

For the mechanical part, reference has been made to the

modified Goodman’s element proposed by Kaliakin and Li

[30] in order to prevent numerical instabilities. In the 2D

version, this interface element is composed of two super-

posed surfaces (in fact the value of interface thickness is

ineffective for the mechanical behaviour and a zero-

thickness can be assumed) and the mechanical response is

related to the relative normal and shear displacements of

the two surfaces.

Following the notation proposed by others [11, 12, 30],

in addition to the normal strain �n (see Eq. 3), we define the

shear strain �s as follows:

�s ¼ utop � ubot; ð15Þ

where utop and ubot have been defined with regards to

Eq. (2). Thus the total strain is defined as � ¼ �n �s½ �T .
The quantities that are work-conjugated with these

strains are the normal stress rn and the shear stress rs
(having the dimension of a pressure).

Below, we assume that the usual strain decomposition

holds true, namely, the strain increment is the sum of an

elastic and a plastic fraction as follows

d� ¼ d�e þ d�p; ð16Þ

where the superscripts e and p denote the elastic and plastic

parts, respectively. Moreover, the plastic strain rate _�p is

defined as follows
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_�p ¼ d�p

dt
; ð17Þ

where dt is the time interval. We assume small strains and

displacements, isothermal conditions, negligible inertial

forces, and negligible body forces.

Hydromechanical coupling is due to the effects of the

pore fluid pressure on the stress and strains of the solid

skeleton and vice versa. In other words, the change of pore

pressure generally leads to the opening/closing of the dis-

continuity and to a change of shear strength. The hydro-

chemo-mechanical coupling is caused by the diffusion of

salt inside the discontinuity and to the chemical reactivity

of the soil. Since the quantity of infilling material is gen-

erally small and, in the case of empty discontinuities, salt

effects are related only to the superficial effects occurring

on the surfaces of the discontinuity, we have assumed that

there is no mass exchange between the soil and fluid phases

due to a change of salt concentration (in contrast with the

assumptions by Loret et al. [33] for clayey soils as a con-

tinuum). Thus, the friction angle and the strains are directly

affected by the variation of salt concentration in the pore

fluid (and not by the amount of water adsorbed/desorbed

from the solid phase).

The total stress r ¼ rn rs½ �T (positive when tensile) is

related to the effective stress r0 ¼ r0n r0s½ �T and to pore

water pressure pW (positive in compression) through

Terzaghi’s principle of effective stress [11, 38, 46–49],

namely:

r ¼ r0 �m pW ; ð18Þ

where m is the vector that takes into account the influence

of pore fluid pressure in the normal direction of the dis-

continuity m ¼ 1 0½ �T and pW is the pore water pressure.

In the case of an interface, pW is assumed to coincide with

the pore pressure at the mid-plane (i.e. pW ¼ pmW in

Eq. 18).

3.1 Elastic behaviour

In this work, we propose an innovative elastic strain energy

function, which is inspired to the proposal by Argani and

Gajo [2] for multiaxial stress states with the aim of

improving the rate of convergence of Mohr–Coulomb

models. For the sake of simplicity, we have assumed that

the elastic properties do not depend on salt concentration,

thus the elastic strain energy density function is proposed

in the following form:

C½�en; �es � ¼

knð��en þ �0Þ3

þksð�e2n þ �e2s Þ
3=2

for �en � 0;

k p0 expð��en=kÞ
þksð�e2s Þ3=2 for �en [ 0;

8>>>><
>>>>:

ð19Þ

where kn and ks are two stiffness parameters (with units

F=L4), �0 is a small value selected by the user (e.g. equal to

0.0001), k ¼ �0=2 and p0 ¼ 3kn�
2
0. Since no experimental

information about a possible dependency of kn and ks on

csW is available, this possibility is disregarded below.

The first derivative of the elastic strain energy function

with respect to the normal and shear strains provides the

normal and shear stresses (see Appendix A). The second

derivative of the elastic energy with respect to the elastic

normal and shear strains gives the components of the tan-

gent elastic stiffness matrix as:

De ¼ o2C=o�en
2o2 C=o�eno�

e
s

o2C=o�eno�
e
s o2C=o�es

2

� 	
: ð20Þ

These terms are reported in Appendix A. Both Deð1; 1Þ and
Deð2; 2Þ increase with �en and �es , respectively. The non-null

out-of-diagonal terms Deð1; 2Þ ¼ Deð2; 1Þ imply a coupling

between shear and normal strains.

The main advantage of the proposed elastic energy is that

the resulting stress state is C0, C1, and nearly C2 continuous

in �en ¼ 0. Moreover, tensile stresses can not be obtained even

for very large openings (�en [ 0) of the interface element, thus

the elastic predictor (see Sect. 3.4) can never lay in a region

in which the yield function is undefined.

3.2 The yield surface

Classical Perzyna’s approach [41] is used for modelling the

visco-plastic response. Let us recall here that in Perzyna’s

approach [41], two different yield surfaces can be identi-

fied: the static and the dynamic yield surface (Fs ¼ 0 and

Fd ¼ 0) [32, 35, 36, 41]. The former refers to a vanishingly

Fig. 3 Diffusion of salt in the normal direction based on the salt concentration gradient between the top and bottom plate of the interface element
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small plastic strain rate ( _�p ! 0), whereas the latter

depends on a non-null plastic strain rate.

Figure 4 shows the static and dynamic yield surfaces

and the plastic potential (G) in the shear stress vs. normal

effective stress r0s � r0n plot. If the elastic predictor lays

inside the static yield surface (Fs � 0), the material

response is elastic and inviscid, with an elastic response

that is defined in Sect. 3.1. The static yield surface has no

hardening, because it is intended to simulate the residual

strength along a slip surface at a vanishingly small dis-

placement rate, and is defined as follows

Fs½r0; cmsW � ¼ jr0sj þ r0n tan u½cmsW �ð Þ; ð21Þ

where u½cmsW � is the friction angle depending on the mean

salt concentration at the mid-plane of the discontinuity.

Note that the proposed expression of Fs implies perfect

plasticity.

In this work, the friction angle is assumed to depend on

salt concentration cmsW through the same expression pro-

posed by Loret et al. [33], namely

u½cmsW � ¼ c1 þ c2 tanh c3
cmsW � cdwsW
csatsW � cdwsW

� �
; ð22Þ

where

c1 ¼ udw and c2 ¼ usat � udw;

and c3 is a constant value, selected by the user from

experimental data. The values of csatsW and usat are the salt

concentration and the friction angle corresponding to a

saturated salt solution. Equivalently, the cdwsW and udw are

those of distilled water. This expression simulates the

experimental observations [16, 45] showing that the fric-

tion angle changes very rapidly at the lowest salt concen-

trations and reaches a sort of saturation value at the highest

concentrations (Fig. 5).

It is worth adding that a null cohesion has been assumed

in Eq. (21), because this is the typical case of residual

strength of clays. This limitation can however be easily

removed by adding a cohesive contribution to Eq. (21).

The rate dependency is described according to Perzyna’s

model [41], thus the stress state can lay outside the static

yield surface only if the plastic strain rate is not null.

According to Perzyna’s model [41], when the plastic

deviatoric strain rate is not null _�ps 6¼ 0, then the dynamic

yield surface does not coincide with the static one, namely

Fd½r0; cmsW ; _�ps � ¼ jr0sj þ r0n tan u½cmsW �ð Þ 1þ U½ _�ps �
� �

; ð23Þ

where U½ _�ps � is the viscosity function that was inspired to

the work of Madaschi and Gajo [36] on the creep behaviour

of clays in oedometric compression. The viscosity function

is assumed to consist of a logarithmic branch (for values of

_�ps larger than a minimum value, b _�min) and a polynomial

branch close to the axis origin, namely

U½ _�ps � ¼

c lnð _�ps= _�minÞ for _�ps [ b _�min;

c A1 _�
p
s þ A2ð _�ps Þ

2



þA3ð _�ps Þ
3
�

for _�ps � b _�min;:

8>>><
>>>:

ð24Þ

where c, _�min and b are constitutive parameters, whereas the

polynomial coefficients A1, A2 and A3 are deduced from

_�min and b in such way that C0 and C1 continuity of the

viscosity function U½ _�ps � is ensured in the transition point

(b _�min). These coefficients result equal to [36]:

A1 ¼
a ln b
b _�min

;

A2 ¼
3 ln b� 2a ln b� 1

ðb _�minÞ2
;

A3 ¼
a ln bþ 1� 2 ln b

ðb _�minÞ3
:

ð25Þ

Fig. 5 Change of friction angle with salt concentration: experimental

results [16, 45] and model simulations for different values of c3

Fig. 4 The state of stress with respect to yield function and potential

function. Fs and Fd are the static and dynamic yield functions, and

G is the potential function
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where a is a fourth constitutive parameter defining the

slope of the viscosity function U½ _�ps � at the axis origin. Note
that for a null plastic strain rate, the dynamic yield surface

coincides with the static one.

As a result, the soil friction turns out to depend on the

plastic shear strain rate _�ps and on the salt concentration

cmsW , namely: the greater _�ps and cmsW , the larger the soil

friction. Figure 6 shows the typical variation of the vis-

cosity function with displacement rate plotted either with

arithmetic or with a logarithm scale (for c=0.01, a ¼ 1,

b ¼ 10, _�min ¼ 10�8 m/s).

3.3 The plastic potential

The plastic potential G provides the plastic flow direction.

In this work the flow rule is assumed to be non-associated,

thus the plastic potential G is different with respect to the

yield functions Fs and Fd and is defined as follows:

G½r0� ¼ jr0sj þ r0n tanw; ð26Þ

where w is the dilation angle, which is generally smaller

than the friction angle. Since the proposed interface ele-

ment is intended to simulate mainly the residual strength, a

null dilatancy angle w ¼ 0 will be assumed below, inde-

pendently of salt concentration and strain rate.

The plastic strain increment is deduced as usual

d�p ¼ dk
oG

or0
and _�p ¼ d�p

dt
¼ dk

dt
oG

or0
; ð27Þ

where dk is the plastic multiplier.

3.4 The consistency condition
and the calibration of constitutive
parameters

The numerical integration of the constitutive model is

performed using a general implicit, back-Euler method.

Namely, at first, the strain increment is assumed to be

purely elastic (thus obtaining the so-called elastic predic-

tor). If the elastic predictor lays outside the static yield

surface, then a visco-plastic strain increment occurs,

otherwise, the strain increment is purely elastic.

The amplitude of the plastic strain increment is obtained

from the consistency condition applied to the dynamic

yield surface. This implies that the magnitudes of the

plastic strain increment and of the plastic strain rate are

evaluated in such a way that the updated stresses lay on the

updated dynamic yield surface Fd. This automatically

ensures also the consistency condition on the static yield

surface for null plastic strain rate Fs. The resulting system

of non-linear equations is solved numerically through a

conventional Newton–Raphson scheme.

The tangent elastoplastic stiffness matrix can be

deduced through a standard method [25] that will not be

repeated here for the sake of brevity.

The key constitutive parameters that need to be cali-

brated are the residual friction angle u and its dependence

on salt concentration (parameters c1, c2 and c3 of Eq. 22).

This task can be easily obtained from laboratory mea-

surements of residual friction angle performed at different

salt concentrations (e.g. see [45]). The dilatancy angle w is

typically null at the residual state. A further set of

parameters that need to be calibrated are those describing

the delayed behaviour (a, c, _�min and b in Eq. 24). Even in

this case, laboratory measurements of residual strength at

various displacement rates are needed (e.g. see [45]).

Fig. 6 Change of viscosity function on (a) an arithmetic plot, and on (b) a semi-log plot of velocity
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Finally, for the parameters describing the elastic beha-

viour, kn and ks, the same approach used for soil and rock

interfaces was followed.

4 FE formulation

The zero thickness element proposed by Goodman et al.

[27] is widely used for the 2D modelling of discontinuities

in rock masses. In soil-structure interaction problems, it is

often assumed that the thickness of the interface element is

equal to zero [14]. In this paper, we use the modified

Goodman’s element proposed by Kaliakin and Li [30] to

prevent numerical instabilities. For the solid skeleton, the

interface element is composed of 6 nodes (Fig. 7), posi-

tioned on two parallel surfaces (i.e. three nodes on each

surface), and, since its thickness is ineffective for the

mechanical response, the thickness of the interface will be

assumed to coincide with the real interface thickness nee-

ded for the water and salt fluxes. For the pore fluid flow and

salt diffusion, the interface element is composed of 4 nodes

positioned on the two parallel surfaces (i.e. two nodes on

each surface), and the thickness of the interface h coincides

with the real interface thickness that governs the longitu-

dinal water and salt fluxes.

4.1 FE formulation for the mechanical analysis

In the local coordinate system, the displacements of the

surfaces of the interface element can be expressed in terms

of nodal displacements ~ui and interpolation functions N
s
i as:

u ¼
X

Ns
i ~ui ¼ Ns ~U ; ð28Þ

where u ¼ u v½ �T with u and v the longitudinal and the

transversal displacements

~U ¼ ~u1 ~v1 ~u2 ~v2 ::: ~u6 ~v6½ �T ; ð29Þ

and Ns
i are the shape functions for the solid skeleton written

for the 6-node interface element (that is similar to a one-

dimensional element with three nodes)

Ns
1 ¼ Ns

4 ¼
1

2
ðn� 1Þn;

Ns
2 ¼ Ns

3 ¼
1

2
ðnþ 1Þn;

Ns
5 ¼ Ns

6 ¼ ð1� n2Þ;

ð30Þ

where �1� n� þ 1 is the space variable in the natural

coordinate system (Fig. 7).

Since the thickness of the interface element is vanish-

ingly small as compared to its length, the interpolation

functions of the nodes on the bottom surface of the element

coincide with those of the adjacent nodes on the top sur-

face. Considering Fig. 7, the horizontal and vertical dis-

placements of the top and bottom surfaces of the interface

element turn out to be

utop ¼ Ns
3 ~u3 þ Ns

4 ~u4 þ Ns
6 ~u

s
6;

ubot ¼ Ns
1 ~u1 þ Ns

2 ~u2 þ Ns
5 ~u5;

ð31Þ

vtop ¼ Ns
3 ~v3 þ Ns

4 ~v4 þ Ns
6 ~v6;

vbot ¼ Ns
1 ~v1 þ Ns

2 ~v2 þ Ns
5 ~v5;

ð32Þ

The strain at the interface can be deduced from nodal

displacements by using the following relation:

� ¼ B ~U ; ð33Þ

where B is the strain transformation matrix, given by

[30, 38]

B ¼ 0 � Ns
1 ::: 0 Ns

6

�Ns
1 0 ::: Ns

6 0

� 	
: ð34Þ

Equation (34) holds true for an element with the lon-

gitudinal orientation coinciding with the global X-axis,

namely when the local coordinate (x-axis) system coin-

cides with the global one. In contrast, when the interface

element has a different orientation, it is obviously neces-

sary to consider a rotation matrix that leads to a strain

transformation matrix BG (not be given here for the sake of

brevity) that can be easily found through standard argu-

ments [12, 38].

It is worth adding that from the expression of the total

stress (Eq. 18), the nodal forces result equal to

Fig. 7 Relative displacement and degrees of freedom in zero thickness element with 6 nodes in the local coordinate system
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fS ¼
Z
l

BT
G rdl ¼

Z
l

BT
G ðr0 �m pmWÞdl; ð35Þ

thus the nodal forces are computed considering the total

stress at the mid-section of the discontinuity. The tangent

stiffness matrix reduces to

dfS ¼
Z
l

BT
G DepBGdl d ~U� 1

2

Z
l

BT
GmNpdl d~PW ; ð36Þ

with Dep the tangent elastoplastic stiffness matrix relating

stress to strain increments and Np are the interpolation

functions for the pore pressure, which are defined in the

next subsection (see Eqs. 38 and 39).

4.2 FE formulation for the fluid flow

For the pore pressure, the interface element can be con-

sidered as a four-nodded, 2D element, thus the pore water

pressures within the interface can be expressed in terms of

nodal values ~pi and interpolation functions N̂
p

i as:

pW ¼
X

N̂
p

i ~pi ¼ N̂
p ~PW ; ð37Þ

where ~P
T

W ¼ ~p1 ~p2 ~p3 ~p4½ �, N̂p ¼ N̂
p

1 N̂
p

2 N̂
p

3 N̂
p

4

� �
and

N̂
p

1 ¼
1

2
ð1� nÞ h� 2y

2h
; N̂

p

2 ¼
1

2
ð1þ nÞ h� 2y

2h
;

N̂
p

3 ¼
1

2
ð1þ nÞ hþ 2y

2h
; N̂

p

4 ¼
1

2
ð1� nÞ hþ 2y

2h
;

ð38Þ

with �h=2� y� h=2. Note that the pore pressure varies

linearly within the interface thickness.

Alternatively, the pore pressure can be defined only at

the surfaces of the interface element (i.e. y ¼ �h=2 and

y ¼ h=2). In this case the interpolation functions N̂
p

i reduce

to Np
i ,

Np
1 ¼ Np

4 ¼ 1

2
ð1� nÞ; Np

2 ¼ Np
3 ¼ 1

2
ð1þ nÞ; ð39Þ

with �1� n� þ 1. The pore pressure at the mid-section of

the discontinuity is the mean of the values at the surfaces of

the discontinuity, namely [47, 49]

pmW ¼ 1

2

X
Np
i ~pi ¼

1

2
Np ~PW : ð40Þ

Let us define the B matrices containing the derivatives of

the shape functions

B̂
l

W ¼ oN̂
p

1

ox

oN̂
p

2

ox

oN̂
p

3

ox

oN̂
p

4

ox

" #
; ð41Þ

B̂
t

W ¼ oN̂
p

1

oy

oN̂
p

2

oy

oN̂
p

3

oy

oN̂
p

4

oy

" #

¼ 1

h
�Np

1 �Np
2 Np

3 Np
4

� �
:

ð42Þ

In order to obtain the weak form of the differential equa-

tions, the Galerkin method is first applied to Eq. (4), thusZ
l

Z
h

ðN̂pÞT 1
h

o�n
ot

dy

� �
dx

þ
Z
l

Z
h

ðN̂pÞT o�l
ot

dy

� �
dx

þ
Z
l

Z
h

ðN̂pÞT oJ
l
W

ox
dy

� �
dx

þ
Z
l

Z
h

ðN̂pÞT oJ
t
W

oy
dy

� �
dx ¼ 0;

ð43Þ

then the resulting equation is integrated along the

transversal direction (i.e. y direction). Note that in the

transversal direction, the shape functions N̂
p

i vary linearly

and their integral is equal to h/2. The integration by parts

finally leads the mass balance equation of pore water to an

expression that contains functions only varying in the

longitudinal direction of the discontinuity, namely

1

2

Z
l

ðNpÞT mT o�

ot
dxþ h

2

Z
l

ðNpÞT o�l
ot

dx�

h

2

Z
l

ðBl
WÞ

T JlWdx� h

Z
l

ðBt
WÞ

T JtWdx ¼ �fW ;

ð44Þ

where

Bl
W ¼ oNp

1

ox

oNp
2

ox

oNp
3

ox

oNp
4

ox

� 	
; ð45Þ

Bt
W ¼ B̂

t

W ; ð46Þ

JlW ¼ � Kl

qwg
1

2
Bl
W
~PW � qwgl

� �

þ x
Kl

qwg
RT

v
ðMÞ
s

v
1

2
Bl
W
~CsW

� �
;

ð47Þ

JtW ¼ � Kt

qwg
Bt
W
~PW � qwgt

� �

þ x
Kt

qwg
RT

v
ðMÞ
s

v Bt
W
~CsW

� �
;

ð48Þ

�l ¼
1

2
Bl

~U; ð49Þ

Bl ¼
oNs

1

ox
0 :::

oNs
6

ox
0

� 	
; ð50Þ

whereas the boundary fluxes result equal to
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fTW ¼ h

2
ðJlWÞleft ðJlWÞright ðJlWÞright ðJlWÞleft
h i

þ
Z
l

JbotW Np
1 Np

2 0 0
� �

dx

þ
Z
l

JtopW 0 0 Np
3 Np

4

� �
dx;

ð51Þ

with ðJlWÞleft and ðJlWÞright the longitudinal pore water fluxes
(with units L/T) at the left-hand side and at the right-hand

side of the discontinuity, respectively, and J
top
W and JbotW are

the outflow fluxes (with units L/T) at upper and lower

surfaces of the discontinuity. The advantage of Eq. (44) is

that 1D shape functions and B matrices are considered. In

this way, this finite element formulation coincides with that

one proposed by [49], although a different method was

used here for deducing it. Equation (50) is valid only in the

case of alignment of local coordinate axes with global

ones, otherwise, a suitable rotation matrix must be

considered.

Finally, as compared with Eq. (8), we have assumed in

the expression of JtW that

cmsW
Ln ðctopsW=c

bot
sWÞ

h
� ctopsW � cbotsW

h
; ð52Þ

where cmsW is the salt concentration at the mid-section of

the discontinuity, coinciding with the mean value of the

salt concentrations at the surfaces of the discontinuity,

namely

cmsW ¼ 1

2

X
Np
i ð~csWÞi ¼

1

2
Np ~CsW ; ð53Þ

where ð~csWÞi are the nodal values of salt concentration,

Np is defined in Eq. (39) and ~C
T

sW ¼
ð~csWÞ1 ð~csWÞ2 ð~csWÞ3 ð~csWÞ4½ �. It is worth emphasiz-

ing that the approximation of Eq. (52) is valid for values

of ctopsW and cbotsW sufficiently close to each other.

4.3 FE formulation for the salt diffusion

Similarly to pore pressures, salt concentrations at the sur-

faces of the interface element can be expressed in terms of

nodal values ð~csWÞi and interpolation function N̂
p

i as:

csW ¼
X

N̂
p

i ð~csWÞi ¼ N̂
p ~CsW ; ð54Þ

where ~CsW is given in Sect. 4.2 and Np is defined in

Eq. (39).

Similarly to the method used for pore water, the method

of Galerkin is first applied to Eq. (9), then the resulting

equation is integrated along the transversal direction (i.e. y

direction), taking into account also Eq. (10). The integra-

tion by parts finally leads the mass balance equation of salt

to reduce to

h

2

Z
l

ðNpÞT nW
ocmsW
ot

dl

þ 1

2

Z
l

ðNpÞT cmsW mT o�

ot
dl

þ h

2

Z
l

ðNpÞT cmsW
o�l
ot

dl� h

2

Z
l

ðBl
WÞ

T JlsWdl

� h

Z
l

ðBt
WÞ

T JtsWdl ¼ �fsW ;

ð55Þ

where Bl
W and Bt

W are defined in Eqs. (45) and (46), whereas

JlsW ¼ cmsWðJlW � JdlsWÞ=nW þ JdlsW and JtsW ¼ cmsWðJtW �
JdtsWÞ= nW þ JdtsW , with the diffusion fluxes equal to

JdlsW ¼ �nWDl
1

2
Bl
W
~CsW

þ xcmsW
Kl

qwg
1

2
Bl
W
~PW � qwgl

� �
;

ð56Þ

JdtsW ¼ �nWDtB
t
W
~CsW

þ xcmsW
Kt

qwg
Bt
W
~PW � qwgt

� �
:

ð57Þ

Finally, the salt fluxes at the boundaries are equal to

fTsW ¼ h

2
ðJlsWÞleft ðJlsWÞright ðJlsWÞright ðJlsWÞleft
h i

þZ
l

JbotsW Np
1 Np

2 0 0
� �

dlþ
Z
l

JtopsW 0 0 Np
3 Np

4

� �
dl; ð58Þ

with ðJlsWÞleft and ðJlsWÞright the longitudinal salt fluxes (with
units L/T) at the left-hand side and at the right-hand side of

the discontinuity, respectively, and JtopsW and JbotsW are the

outflow fluxes (with units L/T) at upper and lower surfaces

of the discontinuity.

In order to regularize the numerical solution, thus

avoiding negative values of salt concentration when a sharp

variation of salt concentration is applied at the boundaries,

we have adopted the suggestion by Celia et al. [8] and a

lumped salt storage matrix has been used. This approach

coincides with the selection of integration points located at

the nodes (instead of the Gauss points). In addition, for the

mass balance of the pore fluid and diffused salt, the inte-

gration points are assumed to be distributed on the upper

and lower surfaces of the interface element.

4.4 The Jacobian tangent matrices

The spatial discretization of the balance equations leads to

the following tangent matrix in terms of increments of

nodal solid displacements, pore pressures, and salt

concentrations:
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Ke
uu Ke

up Ke
uc

0 Ke
pp Ke

pc

0 Ke
cp Ke

cc

2
64

3
75

~dU
~dPW

~dCsW

2
64

3
75

þ
0 0 0

Ce
pu 0 0

Ce
cu 0 Ce

cc

2
64

3
75

o ~U=ot

o~PW=ot

o ~CsW=ot

2
64

3
75 ¼

dfS
dfW
dfsW

2
64

3
75:

ð59Þ

The right-hand side vector contains the increments of

external nodal forces. The block components in the

matrices above are given in Appendix B.

5 Typical responses of the interface element

This section presents the typical chemo-hydro-mechanical

responses of the proposed interface element. Either an

isolated interface element or an interface element inserted

within a soil mass are considered. In particular, the rate

dependency and the chemo-mechanical interactions, the

longitudinal pore fluid flow and salt diffusion along the

discontinuity, and, finally, the transversal pore fluid flow

and salt diffusion are considered separately.

5.1 The rate dependency and the chemo-
mechanical interactions

The mechanical response of an isolated horizontal interface

element with a length of 10 cm and a thickness of 1 mm

was considered. In the numerical tests, the displacements

of all nodes belonging to the lower surface of the interface

were constrained whereas a horizontal displacement was

applied to the upper surface of the interface element. The

pore pressure of all nodes was set equal to zero.

Table 1 reports the values of the constitutive parameters

used for the test which have been calibrated with the

experimental results obtained with a Casagrande shear box

and with a ring shear test on bentonite by [16] and [45].

The concentration of salt in the fluid phase is expressed in

two units, namely kg/m3 and in m3/m3 (that are obtained

with a hydrated salt density of qs ¼ 2925 kg/m3). For the

nonlinear elasticity law, the following values were con-

sidered: ks ¼ kn ¼ 100 N/cm4.

The salt concentration was assumed to be equal either to

distilled water (i.e. 0.000011 m3/m3) or to a saturated solution

(i.e. 0.109743 m3/m3). Different normal stresses were applied

to the upper surface of the interface element, whereas a low

horizontal displacement rate was imposed on the upper sur-

face. The computed shear stress-displacement response is

shown in Fig. 8a for different normal stresses and for a salt

concentration equal to saturated solution. Figure 8b shows the

same quantities evaluated for distilled water.

The numerical results plotted in the r0s � r0n diagram

compare well with experimental results obtained by Di

Maio and Scaringi [16] (Fig. 9). In particular, it can be

noted the much higher shear strength of the interface ele-

ment prepared with a saturated solution with respect to that

one prepared with distilled water.

Finally, the effects of the displacement rate on the shearing

strength were examined. The same geometry of the interface

was considered. In this case, under a vertical stress of 100

kPa, a horizontal displacement with a velocity of 45 mm/min

was initially applied to the upper surface of the discontinuity.

Then, after a while, the velocity was sharply decreased to

0.018 mm/min. Figure 10 shows that the sudden reduction of

the applied displacement rate leads to a sudden decrease of

the residual shear strength in the samples exposed either to

distilled water or to the saturated solution.

5.2 The longitudinal water flow and salt
diffusion

The longitudinal water flow and salt diffusion along the

interface element are analyzed below. A very simple

geometry has been considered: a column of interface ele-

ments having a total height of 10 cm and a thickness

h ¼ 0:01 mm. The longitudinal hydraulic conductivity was

assumed constant and equal to Kl ¼ 10�6 m/s (the

transversal one is irrelevant). The mechanical behaviour of

the interface was characterized by a normal stiffness equal

to kn ¼ 108 N/m4 (whereas the shear stiffness is irrelevant).

The mesh size is equal to 0.2 mm. Figure 11a shows the

boundary conditions and the geometry of the model. At the

bottom boundary, no water flux was assumed, whereas, at

the upper boundary, the pore pressure was increased from 0

to 10 kPa, gradually (in 100 s). No gravity and a constant

salt concentration were assumed.

Table 1 Values of the constitutive parameters describing the dependence of the residual friction angle in terms of salt concentration and

displacement rate

udw usat cdwsW (kg/m3) csatsW (kg/m3) c3 _�min (mm/min) �0 (mm) a b c

6.5 21 0.0325 321 4.8 0.009 10�6 1 500 0.021
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The hydro-mechanical coupling within the interface

element was evaluated considering the following con-

straints of the solid displacements: the transversal (i.e. the

horizontal) displacements of the left-hand side surface of

the interface elements were constrained (see Fig. 11a)

whereas the transversal displacements of the right-hand

side surface were left unconstrained. All longitudinal (i.e.

the vertical) displacements were constrained. As a result,

the discontinuity can open in the transversal direction if the

pore pressure is increased. A normal compression stress

equal to 20 kPa was applied to the right-hand side surface

of the interface elements. Figure 11b shows the longitu-

dinal distribution of pore pressure. Due to the transversal

deformability of the interface, a consolidation process is

induced in the longitudinal direction. Figure 11c shows the

distribution of the horizontal displacements at various

times. Similarly to pore pressure distribution (Fig. 11b),

the transversal displacements gradually increase along the

longitudinal direction from a null initial value to 1.7 mm

(Fig. 11c).

For the analysis of the longitudinal salt diffusion we

have considered longitudinal diffusion coefficients equal to

10�8 m2/s (whereas the transversal one is irrelevant) and

the boundary conditions were modified as shown in

Fig. 12a. All nodal displacements were constrained in the

two directions. The flux of salt is null at the bottom

boundary, whereas salt concentration was increased in

100 s from 0.0325 kg/m3 to 320 kg/m3 at the upper

boundary. Pore pressure was assumed null at all nodes.

Figure 12b shows the distribution of salt concentration

along the interface at various times. It can be observed that

the salt concentration propagates inside the interface ele-

ments gradually and after 30 days, the salt concentration

has almost reached the equilibrium value of 320 kg/m3

along the whole interface.

5.3 The transversal salt diffusion and water flow

The transversal salt diffusion has been examined on a

horizontal interface element with a length of 10 cm and a

thickness of 1 mm. All nodal displacements were

Fig. 8 The effect of variation of normal stress on shearing behaviour of interface element in contact with (a) saturated solution, and with (b)
distilled water (displacement rate _�ps ¼ 0:0009 mm/min)

Fig. 9 The effect of variation of salt concentration on the shear

strength for various normal stresses: comparison of model simulations

with experimental results obtained by Di Maio and Scaringi [16]

(displacement rate _�ps ¼ 0:0009 mm/min)

Fig. 10 The effect of variation of displacement rate on shear strength

of interface element, for different salt concentrations and for

r0n = 100 kPa
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constrained in the two directions. The pore pressure of all

nodes was set equal to zero and the initial salt concentra-

tion was assumed equal to distilled water. Two different

diffusion coefficients have been considered in the

transversal direction, namely Dt ¼ 10�11 m2/s and Dt ¼
10�12 m2/s. The following boundary conditions were

considered: at the upper surface, the salt concentration was

increased instantaneously from the value of distilled water

to 58.5 kg/m3 (1 M NaCl). At the bottom surface, null salt

flux was assumed. The evolution of salt concentration in

the nodes of the bottom surface of the interface element is

shown in Fig. 13. It can be observed that the salt concen-

tration increases gradually with time and, as expected, for

Dt ¼ 10�12 m2/s, the increase of salt concentration is much

slower with respect to Dt ¼ 10�11 m2/s.

The evaluation of the transversal water flux was per-

formed on a vertical soil column incorporating a horizontal

interface element in the middle section, as shown in

Fig. 14a. The soil above and below the interface element

was simulated with the 2D finite elements proposed by

Ghalamzan Esfahani et al. [24, 26]. Salt concentration in

pore fluid was constrained at all nodes and no chemo-

mechanical interaction was considered. This implies that

Fig. 11 Longitudinal flow of water when the pore pressure is increased from 0 to 10 kPa at the top of the model: (a) boundary conditions,

(b) pore pressure distribution by time, (c) horizontal displacement of the right-hand side surface of the interface elements at various times

Fig. 12 Diffusion of salt after an increase of salt concentration in

100 s at the top of the first element: (a) boundary conditions,

(b) diffusion of salt inside the model

Fig. 13 Validation of transversal salt flux: (a) boundary condition,

(b) change of salt concentration at the bottom surface with time when

salt concentration is increased instantaneously at the top surface

Fig. 14 Effect of transversal hydraulic conductivity of interface

element on pore pressure distribution in a clay sample with an

interface element at the middle: (a) boundary condition and geometry,

(b) distribution of pore pressure at steady state
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the 2D elements have the same behaviour as the standard

finite element in ABAQUS which is used for simulating

soil behaviour. In addition, both horizontal and vertical

nodal displacements were constrained. The hydraulic

conductivity of the 2D continuous element was assumed

equal to 10�8 m/s. The mesh size ranges between

0.0125 mm at the top and bottom boundaries of the sample

and 0.2 mm in the middle section. The thickness of the

interface element is equal h ¼0.2 mm. The pore pressure

was set equal to zero at the bottom boundary of the model

and was slowly increased from 0 to 10 kPa at the upper

boundary, as shown in Fig. 14a. The computed pore pres-

sure distribution is shown in Fig. 14b for different values

of the transversal hydraulic conductivity Kt of the interface

element when the stationary condition is reached. It can be

observed that the pore pressure distribution is linear in the

vertical direction if Kt is equal to the permeability of the

upper and lower soil (i.e. Kt ¼ 10�8 m/s), whereas there is

a pore pressure drop at the interface element, for Kt\10�8

m/s. The amount of pore pressure drop is the larger, the

smaller the value of the transversal hydraulic conductivity

Kt.

The same trend is obtained for the salt diffusion in the

vertical direction (not shown here for the sake of brevity).

6 Model validation with experimental
results

In order to validate the proposed interface element, we

have compared the simulated effects of salt concentration

and displacement rate with the experimental results

obtained from the shear tests on bentonite performed by Di

Maio and Scaringi [16] and Scaringi and Di Maio [45].

These results deserve special attention due to their com-

pleteness and innovativeness. In fact, some experimental

results were obtained following the standard procedures for

evaluating the residual shear strength in direct shear tests,

whereas other results were obtained with a more complex

chemo-mechanical loading history in which the mechanical

load was alternated with changes of salt concentration at

the sample boundaries.

In our analyses, the first set of experimental data was

used for calibrating the constitutive parameters, whereas

the subsequent model simulations were used for validating

the model forecast with the experimental results obtained

with the more complex chemo-mechanical loading history.

Figure 15 shows the schematics of the Casagrande

direct shear apparatus. Within the innovative experimental

procedure proposed by Di Maio and Scaringi [16], the

loading phase was split into 3 phases. Initially, the soil

sample was reconstituted with 1 M NaCl solution (i.e. a

salt concentration of 58.5 kg/m3), was put in the apparatus

between two porous plates, and was finally submerged in

1 M solution of NaCl. After consolidation under a vertical

stress equal to 150 kPa, the first phase began. A horizontal

displacement was applied (with a low velocity of v = 5 lm/

min, under displacement-controlled conditions) to the

upper part of the sample while the bottom part was con-

strained. The standard procedure for generating the residual

strength along a slip surface was then adopted. Namely, the

shearing was repeated several times with various forward/

backward cycles in order to induce residual conditions.

Then, after the sample had reached its residual state (a

cumulative displacement of 30 mm of forward cycles was

needed), in the second phase, the shear stress was

decreased (from nearly 50 kPa to 29 kPa) and kept constant

(under load-controlled conditions). It is worth noting that

the value of 29 kPa is smaller than the residual strength of

bentonite prepared with 1 M NaCl solution and larger than

the residual strength of bentonite prepared with distilled

water. Subsequently, the salty water in the external reser-

voir was substituted with distilled water (that was renewed

once per day). The diffusion of salt from inside the sample

to the external reservoir led to a decrease in the shear

strength and then to a creep response under constant shear

stress. This phase lasted 16 days and led to a final dis-

placement of about 3 mm.

Finally, in the third phase, the horizontal displacement

was increased at a constant low rate (v = 5 lm/min, under

displacement-controlled conditions) while the salt con-

centration of the external reservoir was renewed with dis-

tilled water once per day. In this phase (equivalently to the

first phase), a series of forward/backward cycles was

applied and the shear strength of the soil decreased even

further due to the salt diffusion out of the sample, while the

cumulative displacement was increased. This phase lasted

about 50 days and led to a final cumulative displacement of

160 mm.

Fig. 15 Schematic setup of the Casagrande shearing test apparatus
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6.1 Test setup and simulation of the direct shear
test

The horizontal size of the sample and porous plates in the

Casagrande direct shear test is equal to 6 cm and the

thicknesses of the top and bottom porous plates and soil

sample are equal to 8 mm, 4 mm, and 28 mm, respec-

tively. From Fig. 15, it can be observed that salt may dif-

fuse through the porous plates and through the lateral edges

of the interface. In particular, the upper surface of the top

porous plate and the lower surface of the bottom porous

plate are in contact with a thin layer of water. Thus salt

must diffuse out of the porous plates through the thin layers

of water before reaching the cell reservoir. In addition, the

cell fluid was renewed about once per day with fresh water

and was scarcely mixed in the cell reservoir [17]. In order

to simulate properly the experimental test, the cell reservoir

and the renewal process were carefully simulated in FEM

analyses.

Taking account of the vertical and horizontal symme-

tries, only the lower quarter of the test setup was simulated.

In the simulations, half of the value of the real interface

thickness (h=2) was considered. The lower part of the

sample was considered in the simulations due to the

smaller thickness of the lower porous plate and the con-

sequent faster diffusion process in the lower part of the

sample. Figure 16a shows the size of the model and the

boundary conditions. The relative vertical displacements of

all nodes of the interface surfaces were constrained to be

null in order to prevent any rotation of the upper surface of

the interface region during the load-controlled phase. In

addition, the upper surface of the interface, Fig. 16a, was

’clued’ to a truss element that approximately simulates the

stiffness of the upper part of the soil sample (that was not

considered in the simulations). The fictitious truss element

provides some bending and shear stiffness in the

transversal direction of the interface.

Figure 16b shows the FE mesh used for discretizing the

model. Note that, for both the porous plate and soil sample,

the mesh size is finer (0.2 mm) close to the boundaries,

whereas it is coarser in the middle (0.4 mm) in order to

prevent salt concentration oscillations close to the bound-

aries. The horizontal dimension was discretized with 15

finite elements having the same horizontal size. In order to

simulate a drained test, the pore pressure of all nodes was

constrained to be null.

The soil elements, porous plate, cell reservoir, and thin

layer of water were simulated with the 2D finite element

proposed by Ghalamzan Esfahani et al. [24, 26]. In this

element, the salt diffusion and the mass exchange between

solid particles and the fluid phase are considered in addi-

tion to the solid displacement and pore pressures. The

constitutive parameters used for the soil are reported in

Appendix C. The hydraulic conductivity and effective

diffusion coefficient of the soil elements are equal to

5�10�11 m/s and 3.3�10�10 m2/s, respectively (reported in

[20]). The adsorption/desorption of water is assumed to be

null for the porous plate, cell reservoir, and thin layer of

water. The porosity of the cell reservoir and the thin layer

of water is close to unit (0.9) and the displacements are

constrained. A large diffusion coefficient equal to 10�6 m2/

s was selected for the cell reservoir in order to simulate

some mixing. The thin layer of water at the lower surface

of the porous plate has a thickness equal to 0.3 mm and a

diffusion coefficient equal to pore water (1.5�10�9 m2/s).

The porosity of the porous plate is equal to 0.046 and its

effective diffusion coefficient is equal to 1:5� 10�9 m2/s.

Tables 1 and 2 report the selected constitutive parame-

ters describing the chemo-mechanical interactions and

those describing the fluid flow and salt diffusion within the

interface element, respectively. It is worth noting that the

hydraulic conductivity of the interface elements is assumed

constant and the osmotic efficiency is assumed null. The

preliminary, standard shear tests provided a residual fric-

tion angle equal to 6.5� for the clay mixed with distilled

water and to 17� for the clay mixed with 1 M NaCl solution

[16, 45] (Fig. 9).

Figure 17a shows the measured dependence of shear

strength r0s=r
0
n on displacement rate, for various salt

Fig. 16 The Casagrande direct shear test: (a) size of the sample and porous stones and boundary conditions, (b) mesh size
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concentrations. An alternative representation is shown in

Fig. 18a, where the dependence of shear strength on salt

concentration is shown for various displacement rates.

Figures 17b and 18b show the corresponding model sim-

ulations. The good consistency of model simulations with

experimental data confirms the proper selection of the

interpolation functions describing the dependence of fric-

tion angle on salt concentration and displacement rate

(through the viscosity function).

6.1.1 Simulation of the displacement-controlled phases

This subsection presents the simulations of phases no. 1

and 3 of the loading history described in Sect. 6. In the

simulations, all chemical-loading steps used in the exper-

iments were carefully simulated. In particular, the renewal

of cell fluid was simulated with a frequency of once per day

by setting the salt concentration in the cell reservoir equal

to distilled water and by restarting the transient analysis.

Moreover, for the phases in which displacement-controlled

conditions are applied, namely phases n. 1 and 3, the

backward/forward cycles were not simulated and just a

monotonous displacement was considered. This is accept-

able because our analyses were performed within a small

Fig. 17 Change of r0s=r
0
n with displacement rate and molarity of pore solution with r0n = 150 kPa: (a) experimental data [45], (b) proposed

interpolation function

Fig. 18 Change of r0s=r
0
n with pore solution molarity with r0n = 150 kPa: (a) experimental data [45], (b) proposed interpolation function

Table 2 Transversal and longitudinal permeability and diffusion

coefficient of the interface element.

Kl (m/s) Kt (m/s) Dl (m
2/s) Dt (m

2/s) h
2
(mm)

10�10 10�10 1.5�10�9 1.5�10�9 1
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strain framework, thus all evaluations were performed with

regard to the undeformed, initial configuration.

Figure 19 shows the comparison between experimental

results and model simulations concerning the evolution of

the shear strength in terms of cumulative horizontal dis-

placement. It is worth noting in Fig. 19 that the results are

represented in terms of displacements, thus the second

phase (where the horizontal displacement increases from

30 to 33 mm) appears very short as compared with the first

and third phases, although the second phase actually lasted

16 days.

From the experimental data shown in Fig. 19 it can be

observed that the horizontal displacement of 30 mm in

phase 1 has led the shear strength to reach the residual

value. This is a progressive phenomenon because it is

related to the reorientation of clay particles. In contrast, in

the simulations, the residual state is assumed to be estab-

lished from the real beginning of the simulation, thus a

horizontal plot is obtained in Fig. 19. The key point is that

the experimental curve is consistent with the simulations at

the end of phase 1.

The subsequent exposure to distilled water in the third

phase leads the shear strength to decrease as a result of the

decrease of salt concentration along the slip surface. In

particular, the decrease in salt concentration occurs partly

as a result of the diffusion through the upper and lower part

of the sample and partly as a result of diffusion along the

slip surface. The latter starts from the edges of the interface

and propagates toward the central part of the sample.

Figure 19 shows that model simulations are in good

agreement with the experiment.

6.1.2 Simulation of the load-controlled phase

In phase n. 2 of the loading history described in Sect. 6 (see

Fig. 19), the specimen was exposed to distilled water,

under constant shear stress equal to 29 kPa, which is lower

than the residual strength of the sample prepared with 1 M

NaCl solution and higher than the residual strength of the

sample prepared with distilled water. In this phase, the cell

fluid was renewed with distilled water once per day, thus

leading to a decrease in shear strength and to the conse-

quent increase of the horizontal displacement.

The comparison between computed and measured evo-

lution of the horizontal displacements is shown in Fig. 20.

From the experimental data, it can be observed that the

horizontal displacement rate is initially null, then, after

about 2 days, it starts to gradually increase and becoming

very large after about 16 days. In the simulations, the

displacement rate is initially negligible and abruptly

becomes very large after 16 days (or after 20 days,

depending on the assumed interface thickness). Thus, the

simulated increase of displacement rate is too sharp with

respect to the measured one. The instant of occurrence of

the sharp increase in displacement rate depends mainly on

the longitudinal diffusion coefficient along the interface

and on the interface thickness. Comparatively, salt diffu-

sion across the porous plate and the intact clay has a minor

role.

Figure 21 shows the computed distribution of salt con-

centration along the interface region at various times. In

Fig. 21 we have assumed that the distribution of salt con-

centration is symmetric with respect to the vertical axis.

The salt concentration is obviously lower at the external

edges of the interface region while it is higher in the middle

of the interface. After about 16 days, the average amount of

salt concentration was lower than 0.4 M, thus the average

shear strength became smaller than the applied shear stress

thus leading to a sharp increase in the displacement rate.

Thus, the major inconsistency between experimental

results and model simulations in Fig. 20 concerns the

sharpness of the increase in displacement rate. Since all

constitutive parameters have been calibrated on the specific

Fig. 20 Comparison of experimental results with model simulations

obtained with two different values of the interface thickness in

Casagrande apparatus [16] for the phase 2 of Fig. 19

Fig. 19 Comparison of model simulations with experimental results

obtained with the Casagrande direct shear test by Di Maio and

Scaringi [16]
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experimental results discussed in Sect. 6.1, the discrepancy

shown in Fig. 20 cannot be easily explained, because no

constitutive parameter can be adjusted to make the increase

of displacement rate more progressive without worsening

the other simulations discussed so far.

Excluding possible inconsistencies in the simulation of

the experimental test (e.g. the forward/backward cycles

that did not lead to bad results in Fig. 19, however), the

inconsistencies of Fig. 20 might come from one of our

constitutive assumptions. For this reason, we have explored

the possibility that the elastic shear stiffness ks might

depend on salt concentration. To this aim, we have used the

typical variations of elastic stiffness observed in oedo-

metric tests on bentonite (in which the elastic stiffness

decreases by about 100 times when the salt concentration is

reduced from saturated solution to distilled water). This

analysis is not shown here for the sake of brevity. Although

the dependence of elastic shear stiffness on salt concen-

tration leads to a more gradual increase of displacement

rate with time, it is not sufficient for explaining the dis-

crepancies observed in Fig. 20. Thus further effects might

be involved in the experimental tests, such as for instance,

a viscoelastic response in addition to the assumed visco-

plastic one. Further experimental results and numerical

tests are needed for a better understanding of this

behaviour.

7 Conclusion

The formulation of a new zero-thickness interface element

is presented in this work. This element is capable of taking

into account the chemo-hydro-mechanical interactions and

the rate dependency observed experimentally along slip

surfaces at residual state in natural clays. The proposed

interface element consists of a solid and a fluid phase, in

which dissolved salt diffuses. Thus the fluid phase consists

of pore water and a single diffusing salt. The proposed

element consists of two parallel surfaces which may have

relative normal and shearing displacements with respect to

each other. We have considered the flow of water and the

diffusion of salt both in the longitudinal and transversal

directions of the interface (as Segura and Carol [49] did for

pore water flow). Moreover, the effects of salt concentra-

tion and strain rate are considered on the shearing beha-

viour of the interface element. Finally, a novel nonlinear

elastic energy is proposed which strongly improves the

numerical convergence when interface opening occurs.

The mechanical behaviour and the response to water and

salt fluxes of the new interface element are carefully

evaluated. In particular, we have assessed: (1) the effects of

shear strain rate and salt concentration on the shear strength

of the interface, (2) the coupled flow of water in the lon-

gitudinal direction of the interface, (3) the longitudinal

diffusion of salt and (4) the transversal flow of water and

diffusion of salt.

Moreover, we have used the proposed interface element

together with the 2D element proposed by Ghalamzan

Esfahani et al. [24, 26] to simulate the direct shear tests

performed on bentonite by Di Maio and Scaringi [16].

These experimental results are particularly challenging

because a mixture of chemical and mechanical loadings

was applied to a soil sample, under either load- or dis-

placement-controlled conditions that involved also the

delayed mechanical response of the solid skeleton.

Whereas the agreement between the experimental results

and model simulations is very good for the displacement-

controlled phases, there are some discrepancies in the

delayed behaviour of soil under the load-controlled con-

ditions. Although the general picture of this chemo-me-

chanical response is correctly captured, further

experimental results and simulations are needed for a better

understanding of these phenomena and for improving

model simulations.

Appendix A: Elastic stiffness

Within the proposed elasticity framework, the normal and

shear stresses result equal to

r0n ¼
oC
o�en

¼
�3knð��en þ �0Þ2

þ3ks�
e
nð�e2n þ �e2s Þ

1
2 for �en � 0;

�P0 expð��en=kÞ for �en [ 0;

8<
: ðA1Þ

r0s ¼
oC
o�es

¼ 3ks�
e
sð�e2n þ �e2s Þ

1
2 for �en � 0;

3ks�
e2
s for �en [ 0;

�
ðA2Þ

where the nonlinearity of the stress–strain relationship can

be easily noticed.

The diagonal components of nonlinear elastic stiffness

are as follows:

Fig. 21 Salt distribution along the interface in the load-controlled

phase (the gray lines were obtained by exploiting the symmetry with

respect to the vertical axis)
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Deð1; 1Þ ¼

6knð��en þ �0Þ
þ3ks�

e2
n ð�e2n þ �e2s Þ

�1
2

þ3ksð�e2n þ �e2s Þ
1
2 for �en � 0;

P0

k
expð��en=kÞ for �en [ 0;

8>>>><
>>>>:

ðA3Þ

Deð2; 2Þ ¼
3ks�

e2
s ð�e2n þ �e2s Þ�

1
2

þ3ksð�e2n þ �e2s Þ
1
2 for �en � 0;

6ks�
e
s for �en [ 0:

8><
>: ðA4Þ

The out-of-diagonal components of the stiffness matrix are

obviously equal to each other and their value represents the

coupling between normal and shear behaviour.

Deð1; 2Þ¼Deð2; 1Þ¼
3ks�

e
n�

e
s

ð�e2n þ �e2s Þ
�1

2 for �en � 0;
0 for �en [ 0:

8<
: ðA5Þ

Appendix B: Element matrices

From the momentum balance equation, we have the fol-

lowing matrices:

Ke
uu ¼

Z
l

BT
GDepBGdl;

Ke
up ¼ � 1

2

Z
l

BT
GmNpdl;

Ke
uc ¼ � 1

2

Z
l

BT
G

or

ocsW
Npdl;

ðB1Þ

BG is the strain transformation matrix, with respect to the

reference coordinate system BG ¼ BR, and R is the rota-

tion matrix (see [12, 38] for more details). The element

conductivity matrix (Kpp) is the sum of the conductivity

matrices in the longitudinal and transversal direction of the

interface element as:

Ke
pp ¼ Kl

pp þKt
pp;

Kl
pp ¼

h

4

Z
l

ðBl
WÞ

T Kl

qwg
Bl
Wdl;

Kt
pp ¼ h

Z
l

ðBt
WÞ

T Kt

qwg
Bt
Wdl:

ðB2Þ

The coupling matrices of change of pore pressure with salt

concentration and displacement are:

Ke
pc ¼ Kl

pc þKt
pc;

Kl
pc ¼ � h

4

Z
l

ðBl
WÞ

Tx
Kl

qwg
RT

v
ðMÞ
s

vBl
Wdl;

Kt
pc ¼ �h

Z
l

ðBt
WÞ

Tx
Kt

qwg
RT

v
ðMÞ
s

vBt
Wdl;

Ce
pu ¼

1

2

Z
l

ðNpÞTmTBGdlþ
h

2

Z
l

ðNpÞT Bldl:

ðB3Þ

The mass balance of salt leads to the element matrices in

the third row of Eq. 59. The coupling flows in which the

change of pore pressure induces the diffusion of salt is:

Ce
cu ¼

1

2

Z
l

ðNpÞTmTcmsWBGdlþ
h

2

Z
l

ðNpÞTcmsWBldl;

Ke
cp ¼ Kl

cp þKt
cp;

Kl
cp ¼ � h

4

Z
l

ðBl
WÞ

Tx
Kl

qwg
cmsWcmwWB

l
Wdl;

Kt
cp ¼ �h

Z
l

ðBt
WÞ

Tx
Kt

qwg
cmsWcmwWB

t
Wdl: ðB4Þ

In the mass balance equation of salt, we assume that salt

diffuses along the interface element and in the direction of

interface thickness. Thus the element stiffness matrix for

the diffusion of salt (Kcc) is the sum of longitudinal and

transversal diffusion matrices as:

Ke
cc ¼ Kl

cc þKt
cc;

Kl
cc ¼

h

4

Z
l

ðBl
WÞ

TnWDlcmwWvB
l
Wdl;

Kt
cc ¼ h

Z
l

ðBt
WÞ

TDtB
t
Wdl:

ðB5Þ

When the advective flow of salt is considered in the lon-

gitudinal direction of the interface element in addition to

salt diffusion, spurious oscillations (wiggles) typically

occur if the Peclet number is greater than 1. The SUPG

method is used to stabilize the advective flow by modifying

the weighting function for the convective term through the

addition of an artificial diffusive flux. The weighting

function for the advective term is modified as follows:

Kl
cc ¼

h

4

Z
l

ððNpÞT þ ðRpÞTÞ vladvBl
Wdl; ðB6Þ

where Rp is the perturbation weighting function which can

be obtained from the following relation [7]:

Rp ¼ ~d
vladv

k vladvk
Bl
W ; ðB7Þ

in which vladv is the advective velocity and ~d is the arti-

ficial diffusion equal to ~d ¼ ð vladvl=2Þ~f, l is the length of
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the interface element and ~f can be approximated based on

the value of Peclet number Pe as follows:

~f ¼ sgnPe jPej[ 3;
Pe=3 � 3�Pe � 3;

�
withPe ¼

j vladvjl
Dl

: ðB8Þ

The diffusion matrix of salt concentration Ccc is written in

terms of the element shape functions as:

Ccc ¼
h

4

Z
l

ðNpÞTnWNpdl: ðB9Þ

It can be noticed that the stabilization of advective flow is

implemented only for the flux in the longitudinal direction.

The effectiveness of SUPG stabilization on the distri-

bution of salt concentration can be evaluated by consider-

ing a 10 mm high column of interface elements (Fig. 22).

In this model, the mesh size changes gradually from

0.2 mm at the bottom to 0.02 mm at the top. The longi-

tudinal diffusion coefficient and hydraulic conductivity of

the interface elements are equal to 10�9 m2/s and 10�5 m/s,

respectively. The displacements of all nodes are con-

strained and the osmotic efficiency is null. The pore pres-

sure is set equal to 1 kPa at the top of the model and to 0 at

the bottom. The salt concentration at the top of the model is

increased to 0.3 kg/m3 in one second. The distribution of

salt concentration along the interface elements is shown in

Fig. 22 for different cases. When advection is neglected,

the salt concentration diffuses very slowly and the salt

concentration increases only close to the top of the model

after 100 s. When SUPG stabilization is not applied, there

are wiggles in salt distribution at 100 s close to the bottom

boundary. In contrast, Fig. 22 shows that the SUPG sta-

bilization method is effective in eliminating the numerical

wiggles.

Appendix C: Constitutive parameters of clay

For the simulation of the compression and swelling beha-

viour of the clay above and below the interface element, in

Sect. 6, the chemo-mechanical constitutive model pro-

posed by Loret et al. [33] was adopted. This model is

basically an extension of the Cam-Clay model to chemi-

cally active clays. As a result, the slope of the virgin

compression line k and the slope of the swelling line j
(also known as the unloading/reloading line) are assumed

to depend on salt concentration. More details of the

mathematical model are available in [20, 21, 26, 33]. The

constitutive parameters used in this work are reported in

Table 3 for the sake of completeness.
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